WorldWideScience

Sample records for tissues produces compression

  1. Increased tissue oxygenation explains the attenuation of hyperemia upon repetitive pneumatic compression of the lower leg.

    Science.gov (United States)

    Messere, Alessandro; Ceravolo, Gianluca; Franco, Walter; Maffiodo, Daniela; Ferraresi, Carlo; Roatta, Silvestro

    2017-12-01

    The rapid hyperemia evoked by muscle compression is short lived and was recently shown to undergo a rapid decrease even in spite of continuing mechanical stimulation. The present study aims at investigating the mechanisms underlying this attenuation, which include local metabolic mechanisms, desensitization of mechanosensitive pathways, and reduced efficacy of the muscle pump. In 10 healthy subjects, short sequences of mechanical compressions ( n = 3-6; 150 mmHg) of the lower leg were delivered at different interstimulus intervals (ranging from 20 to 160 s) through a customized pneumatic device. Hemodynamic monitoring included near-infrared spectroscopy, detecting tissue oxygenation and blood volume in calf muscles, and simultaneous echo-Doppler measurement of arterial (superficial femoral artery) and venous (femoral vein) blood flow. The results indicate that 1 ) a long-lasting (>100 s) increase in local tissue oxygenation follows compression-induced hyperemia, 2 ) compression-induced hyperemia exhibits different patterns of attenuation depending on the interstimulus interval, 3 ) the amplitude of the hyperemia is not correlated with the amount of blood volume displaced by the compression, and 4 ) the extent of attenuation negatively correlates with tissue oxygenation ( r  = -0,78, P < 0.05). Increased tissue oxygenation appears to be the key factor for the attenuation of hyperemia upon repetitive compressive stimulation. Tissue oxygenation monitoring is suggested as a useful integration in medical treatments aimed at improving local circulation by repetitive tissue compression. NEW & NOTEWORTHY This study shows that 1 ) the hyperemia induced by muscle compression produces a long-lasting increase in tissue oxygenation, 2 ) the hyperemia produced by subsequent muscle compressions exhibits different patterns of attenuation at different interstimulus intervals, and 3 ) the extent of attenuation of the compression-induced hyperemia is proportional to the level of

  2. Rotary compression process for producing toothed hollow shafts

    Directory of Open Access Journals (Sweden)

    J. Tomczak

    2014-10-01

    Full Text Available The paper presents the results of numerical analyses of the rotary compression process for hollow stepped shafts with herringbone teeth. The numerical simulations were performed by Finite Element Method (FEM, using commercial software package DEFORM-3D. The results of numerical modelling aimed at determining the effect of billet wall thickness on product shape and the rotary compression process are presented. The distributions of strains, temperatures, damage criterion and force parameters of the process determined in the simulations are given, too. The numerical results obtained confirm the possibility of producing hollow toothed shafts from tube billet by rotary compression methods.

  3. Effects on MR images compression in tissue classification quality

    International Nuclear Information System (INIS)

    Santalla, H; Meschino, G; Ballarin, V

    2007-01-01

    It is known that image compression is required to optimize the storage in memory. Moreover, transmission speed can be significantly improved. Lossless compression is used without controversy in medicine, though benefits are limited. If we compress images lossy, where image can not be totally recovered; we can only recover an approximation. In this point definition of 'quality' is essential. What we understand for 'quality'? How can we evaluate a compressed image? Quality in images is an attribute whit several definitions and interpretations, which actually depend on the posterior use we want to give them. This work proposes a quantitative analysis of quality for lossy compressed Magnetic Resonance (MR) images, and their influence in automatic tissue classification, accomplished with these images

  4. Determination of friction coefficient in unconfined compression of brain tissue.

    Science.gov (United States)

    Rashid, Badar; Destrade, Michel; Gilchrist, Michael D

    2012-10-01

    Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient μ of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that μ was equal to 0.09±0.03, 0.18±0.04, 0.18±0.04 and 0.20±0.02 at strain rates of 1, 30, 60 and 90/s, respectively. Additional tests were also performed to analyze brain tissue under lubricated and bonded conditions, with and without initial contact of the top platen with the brain tissue, with different specimen aspect ratios and with different lubricants (Phosphate Buffer Saline (PBS), Polytetrafluoroethylene (PTFE) and Silicone). The test conditions (lubricant used, biological tissue, loading velocity) adopted in this study were similar to the studies conducted by other research groups. This study will help to understand the amount of friction generated during unconfined compression of brain tissue for strain rates of up to 90/s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Ultraporous, Compressible, Wettable Polylactide/Polycaprolactone Sponges for Tissue Engineering.

    Science.gov (United States)

    Mader, Michael; Jérôme, Valérie; Freitag, Ruth; Agarwal, Seema; Greiner, Andreas

    2018-05-14

    Ultraporous, degradable sponges made of either polylactide or of blends of polylactide/poly(ε-caprolactone) are prepared by freeze-drying of dispersions of short electrospun fibers and subsequent thermal annealing. The sponges feature ultrahigh porosity (99.6%), a hierarchical cellular structure, and high reversible compressibility with fast recovery from deformation in the dry as well as in the wet state. The sponge properties depend on the fiber dispersion concentration and the annealing temperature. Sponge characteristics like fiber density (2.5-20 mg/cm 3 ), size, shape, crystallinity, mechanical strength, wetability, and structural integrity are user adjustable. Cell culture experiments were successfully performed with Jurkat cells with Confocal Laser Scanning Microscopy and MTT staining showing rapid cell proliferation. Live/Dead staining demonstrated high viability of the seeded cells. The sponge characteristics and modifications investigated and presented here reveal that these sponges are highly promising for tissue engineering applications.

  6. Experiences with delta compression of data produced by DIII

    International Nuclear Information System (INIS)

    Henline, P.A.

    1986-01-01

    The amount of data collected for each tokamak experimental shot is rapidly increasing. This is caused by many factors, including more diagnostic experiments, reduced cost of electronics hardware (especially memory), and longer plasma duration. The design goal for the DIII-D tokamak is 25 Mbytes of data per shot. In order to store the shot data as one logical unit, the delta compression algorithm, as it was implemented at ORNL by E. Blair, is being used. Statistics on compression factors, times, and general usage will be presented for actual DIII data. Data for 8-, 10-, and 12-bit digitizers will be highlighted since this hardware is common to most sites

  7. Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry.

    Science.gov (United States)

    Christensen, Gary E; Song, Joo Hyun; Lu, Wei; El Naqa, Issam; Low, Daniel A

    2007-06-01

    Breathing motion is one of the major limiting factors for reducing dose and irradiation of normal tissue for conventional conformal radiotherapy. This paper describes a relationship between tracking lung motion using spirometry data and image registration of consecutive CT image volumes collected from a multislice CT scanner over multiple breathing periods. Temporal CT sequences from 5 individuals were analyzed in this study. The couch was moved from 11 to 14 different positions to image the entire lung. At each couch position, 15 image volumes were collected over approximately 3 breathing periods. It is assumed that the expansion and contraction of lung tissue can be modeled as an elastic material. Furthermore, it is assumed that the deformation of the lung is small over one-fifth of a breathing period and therefore the motion of the lung can be adequately modeled using a small deformation linear elastic model. The small deformation inverse consistent linear elastic image registration algorithm is therefore well suited for this problem and was used to register consecutive image scans. The pointwise expansion and compression of lung tissue was measured by computing the Jacobian of the transformations used to register the images. The logarithm of the Jacobian was computed so that expansion and compression of the lung were scaled equally. The log-Jacobian was computed at each voxel in the volume to produce a map of the local expansion and compression of the lung during the breathing period. These log-Jacobian images demonstrate that the lung does not expand uniformly during the breathing period, but rather expands and contracts locally at different rates during inhalation and exhalation. The log-Jacobian numbers were averaged over a cross section of the lung to produce an estimate of the average expansion or compression from one time point to the next and compared to the air flow rate measured by spirometry. In four out of five individuals, the average log

  8. Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry

    International Nuclear Information System (INIS)

    Christensen, Gary E.; Song, Joo Hyun; Lu, Wei; Naqa, Issam El; Low, Daniel A.

    2007-01-01

    Breathing motion is one of the major limiting factors for reducing dose and irradiation of normal tissue for conventional conformal radiotherapy. This paper describes a relationship between tracking lung motion using spirometry data and image registration of consecutive CT image volumes collected from a multislice CT scanner over multiple breathing periods. Temporal CT sequences from 5 individuals were analyzed in this study. The couch was moved from 11 to 14 different positions to image the entire lung. At each couch position, 15 image volumes were collected over approximately 3 breathing periods. It is assumed that the expansion and contraction of lung tissue can be modeled as an elastic material. Furthermore, it is assumed that the deformation of the lung is small over one-fifth of a breathing period and therefore the motion of the lung can be adequately modeled using a small deformation linear elastic model. The small deformation inverse consistent linear elastic image registration algorithm is therefore well suited for this problem and was used to register consecutive image scans. The pointwise expansion and compression of lung tissue was measured by computing the Jacobian of the transformations used to register the images. The logarithm of the Jacobian was computed so that expansion and compression of the lung were scaled equally. The log-Jacobian was computed at each voxel in the volume to produce a map of the local expansion and compression of the lung during the breathing period. These log-Jacobian images demonstrate that the lung does not expand uniformly during the breathing period, but rather expands and contracts locally at different rates during inhalation and exhalation. The log-Jacobian numbers were averaged over a cross section of the lung to produce an estimate of the average expansion or compression from one time point to the next and compared to the air flow rate measured by spirometry. In four out of five individuals, the average log

  9. Computational simulation of breast compression based on segmented breast and fibroglandular tissues on magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Tzu-Ching [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan (China); Chen, Jeon-Hor; Nie Ke; Lin Muqing; Chang, Daniel; Nalcioglu, Orhan; Su, Min-Ying [Tu and Yuen Center for Functional Onco-Imaging and Radiological Sciences, University of California, Irvine, CA 92697 (United States); Liu Dongxu; Sun Lizhi, E-mail: shih@mail.cmu.edu.t [Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697 (United States)

    2010-07-21

    This study presents a finite element-based computational model to simulate the three-dimensional deformation of a breast and fibroglandular tissues under compression. The simulation was based on 3D MR images of the breast, and craniocaudal and mediolateral oblique compression, as used in mammography, was applied. The geometry of the whole breast and the segmented fibroglandular tissues within the breast were reconstructed using triangular meshes by using the Avizo (registered) 6.0 software package. Due to the large deformation in breast compression, a finite element model was used to simulate the nonlinear elastic tissue deformation under compression, using the MSC.Marc (registered) software package. The model was tested in four cases. The results showed a higher displacement along the compression direction compared to the other two directions. The compressed breast thickness in these four cases at a compression ratio of 60% was in the range of 5-7 cm, which is a typical range of thickness in mammography. The projection of the fibroglandular tissue mesh at a compression ratio of 60% was compared to the corresponding mammograms of two women, and they demonstrated spatially matched distributions. However, since the compression was based on magnetic resonance imaging (MRI), which has much coarser spatial resolution than the in-plane resolution of mammography, this method is unlikely to generate a synthetic mammogram close to the clinical quality. Whether this model may be used to understand the technical factors that may impact the variations in breast density needs further investigation. Since this method can be applied to simulate compression of the breast at different views and different compression levels, another possible application is to provide a tool for comparing breast images acquired using different imaging modalities--such as MRI, mammography, whole breast ultrasound and molecular imaging--that are performed using different body positions and under

  10. Contribution of collagen fibers to the compressive stiffness of cartilaginous tissues.

    Science.gov (United States)

    Römgens, Anne M; van Donkelaar, Corrinus C; Ito, Keita

    2013-11-01

    Cartilaginous tissues such as the intervertebral disk are predominantly loaded under compression. Yet, they contain abundant collagen fibers, which are generally assumed to contribute to tensile loading only. Fiber tension is thought to originate from swelling of the proteoglycan-rich nucleus. However, in aged or degenerate disk, proteoglycans are depleted, whereas collagen content changes little. The question then rises to which extend the collagen may contribute to the compressive stiffness of the tissue. We hypothesized that this contribution is significant at high strain magnitudes and that the effect depends on fiber orientation. In addition, we aimed to determine the compression of the matrix. Bovine inner and outer annulus fibrosus specimens were subjected to incremental confined compression tests up to 60 % strain in radial and circumferential direction. The compressive aggregate modulus was determined per 10 % strain increment. The biochemical composition of the compressed specimens and uncompressed adjacent tissue was determined to compute solid matrix compression. The stiffness of all specimens increased nonlinearly with strain. The collagen-rich outer annulus was significantly stiffer than the inner annulus above 20 % compressive strain. Orientation influenced the modulus in the collagen-rich outer annulus. Finally, it was shown that the solid matrix was significantly compressed above 30 % strain. Therefore, we concluded that collagen fibers significantly contribute to the compressive stiffness of the intervertebral disk at high strains. This is valuable for understanding the compressive behavior of collagen-reinforced tissues in general, and may be particularly relevant for aging or degenerate disks, which become more fibrous and less hydrated.

  11. Characterization of Human Dental Pulp Tissue Under Oscillatory Shear and Compression.

    Science.gov (United States)

    Ozcan, Burak; Bayrak, Ece; Erisken, Cevat

    2016-06-01

    Availability of material as well as biological properties of native tissues is critical for biomaterial design and synthesis for regenerative engineering. Until recently, selection of biomaterials and biomolecule carriers for dental pulp regeneration has been done randomly or based on experience mainly due to the absence of benchmark data for dental pulp tissue. This study, for the first time, characterizes the linear viscoelastic material functions and compressive properties of human dental pulp tissue harvested from wisdom teeth, under oscillatory shear and compression. The results revealed a gel-like behavior of the pulp tissue over the frequency range of 0.1-100 rps. Uniaxial compression tests generated peak normal stress and compressive modulus values of 39.1 ± 20.4 kPa and 5.5 ± 2.8 kPa, respectively. Taken collectively, the linear viscoelastic and uniaxial compressive properties of the human dental pulp tissue reported here should enable the better tailoring of biomaterials or biomolecule carriers to be employed in dental pulp regeneration.

  12. A classification of the mechanisms producing pathological tissue changes.

    Science.gov (United States)

    Grippo, John O; Oh, Daniel S

    2013-05-01

    The objectives are to present a classification of mechanisms which can produce pathological changes in body tissues and fluids, as well as to clarify and define the term biocorrosion, which has had a singular use in engineering. Considering the emerging field of biomedical engineering, it is essential to use precise definitions in the lexicons of engineering, bioengineering and related sciences such as medicine, dentistry and veterinary medicine. The mechanisms of stress, friction and biocorrosion and their pathological effects on tissues are described. Biocorrosion refers to the chemical, biochemical and electrochemical changes by degradation or induced growth of living body tissues and fluids. Various agents which can affect living tissues causing biocorrosion are enumerated which support the necessity and justify the use of this encompassing and more precise definition of biocorrosion. A distinction is made between the mechanisms of corrosion and biocorrosion.

  13. Involvement of upper torso stress amplification, tissue compression and distortion in the pathogenesis of keloids.

    Science.gov (United States)

    Bux, Shamin; Madaree, Anil

    2012-03-01

    Keloids are benign tumours composed of fibrous tissue produced during excessive tissue repair triggered by minor injury, trauma or surgical incision. Although it is recognized that keloids have a propensity to form in the upper torso of the body, the predisposing factors responsible for this have not been investigated. It is crucial that the aetiopathoical factors implicated in keloid formation be established to provide guidelines for well-informed more successful treatment. We compared keloid-prone and keloid-protected skin, identified pertinent morphological differences and explored how inherent structural characteristics and intrinsic factors may promote keloid formation. It was determined that keloid prone areas were covered with high tension skin that had low stretch and a low elastic modulus when compared with skin in keloid protected areas where the skin was lax with a high elastic modulus and low pre-stress level. Factors contributing to elevated internal stress in keloid susceptible skin were the protrusion of hard connective tissue such as bony prominences or cartilage into the dermis of skin as well as inherent skin characteristics such as the bundled arrangement of collagen in the reticular dermis, the existent high tension, the low elastic modulus, low stretch ability, contractile forces exerted by wound healing fibroblastic cells and external forces. Stress promotes keloid formation by causing dermal distortion and compression which subsequently stimulate proliferation and enhanced protein synthesis in wound healing fibroblastic cells. The strain caused by stress also compresses and occludes microvessels causing ischaemic effects and reperfusion injury which stimulate growth when blood rich in growth factors returns to the tissue. The growth promoting effects of increased internal stress, primarily, and growth factors released by reperfusing blood, manifest in keloid formation. Other inherent skin characteristics promoting keloid growth during the

  14. Method and device for the powerful compression of laser-produced plasmas for nuclear fusion

    International Nuclear Information System (INIS)

    Hora, H.

    1975-01-01

    According to the invention, more than 10% of the laser energy are converted into mechanical energy of compression, in that the compression is produced by non-linear excessive radiation pressure. The time and local spectral and intensity distribution of the laser pulse must be controlled. The focussed laser beams must increase to over 10 15 W/cm 2 in less than 10 -9 seconds and the time variation of the intensities must be carried out so that the dynamic absorption of the outer plasma corona by rippling consumes less than 90% of the laser energy. (GG) [de

  15. Effect of cold compress application on tissue temperature in healthy dogs.

    Science.gov (United States)

    Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K

    2013-03-01

    To measure the effect of cold compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 (superficial), 1.0 (middle), and 1.5 (deep) cm into a shaved, lumbar, epaxial region to measure tissue temperature. Cold (-16.8°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no cold compress. Mean temperature associated with 5 minutes of application at the superficial depth was significantly decreased, compared with control temperatures. Application for 10 and 20 minutes significantly reduced the temperature at all depths, compared with controls and 5 minutes of application. Twenty minutes of application significantly decreased temperature at only the middle depth, compared with 10 minutes of application. With this method of cold treatment, increasing application time from 10 to 20 minutes caused a further significant temperature change at only the middle tissue depth; however, for maximal cooling, the minimum time of application should be 20 minutes. Possible changes in tissue temperature and adverse effects of application > 20 minutes require further evaluation.

  16. Modeling fibrous biological tissues with a general invariant that excludes compressed fibers

    Science.gov (United States)

    Li, Kewei; Ogden, Ray W.; Holzapfel, Gerhard A.

    2018-01-01

    Dispersed collagen fibers in fibrous soft biological tissues have a significant effect on the overall mechanical behavior of the tissues. Constitutive modeling of the detailed structure obtained by using advanced imaging modalities has been investigated extensively in the last decade. In particular, our group has previously proposed a fiber dispersion model based on a generalized structure tensor. However, the fiber tension-compression switch described in that study is unable to exclude compressed fibers within a dispersion and the model requires modification so as to avoid some unphysical effects. In a recent paper we have proposed a method which avoids such problems, but in this present study we introduce an alternative approach by using a new general invariant that only depends on the fibers under tension so that compressed fibers within a dispersion do not contribute to the strain-energy function. We then provide expressions for the associated Cauchy stress and elasticity tensors in a decoupled form. We have also implemented the proposed model in a finite element analysis program and illustrated the implementation with three representative examples: simple tension and compression, simple shear, and unconfined compression on articular cartilage. We have obtained very good agreement with the analytical solutions that are available for the first two examples. The third example shows the efficacy of the fibrous tissue model in a larger scale simulation. For comparison we also provide results for the three examples with the compressed fibers included, and the results are completely different. If the distribution of collagen fibers is such that it is appropriate to exclude compressed fibers then such a model should be adopted.

  17. Contribution of collagen fibers to the compressive stiffness of cartilaginous tissues

    NARCIS (Netherlands)

    Römgens, A.M.; Donkelaar, van C.C.; Ito, K.

    2013-01-01

    Cartilaginous tissues such as the intervertebral disk are predominantly loaded under compression. Yet, they contain abundant collagen fibers, which are generally assumed to contribute to tensile loading only. Fiber tension is thought to originate from swelling of the proteoglycan-rich nucleus.

  18. Compression-induced deep tissue injury examined with magnetic resonance imaging and histology

    NARCIS (Netherlands)

    Stekelenburg, A.; Oomens, C. W. J.; Strijkers, G. J.; Nicolay, K.; Bader, D. L.

    2006-01-01

    The underlying mechanisms leading to deep tissue injury after sustained compressive loading are not well understood. It is hypothesized that initial damage to muscle fibers is induced mechanically by local excessive deformation. Therefore, in this study, an animal model was used to study early

  19. Effect of warm compress application on tissue temperature in healthy dogs.

    Science.gov (United States)

    Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K

    2013-03-01

    To measure the effect of warm compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 cm (superficial), 1.0 cm (middle), and 1.5 cm (deep) into a shaved, lumbar, epaxial region to measure tissue temperature. Warm (47°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no warm compress. Mean temperature associated with 5 minutes of heat application at the superficial, middle, and deep depths was significantly increased, compared with the control temperature. Application for 10 minutes significantly increased the temperature at all depths, compared with 5 minutes of application. Mean temperature associated with 20 minutes of application was not different at the superficial or middle depths, compared with 10 minutes of application. Temperature at the deep depth associated with 10 minutes of application was significantly higher, compared with 20 minutes of application, but all temperature increases at this depth were minimal. Results suggested that application of a warm compress should be performed for 10 minutes. Changes in temperature at a tissue depth of 1.5 cm were minimal or not detected. The optimal compress temperature to achieve therapeutic benefits was not determined.

  20. Pleural tissue hyaluronan produced by postmortem ventilation in rabbits.

    Science.gov (United States)

    Wang, P M; Lai-Fook, S J

    2000-01-01

    We developed a method that used Alcian blue bound to hyaluronan to measure pleural hyaluronan in rabbits postmortem. Rabbits were killed, then ventilated with 21% O2--5% CO2--74% N2 for 3 h. The pleural liquid was removed by suction and 5 ml Alcian blue stock solution (0.33 mg/ml, 3.3 pH) was injected into each chest cavity. After 10 min, the Alcian blue solution was removed and the unbound Alcian blue solution (supernatant) separated by centrifugation and filtration. The supernatant transmissibility (T) was measured spectrophotometrically at 613 nm. Supernatant Alcian blue concentration (Cab) was obtained from a calibration curve of T versus dilutions of stock solution Cab. Alcian blue bound to pleural tissue hyaluronan was obtained by subtracting supernatant Cab from stock solution Cab. Pleural tissue hyaluronan was obtained from a calibration curve of hyaluronan versus Alcian blue bound to hyaluronan. Compared with control rabbits, pleural tissue hyaluronan (0.21 +/- 0.04 mg/kg) increased twofold, whereas pleural liquid volume decreased by 30% after 3 h of ventilation. Pleural effusions present 3 h postmortem without ventilation did not change pleural tissue hyaluronan from control values. Thus ventilation-induced pleural liquid shear stress, not increased filtration, was the stimulus for the increased hyaluronan produced from pleural mesothelial cells.

  1. Spiral wave classification using normalized compression distance: Towards atrial tissue spatiotemporal electrophysiological behavior characterization.

    Science.gov (United States)

    Alagoz, Celal; Guez, Allon; Cohen, Andrew; Bullinga, John R

    2015-08-01

    Analysis of electrical activation patterns such as re-entries during atrial fibrillation (Afib) is crucial in understanding arrhythmic mechanisms and assessment of diagnostic measures. Spiral waves are a phenomena that provide intuitive basis for re-entries occurring in cardiac tissue. Distinct spiral wave behaviors such as stable spiral waves, meandering spiral waves, and spiral wave break-up may have distinct electrogram manifestations on a mapping catheter. Hence, it is desirable to have an automated classification of spiral wave behavior based on catheter recordings for a qualitative characterization of spatiotemporal electrophysiological activity on atrial tissue. In this study, we propose a method for classification of spatiotemporal characteristics of simulated atrial activation patterns in terms of distinct spiral wave behaviors during Afib using two different techniques: normalized compressed distance (NCD) and normalized FFT (NFFTD). We use a phenomenological model for cardiac electrical propagation to produce various simulated spiral wave behaviors on a 2D grid and labeled them as stable, meandering, or breakup. By mimicking commonly used catheter types, a star shaped and a circular shaped both of which do the local readings from atrial wall, monopolar and bipolar intracardiac electrograms are simulated. Virtual catheters are positioned at different locations on the grid. The classification performance for different catheter locations, types and for monopolar or bipolar readings were also compared. We observed that the performance for each case differed slightly. However, we found that NCD performance is superior to NFFTD. Through the simulation study, we showed the theoretical validation of the proposed method. Our findings suggest that a qualitative wavefront activation pattern can be assessed during Afib without the need for highly invasive mapping techniques such as multisite simultaneous electrogram recordings.

  2. Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression.

    Science.gov (United States)

    Stokes, Ian A F; Laible, Jeffrey P; Gardner-Morse, Mack G; Costi, John J; Iatridis, James C

    2011-01-01

    Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force-time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity.

  3. Faster tissue interface analysis from Raman microscopy images using compressed factorisation

    Science.gov (United States)

    Palmer, Andrew D.; Bannerman, Alistair; Grover, Liam; Styles, Iain B.

    2013-06-01

    The structure of an artificial ligament was examined using Raman microscopy in combination with novel data analysis. Basis approximation and compressed principal component analysis are shown to provide efficient compression of confocal Raman microscopy images, alongside powerful methods for unsupervised analysis. This scheme allows the acceleration of data mining, such as principal component analysis, as they can be performed on the compressed data representation, providing a decrease in the factorisation time of a single image from five minutes to under a second. Using this workflow the interface region between a chemically engineered ligament construct and a bone-mimic anchor was examined. Natural ligament contains a striated interface between the bone and tissue that provides improved mechanical load tolerance, a similar interface was found in the ligament construct.

  4. Effects of compression injury on brain mitochondrial and tissue viability evaluated by a multiparametric monitoring system

    Science.gov (United States)

    Barbiro-Michaely, Efrat; Bachbut, Galit; Mayevsky, Avraham

    2008-02-01

    Neurosurgical procedures involve brain compression created by retractors. Although it is clear that retractors are causing damage to the brain tissue, the pathophysiology of the retraction was not investigated in details. In the present study we used the multiparametric monitoring approach for real time evaluation of mitochondrial function, hemodynamic, ionic and electrical activities monitored contralaterally to the retractor placement on the brain. The aims of the study were to test the effects of retractor size and severity of the compression on the degree of damage to the cerebral tissue. A special probe was lowered towards the cerebral cortex, (2mm and 4mm in depth) using a micromanipulator. Compression lasted for 30 minutes, than the retractor was elevated back to its initial position and monitoring continued for two hours. Additionally, two sizes of retractors were used 6mm and 3mm in diameter, the 3mm retractor included an intracranial pressure (ICP) probe. The results show that the combination of a large retractor with the depth of 4mm yielded high mortality rate (62%) of the rats while the use of a smaller retractor decreased significantly the percentage of mortality. Also, compression to the depth of 4mm increased tissue injury as compared to 2mm depth. In conclusion, the present study raises the importance and significance of multiparametric monitoring, and not only ICP and cerebral blood flow of the areas nearby the retractor position and not only the retraction site, as well as the effect of the retractor size on the damage induced to the cerebral tissue.

  5. Compressibility and resiliency properties of wilton type woven carpets produced with different fiber blend ratio

    Science.gov (United States)

    Osman, B.; Esin, S.; Sıdıka Ziba, O.

    2017-10-01

    Carpet is a textile structure that composed of three components: warp (stuffer and chain warp), weft and pile yarns. These textile products are used for areas which will stand up to the use of home, hotel, work place etc. Furthermore, the capable of carpets are related to it’s especially pile performance during use in various areas. During usage, carpets made from various type of raw materials of pile yarn also acts differently that these differentiate determines carpet performance, as well.This study was focused on the compression and resilience behaviour of carpet composed of 100% viscose and 100% acrylic pile yarns and blended pile yarns of blend ratios, 80%/20%, 50%/50% and 20%/80% viscose/acrylic. During the yarn production process, all spinning conditions were kept constant in order to eliminate the yarn production parameters. Five different types of wilton face to face carpet samples were produced from these yarns at the same pile height and pile density on Van de Wiele carpet weaving machine at 110 picks/min machine speed and 1/1 V carpet construction. Compressibility properties of carpets were examined whether blend ratio was statistically significant on carpet resilience or not. The behaviour of pile yarns under pressure is important that leads to understand the growth characteristic which is exposed to decrease and increase loadings during usage of carpet made from these yarns. Results indicated that blend ratio of pile yarns have significance effect on compression behaviour of carpet samples.

  6. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.

    Science.gov (United States)

    Anderson, Devon E; Johnstone, Brian

    2017-01-01

    Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ , dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different

  7. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review

    Directory of Open Access Journals (Sweden)

    Devon E. Anderson

    2017-12-01

    Full Text Available Articular cartilage functions to transmit and translate loads. In a classical structure–function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ, dynamic mechanical loading has been hypothesized to induce the structure–function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells

  8. Comparison of mechanical compressive properties of commercial and autologous fibrin glues for tissue engineering applications.

    Science.gov (United States)

    Cravens, Matthew G; Behn, Anthony W; Dragoo, Jason L

    2017-11-01

    Fibrin glues are widely used in orthopedic surgery as adhesives and hemostatic agents. We evaluated the compressive properties of selected fibrin glues in order to identify which are appropriate for tissue regeneration applications subject to compression. Uniaxial unconfined compression tests were performed on fibrin gels prepared from commercial and autologous products: (1) Evicel (Ethicon), (2) Tisseel (Baxter), (3) Angel (Arthrex), and (4) ProPlaz (Biorich). Cyclic loads were applied from 0 to 30% strain for 100cycles at 0.5Hz. Following cyclic testing, specimens were subjected to ramp displacement of 1% strain per second to 80% strain. Throughout cyclic loading, Evicel and Tisseel deformed (shortened) less than Angel at all but one time point, and deformed less than ProPlaz at cycles 10 and 20. The dynamic moduli, peak stress, and strain energy were significantly greater in Tisseel than all other groups. Evicel displayed significantly greater dynamic moduli, peak stress, and strain energy than Angel and ProPlaz. Following cyclic testing, Tisseel and Evicel were significantly less deformed than Angel. No specimens exhibited gross failure during ramp loading to 80% strain. Ramp loading trends mirrored those of cyclic loading. The tested commercial glues were significantly more resistant to compression than the autologous products. The compressive properties of Tisseel were approximately twice those of Evicel. All preparations displayed moduli multiple orders of magnitude less than that of native articular cartilage. We conclude that in knee surgeries requiring fibrin glue to undergo compression of daily activity, commercial products are preferable to autologous preparations from platelet-poor plasma, though both will deform significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues.

    Science.gov (United States)

    Li, Kewei; Ogden, Ray W; Holzapfel, Gerhard A

    2018-01-01

    Recently, micro-sphere-based methods derived from the angular integration approach have been used for excluding fibres under compression in the modelling of soft biological tissues. However, recent studies have revealed that many of the widely used numerical integration schemes over the unit sphere are inaccurate for large deformation problems even without excluding fibres under compression. Thus, in this study, we propose a discrete fibre dispersion model based on a systematic method for discretizing a unit hemisphere into a finite number of elementary areas, such as spherical triangles. Over each elementary area, we define a representative fibre direction and a discrete fibre density. Then, the strain energy of all the fibres distributed over each elementary area is approximated based on the deformation of the representative fibre direction weighted by the corresponding discrete fibre density. A summation of fibre contributions over all elementary areas then yields the resultant fibre strain energy. This treatment allows us to exclude fibres under compression in a discrete manner by evaluating the tension-compression status of the representative fibre directions only. We have implemented this model in a finite-element programme and illustrate it with three representative examples, including simple tension and simple shear of a unit cube, and non-homogeneous uniaxial extension of a rectangular strip. The results of all three examples are consistent and accurate compared with the previously developed continuous fibre dispersion model, and that is achieved with a substantial reduction of computational cost. © 2018 The Author(s).

  10. Novel systems for the application of isolated tensile, compressive, and shearing stimulation of distraction callus tissue.

    Directory of Open Access Journals (Sweden)

    Nicholaus Meyers

    Full Text Available Distraction osteogenesis is a procedure widely used for the correction of large bone defects. However, a high complication rate persists, likely due to insufficient stability during maturation. Numerical fracture healing models predict bone regeneration under different mechanical conditions allowing fixation stiffness optimization. However, most models apply a linear elastic material law inappropriate for the transient stresses/strains present during limb lengthening or segment transport. They are also often validated using in vivo osteotomy models lacking precise mechanical regulation due to the unavoidable stimulation of secondary interfragmentary motion during ambulation under finitely stiff fixation. Therefore, in order to create a robust numerical model of distraction osteogenesis, it is necessary to both characterize the new tissue's viscoelasticity during distraction and determine the influence of strictly isolated stimulation in each loading mode (tension, compression, and shear to account for potential differences in mechanical and histological response.Two electromechanical fixators with integrated load cells were designed to precisely perform and monitor in vivo lateral distraction and isolated stimulation in sheep tibiae using a mobile, hydroxyapatite-coated titanium plate. The novel surgical procedure circumvents osteotomy, eliminating the undesirable and unquantifiable mechanical stimulation during ambulation.After a 10-day post-surgery latency period, two 0.275 mm distraction steps were performed daily for 10 days. The load cell collected data before, during, and after each distraction step and was terminated after no less than one minute from the time of distraction. A 7-day consolidation period separated the distraction phase and 18-day stimulation phase. Stimulation was carried out in isolated tension, compression, or shear while recording force/time data. Each stimulation session consisted of 120 cycles with a magnitude of

  11. Dynamic compression of human and ovine meniscal tissue compared with a potential thermoplastic elastomer hydrogel replacement.

    Science.gov (United States)

    Fischenich, Kristine M; Boncella, Katie; Lewis, Jackson T; Bailey, Travis S; Haut Donahue, Tammy L

    2017-10-01

    Understanding how human meniscal tissue responds to loading regimes mimetic of daily life as well as how it compares to larger animal models is critical in the development of a functionally accurate synthetic surrogate. Seven human and eight ovine cadaveric meniscal specimens were regionally sectioned into cylinders 5 mm in diameter and 3 mm thick along with 10 polystyrene-b-polyethylene oxide block copolymer-based thermoplastic elastomer (TPE) hydrogels. Samples were compressed to 12% strain at 1 Hz for 5000 cycles, unloaded for 24 h, and then retested. No differences were found within each group between test one and test two. Human and ovine tissue exhibited no regional dependency (p Human samples relaxed quicker than ovine tissue or the TPE hydrogel with modulus values at cycle 50 not significantly different from cycle 5000. Ovine menisci were found to be similar to human menisci in relaxation profile but had significantly higher modulus values (3.44 MPa instantaneous and 0.61 MPa after 5000 cycles compared with 1.97 and 0.11 MPa found for human tissue) and significantly different power law fit coefficients. The TPE hydrogel had an initial modulus of 0.58 MPa and experienced less than a 20% total relaxation over the 5000. Significant differences in the magnitude of compressive modulus between human and ovine menisci were observed, however the relaxation profiles were similar. Although statistically different than the native tissues, modulus values of the TPE hydrogel material were similar to those of the human and ovine menisci, making it a material worth further investigation for use as a synthetic replacement. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2722-2728, 2017. © 2017 Wiley Periodicals, Inc.

  12. Bone tissue density modification in treatment of shin pseudoarthrosis by transosseous compressive osteosynthesis

    Directory of Open Access Journals (Sweden)

    Tishkov N.V.

    2011-12-01

    Full Text Available Objective is to detect bone mineral density along the shin according to «Esperanto» levels by Hounsfield's scale. Materials and methods. The analysis of density modification in 25 patients with pseudoarthrosis of tibia with predominant localization in a lower one-third of bone has been carried out. Results. By means of computed tomography it has been revealed that the bone tissue density of the tibia in the process of false joint union when using the compressive variant of combined transosseous osteosynthesis has changed according to the regularity reproducing phase character of the accumulation of mineral substances in the bone. Conclution. The growth of mineral density of the bone tissue during treatment spreads in the directions from proximal and distal metaepiphyses to the zone of pseudoarthrosis knitting

  13. Short bursts of cyclic mechanical compression modulate tissue formation in a 3D hybrid scaffold.

    Science.gov (United States)

    Brunelli, M; Perrault, C M; Lacroix, D

    2017-07-01

    Among the cues affecting cells behaviour, mechanical stimuli are known to have a key role in tissue formation and mineralization of bone cells. While soft scaffolds are better at mimicking the extracellular environment, they cannot withstand the high loads required to be efficient substitutes for bone in vivo. We propose a 3D hybrid scaffold combining the load-bearing capabilities of polycaprolactone (PCL) and the ECM-like chemistry of collagen gel to support the dynamic mechanical differentiation of human embryonic mesodermal progenitor cells (hES-MPs). In this study, hES-MPs were cultured in vitro and a BOSE Bioreactor was employed to induce cells differentiation by mechanical stimulation. From day 6, samples were compressed by applying a 5% strain ramp followed by peak-to-peak 1% strain sinewaves at 1Hz for 15min. Three different conditions were tested: unloaded (U), loaded from day 6 to day 10 (L1) and loaded as L1 and from day 16 to day 20 (L2). Cell viability, DNA content and osteocalcin expression were tested. Samples were further stained with 1% osmium tetroxide in order to investigate tissue growth and mineral deposition by micro-computed tomography (µCT). Tissue growth involved volumes either inside or outside samples at day 21 for L1, suggesting cyclic stimulation is a trigger for delayed proliferative response of cells. Cyclic load also had a role in the mineralization process preventing mineral deposition when applied at the early stage of culture. Conversely, cyclic load during the late stage of culture on pre-compressed samples induced mineral formation. This study shows that short bursts of compression applied at different stages of culture have contrasting effects on the ability of hES-MPs to induce tissue formation and mineral deposition. The results pave the way for a new approach using mechanical stimulation in the development of engineered in vitro tissue as replacement for large bone fractures. Copyright © 2017 Elsevier Ltd. All rights

  14. Modeling and control of tissue compression and temperature for automation in robot-assisted surgery.

    Science.gov (United States)

    Sinha, Utkarsh; Li, Baichun; Sankaranarayanan, Ganesh

    2014-01-01

    Robotic surgery is being used widely due to its various benefits that includes reduced patient trauma and increased dexterity and ergonomics for the operating surgeon. Making the whole or part of the surgical procedure autonomous increases patient safety and will enable the robotic surgery platform to be used in telesurgery. In this work, an Electrosurgery procedure that involves tissue compression and application of heat such as the coaptic vessel closure has been automated. A MIMO nonlinear model characterizing the tissue stiffness and conductance under compression was feedback linearized and tuned PID controllers were used to control the system to achieve both the displacement and temperature constraints. A reference input for both the constraints were chosen as a ramp and hold trajectory which reflect the real constraints that exist in an actual surgical procedure. Our simulations showed that the controllers successfully tracked the reference trajectories with minimal deviation and in finite time horizon. The MIMO system with controllers developed in this work can be used to drive a surgical robot autonomously and perform electrosurgical procedures such as coaptic vessel closures.

  15. Age-related changes in dynamic compressive properties of trochanteric soft tissues over the hip.

    Science.gov (United States)

    Choi, W J; Russell, C M; Tsai, C M; Arzanpour, S; Robinovitch, S N

    2015-02-26

    Hip fracture risk increases dramatically with age, and 90% of fractures are due to falls. During a fall on the hip, the soft tissues overlying the hip region (skin, fat, and muscle) act as shock absorbers to absorb energy and reduce the peak force applied to the underlying bone. We conducted dynamic indentation experiments with young women (aged 19-30; n=17) and older women (aged 65-81; n=17) to test the hypothesis that changes occur with age in the stiffness and damping properties of these tissues. Tissue stiffness and damping were derived from experiments where subjects lay sideways on a bed with the greater trochanter contacting a 3.8cm diameter indenter, which applied sinusoidal compression between 5 to 30Hz with a peak-to-peak amplitude of 1mm. Soft tissue thickness was measured using ultrasound. On average, stiffness was 2.9-fold smaller in older than young women (5.7 versus 16.8kN/m, p=0.0005) and damping was 3.5-fold smaller in older than young women (81 versus 282Ns/m, p=0.001). Neither parameter associated with soft tissue thickness. Our results indicate substantial age-related reductions in the stiffness and damping of soft tissues over the hip region, which likely reduce their capacity to absorb and dissipate energy (before "bottoming out") during a fall. Strategies such as wearable hip protectors or compliant flooringmay compensate for age-related reductions in the shock-absorbing properties of soft tissues and decrease the injury potential of falls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. High level compressive residual stresses produced in aluminum alloys by laser shock processing

    International Nuclear Information System (INIS)

    Gomez-Rosas, G.; Rubio-Gonzalez, C.; Ocana, J.L; Molpeceres, C.; Porro, J.A.; Chi-Moreno, W.; Morales, M.

    2005-01-01

    Laser shock processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results for metal surface treatments in underwater laser irradiation at 1064 nm. A convergent lens is used to deliver 1.2 J/cm 2 in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG, two laser spot diameters were used: 0.8 and 1.5 mm. Results using pulse densities of 2500 pulses/cm 2 in 6061-T6 aluminum samples and 5000 pulses/cm 2 in 2024 aluminum samples are presented. High level of compressive residual stresses are produced -1600 MPa for 6061-T6 Al alloy, and -1400 MPa for 2024 Al alloy. It has been shown that surface residual stress level is higher than that achieved by conventional shot peening and with greater depths. This method can be applied to surface treatment of final metal products

  17. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters

    Science.gov (United States)

    Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Rahim Hematiyan, Mohammad; Koontz, Craig; Meigooni, Ali S.

    2015-12-01

    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5%  ±  5.9%.

  18. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Hematiyan, Mohammad Rahim; Koontz, Craig; Meigooni, Ali S

    2015-01-01

    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost ® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney–Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5%  ±  5.9%. (paper)

  19. Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel

    Directory of Open Access Journals (Sweden)

    Mohammed EL_Kassaby

    2013-03-01

    Full Text Available Wasted cooking oil from restaurants was used to produce neat (pure biodiesel through transesterification, and then used to prepare biodiesel/diesel blends. The effect of blending ratio and compression ratio on a diesel engine performance has been investigated. Emission and combustion characteristics was studded when the engine operated using the different blends (B10, B20, B30, and B50 and normal diesel fuel (B0 as well as when varying the compression ratio from 14 to 16 to 18. The result shows that the engine torque for all blends increases as the compression ratio increases. The bsfc for all blends decreases as the compression ratio increases and at all compression ratios bsfc remains higher for the higher blends as the biodiesel percent increase. The change of compression ratio from 14 to 18 resulted in, 18.39%, 27.48%, 18.5%, and 19.82% increase in brake thermal efficiency in case of B10, B20, B30, and B50 respectively. On an average, the CO2 emission increased by 14.28%, the HC emission reduced by 52%, CO emission reduced by 37.5% and NOx emission increased by 36.84% when compression ratio was increased from 14 to 18. In spite of the slightly higher viscosity and lower volatility of biodiesel, the ignition delay seems to be lower for biodiesel than for diesel. On average, the delay period decreased by 13.95% when compression ratio was increased from 14 to 18. From this study, increasing the compression ratio had more benefits with biodiesel than that with pure diesel.

  20. Reconstruction of tissue dynamics in the compressed breast using multiplexed measurements and temporal basis functions

    Science.gov (United States)

    Boverman, Gregory; Miller, Eric L.; Brooks, Dana H.; Fang, Qianqian; Carp, S. A.; Selb, J. J.; Boas, David A.

    2007-02-01

    In the course of our experiments imaging the compressed breast in conjunction with digital tomosynthesis, we have noted that significant changes in tissue optical properties, on the order of 5%, occur during our imaging protocol. These changes seem to consistent with changes both in total Hemoglobin concentration as well as in oxygen saturation, as was the case for our standalone breast compression study, which made use of reflectance measurements. Simulation experiments show the importance of taking into account the temporal dynamics in the image reconstruction, and demonstrate the possibility of imaging the spatio-temporal dynamics of oxygen saturation and total Hemoglobin in the breast. In the image reconstruction, we make use of spatio-temporal basis functions, specifically a voxel basis for spatial imaging, and a cubic spline basis in time, and we reconstruct the spatio-temporal images using the entire data set simultaneously, making use of both absolute and relative measurements in the cost function. We have modified the sequence of sources used in our imaging acquisition protocol to improve our temporal resolution, and preliminary results are shown for normal subjects.

  1. Compression instrument for tissue experiments (cite) at the meso-scale: device validation - biomed 2011.

    Science.gov (United States)

    Evans, Douglas W; Rajagopalan, Padma; Devita, Raffaella; Sparks, Jessica L

    2011-01-01

    Liver sinusoidal endothelial cells (LSECs) are the primary site of numerous transport and exchange processes essential for liver function. LSECs rest on a sparse extracellular matrix layer housed in the space of Disse, a 0.5-1LSECs from hepatocytes. To develop bioengineered liver tissue constructs, it is important to understand the mechanical interactions among LSECs, hepatocytes, and the extracellular matrix in the space of Disse. Currently the mechanical properties of space of Disse matrix are not well understood. The objective of this study was to develop and validate a device for performing mechanical tests at the meso-scale (100nm-100m), to enable novel matrix characterization within the space of Disse. The device utilizes a glass micro-spherical indentor attached to a cantilever made from a fiber optic cable. The 3-axis translation table used to bring the specimen in contact with the indentor and deform the cantilever. A position detector monitors the location of a laser passing through the cantilever and allows for the calculation of subsequent tissue deformation. The design allows micro-newton and nano-newton stress-strain tissue behavior to be quantified. To validate the device accuracy, 11 samples of silicon rubber in two formulations were tested to experimentally confirm their Young's moduli. Prior macroscopic unconfined compression tests determined the formulations of EcoFlex030 (n-6) and EcoFlex010 (n-5) to posses Young's moduli of 92.67+-6.22 and 43.10+-3.29 kPa respectively. Optical measurements taken utilizing CITE's position control and fiber optic cantilever found the moduli to be 106.4 kPa and 47.82 kPa.

  2. Acrolein: An Effective Biomarker for Tissue Damage Produced from Polyamines.

    Science.gov (United States)

    Igarashi, Kazuei; Uemura, Takeshi; Kashiwagi, Keiko

    2018-01-01

    It is thought that the major factor responsible for cell damage is reactive oxygen species (ROS), but our recent studies have shown that acrolein (CH 2 =CH-CHO) produced from spermine and spermidine is more toxic than ROS. Thus, (1) the mechanism of acrolein production during brain stroke, (2) one of the mechanisms of acrolein toxicity, and (3) the role of glutathione in acrolein detoxification are described in this chapter.

  3. Comparison of osmotic swelling influences on meniscal fibrocartilage and articular cartilage tissue mechanics in compression and shear.

    Science.gov (United States)

    Nguyen, An M; Levenston, Marc E

    2012-01-01

    Although the contribution of the circumferential collagen bundles to the anisotropic tensile stiffness of meniscal tissue has been well described, the implications of interactions between tissue components for other mechanical properties have not been as widely examined. This study compared the effects of the proteoglycan-associated osmotic swelling stress on meniscal fibrocartilage and articular cartilage (AC) mechanics by manipulating the osmotic environment and tissue compressive offset. Cylindrical samples were obtained from the menisci and AC of bovine stifles, equilibrated in phosphate-buffered saline solutions ranging from 0.1× to 10×, and tested in oscillatory torsional shear and unconfined compression. Biochemical analysis indicated that treatments and testing did not substantially alter tissue composition. Mechanical testing revealed tissue-specific responses to both increasing compressive offset and decreasing bath salinity. Most notably, reduced salinity dramatically increased the shear modulus of both axially and circumferentially oriented meniscal tissue explants to a much greater extent than for cartilage samples. Combined with previous studies, these findings suggest that meniscal proteoglycans have a distinct structural role, stabilizing, and stiffening the matrix surrounding the primary circumferential collagen bundles. Copyright © 2011 Orthopaedic Research Society.

  4. Tissue engineering of cartilage using a mechanobioreactor exerting simultaneous mechanical shear and compression to simulate the rolling action of articular joints.

    Science.gov (United States)

    Shahin, Kifah; Doran, Pauline M

    2012-04-01

    The effect of dynamic mechanical shear and compression on the synthesis of human tissue-engineered cartilage was investigated using a mechanobioreactor capable of simulating the rolling action of articular joints in a mixed fluid environment. Human chondrocytes seeded into polyglycolic acid (PGA) mesh or PGA-alginate scaffolds were precultured in shaking T-flasks or recirculation perfusion bioreactors for 2.5 or 4 weeks prior to mechanical stimulation in the mechanobioreactor. Constructs were subjected to intermittent unconfined shear and compressive loading at a frequency of 0.05 Hz using a peak-to-peak compressive strain amplitude of 2.2% superimposed on a static axial compressive strain of 6.5%. The mechanical treatment was carried out for up to 2.5 weeks using a loading regime of 10 min duration each day with the direction of the shear forces reversed after 5 min and release of all loading at the end of the daily treatment period. Compared with shaking T-flasks and mechanobioreactor control cultures without loading, mechanical treatment improved the amount and quality of cartilage produced. On a per cell basis, synthesis of both major structural components of cartilage, glycosaminoglycan (GAG) and collagen type II, was enhanced substantially by up to 5.3- and 10-fold, respectively, depending on the scaffold type and seeding cell density. Levels of collagen type II as a percentage of total collagen were also increased after mechanical treatment by up to 3.4-fold in PGA constructs. Mechanical treatment had a less pronounced effect on the composition of constructs precultured in perfusion bioreactors compared with perfusion culture controls. This work demonstrates that the quality of tissue-engineered cartilage can be enhanced significantly by application of simultaneous dynamic mechanical shear and compression, with the greatest benefits evident for synthesis of collagen type II. Copyright © 2011 Wiley Periodicals, Inc.

  5. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics.

    Directory of Open Access Journals (Sweden)

    Maryna Perepelyuk

    Full Text Available Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G' and G" and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver.

  6. Do L5 and s1 nerve root compressions produce radicular pain in a dermatomal pattern?

    Science.gov (United States)

    Taylor, Christopher S; Coxon, Andrew J; Watson, Paul C; Greenough, Charles G

    2013-05-20

    Observational case series. To compare the pattern of distribution of radicular pain with published dermatome charts. Dermatomal charts vary and previous studies have demonstrated significant individual subject variation. Patients with radiologically and surgically proven nerve root compression (NRC) caused by prolapsed intervertebral disc completed computerized diagrams of the distribution of pain and pins and needles. Ninety-eight patients had L5 compressions and 83 had S1 compressions. The distribution of pain and pins and needles did not correspond well with dermatomal patterns. Of those patients with L5 NRC, only 22 (22.4%) recorded any hits on the L5 dermatome on the front, and only 60 (61.2%) on the back with only 13 (13.3%) on both. Only 1 (1.0%) patient placed more than 50% of their hits within the L5 dermatome. Of those patients with S1 NRC, only 3 (3.6%) recorded any hits on the S1 dermatome on the front, and only 64 (77.1%) on the back with only 15 (18.1%) on both. No patients placed more than 50% of their hits within the S1 dermatome. Regarding pins and needles, 27 (29.7%) patients with L5 NRC recorded hits on the front alone, 27 (29.7%) on the back alone, and 14 (15.4%) on both. Nineteen (20.9%) recorded more than 50% of hits within the L5 dermatome. Three (3.6%) patients with S1 NRC recorded hits on the front alone, 44 (53.0%) on the back alone, and 18 (21.7%) on both. Twelve (14.5%) recorded more than 50% of hits within the S1 dermatome. Patient report is an unreliable method of identifying the anatomical source of pain or paresthesia caused by nerve root compression. 4.

  7. A new device to noninvasively estimate the intraocular pressure produced during ocular compression

    Directory of Open Access Journals (Sweden)

    Korenfeld MS

    2016-01-01

    Full Text Available Michael S Korenfeld,1,2 David K Dueker3 1Comprehensive Eye Care, Ltd., 2Department of Ophthalmology and Visual Sciences, Washington University, Washington, MO, USA; 3Hamad Medical Corporation, Doha, Qatar Purpose: To describe a noninvasive instrument that estimates intraocular pressure during episodes of external globe compression and to demonstrate the accuracy and reliability of this device by comparing it to the intraocular pressures simultaneously and manometrically measured in cannulated eyes. Methods: A thin fluid-filled bladder was constructed from flexible and inelastic plastic sheeting and was connected to a pressure transducer with high pressure tubing. The output of the pressure transducer was sent to an amplifier and recorded. This device was validated by measuring induced pressure in the fluid-filled bladder while digital pressure was applied to one surface, and the other surface was placed directly against a human cadaver eye or in vivo pig eye. The human cadaver and in vivo pig eyes were each cannulated to provide a manometric intraocular pressure control. Results: The measurements obtained with the newly described device were within ~5% of simultaneously measured manometric intraocular pressures in both a human cadaver and in vivo pig eye model for a pressure range of ~15–100 mmHg. Conclusion: This novel noninvasive device is useful for estimating the intraocular pressure transients induced during any form of external globe compression; this is a clinical setting where no other devices can be used to estimate intraocular pressure. Keywords: glaucoma, intraocular pressure, tonometer, ocular compression

  8. Fifteen-year follow-up of a patient with beta thalassaemia and extramedullary haematopoietic tissue compressing the spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Niggemann, P.; Krings, T.; Thron, A. [Dept. of Neuroradiology, RWTH-Aachen Hosital (Germany); Hans, F. [Dept. of Neurosurgery, RWTH Aachen Hospital (Germany); 1

    2005-04-01

    A long-term follow-up of a patient with beta thalassaemia with intra- and extraspinal extramedullary haematopoietic tissue compressing the spinal cord is presented. Extramedullary haematopoietic nodules are a rare cause of spinal cord compression and should be included in the differential diagnosis, especially in patients from Mediterranean countries. Treatment with radiation therapy solely failed, giving rise to the need of surgical intervention. Surgical decompression of the spine and the removal of the culprit lesion compressing the spine were performed. Postinterventional radiation therapy was applied to the spine. A relapse had to be treated again by surgical means combined with postinterventional radiation therapy. A complete relief of the symptoms and control of the lesion could be obtained.

  9. Fifteen-year follow-up of a patient with beta thalassaemia and extramedullary haematopoietic tissue compressing the spinal cord

    International Nuclear Information System (INIS)

    Niggemann, P.; Krings, T.; Thron, A.; Hans, F.

    2005-01-01

    A long-term follow-up of a patient with beta thalassaemia with intra- and extraspinal extramedullary haematopoietic tissue compressing the spinal cord is presented. Extramedullary haematopoietic nodules are a rare cause of spinal cord compression and should be included in the differential diagnosis, especially in patients from Mediterranean countries. Treatment with radiation therapy solely failed, giving rise to the need of surgical intervention. Surgical decompression of the spine and the removal of the culprit lesion compressing the spine were performed. Postinterventional radiation therapy was applied to the spine. A relapse had to be treated again by surgical means combined with postinterventional radiation therapy. A complete relief of the symptoms and control of the lesion could be obtained

  10. First test experiment to produce the slowed-down RI beam with the momentum-compression mode at RIBF

    Energy Technology Data Exchange (ETDEWEB)

    Sumikama, T., E-mail: sumikama@ribf.riken.jp [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Ahn, D.S.; Fukuda, N.; Inabe, N.; Kubo, T.; Shimizu, Y.; Suzuki, H.; Takeda, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aoi, N. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Beaumel, D. [Institut de Physique Nucléaire d’Orsay (IPNO), CNRS/IN2P3, 91405 Orsay (France); Hasegawa, K. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Ideguchi, E. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Imai, N. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Kobayashi, T. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Matsushita, M.; Michimasa, S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Otsu, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shimoura, S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2016-06-01

    The {sup 82}Ge beam has been produced by the in-flight fission reaction of the {sup 238}U primary beam with 345 MeV/u at the RIKEN RI beam factory, and slowed down to about 15 MeV/u using the energy degraders. The momentum-compression mode was applied to the second stage of the BigRIPS separator to reduce the momentum spread. The energy was successfully reduced down to 13 ± 2.5 MeV/u as expected. The focus was not optimized at the end of the second stage, therefore the beam size was larger than the expectation. The transmission of the second stage was half of the simulated value mainly due to out of focus. The two-stage separation worked very well for the slowed-down beam with the momentum-compression mode.

  11. Effects of cyclic compression on the mechanical properties and calcification process of immature chick bone tissue in culture.

