WorldWideScience

Sample records for tissues cardiovascular flows

  1. Detection of hydroxyapatite in calcified cardiovascular tissues.

    Science.gov (United States)

    Lee, Jae Sam; Morrisett, Joel D; Tung, Ching-Hsuan

    2012-10-01

    The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Flow imaging of the cardiovascular system using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Imai, Hitoshi; Sakakibara, Makoto; Sunami, Yuko

    1988-01-01

    Blood flow images by magnetic resonance imaging (MRI) using a 0.25 T unit were evaluated for nine normal volunteers and 108 subjects with a variety of cardiovascular abnormalities. Using the non-gated short-spin echo (SE) technique, blood flow in the cardiovascular systems was not imaged in the normal volunteers. Using end-systolic and end-diastolic SE techniques for the normal subjects, blood flow in the cardiac chambers was not clearly imaged. Blood flow in the ascending aorta and aortic arch often did not appear in the gated SE images of the normal subjects. However, blood flow in the descending aorta was often observed in the gated SE images. Blood flow imaging was demonstrated by both non-gated and gated SE techniques in regions where blood flow was relatively slow; for example, in the left atrium of mitral stenosis, in an aortic aneurysm, in a false lumen of an aortic dissection, and in the left ventricle having old myocardial infarction. Using the non-gated inversion recovery (IR) technique, no blood flow was imaged in the cardiovascular system except in the left atrium of one case with mitral stenosis. Using the non-gated short SE technique, there was good correlation between the thrombus formation and the presence of blood flow images in the left atria of 17 patients with mitral stenosis, and in the aneurysmal portions of the aorta or in the false lumens of aortic dissection of 18 patients. It was suggested that mural thrombi in such diseases were related to the relatively slow blood flow. Blood flow imaging easily distinguished stagnant blood flow from mural thrombi using non-gated short SE, end-systolic SE, and IR techniques. Thus, blood flow imaging using MRI should become an important means of evaluating the cardiovascular system. (author)

  3. Human prenatal progenitors for pediatric cardiovascular tissue engineering

    NARCIS (Netherlands)

    Schmidt, D.

    2007-01-01

    Pediatric cardiovascular tissue engineering is a promising strategy to overcome the lack of autologous, growing replacements for the early repair of congenital malformations in order to prevent secondary damage to the immature heart. Therefore, cells should be harvested during pregnancy as soon as

  4. Magnetic resonance imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Masuda, Yoshiaki; Imai, Hiroshi; Watanabe, Sigeru; Inagaki, Yoshiaki; Tateno, Yukio; Ikehira, Hiroo.

    1990-01-01

    Magnetic resonance imaging (MRI) is a new noninvasive technique for visualization of the cardiovascular system, and is used to evaluate tissue characteristics, cardiac function and blood flow abnormalities, as well as to obtain morphological information. In this paper we presented results of clinical and laboratory research obtained using conventional spin echo MRI with regard to cardiovascular anatomy, tissue characterization and physiology. Furthermore, experience with two new techniques, cine-MRI and volume-selected MR spectroscopy, and their potential clinical usefulness in detecting cardiovascular diseases are documented. (author)

  5. Impact of the cardiovascular system-associated adipose tissue on atherosclerotic pathology.

    Science.gov (United States)

    Chistiakov, Dimitry A; Grechko, Andrey V; Myasoedova, Veronika A; Melnichenko, Alexandra A; Orekhov, Alexander N