    Science.gov (United States)

    Maeda, Eijiro; Nakagaki, Masashi; Ichikawa, Katsuhisa; Nagayama, Kazuaki; Matsumoto, Takeo

    2017-06-01

    Contribution of mechanical loading to tissue growth during both the development and post-natal maturation is of a particular interest, as its understanding would be important to strategies in bone tissue engineering and regenerative medicine. The present study has been performed to investigate how immature bone responds to mechanical loading using an ex vivo culture system. A slice of the tibia, with the thickness of 3 mm, was obtained from 0-day-old chick. For the ex vivo culture experiment in conjunction with cyclic compressive loading, we developed a custom-made, bioreactor system where both the load and the deformation applied to the specimen was recorded. Cyclic compression, with an amplitude of 0.3 N corresponding to 1 to 2% compressive strain, was applied to immature bone specimen during a 3-day culture period at an overall loading rate 3-4 cycles/min, in the presence of β-glycerol phosphate and dexamethasone in culture medium. The stress-strain relationship was obtained at the beginning and the end of the culture experiment. In addition, analyses for alkaline phosphate release, cell viability and tissue calcification were also performed. It was exhibited that elastic moduli of bone slices were significantly elevated at the end of the 3-day culture in the presence of cyclic compression, which was a similar phenomenon to significant elevation of the elastic moduli of bone tissue by the maturation from 0-day old to 3-day old. By contrast, no significant changes in the moduli were observed in the absence of cyclic compression or in deactivated, cell-free samples. The increases in the moduli were coincided with the increase in calcified area in the bone samples. It was confirmed that immature bone can respond to compressive loading in vitro and demonstrate the growth of bone matrix, similar to natural, in vivo maturation. The elevation of the elastic moduli was attributable to the increased calcified area and the realignment of collagen fibers parallel to

  12. Effects of cyclic compression on the mechanical properties and calcification process of immature chick bone tissue in culture

    Directory of Open Access Journals (Sweden)

    Eijiro Maeda

    2017-06-01

    Full Text Available Contribution of mechanical loading to tissue growth during both the development and post-natal maturation is of a particular interest, as its understanding would be important to strategies in bone tissue engineering and regenerative medicine. The present study has been performed to investigate how immature bone responds to mechanical loading using an ex vivo culture system. A slice of the tibia, with the thickness of 3 mm, was obtained from 0-day-old chick. For the ex vivo culture experiment in conjunction with cyclic compressive loading, we developed a custom-made, bioreactor system where both the load and the deformation applied to the specimen was recorded. Cyclic compression, with an amplitude of 0.3 N corresponding to 1 to 2% compressive strain, was applied to immature bone specimen during a 3-day culture period at an overall loading rate 3–4 cycles/min, in the presence of β-glycerol phosphate and dexamethasone in culture medium. The stress-strain relationship was obtained at the beginning and the end of the culture experiment. In addition, analyses for alkaline phosphate release, cell viability and tissue calcification were also performed. It was exhibited that elastic moduli of bone slices were significantly elevated at the end of the 3-day culture in the presence of cyclic compression, which was a similar phenomenon to significant elevation of the elastic moduli of bone tissue by the maturation from 0-day old to 3-day old. By contrast, no significant changes in the moduli were observed in the absence of cyclic compression or in deactivated, cell-free samples. The increases in the moduli were coincided with the increase in calcified area in the bone samples. It was confirmed that immature bone can respond to compressive loading in vitro and demonstrate the growth of bone matrix, similar to natural, in vivo maturation. The elevation of the elastic moduli was attributable to the increased calcified area and the realignment of collagen

  13. The Compression Intensity Index: a practical anatomical estimate of the biomechanical risk for a deep tissue injury.

    Science.gov (United States)

    Gefen, Amit

    2008-01-01

    Pressure-related deep tissue injury (DTI) is a severe form of pressure ulcer that initiates in compressed muscle tissues under bony prominences, and progresses superficially towards the skin. Patients with impaired motosensory capacities are at high risk of developing DTI. There is a critical medical need for developing risk assessment tools for DTI. A new anatomical index, the Compression Intensity Index: CII=(BW/Rt);[1/2], which depends on the body weight (BW), radius of curvature of the ischial tuberosities (R) and thickness of the underlying gluteus muscles (t), is suggested for approximating the loading intensity in muscle tissue during sitting in permanent wheelchair users, as part of a clinically-oriented risk assessment for DTI. Preliminary CII data were calculated for 6 healthy and 4 paraplegic subjects following MRI scans, and data were compared between the groups and with respect to a gold standard, being a previously developed subject-specific MRI-finite-element (MRI-FE) method of calculating muscle tissue stresses (Linder-Ganz et al., J. Biomech. 2007). Marked differences between the R and t parameters of the two groups caused the CII values of the paraplegics to be approximately 1.6-fold higher than for the healthy (pbedridden patients. Hence, CII measurements can be integrated into DTI-risk-assessment tools, the need of which is now being discussed intensively in the American and European Pressure Ulcer Advisory Panel meetings.

  14. Lymphatic Filariasis Increases Tissue Compressibility and Extracellular Fluid in Lower Limbs of Asymptomatic Young People in Central Myanmar

    Directory of Open Access Journals (Sweden)

    Janet Douglass

    2017-09-01

    Full Text Available When normal lymphatic function is hampered, imperceptible subcutaneous edema can develop and progress to overt lymphedema. Low-cost reliable devices for objective assessment of lymphedema are well accepted in clinical practice and research on breast-cancer related lymphedema but are untested in populations with lymphatic filariasis (LF. This is a cross-sectional analysis of baseline data in a longitudinal study on asymptomatic, LF antigen-positive and -negative young people in Myanmar. Rapid field screening was used to identify antigen-positive cases and a group of antigen-negative controls of similar age and gender were invited to continue in the study. Tissue compressibility was assessed with three tissue tonometers, and free fluids were assessed using bio-impedance spectroscopy (BIS. Infection status was confirmed by Og4C3 antigen assay. At baseline (n = 98, antigen-positive cases had clinically relevant increases in tissue compressibility at the calf using a digital Indurometer (11.1%, p = 0.021, and in whole-leg free fluid using BIS (9.2%, p = 0.053. Regression analysis for moderating factors (age, gender, hydration reinforced the between-infection group differences. Results demonstrate that sub-clinical changes associated with infection can be detected in asymptomatic cases. Further exploration of these low-cost devices in clinical and research settings on filariasis-related lymphedema are warranted.

  15. Compressed collagen constructs with optimized mechanical properties and cell interactions for tissue engineering applications

    DEFF Research Database (Denmark)

    Ajalloueian, Fatemeh; Nikogeorgos, Nikolaos; Ajalloueian, Ali

    2018-01-01

    In this study, we are introducing a simple, fast and reliable add-in to the technique of plastic compression (PC) to obtain collagen sheets with decreased fibrillar densities, representing improved cell-interactions and mechanical properties. Collagen hydrogels with different initial concentratio...

  16. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.

    Science.gov (United States)

    Kang, Hyun-Wook; Lee, Sang Jin; Ko, In Kap; Kengla, Carlos; Yoo, James J; Atala, Anthony

    2016-03-01

    A challenge for tissue engineering is producing three-dimensional (3D), vascularized cellular constructs of clinically relevant size, shape and structural integrity. We present an integrated tissue-organ printer (ITOP) that can fabricate stable, human-scale tissue constructs of any shape. Mechanical stability is achieved by printing cell-laden hydrogels together with biodegradable polymers in integrated patterns and anchored on sacrificial hydrogels. The correct shape of the tissue construct is achieved by representing clinical imaging data as a computer model of the anatomical defect and translating the model into a program that controls the motions of the printer nozzles, which dispense cells to discrete locations. The incorporation of microchannels into the tissue constructs facilitates diffusion of nutrients to printed cells, thereby overcoming the diffusion limit of 100-200 μm for cell survival in engineered tissues. We demonstrate capabilities of the ITOP by fabricating mandible and calvarial bone, cartilage and skeletal muscle. Future development of the ITOP is being directed to the production of tissues for human applications and to the building of more complex tissues and solid organs.

  17. Bronchus-associated lymphoid tissue in pulmonary hypertension produces pathologic autoantibodies.

    Science.gov (United States)

    Colvin, Kelley L; Cripe, Patrick J; Ivy, D Dunbar; Stenmark, Kurt R; Yeager, Michael E

    2013-11-01

    Autoimmunity has long been associated with pulmonary hypertension. Bronchus-associated lymphoid tissue plays important roles in antigen sampling and self-tolerance during infection and inflammation. We reasoned that activated bronchus-associated lymphoid tissue would be evident in rats with pulmonary hypertension, and that loss of self-tolerance would result in production of pathologic autoantibodies that drive vascular remodeling. We used animal models, histology, and gene expression assays to evaluate the role of bronchus-associated lymphoid tissue in pulmonary hypertension. Bronchus-associated lymphoid tissue was more numerous, larger, and more active in pulmonary hypertension compared with control animals. We found dendritic cells in and around lymphoid tissue, which were composed of CD3(+) T cells over a core of CD45RA(+) B cells. Antirat IgG and plasma from rats with pulmonary hypertension decorated B cells in lymphoid tissue, resistance vessels, and adventitia of large vessels. Lymphoid tissue in diseased rats was vascularized by aquaporin-1(+) high endothelial venules and vascular cell adhesion molecule-positive vessels. Autoantibodies are produced in bronchus-associated lymphoid tissue and, when bound to pulmonary adventitial fibroblasts, change their phenotype to one that may promote inflammation. Passive transfer of autoantibodies into rats caused pulmonary vascular remodeling and pulmonary hypertension. Diminution of lymphoid tissue reversed pulmonary hypertension, whereas immunologic blockade of CCR7 worsened pulmonary hypertension and hastened its onset. Bronchus-associated lymphoid tissue expands in pulmonary hypertension and is autoimmunologically active. Loss of self-tolerance contributes to pulmonary vascular remodeling and pulmonary hypertension. Lymphoid tissue-directed therapies may be beneficial in treating pulmonary hypertension.

  18. Computerized Cuff Pressure Algometry as Guidance for Circumferential Tissue Compression for Wearable Soft Robotic Applications: A Systematic Review.

    Science.gov (United States)

    Kermavnar, Tjaša; Power, Valerie; de Eyto, Adam; O'Sullivan, Leonard W

    2018-02-01

    In this article, we review the literature on quantitative sensory testing of deep somatic pain by means of computerized cuff pressure algometry (CPA) in search of pressure-related safety guidelines for wearable soft exoskeleton and robotics design. Most pressure-related safety thresholds to date are based on interface pressures and skin perfusion, although clinical research suggests the deep somatic tissues to be the most sensitive to excessive loading. With CPA, pain is induced in deeper layers of soft tissue at the limbs. The results indicate that circumferential compression leads to discomfort at ∼16-34 kPa, becomes painful at ∼20-27 kPa, and can become unbearable even below 40 kPa.

  19. Thermal damage produced by high-irradiance continuous wave CO2 laser cutting of tissue.

    Science.gov (United States)

    Schomacker, K T; Walsh, J T; Flotte, T J; Deutsch, T F

    1990-01-01

    Thermal damage produced by continuous wave (cw) CO2 laser ablation of tissue in vitro was measured for irradiances ranging from 360 W/cm2 to 740 kW/cm2 in order to investigate the extent to which ablative cooling can limit tissue damage. Damage zones thinner than 100 microns were readily produced using single pulses to cut guinea pig skin as well as bovine cornea, aorta, and myocardium. Multiple pulses can lead to increased damage. However, a systematic decrease in damage with irradiance, predicted theoretically by an evaporation model of ablation, was not observed. The damage-zone thickness was approximately constant around the periphery of the cut, consistent with the existence of a liquid layer which stores heat and leads to tissue damage, and with a model of damage and ablation recently proposed by Zweig et al.

  20. Effects of gas produced by degradation of Mg–Zn–Zr Alloy on cancellous bone tissue

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingbo; Jiang, Hongfeng [Tianjin Hospital, 300211 Tianjin (China); Bi, Yanze; Sun, Jin e; Chen, Minfang; Liu, Debao [School of Materials Science and Engineering, Tianjin University of Technology, 300384 Tianjin (China)

    2015-10-01

    Mg–Zn–Zr alloy cylinders were implanted into the femoral condyles of Japanese big-ear white rabbits. X-ray showed that by 12 weeks following implantation the implant became obscure, around which the low-density area appeared and enlarged. By 24 weeks, the implant was more obscure and the density of the surrounding cancellous bone increased. Scanning electron microscopy examination showed bone tissue on the surface of the alloy attached by living fibers at 12 weeks. Micro-CT confirmed that new bone tissue on the surface of the residual alloy implant increased from 12 weeks to 24 weeks. By 12 weeks, many cavities in the cancellous bone tissue around the implant were noted with a CT value, similar to gas value, and increasing by 24 weeks (P < 0.01). Histological examination of hard tissue slices showed that bone tissue was visibly attached to the alloy in the femoral condyle at 12 weeks. The trabecular bone tissues became more intact and dense, and the cavities were filled with soft tissue at 24 weeks. In general, gas produced by the degradation of the Mg–Zn–Zr alloy can cause cavitation within cancellous bone, which does not affect osteogenesis of Mg alloy. - Highlights: • The degradation of Mg alloy in cancellous bone causes cavitation around the alloy. • At first, the CT value of the cavities is similar to the gas value. • The area of the cavities enlarges gradually by 12 weeks. • The cavities are filled with bone tissue and soft tissue gradually.

  1. Hyperspectral imaging based on compressive sensing to determine cancer margins in human pancreatic tissue ex vivo

    Science.gov (United States)

    Peller, Joseph; Thompson, Kyle J.; Siddiqui, Imran; Martinie, John; Iannitti, David A.; Trammell, Susan R.

    2017-02-01

    Pancreatic cancer is the fourth leading cause of cancer death in the US. Currently, surgery is the only treatment that offers a chance of cure, however, accurately identifying tumor margins in real-time is difficult. Research has demonstrated that optical spectroscopy can be used to distinguish between healthy and diseased tissue. The design of a single-pixel imaging system for cancer detection is discussed. The system differentiates between healthy and diseased tissue based on differences in the optical reflectance spectra of these regions. In this study, pancreatic tissue samples from 6 patients undergoing Whipple procedures are imaged with the system (total number of tissue sample imaged was N=11). Regions of healthy and unhealthy tissue are determined based on SAM analysis of these spectral images. Hyperspectral imaging results are then compared to white light imaging and histological analysis. Cancerous regions were clearly visible in the hyperspectral images. Margins determined via spectral imaging were in good agreement with margins identified by histology, indicating that hyperspectral imaging system can differentiate between healthy and diseased tissue. After imaging the system was able to detect cancerous regions with a sensitivity of 74.50±5.89% and a specificity of 75.53±10.81%. Possible applications of this imaging system include determination of tumor margins during surgery/biopsy and assistance with cancer diagnosis and staging.

  2. Controlling Fluences of Reactive Species Produced by Multipulse DBDs onto Wet Tissue: Frequency and Liquid Thickness

    Science.gov (United States)

    Tian, Wei; Kushner, Mark J.

    2015-09-01

    Tissue covered by a thin liquid layer treated by atmospheric pressure plasmas for biomedical applications ultimately requires a reproducible protocol for human healthcare. The outcomes of wet tissue treatment by dielectric barrier discharges (DBDs) depend on the plasma dose which determines the integral fluences of radicals and ions onto the tissue. These fluences are controlled in part by frequency and liquid thickness. In this paper, we report on results from a computational investigation of multipulse DBDs interacting with wet tissue. The DBDs were simulated for 100 stationary or random streamers at different repetition rates and liquid thicknesses followed by 10 s to 2 min of afterglow. At 100 Hz, NOaq and OHaq are mixed by randomly striking streamers, although they have different rates of solvation. NOaq is nearly completely consumed by reactions with OHaq at the liquid surface. Only H2O2aq, produced through OHaq mutual reactions, survives to reach the tissue. After 100 pulses, the liquid becomes ozone-rich, in which the nitrous ion, NO2-aq, is converted to the nitric ion, NO3-aq. Reducing the pulse frequency to 10 Hz results in significant fluence of NOaq to the tissue as NOaq can escape during the interpulse period from the liquid surface where OHaq is formed. For the same reason, NO2-aq can also reach deeper into the liquid at lower frequency. Frequency and thickness of the liquid are methods to control the plasma produced aqueous species to the underlying tissue. Work supported by DOE (DE-SC0001319) and NSF (CHE-1124724).

  3. Radial focusing and energy compression of a laser-produced proton beam by a synchronous rf field

    Directory of Open Access Journals (Sweden)

    Masahiro Ikegami

    2009-06-01

    Full Text Available The dynamics of a MeV laser-produced proton beam affected by a radio frequency (rf electric field has been studied. The proton beam was emitted normal to the rear surface of a thin polyimide target irradiated with an ultrashort pulsed laser with a power density of 4×10^{18}  W/cm^{2}. The energy spread was compressed to less than 11% at the full width at half maximum (FWHM by an rf field. Focusing and defocusing effects of the transverse direction were also observed. These effects were analyzed and reproduced by Monte Carlo simulations. The simulation results show that the transversely focused protons had a broad continuous spectrum, while the peaks in the proton spectrum were defocused. Based on this new information, we propose that elimination of the continuous energy component of laser-produced protons is possible by utilizing a focal length difference between the continuous spectral protons and the protons included in the spectral peak.

  4. Finite-element simulation of blood perfusion in muscle tissue during compression and sustained contraction

    NARCIS (Netherlands)

    Vankan, W.J.; Huyghe, J.M.R.J.; Slaaf, D.W.; Donkelaar, van C.C.; Drost, M.R.; Janssen, J.D.; Huson, A.

    1997-01-01

    Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a

  5. Finite-element simulation of blood perfusion in muscle tissue during compression and sustained contraction.

    Science.gov (United States)

    Vankan, W J; Huyghe, J M; Slaaf, D W; van Donkelaar, C C; Drost, M R; Janssen, J D; Huson, A

    1997-09-01

    Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a finite-element model of the mechanical behavior of blood-perfused muscle tissue, which accounts for mechanical blood-tissue interaction in maximally vasodilated vasculature. Verification of the model was performed by comparing finite-element results of blood pressure and flow with experimental measurements in a muscle that is subject to well-controlled mechanical loading conditions. In addition, we performed simulations of blood perfusion during tetanic, isometric contraction and maximal vasodilation in a simplified, two-dimensional finite-element model of a rat calf muscle. A vascular waterfall in the venous compartment was identified as the main cause for blood flow impediment both in the experiment and in the finite-element simulations. The validated finite-element model offers possibilities for detailed analysis of blood perfusion in three-dimensional muscle models under complicated loading conditions.

  6. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.

    Science.gov (United States)

    Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S

    2013-10-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.

  7. Implantable oxygen microelectrode suitable for medium-term investigations of post-surgical tissue hypoxia and changes in tumor tissue oxygenation produced by radiotherapy

    International Nuclear Information System (INIS)

    Burke, T.R.; Johnson, R.J.; Krishnamsetty, C.B.; Sako, K.; Karakousis, C.; Wojtas, F.

    1980-01-01

    Teflon-covered platinum oxygen probes were used to monitor tissue oxygen levels in post-surgical cancer patients and those treated with radiotherapy. Progressive wound healing was usually accompanied by a decrease in tissue pO2. Radiotherapy produced a slight increase in pO2 while hyperthermia effected a significant increase in the oxygen level during 100% oxygen breathing

  8. Chemical evaluation of strawberry plants produced by tissue culturing of gamma irradiated seedlings

    International Nuclear Information System (INIS)

    Maraei, R.W.

    2007-01-01

    studies were conducted to evaluate the influence of gamma irradiation as a supplementary factor precedes tissue culture application on strawberry seedlings (c.v.Rosa Linda). the strawberry seedling were irradiated using 8 doses of co 60 gamma rays 50.75.100.125 ,150,250, 350 and 500 gray. tissue culture technique was applied on irradiated and unirradiated strawberry seedling. different characteristics of plantlets, plant and fruit of strawberry produced from the double treatment (irradiation followed by tissue culture) were studied as well as the early, total and exportable fruit yields. data indicated that, low radiation doses 50,75 and 100 gray increased all morphological and chemical characteristics of the plantlets, plant and fruit of strawberry, whereas radiation doses higher than 100 gray decreased them significantly. moreover 350 and gray were lethal doses. radiation dose 50 gray increased the survival percentage and the length of plantlets by 1.5% and 50% respectively more than the unirradiated treatment in all multiplication stages

  9. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation.

    Science.gov (United States)

    Belcik, J Todd; Mott, Brian H; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J; Ammi, Azzdine; Linden, Joel M; Lindner, Jonathan R

    2015-04-01

    Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (Pultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; Pultrasound and microbubbles by 70% (Pultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase. © 2015 American Heart Association, Inc.

  10. Contribution to the understanding of the high magnetic field compression produced by the implosion of a thin metal tube

    International Nuclear Information System (INIS)

    Besancon, Jacques

    1970-12-01

    In this report we present the essential phenomena which occur during the magnetic flux compression obtained by the explosive-driven implosion of a thin conducting liner: acceleration time, dynamic evolution, heating and instability behaviour of the liner; field diffusion through the conducting wall and resulting flux losses which condition the increasing field in the cavity. Various implosion models are proposed and the one most elaborated leads to a numerical computation of the flux compression. Repeated experiments have permitted us to define and improve the flux injection techniques, the optical and electrical diagnostics and, consequently, the final compressed field. We now know how to obtain and record reproducible fields of 12 MOe in 0.8 cm diameter cavities. The final phase or the liner 'turnaround' has been specially observed. All the implosion shots are compared to the theoretical expectation. It may be concluded that the liner electrical conductivity and its variation essentially determine the final flux value. (author) [fr

  11. Compression properties and dissolution of bioactive glass S53P4 and n-butyl-2 cyanoacrylate tissue adhesive-composite.

    Science.gov (United States)

    Sarin, Jussi; Hiltunen, Markus; Hupa, Leena; Pulkkinen, Jaakko; Vallittu, Pekka K

    2016-09-28

    Bioactive glass (BG)-containing fiber-reinforced composite implants, typically screw-retained, have started to be used clinically. In this study, we tested the mechanical strength of composites formed by a potential implant adhesive of n-butyl-2-cyanoacrylate glue and BG S53P4 particles. Water immersion for 3, 10 or 30 days had no adverse effect on the compression strength. When cyanoacrylate glue-BG-composites were subjected to simulated body fluid immersion, the average pH rose to 7.52 (SD 0.066) from the original value of 7.35 after 7 days, and this pH increment was smaller compared to BG particle-group or fibrin glue-BG-composite group. Based on these results n-butyl-2 cyanoacrylate glue, by potentially producing a strong adhesion, might be considered a possible alternative for fixation of BG S53P4 containing composite implants. However, the mechanical and solubility properties of the cyanoacrylate glue may not encourage the use of this tissue adhesive with BG particles.

  12. The Grenoble station for producing strong transient magnetic fields higher than 100 teslas by an explosive driven flux compression

    International Nuclear Information System (INIS)

    Guillot, M.

    1976-01-01

    Reproducible transient magnetic fields up to 400 teslas (4 megaoersted) are achieved by a simple explosive driven flux compression. The results are described simply from the point of view of energy conversion. The problems of field measurements are studied: the precision is +-2% with a field cavity of 5 mm diameter [fr

  13. Cytogenetic Studies on Sativa Rebounded Produced by Tissue Culture and Affected by GAMMA Rays and Drought

    International Nuclear Information System (INIS)

    Awad, A.S.A.

    2009-01-01

    Stevia rebaudiana Bertoni is a plant which produces a variety of high-potency, low-calorie sweetener in its leaf tissue (Jarma et al ., 2006). The leaves of this plant contain sweet diterpene glucosides; rebaudioside A, rebaudioside C, stevioside and dulcoside. Stevioside is about 110 to 270 times sweeter than sucrose, while rebaudioside A is 150 to 320 times sweeter than sucrose (Yao et al., 1999). The leaves also produce biologically active substances, e.g. flavonoids, coumarins, cinnamic acids and essential oil (Dzyuba, 1998). (Lobov and Yurtaeva, 2002) showed that diterpenoid glycosides from leaves of S. rebaudiana were the most promising non-sugar sweeteners of plant origin for food and pharmaceutical industries to overcome the problem of human diseases related to disorders of carbon metabolism. The sweetener from leaves has a good taste and is suitable for use in food products as chocolates, marmalades, biscuits, ice-cream, sweets, juices, beverages and candy. The dried leaves could be mixed within the tea packages to reduce the consumption of sugar. The stevioside does not induce tooth decay could safely by used by diabetic patients and could be used in the low caloric diets to reduce human body weight without side effects for these reasons many countries are now using this plant to produce a larger portion of their sugar consumption (El-Zifzafi, 2003). Stevia, Stevia rebaudiana Bertoni is a small herbaceous plant (2 n = 22). It is a member of compositae family (Yao et al., 1999). Estimates of total number of species in this genus ranges from 150 to 300 . Stevia rebaudiana is one of the species of the genus stevia, which includes S.eupatoria, S.purpurea and S .serrata (Lisitsin and kovalev, 2000).

  14. Perivascular Adipose Tissue Harbors Atheroprotective IgM-Producing B Cells

    Directory of Open Access Journals (Sweden)

    Prasad Srikakulapu

    2017-09-01

    Full Text Available Adipose tissue surrounding major arteries (Perivascular adipose tissue or PVAT has long been thought to exist to provide vessel support and insulation. Emerging evidence suggests that PVAT regulates artery physiology and pathology, such as, promoting atherosclerosis development through local production of inflammatory cytokines. Yet the immune subtypes in PVAT that regulate inflammation are poorly characterized. B cells have emerged as important immune cells in the regulation of visceral adipose tissue inflammation and atherosclerosis. B cell-mediated effects on atherosclerosis are subset-dependent with B-1 cells attenuating and B-2 cells aggravating atherosclerosis. While mechanisms whereby B-2 cells aggravate atherosclerosis are less clear, production of immunoglobulin type M (IgM antibodies is thought to be a major mechanism whereby B-1 cells limit atherosclerosis development. B-1 cell-derived IgM to oxidation specific epitopes (OSE on low density lipoproteins (LDL blocks oxidized LDL-induced inflammatory cytokine production and foam cell formation. However, whether PVAT contains B-1 cells and whether atheroprotective IgM is produced in PVAT is unknown. Results of the present study provide clear evidence that the majority of B cells in and around the aorta are derived from PVAT. Interestingly, a large proportion of these B cells belong to the B-1 subset with the B-1/B-2 ratio being 10-fold higher in PVAT relative to spleen and bone marrow. Moreover, PVAT contains significantly greater numbers of IgM secreting cells than the aorta. ApoE−/− mice with B cell-specific knockout of the gene encoding the helix-loop-helix factor Id3, known to have attenuated diet-induced atherosclerosis, have increased numbers of B-1b cells and increased IgM secreting cells in PVAT relative to littermate controls. Immunostaining of PVAT on human coronary arteries identified fat associated lymphoid clusters (FALCs harboring high numbers of B cells, and flow

  15. Early age compressive strength, porosity, and sorptivity of concrete using peat water to produce and cure concrete

    Science.gov (United States)

    Olivia, Monita; Ismeddiyanto, Wibisono, Gunawan; Sitompul, Iskandar R.

    2017-09-01

    Construction in peatland has faced scarce water sources for mixing and curing concrete. It is known that peat water has high organic content and low pH that can be harmful to concrete in the environment. In some remote areas in Riau Province, contractors used peat water directly without sufficient treatments to comply with SKSNI requirements of concrete mixing water. This paper presents a study of compressive strength, porosity and sorptivity of Ordinary Portland Cement (OPC) and blended OPC-Palm Oil Fuel Ash (OPC-POFA) concrete. The specimens were mixed using natural water and peat water, then some of them were cured in fresh water and peat water. Six mixtures were investigated using a variation of cement, mixing water and curing water. Tap water is used as control mixing and curing water for all specimens. The compressive strength, porosity and sorptivity were calculated at seven and 28 days. Results indicate that the use of peat water will cause low compressive strength, high porosity and sorptivity for both OPC and OPC-POFA concrete. Using peat water and curing the specimens in tap water could improve the early strength, porosity and sorptivity of OPC concrete; however, it has an adverse effect on OPC-POFA specimens. The properties of early age concrete of both types (OPC and OPC-POFA) using peat water were as good as those with tap water. Therefore, it is suggested that peat water should be considered as mixing and curing water for concrete where tap water resources are scarce. Investigation of its long-term properties, as well as extending the observed age of concrete is recommended before any use of peat water.

  16. Energy deposition at the bone-tissue interface from nuclear fragments produced by high-energy nucleons

    Science.gov (United States)

    Cucinotta, Francis A.; Hajnal, Ferenc; Wilson, John W.

    1990-01-01

    The transport of nuclear fragmentation recoils produced by high-energy nucleons in the region of the bone-tissue interface is considered. Results for the different flux and absorbed dose for recoils produced by 1 GeV protons are presented in a bidirectional transport model. The energy deposition in marrow cavities is seen to be enhanced by recoils produced in bone. Approximate analytic formulae for absorbed dose near the interface region are also presented for a simplified range-energy model.

  17. A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time.

    Science.gov (United States)

    Martínez-Martínez, F; Rupérez-Moreno, M J; Martínez-Sober, M; Solves-Llorens, J A; Lorente, D; Serrano-López, A J; Martínez-Sanchis, S; Monserrat, C; Martín-Guerrero, J D

    2017-11-01

    This work presents a data-driven method to simulate, in real-time, the biomechanical behavior of the breast tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed up multimodal registration algorithms. Ten real breasts were used for this work. Their deformation due to the displacement of two compression plates was simulated off-line using the finite element (FE) method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict in real-time the deformation of the breast tissues during the compression. The models were a decision tree and two tree-based ensemble methods (extremely randomized trees and random forest). Two different experimental setups were designed to validate and study the performance of these models under different conditions. The mean 3D Euclidean distance between nodes predicted by the models and those extracted from the FE simulations was calculated to assess the performance of the models in the validation set. The experiments proved that extremely randomized trees performed better than the other two models. The mean error committed by the three models in the prediction of the nodal displacements was under 2 mm, a threshold usually set for clinical applications. The time needed for breast compression prediction is sufficiently short to allow its use in real-time (<0.2 s). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Surgical effects on soft tissue produced by a 405-nm violet diode laser in vivo

    Science.gov (United States)

    Miyazaki, H.; Kato, J.; Kawai, S.; Hatayama, H.; Uchida, K.; Otsuki, M.; Tagami, J.; Yokoo, S.

    2011-12-01

    This study evaluated the surgical performance of a 405-nm diode laser in vivo, using living rat liver tissue. Tissue was incised by irradiation with the laser at low output power ranging from 1 W (722 W/cm2) to 3 W (2165 W/cm2) on a manual control at a rate of 1 mm/s. As a control, incisions using a stainless scalpel were compared. Immediately after operation, the surface of the incisions was macroscopically observed and histopathologically evaluated by microscopy. Laser-ablated liver tissue was smooth with observable signs of remnant carbonization and easily acquired hemostasis. The thickness of the denatured layer increased in proportion to the output power; the coagulation layer did not thicken accordingly. Bleeding could not be stopped for tissues incised with the stainless scalpel. The 405-nm diode laser thus proved to be effective for ablating soft tissue with high hemostatic ability at low power.

  19. Cell cytoskeletal changes effected by static compressive stress lead to changes in the contractile properties of tissue regenerative collagen membranes

    Directory of Open Access Journals (Sweden)

    K Gellynck

    2013-06-01

    Full Text Available Static compressive stress can influence the matrix, which subsequently affects cell behaviour and the cell’s ability to further transform the matrix. This study aimed to assess response to static compressive stress at different stages of osteoblast differentiation and assess the cell cytoskeleton’s role as a conduit of matrix-derived stimuli. Mouse bone marrow mesenchymal stem cells (MSCs (D1 ORL UVA, osteoblastic cells (MC3T3-E1 and post-osteoblast/pre-osteocyte-like cells (MLO-A5 were seeded in hydrated and compressed collagen gels. Contraction was quantified macroscopically, and cell morphology, survival, differentiation and mineralisation assessed using confocal microscopy, alamarBlue® assay, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR and histological stains, respectively. Confocal microscopy demonstrated cell shape changes and favourable microfilament organisation with static compressive stress of the collagen matrix; furthermore, cell survival was greater compared to the hydrated gels. The stage of osteoblast differentiation determined the degree of matrix contraction, with MSCs demonstrating the greatest amount. Introduction of microfilament disrupting inhibitors confirmed that pre-stress and tensegrity forces were under the influence of gel density, and there was increased survival and differentiation of the cells within the compressed collagen compared to the hydrated collagen. There was also relative stiffening and differentiation with time of the compressed cell-seeded collagen, allowing for greater manipulation. In conclusion, the combined collagen chemistry and increased density of the microenvironment can promote upregulation of osteogenic genes and mineralisation; MSCs can facilitate matrix contraction to form an engineered membrane with the potential to serve as a ‘pseudo-periosteum’ in the regeneration of bone defects.

  20. An investigation of the ability to produce a defined 'target pressure' using the PressCise compression bandage.

    Science.gov (United States)

    Wiklander, Kerstin; Andersson, Annette Erichsen; Källman, Ulrika

    2016-12-01

    Compression therapy is the cornerstone in the prevention and treatment of leg ulcers related to chronic venous insufficiency. The application of optimal high pressure is essential for a successful outcome, but the literature has reported difficulty applying the intended pressure, even among highly skilled nurses. The PressCise bandage has a novel design, with both longitudinal and horizontal reference points for correct application. In the current experimental study, the results for the general linear model, where the data set is treated optimally, showed that all 95% confidence intervals of the expected values for pressure were, at most, 5 mmHg from the target value of 50 mmHg, independent of the position on the leg and the state of activity. Moreover, even nurses with limited experience were consistently able to reach the targeted pressure goal. Future studies are needed to determine how well the bandage works on legs of different shapes, the optimal way of using the bandage (day only or both day and night) and whether the bandage should be combined with an outer bandage layer. In addition, special attention should be paid to subjective patient experiences in relation to the treatment as pain, discomfort and bulk are factors that can compromise patients' willingness to adhere to the treatment protocol and thereby prolong the healing process. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  1. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    Science.gov (United States)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  2. Task-oriented lossy compression of magnetic resonance images

    Science.gov (United States)

    Anderson, Mark C.; Atkins, M. Stella; Vaisey, Jacques

    1996-04-01

    A new task-oriented image quality metric is used to quantify the effects of distortion introduced into magnetic resonance images by lossy compression. This metric measures the similarity between a radiologist's manual segmentation of pathological features in the original images and the automated segmentations performed on the original and compressed images. The images are compressed using a general wavelet-based lossy image compression technique, embedded zerotree coding, and segmented using a three-dimensional stochastic model-based tissue segmentation algorithm. The performance of the compression system is then enhanced by compressing different regions of the image volume at different bit rates, guided by prior knowledge about the location of important anatomical regions in the image. Application of the new system to magnetic resonance images is shown to produce compression results superior to the conventional methods, both subjectively and with respect to the segmentation similarity metric.

  3. Dose equivalent near the bone-soft tissue interface from nuclear fragments produced by high-energy protons

    Science.gov (United States)

    Shavers, M. R.; Poston, J. W.; Cucinotta, F. A.; Wilson, J. W.

    1996-01-01

    During manned space missions, high-energy nucleons of cosmic and solar origin collide with atomic nuclei of the human body and produce a broad linear energy transfer spectrum of secondary particles, called target fragments. These nuclear fragments are often more biologically harmful than the direct ionization of the incident nucleon. That these secondary particles increase tissue absorbed dose in regions adjacent to the bone-soft tissue interface was demonstrated in a previous publication. To assess radiological risks to tissue near the bone-soft tissue interface, a computer transport model for nuclear fragments produced by high energy nucleons was used in this study to calculate integral linear energy transfer spectra and dose equivalents resulting from nuclear collisions of 1-GeV protons transversing bone and red bone marrow. In terms of dose equivalent averaged over trabecular bone marrow, target fragments emitted from interactions in both tissues are predicted to be at least as important as the direct ionization of the primary protons-twice as important, if recently recommended radiation weighting factors and "worst-case" geometry are used. The use of conventional dosimetry (absorbed dose weighted by aa linear energy transfer-dependent quality factor) as an appropriate framework for predicting risk from low fluences of high-linear energy transfer target fragments is discussed.

  4. Micromechanical finite element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone:hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering

    Science.gov (United States)

    Eshraghi, Shaun; Das, Suman

    2012-01-01

    Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30% HA by volume. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30 respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 MPa to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical finite element analysis (FEA) model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any loading of HA to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. Results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient and site-specific composite tissue engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing. PMID:22522129

  5. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering.

    Science.gov (United States)

    Eshraghi, Shaun; Das, Suman

    2012-08-01

    Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite-element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30 vol.% HA. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30, respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical FEA model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any HA loading to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. The results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient- and site-specific composite tissue-engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All

  6. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity

    Directory of Open Access Journals (Sweden)

    Dae Woo Park

    2016-01-01

    Full Text Available Shear wave elasticity imaging (SWEI can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE- based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard tumor and surrounding tissue (soft. The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.

  7. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity.

    Science.gov (United States)

    Park, Dae Woo

    2015-01-01

    Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.

  8. Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair?

    NARCIS (Netherlands)

    Vivier, Eric; Spits, Hergen; Cupedo, Tom

    2009-01-01

    Mucosal tissues, lying at the interface with the external environment, are constantly challenged by microbial, physical and chemical assaults. To provide the necessary immune defence to such challenges, lymph nodes and Peyer's patches are formed in utero in response to inductive signals from

  9. The TMAO-Producing Enzyme Flavin-Containing Monooxygenase 3 Regulates Obesity and the Beiging of White Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Rebecca C. Schugar

    2017-06-01

    Full Text Available Emerging evidence suggests that microbes resident in the human intestine represent a key environmental factor contributing to obesity-associated disorders. Here, we demonstrate that the gut microbiota-initiated trimethylamine N-oxide (TMAO-generating pathway is linked to obesity and energy metabolism. In multiple clinical cohorts, systemic levels of TMAO were observed to strongly associate with type 2 diabetes. In addition, circulating TMAO levels were associated with obesity traits in the different inbred strains represented in the Hybrid Mouse Diversity Panel. Further, antisense oligonucleotide-mediated knockdown or genetic deletion of the TMAO-producing enzyme flavin-containing monooxygenase 3 (FMO3 conferred protection against obesity in mice. Complimentary mouse and human studies indicate a negative regulatory role for FMO3 in the beiging of white adipose tissue. Collectively, our studies reveal a link between the TMAO-producing enzyme FMO3 and obesity and the beiging of white adipose tissue.

  10. Comparison between optical coherence tomography technique and mechanical compression assay to evaluate ionizing radiation effects in frozen and lyophilized bone Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Stefany Plumeri; Freitas, Anderson Zanardi de; Martinho Junior, Antonio Carlos; Dias, Djalma Batista; Soares, Fernando Augusto Neves; Pino, Eddy Segura; Veloso, Marcelo Noronha; Mathor, Monica B., E-mail: spsantin@usp.br, E-mail: mathor@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Santos, Luiz Augusto Ubirajara, E-mail: augustosantos@terra.com.br [Universidade de Sao Paulo (IOT/HCFUSP), Sao Paulo, SP (Brazil). Fac. de Medicina. Instituto de Ortopedia e Traumatologia

    2013-07-01

    Currently tissue banks have utilized ionizing radiation to sterilize bone tissues to be used as allograft. This method is advantageous when compared with other techniques, because the tissue is sterilized in its final packaging avoiding later contaminations, another advantage is due to the fact occur only a minimal increase in temperature, in addition to provide a Sterility Assurance Level (SAL) of 10{sup -6}, as recommended by national and international standards. However, there are several studies investigating the modifications that this method of sterilization may cause to the bone matrix, for example, alterations in the resistance to compression force. The compressive mechanical tests are highly used to evaluate the decrease in the mechanical strength; however it is a destructive assay. In this study, we used Optical Coherence Tomography to evaluate these possible changes. This technique is advantageous, for do not destroy the sample and enable the performing of other assays with the same sample. In literature, it is possible to find several studies about mechanical changes occasioned by destructive tests. Therefore, this study aims to compare the results of both techniques. It was selected four donors to obtain eight samples of fibula, through a partnership with the Tissue Bank (Instituto de Traumatologia do Hospital das Clinicas da Universidade de Sao Paulo). From each donor were separated twelve samples for preservation by freezing and twelve samples for preservation by lyophilization. The samples were analyzed by Optical Coherence Tomography (OCT) after irradiation at different doses (15, 25 and 50 kGy), in addition to non-irradiated control. After the samples were analyzed by Optical Coherence Tomography the same were subjected to mechanical testing. The data were analyzed by software developed by Dr. Anderson Zanardi de Freitas to calculate the total attenuation coefficient of photons. Nevertheless, only the preservation method may induce to alterations

  11. Comparison between optical coherence tomography technique and mechanical compression assay to evaluate ionizing radiation effects in frozen and lyophilized bone Tissue

    International Nuclear Information System (INIS)

    Santin, Stefany Plumeri; Freitas, Anderson Zanardi de; Martinho Junior, Antonio Carlos; Dias, Djalma Batista; Soares, Fernando Augusto Neves; Pino, Eddy Segura; Veloso, Marcelo Noronha; Mathor, Monica B.; Santos, Luiz Augusto Ubirajara

    2013-01-01

    Currently tissue banks have utilized ionizing radiation to sterilize bone tissues to be used as allograft. This method is advantageous when compared with other techniques, because the tissue is sterilized in its final packaging avoiding later contaminations, another advantage is due to the fact occur only a minimal increase in temperature, in addition to provide a Sterility Assurance Level (SAL) of 10 -6 , as recommended by national and international standards. However, there are several studies investigating the modifications that this method of sterilization may cause to the bone matrix, for example, alterations in the resistance to compression force. The compressive mechanical tests are highly used to evaluate the decrease in the mechanical strength; however it is a destructive assay. In this study, we used Optical Coherence Tomography to evaluate these possible changes. This technique is advantageous, for do not destroy the sample and enable the performing of other assays with the same sample. In literature, it is possible to find several studies about mechanical changes occasioned by destructive tests. Therefore, this study aims to compare the results of both techniques. It was selected four donors to obtain eight samples of fibula, through a partnership with the Tissue Bank (Instituto de Traumatologia do Hospital das Clinicas da Universidade de Sao Paulo). From each donor were separated twelve samples for preservation by freezing and twelve samples for preservation by lyophilization. The samples were analyzed by Optical Coherence Tomography (OCT) after irradiation at different doses (15, 25 and 50 kGy), in addition to non-irradiated control. After the samples were analyzed by Optical Coherence Tomography the same were subjected to mechanical testing. The data were analyzed by software developed by Dr. Anderson Zanardi de Freitas to calculate the total attenuation coefficient of photons. Nevertheless, only the preservation method may induce to alterations in

  12. High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties.

    Science.gov (United States)

    Cigan, Alexander D; Roach, Brendan L; Nims, Robert J; Tan, Andrea R; Albro, Michael B; Stoker, Aaron M; Cook, James L; Vunjak-Novakovic, Gordana; Hung, Clark T; Ateshian, Gerard A

    2016-06-14

    Animal cells have served as highly controllable model systems for furthering cartilage tissue engineering practices in pursuit of treating osteoarthritis. Although successful strategies for animal cells must ultimately be adapted to human cells to be clinically relevant, human chondrocytes are rarely employed in such studies. In this study, we evaluated the applicability of culture techniques established for juvenile bovine and adult canine chondrocytes to human chondrocytes obtained from fresh or expired osteochondral allografts. Human chondrocytes were expanded and encapsulated in 2% agarose scaffolds measuring ∅3-4mm×2.3mm, with cell seeding densities ranging from 15 to 90×10(6)cells/mL. Subsets of constructs were subjected to transient or sustained TGF-β treatment, or provided channels to enhance nutrient transport. Human cartilaginous constructs physically resembled native human cartilage, and reached compressive Young's moduli of up to ~250kPa (corresponding to the low end of ranges reported for native knee cartilage), dynamic moduli of ~950kPa (0.01Hz), and contained 5.7% wet weight (%/ww) of glycosaminoglycans (≥ native levels) and 1.5%/ww collagen. We found that the initial seeding density had pronounced effects on tissue outcomes, with high cell seeding densities significantly increasing nearly all measured properties. Transient TGF-β treatment was ineffective for adult human cells, and tissue construct properties plateaued or declined beyond 28 days of culture. Finally, nutrient channels improved construct mechanical properties, presumably due to enhanced rates of mass transport. These results demonstrate that our previously established culture system can be successfully translated to human chondrocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Cytogenetic studies on stevia rebaudiana produced by tissue culture and affected by gamma rays and drought

    International Nuclear Information System (INIS)

    Awad, A.S.A

    2009-01-01

    The present investigation was under taken to carry out in the laboratories of the Natural Products Department, National Center for Radiation Research and Technology, Atomic Energy authority, Nasr city, Cairo, Egypt, to study the effect of gamma radiation doses, osmostress and the combined effects between them on tissue culture, some biochemical analysis and molecular genetic marker in stevia rebaudiana bertoni. The results obtained were: Tissue culture 1- micropropagation media: stevia rebaudiana plantlets cultured on MS medium hormones free for micropropagation.Hormones such as BAP and NAA with different concentrations induced callus formation and give slight growth.Study the effect of gamma radiation, osmostress and the combined effects between them : 1)The effect of gamma radiation on buds survival: Gamma radiation doses (10, 20 and 30 Gy) induced decreasing in bud survival percentage with increasing radiation dose in stevia rebaudiana. The dose 30 Gy was induced 60% mortality.2) Study the effect of gamma radiation on some biochemical analysis: Gamma radiation doses induced increase in the total carbohydrate with doses (20 and 30 Gy) but decreased with dose 10 Gy. Proline contents increased in plantlets with increasing doses . The total protein was increased with doses (10 and 20 Gy), but the dose 30 Gy induced decrease in total protein. Gamma radiation doses induced decreasing in total DNA while, the nucleic acid RNA increased.3) The effect of osmostress on buds survival: The concentrations (40000,50000,60000,70000 and 80000 ppm) from sucrose or sorbitol decreased the bud survival and shoot length in stevia plantlets with increasing sucrose or sorbitol levels. 4) The effect of osmostress on some biochemical analysis: Sucrose and sorbitol concentrations (40000,50000,60000,70000 and 80000 ppm) caused decrease in total carbohydrate.

  14. Functional properties of the recombinant kringle-2 domain of tissue plasminogen activator produced in Escherichia coli

    International Nuclear Information System (INIS)

    Wilhelm, O.G.; Jaskunas, S.R.; Vlahos, C.J.; Bang, N.U.

    1990-01-01

    The kringle-2 domain (residues 176-262) of tissue-type plasminogen activator (t-PA) was cloned and expressed in Escherichia coli. The recombinant peptide, which concentrated in cytoplasmic inclusion bodies, was isolated, solubilized, chemically refolded, and purified by affinity chromatography on lysine-Sepharose to apparent homogeneity. [35S]Cysteine-methionine-labeled polypeptide was used to study the interactions of kringle-2 with lysine, fibrin, and plasminogen activator inhibitor-1. The kringle-2 domain bound to lysine-Sepharose and to preformed fibrin with a Kd = 104 +/- 6.2 microM (0.86 +/- 0.012 binding site) and a Kd = 4.2 +/- 1.05 microM (0.80 +/- 0.081 binding site), respectively. Competition experiments and direct binding studies showed that the kringle-2 domain is required for the formation of the ternary t-PA-plasminogen-intact fibrin complex and that the association between the t-PA kringle-2 domain and fibrin does not require plasmin degradation of fibrin and exposure of new COOH-terminal lysine residues. We also observed that kringle-2 forms a complex with highly purified guanidine-activated plasminogen activator inhibitor-1, dissociable by 0.2 M epsilon-aminocaproic acid. The kringle-2 polypeptide significantly inhibited tissue plasminogen activator/plasminogen activator inhibitor-1 interaction. The kringle-2 domain bound to plasminogen activator inhibitor-1 in a specific and saturable manner with a Kd = 0.51 +/- 0.055 microM (0.35 +/- 0.026 binding site). Therefore, the t-PA kringle-2 domain is important for the interaction of t-PA not only with fibrin, but also with plasminogen activator inhibitor-1 and thus represents a key structure in the regulation of fibrinolysis

  15. Gingival tissue-produced inhibition of platelet aggregation and the loss of inhibition in streptozotocin-induced diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Keiichiroh; Tamai, Kazuharu; Shirakawa, Masaharu; Okamoto, Hiroshi; Dohi, Toshihiro; Tsujimoto, Akira

    1988-01-01

    Addition of medium incubated with normal rat gingival tissue to platelet-rich plasma inhibited ADP-induced platelet aggregation. The ability of rat gingiva to produce activity inhibiting platelet aggregation was enhanced by the addition of arachidonic acid. Diabetic rat gingiva failed to inhibit platelet aggregation but did produce the anti-platelet aggregating activity in the presence of arachidonic acid. Indomethacin blocked the production of anti-platelet aggregating activity. There was no difference in conversion of (1-/sup 14/C)arachidonic acid to prostaglandins by normal and diabetic rat gingiva. These results suggest that an arachidonic acid metabolite released from gingiva during incubation inhibits platelet aggregation, and the synthesis of the metabolite is impaired in diabetic rat gingiva. A decrease in availability of arachidonic acid may be a causal factor of the defect in diabetic rat gingiva.

  16. Gingival tissue-produced inhibition of platelet aggregation and the loss of inhibition in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Kawamura, Keiichiroh; Tamai, Kazuharu; Shirakawa, Masaharu; Okamoto, Hiroshi; Dohi, Toshihiro; Tsujimoto, Akira

    1988-01-01

    Addition of medium incubated with normal rat gingival tissue to platelet-rich plasma inhibited ADP-induced platelet aggregation. The ability of rat gingiva to produce activity inhibiting platelet aggregation was enhanced by the addition of arachidonic acid. Diabetic rat gingiva failed to inhibit platelet aggregation but did produce the anti-platelet aggregating activity in the presence of arachidonic acid. Indomethacin blocked the production of anti-platelet aggregating activity. There was no difference in conversion of [1- 14 C]arachidonic acid to prostaglandins by normal and diabetic rat gingiva. These results suggest that an arachidonic acid metabolite released from gingiva during incubation inhibits platelet aggregation, and the synthesis of the metabolite is impaired in diabetic rat gingiva. A decrease in availability of arachidonic acid may be a causal factor of the defect in diabetic rat gingiva. (author)

  17. In vitro generation of functional insulin-producing cells from lipoaspirated human adipose tissue-derived stem cells.

    Science.gov (United States)

    Mohamad Buang, Mohamad Lizan; Seng, Heng Kien; Chung, Lee Han; Saim, Aminuddin Bin; Idrus, Ruszymah Bt Hj

    2012-01-01

    Tissue engineering strategy has been considered as an alternative treatment for diabetes mellitus due to lack of permanent pharmaceutical treatment and islet donors for transplantation. Various cell lines have been used to generate functional insulin-producing cells (IPCs) including progenitor pancreatic cell lines, embryonic stem cells (ESCs), umbilical cord blood stem cells (UCB-SCs), adult bone marrow stem cells (BMSCs), and adipose tissue-derived stem cells (ADSCs). Human ADSCs from lipoaspirated abdominal fat tissue was differentiated into IPCs following a two-step induction protocol based on a combination of alternating high and low glucose, nicotinamide, activin A and glucagon-like peptide 1 (GLP-1) for a duration of 3 weeks. During differentiation, histomorphological changes of the stem cells towards pancreatic β-islet characteristics were observed via light microscope and transmission electron microscope (TEM). Dithizone (DTZ) staining, which is selective towards IPCs, was used to stain the new islet-like cells. Production of insulin hormone by the cells was analyzed via enzyme-linked immunosorbent assay (ELISA), whereas its hormonal regulation was tested via a glucose challenge test. Histomorphological changes of the differentiated cells were noted to resemble pancreatic β-cells, whereas DTZ staining positively stained the cells. The differentiated cells significantly produced human insulin as compared to the undifferentiated ADSCs, and its production was increased with an increase of glucose concentration in the culture medium. These initial data indicate that human lipoaspirated ADSCs have the potential to differentiate into functional IPCs, and could be used as a therapy to treat diabetes mellitus in the future. Copyright © 2012 IMSS. Published by Elsevier Inc. All rights reserved.

  18. Tissue

    Directory of Open Access Journals (Sweden)

    David Morrissey

    2012-01-01

    Full Text Available Purpose. In vivo gene therapy directed at tissues of mesenchymal origin could potentially augment healing. We aimed to assess the duration and magnitude of transene expression in vivo in mice and ex vivo in human tissues. Methods. Using bioluminescence imaging, plasmid and adenoviral vector-based transgene expression in murine quadriceps in vivo was examined. Temporal control was assessed using a doxycycline-inducible system. An ex vivo model was developed and optimised using murine tissue, and applied in ex vivo human tissue. Results. In vivo plasmid-based transgene expression did not silence in murine muscle, unlike in liver. Although maximum luciferase expression was higher in muscle with adenoviral delivery compared with plasmid, expression reduced over time. The inducible promoter cassette successfully regulated gene expression with maximum levels a factor of 11 greater than baseline. Expression was re-induced to a similar level on a temporal basis. Luciferase expression was readily detected ex vivo in human muscle and tendon. Conclusions. Plasmid constructs resulted in long-term in vivo gene expression in skeletal muscle, in a controllable fashion utilising an inducible promoter in combination with oral agents. Successful plasmid gene transfection in human ex vivo mesenchymal tissue was demonstrated for the first time.

  19. Measurements for the radiation spectra of fast Z-pinches produced at compression of multi-wire arrays on the 'Angara-5-1' facility

    International Nuclear Information System (INIS)

    Bolkhovitinov, E.A.; Rupasov, A.A.; Shikanov, A.S.; Fedulov, M.V.; Grabovsky, E.V.; Gritsuk, A.N.; Oleinik, G.M.; Volkov, G.S.

    2010-01-01

    Complete text of publication follows. The measurements results on the radiation spectra of fast z-pinches produced at compression of cylindrical multi-wire tungsten and aluminum arrays in the experiments on a high-current 'Angara-5-1' facility are presented. Cylindrical multi-wire arrays has linear mass 200-400 μg/cm and the initial diameter 12-20 mm. The pinch current was about 3 MA with pulse duration of 140 ns and peak power 3 TW. The radiation spectra are measured within the range of 50-900 eV quanta by a spectrometer with transmission diffraction grating, where the radiation is recorded on the UF-4 X-ray film. An electromagnetic curtain shutter was used to protect the transmission grating from fast microparticles produced by the erosion of high-voltage electrodes. The radiation spectrum of 1-3 keV quanta was recorded by a convex crystal wide-range spectrometer. Total yield of the radiation was measured by a thermocouple calorimeter. The main part of the tungsten plasma radiative energy proves to correspond to the quasi-continuous spectrum within the range of 80-300 eV quanta. Measurements of the tungsten plasma radiation spectrum with spatial resolution by a pinch radius have shown that the effective transversal size (diameter) of the pinch as not higher than 1 mm. In the case of aluminum plasma an intensive linear radiation of the [H]- and [He]-like ions have been recorded along with a continuous and linear radiation of the [Li]- and [Be]-like ions with the range of 100-300 eV quanta. Spectral measurements of the aluminum plasma radiation with spatial resolution by the pinch radius have shown that the effective transversal size (diameter) of the pinch is around the value of 1.5 mm. Within the framework of the stationary collisional-radiative model, in respect of the [H]- and [He]-like ion spectral lines relative intensities, the parameters of the aluminum plasma pinch, namely, the electron temperature T e ∼ 550 eV and electron density n e ∼ 3 x 10 20 cm

  20. Identification of 5-hydroxytryptamine-producing cells by detection of fluorescence in paraffin-embedded tissue sections

    Directory of Open Access Journals (Sweden)

    Y. Kaneko

    2016-09-01

    Full Text Available 5-Hydroxytryptamine (5-HT produced by enterochromaffin (EC cells is an important enteric mucosal signaling ligand and has been implicated in several gastrointestinal diseases, including inflammatory bowel disease and functional disorders such as irritable bowel syndrome. The present study reports a new, simple and rapid visualization method of 5-HT-producing EC cells utilizing detection of autofluorescence in paraffin-embedded tissue sections after formalin fixation. In human samples, there was a high incidence of autofluorescence+ cells in the 5-HT+ cells in the pyloric, small intestinal and colonic glands, while co-localization was lacking between autofluorescence+ and gastrin+ cells in the pyloric and small intestinal glands. Autofluorescence+ EC cells were detected in the colon of mice and rats. Autofluorescence+ cells were also observed in 5-HT+ β cells in the pancreatic islets of Langerhans in pregnant mice, while non-pregnant mouse pancreatic islet cells showed no 5-HT immunoreactivity or autofluorescence. These results suggest that autofluorescence+ cells are identical to 5-HT+ cells, and the source of autofluorescence may be 5-HT itself or molecules related to its synthesis or degradation. This autofluorescence signal detection method may be applicable for monitoring of inflammatory status of inflammatory bowel diseases in both the experimental and clinical settings.

  1. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells.

    Science.gov (United States)

    Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Abdel-Rahman, Engy A; Reda, Asmaa M; Ali, Sameh S; Khater, Sherry M; Ashamallah, Sylvia A; Ismail, Amani M; Ismail, Hossam El-Din A; El-Badri, Nagwa; Ghoneim, Mohamed A

    2017-01-01

    The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs), for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs), was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion . BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  2. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Gabr

    2017-01-01

    Full Text Available The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs and adipose tissue-derived mesenchymal stem cells (AT-MSCs, for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs, was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion. BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  3. Role of adipose tissue derived stem cells differentiated into insulin producing cells in the treatment of type I diabetes mellitus.