    2017-08-01

    Cardiac obesity makes an important contribution to the pathogenesis of cardiovascular disease. One of the important pathways of this contribution is the inflammatory process that takes place in the adipose tissue. In this review, we consider the role of the cardiovascular system-associated fat in atherosclerotic cardiovascular pathology and a non-atherosclerotic cause of coronary artery disease, such as atrial fibrillation. Cardiovascular system-associated fat not only serves as the energy store, but also releases adipokines that control local and systemic metabolism, heart/vascular function and vessel tone, and a number of vasodilating and anti-inflammatory substances. Adipokine appears to play an important protective role in cardiovascular system. Under chronic inflammation conditions, the repertoire of signaling molecules secreted by cardiac fat can be altered, leading to a higher amount of pro-inflammatory messengers, vasoconstrictors, profibrotic modulators. This further aggravates cardiovascular inflammation and leads to hypertension, induction of the pathological tissue remodeling and cardiac fibrosis. Contemporary imaging techniques showed that epicardial fat thickness correlates with the visceral fat mass, which is an established risk factor and predictor of cardiovascular disease in obese subjects. However, this correlation is no longer present after adjustment for other covariates. Nevertheless, recent studies showed that pericardial fat volume and epicardial fat thickness can probably serve as a better indicator for atrial fibrillation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Novel blood protein based scaffolds for cardiovascular tissue engineering

    Directory of Open Access Journals (Sweden)

    Kuhn Antonia I.

    2016-09-01

    Full Text Available A major challenge in cardiovascular tissue engineering is the fabrication of scaffolds, which provide appropriate morphological and mechanical properties while avoiding undesirable immune reactions. In this study electrospinning was used to fabricate scaffolds out of blood proteins for cardiovascular tissue engineering. Lyophilised porcine plasma was dissolved in deionised water at a final concentration of 7.5% m/v and blended with 3.7% m/v PEO. Electrospinning resulted in homogeneous fibre morphologies with a mean fibre diameter of 151 nm, which could be adapted to create macroscopic shapes (mats, tubes. Cross-linking with glutaraldehyde vapour improved the long-term stability of protein based scaffolds in comparison to untreated scaffolds, resulting in a mass loss of 41% and 96% after 28 days of incubation in aqueous solution, respectively.

  7. From Microscale Devices to 3D Printing: Advances in Fabrication of 3D Cardiovascular Tissues

    Science.gov (United States)

    Borovjagin, Anton V.; Ogle, Brenda; Berry, Joel; Zhang, Jianyi

    2016-01-01

    Current strategies for engineering cardiovascular cells and tissues have yielded a variety of sophisticated tools for studying disease mechanisms, for development of drug therapies, and for fabrication of tissue equivalents that may have application in future clinical use. These efforts are motivated by the need to extend traditional two-dimensional (2D) cell culture systems into 3D to more accurately replicate in vivo cell and tissue function of cardiovascular structures. Developments in microscale devices and bioprinted 3D tissues are beginning to supplant traditional 2D cell cultures and pre-clinical animal studies that have historically been the standard for drug and tissue development. These new approaches lend themselves to patient-specific diagnostics, therapeutics, and tissue regeneration. The emergence of these technologies also carries technical challenges to be met before traditional cell culture and animal testing become obsolete. Successful development and validation of 3D human tissue constructs will provide powerful new paradigms for more cost effective and timely translation of cardiovascular tissue equivalents. PMID:28057791

  8. Roadmap for cardiovascular circulation model

    Science.gov (United States)

    Bradley, Christopher P.; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R.; Omholt, Stig W.; Chase, J. Geoffrey; Müller, Lucas O.; Watanabe, Sansuke M.; Blanco, Pablo J.; de Bono, Bernard; Hunter, Peter J.

    2016-01-01

    Abstract Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well‐established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo‐skeletal system. The computational infrastructure for the cardiovascular model should provide for near real‐time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. PMID:27506597

  9. Connective Tissue Disorders and Cardiovascular Complications: The indomitable role of Transforming Growth Factor-beta signaling

    Science.gov (United States)

    Wheeler, Jason B.; Ikonomidis, John S.; Jones, Jeffrey A.