    Science.gov (United States)

    Amer, Mona G; Embaby, Azza S; Karam, Rehab A; Amer, Marwa G

    2018-05-15

    Generation of new β cells is an important approach in the treatment of type 1 diabetes mellitus (type 1 DM). Adipose tissue-derived stem cells (ADSCs) might be one of the best sources for cell replacement therapy for diabetes. Therefore, this work aimed to test the possible role of transplanted insulin-producing cells (IPCs) differentiated from ADSCs in treatment of streptozotocin (STZ) induced type I DM in rats. Type 1 DM was induced by single intra peritoneal injection with STZ (50 mg/kg BW). Half of the diabetic rats were left without treatment and the other half were injected with differentiated IPCs directly into the pancreas. ADSCs were harvested, cultured and identified by testing their phenotypes through flow cytometry. They were further subjected to differentiation into IPCs using differentiation medium. mRNA expression of pancreatic transcription factors (pdx1), insulin and glucose transporter-2 genes by real time PCR was done to detect the cellular differentiation and confirmed by stimulated insulin secretion. The pancreatic tissues from all groups were examined 2 months after IPC transplantation and were subjected to histological, Immunohistochemical and morphometric study. The differentiated IPCs showed significant expression of pancreatic β cell markers and insulin secretion in glucose dependent manner. Treatment with IPCs induced apparent regeneration, diffused proliferated islet cells and significant increase in C-peptide immune reaction. We concluded that transplantation of differentiated IPCs improved function and morphology of Islet cells in diabetic rats. Consequently, this therapy option may be a promising therapeutic approach to patient with type 1 DM if proven to be effective and safe. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Assessment of tissue-specific accumulation and effects of cadmium in a marine fish fed contaminated commercially produced diet

    International Nuclear Information System (INIS)

    Dang Fei; Wang Wenxiong

    2009-01-01

    Commercially produced fish diet is now widely used in fish farming but it often contains elevated levels of cadmium (Cd). However, the adverse effects on fish are poorly understood. In this study, farm-raised marine grunts, Terapon jarbua, were fed Cd-contaminated diet or exposed to waterborne Cd for 4 weeks. Tissue-specific Cd bioaccumulation and its effects were subsequently examined. We found that Cd was accumulated in different fish tissues (digestive tracts, gills or livers). At the end of the exposure, Cd accumulation peaked in the fishes' livers (5.0-6.3 μg g -1 ), followed by the digestive tracts (0.83-3.16 μg g -1 ) and gills (0.27-2.74 μg g -1 ). Endpoints such as the survival rate, specific growth rate, condition factor, and superoxide dismutase activity were not significantly affected by Cd exposure. In contrast, metallothionein (MT) induction and subcellular Cd distribution indicated that there were possible sublethal effects of Cd exposure. MT was induced in response to Cd accumulation, but it returned to the control levels after a longer exposure period, except for hepatic MT induction resulting from waterborne or low dietary Cd exposure. The Cd percentage in the metallothionein-like protein (MTLP) fraction increased over exposure time, and it accounted for more than 57% Cd in the fishes' livers and 80% Cd in their digestive tracts by the end of the exposure period. Overall, although Cd in commercial fish diet did not have significant lethality to T. jarbua, sensitive responses such as hepatic MT induction and subcellular Cd distribution revealed that the Cd-induced storage and detoxification in T. jarbua may increase fish's tolerance to toxic metals.

  5. DNABIT Compress - Genome compression algorithm.

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  6. Compression stockings

    Science.gov (United States)

    Call your health insurance or prescription plan: Find out if they pay for compression stockings. Ask if your durable medical equipment benefit pays for compression stockings. Get a prescription from your doctor. Find a medical equipment store where they can ...

  7. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Science.gov (United States)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  8. Comparison of four microbiological inhibition tests for the screening of antimicrobial residues in the tissues of food-producing animals

    Directory of Open Access Journals (Sweden)

    Zuzana Gondová

    2014-10-01

    Full Text Available The study compares two existing microbiological inhibition tests, Screening Test for Antibiotic Residues (STAR and Premi®Test with two recently introduced tests, Nouws Antibiotic Test (NAT and Total Antibiotics for the screening of antimicrobial residues in the tissues of food-producing animals. In the negative or positive sample classification based on inhibition of the growth of test strain sensitive to many antibiotics and sulphonamides, out of 142 samples obtained from slaughterhouses and retail operations, 39 samples yielded a positive result in one or more tests: 4 samples in four tests, 14 samples in three tests, 13 samples in two tests, and 8 samples in one test. As for the numbers of observed positive samples, the descending sequence of tests was: STAR, Total Antibiotics, Premi®Test, NAT. The growth inhibition was observed in three out of seven test strains, namely Bacillus cereus ATCC 11778, Kocuria rhizophila ATCC 9341, and Bacillus stearothermophilus var. calidolactis. Considering the test strains sensitivity and no inhibition on the Bacillus pumilus NCIMB 10822 NAT test plates, our preliminary conclusion is that the animal samples are suspected for the presence of tetracycline, macrolide, and b-lactam antibiotics.

  9. Periodic oxide cracking on Fe2.25Cr1Mo produced by high-temperature fatigue tests with a compression hold

    International Nuclear Information System (INIS)

    Hecht, R.L.; Weertman, J.R.

    1993-01-01

    Long, straight cracks perpendicular to the stress axis are seen on the oxidized surface of specimens of Fe2.25Cr1Mo cycled with a compressive hold at high temperatures. The cracks in the oxide are periodically spaced. They resemble cracks observed in a brittle film on a ductile substrate after a tension test of the substrate. They also resemble the parallel multiple fractures that occur in a brittle matrix of a composite with ductile fibers undergoing tension. The authors apply both the model of a brittle film on a ductile substrate and of the brittle matrix composite to explain the observed intercrack spacing. Cracks in the oxide film lead to localized oxidation of the metal in the region around their intersection with the oxide-metal interface. These cracks are seen to penetrate the metal. Stress concentrations from deep grooves that form during compression hold fatigue, together with crack initiation from the oxide, lead to a shortened cycle life

  10. Mesoderm Lineage 3D Tissue Constructs Are Produced at Large-Scale in a 3D Stem Cell Bioprocess.

    Science.gov (United States)

    Cha, Jae Min; Mantalaris, Athanasios; Jung, Sunyoung; Ji, Yurim; Bang, Oh Young; Bae, Hojae

    2017-09-01

    Various studies have presented different approaches to direct pluripotent stem cell differentiation such as applying defined sets of exogenous biochemical signals and genetic/epigenetic modifications. Although differentiation to target lineages can be successfully regulated, such conventional methods are often complicated, laborious, and not cost-effective to be employed to the large-scale production of 3D stem cell-based tissue constructs. A 3D-culture platform that could realize the large-scale production of mesoderm lineage tissue constructs from embryonic stem cells (ESCs) is developed. ESCs are cultured using our previously established 3D-bioprocess platform which is amenable to mass-production of 3D ESC-based tissue constructs. Hepatocarcinoma cell line conditioned medium is introduced to the large-scale 3D culture to provide a specific biomolecular microenvironment to mimic in vivo mesoderm formation process. After 5 days of spontaneous differentiation period, the resulting 3D tissue constructs are composed of multipotent mesodermal progenitor cells verified by gene and molecular expression profiles. Subsequently the optimal time points to trigger terminal differentiation towards cardiomyogenesis or osteogenesis from the mesodermal tissue constructs is found. A simple and affordable 3D ESC-bioprocess that can reach the scalable production of mesoderm origin tissues with significantly improved correspondent tissue properties is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Transmission and compression of an intense relativistic electron beam produced by a converging annular diode with return current feedback through the cathode. Pt. 2. The experiments

    International Nuclear Information System (INIS)

    Kelly, J.G.; Schuch, R.L.

    1976-02-01

    The complete results of the experiments with the converging annular diode within return current fedback through the cathode (Triax) are reported herein. The diode was designed to focus a relativistic high-current electron beam to a small focus. It did confirm the Triaxial theory detailed in Part I, and it did achieve a factor of 10 areal compression with 50% efficiency (which was below expectations). There were two principal reasons for this shortfall. First, the rapid diode plasma motion of 10 cm/μsec that was discovered necessitated the use of larger A-K gaps than expected and led to thicker beam sheets than are needed for good focusing. Second, the intrinsic angular spread of the electrons, even from the best cathode surfaces, introduced excessive angular momentum into the beam so that only a minor portion of the electrons could reach the axis. However, the yield of useful information about diode physics in general and about the influence of prepulse, the role of diode plasmas, the motion of energetic beams within conducting boundaries, diode emission properties, and diode diagnostic techniques in particle has had a significant and useful impact on the electron beam program at Sandia

  12. Individual Polychlorinated Biphenyl (PCB) Congeners Produce Tissue- and Gene-Specific Effects on Thyroid Hormone Signaling during Development

    Science.gov (United States)

    Giera, Stefanie; Bansal, Ruby; Ortiz-Toro, Theresa M.; Taub, Daniel G.

    2011-01-01

    Polychlorinated biphenyls (PCB) are industrial chemicals linked to developmental deficits that may be caused in part by disrupting thyroid hormone (TH) action by either reducing serum TH or interacting directly with the TH receptor (TR). Individual PCB congeners can activate the TR in vitro when the metabolic enzyme cytochrome P4501A1 (CYP1A1) is induced, suggesting that specific PCB metabolites act as TR agonists. To test this hypothesis in vivo, we compared two combinations of PCB congeners that either activate the TR (PCB 105 and 118) or not (PCB 138 and 153) in the presence or absence of a PCB congener (PCB 126) that induces CYP1A1 in vitro. Aroclor 1254 was used as a positive control, and a group treated with propylthiouracil was included to characterize the effects of low serum TH. We monitored the effects on TH signaling in several peripheral tissues by measuring the mRNA expression of well-known TH-response genes in these tissues. Aroclor 1254 and its component PCB 105/118/126 reduced total T4 to the same extent as that of propylthiouracil but increased the expression of some TH target genes in liver. This effect was strongly correlated with CYP1A1 expression supporting the hypothesis that metabolism is necessary. Effects were gene and tissue specific, indicating that tissue-specific metabolism is an important component of PCB disruption of TH action and that PCB metabolites interact in complex ways with the TR. These are essential mechanisms to consider when evaluating the health risks of contaminant exposures, for both PCB and other polycyclic compounds known to interact with nuclear hormone receptors. PMID:21540284

  13. Preliminary studies on fragmentation in tissue-equivalent material produced by 55 MeV/u 40Ar17+ ion beam

    International Nuclear Information System (INIS)

    Dang Bingrong; Wei Zengquan; Duan Limin; Zhang Baoguo; Li Songlin; Yin Xu; Zhu Yongtai; Li Wenjian; Li Qiang; Yuan Shibin

    2002-01-01

    By using a 55 MeV/u 40 Ar 17+ beam produced by HIRFL, the distribution of fragments in 1.5 mm lucite on three different directions were measured at the radiobiology terminal. Feasibilities of the phoswich detector composed of fast plastic scintillator and CsI(Tl) detectors for determination of angular distribution of fragments in tissue-equivalent materials were investigated. The results obtained were satisfactory

  14. Gas compression infrared generator

    International Nuclear Information System (INIS)

    Hug, W.F.

    1980-01-01

    A molecular gas is compressed in a quasi-adiabatic manner to produce pulsed radiation during each compressor cycle when the pressure and temperature are sufficiently high, and part of the energy is recovered during the expansion phase, as defined in U.S. Pat. No. 3,751,666; characterized by use of a cylinder with a reciprocating piston as a compressor

  15. Compressed Baryonic Matter of Astrophysics

    OpenAIRE

    Guo, Yanjun; Xu, Renxin

    2013-01-01

    Baryonic matter in the core of a massive and evolved star is compressed significantly to form a supra-nuclear object, and compressed baryonic matter (CBM) is then produced after supernova. The state of cold matter at a few nuclear density is pedagogically reviewed, with significant attention paid to a possible quark-cluster state conjectured from an astrophysical point of view.

  16. Images compression in nuclear medicine

    International Nuclear Information System (INIS)

    Rebelo, M.S.; Furuie, S.S.; Moura, L.

    1992-01-01

    The performance of two methods for images compression in nuclear medicine was evaluated. The LZW precise, and Cosine Transformed, approximate, methods were analyzed. The results were obtained, showing that the utilization of approximated method produced images with an agreeable quality for visual analysis and compression rates, considerably high than precise method. (C.G.C.)

  17. Generalized massive optimal data compression

    Science.gov (United States)

    Alsing, Justin; Wandelt, Benjamin

    2018-05-01

    In this paper, we provide a general procedure for optimally compressing N data down to n summary statistics, where n is equal to the number of parameters of interest. We show that compression to the score function - the gradient of the log-likelihood with respect to the parameters - yields n compressed statistics that are optimal in the sense that they preserve the Fisher information content of the data. Our method generalizes earlier work on linear Karhunen-Loéve compression for Gaussian data whilst recovering both lossless linear compression and quadratic estimation as special cases when they are optimal. We give a unified treatment that also includes the general non-Gaussian case as long as mild regularity conditions are satisfied, producing optimal non-linear summary statistics when appropriate. As a worked example, we derive explicitly the n optimal compressed statistics for Gaussian data in the general case where both the mean and covariance depend on the parameters.

  18. Semi-confined compression of microfabricated polymerized biomaterial constructs

    International Nuclear Information System (INIS)

    Moraes, Christopher; Likhitpanichkul, Morakot; Simmons, Craig A; Sun, Yu; Zhao, Ruogang

    2011-01-01

    Mechanical forces are critical parameters in engineering functional tissue because of their established influence on cellular behaviour. However, identifying ideal combinations of mechanical, biomaterial and chemical stimuli to obtain a desired cellular response requires high-throughput screening technologies, which may be realized through microfabricated systems. This paper reports on the development and characterization of a MEMS device for semi-confined biomaterial compression. An array of these devices would enable studies involving mechanical deformation of three-dimensional biomaterials, an important parameter in creating physiologically relevant microenvironments in vitro. The described device has the ability to simultaneously apply a range of compressive mechanical stimuli to multiple polymerized hydrogel microconstructs. Local micromechanical strains generated within the semi-confined hydrogel cylinders are characterized and compared with those produced in current micro- and macroscale technologies. In contrast to previous work generating unconfined compression in microfabricated devices, the semi-confined compression model used in this work generates uniform regions of strain within the central portion of each hydrogel, demonstrated here to range from 20% to 45% across the array. The uniform strains achieved simplify experimental analysis and improve the utility of the compression platform. Furthermore, the system is compatible with a wide variety of polymerizable biomaterials, enhancing device versatility and usability in tissue engineering and fundamental cell biology studies

  19. The incorporation of specific tissue/nuclide attenuation data into the Anderson method for producing brachytherapy volume-dose histograms

    International Nuclear Information System (INIS)

    Loft, S.M.; Dale, R.G.

    1990-01-01

    Anderson (1986) has proposed an analytical method for deriving volume-dose histograms relating to three-dimensional brachytherapy distributions. Because the mathematical transformation allows the otherwise dominant effects of the inverse-square fall-off about individual sources to be effectively suppressed, resulting histograms provide the potential for visually and numerically assessing overall quality of a brachytherapy treatment. In this paper the Anderson equations have been combined with the radial-dose polynomials of Dale, which are applicable to a number of tissue/nuclide combinations, and the predictions of the combined formalism used to further investigate the physical aspects of brachytherapy dosimetry. The problems associated with the dosimetry of low-energy γ-emitters such as 125 I are once again highlighted, as are potential advantages of using a radionuclide with an intermediate γ-ray energy. (author)

  20. DNA Amplification Techniques for the Detection of Toxoplasma gondii Tissue Cysts in Meat Producing Animals: A Narrative Review Article

    Directory of Open Access Journals (Sweden)

    Farooq RIAZ

    2016-12-01

    Full Text Available Background: Toxoplasma gondii is an intracellular parasite, which infects one-third population of world. Humans and animals acquire infection by ingesting oocytes from feces of cats or by meat of other animals having cysts that may lead to congenital, ocular or cephalic toxoplasmosis. Either it is important to detect T. gondii from meat of food animals from retail shops or directly at slaughterhouses, which is meant for export.Methods: The current research was done without time limitation using such terms as follows: “Toxoplasma gondii”, “Meat”, “Tissue cyst”, “PCR”, “LAMP”, “Screening” and “Immunological assay” alone or in combination, in English language. The used electronic databases for searching included as follows: PubMed, Scopus, Google Scholar, Web of Science and Science Direct. The searches were limited to the published papers to English language.Results: Sensitivity of different molecular techniques for diagnosis of Toxoplasma is real-time PCR > LAMP > conventional PCR. In addition to these DNA analysis tools, bioassay in mice and cats is considered as “gold standard” to detect T. gondii. Conclusion: This review article will help the readers for grasping advantages and limitations of different diagnostic tools for screening meat samples for T. gondii. This review also makes bibliography about the type of meat sample to be processed for diagnosis and different primers or sequences to be targeted for T. gondii by number of researches for its detection from meat or tissue sample using DNA amplification techniques.

  1. Deep sequencing of ESTs from nacreous and prismatic layer producing tissues and a screen for novel shell formation-related genes in the pearl oyster.

    Directory of Open Access Journals (Sweden)

    Shigeharu Kinoshita

    Full Text Available BACKGROUND: Despite its economic importance, we have a limited understanding of the molecular mechanisms underlying shell formation in pearl oysters, wherein the calcium carbonate crystals, nacre and prism, are formed in a highly controlled manner. We constructed comprehensive expressed gene profiles in the shell-forming tissues of the pearl oyster Pinctada fucata and identified novel shell formation-related genes candidates. PRINCIPAL FINDINGS: We employed the GS FLX 454 system and constructed transcriptome data sets from pallial mantle and pearl sac, which form the nacreous layer, and from the mantle edge, which forms the prismatic layer in P. fucata. We sequenced 260477 reads and obtained 29682 unique sequences. We also screened novel nacreous and prismatic gene candidates by a combined analysis of sequence and expression data sets, and identified various genes encoding lectin, protease, protease inhibitors, lysine-rich matrix protein, and secreting calcium-binding proteins. We also examined the expression of known nacreous and prismatic genes in our EST library and identified novel isoforms with tissue-specific expressions. CONCLUSIONS: We constructed EST data sets from the nacre- and prism-producing tissues in P. fucata and found 29682 unique sequences containing novel gene candidates for nacreous and prismatic layer formation. This is the first report of deep sequencing of ESTs in the shell-forming tissues of P. fucata and our data provide a powerful tool for a comprehensive understanding of the molecular mechanisms of molluscan biomineralization.

  2. Wellhead compression

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)

    2012-07-01

    Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)

  3. FEM modeling of the reinforcement mechanism of Hydroxyapatite in PLLA scaffolds produced by supercritical drying, for Tissue Engineering applications.

    Science.gov (United States)

    Baldino, L; Naddeo, F; Cardea, S; Naddeo, A; Reverchon, E

    2015-11-01

    Scaffolds have been produced by supercritical CO2 drying of Poly-L-Lactid Acid (PLLA) gels loaded with micrometric fructose particles used as porogens. These structures show a microporous architecture generated by the voids left in the solid material by porogen leaching, while they maintain the nanostructure of the gel, consisting of a network of nanofilaments. These scaffolds have also been loaded with Hydroxyapatite (HA) nanoparticles, from 10 to 50% w/w with respect to the polymer, to improve the mechanical properties of the PLLA structure. Based on miscroscopic and mechanical considerations, we propose a parametric Finite Element Method (FEM) model of PLLA-HA composites that describes the microporous structure as a close-packing of equal spheres and the nanoscale structure as a space frame of isotropic curved fibers. The effect of HA on the mechanical properties of the scaffolds has been modeled on the basis of SEM images and by taking into consideration the formation of concentric cylinders of HA nanoparticles around PLLA nanofibers. Modeling analysis confirms that mechanical properties of these scaffolds depend on nanofibrous network connections and that bending is the major factor causing deformation of the network. The FEM model also takes into account the formation of HA multi-layer coating on some areas in the nanofiber network and its increase in thickness with HA percentage. The Young modulus tends to a plateau for HA percentages larger than 30% w/w and when the coverage of the nanofibers produced by HA nanoparticles reaches a loaded surface index of 0.14 in the FEM model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent.

    Science.gov (United States)

    Dron, Michel; Moudjou, Mohammed; Chapuis, Jérôme; Salamat, Muhammad Khalid Farooq; Bernard, Julie; Cronier, Sabrina; Langevin, Christelle; Laude, Hubert

    2010-04-02

    The abnormally folded form of the prion protein (PrP(Sc)) accumulating in nervous and lymphoid tissues of prion-infected individuals can be naturally cleaved to generate a N-terminal-truncated fragment called C2. Information about the identity of the cellular proteases involved in this process and its possible role in prion biology has remained limited and controversial. We investigated PrP(Sc) N-terminal trimming in different cell lines and primary cultured nerve cells, and in the brain and spleen tissue from transgenic mice infected by ovine and mouse prions. We found the following: (i) the full-length to C2 ratio varies considerably depending on the infected cell or tissue. Thus, in primary neurons and brain tissue, PrP(Sc) accumulated predominantly as untrimmed species, whereas efficient trimming occurred in Rov and MovS cells, and in spleen tissue. (ii) Although C2 is generally considered to be the counterpart of the PrP(Sc) proteinase K-resistant core, the N termini of the fragments cleaved in vivo and in vitro can actually differ, as evidenced by a different reactivity toward the Pc248 anti-octarepeat antibody. (iii) In lysosome-impaired cells, the ratio of full-length versus C2 species dramatically increased, yet efficient prion propagation could occur. Moreover, cathepsin but not calpain inhibitors markedly inhibited C2 formation, and in vitro cleavage by cathepsins B and L produced PrP(Sc) fragments lacking the Pc248 epitope, strongly arguing for the primary involvement of acidic hydrolases of the endolysosomal compartment. These findings have implications on the molecular analysis of PrP(Sc) and cell pathogenesis of prion infection.

  5. Endogenous Proteolytic Cleavage of Disease-associated Prion Protein to Produce C2 Fragments Is Strongly Cell- and Tissue-dependent*

    Science.gov (United States)

    Dron, Michel; Moudjou, Mohammed; Chapuis, Jérôme; Salamat, Muhammad Khalid Farooq; Bernard, Julie; Cronier, Sabrina; Langevin, Christelle; Laude, Hubert

    2010-01-01

    The abnormally folded form of the prion protein (PrPSc) accumulating in nervous and lymphoid tissues of prion-infected individuals can be naturally cleaved to generate a N-terminal-truncated fragment called C2. Information about the identity of the cellular proteases involved in this process and its possible role in prion biology has remained limited and controversial. We investigated PrPSc N-terminal trimming in different cell lines and primary cultured nerve cells, and in the brain and spleen tissue from transgenic mice infected by ovine and mouse prions. We found the following: (i) the full-length to C2 ratio varies considerably depending on the infected cell or tissue. Thus, in primary neurons and brain tissue, PrPSc accumulated predominantly as untrimmed species, whereas efficient trimming occurred in Rov and MovS cells, and in spleen tissue. (ii) Although C2 is generally considered to be the counterpart of the PrPSc proteinase K-resistant core, the N termini of the fragments cleaved in vivo and in vitro can actually differ, as evidenced by a different reactivity toward the Pc248 anti-octarepeat antibody. (iii) In lysosome-impaired cells, the ratio of full-length versus C2 species dramatically increased, yet efficient prion propagation could occur. Moreover, cathepsin but not calpain inhibitors markedly inhibited C2 formation, and in vitro cleavage by cathepsins B and L produced PrPSc fragments lacking the Pc248 epitope, strongly arguing for the primary involvement of acidic hydrolases of the endolysosomal compartment. These findings have implications on the molecular analysis of PrPSc and cell pathogenesis of prion infection. PMID:20154089

  6. Effects of compaction pressure and particle shape on the porosity and compression mechanical properties of sintered Ti6Al4V powder compacts for hard tissue implantation.

    Science.gov (United States)

    Güden, Mustafa; Celik, Emrah; Hizal, Alpay; Altindiş, Mustafa; Cetiner, Sinan

    2008-05-01

    Sintered Ti6Al4V powder compacts potentially to be used in implant applications were prepared using commercially available spherical and angular powders (100-200 mum) within the porosity range of 34-54%. Cylindrical green powder compacts were cold compacted at various pressures and then sintered at 1200 degrees C for 2 h. The final percent porosity and mean pore sizes were determined as functions of the applied compaction pressure and powder type. The mechanical properties were investigated through compression testing. Results have shown that yield strength of the powder compacts of 40-42% porosity was comparable with that of human cortical bone. As compared with previously investigated Ti powder compacts, Ti6Al4V powder compacts showed higher strength at similar porosity range. Microscopic observations on the failed compact samples revealed that failure occurred primarily by the separation of interparticle bond regions in the planes 45 degrees to the loading axis. Copyright 2007 Wiley Periodicals, Inc.

  7. Application of mutation breeding technique for producing NaCl tolerant plants of banana in tissue culture and greenhouse conditions

    International Nuclear Information System (INIS)

    Vedadi, C.; Rahimi, M.; Naserian, B.; Rahmani, E.; Neshan, N.

    2005-01-01

    Full text: To study of possibility to induce salt tolerant clones in banana by using mutation technique, an experiment was conducted with factorial (gamma irradiation and salt concentration factors) in a CRD design. In this research, plantlets of banana cv. Dwarf Cavendish were produced by subculture of irradiated shoot tips. It deserves to mention that consequent subculturing was aimed at getting rid of chimera. Next, these explants were transferred to MS medium containing 2.5 mg. l- 1 BAP and NaCl concentrations of 0, 6, 7, 8, 9 g.l -1 for 2 months .Then, living buds were transferred to medium without salt. After one month, we repeated the first stage. All living buds rooted and were transferred to potted soil. Acclimatized plants were irrigated weekly with above NaCl solution. Other irrigation was done with salt-free water. There was also a negative relation between salt concentration and survival - proliferation. In second salinity stress, salt had no significant difference on survival percentage. No-significant difference of effect salt on survival in second salinity stress was observed. (author)

  8. Speech Compression

    Directory of Open Access Journals (Sweden)

    Jerry D. Gibson

    2016-06-01

    Full Text Available Speech compression is a key technology underlying digital cellular communications, VoIP, voicemail, and voice response systems. We trace the evolution of speech coding based on the linear prediction model, highlight the key milestones in speech coding, and outline the structures of the most important speech coding standards. Current challenges, future research directions, fundamental limits on performance, and the critical open problem of speech coding for emergency first responders are all discussed.

  9. The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling.

    Science.gov (United States)

    Rossi, Franco Rubén; Gárriz, Andrés; Marina, María; Romero, Fernando Matías; Gonzalez, María Elisa; Collado, Isidro González; Pieckenstain, Fernando Luis

    2011-08-01

    Botrytis cinerea, as a necrotrophic fungus, kills host tissues and feeds on the remains. This fungus is able to induce the hypersensitive response (HR) on its hosts, thus taking advantage on the host's defense machinery for generating necrotic tissues. However, the identity of HR effectors produced by B. cinerea is not clear. The aim of this work was to determine whether botrydial, a phytotoxic sesquiterpene produced by B. cinerea, is able to induce the HR on plant hosts, using Arabidopsis thaliana as a model. Botrydial induced the expression of the HR marker HSR3, callose deposition, and the accumulation of reactive oxygen species and phenolic compounds. Botrydial also induced the expression of PR1 and PDF1.2, two pathogenesis-related proteins involved in defense responses regulated by salicylic acid (SA) and jasmonic acid (JA), respectively. A. thaliana and tobacco plants defective in SA signaling were more resistant to botrydial than wild-type plants, as opposed to A. thaliana plants defective in JA signaling, which were more sensitive. It can be concluded that botrydial induces the HR on its hosts and its effects are modulated by host signaling pathways mediated by SA and JA.

  10. Detection of GAD65 autoantibodies of type-1 diabetes using anti-GAD65-abs reagent produced from bovine brain tissue

    Directory of Open Access Journals (Sweden)

    Djoko W. Soeatmadji

    2005-12-01

    Full Text Available Clinically, type 1 diabetes may presents as type 2 diabetes which sometimes not easily differentiated. Perhaps only autoimmune markers of β-cells destruction could differentiate those two clinical conditions. Due to extremely high cost ( $ 150/test, examination of anti-glutamic acid decarboxylase-65 auto-antibodies (anti-GAD65Abs may not be routinely performed in most, if not all, clinical laboratories in Indonesia. Hence, the production of anti-GAD65 Abs reagent in Indonesia may reduce the cost and improve the quality of diabetes care in Indonesia. We produce reagent to detect anti-GAD65-Abs using bovine brain tissue as source of GAD enzyme in 3 steps. Step 1, isolation, purification of GAD65 from bovine brain tissue and used it as a primary antigen to stimulate the generation of anti-GAD65 antibodies in Wistar rat. Step 2, the purified GAD65 antibodies were than used as a secondary antibody to induce the production of anti-anti-GAD65-antibodies in Wistar rat and rabbit. Step 3. Labeling  anti-anti GAD65-antibodies with alkaline phoshpatase and peroxidase, and detecting anti-GAD65Abs previously detected using commercial kit. The anti-anti-GAD65- antibodies reagent produced in our laboratories  successfully identify anti-GAD65-Abs of type 1 diabetic patients previously detected  with commercial reagent. (Med J Indones 2005; 14: 197-203Keywords: GAD, type-1 Diabetes

  11. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Wang, Chong; Zhao, Qilong; Wang, Min

    2017-06-07

    The performance of bone tissue engineering scaffolds can be assessed through cell responses to scaffolds, including cell attachment, infiltration, morphogenesis, proliferation, differentiation, etc, which are determined or heavily influenced by the composition, structure, mechanical properties, and biological properties (e.g. osteoconductivity and osteoinductivity) of scaffolds. Although some promising 3D printing techniques such as fused deposition modeling and selective laser sintering could be employed to produce biodegradable bone tissue engineering scaffolds with customized shapes and tailored interconnected pores, effective methods for fabricating scaffolds with well-designed hierarchical porous structure (both interconnected macropores and surface micropores) and tunable osteoconductivity/osteoinductivity still need to be developed. In this investigation, a novel cryogenic 3D printing technique was investigated and developed for producing hierarchical porous and recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded calcium phosphate (Ca-P) nanoparticle/poly(L-lactic acid) nanocomposite scaffolds, in which the Ca-P nanoparticle-incorporated scaffold layer and rhBMP-2-encapsulated scaffold layer were deposited alternatingly using different types of emulsions as printing inks. The mechanical properties of the as-printed scaffolds were comparable to those of human cancellous bone. Sustained releases of Ca 2+ ions and rhBMP-2 were achieved and the biological activity of rhBMP-2 was well-preserved. Scaffolds with a desirable hierarchical porous structure and dual delivery of Ca 2+ ions and rhBMP-2 exhibited superior performance in directing the behaviors of human bone marrow-derived mesenchymal stem cells and caused improved cell viability, attachment, proliferation, and osteogenic differentiation, which has suggested their great potential for bone tissue engineering.

  12. JPEG and wavelet compression of ophthalmic images

    Science.gov (United States)

    Eikelboom, Robert H.; Yogesan, Kanagasingam; Constable, Ian J.; Barry, Christopher J.

    1999-05-01

    This study was designed to determine the degree and methods of digital image compression to produce ophthalmic imags of sufficient quality for transmission and diagnosis. The photographs of 15 subjects, which inclined eyes with normal, subtle and distinct pathologies, were digitized to produce 1.54MB images and compressed to five different methods: (i) objectively by calculating the RMS error between the uncompressed and compressed images, (ii) semi-subjectively by assessing the visibility of blood vessels, and (iii) subjectively by asking a number of experienced observers to assess the images for quality and clinical interpretation. Results showed that as a function of compressed image size, wavelet compressed images produced less RMS error than JPEG compressed images. Blood vessel branching could be observed to a greater extent after Wavelet compression compared to JPEG compression produced better images then a JPEG compression for a given image size. Overall, it was shown that images had to be compressed to below 2.5 percent for JPEG and 1.7 percent for Wavelet compression before fine detail was lost, or when image quality was too poor to make a reliable diagnosis.

  13. CD11b⁺, Ly6G⁺ cells produce type I interferon and exhibit tissue protective properties following peripheral virus infection.

    Directory of Open Access Journals (Sweden)

    Matthew A Fischer

    2011-11-01

    Full Text Available The goal of the innate immune system is containment of a pathogen at the site of infection prior to the initiation of an effective adaptive immune response. However, effector mechanisms must be kept in check to combat the pathogen while simultaneously limiting undesirable destruction of tissue resulting from these actions. Here we demonstrate that innate immune effector cells contain a peripheral poxvirus infection, preventing systemic spread of the virus. These innate immune effector cells are comprised primarily of CD11b⁺Ly6C⁺Ly6G⁻ monocytes that accumulate initially at the site of infection, and are then supplemented and eventually replaced by CD11b⁺Ly6C⁺Ly6G⁺ cells. The phenotype of the CD11b⁺Ly6C⁺Ly6G⁺ cells resembles neutrophils, but the infiltration of neutrophils typically occurs prior to, rather than following, accumulation of monocytes. Indeed, it appears that the CD11b⁺Ly6C⁺Ly6G⁺ cells that infiltrated the site of VACV infection in the ear are phenotypically distinct from the classical description of both neutrophils and monocyte/macrophages. We found that CD11b⁺Ly6C⁺Ly6G⁺ cells produce Type I interferons and large quantities of reactive oxygen species. We also observed that depletion of Ly6G⁺ cells results in a dramatic increase in tissue damage at the site of infection. Tissue damage is also increased in the absence of reactive oxygen species, although reactive oxygen species are typically thought to be damaging to tissue rather than protective. These data indicate the existence of a specialized population of CD11b⁺Ly6C⁺Ly6G⁺ cells that infiltrates a site of virus infection late and protects the infected tissue from immune-mediated damage via production of reactive oxygen species. Regulation of the action of this population of cells may provide an intervention to prevent innate immune-mediated tissue destruction.

  14. Relationship between liver tissue stiffness and histopathological findings analyzed by shear wave elastography and compression testing in rats with non-alcoholic steatohepatitis.

    Science.gov (United States)

    Ogawa, Saori; Moriyasu, Fuminori; Yoshida, Keiko; Oshiro, Hisashi; Kojima, Mayumi; Sano, Takatomo; Furuichi, Yoshihiro; Kobayashi, Yoshiyuki; Nakamura, Ikuo; Sugimoto, Katsutoshi

    2016-07-01

    The aim of the present study was to investigate two methods of determining liver stiffness in rats with various degrees of non-alcoholic steatohepatitis induced by a methionine- and choline-deficient (MCD) diet by comparing each finding with reference to histopathological liver findings. Twenty male Wister rats were fed an MCD diet for up to 32 weeks, and four were fed a normal diet. Ultrasound-based shear wave elastography (SWE) and mechanical compression testing using an Instron Universal Testing machine were performed on each rat at designated time points. After each examination, liver histopathology was analyzed to evaluate the degrees of steatosis, inflammation, and fibrosis based on non-alcoholic fatty liver disease (NAFLD) activity score, and each finding was compared with reference to liver histopathologic findings. Median liver stiffness values measured using SWE showed a stepwise increase with increasing histological inflammation score (P = 0.002), hepatic fibrosis stage (P = 0.029), ballooning score (P = 0.012), and steatosis grade (P = 0.030). Median liver stiffness measured using an Instron machine showed a stepwise increase only with increasing histological fibrosis stage (P = 0.033). Degree of liver stiffness measured by SWE and the Instron machine differed. SWE reflected mainly inflammation, whereas Instron machine-derived values primarily reflected fibrosis. This is the main source of discrepancies between measurements made with these two modalities.

  15. Inverse-FEM Characterization of a Brain Tissue Phantom to Simulate Compression and Indentation Caracterización de tejido cerebral artificial utilizando Inverse-FEM para simular indentación y comprensión

    Directory of Open Access Journals (Sweden)

    Elizabeth Mesa-Múnera

    2012-12-01

    Full Text Available The realistic simulation of tool-tissue interactions is necessary for the development of surgical simulators and one of the key element for it realism is accurate bio-mechanical tissue models. In this paper, we determined the mechanical properties of soft tissue by minimizing the difference between experimental measurements and the analytical or simulated solution of the deformation. Then, we selected the best model parameters that fit the experimental data to simulate a bonded compression and a needle indentation with a flat-tip. We show that the inverse FEM allows accurate material property estimation. We also validated our results using multiple tool-tissue interactions over the same specimen.Una simulación realista de la interacción tejido-herramienta es necesaria para desarrollar simuldores quirúrgicos, y la presición en modelos biomecánicos de tejidos es determinante para cumplir tal fin. Los trabajos previos han caracterizado las propiedades de tejidos blandos; sin embargo, ha faltado una validación apropiada de los resultados. En este trabajo se determinaron las propiedades mecánicas de un tejido blando minimizando la diferencia entre las mediciones experimentales y la solución analítica o simulada del problema. Luego, fueron seleccionados los parámetros que mejor se ajustaron a los datos experimentales para simular una compresión con fricción y la indentación de una aguja con punta plana. Se concluye que el inverse-FEM permite la precisa estimación de las propiedades del material. Además, estos resultados fueron validados con varias interacciones tejido-herramienta sobre el mismo espécimen.

  16. T-helper 17 and interleukin-17-producing lymphoid tissue inducer-like cells make different contributions to colitis in mice.

    Science.gov (United States)

    Ono, Yuichi; Kanai, Takanori; Sujino, Tomohisa; Nemoto, Yasuhiro; Kanai, Yasumasa; Mikami, Yohei; Hayashi, Atsushi; Matsumoto, Atsuhiro; Takaishi, Hiromasa; Ogata, Haruhiko; Matsuoka, Katsuyoshi; Hisamatsu, Tadakazu; Watanabe, Mamoru; Hibi, Toshifumi

    2012-11-01

    T helper (Th) 17 cells that express the retinoid-related orphan receptor (ROR) γt contribute to the development of colitis in mice, yet are found in normal and inflamed intestine. We investigated their development and functions in intestines of mice. We analyzed intestinal Th17 cells in healthy and inflamed intestinal tissues of mice. We analyzed expression of lymphotoxin (LT)α by Th17 cells and lymphoid tissue inducer-like cells. LTα(-/-) and RORγt(-/-) mice had significantly lower percentages of naturally occurring Th17 cells in the small intestine than wild-type mice. Numbers of CD3(-)CD4(+/-)interleukin-7Rα(+)c-kit(+)CCR6(+)NKp46(-) lymphoid tissue inducer-like cells that produce interleukin-17A were increased in LTα(-/-) and LTα(-/-) × recombination activating gene (RAG)-2(-/-) mice, compared with wild-type mice, but were absent from RORγt(-/-) mice. Parabiosis of wild-type and LTα(-/-) mice and bone marrow transplant experiments revealed that LTα-dependent gut-associated lymphoid tissue structures are required for generation of naturally occurring Th17 cells. However, when wild-type or LTα(-/-) CD4(+)CD45RB(high) T cells were transferred to RAG-2(-/-) or LTα(-/-)×RAG-2(-/-) mice, all groups, irrespective of the presence or absence of LTα on the donor or recipient cells, developed colitis and generated Th1, Th17, and Th17/Th1 cells. RAG-2(-/-) mice that received a second round of transplantation, with colitogenic but not naturally occurring Th17 cells, developed intestinal inflammation. The presence of naturally occurring Th17 cells in the colons of mice inhibited development of colitis after transfer of CD4(+)CD45RB(high) T cells and increased the numbers of Foxp3(+) cells derived from CD4(+)CD45RB(high) T cells. Gut-associated lymphoid tissue structures are required to generate naturally occurring Th17 cells that have regulatory activities in normal intestines of mice, but not for colitogenic Th17 and Th17/Th1 cells during inflammation

  17. Exopolysaccharide-producing Bifidobacterium animalis subsp. lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue.

    Science.gov (United States)

    Hidalgo-Cantabrana, Claudio; Nikolic, Milica; López, Patricia; Suárez, Ana; Miljkovic, Marija; Kojic, Milan; Margolles, Abelardo; Golic, Natasa; Ruas-Madiedo, Patricia

    2014-04-01

    The effect of exopolysaccharide (EPS) producing bifidobacteria, and the EPS derived thereof, on the modulation of immune response was evaluated. Cells isolated from gut associated lymphoid tissue (GALT) and from peripheral blood mononuclear cells (PBMC) of naïve rats were used. The proliferation and cytokine production of these immune cells in the presence of the three isogenic Bifidobacterium animalis subsp. lactis strains (A1, A1dOx and A1dOxR), as well as their purified polymers, were in vitro analysed. The cytokine pattern produced by immune cells isolated from GALT showed that most levels remained stable in the presence of the three strains or their corresponding polymers. However, in PBMC the UV-inactivated bacteria induced higher levels of the ratios IFNγ/IL-17, TNFα/IL-10 and TNFα/TGFβ, and no variation in the ratio IFNγ/IL-4. Thus, B. animalis subsp. lactis strains were able to activate blood monocytes as well as T lymphocytes towards a mild inflammatory Th1 response. Furthermore, only the EPS-A1dOxR was able to stimulate a response in a similar way than its EPS-producing bacterium. Our work supports the notion that some bifidobacterial EPS could play a role in mediating the dialog of these microorganisms with the immune system. In addition, this study emphasizes the effect that the origin of the immune cells has in results obtained; this could explain the great amount of contradiction found in literature about the immunomodulation capability of EPS from probiotic bacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. FRESCO: Referential compression of highly similar sequences.

    Science.gov (United States)

    Wandelt, Sebastian; Leser, Ulf

    2013-01-01

    In many applications, sets of similar texts or sequences are of high importance. Prominent examples are revision histories of documents or genomic sequences. Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever-increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. In this paper, we propose a general open-source framework to compress large amounts of biological sequence data called Framework for REferential Sequence COmpression (FRESCO). Our basic compression algorithm is shown to be one to two orders of magnitudes faster than comparable related work, while achieving similar compression ratios. We also propose several techniques to further increase compression ratios, while still retaining the advantage in speed: 1) selecting a good reference sequence; and 2) rewriting a reference sequence to allow for better compression. In addition,we propose a new way of further boosting the compression ratios by applying referential compression to already referentially compressed files (second-order compression). This technique allows for compression ratios way beyond state of the art, for instance,4,000:1 and higher for human genomes. We evaluate our algorithms on a large data set from three different species (more than 1,000 genomes, more than 3 TB) and on a collection of versions of Wikipedia pages. Our results show that real-time compression of highly similar sequences at high compression ratios is possible on modern hardware.

  19. DNABIT Compress – Genome compression algorithm

    OpenAIRE

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our ...

  20. DNABIT Compress – Genome compression algorithm

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923

  1. Compressed Air Production Using Vehicle Suspension

    OpenAIRE

    Ninad Arun Malpure; Sanket Nandlal Bhansali

    2015-01-01

    Abstract Generally compressed air is produced using different types of air compressors which consumes lot of electric energy and is noisy. In this paper an innovative idea is put forth for production of compressed air using movement of vehicle suspension which normal is wasted. The conversion of the force energy into the compressed air is carried out by the mechanism which consists of the vehicle suspension system hydraulic cylinder Non-return valve air compressor and air receiver. We are co...

  2. Computer calculations of compressibility of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H.; Mattar, L.; Dranchuk, P.M

    An alternative method for the calculation of pseudo reduced compressibility of natural gas is presented. The method is incorporated into the routines by adding a single FORTRAN statement before the RETURN statement. The method is suitable for computer and hand-held calculator applications. It produces the same reduced compressibility as other available methods but is computationally superior. Tabular definitions of coefficients and comparisons of predicted pseudo reduced compressibility using different methods are presented, along with appended FORTRAN subroutines. 7 refs., 2 tabs.

  3. Extra virgin olive oil reduces liver oxidative stress and tissue depletion of long-chain polyunsaturated fatty acids produced by a high saturated fat diet in mice

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, B.R.; Hernandez Rodas, M.C.; Espinosa, A.; Rincon Cervera, M.A.; Romero, N.; Barrera Vazquez, C.; Marambio, M.; Vivero, J.; Valenzuela, B.A.

    2016-07-01

    Long-chain polyunsaturated fatty acids (LCPUFA) which are synthesized mainly in the liver have relevant functions in the organism. A diet high in fat (HFD) generates an increase in the levels of fat and induces oxidative stress (lipo-peroxidation) in the liver, along with a reduction in tissue n-3 and n-6 LCPUFA. Extra virgin olive oil (EVOO) is rich in anti-oxidants (polyphenols and tocopherols) which help to prevent the development of oxidative stress. This study evaluated the role of EVOO in preventing the induction of fat deposition and oxidative stress in the liver and in the depletion of LCPUFA in the liver, erythrocytes and brain generated by a HFD in C57BL/6J mice. Four experimental groups (n = 10/group) were fed a control diet (CD) or a HFD for 12 weeks and were respectively supplemented with EVOO (100 mg/day). The group fed HFD showed a significant increase (p < 0.05) in fat accumulation and oxidative stress in the liver, accompanied by a reduction in the levels of n-3 and n-6 LCPUFA in the liver, erythrocytes and brain. Supplementation with EVOO mitigated the increase in fat and oxidative stress produced by HFD in the liver, along with a normalization of LCPUFA levels in the liver, erythrocytes and brain. It is proposed that EVOO supplementation protects against fat accumulation, and oxidative stress and normalizes n-3 and n-6 LCPUFA depletion induced in mice fed a HFD. (Author)

  4. Productivity and selenium concentrations in egg and tissue of laying quails fed selenium from hydroponically produced selenium-enriched kale sprout (Brassica oleracea var. alboglabra L.).

    Science.gov (United States)

    Chinrasri, Orawan; Chantiratikul, Piyanete; Maneetong, Sarunya; Chookhampaeng, Sumalee; Chantiratikul, Anut

    2013-12-01

    This study aimed to determine the effectiveness of Se from hydroponically produced Se-enriched kale sprout (HPSeKS) on productive performance, egg quality, and Se concentrations in egg and tissue of laying quails. Two-hundred quails, 63 days of age, were divided into four groups. Each group consisted of five replicates and each replicate had ten birds, according to a completely randomized design. The experiment lasted for 6 weeks. The dietary treatments were T1 (control diet), T2 (control diet plus 0.2 mg Se/kg from sodium selenite), T3 (control diet plus 0.2 mg Se/kg from Se-enriched yeast), T4 (control diet plus 0.2 mg Se/kg from HPSeKS). The findings revealed that productive performance and egg quality of quails were not altered (p > 0.05) by Se sources. Whole egg Se concentrations of quails fed Se from HPSeKS and Se-enriched yeast were higher (p  0.05), but higher (p < 0.05) than that of quails fed Se from sodium selenite. The results reveal that Se from HPSeKS did not change the performance and egg quality of quails. The effectiveness of Se from HPSeKS was comparable to that of Se-enriched yeast, which was higher than that of Se from sodium selenite.

  5. Effect of image compression and scaling on automated scoring of immunohistochemical stainings and segmentation of tumor epithelium

    Directory of Open Access Journals (Sweden)

    Konsti Juho

    2012-03-01

    Full Text Available Abstract Background Digital whole-slide scanning of tissue specimens produces large images demanding increasing storing capacity. To reduce the need of extensive data storage systems image files can be compressed and scaled down. The aim of this article is to study the effect of different levels of image compression and scaling on automated image analysis of immunohistochemical (IHC stainings and automated tumor segmentation. Methods Two tissue microarray (TMA slides containing 800 samples of breast cancer tissue immunostained against Ki-67 protein and two TMA slides containing 144 samples of colorectal cancer immunostained against EGFR were digitized with a whole-slide scanner. The TMA images were JPEG2000 wavelet compressed with four compression ratios: lossless, and 1:12, 1:25 and 1:50 lossy compression. Each of the compressed breast cancer images was furthermore scaled down either to 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64 or 1:128. Breast cancer images were analyzed using an algorithm that quantitates the extent of staining in Ki-67 immunostained images, and EGFR immunostained colorectal cancer images were analyzed with an automated tumor segmentation algorithm. The automated tools were validated by comparing the results from losslessly compressed and non-scaled images with results from conventional visual assessments. Percentage agreement and kappa statistics were calculated between results from compressed and scaled images and results from lossless and non-scaled images. Results Both of the studied image analysis methods showed good agreement between visual and automated results. In the automated IHC quantification, an agreement of over 98% and a kappa value of over 0.96 was observed between losslessly compressed and non-scaled images and combined compression ratios up to 1:50 and scaling down to 1:8. In automated tumor segmentation, an agreement of over 97% and a kappa value of over 0.93 was observed between losslessly compressed images and

  6. [Application value of magnetic compression anastomosis in digestive tract reconstruction].

    Science.gov (United States)

    Du, Xilin; Fan, Chao; Zhang, Hongke; Lu, Jianguo

    2014-05-01

    Magnetic compression anastomosis can compress tissues together and restore the continuity. Magnetic compression anastomosis mainly experienced three stages: magnetic ring, magnetic ring and column, and smart self-assembling magnets for endoscopy (SAMSEN). Nowadays, the magnetic compression anastomosis has been applied in vascular and different digestive tract surgeries, especially for complex surgery, such as anastomotic stenosis of biliary ducts after liver transplantation or congenital esophageal stenosis. Although only case reports are available at present, the advantages of the magnetic compression anastomosis includes lower cost, simplicity, individualization, good efficacy, safety, and minimally invasiveness. We are building a better technical platform to make magnetic compression anastomosis more advanced and popularized.

  7. Interactive computer graphics applications for compressible aerodynamics

    Science.gov (United States)

    Benson, Thomas J.

    1994-01-01

    Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.

  8. A single bout of whole-leg, peristaltic pulse external pneumatic compression upregulates PGC-1α mRNA and endothelial nitric oxide sythase protein in human skeletal muscle tissue.

    Science.gov (United States)

    Kephart, Wesley C; Mobley, C Brooks; Fox, Carlton D; Pascoe, David D; Sefton, JoEllen M; Wilson, Trent J; Goodlett, Michael D; Kavazis, Andreas N; Roberts, Michael D; Martin, Jeffrey S

    2015-07-01

    What is the central question of this study? Does 60 min of peristaltic pulse external pneumatic compression (EPC) alter gene and protein expression patterns related to metabolism, vascular biology, redox balance and inflammation in vastus lateralis biopsy samples? What is the main finding and its importance? A single bout of EPC transiently upregulates PGC-1α mRNA, while also upregulating endothelial nitric oxide synthase protein and nitric oxide metabolite concentrations in vastus lateralis biopsy samples. We investigated whether a single 60 min bout of whole-leg, lower pressure external pneumatic compression (EPC) altered select vascular, metabolic, antioxidant and inflammation-related mRNAs. Ten participants (eight male, two female; aged 22.0 ± 0.4 years) reported to the laboratory 4 h postprandial, and vastus lateralis muscle biopsies were obtained before (PRE) and 1 and 4 h after EPC treatment. Messenger RNA expression was analysed using real-time RT-PCR, and significant mRNA findings were investigated further by Western blot analysis of respective protein concentrations. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA increased by 77% 1 h following EPC compared with PRE levels (P = 0.005), but no change in protein concentration 1 or 4 h post-EPC was observed. Increases in endothelial nitric oxide sythase (eNOS) mRNA (+44%) and superoxide dismutase 2 (SOD2) mRNA (+57%) 1 h post-EPC as well as an increase in interleukin-10 mRNA (+132%) 4 h post-EPC compared with PRE levels were observed, but only approached significance (P = 0.076, 0.077 and 0.074, respectively). Interestingly, eNOS protein (+40%, P = 0.025) and nitrate and nitrite (NOx) concentrations (+69%, P = 0.025) increased 1-4 h post-EPC. Moreover, SOD2 protein tended to increase from PRE to 4 h post-EPC (+43%, P = 0.074), although no changes in tissue 4-hydroxnonenal levels was observed. An acute bout of EPC transiently upregulates PGC-1α mRNA, while also upregulating e

  9. Promoting long-term survival of insulin-producing cell grafts that differentiate from adipose tissue-derived stem cells to cure type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Shuzi Zhang

    Full Text Available BACKGROUND: Insulin-producing cell clusters (IPCCs have recently been generated in vitro from adipose tissue-derived stem cells (ASCs to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. CONCLUSIONS/SIGNIFICANCE: Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation.

  10. Compressed Data Structures for Range Searching

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Vind, Søren Juhl

    2015-01-01

    matrices and web graphs. Our contribution is twofold. First, we show how to compress geometric repetitions that may appear in standard range searching data structures (such as K-D trees, Quad trees, Range trees, R-trees, Priority R-trees, and K-D-B trees), and how to implement subsequent range queries...... on the compressed representation with only a constant factor overhead. Secondly, we present a compression scheme that efficiently identifies geometric repetitions in point sets, and produces a hierarchical clustering of the point sets, which combined with the first result leads to a compressed representation...

  11. Energy Conservation In Compressed Air Systems

    International Nuclear Information System (INIS)

    Yusuf, I.Y.; Dewu, B.B.M.

    2004-01-01

    Compressed air is an essential utility that accounts for a substantial part of the electricity consumption (bill) in most industrial plants. Although the general saying Air is free of charge is not true for compressed air, the utility's cost is not accorded the rightful importance due to its by most industries. The paper will show that the cost of 1 unit of energy in the form of compressed air is at least 5 times the cost electricity (energy input) required to produce it. The paper will also provide energy conservation tips in compressed air systems

  12. Concentration- and Time-Dependent Effects of Isothiocyanates Produced from Brassicaceae Shoot Tissues on the Pea Root Rot Pathogen Aphanomyces euteiches

    NARCIS (Netherlands)

    Hossain, S.; Bergkvist, G.; Berglund, K.; Glinwood, R.; Kabouw, P.; Martensson, A.; Persson, P.

    2014-01-01

    Isothiocyanates (ITCs) hydrolyzed from glucosinolates (GSLs) in Brassicaceae tissue are toxic to soil organisms. In this study, the effect of aliphatic and aromatic ITCs from hydrated dry Brassicaceae shoot tissues on the mycelium and oospores of the pea root rot pathogen Aphanomyces euteiches was

  13. Compression of Probabilistic XML Documents

    Science.gov (United States)

    Veldman, Irma; de Keijzer, Ander; van Keulen, Maurice

    Database techniques to store, query and manipulate data that contains uncertainty receives increasing research interest. Such UDBMSs can be classified according to their underlying data model: relational, XML, or RDF. We focus on uncertain XML DBMS with as representative example the Probabilistic XML model (PXML) of [10,9]. The size of a PXML document is obviously a factor in performance. There are PXML-specific techniques to reduce the size, such as a push down mechanism, that produces equivalent but more compact PXML documents. It can only be applied, however, where possibilities are dependent. For normal XML documents there also exist several techniques for compressing a document. Since Probabilistic XML is (a special form of) normal XML, it might benefit from these methods even more. In this paper, we show that existing compression mechanisms can be combined with PXML-specific compression techniques. We also show that best compression rates are obtained with a combination of PXML-specific technique with a rather simple generic DAG-compression technique.

  14. Plasma heating by adiabatic compression

    International Nuclear Information System (INIS)

    Ellis, R.A. Jr.

    1972-01-01

    These two lectures will cover the following three topics: (i) The application of adiabatic compression to toroidal devices is reviewed. The special case of adiabatic compression in tokamaks is considered in more detail, including a discussion of the equilibrium, scaling laws, and heating effects. (ii) The ATC (Adiabatic Toroidal Compressor) device which was completed in May 1972, is described in detail. Compression of a tokamak plasma across a static toroidal field is studied in this device. The device is designed to produce a pre-compression plasma with a major radius of 17 cm, toroidal field of 20 kG, and current of 90 kA. The compression leads to a plasma with major radius of 38 cm and minor radius of 10 cm. Scaling laws imply a density increase of a factor 6, temperature increase of a factor 3, and current increase of a factor 2.4. An additional feature of ATC is that it is a large tokamak which operates without a copper shell. (iii) Data which show that the expected MHD behavior is largely observed is presented and discussed. (U.S.)

  15. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming

    Directory of Open Access Journals (Sweden)

    Lee Rita SF

    2010-03-01

    Full Text Available Abstract Background Cloning of cattle by somatic cell nuclear transfer (SCNT is associated with a high incidence of pregnancy failure characterized by abnormal placental and foetal development. These abnormalities are thought to be due, in part, to incomplete re-setting of the epigenetic state of DNA in the donor somatic cell nucleus to a state that is capable of driving embryonic and foetal development to completion. Here, we tested the hypothesis that DNA methylation patterns were not appropriately established during nuclear reprogramming following SCNT. A panel of imprinted, non-imprinted genes and satellite repeat sequences was examined in tissues collected from viable and failing mid-gestation SCNT foetuses and compared with similar tissues from gestation-matched normal foetuses generated by artificial insemination (AI. Results Most of the genomic regions examined in tissues from viable and failing SCNT foetuses had DNA methylation patterns similar to those in comparable tissues from AI controls. However, statistically significant differences were found between SCNT and AI at specific CpG sites in some regions of the genome, particularly those associated with SNRPN and KCNQ1OT1, which tended to be hypomethylated in SCNT tissues. There was a high degree of variation between individuals in methylation levels at almost every CpG site in these two regions, even in AI controls. In other genomic regions, methylation levels at specific CpG sites were tightly controlled with little variation between individuals. Only one site (HAND1 showed a tissue-specific pattern of DNA methylation. Overall, DNA methylation patterns in tissues of failing foetuses were similar to apparently viable SCNT foetuses, although there were individuals showing extreme deviant patterns. Conclusion These results show that SCNT foetuses that had developed to mid-gestation had largely undergone nuclear reprogramming and that the epigenetic signature at this stage was not a

  16. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix; Gregson, James; Wetzstein, Gordon; Raskar, Ramesh; Heidrich, Wolfgang

    2014-01-01

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  17. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix

    2014-06-22

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  18. Study of CSR longitudinal bunch compression cavity

    International Nuclear Information System (INIS)

    Yin Dayu; Li Peng; Liu Yong; Xie Qingchun

    2009-01-01

    The scheme of longitudinal bunch compression cavity for the Cooling Storage Ring (CSR)is an important issue. Plasma physics experiments require high density heavy ion beam and short pulsed bunch,which can be produced by non-adiabatic compression of bunch implemented by a fast compression with 90 degree rotation in the longitudinal phase space. The phase space rotation in fast compression is initiated by a fast jump of the RF-voltage amplitude. For this purpose, the CSR longitudinal bunch compression cavity, loaded with FINEMET-FT-1M is studied and simulated with MAFIA code. In this paper, the CSR longitudinal bunch compression cavity is simulated and the initial bunch length of 238 U 72+ with 250 MeV/u will be compressed from 200 ns to 50 ns.The construction and RF properties of the CSR longitudinal bunch compression cavity are simulated and calculated also with MAFIA code. The operation frequency of the cavity is 1.15 MHz with peak voltage of 80 kV, and the cavity can be used to compress heavy ions in the CSR. (authors)

  19. Microbunching and RF Compression

    International Nuclear Information System (INIS)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-01-01

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  20. Mining compressing sequential problems

    NARCIS (Netherlands)

    Hoang, T.L.; Mörchen, F.; Fradkin, D.; Calders, T.G.K.

    2012-01-01

    Compression based pattern mining has been successfully applied to many data mining tasks. We propose an approach based on the minimum description length principle to extract sequential patterns that compress a database of sequences well. We show that mining compressing patterns is NP-Hard and

  1. Novel Textile Scaffolds Generated by Flock Technology for Tissue Engineering of Bone and Cartilage

    OpenAIRE

    Walther, Anja; Hoyer, Birgit; Springer, Armin; Mrozik, Birgit; Hanke, Thomas; Cherif, Chokri; Pompe, Wolfgang; Gelinsky, Michael

    2012-01-01

    Textile scaffolds can be found in a variety of application areas in regenerative medicine and tissue engineering. In the present study we used electrostatic flocking—a well-known textile technology—to produce scaffolds for tissue engineering of bone. Flock scaffolds stand out due to their unique structure: parallel arranged fibers that are aligned perpendicularly to a substrate, resulting in mechanically stable structures with a high porosity. In compression tests we demonstrated good mechani...

  2. The main features of electrical stimulation of biological tissues by implant electrodes: study from engineering perspective and equipment development to produce

    International Nuclear Information System (INIS)

    Suarez Bagnasco, D.; Alvarez Alonso, J.; Suarez Antola, R.

    2004-08-01

    The main features of electrical stimulation of biological tissues by implant electrodes are studied.These electrodes are applied in neural prostheses and cardiac pacing.Threshold phenomena are stressed and some aspects related with implant electrode design are discussed. A fairly through theoretical research about the optimal pulse shape for electrical stimulation of biological tissues is done.The excitation functional is introduced as a criterium to identify threshold pulses of electric current. We obtain the optimal pulse shapes that minimize the energy dissipated in tissues, or the energy taken by the load seen by the pulse generator, amongst other criteria.We show how these pulse shapes can be determined from experimentally measured strength-duration (S-D) curves using rectangular pulses of current. The development of a prototype of a new equipment is described.The equipment may be used to measure S-D curves and with this information it is able to syntetize the abovementioned optimal pulse shapes. The top-down design process is presented, involving both hardware and software.The construction and assembling of the prototype, as well as the implementation of software are described.Some testing and measures with the prototype, including test with biological tissues are described and assessed

  3. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC(+) CD127(+) natural killer-like cells

    NARCIS (Netherlands)

    Cupedo, Tom; Crellin, Natasha K.; Papazian, Natalie; Rombouts, Elwin J.; Weijer, Kees; Grogan, Jane L.; Fibbe, Willem E.; Cornelissen, Jan J.; Spits, Hergen

    2009-01-01

    The human body contains over 500 individual lymph nodes, yet the biology of their formation is poorly understood. Here we identify human lymphoid tissue-inducer cells (LTi cells) as lineage-negative RORC(+) CD127(+) cells with the functional ability to interact with mesenchymal cells through

  4. Optimisation algorithms for ECG data compression.

    Science.gov (United States)

    Haugland, D; Heber, J G; Husøy, J H

    1997-07-01

    The use of exact optimisation algorithms for compressing digital electrocardiograms (ECGs) is demonstrated. As opposed to traditional time-domain methods, which use heuristics to select a small subset of representative signal samples, the problem of selecting the subset is formulated in rigorous mathematical terms. This approach makes it possible to derive algorithms guaranteeing the smallest possible reconstruction error when a bounded selection of signal samples is interpolated. The proposed model resembles well-known network models and is solved by a cubic dynamic programming algorithm. When applied to standard test problems, the algorithm produces a compressed representation for which the distortion is about one-half of that obtained by traditional time-domain compression techniques at reasonable compression ratios. This illustrates that, in terms of the accuracy of decoded signals, existing time-domain heuristics for ECG compression may be far from what is theoretically achievable. The paper is an attempt to bridge this gap.

  5. Compression for radiological images

    Science.gov (United States)

    Wilson, Dennis L.

    1992-07-01

    The viewing of radiological images has peculiarities that must be taken into account in the design of a compression technique. The images may be manipulated on a workstation to change the contrast, to change the center of the brightness levels that are viewed, and even to invert the images. Because of the possible consequences of losing information in a medical application, bit preserving compression is used for the images used for diagnosis. However, for archiving the images may be compressed to 10 of their original size. A compression technique based on the Discrete Cosine Transform (DCT) takes the viewing factors into account by compressing the changes in the local brightness levels. The compression technique is a variation of the CCITT JPEG compression that suppresses the blocking of the DCT except in areas of very high contrast.

  6. Radiological Image Compression

    Science.gov (United States)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  7. Isostatic compression of buffer blocks. Middle scale

    International Nuclear Information System (INIS)

    Ritola, J.; Pyy, E.

    2012-01-01

    Manufacturing of buffer components using isostatic compression method has been studied in small scale in 2008 (Laaksonen 2010). These tests included manufacturing of buffer blocks using different bentonite materials and different compression pressures. Isostatic mould technology was also tested, along with different methods to fill the mould, such as vibration and partial vacuum, as well as a stepwise compression of the blocks. The development of manufacturing techniques has continued with small-scale (30 %) blocks (diameter 600 mm) in 2009. This was done in a separate project: Isostatic compression, manufacturing and testing of small scale (D = 600 mm) buffer blocks. The research on the isostatic compression method continued in 2010 in a project aimed to test and examine the isostatic manufacturing process of buffer blocks at 70 % scale (block diameter 1200 to 1300 mm), and the aim was to continue in 2011 with full-scale blocks (diameter 1700 mm). A total of nine bentonite blocks were manufactured at 70 % scale, of which four were ring-shaped and the rest were cylindrical. It is currently not possible to manufacture full-scale blocks, because there is no sufficiently large isostatic press available. However, such a compression unit is expected to be possible to use in the near future. The test results of bentonite blocks, produced with an isostatic pressing method at different presses and at different sizes, suggest that the technical characteristics, for example bulk density and strength values, are somewhat independent of the size of the block, and that the blocks have fairly homogenous characteristics. Water content and compression pressure are the two most important properties determining the characteristics of the compressed blocks. By adjusting these two properties it is fairly easy to produce blocks at a desired density. The commonly used compression pressure in the manufacturing of bentonite blocks is 100 MPa, which compresses bentonite to approximately

  8. Isostatic compression of buffer blocks. Middle scale

    Energy Technology Data Exchange (ETDEWEB)

    Ritola, J.; Pyy, E. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-01-15

    Manufacturing of buffer components using isostatic compression method has been studied in small scale in 2008 (Laaksonen 2010). These tests included manufacturing of buffer blocks using different bentonite materials and different compression pressures. Isostatic mould technology was also tested, along with different methods to fill the mould, such as vibration and partial vacuum, as well as a stepwise compression of the blocks. The development of manufacturing techniques has continued with small-scale (30 %) blocks (diameter 600 mm) in 2009. This was done in a separate project: Isostatic compression, manufacturing and testing of small scale (D = 600 mm) buffer blocks. The research on the isostatic compression method continued in 2010 in a project aimed to test and examine the isostatic manufacturing process of buffer blocks at 70 % scale (block diameter 1200 to 1300 mm), and the aim was to continue in 2011 with full-scale blocks (diameter 1700 mm). A total of nine bentonite blocks were manufactured at 70 % scale, of which four were ring-shaped and the rest were cylindrical. It is currently not possible to manufacture full-scale blocks, because there is no sufficiently large isostatic press available. However, such a compression unit is expected to be possible to use in the near future. The test results of bentonite blocks, produced with an isostatic pressing method at different presses and at different sizes, suggest that the technical characteristics, for example bulk density and strength values, are somewhat independent of the size of the block, and that the blocks have fairly homogenous characteristics. Water content and compression pressure are the two most important properties determining the characteristics of the compressed blocks. By adjusting these two properties it is fairly easy to produce blocks at a desired density. The commonly used compression pressure in the manufacturing of bentonite blocks is 100 MPa, which compresses bentonite to approximately

  9. Human Dental Pulp-Derived Cells Produce Bone-Like Tissue and Exhibit Bone Cell-Like Responsiveness to Mechanical Loading

    DEFF Research Database (Denmark)

    Kraft, David Christian Evar; Melsen, Birte; Bindslev, Dorthe Arenholt

    2010-01-01

    and characterize cell lines from human 3rd molar dental pulp tissue to determine whether human dental pulp-derived cells (DPCs) are osteogenic and responsive to mechanical loading by pulsating fluid flow (PFF) in vitro. Methods: Human DPCs used for this study were characterized by measuring proliferation....... We also assessed bone formation by DPCs on hydroxyapatite-tricalcium phosphate granules after subcutaneous implantation in mice. Results: We found that DPCs are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. Implantation of DPCs resulted...... remodeling in vivo, and therefore provide a promising new tool for regenerative dentistry, for example mineralized tissue engineering to restore bone defects in relation to periodontitis, periimplantatis and orofacial surgery. Experiments in progress have proven that DPCSs are also useful for assessing...

  10. Force balancing in mammographic compression

    International Nuclear Information System (INIS)

    Branderhorst, W.; Groot, J. E. de; Lier, M. G. J. T. B. van; Grimbergen, C. A.; Neeter, L. M. F. H.; Heeten, G. J. den; Neeleman, C.

    2016-01-01

    Purpose: In mammography, the height of the image receptor is adjusted to the patient before compressing the breast. An inadequate height setting can result in an imbalance between the forces applied by the image receptor and the paddle, causing the clamped breast to be pushed up or down relative to the body during compression. This leads to unnecessary stretching of the skin and other tissues around the breast, which can make the imaging procedure more painful for the patient. The goal of this study was to implement a method to measure and minimize the force imbalance, and to assess its feasibility as an objective and reproducible method of setting the image receptor height. Methods: A trial was conducted consisting of 13 craniocaudal mammographic compressions on a silicone breast phantom, each with the image receptor positioned at a different height. The image receptor height was varied over a range of 12 cm. In each compression, the force exerted by the compression paddle was increased up to 140 N in steps of 10 N. In addition to the paddle force, the authors measured the force exerted by the image receptor and the reaction force exerted on the patient body by the ground. The trial was repeated 8 times, with the phantom remounted at a slightly different orientation and position between the trials. Results: For a given paddle force, the obtained results showed that there is always exactly one image receptor height that leads to a balance of the forces on the breast. For the breast phantom, deviating from this specific height increased the force imbalance by 9.4 ± 1.9 N/cm (6.7%) for 140 N paddle force, and by 7.1 ± 1.6 N/cm (17.8%) for 40 N paddle force. The results also show that in situations where the force exerted by the image receptor is not measured, the craniocaudal force imbalance can still be determined by positioning the patient on a weighing scale and observing the changes in displayed weight during the procedure. Conclusions: In mammographic breast

  11. Effective radiation attenuation calibration for breast density: compression thickness influences and correction

    Directory of Open Access Journals (Sweden)

    Thomas Jerry A

    2010-11-01

    Full Text Available Abstract Background Calibrating mammograms to produce a standardized breast density measurement for breast cancer risk analysis requires an accurate spatial measure of the compressed breast thickness. Thickness inaccuracies due to the nominal system readout value and compression paddle orientation induce unacceptable errors in the calibration. Method A thickness correction was developed and evaluated using a fully specified two-component surrogate breast model. A previously developed calibration approach based on effective radiation attenuation coefficient measurements was used in the analysis. Water and oil were used to construct phantoms to replicate the deformable properties of the breast. Phantoms consisting of measured proportions of water and oil were used to estimate calibration errors without correction, evaluate the thickness correction, and investigate the reproducibility of the various calibration representations under compression thickness variations. Results The average thickness uncertainty due to compression paddle warp was characterized to within 0.5 mm. The relative calibration error was reduced to 7% from 48-68% with the correction. The normalized effective radiation attenuation coefficient (planar representation was reproducible under intra-sample compression thickness variations compared with calibrated volume measures. Conclusion Incorporating this thickness correction into the rigid breast tissue equivalent calibration method should improve the calibration accuracy of mammograms for risk assessments using the reproducible planar calibration measure.

  12. Physics of Fresh Produce Safety: Role of Diffusion and Tissue Reaction in Sanitization of Leafy Green Vegetables with Liquid and Gaseous Ozone-Based Sanitizers.

    Science.gov (United States)

    Shynkaryk, Mykola V; Pyatkovskyy, Taras; Mohamed, Hussein M; Yousef, Ahmed E; Sastry, Sudhir K

    2015-12-01

    Produce safety has received much recent attention, with the emphasis being largely on discovery of how microbes invade produce. However, the sanitization operation deserves more attention than it has received. The ability of a sanitizer to reach the site of pathogens is a fundamental prerequisite for efficacy. This work addresses the transport processes of ozone (gaseous and liquid) sanitizer for decontamination of leafy greens. The liquid sanitizer was ineffective against Escherichia coli K-12 in situations where air bubbles may be trapped within cavities. A model was developed for diffusion of sanitizer into the interior of produce. The reaction rate of ozone with the surface of a lettuce leaf was determined experimentally and was used in a numerical simulation to evaluate ozone concentrations within the produce and to determine the time required to reach different locations. For aqueous ozone, the penetration depth was limited to several millimeters by ozone self-decomposition due to the significant time required for diffusion. In contrast, gaseous sanitizer was able to reach a depth of 100 mm in several minutes without depletion in the absence of reaction with surfaces. However, when the ozone gas reacted with the produce surface, gas concentration was significantly affected. Simulation data were validated experimentally by measuring ozone concentrations at the bottom of a cylinder made of lettuce leaf. The microbiological test confirmed the relationship between ozone transport, its self-decomposition, reaction with surrounding materials, and the degree of inactivation of E. coli K-12. Our study shows that decontamination of fresh produce, through direct contact with the sanitizer, is more feasible with gaseous than with aqueous sanitizers. Therefore, sanitization during a high-speed washing process is effective only for decontaminating the wash water.

  13. Flux compression generators as plasma compression power sources

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.; Thomson, D.B.; Garn, W.B.

    1979-01-01

    A survey is made of applications where explosive-driven magnetic flux compression generators have been or can be used to directly power devices that produce dense plasmas. Representative examples are discussed that are specific to the theta pinch, the plasma gun, the dense plasma focus and the Z pinch. These examples are used to illustrate the high energy and power capabilities of explosive generators. An application employing a rocket-borne, generator-powered plasma gun emphasizes the size and weight potential of flux compression power supplies. Recent results from a local effort to drive a dense plasma focus are provided. Imploding liners ae discussed in the context of both the theta and Z pinches

  14. Non-traumatic spinal cord compression at Parirenyatwa Hospital in ...

    African Journals Online (AJOL)

    Compression of the spinal cord by encroachment on its space is of major importance as a cause of injury to its tissues, with serious neurological consequences. Patients with non-traumatic spinal cord compression represent a significant proportion of paraplegic/paretic individuals attended to in the neurosurgical units in ...

  15. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  16. Optimization of Error-Bounded Lossy Compression for Hard-to-Compress HPC Data

    Energy Technology Data Exchange (ETDEWEB)

    Di, Sheng; Cappello, Franck

    2018-01-01

    Since today’s scientific applications are producing vast amounts of data, compressing them before storage/transmission is critical. Results of existing compressors show two types of HPC data sets: highly compressible and hard to compress. In this work, we carefully design and optimize the error-bounded lossy compression for hard-tocompress scientific data. We propose an optimized algorithm that can adaptively partition the HPC data into best-fit consecutive segments each having mutually close data values, such that the compression condition can be optimized. Another significant contribution is the optimization of shifting offset such that the XOR-leading-zero length between two consecutive unpredictable data points can be maximized. We finally devise an adaptive method to select the best-fit compressor at runtime for maximizing the compression factor. We evaluate our solution using 13 benchmarks based on real-world scientific problems, and we compare it with 9 other state-of-the-art compressors. Experiments show that our compressor can always guarantee the compression errors within the user-specified error bounds. Most importantly, our optimization can improve the compression factor effectively, by up to 49% for hard-tocompress data sets with similar compression/decompression time cost.

  17. Development of transgenic rats producing human β-amyloid precursor protein as a model for Alzheimer's disease: Transgene and endogenous APP genes are regulated tissue-specifically

    Directory of Open Access Journals (Sweden)

    Chan Anthony WS

    2008-02-01

    Full Text Available Abstract Background Alzheimer's disease (AD is a devastating neurodegenerative disorder that affects a large and growing number of elderly individuals. In addition to idiopathic disease, AD is also associated with autosomal dominant inheritance, which causes a familial form of AD (FAD. Some instances of FAD have been linked to mutations in the β-amyloid protein precursor (APP. Although there are numerous mouse AD models available, few rat AD models, which have several advantages over mice, have been generated. Results Fischer 344 rats expressing human APP driven by the ubiquitin-C promoter were generated via lentiviral vector infection of Fischer 344 zygotes. We generated two separate APP-transgenic rat lines, APP21 and APP31. Serum levels of human amyloid-beta (Aβ40 were 298 pg/ml for hemizygous and 486 pg/ml for homozygous APP21 animals. Serum Aβ42 levels in APP21 homozygous rats were 135 pg/ml. Immunohistochemistry in brain showed that the human APP transgene was expressed in neurons, but not in glial cells. These findings were consistent with independent examination of enhanced green fluorescent protein (eGFP in the brains of eGFP-transgenic rats. APP21 and APP31 rats expressed 7.5- and 3-times more APP mRNA, respectively, than did wild-type rats. Northern blots showed that the human APP transgene, driven by the ubiquitin-C promoter, is expressed significantly more in brain, kidney and lung compared to heart and liver. A similar expression pattern was also seen for the endogenous rat APP. The unexpected similarity in the tissue-specific expression patterns of endogenous rat APP and transgenic human APP mRNAs suggests regulatory elements within the cDNA sequence of APP. Conclusion This manuscript describes the generation of APP-transgenic inbred Fischer 344 rats. These are the first human AD model rat lines generated by lentiviral infection. The APP21 rat line expresses high levels of human APP and could be a useful model for AD. Tissue

  18. Culture: copying, compression, and conventionality.

    Science.gov (United States)

    Tamariz, Mónica; Kirby, Simon

    2015-01-01

    Through cultural transmission, repeated learning by new individuals transforms cultural information, which tends to become increasingly compressible (Kirby, Cornish, & Smith, ; Smith, Tamariz, & Kirby, ). Existing diffusion chain studies include in their design two processes that could be responsible for this tendency: learning (storing patterns in memory) and reproducing (producing the patterns again). This paper manipulates the presence of learning in a simple iterated drawing design experiment. We find that learning seems to be the causal factor behind the increase in compressibility observed in the transmitted information, while reproducing is a source of random heritable innovations. Only a theory invoking these two aspects of cultural learning will be able to explain human culture's fundamental balance between stability and innovation. Copyright © 2014 Cognitive Science Society, Inc.

  19. Physiologically Distributed Loading Patterns Drive the Formation of Zonally Organized Collagen Structures in Tissue-Engineered Meniscus.

    Science.gov (United States)

    Puetzer, Jennifer L; Bonassar, Lawrence J

    2016-07-01

    The meniscus is a dense fibrocartilage tissue that withstands the complex loads of the knee via a unique organization of collagen fibers. Attempts to condition engineered menisci with compression or tensile loading alone have failed to reproduce complex structure on the microscale or anatomic scale. Here we show that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscus when the knee is loaded at full extension. Such loading drove formation of tissue with large organized collagen fibers, levels of mechanical anisotropy, and compressive moduli that match native tissue. Loading accelerated the development of native-sized and aligned circumferential and radial collagen fibers. These loading patterns contained both tensile and compressive components that enhanced the major biochemical and functional properties of the meniscus, with loading significantly improved glycosaminoglycan (GAG) accumulation 200-250%, collagen accumulation 40-55%, equilibrium modulus 1000-1800%, and tensile moduli 500-1200% (radial and circumferential). Furthermore, this study demonstrates local changes in mechanical environment drive heterogeneous tissue development and organization within individual constructs, highlighting the importance of recapitulating native loading environments. Loaded menisci developed cartilage-like tissue with rounded cells, a dense collagen matrix, and increased GAG accumulation in the more compressively loaded horns, and fibrous collagen-rich tissue in the more tensile loaded outer 2/3, similar to native menisci. Loaded constructs reached a level of organization not seen in any previous engineered menisci and demonstrate great promise as meniscal replacements.

  20. Trisomy 10p and translocation of 10q to 4p associated with selective dysgenesis of IgA-producing cells in lymphoid tissue.

    Science.gov (United States)

    Saiga, Tatsuyoshi; Hashimoto, Kazuhiro; Kimura, Nobusuke; Ono, Hisako; Hiai, Hiroshi

    2007-01-01

    A combined chromosomal abberation trisomy of the short arm of chromosome 10 associated with translocation of 10q to chromosome 4p was found in a 14-month-old boy, who died after repeated bouts of pneumonia. The translocation involved the target region 4p16.3 of Wolf-Hirschhorn syndrome and/or Pitt-Rogers-Danks syndrome. The karyotype was 46,XY,der(4)t(4;10)(p16;q11.2),i(10)(p10),ish der(4)t(4;10)(p16.3;q11.2) (D4S96+,D4Z1+),i(10) (pter ++). In addition to growth retardation and external as well as internal dysmorphism, the patient had abnormalities of the immune system, such as thymic involution, generalized lymph node enlargement, unusual distribution of T cells in lymphoid follicles, and selective IgA deficiency. The IgA-producing cells were rarely found in lymph nodes but normally in intestinal mucosa. In contrast, in the lymph nodes, the paracortical T-lymphocytes were hyperplastic, but they rarely entered the primary follicles. It is assumed that the chromosomal abnormality may lead to the dysfunction of T lymphocytes and, further, to the dysgenesis of IgA-producing cells in lymph nodes but not in intestinal mucosa. This suggests that the thymus may differentially control the subsets of IgA-producing cells in lymph nodes and intestinal mucosa.

  1. Infection Rate and Tissue Localization of Murine IL-12p40-Producing Monocyte-Derived CD103+ Lung Dendritic Cells during Pulmonary Tuberculosis

    Science.gov (United States)

    Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D.; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus

    2013-01-01

    Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103+ dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40+ cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype. PMID:23861965

  2. Infection rate and tissue localization of murine IL-12p40-producing monocyte-derived CD103(+) lung dendritic cells during pulmonary tuberculosis.

    Science.gov (United States)

    Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus

    2013-01-01

    Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103(+) dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40(+) cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype.

  3. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  4. Experiments with automata compression

    NARCIS (Netherlands)

    Daciuk, J.; Yu, S; Daley, M; Eramian, M G

    2001-01-01

    Several compression methods of finite-state automata are presented and evaluated. Most compression methods used here are already described in the literature. However, their impact on the size of automata has not been described yet. We fill that gap, presenting results of experiments carried out on

  5. Highly Efficient Compression Algorithms for Multichannel EEG.

    Science.gov (United States)

    Shaw, Laxmi; Rahman, Daleef; Routray, Aurobinda

    2018-05-01

    The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.

  6. Failure in cartilaginous tissues

    NARCIS (Netherlands)

    Huyghe, J.M.R.J.; Talen-Jongeneelen, C.J.M.; Schroeder, Y.; Kraaijeveld, F.; Borst, de R.; Baaijens, F.P.T.

    2007-01-01

    Cartilaginous tissues high load bearing capacity is explained by osmotic prestressing putting the collagen fiber reinforcement under tension and the proteoglycan gel under compression. The osmotic forces are boosted by a further 50 % by the affinity of the collagen with the aquous solution. The high

  7. Efficiency of Compressed Air Energy Storage

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Brix, Wiebke

    2011-01-01

    The simplest type of a Compressed Air Energy Storage (CAES) facility would be an adiabatic process consisting only of a compressor, a storage and a turbine, compressing air into a container when storing and expanding when producing. This type of CAES would be adiabatic and would if the machines...... were reversible have a storage efficiency of 100%. However, due to the specific capacity of the storage and the construction materials the air is cooled during and after compression in practice, making the CAES process diabatic. The cooling involves exergy losses and thus lowers the efficiency...... of the storage significantly. The efficiency of CAES as an electricity storage may be defined in several ways, we discuss these and find that the exergetic efficiency of compression, storage and production together determine the efficiency of CAES. In the paper we find that the efficiency of the practical CAES...

  8. Processing Maple Syrup with a Vapor Compression Distiller: An Economic Analysis

    Science.gov (United States)

    Lawrence D. Garrett

    1977-01-01

    A test of vapor compression distillers for processing maple syrup revealed that: (1) vapor compression equipment tested evaporated 1 pound of water with .047 pounds of steam equivalent (electrical energy); open-pan evaporators of similar capacity required 1.5 pounds of steam equivalent (oil energy) to produce 1 pound of water; (2) vapor compression evaporation produced...

  9. A Simplified Method for Three-Dimensional (3-D Ovarian Tissue Culture Yielding Oocytes Competent to Produce Full-Term Offspring in Mice.

    Directory of Open Access Journals (Sweden)

    Carolyn M Higuchi

    Full Text Available In vitro growth of follicles is a promising technology to generate large quantities of competent oocytes from immature follicles and could expand the potential of assisted reproductive technologies (ART. Isolated follicle culture is currently the primary method used to develop and mature follicles in vitro. However, this procedure typically requires complicated, time-consuming procedures, as well as destruction of the normal ovarian microenvironment. Here we describe a simplified 3-D ovarian culture system that can be used to mature multilayered secondary follicles into antral follicles, generating developmentally competent oocytes in vitro. Ovaries recovered from mice at 14 days of age were cut into 8 pieces and placed onto a thick Matrigel drop (3-D culture for 10 days of culture. As a control, ovarian pieces were cultured on a membrane filter without any Matrigel drop (Membrane culture. We also evaluated the effect of activin A treatment on follicle growth within the ovarian pieces with or without Matrigel support. Thus we tested four different culture conditions: C (Membrane/activin-, A (Membrane/activin+, M (Matrigel/activin-, and M+A (Matrigel/activin+. We found that the cultured follicles and oocytes steadily increased in size regardless of the culture condition used. However, antral cavity formation occurred only in the follicles grown in the 3-D culture system (M, M+A. Following ovarian tissue culture, full-grown GV oocytes were isolated from the larger follicles to evaluate their developmental competence by subjecting them to in vitro maturation (IVM and in vitro fertilization (IVF. Maturation and fertilization rates were higher using oocytes grown in 3-D culture (M, M+A than with those grown in membrane culture (C, A. In particular, activin A treatment further improved 3-D culture (M+A success. Following IVF, two-cell embryos were transferred to recipients to generate full-term offspring. In summary, this simple and easy 3-D ovarian

  10. Novel Textile Scaffolds Generated by Flock Technology for Tissue Engineering of Bone and Cartilage.

    Science.gov (United States)

    Walther, Anja; Hoyer, Birgit; Springer, Armin; Mrozik, Birgit; Hanke, Thomas; Cherif, Chokri; Pompe, Wolfgang; Gelinsky, Michael

    2012-03-22

    Textile scaffolds can be found in a variety of application areas in regenerative medicine and tissue engineering. In the present study we used electrostatic flocking-a well-known textile technology-to produce scaffolds for tissue engineering of bone. Flock scaffolds stand out due to their unique structure: parallel arranged fibers that are aligned perpendicularly to a substrate, resulting in mechanically stable structures with a high porosity. In compression tests we demonstrated good mechanical properties of such scaffolds and in cell culture experiments we showed that flock scaffolds allow attachment and proliferation of human mesenchymal stem cells and support their osteogenic differentiation. These matrices represent promising scaffolds for tissue engineering.

  11. Extra virgin olive oil reduces liver oxidative stress and tissue depletion of long-chain polyunsaturated fatty acids produced by a high saturated fat diet in mice

    Directory of Open Access Journals (Sweden)

    Valenzuela, R.

    2016-06-01

    Full Text Available Long-chain polyunsaturated fatty acids (LCPUFA which are synthesized mainly in the liver have relevant functions in the organism. A diet high in fat (HFD generates an increase in the levels of fat and induces oxidative stress (lipo-peroxidation in the liver, along with a reduction in tissue n-3 and n-6 LCPUFA. Extra virgin olive oil (EVOO is rich in anti-oxidants (polyphenols and tocopherols which help to prevent the development of oxidative stress. This study evaluated the role of EVOO in preventing the induction of fat deposition and oxidative stress in the liver and in the depletion of LCPUFA in the liver, erythrocytes and brain generated by a HFD in C57BL/6J mice. Four experimental groups (n = 10/group were fed a control diet (CD or a HFD for 12 weeks and were respectively supplemented with EVOO (100 mg/day. The group fed HFD showed a significant increase (p Los ácidos grasos poliinsaturados de cadena larga (AGPICL sintetizados principalmente por el hígado, cumplen funciones relevantes en el organismo. Una dieta alta en grasa (DAG genera un incremento en los niveles de grasa y estrés oxidativo (lipoperoxidación en hígado y una reducción en los niveles de AGPICL n-3 y n-6 en diferentes tejidos. El aceite de oliva extra virgen (AOEV es rico en antioxidantes (polifenoles y tocoferoles que ayudan a prevenir el desarrollo del estrés oxidativo. Este trabajo evaluó el rol del AOEV en la prevención del depósito de grasa, estrés oxidativo hepático y reducción de los AGPICL n-3 y n-6 en diferentes tejidos generado por una DAG en ratones C57BL/6J. Cuatro grupos experimentales (n=10/grupo fueron alimentados (12 semanas con dieta control (DC o DAG y suplementados con AOEV (100 mg/día. El grupo alimentado con DAG presentó un incremento (p < 0,05 en la acumulación de grasa y estrés oxidativo hepático, acompañado de una reducción en los niveles de AGPICL n-3 y n-6 en hígado, eritrocitos y cerebro. La suplementación con AOEV logr

  12. The possibilities of compressed sensing based migration

    KAUST Repository

    Aldawood, Ali; Hoteit, Ibrahim; Alkhalifah, Tariq Ali

    2013-01-01

    Linearized waveform inversion or Least-square migration helps reduce migration artifacts caused by limited acquisition aperture, coarse sampling of sources and receivers, and low subsurface illumination. However, leastsquare migration, based on L2-norm minimization of the misfit function, tends to produce a smeared (smoothed) depiction of the true subsurface reflectivity. Assuming that the subsurface reflectivity distribution is a sparse signal, we use a compressed-sensing (Basis Pursuit) algorithm to retrieve this sparse distribution from a small number of linear measurements. We applied a compressed-sensing algorithm to image a synthetic fault model using dense and sparse acquisition geometries. Tests on synthetic data demonstrate the ability of compressed-sensing to produce highly resolved migrated images. We, also, studied the robustness of the Basis Pursuit algorithm in the presence of Gaussian random noise.

  13. The possibilities of compressed sensing based migration

    KAUST Repository

    Aldawood, Ali

    2013-09-22

    Linearized waveform inversion or Least-square migration helps reduce migration artifacts caused by limited acquisition aperture, coarse sampling of sources and receivers, and low subsurface illumination. However, leastsquare migration, based on L2-norm minimization of the misfit function, tends to produce a smeared (smoothed) depiction of the true subsurface reflectivity. Assuming that the subsurface reflectivity distribution is a sparse signal, we use a compressed-sensing (Basis Pursuit) algorithm to retrieve this sparse distribution from a small number of linear measurements. We applied a compressed-sensing algorithm to image a synthetic fault model using dense and sparse acquisition geometries. Tests on synthetic data demonstrate the ability of compressed-sensing to produce highly resolved migrated images. We, also, studied the robustness of the Basis Pursuit algorithm in the presence of Gaussian random noise.

  14. Compressive laser ranging.

    Science.gov (United States)

    Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer

    2011-12-15

    Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.

  15. Dietary Fructo-Oligosaccharides Attenuate Early Activation of CD4+ T Cells Which Produce both Th1 and Th2 Cytokines in the Intestinal Lymphoid Tissues of a Murine Food Allergy Model.

    Science.gov (United States)

    Tsuda, Masato; Arakawa, Haruka; Ishii, Narumi; Ubukata, Chihiro; Michimori, Mana; Noda, Masanari; Takahashi, Kyoko; Kaminogawa, Shuichi; Hosono, Akira

    2017-01-01

    Fructo-oligosaccharides (FOS) are prebiotic agents with immunomodulatory effects involving improvement of the intestinal microbiota and metabolome. In this study, we investigated the cellular mechanisms through which FOS modulate intestinal antigen-specific CD4+ T cell responses in food allergy, using OVA23-3 mice. OVA23-3 mice were fed an experimental diet containing either ovalbumin (OVA) or OVA and FOS for 1 week. Body weight and mucosal mast cell protease 1 in the serum were measured as the indicator of intestinal inflammation. Single-cell suspensions were prepared from intestinal and systemic lymphoid tissues for cellular analysis. Cytokine production was measured by ELISA. Activation markers and intracellular cytokines in CD4+ T cells were analyzed by flow cytometry. Activated CD4+ T cells were purified to examine cytokine production. Dietary intake of FOS provided moderate protection from the intestinal inflammation induced by the OVA-containing diet. FOS significantly reduced food allergy-induced Th2 cytokine responses in intestinal tissues but not in systemic tissues. FOS decreased OVA diet-induced IFN-γ+IL-4+ double-positive CD4+ T cells and early-activated CD45RBhighCD69+CD4+ T cells in the mesenteric lymph nodes. Furthermore, we confirmed that these CD45RBhighCD69+CD4+ T cells are able to produce high levels of IFN-γ and moderate level of IL-4, IL-10, and IL-13. Dietary intake of FOS during the development of food allergy attenuates the induction of intestinal Th2 cytokine responses by regulating early activation of naïve CD4+ T cells, which produce both Th1 and Th2 cytokines. Our results suggest FOS might be a potential food agent for the prevention of food allergy by modulating oral sensitization to food antigens. © 2017 S. Karger AG, Basel.

  16. Efficacy of a Blend of Sulfuric Acid and Sodium Sulfate against Shiga Toxin-Producing Escherichia coli, Salmonella, and Nonpathogenic Escherichia coli Biotype I on Inoculated Prerigor Beef Surface Tissue.

    Science.gov (United States)

    Scott-Bullard, Britteny R; Geornaras, Ifigenia; Delmore, Robert J; Woerner, Dale R; Reagan, James O; Morgan, J Bred; Belk, Keith E

    2017-12-01

    A study was conducted to investigate the efficacy of a sulfuric acid-sodium sulfate blend (SSS) against Escherichia coli O157:H7, non-O157 Shiga toxin-producing E. coli (STEC), Salmonella, and nonpathogenic E. coli biotype I on prerigor beef surface tissue. The suitability of using the nonpathogenic E. coli as a surrogate for in-plant validation studies was also determined by comparing the data obtained for the nonpathogenic inoculum with those for the pathogenic inocula. Prerigor beef tissue samples (10 by 10 cm) were inoculated (ca. 6 log CFU/cm 2 ) on the adipose side in a laboratory-scale spray cabinet with multistrain mixtures of E. coli O157:H7 (5 strains), non-O157 STEC (12 strains), Salmonella (6 strains), or E. coli biotype I (5 strains). Treatment parameters evaluated were two SSS pH values (1.5 and 1.0) and two spray application pressures (13 and 22 lb/in 2 ). Untreated inoculated beef tissue samples served as controls for initial bacterial populations. Overall, the SSS treatments lowered inoculated (6.1 to 6.4 log CFU/cm 2 ) bacterial populations by 0.6 to 1.5 log CFU/cm 2 (P SSS was applied to samples inoculated with any of the tested E. coli inocula; however, solution pH did have a significant effect (P SSS was applied to samples inoculated with Salmonella. Results indicated that the response of the nonpathogenic E. coli inoculum to the SSS treatments was similar (P ≥ 0.05) to that of the pathogenic inocula tested, making the E. coli biotype I strains viable surrogate organisms for in-plant validation of SSS efficacy on beef. The application of SSS at the tested parameters to prerigor beef surface tissue may be an effective intervention for controlling pathogens in a commercial beef harvest process.

  17. Application of polarization OCT in tissue engineering

    Science.gov (United States)

    Yang, Ying; Ahearne, Mark; Bagnaninchi, Pierre O.; Hu, Bin; Hampson, Karen; El Haj, Alicia J.

    2008-02-01

    For tissue engineering of load-bearing tissues, such as bone, tendon, cartilage, and cornea, it is critical to generate a highly organized extracellular matrix. The major component of the matrix in these tissues is collagen, which usually forms a highly hierarchical structure with increasing scale from fibril to fiber bundles. These bundles are ordered into a 3D network to withstand forces such as tensile, compressive or shear. To induce the formation of organized matrix and create a mimic body environment for tissue engineering, in particular, tendon tissue engineering, we have fabricated scaffolds with features to support the formation of uniaxially orientated collagen bundles. In addition, mechanical stimuli were applied to stimulate tissue formation and matrix organization. In parallel, we seek a nondestructive tool to monitor the changes within the constructs in response to these external stimulations. Polarizationsensitive optical coherence tomography (PSOCT) is a non-destructive technique that provides functional imaging, and possesses the ability to assess in depth the organization of tissue. In this way, an engineered tissue construct can be monitored on-line, and correlated with the application of different stimuli by PSOCT. We have constructed a PSOCT using a superluminescent diode (FWHM 52nm) in this study and produced two types of tendon constructs. The matrix structural evolution under different mechanical stimulation has been evaluated by the PSOCT. The results in this study demonstrate that PSOCT was a powerful tool enabling us to monitor non-destructively and real time the progressive changes in matrix organization and assess the impact of various stimuli on tissue orientation and growth.

  18. NRGC: a novel referential genome compression algorithm.

    Science.gov (United States)

    Saha, Subrata; Rajasekaran, Sanguthevar

    2016-11-15

    Next-generation sequencing techniques produce millions to billions of short reads. The procedure is not only very cost effective but also can be done in laboratory environment. The state-of-the-art sequence assemblers then construct the whole genomic sequence from these reads. Current cutting edge computing technology makes it possible to build genomic sequences from the billions of reads within a minimal cost and time. As a consequence, we see an explosion of biological sequences in recent times. In turn, the cost of storing the sequences in physical memory or transmitting them over the internet is becoming a major bottleneck for research and future medical applications. Data compression techniques are one of the most important remedies in this context. We are in need of suitable data compression algorithms that can exploit the inherent structure of biological sequences. Although standard data compression algorithms are prevalent, they are not suitable to compress biological sequencing data effectively. In this article, we propose a novel referential genome compression algorithm (NRGC) to effectively and efficiently compress the genomic sequences. We have done rigorous experiments to evaluate NRGC by taking a set of real human genomes. The simulation results show that our algorithm is indeed an effective genome compression algorithm that performs better than the best-known algorithms in most of the cases. Compression and decompression times are also very impressive. The implementations are freely available for non-commercial purposes. They can be downloaded from: http://www.engr.uconn.edu/~rajasek/NRGC.zip CONTACT: rajasek@engr.uconn.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Optical pulse compression

    International Nuclear Information System (INIS)

    Glass, A.J.

    1975-01-01

    The interest in using large lasers to achieve a very short and intense pulse for generating fusion plasma has provided a strong impetus to reexamine the possibilities of optical pulse compression at high energy. Pulse compression allows one to generate pulses of long duration (minimizing damage problems) and subsequently compress optical pulses to achieve the short pulse duration required for specific applications. The ideal device for carrying out this program has not been developed. Of the two approaches considered, the Gires--Tournois approach is limited by the fact that the bandwidth and compression are intimately related, so that the group delay dispersion times the square of the bandwidth is about unity for all simple Gires--Tournois interferometers. The Treacy grating pair does not suffer from this limitation, but is inefficient because diffraction generally occurs in several orders and is limited by the problem of optical damage to the grating surfaces themselves. Nonlinear and parametric processes were explored. Some pulse compression was achieved by these techniques; however, they are generally difficult to control and are not very efficient. (U.S.)

  20. Isentropic Compression of Argon

    International Nuclear Information System (INIS)

    Oona, H.; Solem, J.C.; Veeser, L.R.; Ekdahl, C.A.; Rodriquez, P.J.; Younger, S.M.; Lewis, W.; Turley, W.D.

    1997-01-01

    We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal

  1. Pulsed Compression Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roestenberg, T. [University of Twente, Enschede (Netherlands)

    2012-06-07

    The advantages of the Pulsed Compression Reactor (PCR) over the internal combustion engine-type chemical reactors are briefly discussed. Over the last four years a project concerning the fundamentals of the PCR technology has been performed by the University of Twente, Enschede, Netherlands. In order to assess the feasibility of the application of the PCR principle for the conversion methane to syngas, several fundamental questions needed to be answered. Two important questions that relate to the applicability of the PCR for any process are: how large is the heat transfer rate from a rapidly compressed and expanded volume of gas, and how does this heat transfer rate compare to energy contained in the compressed gas? And: can stable operation with a completely free piston as it is intended with the PCR be achieved?.

  2. Medullary compression syndrome

    International Nuclear Information System (INIS)

    Barriga T, L.; Echegaray, A.; Zaharia, M.; Pinillos A, L.; Moscol, A.; Barriga T, O.; Heredia Z, A.

    1994-01-01

    The authors made a retrospective study in 105 patients treated in the Radiotherapy Department of the National Institute of Neoplasmic Diseases from 1973 to 1992. The objective of this evaluation was to determine the influence of radiotherapy in patients with medullary compression syndrome in aspects concerning pain palliation and improvement of functional impairment. Treatment sheets of patients with medullary compression were revised: 32 out of 39 of patients (82%) came to hospital by their own means and continued walking after treatment, 8 out of 66 patients (12%) who came in a wheelchair or were bedridden, could mobilize by their own after treatment, 41 patients (64%) had partial alleviation of pain after treatment. In those who came by their own means and did not change their characteristics, functional improvement was observed. It is concluded that radiotherapy offers palliative benefit in patients with medullary compression syndrome. (authors). 20 refs., 5 figs., 6 tabs

  3. Compresso: Efficient Compression of Segmentation Data for Connectomics

    KAUST Repository

    Matejek, Brian; Haehn, Daniel; Lekschas, Fritz; Mitzenmacher, Michael; Pfister, Hanspeter

    2017-01-01

    Recent advances in segmentation methods for connectomics and biomedical imaging produce very large datasets with labels that assign object classes to image pixels. The resulting label volumes are bigger than the raw image data and need compression

  4. Graph Compression by BFS

    Directory of Open Access Journals (Sweden)

    Alberto Apostolico

    2009-08-01

    Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.

  5. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Wright, L D; Young, R T; Andric, T; Freeman, J W

    2010-01-01

    Electrospinning is a polymer processing technique that produces fibrous structures comparable to the extracellular matrix of many tissues. Electrospinning, however, has been severely limited in its tissue engineering capabilities because this technique has produced few three-dimensional structures. Sintering of electrospun materials provides a method to fabricate unique architectures and allow much larger structures to be made. Electrospun mats were sintered into strips and cylinders, and their tensile and compressive mechanical properties were measured. In addition, electrospun materials with salt pores (salt embedded within the material and then leached out) were fabricated to improve porosity of the electrospun materials for tissue engineering scaffolds. Sintered electrospun poly(d,l-lactide) and poly(l-lactide) (PDLA/PLLA) materials have higher tensile mechanical properties (modulus: 72.3 MPa, yield: 960 kPa) compared to unsintered PLLA (modulus: 40.36 MPa, yield: 675.5 kPa). Electrospun PDLA/PLLA cylinders with and without salt-leached pores had compressive moduli of 6.69 and 26.86 MPa, respectively, and compressive yields of 1.36 and 0.56 MPa, respectively. Sintering of electrospun materials is a novel technique that improves electrospinning application in tissue engineering by increasing the size and types of electrospun structures that can be fabricated.

  6. Wavelet/scalar quantization compression standard for fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, C.M.

    1996-06-12

    US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class of potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.

  7. Compressed beam directed particle nuclear energy generator

    International Nuclear Information System (INIS)

    Salisbury, W.W.

    1985-01-01

    This invention relates to the generation of energy from the fusion of atomic nuclei which are caused to travel towards each other along collision courses, orbiting in common paths having common axes and equal radii. High velocity fusible ion beams are directed along head-on circumferential collision paths in an annular zone wherein beam compression by electrostatic focusing greatly enhances head-on fusion-producing collisions. In one embodiment, a steady radial electric field is imposed on the beams to compress the beams and reduce the radius of the spiral paths for enhancing the particle density. Beam compression is achieved through electrostatic focusing to establish and maintain two opposing beams in a reaction zone

  8. Compressed Air Production Using Vehicle Suspension

    Directory of Open Access Journals (Sweden)

    Ninad Arun Malpure

    2015-08-01

    Full Text Available Abstract Generally compressed air is produced using different types of air compressors which consumes lot of electric energy and is noisy. In this paper an innovative idea is put forth for production of compressed air using movement of vehicle suspension which normal is wasted. The conversion of the force energy into the compressed air is carried out by the mechanism which consists of the vehicle suspension system hydraulic cylinder Non-return valve air compressor and air receiver. We are collecting air in the cylinder and store this energy into the tank by simply driving the vehicle. This method is non-conventional as no fuel input is required and is least polluting.

  9. Compressible generalized Newtonian fluids

    Czech Academy of Sciences Publication Activity Database

    Málek, Josef; Rajagopal, K.R.

    2010-01-01

    Roč. 61, č. 6 (2010), s. 1097-1110 ISSN 0044-2275 Institutional research plan: CEZ:AV0Z20760514 Keywords : power law fluid * uniform temperature * compressible fluid Subject RIV: BJ - Thermodynamics Impact factor: 1.290, year: 2010

  10. Temporal compressive sensing systems

    Science.gov (United States)

    Reed, Bryan W.

    2017-12-12

    Methods and systems for temporal compressive sensing are disclosed, where within each of one or more sensor array data acquisition periods, one or more sensor array measurement datasets comprising distinct linear combinations of time slice data are acquired, and where mathematical reconstruction allows for calculation of accurate representations of the individual time slice datasets.

  11. Compression of Infrared images

    DEFF Research Database (Denmark)

    Mantel, Claire; Forchhammer, Søren

    2017-01-01

    best for bits-per-pixel rates below 1.4 bpp, while HEVC obtains best performance in the range 1.4 to 6.5 bpp. The compression performance is also evaluated based on maximum errors. These results also show that HEVC can achieve a precision of 1°C with an average of 1.3 bpp....

  12. Spiral waves characterization: Implications for an automated cardiodynamic tissue characterization.

    Science.gov (United States)

    Alagoz, Celal; Cohen, Andrew R; Frisch, Daniel R; Tunç, Birkan; Phatharodom, Saran; Guez, Allon

    2018-07-01

    Spiral waves are phenomena observed in cardiac tissue especially during fibrillatory activities. Spiral waves are revealed through in-vivo and in-vitro studies using high density mapping that requires special experimental setup. Also, in-silico spiral wave analysis and classification is performed using membrane potentials from entire tissue. In this study, we report a characterization approach that identifies spiral wave behaviors using intracardiac electrogram (EGM) readings obtained with commonly used multipolar diagnostic catheters that perform localized but high-resolution readings. Specifically, the algorithm is designed to distinguish between stationary, meandering, and break-up rotors. The clustering and classification algorithms are tested on simulated data produced using a phenomenological 2D model of cardiac propagation. For EGM measurements, unipolar-bipolar EGM readings from various locations on tissue using two catheter types are modeled. The distance measure between spiral behaviors are assessed using normalized compression distance (NCD), an information theoretical distance. NCD is a universal metric in the sense it is solely based on compressibility of dataset and not requiring feature extraction. We also introduce normalized FFT distance (NFFTD) where compressibility is replaced with a FFT parameter. Overall, outstanding clustering performance was achieved across varying EGM reading configurations. We found that effectiveness in distinguishing was superior in case of NCD than NFFTD. We demonstrated that distinct spiral activity identification on a behaviorally heterogeneous tissue is also possible. This report demonstrates a theoretical validation of clustering and classification approaches that provide an automated mapping from EGM signals to assessment of spiral wave behaviors and hence offers a potential mapping and analysis framework for cardiac tissue wavefront propagation patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Compressible Fluid Suspension Performance Testing

    National Research Council Canada - National Science Library

    Hoogterp, Francis

    2003-01-01

    ... compressible fluid suspension system that was designed and installed on the vehicle by DTI. The purpose of the tests was to evaluate the possible performance benefits of the compressible fluid suspension system...

  14. Superplastic boronizing of duplex stainless steel under dual compression method

    International Nuclear Information System (INIS)

    Jauhari, I.; Yusof, H.A.M.; Saidan, R.

    2011-01-01

    Highlights: → Superplastic boronizing. → Dual compression method has been developed. → Hard boride layer. → Bulk deformation was significantly thicker the boronized layer. → New data on boronizing could be expanded the application of DSS in industries. - Abstract: In this work, SPB of duplex stainless steel (DSS) under compression method is studied with the objective to produce ultra hard and thick boronized layer using minimal amount of boron powder and at a much faster boronizing time as compared to the conventional process. SPB is conducted under dual compression methods. In the first method DSS is boronized using a minimal amount of boron powder under a fix pre-strained compression condition throughout the process. The compression strain is controlled in such a way that plastic deformation is restricted at the surface asperities of the substrate in contact with the boron powder. In the second method, the boronized specimen taken from the first mode is compressed superplastically up to a certain compressive strain under a certain strain rate condition. The process in the second method is conducted without the present of boron powder. As compared with the conventional boronizing process, through this SPB under dual compression methods, a much harder and thicker boronized layer thickness is able to be produced using a minimal amount of boron powder.

  15. Superplastic boronizing of duplex stainless steel under dual compression method

    Energy Technology Data Exchange (ETDEWEB)

    Jauhari, I., E-mail: iswadi@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yusof, H.A.M.; Saidan, R. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-10-25

    Highlights: {yields} Superplastic boronizing. {yields} Dual compression method has been developed. {yields} Hard boride layer. {yields} Bulk deformation was significantly thicker the boronized layer. {yields} New data on boronizing could be expanded the application of DSS in industries. - Abstract: In this work, SPB of duplex stainless steel (DSS) under compression method is studied with the objective to produce ultra hard and thick boronized layer using minimal amount of boron powder and at a much faster boronizing time as compared to the conventional process. SPB is conducted under dual compression methods. In the first method DSS is boronized using a minimal amount of boron powder under a fix pre-strained compression condition throughout the process. The compression strain is controlled in such a way that plastic deformation is restricted at the surface asperities of the substrate in contact with the boron powder. In the second method, the boronized specimen taken from the first mode is compressed superplastically up to a certain compressive strain under a certain strain rate condition. The process in the second method is conducted without the present of boron powder. As compared with the conventional boronizing process, through this SPB under dual compression methods, a much harder and thicker boronized layer thickness is able to be produced using a minimal amount of boron powder.

  16. Method for compression molding of thermosetting plastics utilizing a temperature gradient across the plastic to cure the article

    Science.gov (United States)

    Heier, W. C. (Inventor)

    1974-01-01

    A method is described for compression molding of thermosetting plastics composition. Heat is applied to the compressed load in a mold cavity and adjusted to hold molding temperature at the interface of the cavity surface and the compressed compound to produce a thermal front. This thermal front advances into the evacuated compound at mean right angles to the compression load and toward a thermal fence formed at the opposite surface of the compressed compound.

  17. LZ-Compressed String Dictionaries

    OpenAIRE

    Arz, Julian; Fischer, Johannes

    2013-01-01

    We show how to compress string dictionaries using the Lempel-Ziv (LZ78) data compression algorithm. Our approach is validated experimentally on dictionaries of up to 1.5 GB of uncompressed text. We achieve compression ratios often outperforming the existing alternatives, especially on dictionaries containing many repeated substrings. Our query times remain competitive.

  18. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2013-01-01

    We introduce a new compression scheme for labeled trees based on top trees [3]. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  19. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2015-01-01

    We introduce a new compression scheme for labeled trees based on top trees. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  20. Influence of Compacting Rate on the Properties of Compressed Earth Blocks

    Directory of Open Access Journals (Sweden)

    Humphrey Danso

    2016-01-01

    Full Text Available Compaction of blocks contributes significantly to the strength properties of compressed earth blocks. This paper investigates the influence of compacting rates on the properties of compressed earth blocks. Experiments were conducted to determine the density, compressive strength, splitting tensile strength, and erosion properties of compressed earth blocks produced with different rates of compacting speed. The study concludes that although the low rate of compaction achieved slightly better performance characteristics, there is no statistically significant difference between the soil blocks produced with low compacting rate and high compacting rate. The study demonstrates that there is not much influence on the properties of compressed earth blocks produced with low and high compacting rates. It was further found that there are strong linear correlations between the compressive strength test and density, and density and the erosion. However, a weak linear correlation was found between tensile strength and compressive strength, and tensile strength and density.

  1. Effects of Cold and Compression on Edema.

    Science.gov (United States)

    Sloan, J. P.; And Others

    1988-01-01

    Investigation of ways to treat artificially induced acute inflammatory reactions in human tissue found that neither cooling or pressure alone reduced the swelling, while a combination of the two methods produced a significant reduction in swelling. (Author/CB)

  2. Digital cinema video compression

    Science.gov (United States)

    Husak, Walter

    2003-05-01

    The Motion Picture Industry began a transition from film based distribution and projection to digital distribution and projection several years ago. Digital delivery and presentation offers the prospect to increase the quality of the theatrical experience for the audience, reduce distribution costs to the distributors, and create new business opportunities for the theater owners and the studios. Digital Cinema also presents an opportunity to provide increased flexibility and security of the movies for the content owners and the theater operators. Distribution of content via electronic means to theaters is unlike any of the traditional applications for video compression. The transition from film-based media to electronic media represents a paradigm shift in video compression techniques and applications that will be discussed in this paper.

  3. Fingerprints in compressed strings

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Cording, Patrick Hagge

    2017-01-01

    In this paper we show how to construct a data structure for a string S of size N compressed into a context-free grammar of size n that supports efficient Karp–Rabin fingerprint queries to any substring of S. That is, given indices i and j, the answer to a query is the fingerprint of the substring S......[i,j]. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get O(log⁡N) query time, and for Linear SLPs (an SLP derivative that captures LZ78 compression and its variations) we get O(log⁡log⁡N) query time...

  4. WSNs Microseismic Signal Subsection Compression Algorithm Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Zhouzhou Liu

    2015-01-01

    Full Text Available For wireless network microseismic monitoring and the problems of low compression ratio and high energy consumption of communication, this paper proposes a segmentation compression algorithm according to the characteristics of the microseismic signals and the compression perception theory (CS used in the transmission process. The algorithm will be collected as a number of nonzero elements of data segmented basis, by reducing the number of combinations of nonzero elements within the segment to improve the accuracy of signal reconstruction, while taking advantage of the characteristics of compressive sensing theory to achieve a high compression ratio of the signal. Experimental results show that, in the quantum chaos immune clone refactoring (Q-CSDR algorithm for reconstruction algorithm, under the condition of signal sparse degree higher than 40, to be more than 0.4 of the compression ratio to compress the signal, the mean square error is less than 0.01, prolonging the network life by 2 times.

  5. Compressed sensing electron tomography

    International Nuclear Information System (INIS)

    Leary, Rowan; Saghi, Zineb; Midgley, Paul A.; Holland, Daniel J.

    2013-01-01

    The recent mathematical concept of compressed sensing (CS) asserts that a small number of well-chosen measurements can suffice to reconstruct signals that are amenable to sparse or compressible representation. In addition to powerful theoretical results, the principles of CS are being exploited increasingly across a range of experiments to yield substantial performance gains relative to conventional approaches. In this work we describe the application of CS to electron tomography (ET) reconstruction and demonstrate the efficacy of CS–ET with several example studies. Artefacts present in conventional ET reconstructions such as streaking, blurring of object boundaries and elongation are markedly reduced, and robust reconstruction is shown to be possible from far fewer projections than are normally used. The CS–ET approach enables more reliable quantitative analysis of the reconstructions as well as novel 3D studies from extremely limited data. - Highlights: • Compressed sensing (CS) theory and its application to electron tomography (ET) is described. • The practical implementation of CS–ET is outlined and its efficacy demonstrated with examples. • High fidelity tomographic reconstruction is possible from a small number of images. • The CS–ET reconstructions can be more reliably segmented and analysed quantitatively. • CS–ET is applicable to different image content by choice of an appropriate sparsifying transform

  6. Tissue irradiator

    International Nuclear Information System (INIS)

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-01-01

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in-vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood-carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170

  7. Failure behaviour of carbon/carbon composite under compression

    Energy Technology Data Exchange (ETDEWEB)

    Tushtev, K.; Grathwohl, G. [Universitaet Bremen, Advanced Ceramics, Bremen (Germany); Koch, D. [Deutsches Zentrum fuer Luft- und Raumfahrt, Institut fuer Bauweisen- und Konstruktionsforschung, Keramische Verbundstrukturen, Stuttgart (Germany); Horvath, J.