    2015-01-01

    Marfan Syndrome (MFS) and Loeys-Dietz Syndrome (LDS) represent heritable connective tissue disorders that cosegregate with a similar pattern of cardiovascular defects (thoracic aortic aneurysm, mitral valve prolapse/regurgitation, and aortic dilatation with regurgitation). This pattern of cardiovascular defects appears to be expressed along a spectrum of severity in many heritable connective tissue disorders and raises suspicion of a relationship between the normal development of connective tissues and the cardiovascular system. Given the evidence of increased transforming growth factor-beta (TGF-β) signaling in MFS and LDS, this signaling pathway may represent the common link in this relationship. To further explore this hypothetical link, this chapter will review the TGF-β signaling pathway, heritable connective tissue syndromes related to TGF-β receptor (TGFBR) mutations, and discuss the pathogenic contribution of TGF-β to these syndromes with a primary focus on the cardiovascular system. PMID:24443024

  10. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification

    Science.gov (United States)

    Bertazzo, Sergio; Gentleman, Eileen; Cloyd, Kristy L.; Chester, Adrian H.; Yacoub, Magdi H.; Stevens, Molly M.

    2013-06-01

    The accumulation of calcified material in cardiovascular tissue is thought to involve cytochemical, extracellular matrix and systemic signals; however, its precise composition and nanoscale architecture remain largely unexplored. Using nano-analytical electron microscopy techniques, we examined valves, aortae and coronary arteries from patients with and without calcific cardiovascular disease and detected spherical calcium phosphate particles, regardless of the presence of calcific lesions. We also examined lesions after sectioning with a focused ion beam and found that the spherical particles are composed of highly crystalline hydroxyapatite that crystallographically and structurally differs from bone mineral. Taken together, these data suggest that mineralized spherical particles may play a fundamental role in calcific lesion formation. Their ubiquitous presence in varied cardiovascular tissues and from patients with a spectrum of diseases further suggests that lesion formation may follow a common process. Indeed, applying materials science techniques to ectopic and orthotopic calcification has great potential to lend critical insights into pathophysiological processes underlying calcific cardiovascular disease.

  11. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ebbers, T.

    2001-01-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  12. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, T

    2001-05-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  13. Increasing blood flow to exercising muscle attenuates systemic cardiovascular responses during dynamic exercise in humans.

    Science.gov (United States)

    Ichinose, Masashi; Ichinose-Kuwahara, Tomoko; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-11-15

    Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity. Copyright © 2015 the American Physiological Society.

  14. Intrinsic regulation of blood flow in adipose tissue

    DEFF Research Database (Denmark)

    Henriksen, O; Nielsen, Steen Levin; Paaske, W

    1976-01-01

    Previous studies on intact human subcutaneous tissue have shown, that blood flow remains constant during minor changes in perfusion pressure. This so-called autoregulatory response has not been demonstrable in isolated preparations of adipose tissue. In the present study on isolated, denervated...... subcutaneous tissue in female rabbits only 2 of 12 expts. revealed an autoregulatory response during reduction in arterial perfusion pressure. Effluent blood flow from the tissue in the control state was 15.5 ml/100 g-min (S.D. 6.4, n = 12) corresponding to slight vasodilatation of the exposed tissue...... vasoconstriction with pronounced flow reduction. These two reactions may be important for local regulation of blood flow in subcutaneous tissue during orthostatic changes in arterial and venous pressure. It is concluded that the response in adipose tissue to changes in arterial pressure (autoregulation), venous...

  15. Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Seung Taek Ji

    2017-01-01

    Full Text Available The primary cause of death among chronic diseases worldwide is ischemic cardiovascular diseases, such as stroke and myocardial infarction. Recent evidence indicates that adult stem cell therapies involving cardiovascular regeneration represent promising strategies to treat cardiovascular diseases. Owing to their immunomodulatory properties and vascular repair capabilities, mesenchymal stem cells (MSCs are strong candidate therapeutic stem cells for use in cardiovascular regeneration. However, major limitations must be overcome, including their very low survival rate in ischemic lesion. Various attempts have been made to improve the poor survival and longevity of engrafted MSCs. In order to develop novel therapeutic strategies, it is necessary to first identify stem cell modulators for intracellular signal triggering or niche activation. One promising therapeutic strategy is the priming of therapeutic MSCs with stem cell modulators before transplantation. Another is a tissue engineering-based therapeutic strategy involving a cell scaffold, a cell-protein-scaffold architecture made of biomaterials such as ECM or hydrogel, and cell patch- and 3D printing-based tissue engineering. This review focuses on the current clinical applications of MSCs for treating cardiovascular diseases and highlights several therapeutic strategies for promoting the therapeutic efficacy of MSCs in vitro or in vivo from cell priming to tissue engineering strategies, for use in cardiovascular regeneration.