    2012-11-15

    In this work the properties of Carbon/Carbon-material are investigated under quasi-static compression and model-like characterized. The investigated material was produced by pyrolysis of a Carbon/Carbon - composite of bidirectionally reinforced fabric layers. For the compression tests, a device to prevent additional bending stress was made. The stress-strain behaviour of this material has been reproduced in various publications. This will be discussed on the fracture behaviour and compared the experimental results from the compression tests with the characteristics of tensile and shear tests. The different compression and tensile properties of stiffness, poisson and strength were assessed. Differences between the tensile and compression behaviour resulting from on-axis tests by micro buckling and crack closure and off-axis experiments by superimposed pressure normal stresses that lead to increased shear friction. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Compresso: Efficient Compression of Segmentation Data for Connectomics

    KAUST Repository

    Matejek, Brian

    2017-09-03

    Recent advances in segmentation methods for connectomics and biomedical imaging produce very large datasets with labels that assign object classes to image pixels. The resulting label volumes are bigger than the raw image data and need compression for efficient storage and transfer. General-purpose compression methods are less effective because the label data consists of large low-frequency regions with structured boundaries unlike natural image data. We present Compresso, a new compression scheme for label data that outperforms existing approaches by using a sliding window to exploit redundancy across border regions in 2D and 3D. We compare our method to existing compression schemes and provide a detailed evaluation on eleven biomedical and image segmentation datasets. Our method provides a factor of 600–2200x compression for label volumes, with running times suitable for practice.

  9. Compression of FASTQ and SAM format sequencing data.

    Directory of Open Access Journals (Sweden)

    James K Bonfield

    Full Text Available Storage and transmission of the data produced by modern DNA sequencing instruments has become a major concern, which prompted the Pistoia Alliance to pose the SequenceSqueeze contest for compression of FASTQ files. We present several compression entries from the competition, Fastqz and Samcomp/Fqzcomp, including the winning entry. These are compared against existing algorithms for both reference based compression (CRAM, Goby and non-reference based compression (DSRC, BAM and other recently published competition entries (Quip, SCALCE. The tools are shown to be the new Pareto frontier for FASTQ compression, offering state of the art ratios at affordable CPU costs. All programs are freely available on SourceForge. Fastqz: https://sourceforge.net/projects/fastqz/, fqzcomp: https://sourceforge.net/projects/fqzcomp/, and samcomp: https://sourceforge.net/projects/samcomp/.

  10. Compressive strength improvement for recycled concrete aggregate

    Directory of Open Access Journals (Sweden)

    Mohammed Dhiyaa

    2018-01-01

    Full Text Available Increasing amount of construction waste and, concrete remnants, in particular pose a serious problem. Concrete waste exist in large amounts, do not decay and need long time for disintegration. Therefore, in this work old demolished concrete is crashed and recycled to produce recycled concrete aggregate which can be reused in new concrete production. The effect of using recycled aggregate on concrete compressive strength has been experimentally investigated; silica fume admixture also is used to improve recycled concrete aggregate compressive strength. The main parameters in this study are recycled aggregate and silica fume admixture. The percent of recycled aggregate ranged from (0-100 %. While the silica fume ranged from (0-10 %. The experimental results show that the average concrete compressive strength decreases from 30.85 MPa to 17.58 MPa when the recycled aggregate percentage increased from 0% to 100%. While, when silica fume is used the concrete compressive strength increase again to 29.2 MPa for samples with 100% of recycled aggregate.

  11. Performance evaluation of breast image compression techniques

    Energy Technology Data Exchange (ETDEWEB)

    Anastassopoulos, G; Lymberopoulos, D [Wire Communications Laboratory, Electrical Engineering Department, University of Patras, Greece (Greece); Panayiotakis, G; Bezerianos, A [Medical Physics Department, School of Medicine, University of Patras, Greece (Greece)

    1994-12-31

    Novel diagnosis orienting tele working systems manipulate, store, and process medical data through real time communication - conferencing schemes. One of the most important factors affecting the performance of these systems is image handling. Compression algorithms can be applied to the medical images, in order to minimize : a) the volume of data to be stored in the database, b) the demanded bandwidth from the network, c) the transmission costs, and to minimize the speed of the transmitted data. In this paper an estimation of all the factors of the process that affect the presentation of breast images is made, from the time the images are produced from a modality, till the compressed images are stored, or transmitted in a Broadband network (e.g. B-ISDN). The images used were scanned images of the TOR(MAX) Leeds breast phantom, as well as typical breast images. A comparison of seven compression techniques has been done, based on objective criteria such as Mean Square Error (MSE), resolution, contrast, etc. The user can choose the appropriate compression ratio in order to achieve the desired image quality. (authors). 12 refs, 4 figs.

  12. Performance evaluation of breast image compression techniques

    International Nuclear Information System (INIS)

    Anastassopoulos, G.; Lymberopoulos, D.; Panayiotakis, G.; Bezerianos, A.

    1994-01-01

    Novel diagnosis orienting tele working systems manipulate, store, and process medical data through real time communication - conferencing schemes. One of the most important factors affecting the performance of these systems is image handling. Compression algorithms can be applied to the medical images, in order to minimize : a) the volume of data to be stored in the database, b) the demanded bandwidth from the network, c) the transmission costs, and to minimize the speed of the transmitted data. In this paper an estimation of all the factors of the process that affect the presentation of breast images is made, from the time the images are produced from a modality, till the compressed images are stored, or transmitted in a Broadband network (e.g. B-ISDN). The images used were scanned images of the TOR(MAX) Leeds breast phantom, as well as typical breast images. A comparison of seven compression techniques has been done, based on objective criteria such as Mean Square Error (MSE), resolution, contrast, etc. The user can choose the appropriate compression ratio in order to achieve the desired image quality. (authors)

  13. Compressive Transient Imaging

    KAUST Repository

    Sun, Qilin

    2017-04-01

    High resolution transient/3D imaging technology is of high interest in both scientific research and commercial application. Nowadays, all of the transient imaging methods suffer from low resolution or time consuming mechanical scanning. We proposed a new method based on TCSPC and Compressive Sensing to achieve a high resolution transient imaging with a several seconds capturing process. Picosecond laser sends a serious of equal interval pulse while synchronized SPAD camera\\'s detecting gate window has a precise phase delay at each cycle. After capturing enough points, we are able to make up a whole signal. By inserting a DMD device into the system, we are able to modulate all the frames of data using binary random patterns to reconstruct a super resolution transient/3D image later. Because the low fill factor of SPAD sensor will make a compressive sensing scenario ill-conditioned, We designed and fabricated a diffractive microlens array. We proposed a new CS reconstruction algorithm which is able to denoise at the same time for the measurements suffering from Poisson noise. Instead of a single SPAD senor, we chose a SPAD array because it can drastically reduce the requirement for the number of measurements and its reconstruction time. Further more, it not easy to reconstruct a high resolution image with only one single sensor while for an array, it just needs to reconstruct small patches and a few measurements. In this thesis, we evaluated the reconstruction methods using both clean measurements and the version corrupted by Poisson noise. The results show how the integration over the layers influence the image quality and our algorithm works well while the measurements suffer from non-trival Poisson noise. It\\'s a breakthrough in the areas of both transient imaging and compressive sensing.

  14. Fast Compressive Tracking.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Lei; Yang, Ming-Hsuan

    2014-10-01

    It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency, accuracy and robustness.

  15. SeqCompress: an algorithm for biological sequence compression.

    Science.gov (United States)

    Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz; Bajwa, Hassan

    2014-10-01

    The growth of Next Generation Sequencing technologies presents significant research challenges, specifically to design bioinformatics tools that handle massive amount of data efficiently. Biological sequence data storage cost has become a noticeable proportion of total cost in the generation and analysis. Particularly increase in DNA sequencing rate is significantly outstripping the rate of increase in disk storage capacity, which may go beyond the limit of storage capacity. It is essential to develop algorithms that handle large data sets via better memory management. This article presents a DNA sequence compression algorithm SeqCompress that copes with the space complexity of biological sequences. The algorithm is based on lossless data compression and uses statistical model as well as arithmetic coding to compress DNA sequences. The proposed algorithm is compared with recent specialized compression tools for biological sequences. Experimental results show that proposed algorithm has better compression gain as compared to other existing algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Comparative data compression techniques and multi-compression results

    International Nuclear Information System (INIS)

    Hasan, M R; Ibrahimy, M I; Motakabber, S M A; Ferdaus, M M; Khan, M N H

    2013-01-01

    Data compression is very necessary in business data processing, because of the cost savings that it offers and the large volume of data manipulated in many business applications. It is a method or system for transmitting a digital image (i.e., an array of pixels) from a digital data source to a digital data receiver. More the size of the data be smaller, it provides better transmission speed and saves time. In this communication, we always want to transmit data efficiently and noise freely. This paper will provide some compression techniques for lossless text type data compression and comparative result of multiple and single compression, that will help to find out better compression output and to develop compression algorithms

  17. Image splitting and remapping method for radiological image compression

    Science.gov (United States)

    Lo, Shih-Chung B.; Shen, Ellen L.; Mun, Seong K.

    1990-07-01

    A new decomposition method using image splitting and gray-level remapping has been proposed for image compression, particularly for images with high contrast resolution. The effects of this method are especially evident in our radiological image compression study. In our experiments, we tested the impact of this decomposition method on image compression by employing it with two coding techniques on a set of clinically used CT images and several laser film digitized chest radiographs. One of the compression techniques used was full-frame bit-allocation in the discrete cosine transform domain, which has been proven to be an effective technique for radiological image compression. The other compression technique used was vector quantization with pruned tree-structured encoding, which through recent research has also been found to produce a low mean-square-error and a high compression ratio. The parameters we used in this study were mean-square-error and the bit rate required for the compressed file. In addition to these parameters, the difference between the original and reconstructed images will be presented so that the specific artifacts generated by both techniques can be discerned by visual perception.

  18. Real-time lossless compression of depth streams

    KAUST Repository

    Schneider, Jens

    2017-08-17

    Various examples are provided for lossless compression of data streams. In one example, a Z-lossless (ZLS) compression method includes generating compacted depth information by condensing information of a depth image and a compressed binary representation of the depth image using histogram compaction and decorrelating the compacted depth information to produce bitplane slicing of residuals by spatial prediction. In another example, an apparatus includes imaging circuitry that can capture one or more depth images and processing circuitry that can generate compacted depth information by condensing information of a captured depth image and a compressed binary representation of the captured depth image using histogram compaction; decorrelate the compacted depth information to produce bitplane slicing of residuals by spatial prediction; and generate an output stream based upon the bitplane slicing.

  19. Economic and environmental evaluation of compressed-air cars

    International Nuclear Information System (INIS)

    Creutzig, Felix; Kammen, Daniel M; Papson, Andrew; Schipper, Lee

    2009-01-01

    Climate change and energy security require a reduction in travel demand, a modal shift, and technological innovation in the transport sector. Through a series of press releases and demonstrations, a car using energy stored in compressed air produced by a compressor has been suggested as an environmentally friendly vehicle of the future. We analyze the thermodynamic efficiency of a compressed-air car powered by a pneumatic engine and consider the merits of compressed air versus chemical storage of potential energy. Even under highly optimistic assumptions the compressed-air car is significantly less efficient than a battery electric vehicle and produces more greenhouse gas emissions than a conventional gas-powered car with a coal intensive power mix. However, a pneumatic-combustion hybrid is technologically feasible, inexpensive and could eventually compete with hybrid electric vehicles.

  20. Real-time lossless compression of depth streams

    KAUST Repository

    Schneider, Jens

    2017-01-01

    Various examples are provided for lossless compression of data streams. In one example, a Z-lossless (ZLS) compression method includes generating compacted depth information by condensing information of a depth image and a compressed binary representation of the depth image using histogram compaction and decorrelating the compacted depth information to produce bitplane slicing of residuals by spatial prediction. In another example, an apparatus includes imaging circuitry that can capture one or more depth images and processing circuitry that can generate compacted depth information by condensing information of a captured depth image and a compressed binary representation of the captured depth image using histogram compaction; decorrelate the compacted depth information to produce bitplane slicing of residuals by spatial prediction; and generate an output stream based upon the bitplane slicing.

  1. Analysis by compression

    DEFF Research Database (Denmark)

    Meredith, David

    MEL is a geometric music encoding language designed to allow for musical objects to be encoded parsimoniously as sets of points in pitch-time space, generated by performing geometric transformations on component patterns. MEL has been implemented in Java and coupled with the SIATEC pattern...... discovery algorithm to allow for compact encodings to be generated automatically from in extenso note lists. The MEL-SIATEC system is founded on the belief that music analysis and music perception can be modelled as the compression of in extenso descriptions of musical objects....

  2. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...

  3. Compressive full waveform lidar

    Science.gov (United States)

    Yang, Weiyi; Ke, Jun

    2017-05-01

    To avoid high bandwidth detector, fast speed A/D converter, and large size memory disk, a compressive full waveform LIDAR system, which uses a temporally modulated laser instead of a pulsed laser, is studied in this paper. Full waveform data from NEON (National Ecological Observatory Network) are used. Random binary patterns are used to modulate the source. To achieve 0.15 m ranging resolution, a 100 MSPS A/D converter is assumed to make measurements. SPIRAL algorithm with canonical basis is employed when Poisson noise is considered in the low illuminated condition.

  4. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  5. Infiltrative lipoma compressing the spinal cord in 2 large-breed dogs.

    Science.gov (United States)

    Hobert, Marc K; Brauer, Christina; Dziallas, Peter; Gerhauser, Ingo; Algermissen, Dorothee; Tipold, Andrea; Stein, Veronika M

    2013-01-01

    Two cases of infiltrative lipomas compressing the spinal cord and causing nonambulatory paraparesis in 2 large-breed dogs are reported. Magnetic resonance imaging (MRI) revealed severe extradural spinal cord compression by inhomogenous masses that infiltrated the adjacent tissues and the muscles of the spine in both dogs. The presumptive clinical diagnoses were infiltrative lipomas, which were confirmed by histopathology. In rare cases infiltrative lipomas are able to compress the spinal cord by the agressive growth of invasive adipocytes causing neurological deficits.

  6. Analysis of a combined Rankine-vapour-compression refrigeration cycle

    International Nuclear Information System (INIS)

    Aphornratana, Satha; Sriveerakul, Thanarath

    2010-01-01

    This paper describes a theoretical analysis of a heat-powered refrigeration cycle, a combined Rankine-vapour-compression refrigeration cycle. This refrigeration cycle combines an Organic Rankine Cycle and a vapour-compression cycle. The cycle can be powered by low grade thermal energy as low as 60 deg. C and can produce cooling temperature as low as -10 deg. C. In the analysis, two combined Rankine-vapour-compression refrigeration cycles were investigated: the system with R22 and the system with R134a. Calculated COP values between 0.1 and 0.6 of both the systems were found.

  7. Relationship between medical compression and intramuscular pressure as an explanation of a compression paradox.

    Science.gov (United States)

    Uhl, J-F; Benigni, J-P; Cornu-Thenard, A; Fournier, J; Blin, E

    2015-06-01

    Using standing magnetic resonance imaging (MRI), we recently showed that medical compression, providing an interface pressure (IP) of 22 mmHg, significantly compressed the deep veins of the leg but not, paradoxically, superficial varicose veins. To provide an explanation for this compression paradox by studying the correlation between the IP exerted by medical compression and intramuscular pressure (IMP). In 10 legs of five healthy subjects, we studied the effects of different IPs on the IMP of the medial gastrocnemius muscle. The IP produced by a cuff manometer was verified by a Picopress® device. The IMP was measured with a 21G needle connected to a manometer. Pressure data were recorded in the prone and standing positions with cuff manometer pressures from 0 to 50 mmHg. In the prone position, an IP of less than 20 did not significantly change the IMP. On the contrary, a perfect linear correlation with the IMP (r = 0.99) was observed with an IP from 20 to 50 mmHg. We found the same correlation in the standing position. We found that an IP of 22 mmHg produced a significant IMP increase from 32 to 54 mmHg, in the standing position. At the same time, the subcutaneous pressure is only provided by the compression device, on healthy subjects. In other words, the subcutaneous pressure plus the IP is only a little higher than 22 mmHg-a pressure which is too low to reduce the caliber of the superficial veins. This is in accordance with our standing MRI 3D anatomical study which showed that, paradoxically, when applying low pressures (IP), the deep veins are compressed while the superficial veins are not. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  8. Compressed air massage hastens healing of the diabetic foot.

    Science.gov (United States)

    Mars, M; Desai, Y; Gregory, M A

    2008-02-01

    The management of diabetic foot ulcers remains a problem. A treatment modality that uses compressed air massage has been developed as a supplement to standard surgical and medical treatment. Compressed air massage is thought to improve local tissue oxygenation around ulcers. The aim of this study was to determine whether the addition of compressed air massage influences the rate of healing of diabetic ulcers. Sixty consecutive patients with diabetes, admitted to one hospital for urgent surgical management of diabetic foot ulcers, were randomized into two groups. Both groups received standard medical and surgical management of their diabetes and ulcer. In addition, one group received 15-20 min of compressed air massage, at 1 bar pressure, daily, for 5 days a week, to the foot and the tissue around the ulcer. Healing time was calculated as the time from admission to the time of re-epithelialization. Fifty-seven patients completed the trial; 28 received compressed air massage. There was no difference in the mean age, Wagner score, ulcer size, pulse status, or peripheral sensation in the two groups. The time to healing in the compressed air massage group was significantly reduced: 58.1 +/- 22.3 days (95% confidence interval: 49.5-66.6) versus 82.7 +/- 30.7 days (95% confidence interval: 70.0-94.3) (P = 0.001). No adverse effects in response to compressed air massage were noted. The addition of compressed air massage to standard medical and surgical management of diabetic ulcers appears to enhance ulcer healing. Further studies with this new treatment modality are warranted.

  9. Free compression tube. Applications

    Science.gov (United States)

    Rusu, Ioan

    2012-11-01

    During the flight of vehicles, their propulsion energy must overcome gravity, to ensure the displacement of air masses on vehicle trajectory, to cover both energy losses from the friction between a solid surface and the air and also the kinetic energy of reflected air masses due to the impact with the flying vehicle. The flight optimization by increasing speed and reducing fuel consumption has directed research in the aerodynamics field. The flying vehicles shapes obtained through studies in the wind tunnel provide the optimization of the impact with the air masses and the airflow along the vehicle. By energy balance studies for vehicles in flight, the author Ioan Rusu directed his research in reducing the energy lost at vehicle impact with air masses. In this respect as compared to classical solutions for building flight vehicles aerodynamic surfaces which reduce the impact and friction with air masses, Ioan Rusu has invented a device which he named free compression tube for rockets, registered with the State Office for Inventions and Trademarks of Romania, OSIM, deposit f 2011 0352. Mounted in front of flight vehicles it eliminates significantly the impact and friction of air masses with the vehicle solid. The air masses come into contact with the air inside the free compression tube and the air-solid friction is eliminated and replaced by air to air friction.

  10. Photon compression in cylinders

    International Nuclear Information System (INIS)

    Ensley, D.L.

    1977-01-01

    It has been shown theoretically that intense microwave radiation is absorbed non-classically by a newly enunciated mechanism when interacting with hydrogen plasma. Fields > 1 Mg, lambda > 1 mm are within this regime. The predicted absorption, approximately P/sub rf/v/sub theta/sup e/, has not yet been experimentally confirmed. The applications of such a coupling are many. If microwave bursts approximately > 5 x 10 14 watts, 5 ns can be generated, the net generation of power from pellet fusion as well as various military applications becomes feasible. The purpose, then, for considering gas-gun photon compression is to obtain the above experimental capability by converting the gas kinetic energy directly into microwave form. Energies of >10 5 joules cm -2 and powers of >10 13 watts cm -2 are potentially available for photon interaction experiments using presently available technology. The following topics are discussed: microwave modes in a finite cylinder, injection, compression, switchout operation, and system performance parameter scaling

  11. Fingerprints in Compressed Strings

    DEFF Research Database (Denmark)

    Bille, Philip; Cording, Patrick Hagge; Gørtz, Inge Li

    2013-01-01

    The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong properties has been used in many string algorithms. In this paper we show how to construct a data structure for a string S of size N compressed by a context-free grammar of size n that answers fingerprint queries...... derivative that captures LZ78 compression and its variations) we get O(loglogN) query time. Hence, our data structures has the same time and space complexity as for random access in SLPs. We utilize the fingerprint data structures to solve the longest common extension problem in query time O(logNlogℓ) and O....... That is, given indices i and j, the answer to a query is the fingerprint of the substring S[i,j]. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get O(logN) query time, and for Linear SLPs (an SLP...

  12. Image-Data Compression Using Edge-Optimizing Algorithm for WFA Inference.

    Science.gov (United States)

    Culik, Karel II; Kari, Jarkko

    1994-01-01

    Presents an inference algorithm that produces a weighted finite automata (WFA), in particular, the grayness functions of graytone images. Image-data compression results based on the new inference algorithm produces a WFA with a relatively small number of edges. Image-data compression results alone and in combination with wavelets are discussed.…

  13. Hydrogels for precision meniscus tissue engineering: a comprehensive review.

    Science.gov (United States)

    Rey-Rico, Ana; Cucchiarini, Magali; Madry, Henning

    The meniscus plays a pivotal role to preserve the knee joint homeostasis. Lesions to the meniscus are frequent, have a reduced ability to heal, and may induce tibiofemoral osteoarthritis. Current reconstructive therapeutic options mainly focus on the treatment of lesions in the peripheral vascularized region. In contrast, few approaches are capable of stimulating repair of damaged meniscal tissue in the central, avascular portion. Tissue engineering approaches are of high interest to repair or replace damaged meniscus tissue in this area. Hydrogel-based biomaterials are of special interest for meniscus repair as its inner part contains relatively high proportions of proteoglycans which are responsible for the viscoelastic compressive properties and hydration grade. Hydrogels exhibiting high water content and providing a specific three-dimensional (3D) microenvironment may be engineered to precisely resemble this topographical composition of the meniscal tissue. Different polymers of both natural and synthetic origins have been manipulated to produce hydrogels hosting relevant cell populations for meniscus regeneration and provide platforms for meniscus tissue replacement. So far, these compounds have been employed to design controlled delivery systems of bioactive molecules involved in meniscal reparative processes or to host genetically modified cells as a means to enhance meniscus repair. This review describes the most recent advances on the use of hydrogels as platforms for precision meniscus tissue engineering.

  14. Compressive sensing in medical imaging.

    Science.gov (United States)

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  15. Comparison of the biomechanical tensile and compressive properties of decellularised and natural porcine meniscus.

    Science.gov (United States)

    Abdelgaied, A; Stanley, M; Galfe, M; Berry, H; Ingham, E; Fisher, J

    2015-06-01

    Meniscal repair is widely used as a treatment for meniscus injury. However, where meniscal damage has progressed such that repair is not possible, approaches for partial meniscus replacement are now being developed which have the potential to restore the functional role of the meniscus, in stabilising the knee joint, absorbing and distributing stress during loading, and prevent early degenerative joint disease. One attractive potential solution to the current lack of meniscal replacements is the use of decellularised natural biological scaffolds, derived from xenogeneic tissues, which are produced by treating the native tissue to remove the immunogenic cells. The current study investigated the effect of decellularisation on the biomechanical tensile and compressive (indentation and unconfined) properties of the porcine medial meniscus through an experimental-computational approach. The results showed that decellularised medial porcine meniscus maintained the tensile biomechanical properties of the native meniscus, but had lower tensile initial elastic modulus. In compression, decellularised medial porcine meniscus generally showed lower elastic modulus and higher permeability compared to that of the native meniscus. These changes in the biomechanical properties, which ranged from less than 1% to 40%, may be due to the reduction of glycosaminoglycans (GAG) content during the decellularisation process. The predicted biomechanical properties for the decellularised medial porcine meniscus were within the reported range for the human meniscus, making it an appropriate biological scaffold for consideration as a partial meniscus replacement. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Effects of errors in velocity tilt on maximum longitudinal compression during neutralized drift compression of intense beam pulses: II. Analysis of experimental data of the Neutralized Drift Compression eXperiment-I (NDCX-I)

    International Nuclear Information System (INIS)

    Massidda, Scott; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.; Lidia, Steven M.; Seidl, Peter; Friedman, Alex

    2012-01-01

    Neutralized drift compression offers an effective means for particle beam focusing and current amplification with applications to heavy ion fusion. In the Neutralized Drift Compression eXperiment-I (NDCX-I), a non-relativistic ion beam pulse is passed through an inductive bunching module that produces a longitudinal velocity modulation. Due to the applied velocity tilt, the beam pulse compresses during neutralized drift. The ion beam pulse can be compressed by a factor of more than 100; however, errors in the velocity modulation affect the compression ratio in complex ways. We have performed a study of how the longitudinal compression of a typical NDCX-I ion beam pulse is affected by the initial errors in the acquired velocity modulation. Without any voltage errors, an ideal compression is limited only by the initial energy spread of the ion beam, ΔΕ b . In the presence of large voltage errors, δU⪢ΔE b , the maximum compression ratio is found to be inversely proportional to the geometric mean of the relative error in velocity modulation and the relative intrinsic energy spread of the beam ions. Although small parts of a beam pulse can achieve high local values of compression ratio, the acquired velocity errors cause these parts to compress at different times, limiting the overall compression of the ion beam pulse.

  17. Spinal cord compression due to epidural extramedullary haematopoiesis in thalassaemia: MRI

    International Nuclear Information System (INIS)

    Aydingoez, Ue.; Oto, A.; Cila, A.

    1997-01-01

    Spinal epidural extramedullary haematopoiesis is very rare in thalassaemia. A 27-year-old man with thalassaemia intermedia presented with symptoms and signs of spinal cord compression. MRI showed a thoracic spinal epidural mass, representing extramedullary haematopoietic tissue, compressing the spinal cord. Following radiotherapy, serial MRI revealed regression of the epidural mass and gradual resolution of spinal cord oedema. (orig.)

  18. Introduction to compressible fluid flow

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices

  19. Mammographic compression in Asian women.

    Science.gov (United States)

    Lau, Susie; Abdul Aziz, Yang Faridah; Ng, Kwan Hoong

    2017-01-01

    To investigate: (1) the variability of mammographic compression parameters amongst Asian women; and (2) the effects of reducing compression force on image quality and mean glandular dose (MGD) in Asian women based on phantom study. We retrospectively collected 15818 raw digital mammograms from 3772 Asian women aged 35-80 years who underwent screening or diagnostic mammography between Jan 2012 and Dec 2014 at our center. The mammograms were processed using a volumetric breast density (VBD) measurement software (Volpara) to assess compression force, compression pressure, compressed breast thickness (CBT), breast volume, VBD and MGD against breast contact area. The effects of reducing compression force on image quality and MGD were also evaluated based on measurement obtained from 105 Asian women, as well as using the RMI156 Mammographic Accreditation Phantom and polymethyl methacrylate (PMMA) slabs. Compression force, compression pressure, CBT, breast volume, VBD and MGD correlated significantly with breast contact area (pAsian women. The median compression force should be about 8.1 daN compared to the current 12.0 daN. Decreasing compression force from 12.0 daN to 9.0 daN increased CBT by 3.3±1.4 mm, MGD by 6.2-11.0%, and caused no significant effects on image quality (p>0.05). Force-standardized protocol led to widely variable compression parameters in Asian women. Based on phantom study, it is feasible to reduce compression force up to 32.5% with minimal effects on image quality and MGD.

  20. AIRMaster: Compressed air system audit software

    International Nuclear Information System (INIS)

    Wheeler, G.M.; Bessey, E.G.; McGill, R.D.; Vischer, K.

    1997-01-01

    The project goal was to develop a software tool, AIRMaster, and a methodology for performing compressed air system audits. AIRMaster and supporting manuals are designed for general auditors or plant personnel to evaluate compressed air system operation with simple instrumentation during a short-term audit. AIRMaster provides a systematic approach to compressed air system audits, analyzing collected data, and reporting results. AIRMaster focuses on inexpensive Operation and Maintenance (O and M) measures, such as fixing air leaks and improving controls that can significantly improve performance and reliability of the compressed air system, without significant risk to production. An experienced auditor can perform an audit, analyze collected data, and produce results in 2--3 days. AIRMaster reduces the cost of an audit, thus freeing funds to implement recommendations. The AIRMaster package includes an Audit Manual, Software and User's manual, Analysis Methodology Manual, and a Case Studies summary report. It also includes a Self-Guided Tour booklet to help users quickly screen a plant for efficiency improvement potentials, and an Industrial Compressed Air Systems Energy Efficiency Guidebook. AIRMaster proved to be a fast and effective audit tool. In sever audits AIRMaster identified energy savings of 4,056,000 kWh, or 49.2% of annual compressor energy use, for a cost savings of $152,000. Total implementation costs were $94,700 for a project payback period of 0.6 years. Available airflow increased between 11% and 51% of plant compressor capacity, leading to potential capital benefits from 40% to 230% of first year energy savings

  1. Microbuckling compression failure of a radiation-induced wood/polymer composite

    International Nuclear Information System (INIS)

    Boey, F.Y.C.

    1990-01-01

    A wood/polymer composite was produced by impregnating Ramin wood with methyl methacrylate monomer and subsequently polymerizing it by gamma irradiation. To assess the improvement in compression strength of the wood caused by the polymer impregnation, a microbuckling compression failure mechanism was used to model the compression failure of the composite. Such a mechanism was found to predict a linear relationship between the compression strength and the percentage polymer impregnation (by weight). Uniaxial compression test results at 45(±5)% and 90(±5)% relative humidity levels, after being statistically analysed, showed that such a linear relationship was valid for up to 100% polymer impregnation. (author)

  2. Adiabatic compression and radiative compression of magnetic fields

    International Nuclear Information System (INIS)

    Woods, C.H.

    1980-01-01

    Flux is conserved during mechanical compression of magnetic fields for both nonrelativistic and relativistic compressors. However, the relativistic compressor generates radiation, which can carry up to twice the energy content of the magnetic field compressed adiabatically. The radiation may be either confined or allowed to escape

  3. Light-weight reference-based compression of FASTQ data.

    Science.gov (United States)

    Zhang, Yongpeng; Li, Linsen; Yang, Yanli; Yang, Xiao; He, Shan; Zhu, Zexuan

    2015-06-09

    The exponential growth of next generation sequencing (NGS) data has posed big challenges to data storage, management and archive. Data compression is one of the effective solutions, where reference-based compression strategies can typically achieve superior compression ratios compared to the ones not relying on any reference. This paper presents a lossless light-weight reference-based compression algorithm namely LW-FQZip to compress FASTQ data. The three components of any given input, i.e., metadata, short reads and quality score strings, are first parsed into three data streams in which the redundancy information are identified and eliminated independently. Particularly, well-designed incremental and run-length-limited encoding schemes are utilized to compress the metadata and quality score streams, respectively. To handle the short reads, LW-FQZip uses a novel light-weight mapping model to fast map them against external reference sequence(s) and produce concise alignment results for storage. The three processed data streams are then packed together with some general purpose compression algorithms like LZMA. LW-FQZip was evaluated on eight real-world NGS data sets and achieved compression ratios in the range of 0.111-0.201. This is comparable or superior to other state-of-the-art lossless NGS data compression algorithms. LW-FQZip is a program that enables efficient lossless FASTQ data compression. It contributes to the state of art applications for NGS data storage and transmission. LW-FQZip is freely available online at: http://csse.szu.edu.cn/staff/zhuzx/LWFQZip.

  4. Waves and compressible flow

    CERN Document Server

    Ockendon, Hilary

    2016-01-01

    Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications.  New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises.  Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science.   Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...

  5. Application specific compression : final report.

    Energy Technology Data Exchange (ETDEWEB)

    Melgaard, David Kennett; Byrne, Raymond Harry; Myers, Daniel S.; Harrison, Carol D.; Lee, David S.; Lewis, Phillip J.; Carlson, Jeffrey J.

    2008-12-01

    With the continuing development of more capable data gathering sensors, comes an increased demand on the bandwidth for transmitting larger quantities of data. To help counteract that trend, a study was undertaken to determine appropriate lossy data compression strategies for minimizing their impact on target detection and characterization. The survey of current compression techniques led us to the conclusion that wavelet compression was well suited for this purpose. Wavelet analysis essentially applies a low-pass and high-pass filter to the data, converting the data into the related coefficients that maintain spatial information as well as frequency information. Wavelet compression is achieved by zeroing the coefficients that pertain to the noise in the signal, i.e. the high frequency, low amplitude portion. This approach is well suited for our goal because it reduces the noise in the signal with only minimal impact on the larger, lower frequency target signatures. The resulting coefficients can then be encoded using lossless techniques with higher compression levels because of the lower entropy and significant number of zeros. No significant signal degradation or difficulties in target characterization or detection were observed or measured when wavelet compression was applied to simulated and real data, even when over 80% of the coefficients were zeroed. While the exact level of compression will be data set dependent, for the data sets we studied, compression factors over 10 were found to be satisfactory where conventional lossless techniques achieved levels of less than 3.

  6. Streaming Compression of Hexahedral Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  7. Data Compression with Linear Algebra

    OpenAIRE

    Etler, David

    2015-01-01

    A presentation on the applications of linear algebra to image compression. Covers entropy, the discrete cosine transform, thresholding, quantization, and examples of images compressed with DCT. Given in Spring 2015 at Ocean County College as part of the honors program.

  8. Characterization of focal muscle compression under impact loading

    Science.gov (United States)

    Butler, B. J.; Sory, D. R.; Nguyen, T.-T. N.; Proud, W. G.; Williams, A.; Brown, K. A.

    2017-01-01

    In modern wars over 70% of combat wounds are to the extremities. These injuries are characterized by disruption and contamination of the limb soft tissue envelope. The extent of this tissue trauma and contamination determine the outcome of the extremity injury. In military injury, common post-traumatic complications at amputation sites include heterotopic ossification (formation of bone in soft tissue), and severe soft tissue and bone infections. We are currently developing a model of soft tissue injury that recreates pathologies observed in combat injuries. Here we present characterization of a controlled focal compression of the rabbit flexor carpi ulnaris (FCU) muscle group. The FCU was previously identified as a suitable site for studying impact injury because its muscle belly can easily be mobilized from the underlying bone without disturbing anatomical alignment in the limb. We show how macroscopic changes in tissue organization, as visualized using optical microscopy, can be correlated with data from temporally resolved traces of loading conditions.

  9. Compressive Sensing in Communication Systems

    DEFF Research Database (Denmark)

    Fyhn, Karsten

    2013-01-01

    . The need for cheaper, smarter and more energy efficient wireless devices is greater now than ever. This thesis addresses this problem and concerns the application of the recently developed sampling theory of compressive sensing in communication systems. Compressive sensing is the merging of signal...... acquisition and compression. It allows for sampling a signal with a rate below the bound dictated by the celebrated Shannon-Nyquist sampling theorem. In some communication systems this necessary minimum sample rate, dictated by the Shannon-Nyquist sampling theorem, is so high it is at the limit of what...... with using compressive sensing in communication systems. The main contribution of this thesis is two-fold: 1) a new compressive sensing hardware structure for spread spectrum signals, which is simpler than the current state-of-the-art, and 2) a range of algorithms for parameter estimation for the class...

  10. Study on conversion relationships of compressive strength indexes for recycled lightweight aggregate concrete

    Science.gov (United States)

    Zhang, Xiang-gang; Yang, Jian-hui; Kuang, Xiao-mei

    2017-01-01

    In order to study cube compressive strength and axial compressive strength of recycled lightweight aggregate concrete(RLAC), and conversion relationship between the two, with the replacement rate of recycled lightweight coarse aggregate as change parameters, 15 standard cube test specimens and 15 standard prism test specimens were produced to carry out the test. Then compressive strength of test specimens were measured, and the law of different replacement rate of recycled lightweight coarse aggregate influencing compressive strength of RLAC was analyzed, as the method of statistical regression adopted, the conversion relationships between of cube compressive strength and axial compressive strength of RLAC was obtained. It is shown that compressive strength of RLAC are lower than compressive strength of ordinary concrete; and that compressive strength of RLAC gradually decreases as replacement rate of recycled lightweight coarse aggregate increases; as well as, the conversion relationship between axial compressive strength and cube compressive strength of RLAC is different from ordinary concrete; based on the experimental data, conversion relationship formula between compressive strength indexes of RLAC was established. It is suggested that the replacement rate of recycled lightweight aggregate should be controlled within 25%.

  11. Estimates of post-acceleration longitudinal bunch compression

    International Nuclear Information System (INIS)

    Judd, D.L.

    1977-01-01

    A simple analytic method is developed, based on physical approximations, for treating transient implosive longitudinal compression of bunches of heavy ions in an accelerator system for ignition of inertial-confinement fusion pellet targets. Parametric dependences of attainable compressions and of beam path lengths and times during compression are indicated for ramped pulsed-gap lines, rf systems in storage and accumulator rings, and composite systems, including sections of free drift. It appears that for high-confidence pellets in a plant producing 1000 MW of electric power the needed pulse lengths cannot be obtained with rings alone unless an unreasonably large number of them are used, independent of choice of rf harmonic number. In contrast, pulsed-gap lines alone can meet this need. The effects of an initial inward compressive drift and of longitudinal emittance are included

  12. Wellhead gas compression extends life of beam-pumped wells

    International Nuclear Information System (INIS)

    Sherry, M.J.; Fairchild, P.W.

    1992-01-01

    This paper reports that operators of marginal oil and gas wells often can avoid having to shut them in by compressing gas from the back side of the casing at the well head and delivering it into the flowline. This process can reduce the back pressure at the face of the producing formation, which allows additional oil and gas to be produced and extends the economical reserves. Small, low-horsepower stationary compressors or a walking beam compressor (WBC) may be used for this purpose. A portable compressor test unit recently has been employed to evaluate wells that are possible candidates for wellhead compression as another cost cutting measure

  13. Evaluation of mammogram compression efficiency

    International Nuclear Information System (INIS)

    Przelaskowski, A.; Surowski, P.; Kukula, A.

    2005-01-01

    Lossy image coding significantly improves performance over lossless methods, but a reliable control of diagnostic accuracy regarding compressed images is necessary. The acceptable range of compression ratios must be safe with respect to as many objective criteria as possible. This study evaluates the compression efficiency of digital mammograms in both numerically lossless (reversible) and lossy (irreversible) manner. Effective compression methods and concepts were examined to increase archiving and telediagnosis performance. Lossless compression as a primary applicable tool for medical applications was verified on a set 131 mammograms. Moreover, nine radiologists participated in the evaluation of lossy compression of mammograms. Subjective rating of diagnostically important features brought a set of mean rates given for each test image. The lesion detection test resulted in binary decision data analyzed statistically. The radiologists rated and interpreted malignant and benign lesions, representative pathology symptoms, and other structures susceptible to compression distortions contained in 22 original and 62 reconstructed mammograms. Test mammograms were collected in two radiology centers for three years and then selected according to diagnostic content suitable for an evaluation of compression effects. Lossless compression efficiency of the tested coders varied, but CALIC, JPEG-LS, and SPIHT performed the best. The evaluation of lossy compression effects affecting detection ability was based on ROC-like analysis. Assuming a two-sided significance level of p=0.05, the null hypothesis that lower bit rate reconstructions are as useful for diagnosis as the originals was false in sensitivity tests with 0.04 bpp mammograms. However, verification of the same hypothesis with 0.1 bpp reconstructions suggested their acceptance. Moreover, the 1 bpp reconstructions were rated very similarly to the original mammograms in the diagnostic quality evaluation test, but the

  14. Cloud solution for histopathological image analysis using region of interest based compression.

    Science.gov (United States)

    Kanakatte, Aparna; Subramanya, Rakshith; Delampady, Ashik; Nayak, Rajarama; Purushothaman, Balamuralidhar; Gubbi, Jayavardhana

    2017-07-01

    Recent technological gains have led to the adoption of innovative cloud based solutions in medical imaging field. Once the medical image is acquired, it can be viewed, modified, annotated and shared on many devices. This advancement is mainly due to the introduction of Cloud computing in medical domain. Tissue pathology images are complex and are normally collected at different focal lengths using a microscope. The single whole slide image contains many multi resolution images stored in a pyramidal structure with the highest resolution image at the base and the smallest thumbnail image at the top of the pyramid. Highest resolution image will be used for tissue pathology diagnosis and analysis. Transferring and storing such huge images is a big challenge. Compression is a very useful and effective technique to reduce the size of these images. As pathology images are used for diagnosis, no information can be lost during compression (lossless compression). A novel method of extracting the tissue region and applying lossless compression on this region and lossy compression on the empty regions has been proposed in this paper. The resulting compression ratio along with lossless compression on tissue region is in acceptable range allowing efficient storage and transmission to and from the Cloud.

  15. Compression etiology in tendinopathy.

    Science.gov (United States)

    Almekinders, Louis C; Weinhold, Paul S; Maffulli, Nicola

    2003-10-01

    Recent studies have emphasized that the etiology of tendinopathy is not as simple as was once thought. The etiology is likely to be multifactorial. Etiologic factors may include some of the traditional factors such as overuse, inflexibility, and equipment problems; however, other factors need to be considered as well, such as age-related tendon degeneration and biomechanical considerations as outlined in this article. More research is needed to determine the significance of stress-shielding and compression in tendinopathy. If they are confirmed to play a role, this finding may significantly alter our approach in both prevention and in treatment through exercise therapy. The current biomechanical studies indicate that certain joint positions are more likely to place tensile stress on the area of the tendon commonly affected by tendinopathy. These joint positions seem to be different than the traditional positions for stretching exercises used for prevention and rehabilitation of tendinopathic conditions. Incorporation of different joint positions during stretching exercises may exert more uniform, controlled tensile stress on these affected areas of the tendon and avoid stresshielding. These exercises may be able to better maintain the mechanical strength of that region of the tendon and thereby avoid injury. Alternatively, they could more uniformly stress a healing area of the tendon in a controlled manner, and thereby stimulate healing once an injury has occurred. Additional work will have to prove if a change in rehabilitation exercises is more efficacious that current techniques.

  16. Compressible Vortex Ring

    Science.gov (United States)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  17. Advances in compressible turbulent mixing

    International Nuclear Information System (INIS)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately

  18. Mammography image compression using Wavelet

    International Nuclear Information System (INIS)

    Azuhar Ripin; Md Saion Salikin; Wan Hazlinda Ismail; Asmaliza Hashim; Norriza Md Isa

    2004-01-01

    Image compression plays an important role in many applications like medical imaging, televideo conferencing, remote sensing, document and facsimile transmission, which depend on the efficient manipulation, storage, and transmission of binary, gray scale, or color images. In Medical imaging application such Picture Archiving and Communication System (PACs), the image size or image stream size is too large and requires a large amount of storage space or high bandwidth for communication. Image compression techniques are divided into two categories namely lossy and lossless data compression. Wavelet method used in this project is a lossless compression method. In this method, the exact original mammography image data can be recovered. In this project, mammography images are digitized by using Vider Sierra Plus digitizer. The digitized images are compressed by using this wavelet image compression technique. Interactive Data Language (IDLs) numerical and visualization software is used to perform all of the calculations, to generate and display all of the compressed images. Results of this project are presented in this paper. (Author)

  19. Advances in compressible turbulent mixing

    Energy Technology Data Exchange (ETDEWEB)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  20. Compressed Air Energy Storage in Denmark

    DEFF Research Database (Denmark)

    Salgi, Georges Garabeth; Lund, Henrik

    2006-01-01

    is analysed with regard to the Danish energy system. In Denmark, wind power supplies 20% of the electricity demand and 50% is produced by combined heat and power (CHP). The operation of CAES requires high electricity price volatility. However, in the Nordic region, large hydro capacities have so far kept......Compressed air energy storage system (CAES) is a technology which can be used for integrating more fluctuating renewable energy sources into the electricity supply system. On a utility scale, CAES has a high feasibility potential compared to other storage technologies. Here, the technology...

  1. Context-Aware Image Compression.

    Directory of Open Access Journals (Sweden)

    Jacky C K Chan

    Full Text Available We describe a physics-based data compression method inspired by the photonic time stretch wherein information-rich portions of the data are dilated in a process that emulates the effect of group velocity dispersion on temporal signals. With this coding operation, the data can be downsampled at a lower rate than without it. In contrast to previous implementation of the warped stretch compression, here the decoding can be performed without the need of phase recovery. We present rate-distortion analysis and show improvement in PSNR compared to compression via uniform downsampling.

  2. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness

    2014-01-01

    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  3. Effect of Kollidon VA®64 particle size and morphology as directly compressible excipient on tablet compression properties.

    Science.gov (United States)

    Chaudhary, R S; Patel, C; Sevak, V; Chan, M

    2018-01-01

    The study evaluates use of Kollidon VA ® 64 and a combination of Kollidon VA ® 64 with Kollidon VA ® 64 Fine as excipient in direct compression process of tablets. The combination of the two grades of material is evaluated for capping, lamination and excessive friability. Inter particulate void space is higher for such excipient due to the hollow structure of the Kollidon VA ® 64 particles. During tablet compression air remains trapped in the blend exhibiting poor compression with compromised physical properties of the tablets. Composition of Kollidon VA ® 64 and Kollidon VA ® 64 Fine is evaluated by design of experiment (DoE). A scanning electron microscopy (SEM) of two grades of Kollidon VA ® 64 exhibits morphological differences between coarse and fine grade. The tablet compression process is evaluated with a mix consisting of entirely Kollidon VA ® 64 and two mixes containing Kollidon VA ® 64 and Kollidon VA ® 64 Fine in ratio of 77:23 and 65:35. A statistical modeling on the results from the DoE trials resulted in the optimum composition for direct tablet compression as combination of Kollidon VA ® 64 and Kollidon VA ® 64 Fine in ratio of 77:23. This combination compressed with the predicted parameters based on the statistical modeling and applying main compression force between 5 and 15 kN, pre-compression force between 2 and 3 kN, feeder speed fixed at 25 rpm and compression range of 45-49 rpm produced tablets with hardness ranging between 19 and 21 kp, with no friability, capping, or lamination issue.

  4. Efficient Lossy Compression for Compressive Sensing Acquisition of Images in Compressive Sensing Imaging Systems

    Directory of Open Access Journals (Sweden)

    Xiangwei Li

    2014-12-01

    Full Text Available Compressive Sensing Imaging (CSI is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4~2 dB comparing with current state-of-the-art, while maintaining a low computational complexity.

  5. Image Compression Based On Wavelet, Polynomial and Quadtree

    Directory of Open Access Journals (Sweden)

    Bushra A. SULTAN

    2011-01-01

    Full Text Available In this paper a simple and fast image compression scheme is proposed, it is based on using wavelet transform to decompose the image signal and then using polynomial approximation to prune the smoothing component of the image band. The architect of proposed coding scheme is high synthetic where the error produced due to polynomial approximation in addition to the detail sub-band data are coded using both quantization and Quadtree spatial coding. As a last stage of the encoding process shift encoding is used as a simple and efficient entropy encoder to compress the outcomes of the previous stage.The test results indicate that the proposed system can produce a promising compression performance while preserving the image quality level.

  6. Compressed gas fuel storage system

    Science.gov (United States)

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  7. Compressed sensing for distributed systems

    CERN Document Server

    Coluccia, Giulio; Magli, Enrico

    2015-01-01

    This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to...

  8. Nonlinear compression of optical solitons

    Indian Academy of Sciences (India)

    linear pulse propagation is the nonlinear Schrödinger (NLS) equation [1]. There are ... Optical pulse compression finds important applications in optical fibres. The pulse com ..... to thank CSIR, New Delhi for financial support in the form of SRF.

  9. Compression therapies for chronic venous leg ulcers: interventions and adherence

    Directory of Open Access Journals (Sweden)

    Latz CA

    2015-01-01

    Full Text Available Christopher A Latz,1 Kellie R Brown,2 Ruth L Bush11Texas A&M Health Science Center College of Medicine, Bryan, TX, USA; 2Medical College of Wisconsin, Milwaukee, WI, USAAbstract: Compression therapy has been the mainstay for the treatment of lower extremity edema, venous insufficiency, and particularly, venous ulcerative disease. Though modern surgical treatments exist, none are completely effective without good compressive options to allow for decreased swelling and better oxygenation of damaged tissues. This review article will describe the pathophysiology and presentation of lower extremity venous ulcerations, as well as current options for compression therapy. The benefits, along with the major pitfall of nonadherence, will also be discussed.Keywords: venous disease, chronic venous insufficiency, venous ulceration

  10. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  11. Producing cement

    Energy Technology Data Exchange (ETDEWEB)

    Stone, E G

    1923-09-12

    A process and apparatus are described for producing Portland cement in which pulverized shale is successively heated in a series of inclined rotary retorts having internal stirrers and oil gas outlets, which are connected to condensers. The partially treated shale is removed from the lowermost retort by a conveyor, then fed separately or conjointly into pipes and thence into a number of vertically disposed retorts. Each of these retorts may be fitted interiorly with vertical arranged conveyors which elevate the shale and discharge it over a lip, from whence it falls to the bottom of the retorts. The lower end of each casing is furnished with an adjustable discharge door through which the spent shale is fed to a hopper, thence into separate trucks. The oil gases generated in the retorts are exhausted through pipes to condensers. The spent shale is conveyed to a bin and mixed while hot with ground limestone. The admixed materials are then ground and fed to a rotary kiln which is fired by the incondensible gases derived from the oil gases obtained in the previous retorting of the shale. The calcined materials are then delivered from the rotary kiln to rotary coolers. The waste gases from the kiln are utilized for heating the retorts in which the ground shale is heated for the purpose of extracting therefrom the contained hydrocarbon oils and gases.

  12. Progressive brain compression

    International Nuclear Information System (INIS)

    Thuomas, K.AA.; Inst. of Surgical Research, National Hospital, Oslo; Vlajkovic, S.; Inst. of Surgical Research, National Hospital, Oslo; Ganz, J.C.; Inst. of Surgical Research, National Hospital, Oslo; Nilsson, P.; Inst. of Surgical Research, National Hospital, Oslo; Bergstroem, K.; Inst. of Surgical Research, National Hospital, Oslo; Ponten, U.; Inst. of Surgical Research, National Hospital, Oslo; Zwetnow, N.N.; Inst. of Surgical Research, National Hospital, Oslo

    1993-01-01

    Continuous recording of vital physiological variables and sequential MR imaging were performed simultaneously during continuous expansion of an epidural rubber balloon over the left hemisphere in anaesthetised dogs. Balloon expansion led to a progressive and slgithly nonlinear rise in intracranial CSF pressures and a full in local perfusion pressures. Changes in systemic arterial pressure, pulse rate, and respiration rate usually appeared at a balloon volume of 4% to 5% of the intracranial volume (reaction volume), together with a marked transtentorial pressure gradient and MR imaging changes consistent with tentorial herniation. Respiratory arrest occurred at a balloon volume of approximately 10% of the intracranial volume (apnoea volume), which was associated with occulsion of the cisterna magna, consistent with some degree of foramen magnum herniation. Increase in tissue water was observed beginning at approximately the reaction volume, presumably due to ischaemic oedema, due to the fall in perfusion pressures. (orig.)

  13. Novel Textile Scaffolds Generated by Flock Technology for Tissue Engineering of Bone and Cartilage

    Science.gov (United States)

    Walther, Anja; Hoyer, Birgit; Springer, Armin; Mrozik, Birgit; Hanke, Thomas; Cherif, Chokri; Pompe, Wolfgang; Gelinsky, Michael

    2012-01-01

    Textile scaffolds can be found in a variety of application areas in regenerative medicine and tissue engineering. In the present study we used electrostatic flocking—a well-known textile technology—to produce scaffolds for tissue engineering of bone. Flock scaffolds stand out due to their unique structure: parallel arranged fibers that are aligned perpendicularly to a substrate, resulting in mechanically stable structures with a high porosity. In compression tests we demonstrated good mechanical properties of such scaffolds and in cell culture experiments we showed that flock scaffolds allow attachment and proliferation of human mesenchymal stem cells and support their osteogenic differentiation. These matrices represent promising scaffolds for tissue engineering. PMID:28817062

  14. Novel Textile Scaffolds Generated by Flock Technology for Tissue Engineering of Bone and Cartilage

    Directory of Open Access Journals (Sweden)

    Thomas Hanke

    2012-03-01

    Full Text Available Textile scaffolds can be found in a variety of application areas in regenerative medicine and tissue engineering. In the present study we used electrostatic flocking—a well-known textile technology—to produce scaffolds for tissue engineering of bone. Flock scaffolds stand out due to their unique structure: parallel arranged fibers that are aligned perpendicularly to a substrate, resulting in mechanically stable structures with a high porosity. In compression tests we demonstrated good mechanical properties of such scaffolds and in cell culture experiments we showed that flock scaffolds allow attachment and proliferation of human mesenchymal stem cells and support their osteogenic differentiation. These matrices represent promising scaffolds for tissue engineering.

  15. A biomechanical model of mammographic compressions.

    Science.gov (United States)

    Chung, J H; Rajagopal, V; Nielsen, P M F; Nash, M P

    2008-02-01

    A number of biomechanical models have been proposed to improve nonrigid registration techniques for multimodal breast image alignment. A deformable breast model may also be useful for overcoming difficulties in interpreting 2D X-ray projections (mammograms) of 3D volumes (breast tissues). If a deformable model could accurately predict the shape changes that breasts undergo during mammography, then the model could serve to localize suspicious masses (visible in mammograms) in the unloaded state, or in any other deformed state required for further investigations (such as biopsy or other medical imaging modalities). In this paper, we present a validation study that was conducted in order to develop a biomechanical model based on the well-established theory of continuum mechanics (finite elasticity theory with contact mechanics) and demonstrate its use for this application. Experimental studies using gel phantoms were conducted to test the accuracy in predicting mammographic-like deformations. The material properties of the gel phantom were estimated using a nonlinear optimization process, which minimized the errors between the experimental and the model-predicted surface data by adjusting the parameter associated with the neo-Hookean constitutive relation. Two compressions (the equivalent of cranio-caudal and medio-lateral mammograms) were performed on the phantom, and the corresponding deformations were recorded using a MRI scanner. Finite element simulations were performed to mimic the experiments using the estimated material properties with appropriate boundary conditions. The simulation results matched the experimental recordings of the deformed phantom, with a sub-millimeter root-mean-square error for each compression state. Having now validated our finite element model of breast compression, the next stage is to apply the model to clinical images.

  16. Interactions Of Binder, Disintegrant And Compression Pressure In ...

    African Journals Online (AJOL)

    Binders, disintegrants and compression pressures play important roles in producing good tablets. The interactions between these three factors were analyzed to observe how they contribute to tablet properties. The concentration levels of the factors were determined using 23 factorial study designs by wet granulation ...

  17. Improving Compressed Air System Performance: A Sourcebook for Industry

    Energy Technology Data Exchange (ETDEWEB)

    2003-11-01

    NREL will produce this sourcebook for DOE's Industrial Technologies Office as part of a series of documents on industrial energy equipment. The sourcebook is a reference for industrial compressed air system users, outlining opportunities to improve system efficiency.

  18. ROLE OF MRI IN EVALUATION OF COMPRESSIVE MYELOPATHY

    Directory of Open Access Journals (Sweden)

    Raseshkumar Rasiklal Vyas

    2017-03-01

    Full Text Available BACKGROUND Aim of the study was to find out various causes of compressive myelopathy and to characterise them. MATERIALS AND METHODS Total of 48 cases were analysed over a period of January 2016 to January 2017 and were evaluated using MRI spine studies. RESULTS MRI, because of its exemplary tissue characterisation and high contrast resolution, excellently demonstrates the anatomical details and pathological process. Thus, is a superior modality in diagnosing Spinal cord lesions as well as associated soft tissue injuries, inter-vertebral discs and ligaments. In our study, traumatic injuries (43% were found to be the most common cause of Compressive myelopathy, other were Infections (23%, primary malignancies (17%, and Metastasis (17%. Thoracic spine was found to be the most frequent site in cases of Traumatic injuries. 40 out of total 48 cases had extradural, and the rest 8 had intra-dural compressive lesions. CONCLUSION The study concludes that patients with suspected Compressive myelopathies benefit from evaluation with MRI, which is highly accurate for characterising and identifying the underlying aetiology, as well as associated features. Thus, explicitly helps in stating the long-term prognosis of the patient.

  19. MEDICAL IMAGE COMPRESSION USING HYBRID CODER WITH FUZZY EDGE DETECTION

    Directory of Open Access Journals (Sweden)

    K. Vidhya

    2011-02-01

    Full Text Available Medical imaging techniques produce prohibitive amounts of digitized clinical data. Compression of medical images is a must due to large memory space required for transmission and storage. This paper presents an effective algorithm to compress and to reconstruct medical images. The proposed algorithm first extracts edge information of medical images by using fuzzy edge detector. The images are decomposed using Cohen-Daubechies-Feauveau (CDF wavelet. The hybrid technique utilizes the efficient wavelet based compression algorithms such as JPEG2000 and Set Partitioning In Hierarchical Trees (SPIHT. The wavelet coefficients in the approximation sub band are encoded using tier 1 part of JPEG2000. The wavelet coefficients in the detailed sub bands are encoded using SPIHT. Consistent quality images are produced by this method at a lower bit rate compared to other standard compression algorithms. Two main approaches to assess image quality are objective testing and subjective testing. The image quality is evaluated by objective quality measures. Objective measures correlate well with the perceived image quality for the proposed compression algorithm.

  20. Efficient transmission of compressed data for remote volume visualization.

    Science.gov (United States)

    Krishnan, Karthik; Marcellin, Michael W; Bilgin, Ali; Nadar, Mariappan S

    2006-09-01

    One of the goals of telemedicine is to enable remote visualization and browsing of medical volumes. There is a need to employ scalable compression schemes and efficient client-server models to obtain interactivity and an enhanced viewing experience. First, we present a scheme that uses JPEG2000 and JPIP (JPEG2000 Interactive Protocol) to transmit data in a multi-resolution and progressive fashion. The server exploits the spatial locality offered by the wavelet transform and packet indexing information to transmit, in so far as possible, compressed volume data relevant to the clients query. Once the client identifies its volume of interest (VOI), the volume is refined progressively within the VOI from an initial lossy to a final lossless representation. Contextual background information can also be made available having quality fading away from the VOI. Second, we present a prioritization that enables the client to progressively visualize scene content from a compressed file. In our specific example, the client is able to make requests to progressively receive data corresponding to any tissue type. The server is now capable of reordering the same compressed data file on the fly to serve data packets prioritized as per the client's request. Lastly, we describe the effect of compression parameters on compression ratio, decoding times and interactivity. We also present suggestions for optimizing JPEG2000 for remote volume visualization and volume browsing applications. The resulting system is ideally suited for client-server applications with the server maintaining the compressed volume data, to be browsed by a client with a low bandwidth constraint.

  1. 29 CFR 1917.154 - Compressed air.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Compressed air. 1917.154 Section 1917.154 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be... this part during cleaning with compressed air. Compressed air used for cleaning shall not exceed a...

  2. Double-compression method for biomedical images

    Science.gov (United States)

    Antonenko, Yevhenii A.; Mustetsov, Timofey N.; Hamdi, Rami R.; Małecka-Massalska, Teresa; Orshubekov, Nurbek; DzierŻak, RóŻa; Uvaysova, Svetlana

    2017-08-01

    This paper describes a double compression method (DCM) of biomedical images. A comparison of image compression factors in size JPEG, PNG and developed DCM was carried out. The main purpose of the DCM - compression of medical images while maintaining the key points that carry diagnostic information. To estimate the minimum compression factor an analysis of the coding of random noise image is presented.

  3. Perceptual Image Compression in Telemedicine

    Science.gov (United States)

    Watson, Andrew B.; Ahumada, Albert J., Jr.; Eckstein, Miguel; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    The next era of space exploration, especially the "Mission to Planet Earth" will generate immense quantities of image data. For example, the Earth Observing System (EOS) is expected to generate in excess of one terabyte/day. NASA confronts a major technical challenge in managing this great flow of imagery: in collection, pre-processing, transmission to earth, archiving, and distribution to scientists at remote locations. Expected requirements in most of these areas clearly exceed current technology. Part of the solution to this problem lies in efficient image compression techniques. For much of this imagery, the ultimate consumer is the human eye. In this case image compression should be designed to match the visual capacities of the human observer. We have developed three techniques for optimizing image compression for the human viewer. The first consists of a formula, developed jointly with IBM and based on psychophysical measurements, that computes a DCT quantization matrix for any specified combination of viewing distance, display resolution, and display brightness. This DCT quantization matrix is used in most recent standards for digital image compression (JPEG, MPEG, CCITT H.261). The second technique optimizes the DCT quantization matrix for each individual image, based on the contents of the image. This is accomplished by means of a model of visual sensitivity to compression artifacts. The third technique extends the first two techniques to the realm of wavelet compression. Together these two techniques will allow systematic perceptual optimization of image compression in NASA imaging systems. Many of the image management challenges faced by NASA are mirrored in the field of telemedicine. Here too there are severe demands for transmission and archiving of large image databases, and the imagery is ultimately used primarily by human observers, such as radiologists. In this presentation I will describe some of our preliminary explorations of the applications

  4. Lossy image compression for digital medical imaging systems

    Science.gov (United States)

    Wilhelm, Paul S.; Haynor, David R.; Kim, Yongmin; Nelson, Alan C.; Riskin, Eve A.

    1990-07-01

    Image compression at rates of 10:1 or greater could make PACS much more responsive and economically attractive. This paper describes a protocol for subjective and objective evaluation of the fidelity of compressed/decompressed images to the originals and presents the results ofits application to four representative and promising compression methods. The methods examined are predictive pruned tree-structured vector quantization, fractal compression, the discrete cosine transform with equal weighting of block bit allocation, and the discrete cosine transform with human visual system weighting of block bit allocation. Vector quantization is theoretically capable of producing the best compressed images, but has proven to be difficult to effectively implement. It has the advantage that it can reconstruct images quickly through a simple lookup table. Disadvantages are that codebook training is required, the method is computationally intensive, and achieving the optimum performance would require prohibitively long vector dimensions. Fractal compression is a relatively new compression technique, but has produced satisfactory results while being computationally simple. It is fast at both image compression and image reconstruction. Discrete cosine iransform techniques reproduce images well, but have traditionally been hampered by the need for intensive computing to compress and decompress images. A protocol was developed for side-by-side observer comparison of reconstructed images with originals. Three 1024 X 1024 CR (Computed Radiography) images and two 512 X 512 X-ray CT images were viewed at six bit rates (0.2, 0.4, 0.6, 0.9, 1.2, and 1.5 bpp for CR, and 1.0, 1.3, 1.6, 1.9, 2.2, 2.5 bpp for X-ray CT) by nine radiologists at the University of Washington Medical Center. The CR images were viewed on a Pixar II Megascan (2560 X 2048) monitor and the CT images on a Sony (1280 X 1024) monitor. The radiologists' subjective evaluations of image fidelity were compared to

  5. Evaluation of a new image compression technique

    International Nuclear Information System (INIS)

    Algra, P.R.; Kroon, H.M.; Noordveld, R.B.; DeValk, J.P.J.; Seeley, G.W.; Westerink, P.H.

    1988-01-01

    The authors present the evaluation of a new image compression technique, subband coding using vector quantization, on 44 CT examinations of the upper abdomen. Three independent radiologists reviewed the original images and compressed versions. The compression ratios used were 16:1 and 20:1. Receiver operating characteristic analysis showed no difference in the diagnostic contents between originals and their compressed versions. Subjective visibility of anatomic structures was equal. Except for a few 20:1 compressed images, the observers could not distinguish compressed versions from original images. They conclude that subband coding using vector quantization is a valuable method for data compression in CT scans of the abdomen

  6. Space communication system for compressed data with a concatenated Reed-Solomon-Viterbi coding channel

    Science.gov (United States)

    Rice, R. F.; Hilbert, E. E. (Inventor)

    1976-01-01

    A space communication system incorporating a concatenated Reed Solomon Viterbi coding channel is discussed for transmitting compressed and uncompressed data from a spacecraft to a data processing center on Earth. Imaging (and other) data are first compressed into source blocks which are then coded by a Reed Solomon coder and interleaver, followed by a convolutional encoder. The received data is first decoded by a Viterbi decoder, followed by a Reed Solomon decoder and deinterleaver. The output of the latter is then decompressed, based on the compression criteria used in compressing the data in the spacecraft. The decompressed data is processed to reconstruct an approximation of the original data-producing condition or images.

  7. Tissue types (image)

    Science.gov (United States)

    ... are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports ... binds them together (bone, blood, and lymph tissues). Epithelial tissue provides a covering (skin, the linings of the ...

  8. Correction of accessory axillary breast tissue without visible scar.

    Science.gov (United States)

    Kim, Young Soo

    2004-01-01

    Various methods for correction of accessory axillary breast tissue have been proposed, including simple excision, diamond-shaped excision, a Y-V technique, and lipoplasty. We present an effective method for correction of a prominent axillary mound that combines lipoplasty with excision of accessory breast tissue along the axillary transverse line. Preoperative markings included an incision within the natural wrinkle line in the axillary fold, and demarcation of areas in which lipoplasty and excision were to be performed. After lipoplasty, deep dissection was performed to isolate and remove accessory breast tissue and excess fat tissue. A compression dressing was applied for 1 to 2 weeks postoperatively, and the patient was instructed to wear a sports bra for 1 to 2 months after removal of the dressing. We treated 7 patients using this procedure between October 1999 and March 2003. No major postoperative complications were detected and recurrence was not noted during the follow-up periods. Aesthetic results were satisfactory. We believe that a procedure that combines lipoplasty and excision provides numerous advantages as a surgical option in treating a prominent axillary mound. The main advantage is that the final scar is laid in the natural axillary fold, rendering scars less conspicuous and eliminating the need to remove excess skin. The one disadvantage was that elevation of the skin flap via small, remote incisions initially produced surgical difficulties, but these were overcome with experience.

  9. Thalassemia, extramedullary hematopoiesis, and spinal cord compression: A case report

    OpenAIRE

    Bukhari, Syed Sarmad; Junaid, Muhammad; Rashid, Mamoon Ur

    2016-01-01

    Background: Extramedullary hematopoiesis (EMH) refers to hematopoiesis outside of the medulla of the bone. Chronic anemia states such as thalassemia can cause hematopoietic tissue to expand in certain locations. We report a case of spinal cord compression due to recurrent spinal epidural EMH, which was treated with a combination of surgery and radiotherapy. Pakistan has one of the highest incidence and prevalence of thalassemia in the world. We describe published literature on diagnosis and m...

  10. Deformation Behavior of Human Dentin under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Dmitry Zaytsev

    2012-01-01

    Full Text Available Deformation behavior of a human dentin under compression including size and rate effects is studied. No difference between mechanical properties of crown and root dentin is found. It is mechanically isotropic high elastic and strong hard tissue, which demonstrates considerable plasticity and ability to suppress a crack growth. Mechanical properties of dentin depend on a shape of samples and a deformation rate.

  11. Building indifferentiable compression functions from the PGV compression functions

    DEFF Research Database (Denmark)

    Gauravaram, P.; Bagheri, Nasour; Knudsen, Lars Ramkilde

    2016-01-01

    Preneel, Govaerts and Vandewalle (PGV) analysed the security of single-block-length block cipher based compression functions assuming that the underlying block cipher has no weaknesses. They showed that 12 out of 64 possible compression functions are collision and (second) preimage resistant. Black......, Rogaway and Shrimpton formally proved this result in the ideal cipher model. However, in the indifferentiability security framework introduced by Maurer, Renner and Holenstein, all these 12 schemes are easily differentiable from a fixed input-length random oracle (FIL-RO) even when their underlying block...

  12. Concurrent data compression and protection

    International Nuclear Information System (INIS)

    Saeed, M.

    2009-01-01

    Data compression techniques involve transforming data of a given format, called source message, to data of a smaller sized format, called codeword. The primary objective of data encryption is to ensure security of data if it is intercepted by an eavesdropper. It transforms data of a given format, called plaintext, to another format, called ciphertext, using an encryption key or keys. Thus, combining the processes of compression and encryption together must be done in this order, that is, compression followed by encryption because all compression techniques heavily rely on the redundancies which are inherently a part of a regular text or speech. The aim of this research is to combine two processes of compression (using an existing scheme) with a new encryption scheme which should be compatible with encoding scheme embedded in encoder. The novel technique proposed by the authors is new, unique and is highly secured. The deployment of sentinel marker' enhances the security of the proposed TR-One algorithm from 2/sup 44/ ciphertexts to 2/sup 44/ +2/sub 20/ ciphertexts thus imposing extra challenges to the intruders. (author)

  13. Radiologic image compression -- A review

    International Nuclear Information System (INIS)

    Wong, S.; Huang, H.K.; Zaremba, L.; Gooden, D.

    1995-01-01

    The objective of radiologic image compression is to reduce the data volume of and to achieve a lot bit rate in the digital representation of radiologic images without perceived loss of image quality. However, the demand for transmission bandwidth and storage space in the digital radiology environment, especially picture archiving and communication systems (PACS) and teleradiology, and the proliferating use of various imaging modalities, such as magnetic resonance imaging, computed tomography, ultrasonography, nuclear medicine, computed radiography, and digital subtraction angiography, continue to outstrip the capabilities of existing technologies. The availability of lossy coding techniques for clinical diagnoses further implicates many complex legal and regulatory issues. This paper reviews the recent progress of lossless and lossy radiologic image compression and presents the legal challenges of using lossy compression of medical records. To do so, the authors first describe the fundamental concepts of radiologic imaging and digitization. Then, the authors examine current compression technology in the field of medical imaging and discuss important regulatory policies and legal questions facing the use of compression in this field. The authors conclude with a summary of future challenges and research directions. 170 refs

  14. Comparative analysis of the properties of concrete produced with ...

    African Journals Online (AJOL)

    Compressive and flexural strength values of concrete produced with PLC grade 42.5R were higher than values obtained with grade 32.5. The 28 day compressive strength values of concrete produced with PLC grade 42.5R were, 28.0, 30.0, 35.0, and 40.0 N/mm,2 while values of 22.0, 28.0, 33.0 and 35.0 were obtained ...

  15. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  16. Effects of errors in velocity tilt on maximum longitudinal compression during neutralized drift compression of intense beam pulses: I. general description

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, Igor D.; Massidda, Scottt; Startsev, Edward A.; Davidson, Ronald C.; Vay, Jean-Luc; Friedman, Alex

    2012-06-21

    Neutralized drift compression offers an effective means for particle beam pulse compression and current amplification. In neutralized drift compression, a linear longitudinal velocity tilt (head-to-tail gradient) is applied to the non-relativistic beam pulse, so that the beam pulse compresses as it drifts in the focusing section. The beam current can increase by more than a factor of 100 in the longitudinal direction. We have performed an analytical study of how errors in the velocity tilt acquired by the beam in the induction bunching module limit the maximum longitudinal compression. It is found that the compression ratio is determined by the relative errors in the velocity tilt. That is, one-percent errors may limit the compression to a factor of one hundred. However, a part of the beam pulse where the errors are small may compress to much higher values, which are determined by the initial thermal spread of the beam pulse. It is also shown that sharp jumps in the compressed current density profile can be produced due to overlaying of different parts of the pulse near the focal plane. Examples of slowly varying and rapidly varying errors compared to the beam pulse duration are studied. For beam velocity errors given by a cubic function, the compression ratio can be described analytically. In this limit, a significant portion of the beam pulse is located in the broad wings of the pulse and is poorly compressed. The central part of the compressed pulse is determined by the thermal spread. The scaling law for maximum compression ratio is derived. In addition to a smooth variation in the velocity tilt, fast-changing errors during the pulse may appear in the induction bunching module if the voltage pulse is formed by several pulsed elements. Different parts of the pulse compress nearly simultaneously at the target and the compressed profile may have many peaks. The maximum compression is a function of both thermal spread and the velocity errors. The effects of the

  17. Impact of multilayered compression bandages on sub-bandage interface pressure: a model.

    Science.gov (United States)

    Al Khaburi, J; Nelson, E A; Hutchinson, J; Dehghani-Sanij, A A

    2011-03-01

    Multi-component medical compression bandages are widely used to treat venous leg ulcers. The sub-bandage interface pressures induced by individual components of the multi-component compression bandage systems are not always simply additive. Current models to explain compression bandage performance do not take account of the increase in leg circumference when each bandage is applied, and this may account for the difference between predicted and actual pressures. To calculate the interface pressure when a multi-component compression bandage system is applied to a leg. Use thick wall cylinder theory to estimate the sub-bandage pressure over the leg when a multi-component compression bandage is applied to a leg. A mathematical model was developed based on thick cylinder theory to include bandage thickness in the calculation of the interface pressure in multi-component compression systems. In multi-component compression systems, the interface pressure corresponds to the sum of the pressures applied by individual bandage layers. However, the change in the limb diameter caused by additional bandage layers should be considered in the calculation. Adding the interface pressure produced by single components without considering the bandage thickness will result in an overestimate of the overall interface pressure produced by the multi-component compression systems. At the ankle (circumference 25 cm) this error can be 19.2% or even more in the case of four components bandaging systems. Bandage thickness should be considered when calculating the pressure applied using multi-component compression systems.

  18. Compression Pad Cavity Heating Augmentation on Orion Heat Shield

    Science.gov (United States)

    Hollis, Brian R.

    2011-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion Crew Exploration Vehicle heat shield. Testing was conducted in Mach 6 and 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.

  19. File compression and encryption based on LLS and arithmetic coding

    Science.gov (United States)

    Yu, Changzhi; Li, Hengjian; Wang, Xiyu

    2018-03-01

    e propose a file compression model based on arithmetic coding. Firstly, the original symbols, to be encoded, are input to the encoder one by one, we produce a set of chaotic sequences by using the Logistic and sine chaos system(LLS), and the values of this chaotic sequences are randomly modified the Upper and lower limits of current symbols probability. In order to achieve the purpose of encryption, we modify the upper and lower limits of all character probabilities when encoding each symbols. Experimental results show that the proposed model can achieve the purpose of data encryption while achieving almost the same compression efficiency as the arithmetic coding.

  20. Vapor compression distiller and membrane technology for water revitalization

    Science.gov (United States)

    Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied: one is absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation, able to easily produce condensed water under zero gravity, was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  1. Rectal perforation by compressed air.

    Science.gov (United States)

    Park, Young Jin

    2017-07-01

    As the use of compressed air in industrial work has increased, so has the risk of associated pneumatic injury from its improper use. However, damage of large intestine caused by compressed air is uncommon. Herein a case of pneumatic rupture of the rectum is described. The patient was admitted to the Emergency Room complaining of abdominal pain and distension. His colleague triggered a compressed air nozzle over his buttock. On arrival, vital signs were stable but physical examination revealed peritoneal irritation and marked distension of the abdomen. Computed tomography showed a large volume of air in the peritoneal cavity and subcutaneous emphysema at the perineum. A rectal perforation was found at laparotomy and the Hartmann procedure was performed.

  2. Compact torus compression of microwaves

    International Nuclear Information System (INIS)

    Hewett, D.W.; Langdon, A.B.

    1985-01-01

    The possibility that a compact torus (CT) might be accelerated to large velocities has been suggested by Hartman and Hammer. If this is feasible one application of these moving CTs might be to compress microwaves. The proposed mechanism is that a coaxial vacuum region in front of a CT is prefilled with a number of normal electromagnetic modes on which the CT impinges. A crucial assumption of this proposal is that the CT excludes the microwaves and therefore compresses them. Should the microwaves penetrate the CT, compression efficiency is diminished and significant CT heating results. MFE applications in the same parameters regime have found electromagnetic radiation capable of penetrating, heating, and driving currents. We report here a cursory investigation of rf penetration using a 1-D version of a direct implicit PIC code

  3. Premixed autoignition in compressible turbulence

    Science.gov (United States)

    Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline

    2016-11-01

    Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.

  4. Lossless Compression of Broadcast Video

    DEFF Research Database (Denmark)

    Martins, Bo; Eriksen, N.; Faber, E.

    1998-01-01

    We investigate several techniques for lossless and near-lossless compression of broadcast video.The emphasis is placed on the emerging international standard for compression of continous-tone still images, JPEG-LS, due to its excellent compression performance and moderatecomplexity. Except for one...... cannot be expected to code losslessly at a rate of 125 Mbit/s. We investigate the rate and quality effects of quantization using standard JPEG-LS quantization and two new techniques: visual quantization and trellis quantization. Visual quantization is not part of baseline JPEG-LS, but is applicable...... in the framework of JPEG-LS. Visual tests show that this quantization technique gives much better quality than standard JPEG-LS quantization. Trellis quantization is a process by which the original image is altered in such a way as to make lossless JPEG-LS encoding more effective. For JPEG-LS and visual...

  5. Efficient access of compressed data

    International Nuclear Information System (INIS)

    Eggers, S.J.; Shoshani, A.

    1980-06-01

    A compression technique is presented that allows a high degree of compression but requires only logarithmic access time. The technique is a constant suppression scheme, and is most applicable to stable databases whose distribution of constants is fairly clustered. Furthermore, the repeated use of the technique permits the suppression of a multiple number of different constants. Of particular interest is the application of the constant suppression technique to databases the composite key of which is made up of an incomplete cross product of several attribute domains. The scheme for compressing the full cross product composite key is well known. This paper, however, also handles the general, incomplete case by applying the constant suppression technique in conjunction with a composite key suppression scheme

  6. Compressibility of rotating black holes

    International Nuclear Information System (INIS)

    Dolan, Brian P.

    2011-01-01

    Interpreting the cosmological constant as a pressure, whose thermodynamically conjugate variable is a volume, modifies the first law of black hole thermodynamics. Properties of the resulting thermodynamic volume are investigated: the compressibility and the speed of sound of the black hole are derived in the case of nonpositive cosmological constant. The adiabatic compressibility vanishes for a nonrotating black hole and is maximal in the extremal case--comparable with, but still less than, that of a cold neutron star. A speed of sound v s is associated with the adiabatic compressibility, which is equal to c for a nonrotating black hole and decreases as the angular momentum is increased. An extremal black hole has v s 2 =0.9 c 2 when the cosmological constant vanishes, and more generally v s is bounded below by c/√(2).

  7. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  8. Correlations between quality indexes of chest compression.

    Science.gov (United States)

    Zhang, Feng-Ling; Yan, Li; Huang, Su-Fang; Bai, Xiang-Jun

    2013-01-01

    Cardiopulmonary resuscitation (CPR) is a kind of emergency treatment for cardiopulmonary arrest, and chest compression is the most important and necessary part of CPR. The American Heart Association published the new Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care in 2010 and demanded for better performance of chest compression practice, especially in compression depth and rate. The current study was to explore the relationship of quality indexes of chest compression and to identify the key points in chest compression training and practice. Totally 219 healthcare workers accepted chest compression training by using Laerdal ACLS advanced life support resuscitation model. The quality indexes of chest compression, including compression hands placement, compression rate, compression depth, and chest wall recoil as well as self-reported fatigue time were monitored by the Laerdal Computer Skills and Reporting System. The quality of chest compression was related to the gender of the compressor. The indexes in males, including self-reported fatigue time, the accuracy of compression depth and the compression rate, the accuracy of compression rate, were higher than those in females. However, the accuracy of chest recoil was higher in females than in males. The quality indexes of chest compression were correlated with each other. The self-reported fatigue time was related to all the indexes except the compression rate. It is necessary to offer CPR training courses regularly. In clinical practice, it might be better to change the practitioner before fatigue, especially for females or weak practitioners. In training projects, more attention should be paid to the control of compression rate, in order to delay the fatigue, guarantee enough compression depth and improve the quality of chest compression.

  9. Optimization of wavelet decomposition for image compression and feature preservation.

    Science.gov (United States)

    Lo, Shih-Chung B; Li, Huai; Freedman, Matthew T

    2003-09-01

    A neural-network-based framework has been developed to search for an optimal wavelet kernel that can be used for a specific image processing task. In this paper, a linear convolution neural network was employed to seek a wavelet that minimizes errors and maximizes compression efficiency for an image or a defined image pattern such as microcalcifications in mammograms and bone in computed tomography (CT) head images. We have used this method to evaluate the performance of tap-4 wavelets on mammograms, CTs, magnetic resonance images, and Lena images. We found that the Daubechies wavelet or those wavelets with similar filtering characteristics can produce the highest compression efficiency with the smallest mean-square-error for many image patterns including general image textures as well as microcalcifications in digital mammograms. However, the Haar wavelet produces the best results on sharp edges and low-noise smooth areas. We also found that a special wavelet whose low-pass filter coefficients are 0.32252136, 0.85258927, 1.38458542, and -0.14548269) produces the best preservation outcomes in all tested microcalcification features including the peak signal-to-noise ratio, the contrast and the figure of merit in the wavelet lossy compression scheme. Having analyzed the spectrum of the wavelet filters, we can find the compression outcomes and feature preservation characteristics as a function of wavelets. This newly developed optimization approach can be generalized to other image analysis applications where a wavelet decomposition is employed.

  10. Effect of Functional Nano Channel Structures Different Widths on Injection Molding and Compression Molding Replication Capabilities

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Garnaes, J.

    The present study investigates the capabilities of the two employed processes, injection molding (IM) and injection compression molding (ICM) on replicating different channel cross sections. Statistical design of experiment was adopted to optimize replication quality of produced polymer parts wit...

  11. Random lasing in human tissues

    International Nuclear Information System (INIS)

    Polson, Randal C.; Vardeny, Z. Valy

    2004-01-01

    A random collection of scatterers in a gain medium can produce coherent laser emission lines dubbed 'random lasing'. We show that biological tissues, including human tissues, can support coherent random lasing when infiltrated with a concentrated laser dye solution. To extract a typical random resonator size within the tissue we average the power Fourier transform of random laser spectra collected from many excitation locations in the tissue; we verified this procedure by a computer simulation. Surprisingly, we found that malignant tissues show many more laser lines compared to healthy tissues taken from the same organ. Consequently, the obtained typical random resonator was found to be different for healthy and cancerous tissues, and this may lead to a technique for separating malignant from healthy tissues for diagnostic imaging

  12. Plerocercoid growth factor (PGF), a human growth hormone (hGH) analogue produced by the tapeworm Spirometra mansonoides, has direct insulin-like action in adipose tissue of normal rats in vitro

    International Nuclear Information System (INIS)

    Salem, M.A.M.; Phares, C.K.

    1986-01-01

    The metabolic actions of GH can be divided into acute (insulin-like) and chronic (lipolytic/anti-insulin). The insulin-like actions of GH are most readily elicited in GH-deficient animals as GH induces resistance to its own insulin-like action. Like GH, PGF stimulates growth and cross-reacts with anti-hGH antibodies. Independent experiments were conducted comparing the direct actions of PGF to insulin or hGH in vitro. Insulin-like effects were determined by the ability of PGF, insulin or hGH to stimulate [U- 14 C]glucose metabolism in epidydimal fat pads from normal rats and by inhibition of epinephrine-stimulated lipolysis. Direct stimulation of lipolysis was used as anti-insulin activity. To determine if PGF competes for insulin or GH receptors, adipocytes (3 x 10 5 cells/ml) were incubated with either [ 125 I]insulin or [ 125 I]hGH +/- PGF, +/- insulin or +/- hGH. PGF stimulated glucose oxidation and 14 C-incorporation into lipids. Insulin, hGH and PGF inhibited lipolysis (33%, 29% and 34%, respectively). Adipose tissue was very sensitive to the lipolytic effect of hGH but PGF was neither lipolytic nor did it confer refractoriness to its insulin-like action. PGF bound to GH but not to insulin receptors. Therefore, PGF had direct insulin-like effects but did not stimulate lipolysis in tissue from normal rats in vitro

  13. Excessive chest compression rate is associated with insufficient compression depth in prehospital cardiac arrest

    NARCIS (Netherlands)

    Monsieurs, Koenraad G.; De Regge, Melissa; Vansteelandt, Kristof; De Smet, Jeroen; Annaert, Emmanuel; Lemoyne, Sabine; Kalmar, Alain F.; Calle, Paul A.

    2012-01-01

    Background and goal of study: The relationship between chest compression rate and compression depth is unknown. In order to characterise this relationship, we performed an observational study in prehospital cardiac arrest patients. We hypothesised that faster compressions are associated with

  14. Fluoro-Jade and TUNEL staining as useful tools to identify ischemic brain damage following moderate extradural compression of sensorimotor cortex.

    Science.gov (United States)

    Kundrotiene, Jurgita; Wägner, Anna; Liljequist, Sture

    2004-01-01

    Cerebral ischemia was produced by moderate compression for 30 min of a specific brain area in the sensorimotor cortex of Sprague-Dawley rats. On day 1, that is 24 h after the transient sensorimotor compression, ischemia-exposed animals displayed a marked focal neurological deficit documented as impaired beam walking performance. This functional disturbance was mainly due to contralateral fore- and hind-limb paresis. As assessed by daily beam walking tests it was shown that there was a spontaneous recovery of motor functions over a period of five to seven days after the ischemic event. Using histopathological analysis (Nissl staining) we have previously reported that the present experimental paradigm does not produce pannecrosis (tissue cavitation) despite the highly reproducible focal neurological deficit. We now show how staining with fluorescent markers for neuronal death, that is Fluoro-Jade and TUNEL, respectively, identifies regional patterns of selective neuronal death. These observations add further support to the working hypothesis that the brain damage caused by cortical compression-induced ischemia consists of scattered, degenerating neurons in specific brain regions. Postsurgical administration of the AMPA receptor specific antagonist, LY326325 (30 mg/kg; i.p., 70 min after compression), not only improved beam walking performance on day 1 to 3, respectively but also significantly reduced the number of Fluoro-Jade stained neurons on day 5. These results suggest that enhanced AMPA/glutamate receptor activity is at least partially responsible for the ischemia-produced brain damage detected by the fluorescent marker Fluoro-Jade.

  15. The FBI compression standard for digitized fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, C.M.; Bradley, J.N. [Los Alamos National Lab., NM (United States); Onyshczak, R.J. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Hopper, T. [Federal Bureau of Investigation, Washington, DC (United States)

    1996-10-01

    The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the current status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.

  16. A Study on Homogeneous Charge Compression Ignition Gasoline Engines

    Science.gov (United States)

    Kaneko, Makoto; Morikawa, Koji; Itoh, Jin; Saishu, Youhei

    A new engine concept consisting of HCCI combustion for low and midrange loads and spark ignition combustion for high loads was introduced. The timing of the intake valve closing was adjusted to alter the negative valve overlap and effective compression ratio to provide suitable HCCI conditions. The effect of mixture formation on auto-ignition was also investigated using a direct injection engine. As a result, HCCI combustion was achieved with a relatively low compression ratio when the intake air was heated by internal EGR. The resulting combustion was at a high thermal efficiency, comparable to that of modern diesel engines, and produced almost no NOx emissions or smoke. The mixture stratification increased the local A/F concentration, resulting in higher reactivity. A wide range of combustible A/F ratios was used to control the compression ignition timing. Photographs showed that the flame filled the entire chamber during combustion, reducing both emissions and fuel consumption.

  17. The impact of chest compression rates on quality of chest compressions : a manikin study

    OpenAIRE

    Field, Richard A.; Soar, Jasmeet; Davies, Robin P.; Akhtar, Naheed; Perkins, Gavin D.

    2012-01-01

    Purpose\\ud Chest compressions are often performed at a variable rate during cardiopulmonary resuscitation (CPR). The effect of compression rate on other chest compression quality variables (compression depth, duty-cycle, leaning, performance decay over time) is unknown. This randomised controlled cross-over manikin study examined the effect of different compression rates on the other chest compression quality variables.\\ud Methods\\ud Twenty healthcare professionals performed two minutes of co...

  18. Tissue Classification

    DEFF Research Database (Denmark)

    Van Leemput, Koen; Puonti, Oula

    2015-01-01

    Computational methods for automatically segmenting magnetic resonance images of the brain have seen tremendous advances in recent years. So-called tissue classification techniques, aimed at extracting the three main brain tissue classes (white matter, gray matter, and cerebrospinal fluid), are now...... well established. In their simplest form, these methods classify voxels independently based on their intensity alone, although much more sophisticated models are typically used in practice. This article aims to give an overview of often-used computational techniques for brain tissue classification...

  19. Spinal cord compression due to epidural extramedullary haematopoiesis in thalassaemia: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Aydingoez, Ue.; Oto, A.; Cila, A. [Department of Radiology, Hacettepe University School of Medicine, Ankara (Turkey)

    1997-12-01

    Spinal epidural extramedullary haematopoiesis is very rare in thalassaemia. A 27-year-old man with thalassaemia intermedia presented with symptoms and signs of spinal cord compression. MRI showed a thoracic spinal epidural mass, representing extramedullary haematopoietic tissue, compressing the spinal cord. Following radiotherapy, serial MRI revealed regression of the epidural mass and gradual resolution of spinal cord oedema. (orig.) With 3 figs., 6 refs.

  20. Ganglion Cyst Associated with Triangular Fibrocartilage Complex Tear That Caused Ulnar Nerve Compression

    Directory of Open Access Journals (Sweden)

    Ugur Anil Bingol, MD

    2015-03-01

    Full Text Available Summary: Ganglions are the most frequently seen soft-tissue tumors in the hand. Nerve compression due to ganglion cysts at the wrist is rare. We report 2 ganglion cysts arising from triangular fibrocartilage complex, one of which caused ulnar nerve compression proximal to the Guyonʼs canal, leading to ulnar neuropathy. Ganglion cysts seem unimportant, and many surgeons refrain from performing a general hand examination.

  1. Compressing Data Cube in Parallel OLAP Systems

    Directory of Open Access Journals (Sweden)

    Frank Dehne

    2007-03-01

    Full Text Available This paper proposes an efficient algorithm to compress the cubes in the progress of the parallel data cube generation. This low overhead compression mechanism provides block-by-block and record-by-record compression by using tuple difference coding techniques, thereby maximizing the compression ratio and minimizing the decompression penalty at run-time. The experimental results demonstrate that the typical compression ratio is about 30:1 without sacrificing running time. This paper also demonstrates that the compression method is suitable for Hilbert Space Filling Curve, a mechanism widely used in multi-dimensional indexing.

  2. CEPRAM: Compression for Endurance in PCM RAM

    OpenAIRE

    González Alberquilla, Rodrigo; Castro Rodríguez, Fernando; Piñuel Moreno, Luis; Tirado Fernández, Francisco

    2017-01-01

    We deal with the endurance problem of Phase Change Memories (PCM) by proposing Compression for Endurance in PCM RAM (CEPRAM), a technique to elongate the lifespan of PCM-based main memory through compression. We introduce a total of three compression schemes based on already existent schemes, but targeting compression for PCM-based systems. We do a two-level evaluation. First, we quantify the performance of the compression, in terms of compressed size, bit-flips and how they are affected by e...

  3. Entropy, Coding and Data Compression

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 9. Entropy, Coding and Data Compression. S Natarajan. General Article Volume 6 Issue 9 September 2001 pp 35-45. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/09/0035-0045 ...

  4. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  5. Range Compressed Holographic Aperture Ladar

    Science.gov (United States)

    2017-06-01

    entropy saturation behavior of the estimator is analytically described. Simultaneous range-compression and aperture synthesis is experimentally...4 2.1 Circular and Inverse -Circular HAL...2.3 Single Aperture, Multi-λ Imaging ...................................................................................... 14 2.4 Simultaneous Range

  6. Compression of Probabilistic XML documents

    NARCIS (Netherlands)

    Veldman, Irma

    2009-01-01

    Probabilistic XML (PXML) files resulting from data integration can become extremely large, which is undesired. For XML there are several techniques available to compress the document and since probabilistic XML is in fact (a special form of) XML, it might benefit from these methods even more. In

  7. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  8. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  9. Variations in the spectrum of lesions produced in the DNA of cells from mouse tissues after exposure to γ-rays in air-breathing or in artificially anoxic animals

    International Nuclear Information System (INIS)

    Murray, D.; Meyn, R.E.; Vanankeren, S.C.

    1988-01-01

    Few DNA-protein crosslinks (dpc) were detected in the DNA from tumor cells γ-irradiated in vitro; however, in cells from both FSa and NFSa tumors irradiated in situ there was a significant level of protein-concealed ssb, and thus of dpc. These data are most likely the result of the relative hypoxia of a proportion of cells from both the FSa and NFSa tumor in the air-breathing animals. Induction of dpc was further enhanced in the DNA from tumor cells irradiated under anoxic conditions. A significant level of dpc was also observed in jejunal and spleen cells irradiated in vivo; however, since a significant level of protein-concealed breaks was also observed in cells irradiated in vitro, oxygenation appears not to be the only parameter capable of modifying the proportion of protein-concealed ssb, and the effects of proteinase K on the DNA elution rate for normal mouse tissues may be complex. (author)

  10. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing

    International Nuclear Information System (INIS)

    Zhao Jing; Xiao Suguang; Lu Xiong; Wang Jianxin; Weng Jie

    2006-01-01

    Various interconnected porous hydroxyapatite (HA) ceramic scaffolds are universally used to induct the tissue growth for bone repair and replacement, and serve to support the adhesion, transfer, proliferation and differentiation of cells. Impregnation of polyurethane sponges with a ceramic slurry is adopted to produce highly porous HA ceramic scaffolds with a 3D interconnected structure. However, high porosity always accompanies a decrease in the strength of the HA ceramic scaffolds. Therefore, it is significant to improve the strength of the HA ceramic scaffolds with highly interconnected porosity so that they are more suitable in clinical applications. In this work, highly porous HA ceramic scaffolds are first produced by the polymer impregnation approach, and subsequently further sintered by hot isostatic pressing (HIP). The phase composition, macro- and micro-porous structure, sintering and mechanical properties of the porous HA scaffolds are investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), nanoindentation analysis and compressive test. The experimental results show that the nanohardness and compressive strength of HIP-sintered porous HA ceramics are higher than those of commonly sintered HA scaffolds. The HIP technique can effectively improve the sintering property and densification of porous HA ceramic scaffolds, so inducing an increase in the compression strength

  11. Adiabatic compression of ion rings

    International Nuclear Information System (INIS)

    Larrabee, D.A.; Lovelace, R.V.

    1982-01-01

    A study has been made of the compression of collisionless ion rings in an increasing external magnetic field, B/sub e/ = zB/sub e/(t), by numerically implementing a previously developed kinetic theory of ring compression. The theory is general in that there is no limitation on the ring geometry or the compression ratio, lambdaequivalentB/sub e/ (final)/B/sub e/ (initial)> or =1. However, the motion of a single particle in an equilibrium is assumed to be completely characterized by its energy H and canonical angular momentum P/sub theta/ with the absence of a third constant of the motion. The present computational work assumes that plasma currents are negligible, as is appropriate for a low-temperature collisional plasma. For a variety of initial ring geometries and initial distribution functions (having a single value of P/sub theta/), it is found that the parameters for ''fat'', small aspect ratio rings follow general scaling laws over a large range of compression ratios, 1 3 : The ring radius varies as lambda/sup -1/2/; the average single particle energy as lambda/sup 0.72/; the root mean square energy spread as lambda/sup 1.1/; and the total current as lambda/sup 0.79/. The field reversal parameter is found to saturate at values typically between 2 and 3. For large compression ratios the current density is found to ''hollow out''. This hollowing tends to improve the interchange stability of an embedded low β plasma. The implications of these scaling laws for fusion reactor systems are discussed

  12. Effect of compressibility on the hypervelocity penetration

    Science.gov (United States)

    Song, W. J.; Chen, X. W.; Chen, P.

    2018-02-01

    We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

  13. Biomaterials for tissue engineering: summary

    Science.gov (United States)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  14. Managment oriented analysis of sediment yield time compression

    Science.gov (United States)

    Smetanova, Anna; Le Bissonnais, Yves; Raclot, Damien; Nunes, João P.; Licciardello, Feliciana; Le Bouteiller, Caroline; Latron, Jérôme; Rodríguez Caballero, Emilio; Mathys, Nicolle; Klotz, Sébastien; Mekki, Insaf; Gallart, Francesc; Solé Benet, Albert; Pérez Gallego, Nuria; Andrieux, Patrick; Moussa, Roger; Planchon, Olivier; Marisa Santos, Juliana; Alshihabi, Omran; Chikhaoui, Mohamed

    2016-04-01

    The understanding of inter- and intra-annual variability of sediment yield is important for the land use planning and management decisions for sustainable landscapes. It is of particular importance in the regions where the annual sediment yield is often highly dependent on the occurrence of few large events which produce the majority of sediments, such as in the Mediterranean. This phenomenon is referred as time compression, and relevance of its consideration growths with the increase in magnitude and frequency of extreme events due to climate change in many other regions. So far, time compression has ben studied mainly on events datasets, providing high resolution, but (in terms of data amount, required data precision and methods), demanding analysis. In order to provide an alternative simplified approach, the monthly and yearly time compressions were evaluated in eight Mediterranean catchments (of the R-OSMed network), representing a wide range of Mediterranean landscapes. The annual sediment yield varied between 0 to ~27100 Mg•km-2•a-1, and the monthly sediment yield between 0 to ~11600 Mg•km-2•month-1. The catchment's sediment yield was un-equally distributed at inter- and intra-annual scale, and large differences were observed between the catchments. Two types of time compression were distinguished - (i) the inter-annual (based on annual values) and intra- annual (based on monthly values). Four different rainfall-runoff-sediment yield time compression patterns were observed: (i) no time-compression of rainfall, runoff, nor sediment yield, (ii) low time compression of rainfall and runoff, but high compression of sediment yield, (iii) low compression of rainfall and high of runoff and sediment yield, and (iv) low, medium and high compression of rainfall, runoff and sediment yield. All four patterns were present at inter-annual scale, while at intra-annual scale only the two latter were present. This implies that high sediment yields occurred in

  15. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    Energy Technology Data Exchange (ETDEWEB)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  16. Coronal heating by Alfven waves dissipation in compressible nonuniform media

    International Nuclear Information System (INIS)

    Malara, Francesco; Primavera, Leonardo; Veltri, Pierluigi

    1996-01-01

    The possibility to produce small scales and then to efficiently dissipate energy has been studied by Malara et al. [1992b] in the case of MHD disturbances propagating in an weakly dissipative incompressible and inhomogeneous medium, for a strictly 2D geometry. We extend this work to include both compressibility and the third component for vector quantities. Numerical simulations show that, when an Alfven wave propagates in a compressible nonuniform medium, the two dynamical effects responsible for the small scales formation in the incompressible case are still at work: energy pinching and phase-mixing. These effects give rise to the formation of compressible perturbations (fast and slow waves or a static entropy wave). Some of these compressive fluctuations are subject to the steepening of the wave front and become shock waves, which are extremely efficient in dissipating their energy, their dissipation being independent of the Reynolds number. Rough estimates of the typical times the various dynamical processes take to produce small scales show that these times are consistent with those required to dissipate inside the solar corona the energy of Alfven waves of photospheric origin

  17. The task of control digital image compression

    OpenAIRE

    TASHMANOV E.B.; МАМАTOV М.S.

    2014-01-01

    In this paper we consider the relationship of control tasks and image compression losses. The main idea of this approach is to allocate structural lines simplified image and further compress the selected data

  18. Discrete Wigner Function Reconstruction and Compressed Sensing

    OpenAIRE

    Zhang, Jia-Ning; Fang, Lei; Ge, Mo-Lin

    2011-01-01

    A new reconstruction method for Wigner function is reported for quantum tomography based on compressed sensing. By analogy with computed tomography, Wigner functions for some quantum states can be reconstructed with less measurements utilizing this compressed sensing based method.

  19. Compressibility Analysis of the Tongue During Speech

    National Research Council Canada - National Science Library

    Unay, Devrim

    2001-01-01

    .... In this paper, 3D compression and expansion analysis of the tongue will be presented. Patterns of expansion and compression have been compared for different syllables and various repetitions of each syllable...

  20. Compressed normalized block difference for object tracking

    Science.gov (United States)

    Gao, Yun; Zhang, Dengzhuo; Cai, Donglan; Zhou, Hao; Lan, Ge

    2018-04-01

    Feature extraction is very important for robust and real-time tracking. Compressive sensing provided a technical support for real-time feature extraction. However, all existing compressive tracking were based on compressed Haar-like feature, and how to compress many more excellent high-dimensional features is worth researching. In this paper, a novel compressed normalized block difference feature (CNBD) was proposed. For resisting noise effectively in a highdimensional normalized pixel difference feature (NPD), a normalized block difference feature extends two pixels in the original formula of NPD to two blocks. A CNBD feature can be obtained by compressing a normalized block difference feature based on compressive sensing theory, with the sparse random Gaussian matrix as the measurement matrix. The comparative experiments of 7 trackers on 20 challenging sequences showed that the tracker based on CNBD feature can perform better than other trackers, especially than FCT tracker based on compressed Haar-like feature, in terms of AUC, SR and Precision.

  1. Stable, fertile, high polyhydroxyalkanoate producing plants and methods of producing them

    Energy Technology Data Exchange (ETDEWEB)

    Bohmert-Tatarev, Karen; McAvoy, Susan; Peoples, Oliver P.; Snell, Kristi D.

    2015-08-04

    Transgenic plants that produce high levels of polyhydroxybutyrate and methods of producing them are provided. In a preferred embodiment the transgenic plants are produced using plastid transformation technologies and utilize genes which are codon optimized. Stably transformed plants able to produce greater than 10% dwt PHS in tissues are also provided.

  2. Neutralized drift compression experiments with a high-intensity ion beam

    International Nuclear Information System (INIS)

    Roy, P.K.; Yu, S.S.; Waldron, W.L.; Anders, A.; Baca, D.; Barnard, J.J.; Bieniosek, F.M.; Coleman, J.; Davidson, R.C.; Efthimion, P.C.; Eylon, S.; Friedman, A.; Gilson, E.P.; Greenway, W.G.; Henestroza, E.; Kaganovich, I.; Leitner, M.; Logan, B.G.; Sefkow, A.B.; Seidl, P.A.; Sharp, W.M.; Thoma, C.; Welch, D.R.

    2007-01-01

    To create high-energy density matter and fusion conditions, high-power drivers, such as lasers, ion beams, and X-ray drivers, may be employed to heat targets with short pulses compared to hydro-motion. Both high-energy density physics and ion-driven inertial fusion require the simultaneous transverse and longitudinal compression of an ion beam to achieve high intensities. We have previously studied the effects of plasma neutralization for transverse beam compression. The scaled experiment, the Neutralized Transport Experiment (NTX), demonstrated that an initially un-neutralized beam can be compressed transversely to ∼1 mm radius when charge neutralization by background plasma electrons is provided. Here, we report longitudinal compression of a velocity-tailored, intense, neutralized 25 mA K + beam at 300 keV. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhances the beam peak current by a factor of 50 and produces a pulse duration of about 3 ns. The physics of longitudinal compression, experimental procedure, and the results of the compression experiments are presented

  3. MR imaging of medullary compression due to vertebral metastases

    International Nuclear Information System (INIS)

    Dooms, G.C.; Mathurin, P.; Maldague, B.; Cornelis, G.; Malghem, J.; Demeure, R.

    1987-01-01

    A prospective study was performed to assess the value of MR imaging for demonstrating medullary compression due to vertebral metastases in cancer patients clinically suspected of presenting with that complication. Twenty-five consecutive unselected patients were studied, and the MR imaging findings were confirmed by myelography, CT, and/or surgical and autopsy findings for each patient. The MR examinations were performed with a superconducting magnet (Philips Gyroscan S15) operating at 0.5-T. MR imaging demonstrated the metastases (single or multiple) mainly on T1- weighted images (TR = 0.45 sec and TE = 20 msec). Soft-tissue tumoral mass and/or deformity of a vertebral body secondary to metastasis, compressing the spinal cord, was equally demonstrated on T1- and heavily T2-weighted images (TR = 1.65 sec and TE = 100 msec). In the sagittal plane, MR imaging demonstrated the exact level of the compression (one or multiple levels) and its full extent. In conclusion, MR is the first imaging modality for studying cancer patients with clinically suspected medullary compression and obviates the need for more invasive procedures

  4. Effects of dynamic range compression on spatial selective auditory attention in normal-hearing listeners.

    Science.gov (United States)

    Schwartz, Andrew H; Shinn-Cunningham, Barbara G

    2013-04-01

    Many hearing aids introduce compressive gain to accommodate the reduced dynamic range that often accompanies hearing loss. However, natural sounds produce complicated temporal dynamics in hearing aid compression, as gain is driven by whichever source dominates at a given moment. Moreover, independent compression at the two ears can introduce fluctuations in interaural level differences (ILDs) important for spatial perception. While independent compression can interfere with spatial perception of sound, it does not always interfere with localization accuracy or speech identification. Here, normal-hearing listeners reported a target message played simultaneously with two spatially separated masker messages. We measured the amount of spatial separation required between the target and maskers for subjects to perform at threshold in this task. Fast, syllabic compression that was independent at the two ears increased the required spatial separation, but linking the compressors to provide identical gain to both ears (preserving ILDs) restored much of the deficit caused by fast, independent compression. Effects were less clear for slower compression. Percent-correct performance was lower with independent compression, but only for small spatial separations. These results may help explain differences in previous reports of the effect of compression on spatial perception of sound.

  5. How should we grade lumbar disc herniation and nerve root compression? A systematic review.

    Science.gov (United States)

    Li, Yiping; Fredrickson, Vance; Resnick, Daniel K

    2015-06-01

    MRI is the gold standard for evaluating the relationship of disc material to soft tissue and neural structures. However, terminologies used to describe lumbar disc herniation and nerve root compression have always been a source of confusion. A clear understanding of lumbar disc terminology among clinicians, radiologists, and researchers is vital for patient care and future research. Through a systematic review of the literature, the purpose of this article is to describe lumbar disc terminology and comment on the reliability of various nomenclature systems and their application to clinical practice. PubMed was used for our literature search using the following MeSH headings: "Magnetic Resonance Imaging and Intervertebral Disc Displacement" and "Lumbar Vertebrae" and terms "nomenclature" or "grading" or "classification". Ten papers evaluating lumbar disc herniation/nerve root compression using different grading criteria and providing information regarding intraobserver and interobserver agreement were identified. To date, the Combined Task Force (CTF) and van Rijn classification systems are the most reliable methods for describing lumbar disc herniation and nerve root compression, respectively. van Rijn dichotomized nerve roots from "definitely no root compression, possibly no root compression, indeterminate root compression, possible root compression, and definite root compression" into no root compression (first three categories) and root compression (last two categories). The CTF classification defines lumbar discs as normal, focal protrusion, broad-based protrusion, or extrusion. The CTF classification system excludes "disc bulges," which is a source of confusion and disagreement among many practitioners. This potentially accounts for its improved reliability compared with other proposed nomenclature systems. The main issue in the management of patients with lumbar disc disease and nerve root compression is correlation of imaging findings with clinical

  6. On Normalized Compression Distance and Large Malware

    OpenAIRE

    Borbely, Rebecca Schuller

    2015-01-01

    Normalized Compression Distance (NCD) is a popular tool that uses compression algorithms to cluster and classify data in a wide range of applications. Existing discussions of NCD's theoretical merit rely on certain theoretical properties of compression algorithms. However, we demonstrate that many popular compression algorithms don't seem to satisfy these theoretical properties. We explore the relationship between some of these properties and file size, demonstrating that this theoretical pro...

  7. Image quality (IQ) guided multispectral image compression

    Science.gov (United States)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  8. Speech Data Compression using Vector Quantization

    OpenAIRE

    H. B. Kekre; Tanuja K. Sarode

    2008-01-01

    Mostly transforms are used for speech data compressions which are lossy algorithms. Such algorithms are tolerable for speech data compression since the loss in quality is not perceived by the human ear. However the vector quantization (VQ) has a potential to give more data compression maintaining the same quality. In this paper we propose speech data compression algorithm using vector quantization technique. We have used VQ algorithms LBG, KPE and FCG. The results table s...

  9. Considerations and Algorithms for Compression of Sets

    DEFF Research Database (Denmark)

    Larsson, Jesper

    We consider compression of unordered sets of distinct elements. After a discus- sion of the general problem, we focus on compressing sets of fixed-length bitstrings in the presence of statistical information. We survey techniques from previous work, suggesting some adjustments, and propose a novel...... compression algorithm that allows transparent incorporation of various estimates for probability distribution. Our experimental results allow the conclusion that set compression can benefit from incorporat- ing statistics, using our method or variants of previously known techniques....

  10. A biological compression model and its applications.

    Science.gov (United States)

    Cao, Minh Duc; Dix, Trevor I; Allison, Lloyd

    2011-01-01

    A biological compression model, expert model, is presented which is superior to existing compression algorithms in both compression performance and speed. The model is able to compress whole eukaryotic genomes. Most importantly, the model provides a framework for knowledge discovery from biological data. It can be used for repeat element discovery, sequence alignment and phylogenetic analysis. We demonstrate that the model can handle statistically biased sequences and distantly related sequences where conventional knowledge discovery tools often fail.

  11. Subjective evaluation of compressed image quality

    Science.gov (United States)

    Lee, Heesub; Rowberg, Alan H.; Frank, Mark S.; Choi, Hyung-Sik; Kim, Yongmin

    1992-05-01

    Lossy data compression generates distortion or error on the reconstructed image and the distortion becomes visible as the compression ratio increases. Even at the same compression ratio, the distortion appears differently depending on the compression method used. Because of the nonlinearity of the human visual system and lossy data compression methods, we have evaluated subjectively the quality of medical images compressed with two different methods, an intraframe and interframe coding algorithms. The evaluated raw data were analyzed statistically to measure interrater reliability and reliability of an individual reader. Also, the analysis of variance was used to identify which compression method is better statistically, and from what compression ratio the quality of a compressed image is evaluated as poorer than that of the original. Nine x-ray CT head images from three patients were used as test cases. Six radiologists participated in reading the 99 images (some were duplicates) compressed at four different compression ratios, original, 5:1, 10:1, and 15:1. The six readers agree more than by chance alone and their agreement was statistically significant, but there were large variations among readers as well as within a reader. The displacement estimated interframe coding algorithm is significantly better in quality than that of the 2-D block DCT at significance level 0.05. Also, 10:1 compressed images with the interframe coding algorithm do not show any significant differences from the original at level 0.05.

  12. H.264/AVC Video Compression on Smartphones

    Science.gov (United States)

    Sharabayko, M. P.; Markov, N. G.

    2017-01-01

    In this paper, we studied the usage of H.264/AVC video compression tools by the flagship smartphones. The results show that only a subset of tools is used, meaning that there is still a potential to achieve higher compression efficiency within the H.264/AVC standard, but the most advanced smartphones are already reaching the compression efficiency limit of H.264/AVC.

  13. Relationship between the edgewise compression strength of ...

    African Journals Online (AJOL)

    The results of this study were used to determine the linear regression constants in the Maltenfort model by correlating the measured board edgewise compression strength (ECT) with the predicted strength, using the paper components' compression strengths, measured with the short-span compression test (SCT) and the ...

  14. Intrinsic Osteoinductivity of Porous Titanium Scaffold for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Maryam Tamaddon

    2017-01-01

    Full Text Available Large bone defects and nonunions are serious complications that are caused by extensive trauma or tumour. As traditional therapies fail to repair these critical-sized defects, tissue engineering scaffolds can be used to regenerate the damaged tissue. Highly porous titanium scaffolds, produced by selective laser sintering with mechanical properties in range of trabecular bone (compressive strength 35 MPa and modulus 73 MPa, can be used in these orthopaedic applications, if a stable mechanical fixation is provided. Hydroxyapatite coatings are generally considered essential and/or beneficial for bone formation; however, debonding of the coatings is one of the main concerns. We hypothesised that the titanium scaffolds have an intrinsic potential to induce bone formation without the need for a hydroxyapatite coating. In this paper, titanium scaffolds coated with hydroxyapatite using electrochemical method were fabricated and osteoinductivity of coated and noncoated scaffolds was compared in vitro. Alizarin Red quantification confirmed osteogenesis independent of coating. Bone formation and ingrowth into the titanium scaffolds were evaluated in sheep stifle joints. The examinations after 3 months revealed 70% bone ingrowth into the scaffold confirming its osteoinductive capacity. It is shown that the developed titanium scaffold has an intrinsic capacity for bone formation and is a suitable scaffold for bone tissue engineering.

  15. Microstructure based hygromechanical modelling of deformation of fruit tissue

    Science.gov (United States)

    Abera, M. K.; Wang, Z.; Verboven, P.; Nicolai, B.

    2017-10-01

    Quality parameters such as firmness and susceptibility to mechanical damage are affected by the mechanical properties of fruit tissue. Fruit tissue is composed of turgid cells that keep cell walls under tension, and intercellular gas spaces where cell walls of neighboring cells have separated. How the structure and properties of these complex microstructures are affecting tissue mechanics is difficult to unravel experimentally. In this contribution, a modelling methodology is presented to calculate the deformation of apple fruit tissue affected by differences in structure and properties of cells and cell walls. The model can be used to perform compression experiments in silico using a hygromechanical model that computes the stress development and water loss during tissue deformation, much like in an actual compression test. The advantage of the model is that properties and structure can be changed to test the influence on the mechanical deformation process. The effect of microstructure, turgor pressure, cell membrane permeability, wall thickness and damping) on the compressibility of the tissue was simulated. Increasing the turgor pressure and thickness of the cell walls results in increased compression resistance of apple tissue increases, as do decreasing cell size and porosity. Geometric variability of the microstructure of tissues plays a major role, affecting results more than other model parameters. Different fruit cultivars were compared, and it was demonstrated, that microstructure variations within a cultivar are so large that interpretation of cultivar-specific effects is difficult.