  16. Chronic intermittent hypoxia activates nuclear factor-κB in cardiovascular tissues in vivo

    International Nuclear Information System (INIS)

    Greenberg, Harly; Ye Xiaobing; Wilson, David; Htoo, Aung K.; Hendersen, Todd; Liu Shufang

    2006-01-01

    Obstructive sleep apnea (OSA) is an important risk factor for cardiovascular morbidity and mortality. The mechanisms through which OSA promotes the development of cardiovascular disease are poorly understood. In this study, we tested the hypotheses that chronic exposure to intermittent hypoxia and reoxygenation (CIH) is a major pathologic factor causing cardiovascular inflammation, and that CIH-induces cardiovascular inflammation and pathology by activating the NF-κB pathway. We demonstrated that exposure of mice to CIH activated NF-κB in cardiovascular tissues, and that OSA patients had markedly elevated monocyte NF-κB activity, which was significantly decreased when obstructive apneas and their resultant CIH were eliminated by nocturnal CPAP therapy. The elevated NF-κB activity induced by CIH is accompanied by and temporally correlated to the increased expression of iNOS protein, a putative and important NF-κB-dependent gene product. Thus, CIH-mediated NF-κB activation may be a molecular mechanism linking OSA and cardiovascular pathologies seen in OSA patients

  17. Classification of cardiovascular tissues using LBP based descriptors and a cascade SVM.

    Science.gov (United States)

    Mazo, Claudia; Alegre, Enrique; Trujillo, Maria

    2017-08-01

    Histological images have characteristics, such as texture, shape, colour and spatial structure, that permit the differentiation of each fundamental tissue and organ. Texture is one of the most discriminative features. The automatic classification of tissues and organs based on histology images is an open problem, due to the lack of automatic solutions when treating tissues without pathologies. In this paper, we demonstrate that it is possible to automatically classify cardiovascular tissues using texture information and Support Vector Machines (SVM). Additionally, we realised that it is feasible to recognise several cardiovascular organs following the same process. The texture of histological images was described using Local Binary Patterns (LBP), LBP Rotation Invariant (LBPri), Haralick features and different concatenations between them, representing in this way its content. Using a SVM with linear kernel, we selected the more appropriate descriptor that, for this problem, was a concatenation of LBP and LBPri. Due to the small number of the images available, we could not follow an approach based on deep learning, but we selected the classifier who yielded the higher performance by comparing SVM with Random Forest and Linear Discriminant Analysis. Once SVM was selected as the classifier with a higher area under the curve that represents both higher recall and precision, we tuned it evaluating different kernels, finding that a linear SVM allowed us to accurately separate four classes of tissues: (i) cardiac muscle of the heart, (ii) smooth muscle of the muscular artery, (iii) loose connective tissue, and (iv) smooth muscle of the large vein and the elastic artery. The experimental validation was conducted using 3000 blocks of 100 × 100 sized pixels, with 600 blocks per class and the classification was assessed using a 10-fold cross-validation. using LBP as the descriptor, concatenated with LBPri and a SVM with linear kernel, the main four classes of tissues were

  18. Water hardness and cardiovascular disease. Elements in water and human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Sharrett, A R

    1977-05-01

    The hypothesis that the hardness of drinking water has a causal role in the development of cardiovascular disease will be strengthened if it can be demonstrated that elements in drinking water find their way into human tissues in significant amounts. For biologically important metals, the evidence is reviewed for a relationship of tissue levels to levels in drinking water. Hard water can contribute significantly to daily magnesium intake. Residents of hard-water areas may have raised levels of magnesium in coronary arteries, bone, and myocardial tissue. Lead levels in bone and in blood have been shown to be elevated in individuals living in homes with lead plumbing and soft water. Cadmium intake from water is probably small compared to that from other sources, and there is no convincing evidence of alteration in human tissue levels via drinking water cadmium. Human zinc and copper tissue levels are of interest but have not been adequately studied in relation to drinking water levels.