  16. Using autoencoders for mammogram compression.

    Science.gov (United States)

    Tan, Chun Chet; Eswaran, Chikkannan

    2011-02-01

    This paper presents the results obtained for medical image compression using autoencoder neural networks. Since mammograms (medical images) are usually of big sizes, training of autoencoders becomes extremely tedious and difficult if the whole image is used for training. We show in this paper that the autoencoders can be trained successfully by using image patches instead of the whole image. The compression performances of different types of autoencoders are compared based on two parameters, namely mean square error and structural similarity index. It is found from the experimental results that the autoencoder which does not use Restricted Boltzmann Machine pre-training yields better results than those which use this pre-training method.

  17. Instability of ties in compression

    DEFF Research Database (Denmark)

    Buch-Hansen, Thomas Cornelius

    2013-01-01

    Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from...... the temperature gradient between the outer and the inner wall, which results in critical increase of the bending moments in the ties. Since the ties are loaded by combined compression and moment forces, the loadbearing capacity is derived from instability equilibrium equations. Most of them are iterative, since...... exact instability solutions are complex to derive, not to mention the extra complexity introducing dimensional instability from the temperature gradients. Using an inverse variable substitution and comparing an exact theory with an analytical instability solution a method to design tie...

  18. Diagnostic imaging of compression neuropathy

    International Nuclear Information System (INIS)

    Weishaupt, D.; Andreisek, G.

    2007-01-01

    Compression-induced neuropathy of peripheral nerves can cause severe pain of the foot and ankle. Early diagnosis is important to institute prompt treatment and to minimize potential injury. Although clinical examination combined with electrophysiological studies remain the cornerstone of the diagnostic work-up, in certain cases, imaging may provide key information with regard to the exact anatomic location of the lesion or aid in narrowing the differential diagnosis. In other patients with peripheral neuropathies of the foot and ankle, imaging may establish the etiology of the condition and provide information crucial for management and/or surgical planning. MR imaging and ultrasound provide direct visualization of the nerve and surrounding abnormalities. Bony abnormalities contributing to nerve compression are best assessed by radiographs and CT. Knowledge of the anatomy, the etiology, typical clinical findings, and imaging features of peripheral neuropathies affecting the peripheral nerves of the foot and ankle will allow for a more confident diagnosis. (orig.) [de

  19. [Medical image compression: a review].

    Science.gov (United States)

    Noreña, Tatiana; Romero, Eduardo

    2013-01-01

    Modern medicine is an increasingly complex activity , based on the evidence ; it consists of information from multiple sources : medical record text , sound recordings , images and videos generated by a large number of devices . Medical imaging is one of the most important sources of information since they offer comprehensive support of medical procedures for diagnosis and follow-up . However , the amount of information generated by image capturing gadgets quickly exceeds storage availability in radiology services , generating additional costs in devices with greater storage capacity . Besides , the current trend of developing applications in cloud computing has limitations, even though virtual storage is available from anywhere, connections are made through internet . In these scenarios the optimal use of information necessarily requires powerful compression algorithms adapted to medical activity needs . In this paper we present a review of compression techniques used for image storage , and a critical analysis of them from the point of view of their use in clinical settings.

  20. Compressed optimization of device architectures

    Energy Technology Data Exchange (ETDEWEB)

    Frees, Adam [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Gamble, John King [Microsoft Research, Redmond, WA (United States). Quantum Architectures and Computation Group; Ward, Daniel Robert [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Blume-Kohout, Robin J [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Eriksson, M. A. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Friesen, Mark [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Coppersmith, Susan N. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics

    2014-09-01

    Recent advances in nanotechnology have enabled researchers to control individual quantum mechanical objects with unprecedented accuracy, opening the door for both quantum and extreme- scale conventional computation applications. As these devices become more complex, designing for facility of control becomes a daunting and computationally infeasible task. Here, motivated by ideas from compressed sensing, we introduce a protocol for the Compressed Optimization of Device Architectures (CODA). It leads naturally to a metric for benchmarking and optimizing device designs, as well as an automatic device control protocol that reduces the operational complexity required to achieve a particular output. Because this protocol is both experimentally and computationally efficient, it is readily extensible to large systems. For this paper, we demonstrate both the bench- marking and device control protocol components of CODA through examples of realistic simulations of electrostatic quantum dot devices, which are currently being developed experimentally for quantum computation.

  1. Durability of compressed soil-cement bricks

    Directory of Open Access Journals (Sweden)

    Acosta Valle, A.

    2001-06-01

    Full Text Available This papers shows the evaluation process of the durability of compressed soil-cement bricks. A great number of tests were made to determine the behavior of bricks when they are compression loaded and under the influence of moisture. Two different types of soils were used to produce the bricks, a lime-clay soil and a sand one. The sand soil is very resistant. The other one has a limited use. An experimental design was used to test the bricks. It is a rotational and quadratic method with a hexagonal figure which contains replicas at the central point. This method ensures the reliability of test results. Otherwise, it would reduce the amount of specimens necessary for the tests. The optimun moisture content is obtained by using a press machine. It is more rational than the standard Proctor compactation test, because it applies the same type and amount of energy used to produce the bricks. The obtained results show the behavior differences between the two compressed soil-cement bricks subjected to the compression test, water absorption and wetting and drying tests. The durability tests results are very important in the possible use of the bricks produced.

    En el trabajo se evalúa la durabilidad de elementos aglomerados de suelo estabilizado. Se realiza un amplio número de ensayos encaminados a determinar el comportamiento frente a la acción de las cargas y la humedad de dos suelos con características diferentes: uno limo-arcilloso y el otro arenoso. Este último presenta resultados muy favorables en ambas direcciones. El otro, con un posible uso más limitado. Se emplea un método de diseño experimental del tipo rotacional cuadrático en hexágono, con réplicas en el punto central, el que garantiza la confiabilidad de los resultados de los ensayos, a la vez que disminuye la cantidad de especímenes a ensayar. Se determina la humedad óptima a utilizar en las diferentes dosificaciones empleando la máquina compactadora, que resulta m

  2. Compressed air energy storage system

    Science.gov (United States)

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  3. Compressing spatio-temporal trajectories

    DEFF Research Database (Denmark)

    Gudmundsson, Joachim; Katajainen, Jyrki; Merrick, Damian

    2009-01-01

    such that the most common spatio-temporal queries can still be answered approximately after the compression has taken place. In the process, we develop an implementation of the Douglas–Peucker path-simplification algorithm which works efficiently even in the case where the polygonal path given as input is allowed...... to self-intersect. For a polygonal path of size n, the processing time is O(nlogkn) for k=2 or k=3 depending on the type of simplification....

  4. [Compression treatment for burned skin].

    Science.gov (United States)

    Jaafar, Fadhel; Lassoued, Mohamed A; Sahnoun, Mahdi; Sfar, Souad; Cheikhrouhou, Morched

    2012-02-01

    The regularity of a compressive knit is defined as its ability to perform its function in a burnt skin. This property is essential to avoid the phenomenon of rejection of the material or toxicity problems But: Make knits biocompatible with high burnet of human skin. We fabric knits of elastic material. To ensure good adhesion to the skin, we made elastic material, typically a tight loop knitted. The Length of yarn absorbed by stitch and the raw matter are changed with each sample. The physical properties of each sample are measured and compared. Surface modifications are made to these samples by impregnation of microcapsules based on jojoba oil. Knits are compressif, elastic in all directions, light, thin, comfortable, and washable for hygiene issues. In addition, the washing can find their compressive properties. The Jojoba Oil microcapsules hydrated the human burnet skin. This moisturizer is used to the firmness of the wound and it gives flexibility to the skin. Compressive Knits are biocompatible with burnet skin. The mixture of natural and synthetic fibers is irreplaceable in terms comfort and regularity.

  5. Compressibility effects on turbulent mixing

    Science.gov (United States)

    Panickacheril John, John; Donzis, Diego

    2016-11-01

    We investigate the effect of compressibility on passive scalar mixing in isotropic turbulence with a focus on the fundamental mechanisms that are responsible for such effects using a large Direct Numerical Simulation (DNS) database. The database includes simulations with Taylor Reynolds number (Rλ) up to 100, turbulent Mach number (Mt) between 0.1 and 0.6 and Schmidt number (Sc) from 0.5 to 1.0. We present several measures of mixing efficiency on different canonical flows to robustly identify compressibility effects. We found that, like shear layers, mixing is reduced as Mach number increases. However, data also reveal a non-monotonic trend with Mt. To assess directly the effect of dilatational motions we also present results with both dilatational and soleniodal forcing. Analysis suggests that a small fraction of dilatational forcing decreases mixing time at higher Mt. Scalar spectra collapse when normalized by Batchelor variables which suggests that a compressive mechanism similar to Batchelor mixing in incompressible flows might be responsible for better mixing at high Mt and with dilatational forcing compared to pure solenoidal mixing. We also present results on scalar budgets, in particular on production and dissipation. Support from NSF is gratefully acknowledged.

  6. Image compression of bone images

    International Nuclear Information System (INIS)

    Hayrapetian, A.; Kangarloo, H.; Chan, K.K.; Ho, B.; Huang, H.K.

    1989-01-01

    This paper reports a receiver operating characteristic (ROC) experiment conducted to compare the diagnostic performance of a compressed bone image with the original. The compression was done on custom hardware that implements an algorithm based on full-frame cosine transform. The compression ratio in this study is approximately 10:1, which was decided after a pilot experiment. The image set consisted of 45 hand images, including normal images and images containing osteomalacia and osteitis fibrosa. Each image was digitized with a laser film scanner to 2,048 x 2,048 x 8 bits. Six observers, all board-certified radiologists, participated in the experiment. For each ROC session, an independent ROC curve was constructed and the area under that curve calculated. The image set was randomized for each session, as was the order for viewing the original and reconstructed images. Analysis of variance was used to analyze the data and derive statistically significant results. The preliminary results indicate that the diagnostic quality of the reconstructed image is comparable to that of the original image

  7. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D

    2008-05-01

    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  8. Compression planning for continuous improvement in quality programs

    International Nuclear Information System (INIS)

    Willis, Y.A.; Hood, F.C.

    1992-01-01

    This paper describes Compression Planning, an innovative approach for planning in groups. This participative and structured approach is especially suitable for technical and highly regulated organizations. Compression Planning was applied to the first organization-wide effort at training integration for regulatory compliance, at Battelle Pacific Northwest Laboratory (PNL), a multi-program national laboratory. The planning process was judged as measurably superior to PNL's customary planning. Within 10 days a training policy was issued and an action plan drafted. The participants produced a report identifying and prioritizing 33 key training issues; began to data gather and solicit input from personnel Lab-wide, producing a 2-volume training inventory; and formulated 14 recommendations for implementation. Two years later the plan is still evolving, as PNL training continues to develop, consistent with Continuous Improvement Process objectives

  9. Hyperspectral image compressing using wavelet-based method

    Science.gov (United States)

    Yu, Hui; Zhang, Zhi-jie; Lei, Bo; Wang, Chen-sheng

    2017-10-01

    Hyperspectral imaging sensors can acquire images in hundreds of continuous narrow spectral bands. Therefore each object presented in the image can be identified from their spectral response. However, such kind of imaging brings a huge amount of data, which requires transmission, processing, and storage resources for both airborne and space borne imaging. Due to the high volume of hyperspectral image data, the exploration of compression strategies has received a lot of attention in recent years. Compression of hyperspectral data cubes is an effective solution for these problems. Lossless compression of the hyperspectral data usually results in low compression ratio, which may not meet the available resources; on the other hand, lossy compression may give the desired ratio, but with a significant degradation effect on object identification performance of the hyperspectral data. Moreover, most hyperspectral data compression techniques exploits the similarities in spectral dimensions; which requires bands reordering or regrouping, to make use of the spectral redundancy. In this paper, we explored the spectral cross correlation between different bands, and proposed an adaptive band selection method to obtain the spectral bands which contain most of the information of the acquired hyperspectral data cube. The proposed method mainly consist three steps: First, the algorithm decomposes the original hyperspectral imagery into a series of subspaces based on the hyper correlation matrix of the hyperspectral images between different bands. And then the Wavelet-based algorithm is applied to the each subspaces. At last the PCA method is applied to the wavelet coefficients to produce the chosen number of components. The performance of the proposed method was tested by using ISODATA classification method.

  10. SVD compression for magnetic resonance fingerprinting in the time domain.

    Science.gov (United States)

    McGivney, Debra F; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A

    2014-12-01

    Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition, which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.

  11. Optimum concrete compression strength using bio-enzyme

    OpenAIRE

    Bagio Tony Hartono; Basoeki Makno; Tistogondo Julistyana; Pradana Sofyan Ali

    2017-01-01

    To make concrete with high compressive strength and has a certain concrete specifications other than the main concrete materials are also needed concrete mix quality control and other added material is also in line with the current technology of concrete mix that produces concrete with specific characteristics. Addition of bio enzyme on five concrete mixture that will be compared with normal concrete in order to know the optimum level bio-enzyme in concrete to increase the strength of the con...

  12. Search for compressed SUSY scenarios with the ATLAS detector

    CERN Document Server

    Maurer, Julien; The ATLAS collaboration

    2017-01-01

    Scenarios where multiple SUSY states are nearly degenerate in mass produce soft decay products, and they represent an experimental challenge for ATLAS. This contribution presented recent results of analyses explicitly targeting such ``compressed'' scenarios with a variety of experimental techniques. All results made use of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC.

  13. Compressive and flexural strength of high strength phase change mortar

    Science.gov (United States)

    Qiao, Qingyao; Fang, Changle

    2018-04-01

    High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.

  14. Envera Variable Compression Ratio Engine

    Energy Technology Data Exchange (ETDEWEB)

    Charles Mendler

    2011-03-15

    Aggressive engine downsizing, variable compression ratio and use of the Atkinson cycle are being combined to improve fuel economy by up to 40 percent relative to port fuel injected gasoline engines, while maintaining full engine power. Approach Engine downsizing is viewed by US and foreign automobile manufacturers as one of the best options for improving fuel economy. While this strategy has already demonstrated a degree of success, downsizing and fuel economy gains are currently limited. With new variable compression ratio technology however, the degree of engine downsizing and fuel economy improvement can be greatly increased. A small variable compression ratio (VCR) engine has the potential to return significantly higher vehicle fuel economy while also providing high power. Affordability and potential for near term commercialization are key attributes of the Envera VCR engine. VCR Technology To meet torque and power requirements, a smaller engine needs to do more work per stroke. This is typically accomplished by boosting the incoming charge with either a turbo or supercharger so that more energy is present in the cylinder per stroke to do the work. With current production engines the degree of engine boosting (which correlates to downsizing) is limited by detonation (combustion knock) at high boost levels. Additionally, the turbo or supercharger needs to be responsive and efficient while providing the needed boost. VCR technology eliminates the limitation of engine knock at high load levels by reducing compression ratio to {approx}9:1 (or whatever level is appropriate) when high boost pressures are needed. By reducing the compression ratio during high load demand periods there is increased volume in the cylinder at top dead center (TDC) which allows more charge (or energy) to be present in the cylinder without increasing the peak pressure. Cylinder pressure is thus kept below the level at which the engine would begin to knock. When loads on the engine are low

  15. Behaviour of (Th, U)O2 microspheres under compression tests and pelletization

    International Nuclear Information System (INIS)

    Ferreira, R.A.N.

    1982-12-01

    The interrelation between the behaviour of isolated microspheres in compression tests and the microstructure of sintered pellets obtained with these microspheres, was investigated. Various batches of (Th, 5 w/o U)O 2 microspheres were produced applying the so-called gel process. The production parameters were diversified both as to the composition and to the heat treatments. The resulting products underwent compression tests in an universal tension and compression machine as single microspheres and, as bulk material, were compacted and sintered. The results of the compression tests revealed the existence of two distinct classes of fragmentation behaviour. Each of these classes causes a distinct behaviour during the pelletization, too, resulting in fuel pellets with quite different microstructures. It was evidenced that there is a relationship between these differences in the microstructure and the behaviour of the single microspheres in the compression test. (Author) [pt

  16. [Human brown adipose tissue].

    Science.gov (United States)

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  17. Method for producing bonded nonwoven fabrics using ionizing radiation

    International Nuclear Information System (INIS)

    Drelich, A.H.; Oney, D.G.

    1979-01-01

    A method is described for producing a resin-bonded nonwoven fabric. The preparation involves forming a fibrous web annealing it and compressing it to provide fiber to fiber contact. A polymerizable binder is applied to the fibrous web which is then treated by ionizing radiation to produce the material. 9 figures, 3 drawing

  18. Study on Compression Induced Contrast in X-ray Mammograms Using Breast Mimicking Phantoms

    Directory of Open Access Journals (Sweden)

    A. B. M. Aowlad Hossain

    2015-09-01

    Full Text Available X-ray mammography is commonly used to scan cancer or tumors in breast using low dose x-rays. But mammograms suffer from low contrast problem. The breast is compressed in mammography to reduce x-ray scattering effects. As tumors are stiffer than normal tissues, they undergo smaller deformation under compression. Therefore, image intensity at tumor region may change less than the background tissues. In this study, we try to find out compression induced contrast from multiple mammographic images of tumorous breast phantoms taken with different compressions. This is an extended work of our previous simulation study with experiment and more analysis. We have used FEM models for synthetic phantom and constructed a phantom using agar and n-propanol for simulation and experiment. The x-ray images of deformed phantoms have been obtained under three compression steps and a non-rigid registration technique has been applied to register these images. It is noticeably observed that the image intensity changes at tumor are less than those at surrounding which induce a detectable contrast. Addition of this compression induced contrast to the simulated and experimental images has improved their original contrast by a factor of about 1.4

  19. The influence of freezing and tissue porosity on the material properties of vegetable tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ralfs, Julie D

    2002-07-01

    Tissue porosity and fluid flow have been shown to be important parameters affecting the mechanical and sensorial behaviour of edible plant tissues. The quantity of fluid and the manner with which it was released on compression of the plant tissue were also important regarding the sensory perception and a good indication of any structural damage resulting from freezing, for example. Potato, carrot and Chinese water chestnut were used to study the effects freezing has on model plant tissues. Mechanical and structural measurements of the plant tissue were correlated with sensory analysis. Conventional freezing was shown to cause severe structural damage predominantly in the form of cavities between or through cells, resulting in decreases in mechanical strength and stiffness, and samples that were perceived in the mouth as 'soft' and 'wet'. The location and size of the cavities formed from ice crystals, depended on the particular plant tissue being frozen, the processing it was subjected to prior to freezing, the size of the sample and the cooling regime employed to freeze the tissue. Cavitation in the tissue resulted in an increase in tissue porosity, which enabled fluid to flow more easily from the tissue on compression, thus affecting the mechanical properties and sensory perception. Freezing damage to plant tissues was shown to be reduced, and sometimes prevented, when active antifreeze proteins (AFPs) were introduced into the tissues by vacuum infiltration or transformation and the tissue was frozen at a suitable cooling rate. Theoretical modelling was applied to the fluid flow and porosity data to test the validity of the models and to subsequently predict the mechanical behaviour of potato from the structural properties of the tissue. (author)

  20. The influence of freezing and tissue porosity on the material properties of vegetable tissues

    International Nuclear Information System (INIS)

    Ralfs, Julie D.

    2002-01-01

    Tissue porosity and fluid flow have been shown to be important parameters affecting the mechanical and sensorial behaviour of edible plant tissues. The quantity of fluid and the manner with which it was released on compression of the plant tissue were also important regarding the sensory perception and a good indication of any structural damage resulting from freezing, for example. Potato, carrot and Chinese water chestnut were used to study the effects freezing has on model plant tissues. Mechanical and structural measurements of the plant tissue were correlated with sensory analysis. Conventional freezing was shown to cause severe structural damage predominantly in the form of cavities between or through cells, resulting in decreases in mechanical strength and stiffness, and samples that were perceived in the mouth as 'soft' and 'wet'. The location and size of the cavities formed from ice crystals, depended on the particular plant tissue being frozen, the processing it was subjected to prior to freezing, the size of the sample and the cooling regime employed to freeze the tissue. Cavitation in the tissue resulted in an increase in tissue porosity, which enabled fluid to flow more easily from the tissue on compression, thus affecting the mechanical properties and sensory perception. Freezing damage to plant tissues was shown to be reduced, and sometimes prevented, when active antifreeze proteins (AFPs) were introduced into the tissues by vacuum infiltration or transformation and the tissue was frozen at a suitable cooling rate. Theoretical modelling was applied to the fluid flow and porosity data to test the validity of the models and to subsequently predict the mechanical behaviour of potato from the structural properties of the tissue. (author)

  1. Intermittent pneumatic compression of legs increases microcirculation in distant skeletal muscle.

    Science.gov (United States)

    Liu, K; Chen, L E; Seaber, A V; Johnson, G W; Urbaniak, J R

    1999-01-01

    Intermittent pneumatic compression has been established as a method of clinically preventing deep vein thrombosis, but the mechanism has not been documented. This study observed the effects of intermittent pneumatic compression of legs on the microcirculation of distant skeletal muscle. The cremaster muscles of 80 male rats were exposed, a specially designed intermittent pneumatic-compression device was applied to both legs for 60 minutes, and the microcirculation of the muscles was assessed by measurement of the vessel diameter in three categories (10-20, 21-40, and 41-70 microm) for 120 minutes. The results showed significant vasodilation in arterial and venous vessels during the application of intermittent pneumatic compression, which disappeared after termination of the compression. The vasodilation reached a maximum 30 minutes after initiation of the compression and could be completely blocked by an inhibitor of nitric oxide synthase, NG-monomethyl-L-arginine (10 micromol/min). A 120-minute infusion of NG-monomethyl-L-arginine, beginning coincident with 60 minutes of intermittent pneumatic compression, resulted in a significant decrease in arterial diameter that remained at almost the same level after termination of the compression. The magnitude of the decrease in diameter in the group treated with intermittent pneumatic compression and NG-monomethyl-L-arginine was comparable with that in the group treated with NG-monomethyl-L-arginine alone. The results imply that the production of nitric oxide is involved in the positive influence of intermittent pneumatic compression on circulation. It is postulated that the rapid increase in venous velocity induced by intermittent pneumatic compression produces strong shear stress on the vascular endothelium, which stimulates an increased release of nitric oxide and thereby causes systemic vasodilation.

  2. A New Algorithm for the On-Board Compression of Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Raúl Guerra

    2018-03-01

    Full Text Available Hyperspectral sensors are able to provide information that is useful for many different applications. However, the huge amounts of data collected by these sensors are not exempt of drawbacks, especially in remote sensing environments where the hyperspectral images are collected on-board satellites and need to be transferred to the earth’s surface. In this situation, an efficient compression of the hyperspectral images is mandatory in order to save bandwidth and storage space. Lossless compression algorithms have been traditionally preferred, in order to preserve all the information present in the hyperspectral cube for scientific purposes, despite their limited compression ratio. Nevertheless, the increment in the data-rate of the new-generation sensors is making more critical the necessity of obtaining higher compression ratios, making it necessary to use lossy compression techniques. A new transform-based lossy compression algorithm, namely Lossy Compression Algorithm for Hyperspectral Image Systems (HyperLCA, is proposed in this manuscript. This compressor has been developed for achieving high compression ratios with a good compression performance at a reasonable computational burden. An extensive amount of experiments have been performed in order to evaluate the goodness of the proposed HyperLCA compressor using different calibrated and uncalibrated hyperspectral images from the AVIRIS and Hyperion sensors. The results provided by the proposed HyperLCA compressor have been evaluated and compared against those produced by the most relevant state-of-the-art compression solutions. The theoretical and experimental evidence indicates that the proposed algorithm represents an excellent option for lossy compressing hyperspectral images, especially for applications where the available computational resources are limited, such as on-board scenarios.

  3. Vertical Object Layout and Compression for Fixed Heaps

    Science.gov (United States)

    Titzer, Ben L.; Palsberg, Jens

    Research into embedded sensor networks has placed increased focus on the problem of developing reliable and flexible software for microcontroller-class devices. Languages such as nesC [10] and Virgil [20] have brought higher-level programming idioms to this lowest layer of software, thereby adding expressiveness. Both languages are marked by the absence of dynamic memory allocation, which removes the need for a runtime system to manage memory. While nesC offers code modules with statically allocated fields, arrays and structs, Virgil allows the application to allocate and initialize arbitrary objects during compilation, producing a fixed object heap for runtime. This paper explores techniques for compressing fixed object heaps with the goal of reducing the RAM footprint of a program. We explore table-based compression and introduce a novel form of object layout called vertical object layout. We provide experimental results that measure the impact on RAM size, code size, and execution time for a set of Virgil programs. Our results show that compressed vertical layout has better execution time and code size than table-based compression while achieving more than 20% heap reduction on 6 of 12 benchmark programs and 2-17% heap reduction on the remaining 6. We also present a formalization of vertical object layout and prove tight relationships between three styles of object layout.

  4. Thermal reservoir sizing for adiabatic compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Kere, Amelie; Goetz, Vincent; Py, Xavier; Olives, Regis; Sadiki, Najim [Perpignan Univ. (France). PROMES CNRS UPR 8521; Mercier-Allart, Eric [EDF R et D, Chatou (France)

    2012-07-01

    Despite the operation of the two existing industrial facilities to McIntosh (Alabama), and for more than thirty years, Huntorf (Germany), electricity storage in the form of compressed air in underground cavern (CAES) has not seen the development that was expected in the 80s. The efficiency of this form of storage was with the first generation CAES, less than 50%. The evolving context technique can significantly alter this situation. The new generation so-called Adiabatic CAES (A-CAES) is to retrieve the heat produced by the compression via thermal storage, thus eliminating the necessity of gas to burn and would allow consideration efficiency overall energy of the order of 70%. To date, there is no existing installation of A-CAES. Many studies describe the principal and the general working mode of storage systems by adiabatic compression of air. So, efficiencies of different configurations of adiabatic compression process were analyzed. The aim of this paper is to simulate and analyze the performances of a thermal storage reservoir integrated in the system and adapted to the working conditions of a CAES.

  5. Optimum SNR data compression in hardware using an Eigencoil array.

    Science.gov (United States)

    King, Scott B; Varosi, Steve M; Duensing, G Randy

    2010-05-01

    With the number of receivers available on clinical MRI systems now ranging from 8 to 32 channels, data compression methods are being explored to lessen the demands on the computer for data handling and processing. Although software-based methods of compression after reception lessen computational requirements, a hardware-based method before the receiver also reduces the number of receive channels required. An eight-channel Eigencoil array is constructed by placing a hardware radiofrequency signal combiner inline after preamplification, before the receiver system. The Eigencoil array produces signal-to-noise ratio (SNR) of an optimal reconstruction using a standard sum-of-squares reconstruction, with peripheral SNR gains of 30% over the standard array. The concept of "receiver channel reduction" or MRI data compression is demonstrated, with optimal SNR using only four channels, and with a three-channel Eigencoil, superior sum-of-squares SNR was achieved over the standard eight-channel array. A three-channel Eigencoil portion of a product neurovascular array confirms in vivo SNR performance and demonstrates parallel MRI up to R = 3. This SNR-preserving data compression method advantageously allows users of MRI systems with fewer receiver channels to achieve the SNR of higher-channel MRI systems. (c) 2010 Wiley-Liss, Inc.

  6. A dynamic counterpart of Lamb vector in viscous compressible aerodynamics

    International Nuclear Information System (INIS)

    Liu, L Q; Wu, J Z; Shi, Y P; Zhu, J Y

    2014-01-01

    The Lamb vector is known to play a key role in incompressible fluid dynamics and vortex dynamics. In particular, in low-speed steady aerodynamics it is solely responsible for the total force acting on a moving body, known as the vortex force, with the classic two-dimensional (exact) Kutta–Joukowski theorem and three-dimensional (linearized) lifting-line theory as the most famous special applications. In this paper we identify an innovative dynamic counterpart of the Lamb vector in viscous compressible aerodynamics, which we call the compressible Lamb vector. Mathematically, we present a theorem on the dynamic far-field decay law of the vorticity and dilatation fields, and thereby prove that the generalized Lamb vector enjoys exactly the same integral properties as the Lamb vector does in incompressible flow, and hence the vortex-force theory can be generalized to compressible flow with exactly the same general formulation. Moreover, for steady flow of polytropic gas, we show that physically the force exerted on a moving body by the gas consists of a transverse force produced by the original Lamb vector and a new longitudinal force that reflects the effects of compression and irreversible thermodynamics. (paper)

  7. Effect of Hand Mixing on the Compressive Strength of Concrete

    Directory of Open Access Journals (Sweden)

    James Isiwu AGUWA

    2010-12-01

    Full Text Available This paper presents the effect of hand mixing on the compressive strength of concrete. Before designing the concrete mix, sieve analysis of sharp sand and chippings was carried out and their fineness moduli were determined. Also the dry weight of chippings and the specific gravities of both sand and chippings were determined. A designed concrete mix of 1:2:4 was used and the number of turnings of the mixture over from one end to another by hand mixing was varying from one time up to and including seven times. The strengths were measured at the curing ages of 7, 14, 21 and 28 days respectively using 150mm concrete cubes cast, cured and crushed. The results revealed that the compressive strengths of concrete cubes appreciably increased with increase in number of turnings from one to four times but remained almost constant beyond four times of turning for all the ages tested. For example, at 1, 2, and 3 times turning; the compressive strengths at 28 days were 4.67, 13.37 and 20.28N/mm2 respectively while at 4, 5 and 6 times turning; the compressive strengths at 28 days were 21.15, 21.34 and 21.69N/mm2. From the data, adequate strengths were not developed at turnings below three times of hand mixing, concluding that a minimum of three times turning is required to produce concrete with satisfactory strength.

  8. Thermophysical properties of multi-shock compressed dense argon.

    Science.gov (United States)

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  9. Direct compression of chitosan: process and formulation factors to improve powder flow and tablet performance.

    Science.gov (United States)

    Buys, Gerhard M; du Plessis, Lissinda H; Marais, Andries F; Kotze, Awie F; Hamman, Josias H

    2013-06-01

    Chitosan is a polymer derived from chitin that is widely available at relatively low cost, but due to compression challenges it has limited application for the production of direct compression tablets. The aim of this study was to use certain process and formulation variables to improve manufacturing of tablets containing chitosan as bulking agent. Chitosan particle size and flow properties were determined, which included bulk density, tapped density, compressibility and moisture uptake. The effect of process variables (i.e. compression force, punch depth, percentage compaction in a novel double fill compression process) and formulation variables (i.e. type of glidant, citric acid, pectin, coating with Eudragit S®) on chitosan tablet performance (i.e. mass variation, tensile strength, dissolution) was investigated. Moisture content of the chitosan powder, particle size and the inclusion of glidants had a pronounced effect on its flow ability. Varying the percentage compaction during the first cycle of a double fill compression process produced chitosan tablets with more acceptable tensile strength and dissolution rate properties. The inclusion of citric acid and pectin into the formulation significantly decreased the dissolution rate of isoniazid from the tablets due to gel formation. Direct compression of chitosan powder into tablets can be significantly improved by the investigated process and formulation variables as well as applying a double fill compression process.

  10. Magnetic compression into Brillouin flow

    International Nuclear Information System (INIS)

    Becker, R.

    1977-01-01

    The trajectories of beam edge electrons are calculated in the transition region between an electrostatic gun and an increasing magnetic field for various field shapes, transition length, and cathode fluxes, assuming that the resultant beam is of Brillouin flow type. The results give a good physical interpretation to the axial gradient of the magnetic field being responsible for the amount of magnetic compression and also for the proper injection conditions. Therefore it becomes possible to predict from the known characteristics of any fairly laminary electrostatic gun the necessary axial gradient of the magnetic field and the axial position of the gun with respect to the field build-up. (orig.) [de

  11. Antiproton compression and radial measurements

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jorgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.

  12. Capillary waves of compressible fluids

    International Nuclear Information System (INIS)

    Falk, Kerstin; Mecke, Klaus

    2011-01-01

    The interplay of thermal noise and molecular forces is responsible for surprising features of liquids on sub-micrometer lengths-in particular at interfaces. Not only does the surface tension depend on the size of an applied distortion and nanoscopic thin liquid films dewet faster than would be expected from hydrodynamics, but also the dispersion relation of capillary waves differ at the nanoscale from the familiar macroscopic behavior. Starting with the stochastic Navier-Stokes equation we study the coupling of capillary waves to acoustic surface waves which is possible in compressible fluids. We find propagating 'acoustic-capillary waves' at nanometer wavelengths where in incompressible fluids capillary waves are overdamped.

  13. Shock compression of diamond crystal

    OpenAIRE

    Kondo, Ken-ichi; Ahrens, Thomas J.

    1983-01-01

    Two shock wave experiments employing inclined mirrors have been carried out to determine the Hugoniot elastic limit (HEL), final shock state at 191 and 217 GPa, and the post-shock state of diamond crystal, which is shock-compressed along the intermediate direction between the and crystallographic axes. The HEL wave has a velocity of 19.9 ± 0.3 mm/µsec and an amplitude of 63 ± 28 GPa. An alternate interpretation of the inclined wedge mirror streak record suggests a ramp precursor wave and th...

  14. Bi-level image compression with tree coding

    DEFF Research Database (Denmark)

    Martins, Bo; Forchhammer, Søren

    1996-01-01

    Presently, tree coders are the best bi-level image coders. The current ISO standard, JBIG, is a good example. By organising code length calculations properly a vast number of possible models (trees) can be investigated within reasonable time prior to generating code. Three general-purpose coders...... are constructed by this principle. A multi-pass free tree coding scheme produces superior compression results for all test images. A multi-pass fast free template coding scheme produces much better results than JBIG for difficult images, such as halftonings. Rissanen's algorithm `Context' is presented in a new...

  15. Metal Compression Forming of aluminum alloys and metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S.; Ren, W.; Porter, W.D.; Brinkman, C.R.; Sabau, A.S.; Purgert, R.M.

    2000-02-01

    Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process.

  16. Rapid Fatal Outcome from Pulmonary Arteries Compression in Transitional Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ioannis A. Voutsadakis

    2009-01-01

    Full Text Available Transitional cell carcinoma of the urinary bladder is a malignancy that metastasizes frequently to lymph nodes including the mediastinal lymph nodes. This occurrence may produce symptoms due to compression of adjacent structures such as the superior vena cava syndrome or dysphagia from esophageal compression. We report the case of a 59-year-old man with metastatic transitional cell carcinoma for whom mediastinal lymphadenopathy led to pulmonary artery compression and a rapidly fatal outcome. This rare occurrence has to be distinguished from pulmonary embolism, a much more frequent event in cancer patients, in order that proper and prompt treatment be initiated.

  17. Myofibroma in the Palm Presenting with Median Nerve Compression Symptoms

    Directory of Open Access Journals (Sweden)

    Heidi Sarkozy, PA-C, BS

    2014-08-01

    Full Text Available Summary: A myofibroma is a benign proliferation of myofibroblasts in the connective tissue. Solitary myofibromas are a rare finding especially in an adult. We report a case of a 23-year-old man presenting with an enlarging mass over his right palm. The patient is an active weight lifter. He reported numbness and tingling in the median nerve distribution. Nerve conduction studies and magnetic resonance imaging scans suggested a tumor involving or compressing the median nerve. The final diagnosis of myofibroma was made only after the histopathological diagnosis.

  18. Multi-axial mechanical stimulation of tissue engineered cartilage: Review

    Directory of Open Access Journals (Sweden)

    S D Waldman

    2007-04-01

    Full Text Available The development of tissue engineered cartilage is a promising new approach for the repair of damaged or diseased tissue. Since it has proven difficult to generate cartilaginous tissue with properties similar to that of native articular cartilage, several studies have used mechanical stimuli as a means to improve the quantity and quality of the developed tissue. In this study, we have investigated the effect of multi-axial loading applied during in vitro tissue formation to better reflect the physiological forces that chondrocytes are subjected to in vivo. Dynamic combined compression-shear stimulation (5% compression and 5% shear strain amplitudes increased both collagen and proteoglycan synthesis (76 ± 8% and 73 ± 5%, respectively over the static (unstimulated controls. When this multi-axial loading condition was applied to the chondrocyte cultures over a four week period, there were significant improvements in both extracellular matrix (ECM accumulation and the mechanical properties of the in vitro-formed tissue (3-fold increase in compressive modulus and 1.75-fold increase in shear modulus. Stimulated tissues were also significantly thinner than the static controls (19% reduction suggesting that there was a degree of ECM consolidation as a result of long-term multi-axial loading. This study demonstrated that stimulation by multi-axial forces can improve the quality of the in vitro-formed tissue, but additional studies are required to further optimize the conditions to favour improved biochemical and mechanical properties of the developed tissue.

  19. The wavelet/scalar quantization compression standard for digital fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M.

    1994-04-01

    A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.

  20. Effective radiation attenuation calibration for breast density: compression thickness influences and correction

    OpenAIRE

    Thomas Jerry A; Cao Ke; Heine John J

    2010-01-01

    Abstract Background Calibrating mammograms to produce a standardized breast density measurement for breast cancer risk analysis requires an accurate spatial measure of the compressed breast thickness. Thickness inaccuracies due to the nominal system readout value and compression paddle orientation induce unacceptable errors in the calibration. Method A thickness correction was developed and evaluated using a fully specified two-component surrogate breast model. A previously developed calibrat...

  1. Spherical composite particles of rice starch and microcrystalline cellulose: A new coprocessed excipient for direct compression

    OpenAIRE

    Limwong, Vasinee; Sutanthavibul, Narueporn; Kulvanich, Poj

    2004-01-01

    Composite particles of rice starch (RS) and microcrystalline cellulose were fabricated by spray-drying technique to be used as a directly compressible excipient. Two size fractions of microcry stalline cellulose, sieved (MCS) and jet milled (MCJ), having volumetric mean diameter (D50) of 13.61 and 40.51 μm, respectively, were used to form composite particles with RS in various mixing ratios. The composite particles produced were evaluated for their powder and compression properties. Although ...

  2. Green and early age compressive strength of extruded cement mortar monitored with compression tests and ultrasonic techniques

    International Nuclear Information System (INIS)

    Voigt, Thomas; Malonn, Tim; Shah, Surendra P.

    2006-01-01

    Knowledge about the early age compressive strength development of cementitious materials is an important factor for the progress and safety of many construction projects. This paper uses cylindrical mortar specimens produced with a ram extruder to investigate the transition of the mortar from plastic and deformable to hardened state. In addition, wave transmission and reflection measurements with P- and S-waves were conducted to obtain further information about the microstructural changes during the setting and hardening process. The experiments have shown that uniaxial compression tests conducted on extruded mortar cylinders are a useful tool to evaluate the green strength as well as the initiation and further development of the compressive strength of the tested material. The propagation of P-waves was found to be indicative of the internal structure of the tested mortars as influenced, for example, by the addition of fine clay particles. S-waves used in transmission and reflection mode proved to be sensitive to the inter-particle bonding caused by the cement hydration and expressed by an increase in compressive strength

  3. Biomimetic heterogenous elastic tissue development.

    Science.gov (United States)

    Tsai, Kai Jen; Dixon, Simon; Hale, Luke Richard; Darbyshire, Arnold; Martin, Daniel; de Mel, Achala

    2017-01-01

    There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach.

  4. Atomic effect algebras with compression bases

    International Nuclear Information System (INIS)

    Caragheorgheopol, Dan; Tkadlec, Josef

    2011-01-01

    Compression base effect algebras were recently introduced by Gudder [Demonstr. Math. 39, 43 (2006)]. They generalize sequential effect algebras [Rep. Math. Phys. 49, 87 (2002)] and compressible effect algebras [Rep. Math. Phys. 54, 93 (2004)]. The present paper focuses on atomic compression base effect algebras and the consequences of atoms being foci (so-called projections) of the compressions in the compression base. Part of our work generalizes results obtained in atomic sequential effect algebras by Tkadlec [Int. J. Theor. Phys. 47, 185 (2008)]. The notion of projection-atomicity is introduced and studied, and several conditions that force a compression base effect algebra or the set of its projections to be Boolean are found. Finally, we apply some of these results to sequential effect algebras and strengthen a previously established result concerning a sufficient condition for them to be Boolean.

  5. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current tre...

  6. Excessive chest compression rate is associated with insufficient compression depth in prehospital cardiac arrest.

    Science.gov (United States)

    Monsieurs, Koenraad G; De Regge, Melissa; Vansteelandt, Kristof; De Smet, Jeroen; Annaert, Emmanuel; Lemoyne, Sabine; Kalmar, Alain F; Calle, Paul A

    2012-11-01

    BACKGROUND AND GOAL OF STUDY: The relationship between chest compression rate and compression depth is unknown. In order to characterise this relationship, we performed an observational study in prehospital cardiac arrest patients. We hypothesised that faster compressions are associated with decreased depth. In patients undergoing prehospital cardiopulmonary resuscitation by health care professionals, chest compression rate and depth were recorded using an accelerometer (E-series monitor-defibrillator, Zoll, U.S.A.). Compression depth was compared for rates 120/min. A difference in compression depth ≥0.5 cm was considered clinically significant. Mixed models with repeated measurements of chest compression depth and rate (level 1) nested within patients (level 2) were used with compression rate as a continuous and as a categorical predictor of depth. Results are reported as means and standard error (SE). One hundred and thirty-three consecutive patients were analysed (213,409 compressions). Of all compressions 2% were 120/min, 36% were 5 cm. In 77 out of 133 (58%) patients a statistically significant lower depth was observed for rates >120/min compared to rates 80-120/min, in 40 out of 133 (30%) this difference was also clinically significant. The mixed models predicted that the deepest compression (4.5 cm) occurred at a rate of 86/min, with progressively lower compression depths at higher rates. Rates >145/min would result in a depth compression depth for rates 80-120/min was on average 4.5 cm (SE 0.06) compared to 4.1 cm (SE 0.06) for compressions >120/min (mean difference 0.4 cm, Pcompression rates and lower compression depths. Avoiding excessive compression rates may lead to more compressions of sufficient depth. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Dual compression is not an uncommon type of iliac vein compression syndrome.

    Science.gov (United States)

    Shi, Wan-Yin; Gu, Jian-Ping; Liu, Chang-Jian; Lou, Wen-Sheng; He, Xu

    2017-09-01

    Typical iliac vein compression syndrome (IVCS) is characterized by compression of left common iliac vein (LCIV) by the overlying right common iliac artery (RCIA). We described an underestimated type of IVCS with dual compression by right and left common iliac arteries (LCIA) simultaneously. Thirty-one patients with IVCS were retrospectively included. All patients received trans-catheter venography and computed tomography (CT) examinations for diagnosing and evaluating IVCS. Late venography and reconstructed CT were used for evaluating the anatomical relationship among LCIV, RCIA and LCIA. Imaging manifestations as well as demographic data were collected and evaluated by two experienced radiologists. Sole and dual compression were found in 32.3% (n = 10) and 67.7% (n = 21) of 31 patients respectively. No statistical differences existed between them in terms of age, gender, LCIV diameter at the maximum compression point, pressure gradient across stenosis, and the percentage of compression level. On CT and venography, sole compression was commonly presented with a longitudinal compression at the orifice of LCIV while dual compression was usually presented as two types: one had a lengthy stenosis along the upper side of LCIV and the other was manifested by a longitudinal compression near to the orifice of external iliac vein. The presence of dual compression seemed significantly correlated with the tortuous LCIA (p = 0.006). Left common iliac vein can be presented by dual compression. This type of compression has typical manifestations on late venography and CT.

  8. How Wage Compression Affects Job Turnover

    OpenAIRE

    Heyman, Fredrik

    2008-01-01

    I use Swedish establishment-level panel data to test Bertola and Rogerson’s (1997) hypothesis of a positive relation between the degree of wage compression and job reallocation. Results indicate that the effect of wage compression on job turnover is positive and significant in the manufacturing sector. The wage compression effect is stronger on job destruction than on job creation, consistent with downward wage rigidity. Further results include a strong positive relationship between the fract...

  9. Subband Coding Methods for Seismic Data Compression

    Science.gov (United States)

    Kiely, A.; Pollara, F.

    1995-01-01

    This paper presents a study of seismic data compression techniques and a compression algorithm based on subband coding. The compression technique described could be used as a progressive transmission system, where successive refinements of the data can be requested by the user. This allows seismologists to first examine a coarse version of waveforms with minimal usage of the channel and then decide where refinements are required. Rate-distortion performance results are presented and comparisons are made with two block transform methods.

  10. Compressibility of the protein-water interface

    Science.gov (United States)

    Persson, Filip; Halle, Bertil

    2018-06-01

    The compressibility of a protein relates to its stability, flexibility, and hydrophobic interactions, but the measurement, interpretation, and computation of this important thermodynamic parameter present technical and conceptual challenges. Here, we present a theoretical analysis of protein compressibility and apply it to molecular dynamics simulations of four globular proteins. Using additively weighted Voronoi tessellation, we decompose the solution compressibility into contributions from the protein and its hydration shells. We find that positively cross-correlated protein-water volume fluctuations account for more than half of the protein compressibility that governs the protein's pressure response, while the self correlations correspond to small (˜0.7%) fluctuations of the protein volume. The self compressibility is nearly the same as for ice, whereas the total protein compressibility, including cross correlations, is ˜45% of the bulk-water value. Taking the inhomogeneous solvent density into account, we decompose the experimentally accessible protein partial compressibility into intrinsic, hydration, and molecular exchange contributions and show how they can be computed with good statistical accuracy despite the dominant bulk-water contribution. The exchange contribution describes how the protein solution responds to an applied pressure by redistributing water molecules from lower to higher density; it is negligibly small for native proteins, but potentially important for non-native states. Because the hydration shell is an open system, the conventional closed-system compressibility definitions yield a pseudo-compressibility. We define an intrinsic shell compressibility, unaffected by occupation number fluctuations, and show that it approaches the bulk-water value exponentially with a decay "length" of one shell, less than the bulk-water compressibility correlation length. In the first hydration shell, the intrinsic compressibility is 25%-30% lower than in

  11. Eccentric crank variable compression ratio mechanism

    Science.gov (United States)

    Lawrence, Keith Edward [Kobe, JP; Moser, William Elliott [Peoria, IL; Roozenboom, Stephan Donald [Washington, IL; Knox, Kevin Jay [Peoria, IL

    2008-05-13

    A variable compression ratio mechanism for an internal combustion engine that has an engine block and a crankshaft is disclosed. The variable compression ratio mechanism has a plurality of eccentric disks configured to support the crankshaft. Each of the plurality of eccentric disks has at least one cylindrical portion annularly surrounded by the engine block. The variable compression ratio mechanism also has at least one actuator configured to rotate the plurality of eccentric disks.

  12. Compressibility of the protein-water interface.

    Science.gov (United States)

    Persson, Filip; Halle, Bertil

    2018-06-07

    The compressibility of a protein relates to its stability, flexibility, and hydrophobic interactions, but the measurement, interpretation, and computation of this important thermodynamic parameter present technical and conceptual challenges. Here, we present a theoretical analysis of protein compressibility and apply it to molecular dynamics simulations of four globular proteins. Using additively weighted Voronoi tessellation, we decompose the solution compressibility into contributions from the protein and its hydration shells. We find that positively cross-correlated protein-water volume fluctuations account for more than half of the protein compressibility that governs the protein's pressure response, while the self correlations correspond to small (∼0.7%) fluctuations of the protein volume. The self compressibility is nearly the same as for ice, whereas the total protein compressibility, including cross correlations, is ∼45% of the bulk-water value. Taking the inhomogeneous solvent density into account, we decompose the experimentally accessible protein partial compressibility into intrinsic, hydration, and molecular exchange contributions and show how they can be computed with good statistical accuracy despite the dominant bulk-water contribution. The exchange contribution describes how the protein solution responds to an applied pressure by redistributing water molecules from lower to higher density; it is negligibly small for native proteins, but potentially important for non-native states. Because the hydration shell is an open system, the conventional closed-system compressibility definitions yield a pseudo-compressibility. We define an intrinsic shell compressibility, unaffected by occupation number fluctuations, and show that it approaches the bulk-water value exponentially with a decay "length" of one shell, less than the bulk-water compressibility correlation length. In the first hydration shell, the intrinsic compressibility is 25%-30% lower than

  13. Thermal compression modulus of polarized neutron matter

    International Nuclear Information System (INIS)

    Abd-Alla, M.

    1990-05-01

    We applied the equation of state for pure polarized neutron matter at finite temperature, calculated previously, to calculate the compression modulus. The compression modulus of pure neutron matter at zero temperature is very large and reflects the stiffness of the equation of state. It has a little temperature dependence. Introducing the spin excess parameter in the equation of state calculations is important because it has a significant effect on the compression modulus. (author). 25 refs, 2 tabs

  14. Cosmological Particle Data Compression in Practice

    Science.gov (United States)

    Zeyen, M.; Ahrens, J.; Hagen, H.; Heitmann, K.; Habib, S.

    2017-12-01

    In cosmological simulations trillions of particles are handled and several terabytes of unstructured particle data are generated in each time step. Transferring this data directly from memory to disk in an uncompressed way results in a massive load on I/O and storage systems. Hence, one goal of domain scientists is to compress the data before storing it to disk while minimizing the loss of information. To prevent reading back uncompressed data from disk, this can be done in an in-situ process. Since the simulation continuously generates data, the available time for the compression of one time step is limited. Therefore, the evaluation of compression techniques has shifted from only focusing on compression rates to include run-times and scalability.In recent years several compression techniques for cosmological data have become available. These techniques can be either lossy or lossless, depending on the technique. For both cases, this study aims to evaluate and compare the state of the art compression techniques for unstructured particle data. This study focuses on the techniques available in the Blosc framework with its multi-threading support, the XZ Utils toolkit with the LZMA algorithm that achieves high compression rates, and the widespread FPZIP and ZFP methods for lossy compressions.For the investigated compression techniques, quantitative performance indicators such as compression rates, run-time/throughput, and reconstruction errors are measured. Based on these factors, this study offers a comprehensive analysis of the individual techniques and discusses their applicability for in-situ compression. In addition, domain specific measures are evaluated on the reconstructed data sets, and the relative error rates and statistical properties are analyzed and compared. Based on this study future challenges and directions in the compression of unstructured cosmological particle data were identified.

  15. Compression induced intercellular shaping for some geometric cellular lattices

    Directory of Open Access Journals (Sweden)

    Adonai Gimenez Calbo

    2001-03-01

    Full Text Available The wall perimeter fraction, which contact neighboring cells, was named compression ratio (alpha. A zero compression ratio indicates maximum intercellular (air volume (vG, v/v and neglectable contact among cells, while alpha=1 indicates complete adherence between neighboring cells and no vG in the lattice. The maximum intercellular air volume (beta, v/v, when alpha=0, was 0.593 for triangular, 0.2146 for square and 0,0931 for hexagonal lattices. The equation alpha=1- (vG/beta½ was derived to relate alpha, beta and vG in the studied lattices. The relation (P S=p/alpha between cell turgor (P S and the tissue aggregating pressure (p, defined as the compression to keep in place a layer of cells, was demonstrated using the compression ratio concept. Intercellular deformations of Ipomea batatas L. roots obtained with pressure chamber were used to test alpha, vG, p and P S as a function of compression. Volumetric and transversal elastic extensibilities and the lamella media tearing forces were obtained and alpha constancy was considered as a criteria of cellular shape stability.A fração do perímetro da parede celular em contato com células vizinha foi denominada razão de compressão (alfa. Razão de compressão zero indica volume intercelular (vG, v/v máximo e contato neglível entre as células, enquanto alfa=1 ocorre quando há completa aderência com as células vizinhas (vG=0. O volume (gasoso intercelular máximo (beta, v/v, quando alfa=0, foi 0,593, 0,2146 e 0,0931 para látices triangulares, quadradas e hexagonais. A equação derivada para relacionar alfa, beta and vG nas látices estudadas foi alfa=1- (vG/beta½. A razão de compressão foi em seguida empregada para estabelecer a relação P S=p/alfa entre a pressão de turgescência (P S e a pressão de agregação (p, definida com a compressão para manter uma camada de células no seu lugar. As deformações intercelulares de batata-doce obtidas com procedimentos de c

  16. Memory hierarchy using row-based compression

    Science.gov (United States)

    Loh, Gabriel H.; O'Connor, James M.

    2016-10-25

    A system includes a first memory and a device coupleable to the first memory. The device includes a second memory to cache data from the first memory. The second memory includes a plurality of rows, each row including a corresponding set of compressed data blocks of non-uniform sizes and a corresponding set of tag blocks. Each tag block represents a corresponding compressed data block of the row. The device further includes decompression logic to decompress data blocks accessed from the second memory. The device further includes compression logic to compress data blocks to be stored in the second memory.

  17. Comparing biological networks via graph compression

    Directory of Open Access Journals (Sweden)

    Hayashida Morihiro

    2010-09-01

    Full Text Available Abstract Background Comparison of various kinds of biological data is one of the main problems in bioinformatics and systems biology. Data compression methods have been applied to comparison of large sequence data and protein structure data. Since it is still difficult to compare global structures of large biological networks, it is reasonable to try to apply data compression methods to comparison of biological networks. In existing compression methods, the uniqueness of compression results is not guaranteed because there is some ambiguity in selection of overlapping edges. Results This paper proposes novel efficient methods, CompressEdge and CompressVertices, for comparing large biological networks. In the proposed methods, an original network structure is compressed by iteratively contracting identical edges and sets of connected edges. Then, the similarity of two networks is measured by a compression ratio of the concatenated networks. The proposed methods are applied to comparison of metabolic networks of several organisms, H. sapiens, M. musculus, A. thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae, and B. subtilis, and are compared with an existing method. These results suggest that our methods can efficiently measure the similarities between metabolic networks. Conclusions Our proposed algorithms, which compress node-labeled networks, are useful for measuring the similarity of large biological networks.

  18. Compression therapy after ankle fracture surgery

    DEFF Research Database (Denmark)

    Winge, R; Bayer, L; Gottlieb, H

    2017-01-01

    PURPOSE: The main purpose of this systematic review was to investigate the effect of compression treatment on the perioperative course of ankle fractures and describe its effect on edema, pain, ankle joint mobility, wound healing complication, length of stay (LOS) and time to surgery (TTS). The aim...... undergoing surgery, testing either intermittent pneumatic compression, compression bandage and/or compression stocking and reporting its effect on edema, pain, ankle joint mobility, wound healing complication, LOS and TTS. To conclude on data a narrative synthesis was performed. RESULTS: The review included...

  19. Compressed Sensing with Rank Deficient Dictionaries

    DEFF Research Database (Denmark)

    Hansen, Thomas Lundgaard; Johansen, Daniel Højrup; Jørgensen, Peter Bjørn

    2012-01-01

    In compressed sensing it is generally assumed that the dictionary matrix constitutes a (possibly overcomplete) basis of the signal space. In this paper we consider dictionaries that do not span the signal space, i.e. rank deficient dictionaries. We show that in this case the signal-to-noise ratio...... (SNR) in the compressed samples can be increased by selecting the rows of the measurement matrix from the column space of the dictionary. As an example application of compressed sensing with a rank deficient dictionary, we present a case study of compressed sensing applied to the Coarse Acquisition (C...

  20. Thalassemia, extramedullary hematopoiesis, and spinal cord compression: A case report.

    Science.gov (United States)

    Bukhari, Syed Sarmad; Junaid, Muhammad; Rashid, Mamoon Ur

    2016-01-01

    Extramedullary hematopoiesis (EMH) refers to hematopoiesis outside of the medulla of the bone. Chronic anemia states such as thalassemia can cause hematopoietic tissue to expand in certain locations. We report a case of spinal cord compression due to recurrent spinal epidural EMH, which was treated with a combination of surgery and radiotherapy. Pakistan has one of the highest incidence and prevalence of thalassemia in the world. We describe published literature on diagnosis and management of such cases. An 18-year-old male presented with bilateral lower limb paresis. He was a known case of homozygous beta thalassemia major. He had undergone surgery for spinal cord compression due to EMH 4 months prior to presentation. Symptom resolution was followed by deterioration 5 days later. He was operated again at our hospital with complete resection of the mass. He underwent local radiotherapy to prevent recurrence. At 2 years follow-up, he showed complete resolution of symptoms. Follow-up imaging demonstrated no residual mass. The possibility of EMH should be considered in every patient with ineffective erythropoiesis as a cause of spinal cord compression. Treatment of such cases is usually done with blood transfusions, which can reduce the hematopoietic drive for EMH. Other options include surgery, hydroxyurea, radiotherapy, or a combination of these on a case to case basis.

  1. Compressive failure with interacting cracks

    International Nuclear Information System (INIS)

    Yang Guoping; Liu Xila

    1993-01-01

    The failure processes in concrete and other brittle materials are just the results of the propagation, coalescence and interaction of many preexisting microcracks or voids. To understand the real behaviour of the brittle materials, it is necessary to bridge the gap from the relatively matured one crack behaviour to the stochastically distributed imperfections, that is, to concern the crack propagation and interaction of microscopic mechanism with macroscopic parameters of brittle materials. Brittle failure in compression has been studied theoretically by Horii and Nemat-Nasser (1986), in which a closed solution was obtained for a preexisting flaw or some special regular flaws. Zaitsev and Wittmann (1981) published a paper on crack propagation in compression, which is so-called numerical concrete, but they did not take account of the interaction among the microcracks. As for the modelling of the influence of crack interaction on fracture parameters, many studies have also been reported. Up till now, some researcher are working on crack interaction considering the ratios of SIFs with and without consideration of the interaction influences, there exist amplifying or shielding effects of crack interaction which are depending on the relative positions of these microcracks. The present paper attempts to simulate the whole failure process of brittle specimen in compression, which includes the complicated coupling effects between the interaction and propagation of randomly distributed or other typical microcrack configurations step by step. The lengths, orientations and positions of microcracks are all taken as random variables. The crack interaction among many preexisting random microcracks is evaluated with the help of a simple interaction matrix (Yang and Liu, 1991). For the subcritically stable propagation of microcracks in mixed mode fracture, fairly known maximum hoop stress criterion is adopted to compute branching lengths and directions at each tip of the crack

  2. Blind compressive sensing dynamic MRI

    Science.gov (United States)

    Lingala, Sajan Goud; Jacob, Mathews

    2013-01-01

    We propose a novel blind compressive sensing (BCS) frame work to recover dynamic magnetic resonance images from undersampled measurements. This scheme models the dynamic signal as a sparse linear combination of temporal basis functions, chosen from a large dictionary. In contrast to classical compressed sensing, the BCS scheme simultaneously estimates the dictionary and the sparse coefficients from the undersampled measurements. Apart from the sparsity of the coefficients, the key difference of the BCS scheme with current low rank methods is the non-orthogonal nature of the dictionary basis functions. Since the number of degrees of freedom of the BCS model is smaller than that of the low-rank methods, it provides improved reconstructions at high acceleration rates. We formulate the reconstruction as a constrained optimization problem; the objective function is the linear combination of a data consistency term and sparsity promoting ℓ1 prior of the coefficients. The Frobenius norm dictionary constraint is used to avoid scale ambiguity. We introduce a simple and efficient majorize-minimize algorithm, which decouples the original criterion into three simpler sub problems. An alternating minimization strategy is used, where we cycle through the minimization of three simpler problems. This algorithm is seen to be considerably faster than approaches that alternates between sparse coding and dictionary estimation, as well as the extension of K-SVD dictionary learning scheme. The use of the ℓ1 penalty and Frobenius norm dictionary constraint enables the attenuation of insignificant basis functions compared to the ℓ0 norm and column norm constraint assumed in most dictionary learning algorithms; this is especially important since the number of basis functions that can be reliably estimated is restricted by the available measurements. We also observe that the proposed scheme is more robust to local minima compared to K-SVD method, which relies on greedy sparse coding

  3. Stem compression reversibly reduces phloem transport in Pinus sylvestris trees.

    Science.gov (United States)

    Henriksson, Nils; Tarvainen, Lasse; Lim, Hyungwoo; Tor-Ngern, Pantana; Palmroth, Sari; Oren, Ram; Marshall, John; Näsholm, Torgny

    2015-10-01

    Manipulating tree belowground carbon (C) transport enables investigation of the ecological and physiological roles of tree roots and their associated mycorrhizal fungi, as well as a range of other soil organisms and processes. Girdling remains the most reliable method for manipulating this flux and it has been used in numerous studies. However, girdling is destructive and irreversible. Belowground C transport is mediated by phloem tissue, pressurized through the high osmotic potential resulting from its high content of soluble sugars. We speculated that phloem transport may be reversibly blocked through the application of an external pressure on tree stems. Thus, we here introduce a technique based on compression of the phloem, which interrupts belowground flow of assimilates, but allows trees to recover when the external pressure is removed. Metal clamps were wrapped around the stems and tightened to achieve a pressure theoretically sufficient to collapse the phloem tissue, thereby aiming to block transport. The compression's performance was tested in two field experiments: a (13)C canopy labelling study conducted on small Scots pine (Pinus sylvestris L.) trees [2-3 m tall, 3-7 cm diameter at breast height (DBH)] and a larger study involving mature pines (∼15 m tall, 15-25 cm DBH) where stem respiration, phloem and root carbohydrate contents, and soil CO2 efflux were measured. The compression's effectiveness was demonstrated by the successful blockage of (13)C transport. Stem compression doubled stem respiration above treatment, reduced soil CO2 efflux by 34% and reduced phloem sucrose content by 50% compared with control trees. Stem respiration and soil CO2 efflux returned to normal within 3 weeks after pressure release, and (13)C labelling revealed recovery of phloem function the following year. Thus, we show that belowground phloem C transport can be reduced by compression, and we also demonstrate that trees recover after treatment, resuming C

  4. EBLAST: an efficient high-compression image transformation 3. application to Internet image and video transmission

    Science.gov (United States)

    Schmalz, Mark S.; Ritter, Gerhard X.; Caimi, Frank M.

    2001-12-01

    A wide variety of digital image compression transforms developed for still imaging and broadcast video transmission are unsuitable for Internet video applications due to insufficient compression ratio, poor reconstruction fidelity, or excessive computational requirements. Examples include hierarchical transforms that require all, or large portion of, a source image to reside in memory at one time, transforms that induce significant locking effect at operationally salient compression ratios, and algorithms that require large amounts of floating-point computation. The latter constraint holds especially for video compression by small mobile imaging devices for transmission to, and compression on, platforms such as palmtop computers or personal digital assistants (PDAs). As Internet video requirements for frame rate and resolution increase to produce more detailed, less discontinuous motion sequences, a new class of compression transforms will be needed, especially for small memory models and displays such as those found on PDAs. In this, the third series of papers, we discuss the EBLAST compression transform and its application to Internet communication. Leading transforms for compression of Internet video and still imagery are reviewed and analyzed, including GIF, JPEG, AWIC (wavelet-based), wavelet packets, and SPIHT, whose performance is compared with EBLAST. Performance analysis criteria include time and space complexity and quality of the decompressed image. The latter is determined by rate-distortion data obtained from a database of realistic test images. Discussion also includes issues such as robustness of the compressed format to channel noise. EBLAST has been shown to perform superiorly to JPEG and, unlike current wavelet compression transforms, supports fast implementation on embedded processors with small memory models.

  5. A family of hyperelastic models for human brain tissue

    Science.gov (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  6. Approximate equiangular tight frames for compressed sensing and CDMA applications

    Science.gov (United States)

    Tsiligianni, Evaggelia; Kondi, Lisimachos P.; Katsaggelos, Aggelos K.

    2017-12-01

    Performance guarantees for recovery algorithms employed in sparse representations, and compressed sensing highlights the importance of incoherence. Optimal bounds of incoherence are attained by equiangular unit norm tight frames (ETFs). Although ETFs are important in many applications, they do not exist for all dimensions, while their construction has been proven extremely difficult. In this paper, we construct frames that are close to ETFs. According to results from frame and graph theory, the existence of an ETF depends on the existence of its signature matrix, that is, a symmetric matrix with certain structure and spectrum consisting of two distinct eigenvalues. We view the construction of a signature matrix as an inverse eigenvalue problem and propose a method that produces frames of any dimensions that are close to ETFs. Due to the achieved equiangularity property, the so obtained frames can be employed as spreading sequences in synchronous code-division multiple access (s-CDMA) systems, besides compressed sensing.

  7. Effect of Soorh Metakaolin on Concrete Compressive Strength and Durability

    Directory of Open Access Journals (Sweden)

    A. Saand

    2017-12-01

    Full Text Available Concrete durability is a key aspect for forecasting the expected life time of concrete structures. In this paper, the effect of compressive strength and durability of concrete containing metakaolin developed from a local natural material (Soorh of Thatta Distict of Sindh, Pakistan is investigated. Soorh is calcined by an electric furnace at 8000C for 2 hours to produce metakaolin. One mix of ordinary concrete and five mixes of metakaolin concrete were prepared, where cement is replaced by developed metakaolin from 5% to 25% by weight, with 5% increment step. The concrete durability was tested for water penetration, carbonation depth and corrosion resistance. The obtained outcomes demonstrated that, 15% replacement level of local developed metakaolin presents considerable improvements in concrete properties. Moreover, a considerable linear relationship was established between compressive strength and concrete durability indicators like water penetration, carbonation depth and corrosion resistance.

  8. Effect of Image Linearization on Normalized Compression Distance

    Science.gov (United States)

    Mortensen, Jonathan; Wu, Jia Jie; Furst, Jacob; Rogers, John; Raicu, Daniela

    Normalized Information Distance, based on Kolmogorov complexity, is an emerging metric for image similarity. It is approximated by the Normalized Compression Distance (NCD) which generates the relative distance between two strings by using standard compression algorithms to compare linear strings of information. This relative distance quantifies the degree of similarity between the two objects. NCD has been shown to measure similarity effectively on information which is already a string: genomic string comparisons have created accurate phylogeny trees and NCD has also been used to classify music. Currently, to find a similarity measure using NCD for images, the images must first be linearized into a string, and then compared. To understand how linearization of a 2D image affects the similarity measure, we perform four types of linearization on a subset of the Corel image database and compare each for a variety of image transformations. Our experiment shows that different linearization techniques produce statistically significant differences in NCD for identical spatial transformations.

  9. The phenomenon of radiative compression in dense magnetized plasmas

    International Nuclear Information System (INIS)

    Choi, Peter

    1998-01-01

    Full text: Localized regions of extremely high energy density have long been observed in dense magnetized plasma, created in different experiments, including vacuum spark, exploding wire, Z-pinch and plasma focus. The physical dimensions of these regions are typically tens to hundreds of microns with a characteristic temperature of few hundred eV upward. A theory of self-compression under enhanced cooling, when the radiation rate exceeds the joule heating rate, was first put forward by Shearer to explain the possible responsible mechanism. More recent work suggests that a radiative collapse formalism could indeed produce eaters of ultra-high density. In the paper the experimental evidences are examined, and the applicability limit of the radiative collapse picture is discussed, when the properties of the driving generator are considered. A new set of relations connecting the driver parameters and the limiting size of the compression is proposed

  10. Fragment separator momentum compression schemes

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, Laura, E-mail: bandura@anl.gov [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Erdelyi, Bela [Argonne National Laboratory, Argonne, IL 60439 (United States); Northern Illinois University, DeKalb, IL 60115 (United States); Hausmann, Marc [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Kubo, Toshiyuki [RIKEN Nishina Center, RIKEN, Wako (Japan); Nolen, Jerry [Argonne National Laboratory, Argonne, IL 60439 (United States); Portillo, Mauricio [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Sherrill, Bradley M. [National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States)

    2011-07-21

    We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.

  11. Fragment separator momentum compression schemes

    International Nuclear Information System (INIS)

    Bandura, Laura; Erdelyi, Bela; Hausmann, Marc; Kubo, Toshiyuki; Nolen, Jerry; Portillo, Mauricio; Sherrill, Bradley M.

    2011-01-01

    We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.

  12. Lossless Compression of Digital Images

    DEFF Research Database (Denmark)

    Martins, Bo

    Presently, tree coders are the best bi-level image coders. The currentISO standard, JBIG, is a good example.By organising code length calculations properly a vast number of possible models (trees) can be investigated within reasonable time prior to generating code.A number of general-purpose coders...... version that is substantially faster than its precursorsand brings it close to the multi-pass coders in compression performance.Handprinted characters are of unequal complexity; recent work by Singer and Tishby demonstrates that utilizing the physiological process of writing one can synthesize cursive.......The feature vector of a bitmap initially constitutes a lossy representation of the contour(s) of the bitmap. The initial feature space is usually too large but can be reduced automatically by use ofa predictive code length or predictive error criterion....

  13. Compressive creep of silicon nitride

    International Nuclear Information System (INIS)

    Silva, C.R.M. da; Melo, F.C.L. de; Cairo, C.A.; Piorino Neto, F.

    1990-01-01

    Silicon nitride samples were formed by pressureless sintering process, using neodymium oxide and a mixture of neodymium oxide and yttrio oxide as sintering aids. The short term compressive creep behaviour was evaluated over a stress range of 50-300 MPa and temperature range 1200 - 1350 0 C. Post-sintering heat treatments in nitrogen with a stepwise decremental variation of temperature were performed in some samples and microstructural analysis by X-ray diffraction and transmission electron microscopy showed that the secondary crystalline phase which form from the remnant glass are dependent upon composition and percentage of aditives. Stress exponent values near to unity were obtained for materials with low glass content suggesting grain boundary diffusion accommodation processes. Cavitation will thereby become prevalent with increase in stress, temperature and decrease in the degree of crystallization of the grain boundary phase. (author) [pt

  14. Right brachial angiography with compression

    International Nuclear Information System (INIS)

    Ruggiero, G.; Dalbuono, S.; Tampieri, D.

    1982-01-01

    A technique for performing right brachial anigography by compressing the right anterior-inferior part of the neck is proposed, as a result of studying the left carotid circulation without puncturing the left carotid artery. A success was obtained in about 75% of cases. The success of the technique depends mainly on the anatomical nature of the innominate artery. When the technique is successful both left carotid arteries in the neck and their intracranial branches can be satisfactorily visualized. In some cases visualization of the left vertebral artery was also otbained. Attention is drawn also on the increased diagnostic possibilities of studying the vessels in the neck with a greater dilution of the contrast medium. (orig.)

  15. Shock compression of geological materials

    International Nuclear Information System (INIS)

    Kirk, S; Braithwaite, C; Williamson, D; Jardine, A

    2014-01-01

    Understanding the shock compression of geological materials is important for many applications, and is particularly important to the mining industry. During blast mining the response to shock loading determines the wave propagation speed and resulting fragmentation of the rock. The present work has studied the Hugoniot of two geological materials; Lake Quarry Granite and Gosford Sandstone. For samples of these materials, the composition was characterised in detail. The Hugoniot of Lake Quarry Granite was predicted from this information as the material is fully dense and was found to be in good agreement with the measured Hugoniot. Gosford Sandstone is porous and undergoes compaction during shock loading. Such behaviour is similar to other granular material and we show how it can be described using a P-a compaction model.

  16. Modeling Compressed Turbulence with BHR

    Science.gov (United States)

    Israel, Daniel

    2011-11-01

    Turbulence undergoing compression or expansion occurs in systems ranging from internal combustion engines to supernovae. One common feature in many of these systems is the presence of multiple reacting species. Direct numerical simulation data is available for the single-fluid, low turbulent Mach number case. Wu, et al. (1985) compared their DNS results to several Reynolds-averaged Navier-Stokes models. They also proposed a three-equation k - ɛ - τ model, in conjunction with a Reynolds-stress model. Subsequent researchers have proposed alternative corrections to the standard k - ɛ formulation. Here we investigate three variants of the BHR model (Besnard, 1992). BHR is a model for multi-species variable-density turbulence. The three variants are the linear eddy-viscosity, algebraic-stress, and full Reynolds-stress formulations. We then examine the predictions of the model for the fluctuating density field for the case of variable-density turbulence.

  17. Nuclear transmutation by flux compression

    International Nuclear Information System (INIS)

    Seifritz, W.

    2001-01-01

    A new idea for the transmutation of minor actinides, long (and even short) lived fission products is presented. It is based an the property of neutron flux compression in nuclear (fast and/or thermal) reactors possessing spatially non-stationary critical masses. An advantage factor for the burn-up fluence of the elements to be transmuted in the order of magnitude of 100 and more is obtainable compared with the classical way of transmutation. Three typical examples of such transmuters (a subcritical ringreactor with a rotating reflector, a sub-critical ring reactor with a rotating spallation source, the socalled ''pulsed energy amplifier'', and a fast burn-wave reactor) are presented and analysed with regard to this purpose. (orig.) [de

  18. A New Approach for Fingerprint Image Compression

    Energy Technology Data Exchange (ETDEWEB)

    Mazieres, Bertrand

    1997-12-01

    The FBI has been collecting fingerprint cards since 1924 and now has over 200 million of them. Digitized with 8 bits of grayscale resolution at 500 dots per inch, it means 2000 terabytes of information. Also, without any compression, transmitting a 10 Mb card over a 9600 baud connection will need 3 hours. Hence we need a compression and a compression as close to lossless as possible: all fingerprint details must be kept. A lossless compression usually do not give a better compression ratio than 2:1, which is not sufficient. Compressing these images with the JPEG standard leads to artefacts which appear even at low compression rates. Therefore the FBI has chosen in 1993 a scheme of compression based on a wavelet transform, followed by a scalar quantization and an entropy coding : the so-called WSQ. This scheme allows to achieve compression ratios of 20:1 without any perceptible loss of quality. The publication of the FBI specifies a decoder, which means that many parameters can be changed in the encoding process: the type of analysis/reconstruction filters, the way the bit allocation is made, the number of Huffman tables used for the entropy coding. The first encoder used 9/7 filters for the wavelet transform and did the bit allocation using a high-rate bit assumption. Since the transform is made into 64 subbands, quite a lot of bands receive only a few bits even at an archival quality compression rate of 0.75 bit/pixel. Thus, after a brief overview of the standard, we will discuss a new approach for the bit-allocation that seems to make more sense where theory is concerned. Then we will talk about some implementation aspects, particularly for the new entropy coder and the features that allow other applications than fingerprint image compression. Finally, we will compare the performances of the new encoder to those of the first encoder.

  19. Tissue bioengineering and artificial organs.

    Science.gov (United States)

    Llames, Sara; García, Eva; Otero Hernández, Jesús; Meana, Alvaro

    2012-01-01

    The scarcity of organs and tissues for transplant and the need of immunosuppressive drugs to avoid rejection constitute two reasons that justify organ and tissue production in the laboratory. Tissue engineering based tissues (TE) could allow to regenerate the whole organ from a fragment or even to produce several organs from an organ donor for grafting purposes. TE is based in: (1) the ex vivo expansion of cells, (2) the seeding of these expanded cells in tridimensional structures that mimic physiological conditions and, (3) grafting the prototype. In order to graft big structures it is necessary that the organ or tissue produced "ex vivo" bears a vascular tree to ensure the nutrition of its deep layers. At present, no technology has been developed to provide this vascular tree to TE derived products. Thus, these tissues must be thin enough to acquire nutrients during the first days by diffusion from surrounding tissues. This fact constitutes nowadays the greatest limitation of technologies for organ development in the laboratory.In this chapter, all these problems and their possible solutions are commented. Also, the present status of TE techniques in the regeneration of different organ systems is reviewed.

  20. Accelerated Compressed Sensing Based CT Image Reconstruction.

    Science.gov (United States)

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R; Paul, Narinder S; Cobbold, Richard S C

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  1. Accelerated Compressed Sensing Based CT Image Reconstruction

    Directory of Open Access Journals (Sweden)

    SayedMasoud Hashemi

    2015-01-01

    Full Text Available In X-ray computed tomography (CT an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  2. Multimode waveguide speckle patterns for compressive sensing.

    Science.gov (United States)

    Valley, George C; Sefler, George A; Justin Shaw, T

    2016-06-01

    Compressive sensing (CS) of sparse gigahertz-band RF signals using microwave photonics may achieve better performances with smaller size, weight, and power than electronic CS or conventional Nyquist rate sampling. The critical element in a CS system is the device that produces the CS measurement matrix (MM). We show that passive speckle patterns in multimode waveguides potentially provide excellent MMs for CS. We measure and calculate the MM for a multimode fiber and perform simulations using this MM in a CS system. We show that the speckle MM exhibits the sharp phase transition and coherence properties needed for CS and that these properties are similar to those of a sub-Gaussian MM with the same mean and standard deviation. We calculate the MM for a multimode planar waveguide and find dimensions of the planar guide that give a speckle MM with a performance similar to that of the multimode fiber. The CS simulations show that all measured and calculated speckle MMs exhibit a robust performance with equal amplitude signals that are sparse in time, in frequency, and in wavelets (Haar wavelet transform). The planar waveguide results indicate a path to a microwave photonic integrated circuit for measuring sparse gigahertz-band RF signals using CS.

  3. Mechanical vapor compression Desalination plant at Trombay

    International Nuclear Information System (INIS)

    Adak, A.K.; Kishore, G.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Desalination plants based on Mechanical Vapour Compression (MVC) technology are inherently the most thermodynamically efficient. The thermodynamic efficiency of the MVC process is derived from the application of the heat pump principle. A single unit of two-effect MVC desalination pilot plant of capacity 50 m3/day has recently been commissioned at Trombay, Mumbai. The desalination unit is very compact and unique of its kind in the seawater desalination technologies and is being operated by using electricity only. Horizontal tube thin film spray desalination evaporators are used for efficient heat transfer. It is suitable for a site, where feed water is highly saline and condenser cooling water is absent and where a thermal heat source is not available. The unit produces high quality water, nearly demineralized (DM) quality directly from seawater. There is no need of polishing unit and product water can be utilized directly as make up of boiler feed and for other high quality process water requirements in the industries. This paper includes the design and highlights the technical features of this unit. (author)

  4. Radiation produced biomaterials

    International Nuclear Information System (INIS)

    Rosiak, J.M.

    1998-01-01

    Medical advances that have prolonged the average life span have generated increased need for new materials that can be used as tissue and organ replacements, drug delivery systems and/or components of devices related to therapy and diagnosis. The first man-made plastic used as surgical implant was celluloid, applied for cranial defect repair. However, the first users applied commercial materials with no regard for their purity, biostability and post-operative interaction with the organism. Thus, these materials evoked a strong tissue reaction and were unacceptable. The first polymer which gained acceptance for man-made plastic was poly(methyl methacrylate). But the first polymer of choice, precursor of the broad class of materials known today as hydrogels, was poly(hydroxyethyl methacrylate) synthesized in the fifties by Wichterle and Lim. HEMA and its various combinations with other, both hydrophilic and hydrophobic, polymers are till now the most often used hydrogels for medical purposes. In the early fifties, the pioneers of the radiation chemistry of polymers began some experiments with radiation crosslinking, also with hydrophilic polymers. However, hydrogels were analyzed mainly from the point of view of phenomena associated with mechanism of reactions, topology of network, and relations between radiation parameters of the processes. Fundamental monographs on radiation polymer physics and chemistry written by Charlesby (1960) and Chapiro (1962) proceed from this time. The noticeable interest in application of radiation to obtain hydrogels for biomedical purposes began in the late sixties as a result of the papers and patents published by Japanese and American scientists. Among others, the team of the Takasaki Radiation Chemistry Research Establishment headed by Kaetsu as well as Hoffman and his colleagues from the Center of Bioengineering, University of Washington have created the base for spreading interest in the field of biomaterials formed by means of

  5. Compression of Short Text on Embedded Systems

    DEFF Research Database (Denmark)

    Rein, S.; Gühmann, C.; Fitzek, Frank

    2006-01-01

    The paper details a scheme for lossless compression of a short data series larger than 50 bytes. The method uses arithmetic coding and context modelling with a low-complexity data model. A data model that takes 32 kBytes of RAM already cuts the data size in half. The compression scheme just takes...

  6. Recoil Experiments Using a Compressed Air Cannon

    Science.gov (United States)

    Taylor, Brett

    2006-01-01

    Ping-Pong vacuum cannons, potato guns, and compressed air cannons are popular and dramatic demonstrations for lecture and lab. Students enjoy them for the spectacle, but they can also be used effectively to teach physics. Recently we have used a student-built compressed air cannon as a laboratory activity to investigate impulse, conservation of…

  7. Rupture of esophagus by compressed air.

    Science.gov (United States)

    Wu, Jie; Tan, Yuyong; Huo, Jirong

    2016-11-01

    Currently, beverages containing compressed air such as cola and champagne are widely used in our daily life. Improper ways to unscrew the bottle, usually by teeth, could lead to an injury, even a rupture of the esophagus. This letter to editor describes a case of esophageal rupture caused by compressed air.

  8. MP3 compression of Doppler ultrasound signals.

    Science.gov (United States)

    Poepping, Tamie L; Gill, Jeremy; Fenster, Aaron; Holdsworth, David W

    2003-01-01

    The effect of lossy, MP3 compression on spectral parameters derived from Doppler ultrasound (US) signals was investigated. Compression was tested on signals acquired from two sources: 1. phase quadrature and 2. stereo audio directional output. A total of 11, 10-s acquisitions of Doppler US signal were collected from each source at three sites in a flow phantom. Doppler signals were digitized at 44.1 kHz and compressed using four grades of MP3 compression (in kilobits per second, kbps; compression ratios in brackets): 1400 kbps (uncompressed), 128 kbps (11:1), 64 kbps (22:1) and 32 kbps (44:1). Doppler spectra were characterized by peak velocity, mean velocity, spectral width, integrated power and ratio of spectral power between negative and positive velocities. The results suggest that MP3 compression on digital Doppler US signals is feasible at 128 kbps, with a resulting 11:1 compression ratio, without compromising clinically relevant information. Higher compression ratios led to significant differences for both signal sources when compared with the uncompressed signals. Copyright 2003 World Federation for Ultrasound in Medicine & Biology

  9. Normalized compression distance of multisets with applications

    NARCIS (Netherlands)

    Cohen, A.R.; Vitányi, P.M.B.

    Pairwise normalized compression distance (NCD) is a parameter-free, feature-free, alignment-free, similarity metric based on compression. We propose an NCD of multisets that is also metric. Previously, attempts to obtain such an NCD failed. For classification purposes it is superior to the pairwise

  10. Spectral Compressive Sensing with Polar Interpolation

    DEFF Research Database (Denmark)

    Fyhn, Karsten; Dadkhahi, Hamid; F. Duarte, Marco

    2013-01-01

    . In this paper, we introduce a greedy recovery algorithm that leverages a band-exclusion function and a polar interpolation function to address these two issues in spectral compressive sensing. Our algorithm is geared towards line spectral estimation from compressive measurements and outperforms most existing...

  11. Compression and fast retrieval of SNP data.

    Science.gov (United States)

    Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2014-11-01

    The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Dynamic compression and sound quality of music

    NARCIS (Netherlands)

    Lieshout, van R.A.J.M.; Wagenaars, W.M.; Houtsma, A.J.M.; Stikvoort, E.F.

    1984-01-01

    Amplitude compression is often used to match the dynamic: range of music to a particular playback situation in order to ensure, e .g ., continuous audibility in a noisy environment or unobtrusiveness if the music is intended as a quiet background. Since amplitude compression is a nonlinear process,

  13. Subjective evaluation of dynamic compression in music

    NARCIS (Netherlands)

    Wagenaars, W.M.; Houtsma, A.J.M.; Lieshout, van R.A.J.M.

    1986-01-01

    Amplitude compression is often used to match the dynamic range of music to a particular playback situation so as to ensure continuous audibility in a noisy environment. Since amplitude compression is a nonlinear process, it is potentially very damaging to sound quality. Three physical parameters of

  14. Mammography parameters: compression, dose, and discomfort

    International Nuclear Information System (INIS)

    Blanco, S.; Di Risio, C.; Andisco, D.; Rojas, R.R.; Rojas, R.M.

    2017-01-01

    Objective: To confirm the importance of compression in mammography and relate it to the discomfort expressed by the patients. Materials and methods: Two samples of 402 and 268 mammographies were obtained from two diagnostic centres that use the same mammographic equipment, but different compression techniques. The patient age range was from 21 to 50 years old. (authors) [es

  15. Hardware compression using common portions of data

    Science.gov (United States)

    Chang, Jichuan; Viswanathan, Krishnamurthy

    2015-03-24

    Methods and devices are provided for data compression. Data compression can include receiving a plurality of data chunks, sampling at least some of the plurality of data chunks extracting a common portion from a number of the plurality of data chunks based on the sampling, and storing a remainder of the plurality of data chunks in memory.

  16. The effect of compressive stress on the Young's modulus of unirradiated and irradiated nuclear graphites

    International Nuclear Information System (INIS)

    Oku, T.; Usui, T.; Ero, M.; Fukuda, Y.

    1977-01-01

    The Young's moduli of unirradiated and high temperature (800 to 1000 0 C) irradiated graphites for HTGR were measured by the ultrasonic method in the direction of applied compressive stress during and after stressing. The Young's moduli of all the tested graphites decreased with increasing compressive stress both during and after stressing. In order to investigate the reason for the decrease in Young's modulus by applying compressive stress, the mercury pore diameter distributions of a part of the unirradiated and irradiated specimens were measured. The change in pore distribution is believed to be associated with structural changes produced by irradiation and compressive stressing. The residual strain, after removing the compressive stress, showed a good correlation with the decrease in Young's modulus caused by the compressive stress. The decrease in Young's modulus by applying compressive stress was considered to be due to the increase in the mobile dislocation density and the growth or formation of cracks. The results suggest, however, that the mechanism giving the larger contribution depends on the brand of graphite, and in anisotropic graphite it depends on the direction of applied stress and the irradiation conditions. (author)

  17. Approaching maximal performance of longitudinal beam compression in induction accelerator drivers

    International Nuclear Information System (INIS)

    Mark, J.W.K.; Ho, D.D.M.; Brandon, S.T.; Chang, C.L.; Drobot, A.T.; Faltens, A.; Lee, E.P.; Krafft, G.A.

    1986-01-01

    Longitudinal beam compression is an integral part of the US induction accelerator development effort for heavy ion fusion. Producing maximal performance for key accelerator components is an essential element of the effort to reduce driver costs. We outline here initial studies directed towards defining the limits of final beam compression including considerations such as: maximal available compression, effects of longitudinal dispersion and beam emittance, combining pulse-shaping with beam compression to reduce the total number of beam manipulations, etc. The use of higher ion charge state Z greater than or equal to 3 is likely to test the limits of the previously envisaged beam compression and final focus hardware. A more conservative approach is to use additional beamlets in final compression and focus. On the other end of the spectrum of choices, alternate approaches might consider new final focus with greater tolerances for systematic momentum and current variations. Development of such final focus concepts would also allow more compact (and hopefully cheaper) hardware packages where the previously separate processes of beam compression, pulse-shaping and final focus occur as partially combined and nearly concurrent beam manipulations

  18. Insertion profiles of 4 headless compression screws.

    Science.gov (United States)

    Hart, Adam; Harvey, Edward J; Lefebvre, Louis-Philippe; Barthelat, Francois; Rabiei, Reza; Martineau, Paul A

    2013-09-01

    In practice, the surgeon must rely on screw position (insertion depth) and tactile feedback from the screwdriver (insertion torque) to gauge compression. In this study, we identified the relationship between interfragmentary compression and these 2 factors. The Acutrak Standard, Acutrak Mini, Synthes 3.0, and Herbert-Whipple implants were tested using a polyurethane foam scaphoid model. A specialized testing jig simultaneously measured compression force, insertion torque, and insertion depth at half-screw-turn intervals until failure occurred. The peak compression occurs at an insertion depth of -3.1 mm, -2.8 mm, 0.9 mm, and 1.5 mm for the Acutrak Mini, Acutrak Standard, Herbert-Whipple, and Synthes screws respectively (insertion depth is positive when the screw is proud above the bone and negative when buried). The compression and insertion torque at a depth of -2 mm were found to be 113 ± 18 N and 0.348 ± 0.052 Nm for the Acutrak Standard, 104 ± 15 N and 0.175 ± 0.008 Nm for the Acutrak Mini, 78 ± 9 N and 0.245 ± 0.006 Nm for the Herbert-Whipple, and 67 ± 2N, 0.233 ± 0.010 Nm for the Synthes headless compression screws. All 4 screws generated a sizable amount of compression (> 60 N) over a wide range of insertion depths. The compression at the commonly recommended insertion depth of -2 mm was not significantly different between screws; thus, implant selection should not be based on compression profile alone. Conically shaped screws (Acutrak) generated their peak compression when they were fully buried in the foam whereas the shanked screws (Synthes and Herbert-Whipple) reached peak compression before they were fully inserted. Because insertion torque correlated poorly with compression, surgeons should avoid using tactile judgment of torque as a proxy for compression. Knowledge of the insertion profile may improve our understanding of the implants, provide a better basis for comparing screws, and enable the surgeon to optimize compression. Copyright

  19. Mathematical transforms and image compression: A review

    Directory of Open Access Journals (Sweden)

    Satish K. Singh

    2010-07-01

    Full Text Available It is well known that images, often used in a variety of computer and other scientific and engineering applications, are difficult to store and transmit due to their sizes. One possible solution to overcome this problem is to use an efficient digital image compression technique where an image is viewed as a matrix and then the operations are performed on the matrix. All the contemporary digital image compression systems use various mathematical transforms for compression. The compression performance is closely related to the performance by these mathematical transforms in terms of energy compaction and spatial frequency isolation by exploiting inter-pixel redundancies present in the image data. Through this paper, a comprehensive literature survey has been carried out and the pros and cons of various transform-based image compression models have also been discussed.

  20. Sudden viscous dissipation in compressing plasma turbulence

    Science.gov (United States)

    Davidovits, Seth; Fisch, Nathaniel

    2015-11-01

    Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.

  1. Exploring compression techniques for ROOT IO

    Science.gov (United States)

    Zhang, Z.; Bockelman, B.

    2017-10-01

    ROOT provides an flexible format used throughout the HEP community. The number of use cases - from an archival data format to end-stage analysis - has required a number of tradeoffs to be exposed to the user. For example, a high “compression level” in the traditional DEFLATE algorithm will result in a smaller file (saving disk space) at the cost of slower decompression (costing CPU time when read). At the scale of the LHC experiment, poor design choices can result in terabytes of wasted space or wasted CPU time. We explore and attempt to quantify some of these tradeoffs. Specifically, we explore: the use of alternate compressing algorithms to optimize for read performance; an alternate method of compressing individual events to allow efficient random access; and a new approach to whole-file compression. Quantitative results are given, as well as guidance on how to make compression decisions for different use cases.

  2. Stress analysis of shear/compression test

    International Nuclear Information System (INIS)

    Nishijima, S.; Okada, T.; Ueno, S.

    1997-01-01

    Stress analysis has been made on the glass fiber reinforced plastics (GFRP) subjected to the combined shear and compression stresses by means of finite element method. The two types of experimental set up were analyzed, that is parallel and series method where the specimen were compressed by tilted jigs which enable to apply the combined stresses, to the specimen. Modified Tsai-Hill criterion was employed to judge the failure under the combined stresses that is the shear strength under the compressive stress. The different failure envelopes were obtained between the two set ups. In the parallel system the shear strength once increased with compressive stress then decreased. On the contrary in the series system the shear strength decreased monotonicly with compressive stress. The difference is caused by the different stress distribution due to the different constraint conditions. The basic parameters which control the failure under the combined stresses will be discussed

  3. Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering.

    Science.gov (United States)

    Li, Ke; Zhang, Chunqiu; Qiu, Lulu; Gao, Lilan; Zhang, Xizheng

    2017-08-01

    Articular cartilage (AC) is the weight-bearing tissue in diarthroses. It lacks the capacity for self-healing once there are injuries or diseases due to its avascularity. With the development of tissue engineering, repairing cartilage defects through transplantation of engineered cartilage that closely matches properties of native cartilage has become a new option for curing cartilage diseases. The main hurdle for clinical application of engineered cartilage is how to develop functional cartilage constructs for mass production in a credible way. Recently, impressive hyaline cartilage that may have the potential to provide capabilities for treating large cartilage lesions in the future has been produced in laboratories. The key to functional cartilage construction in vitro is to identify appropriate mechanical stimuli. First, they should ensure the function of metabolism because mechanical stimuli play the role of blood vessels in the metabolism of AC, for example, acquiring nutrition and removing wastes. Second, they should mimic the movement of synovial joints and produce phenotypically correct tissues to achieve the adaptive development between the micro- and macrostructure and function. In this article, we divide mechanical stimuli into three types according to forces transmitted by different media in bioreactors, namely forces transmitted through the liquid medium, solid medium, or other media, then we review and summarize the research status of bioreactors for cartilage tissue engineering (CTE), mainly focusing on the effects of diverse mechanical stimuli on engineered cartilage. Based on current researches, there are several motion patterns in knee joints; but compression, tension, shear, fluid shear, or hydrostatic pressure each only partially reflects the mechanical condition in vivo. In this study, we propose that rolling-sliding-compression load consists of various stimuli that will represent better mechanical environment in CTE. In addition, engineers

  4. The impact of chest compression rates on quality of chest compressions - a manikin study.

    Science.gov (United States)

    Field, Richard A; Soar, Jasmeet; Davies, Robin P; Akhtar, Naheed; Perkins, Gavin D

    2012-03-01

    Chest compressions are often performed at a variable rate during cardiopulmonary resuscitation (CPR). The effect of compression rate on other chest compression quality variables (compression depth, duty-cycle, leaning, performance decay over time) is unknown. This randomised controlled cross-over manikin study examined the effect of different compression rates on the other chest compression quality variables. Twenty healthcare professionals performed 2 min of continuous compressions on an instrumented manikin at rates of 80, 100, 120, 140 and 160 min(-1) in a random order. An electronic metronome was used to guide compression rate. Compression data were analysed by repeated measures ANOVA and are presented as mean (SD). Non-parametric data was analysed by Friedman test. At faster compression rates there were significant improvements in the number of compressions delivered (160(2) at 80 min(-1) vs. 312(13) compressions at 160 min(-1), P<0.001); and compression duty-cycle (43(6)% at 80 min(-1) vs. 50(7)% at 160 min(-1), P<0.001). This was at the cost of a significant reduction in compression depth (39.5(10)mm at 80 min(-1) vs. 34.5(11)mm at 160 min(-1), P<0.001); and earlier decay in compression quality (median decay point 120 s at 80 min(-1) vs. 40s at 160 min(-1), P<0.001). Additionally not all participants achieved the target rate (100% at 80 min(-1) vs. 70% at 160 min(-1)). Rates above 120 min(-1) had the greatest impact on reducing chest compression quality. For Guidelines 2005 trained rescuers, a chest compression rate of 100-120 min(-1) for 2 min is feasible whilst maintaining adequate chest compression quality in terms of depth, duty-cycle, leaning, and decay in compression performance. Further studies are needed to assess the impact of the Guidelines 2010 recommendation for deeper and faster chest compressions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Measurement and Improvement the Quality of the Compressive Strength of Product Concrete

    Directory of Open Access Journals (Sweden)

    Zohair Hassan Abdullah

    2018-01-01

    Full Text Available The research dealt with studying path technology to manufacture of concrete cubes according to specification design of Iraq to the degree of concrete C20 No. 52 of 1984, and in which sample was cubic shape and the dimensions (150 × 150 × 150 mm for each dimensions and the proportion of mixing of the concrete is (1:2:4 using in the casting floor. For concrete resistance required that achieve the degree of confidence of 100%, were examined compressive strength 40 samples of concrete cubes of age 28 days in the Labs section of Civil Department – Technical Institute of Babylon, all made from the same mixing concrete. Where, these samples classified within the acceptable tests were adopted in the implementation of investment projects in the construction sector. The research aims first, to measure the compressive strength of concrete cubes because the decrease or increase the compressive strength from specification design contributes to the failure of investment projects in the construction sector therefore, test was classified units that produced within damaged units. Second, to study an improvement the quality of compressive strength of concrete cubes. Results show that the proportion of damaged cubes are 0.00685, compressive strength was achieve confidence level 99.5% and producing of concrete cubes within the acceptable level of quality (3 Sigma. The quality of compressive strength was improved to good level use advanced sigma  levels. DOI: http://dx.doi.org/10.25130/tjes.24.2017.20

  6. Fast lossless compression via cascading Bloom filters.

    Science.gov (United States)

    Rozov, Roye; Shamir, Ron; Halperin, Eran

    2014-01-01

    Data from large Next Generation Sequencing (NGS) experiments present challenges both in terms of costs associated with storage and in time required for file transfer. It is sometimes possible to store only a summary relevant to particular applications, but generally it is desirable to keep all information needed to revisit experimental results in the future. Thus, the need for efficient lossless compression methods for NGS reads arises. It has been shown that NGS-specific compression schemes can improve results over generic compression methods, such as the Lempel-Ziv algorithm, Burrows-Wheeler transform, or Arithmetic Coding. When a reference genome is available, effective compression can be achieved by first aligning the reads to the reference genome, and then encoding each read using the alignment position combined with the differences in the read relative to the reference. These reference-based methods have been shown to compress better than reference-free schemes, but the alignment step they require demands several hours of CPU time on a typical dataset, whereas reference-free methods can usually compress in minutes. We present a new approach that achieves highly efficient compression by using a reference genome, but completely circumvents the need for alignment, affording a great reduction in the time needed to compress. In contrast to reference-based methods that first align reads to the genome, we hash all reads into Bloom filters to encode, and decode by querying the same Bloom filters using read-length subsequences of the reference genome. Further compression is achieved by using a cascade of such filters. Our method, called BARCODE, runs an order of magnitude faster than reference-based methods, while compressing an order of magnitude better than reference-free methods, over a broad range of sequencing coverage. In high coverage (50-100 fold), compared to the best tested compressors, BARCODE saves 80-90% of the running time while only increasing space

  7. SU-D-BRA-06: Duodenal Interfraction Motion with Abdominal Compression

    Energy Technology Data Exchange (ETDEWEB)

    Witztum, A; Holyoake, D; Warren, S; Partridge, M; Hawkins, M [CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford (United Kingdom)

    2016-06-15

    Purpose: To quantify the effect of abdominal compression on duodenal motion during pancreatic radiotherapy. Methods: Seven patients treated for pancreatic cancer were selected for analysis. Four patients were treated with abdominal compression and three without. The duodenum was contoured by the same physician on each CBCT (five CBCTs for patients with compression, four for non-compression patients). CBCTs were rigidly registered using a soft tissue match and contours were copied to the delivered plans which were all radical (BED > 50 Gy). The distance between the duodenum on the planning CT and each CBCT was quantified by calculating the root mean square (RMS) distance. The DVHs of each abdominal compression patient was converted to an EQD2 DVH (alpha/beta = 10) using an in-house tool and volumes receiving at least 25, 35, 45, and 50 Gy were recorded. Results: The maximum variation in duodenal volumes on the CBCTs for the four abdominal compression patients were 19.1 cm{sup 3} (32.8%), 19.1 cm{sup 3} (20.6%), 19.9 cm{sup 3} (14.3%), and 12.9 cm{sup 3} (27.3%) compared to 15.2 cm{sup 3} (17.6%), 34.7 cm{sup 3} (83.4%), and 56 cm{sup 3} (60.2%) for non-compression patients. The average RMS distance between the duodenum on the planning CT and each CBCT for all abdominal compression patients was 0.3 cm compared to 0.7 cm for non-compressed patients. The largest (and average) difference between the planning CT and CBCTs in volume of duodenum receiving more than 25, 35, 45 and 50 Gy for abdominal compression patients was 11% (5%), 9% (3%), 9% (2%), and 6% (1%). Conclusion: Abdominal compression reduces variation in volume and absolute position of the duodenum throughout treatment. This is seen as an improvement but does not eliminate the need to consider dosimetric effects of motion. Abdominal compression is particularly useful in SBRT when only a few fractions are delivered. Alon Witztum is supported by an MRC/Gray Institute DPhil Studentship. Daniel Holyoake is

  8. SU-D-BRA-06: Duodenal Interfraction Motion with Abdominal Compression

    International Nuclear Information System (INIS)

    Witztum, A; Holyoake, D; Warren, S; Partridge, M; Hawkins, M

    2016-01-01

    Purpose: To quantify the effect of abdominal compression on duodenal motion during pancreatic radiotherapy. Methods: Seven patients treated for pancreatic cancer were selected for analysis. Four patients were treated with abdominal compression and three without. The duodenum was contoured by the same physician on each CBCT (five CBCTs for patients with compression, four for non-compression patients). CBCTs were rigidly registered using a soft tissue match and contours were copied to the delivered plans which were all radical (BED > 50 Gy). The distance between the duodenum on the planning CT and each CBCT was quantified by calculating the root mean square (RMS) distance. The DVHs of each abdominal compression patient was converted to an EQD2 DVH (alpha/beta = 10) using an in-house tool and volumes receiving at least 25, 35, 45, and 50 Gy were recorded. Results: The maximum variation in duodenal volumes on the CBCTs for the four abdominal compression patients were 19.1 cm 3 (32.8%), 19.1 cm 3 (20.6%), 19.9 cm 3 (14.3%), and 12.9 cm 3 (27.3%) compared to 15.2 cm 3 (17.6%), 34.7 cm 3 (83.4%), and 56 cm 3 (60.2%) for non-compression patients. The average RMS distance between the duodenum on the planning CT and each CBCT for all abdominal compression patients was 0.3 cm compared to 0.7 cm for non-compressed patients. The largest (and average) difference between the planning CT and CBCTs in volume of duodenum receiving more than 25, 35, 45 and 50 Gy for abdominal compression patients was 11% (5%), 9% (3%), 9% (2%), and 6% (1%). Conclusion: Abdominal compression reduces variation in volume and absolute position of the duodenum throughout treatment. This is seen as an improvement but does not eliminate the need to consider dosimetric effects of motion. Abdominal compression is particularly useful in SBRT when only a few fractions are delivered. Alon Witztum is supported by an MRC/Gray Institute DPhil Studentship. Daniel Holyoake is supported by a CRUK/Nuffield Clinical

  9. The use of ZFP lossy floating point data compression in tornado-resolving thunderstorm simulations

    Science.gov (United States)

    Orf, L.

    2017-12-01

    In the field of atmospheric science, numerical models are used to produce forecasts of weather and climate and serve as virtual laboratories for scientists studying atmospheric phenomena. In both operational and research arenas, atmospheric simulations exploiting modern supercomputing hardware can produce a tremendous amount of data. During model execution, the transfer of floating point data from memory to the file system is often a significant bottleneck where I/O can dominate wallclock time. One way to reduce the I/O footprint is to compress the floating point data, which reduces amount of data saved to the file system. In this presentation we introduce LOFS, a file system developed specifically for use in three-dimensional numerical weather models that are run on massively parallel supercomputers. LOFS utilizes the core (in-memory buffered) HDF5 driver and includes compression options including ZFP, a lossy floating point data compression algorithm. ZFP offers several mechanisms for specifying the amount of lossy compression to be applied to floating point data, including the ability to specify the maximum absolute error allowed in each compressed 3D array. We explore different maximum error tolerances in a tornado-resolving supercell thunderstorm simulation for model variables including cloud and precipitation, temperature, wind velocity and vorticity magnitude. We find that average compression ratios exceeding 20:1 in scientifically interesting regions of the simulation domain produce visually identical results to uncompressed data in visualizations and plots. Since LOFS splits the model domain across many files, compression ratios for a given error tolerance can be compared across different locations within the model domain. We find that regions of high spatial variability (which tend to be where scientifically interesting things are occurring) show the lowest compression ratios, whereas regions of the domain with little spatial variability compress

  10. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    International Nuclear Information System (INIS)

    Sawada, H.; Lee, S.; Nagatomo, H.; Arikawa, Y.; Nishimura, H.; Ueda, T.; Shigemori, K.; Fujioka, S.; Shiroto, T.; Ohnishi, N.; Sunahara, A.; Beg, F. N.; Theobald, W.; Pérez, F.; Patel, P. K.

    2016-01-01

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm"2. The temporal evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.

  11. Formulation and in vivo evaluation of diclofenac sodium sustained release matrix tablet: effect of compression force.

    Science.gov (United States)

    Taha, Ehab Ibrahim; Shazly, Gamal Abdel-Ghany; Harisa, Gamaleldin Ibrahim; Barakat, Nahla Sedik; Al-Enazi, Fouza Kayem; Elbagory, Ibrahim Mostafa

    2015-03-01

    In the present study, Diclofenac Sodium (DS) matrix tablets were prepared by direct compression method under different compression forces (5, 10, 15 and 20 KN), using ethylcellulose as matrix forming material. The produced tablets were characterized on the foundation of satisfactory tablet properties such as hardness, friability, drug content, weight variations and in vitro drug release rate. Differential scanning calorimetry (DSC), Fourier Transform Infrared (FT-IR) spectroscopy and X-ray diffraction have been used to investigate any incompatibilities of the tablet's ingredients. Additionally, in vivo bioavailability has been investigated on beagle dogs. Data obtained revealed that, upon increasing compression force the in vitro drug release was sustained and the T(max) value was four hours (for formulations compressed at 15 and 20 kN) compared to the conventional voltarine(®) 50 tablets (T(max) value of 2 hours).

  12. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, H. [Department of Physics, University of Nevada Reno, Reno, Nevada 89557 (United States); Lee, S.; Nagatomo, H.; Arikawa, Y.; Nishimura, H.; Ueda, T.; Shigemori, K.; Fujioka, S. [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Shiroto, T.; Ohnishi, N. [Department of Aerospace Engineering, Tohoku University, Sendai, Miyagi (Japan); Sunahara, A. [Institute of Laser Technology, Nishi-ku, Osaka (Japan); Beg, F. N. [University of California San Diego, La Jolla, California 92093 (United States); Theobald, W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Pérez, F. [LULI, Ecole Polytechnique, Palaiseau, Cedex (France); Patel, P. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.

  13. Biomechanical Comparison of External Fixation and Compression Screws for Transverse Tarsal Joint Arthrodesis.

    Science.gov (United States)

    Latt, L Daniel; Glisson, Richard R; Adams, Samuel B; Schuh, Reinhard; Narron, John A; Easley, Mark E

    2015-10-01

    Transverse tarsal joint arthrodesis is commonly performed in the operative treatment of hindfoot arthritis and acquired flatfoot deformity. While fixation is typically achieved using screws, failure to obtain and maintain joint compression sometimes occurs, potentially leading to nonunion. External fixation is an alternate method of achieving arthrodesis site compression and has the advantage of allowing postoperative compression adjustment when necessary. However, its performance relative to standard screw fixation has not been quantified in this application. We hypothesized that external fixation could provide transverse tarsal joint compression exceeding that possible with screw fixation. Transverse tarsal joint fixation was performed sequentially, first with a circular external fixator and then with compression screws, on 9 fresh-frozen cadaveric legs. The external fixator was attached in abutting rings fixed to the tibia and the hindfoot and a third anterior ring parallel to the hindfoot ring using transverse wires and half-pins in the tibial diaphysis, calcaneus, and metatarsals. Screw fixation comprised two 4.3 mm headless compression screws traversing the talonavicular joint and 1 across the calcaneocuboid joint. Compressive forces generated during incremental fixator foot ring displacement to 20 mm and incremental screw tightening were measured using a custom-fabricated instrumented miniature external fixator spanning the transverse tarsal joint. The maximum compressive force generated by the external fixator averaged 186% of that produced by the screws (range, 104%-391%). Fixator compression surpassed that obtainable with screws at 12 mm of ring displacement and decreased when the tibial ring was detached. No correlation was found between bone density and the compressive force achievable by either fusion method. The compression across the transverse tarsal joint that can be obtained with a circular external fixator including a tibial ring exceeds that

  14. A tissue engineering strategy for the treatment of avascular necrosis of the femoral head.

    Science.gov (United States)

    Aarvold, A; Smith, J O; Tayton, E R; Jones, A M H; Dawson, J I; Lanham, S; Briscoe, A; Dunlop, D G; Oreffo, R O C

    2013-12-01

    Skeletal stem cells (SSCs) and impaction bone grafting (IBG) can be combined to produce a mechanically stable living bone composite. This novel strategy has been translated to the treatment of avascular necrosis of the femoral head. Surgical technique, clinical follow-up and retrieval analysis data of this translational case series is presented. SSCs and milled allograft were impacted into necrotic bone in five femoral heads of four patients. Cell viability was confirmed by parallel in vitro culture of the cell-graft constructs. Patient follow-up was by serial clinical and radiological examination. Tissue engineered bone was retrieved from two retrieved femoral heads and was analysed by histology, microcomputed tomography (μCT) and mechanical testing. Three patients remain asymptomatic at 22- to 44-month follow-up. One patient (both hips) required total hip replacement due to widespread residual necrosis. Retrieved tissue engineered bone demonstrated a mature trabecular micro-architecture histologically and on μCT. Bone density and axial compression strength were comparable to trabecular bone. Clinical follow-up shows this to be an effective new treatment for focal early stage avascular necrosis of the femoral head. Unique retrieval analysis of clinically translated tissue engineered bone has demonstrated regeneration of tissue that is both structurally and functionally analogous to normal trabecular bone. Copyright © 2013 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  15. The production of fully deacetylated chitosan by compression method

    Directory of Open Access Journals (Sweden)

    Xiaofei He

    2016-03-01

    Full Text Available Chitosan’s activities are significantly affected by degree of deacetylation (DDA, while fully deacetylated chitosan is difficult to produce in a large scale. Therefore, this paper introduces a compression method for preparing 100% deacetylated chitosan with less environmental pollution. The product is characterized by XRD, FT-IR, UV and HPLC. The 100% fully deacetylated chitosan is produced in low-concentration alkali and high-pressure conditions, which only requires 15% alkali solution and 1:10 chitosan powder to NaOH solution ratio under 0.11–0.12 MPa for 120 min. When the alkali concentration varied from 5% to 15%, the chitosan with ultra-high DDA value (up to 95% is produced.

  16. Producing Polymer Fibers by Electrospinning in Supercritical Fluids

    Directory of Open Access Journals (Sweden)

    Lu Li

    2013-01-01

    Full Text Available Nanofibers have a wide range of applications, including filtration and biomedical engineering. Porous or hollow fibers with large surface-to-volume ratios are more popular in some fields than the common nanofibers. Porous nanofibers can be obtained through electrospinning with highly volatile solvents or through special treatment following electrospinning. A new process where electrospinning is conducted in supercritical or near-critical CO2 to produce porous or hollow nanofibers has been summarized. In addition, a process entailing compressed N2-assisted electrospinning was attempted to produce PVP nanofibers in this work, but it was proved to be unsuccessful. Since the fiber morphologies are dependent on the phase behavior of organic solvents in supercritical fluids, ASPEN PLUS 2006 was used to simulate the phase equilibrium of the solvent-supercritical fluid system to explain why porous or hollow fibers can be obtained in compressed CO2, but not in compressed N2.

  17. Shock compression profiles in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Grady, D.E.; Moody, R.L.

    1996-03-01

    An investigation of the shock compression properties of high-strength ceramics has been performed using controlled planar impact techniques. In a typical experimental configuration, a ceramic target disc is held stationary, and it is struck by plates of either a similar ceramic or by plates of a well-characterized metal. All tests were performed using either a single-stage propellant gun or a two-stage light-gas gun. Particle velocity histories were measured with laser velocity interferometry (VISAR) at the interface between the back of the target ceramic and a calibrated VISAR window material. Peak impact stresses achieved in these experiments range from about 3 to 70 GPa. Ceramics tested under shock impact loading include: Al{sub 2}O{sub 3}, AlN, B{sub 4}C, SiC, Si{sub 3}N{sub 4}, TiB{sub 2}, WC and ZrO{sub 2}. This report compiles the VISAR wave profiles and experimental impact parameters within a database-useful for response model development, computational model validation studies, and independent assessment of the physics of dynamic deformation on high-strength, brittle solids.

  18. Rapid reconnection in compressible plasma

    International Nuclear Information System (INIS)

    Heyn, M.F.; Semenov, V.S.

    1996-01-01

    A study of set-up, propagation, and interaction of non-linear and linear magnetohydrodynamic waves driven by magnetic reconnection is presented. The source term of the waves generated by magnetic reconnection is obtained explicitly in terms of the initial background conditions and the local reconnection electric field. The non-linear solution of the problem found earlier, serves as a basis for formulation and extensive investigation of the corresponding linear initial-boundary value problem of compressible magnetohydrodynamics. In plane geometry, the Green close-quote s function of the problem is obtained and its properties are discussed. For the numerical evaluation it turns out that a specific choice of the integration contour in the complex plane of phase velocities is much more effective than the convolution with the real Green close-quote s function. Many complex effects like intrinsic wave coupling, anisotropic propagation characteristics, generation of surface and side wave modes in a finite beta plasma are retained in this analysis. copyright 1996 American Institute of Physics

  19. The Compressed Baryonic Matter experiment

    Directory of Open Access Journals (Sweden)

    Seddiki Sélim

    2014-04-01

    Full Text Available The Compressed Baryonic Matter (CBM experiment is a next-generation fixed-target detector which will operate at the future Facility for Antiproton and Ion Research (FAIR in Darmstadt. The goal of this experiment is to explore the QCD phase diagram in the region of high net baryon densities using high-energy nucleus-nucleus collisions. Its research program includes the study of the equation-of-state of nuclear matter at high baryon densities, the search for the deconfinement and chiral phase transitions and the search for the QCD critical point. The CBM detector is designed to measure both bulk observables with a large acceptance and rare diagnostic probes such as charm particles, multi-strange hyperons, and low mass vector mesons in their di-leptonic decay. The physics program of CBM will be summarized, followed by an overview of the detector concept, a selection of the expected physics performance, and the status of preparation of the experiment.

  20. A cost-effective compressed air generation for manufacturing using modified microturbines

    International Nuclear Information System (INIS)

    Eret, Petr

    2016-01-01

    Highlights: • A new cost-effective way of compressed air generation for manufacturing in SME is proposed. • The approach is based on a modified microturbine configuration. • Thermodynamic and life cycle analyses are presented and economic benefit is demonstrated. - Abstract: Compressed air is an irreplaceable energy source for some manufacturing processes, and is also common in applications even when there are alternatives. As a result, compressed air is a key utility in manufacturing industry, but unfortunately the cost of compressed air production is one of the most expensive processes in a manufacturing facility. In order to reduce the compressed air generation cost an unconventional way using a microturbine configuration is proposed. The concept is based on an extraction of a certain amount of compressed air from/after the compressor with the residual air flowing to the turbine to produce sufficient back power to drive the compressor. A thermodynamic and life cycle analysis are presented for several system variations, including a simple cycle without a recuperator and a complex configuration with an intercooler, recuperator and reheating. The study is based on the typical requirements (i.e. quantity, pressure) for a small to medium sized industrial compressed air system. The analysis is focused on the North American market due to the low price of natural gas. The lowest life cycle cost alternative is represented by a microturbine concept with a recuperator, air extraction after partial compression, intercooler and aftercooler. A comparison of an electric motor and conventional microturbine prime movers demonstrates the economic benefit of the proposed compressed air generation method, for the design parameters and utility prices considered.