  19. Perivascular adipose tissue: role in the pathogenesis of obesity, type 2 diabetes mellitus and cardiovascular pathology.

    Directory of Open Access Journals (Sweden)

    Tat'yana Ivanovna Romantsova

    2015-09-01

    Full Text Available Perivascular adipose tissue is a part of blood vessel wall, regulating endovascular homeostasis, endothelial and smooth muscle cells functioning. Under physiological conditions, perivascular tissue provides beneficial anticontractile effect, though undergoes structural and functional changes in obesity, atherosclerosis and diabetes mellitus type2.Collected data suggest the possible key role of perivascular adipose tissue in the pathogenesis of these diseases. Perivascular tissue has been determined as an independent cardiovascular risk factor, regardless of visceral obesity. General mechanisms include a local low-grade inflammation, oxidative stress, tissue renin-angiotensin-aldosterone system activation, paracrine and metabolic alterations. Properties of perivascular adipose tissue depend on the certain type of adipocytes it contains. Brown adipocytes are well known for their metabolic preferences, however it has been shown recently that brown perivascular tissue can contribute to dyslipidemia under some conditions.  The aim of this review is to discuss the current literature understanding of perivascular adipose tissue specifics, changes in its activity, secretory and genetic profilein a course of the most common non-infectious diseases development, as well as molecular mechanisms of its functioning. We also discuss perspectives of target interventions using metabolic pathways and genes of perivascular tissue, for the effective prevention of obesity, diabetes mellitus type2 and cardiovascular diseases.

  20. Evidence Report: Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure

    Science.gov (United States)

    Patel, Zarana; Huff, Janice; Saha, Janapriya; Wang, Minli; Blattnig, Steve; Wu, Honglu; Cucinotta, Francis

    2015-01-01

    Occupational radiation exposure from the space environment may result in non-cancer or non-CNS degenerative tissue diseases, such as cardiovascular disease, cataracts, and respiratory or digestive diseases. However, the magnitude of influence and mechanisms of action of radiation leading to these diseases are not well characterized. Radiation and synergistic effects of radiation cause DNA damage, persistent oxidative stress, chronic inflammation, and accelerated tissue aging and degeneration, which may lead to acute or chronic disease of susceptible organ tissues. In particular, cardiovascular pathologies such as atherosclerosis are of major concern following gamma-ray exposure. This provides evidence for possible degenerative tissue effects following exposures to ionizing radiation in the form of the GCR or SPEs expected during long-duration spaceflight. However, the existence of low dose thresholds and dose-rate and radiation quality effects, as well as mechanisms and major risk pathways, are not well-characterized. Degenerative disease risks are difficult to assess because multiple factors, including radiation, are believed to play a role in the etiology of the diseases. As additional evidence is pointing to lower, space-relevant thresholds for these degenerative effects, particularly for cardiovascular disease, additional research with cell and animal studies is required to quantify the magnitude of this risk, understand mechanisms, and determine if additional protection strategies are required.The NASA PEL (Permissive Exposure Limit)s for cataract and cardiovascular risks are based on existing human epidemiology data. Although animal and clinical astronaut data show a significant increase in cataracts following exposure and a reassessment of atomic bomb (A-bomb) data suggests an increase in cardiovascular disease from radiation exposure, additional research is required to fully understand and quantify these adverse outcomes at lower doses (less than 0.5 gray

  1. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.

    Science.gov (United States)

    Krittian, Sebastian; Janoske, Uwe; Oertel, Herbert; Böhlke, Thomas

    2010-04-01

    We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian-Eulerian formulation (ALE) of the Navier-Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid-structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.

  2. Synthetic aperture tissue and flow ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav

    imaging applied to medical ultrasound. It is divided into two major parts: tissue and blood flow imaging. Tissue imaging using synthetic aperture algorithms has been investigated for about two decades, but has not been implemented in medical scanners yet. Among the other reasons, the conventional scanning...... and beamformation methods are adequate for the imaging modalities in clinical use - the B-mode imaging of tissue structures, and the color mapping of blood flow. The acquisition time, however, is too long, and these methods fail to perform real-time three-dimensional scans. The synthetic transmit aperture......, on the other hand, can create a Bmode image with as little as 2 emissions, thus significantly speeding-up the scan procedure. The first part of the dissertation describes the synthetic aperture tissue imaging. It starts with an overview of the efforts previously made by other research groups. A classification...

  3. Decellularized matrices for cardiovascular tissue engineering.

    Science.gov (United States)

    Moroni, Francesco; Mirabella, Teodelinda

    2014-01-01

    Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement of damaged vessels and valves has been practiced since the 1950's. Synthetic grafts, usually made of bio-inert materials, are long-lasting and mechanically relevant, but fail when it comes to "biointegration". Decellularized matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limitations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current state of the art relative to decellularization techniques and biological performance of decellularized heart, valves and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellularization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption.

  4. Diet-induced changes in subcutaneous adipose tissue blood flow in man

    DEFF Research Database (Denmark)

    Simonsen, L; Bülow, J; Astrup, A

    1990-01-01

    The effect of a carbohydrate-rich meal on subcutaneous adipose tissue blood flow was studied with and without continuous i.v. infusion of propranolol in healthy volunteers. The subcutaneous adipose tissue blood flow was measured with the 133Xe washout method in three different locations......: the forearm, the thigh and the abdomen. The subjects were given a meal consisting of white bread, jam, honey and apple juice (about 2300 kJ). The meal induced a twofold increase in blood flow in the examined tissues. Propranolol abolished the flow increase in the thigh and the abdomen and reduced...

  5. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

    Science.gov (United States)

    Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W

    2013-01-01

    The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

  6. Growth Hormone (GH) and Cardiovascular System

    Science.gov (United States)

    Díaz, Oscar; Devesa, Pablo

    2018-01-01

    This review describes the positive effects of growth hormone (GH) on the cardiovascular system. We analyze why the vascular endothelium is a real internal secretion gland, whose inflammation is the first step for developing atherosclerosis, as well as the mechanisms by which GH acts on vessels improving oxidative stress imbalance and endothelial dysfunction. We also report how GH acts on coronary arterial disease and heart failure, and on peripheral arterial disease, inducing a neovascularization process that finally increases flow in ischemic tissues. We include some preliminary data from a trial in which GH or placebo is given to elderly people suffering from critical limb ischemia, showing some of the benefits of the hormone on plasma markers of inflammation, and the safety of GH administration during short periods of time, even in diabetic patients. We also analyze how Klotho is strongly related to GH, inducing, after being released from the damaged vascular endothelium, the pituitary secretion of GH, most likely to repair the injury in the ischemic tissues. We also show how GH can help during wound healing by increasing the blood flow and some neurotrophic and growth factors. In summary, we postulate that short-term GH administration could be useful to treat cardiovascular diseases. PMID:29346331

  7. The interplay between adipose tissue and the cardiovascular system: is fat always bad?

    Science.gov (United States)

    Akoumianakis, Ioannis; Antoniades, Charalambos

    2017-07-01

    Obesity is a risk factor for cardiovascular disease (CVD). However, clinical research has revealed a paradoxically protective role for obesity in patients with chronic diseases including CVD, suggesting that the biological 'quality' of adipose tissue (AT) may be more important than overall AT mass or body weight. Importantly, AT is recognised as a dynamic organ secreting a wide range of biologically active adipokines, microRNAs, gaseous messengers, and other metabolites that affect the cardiovascular system in both endocrine and paracrine ways. Despite being able to mediate normal cardiovascular function under physiological conditions, AT undergoes a phenotypic shift characterised by acquisition of pro-oxidant and pro-inflammatory properties in cases of CVD. Crucially, recent evidence suggests that AT depots such as perivascular AT and epicardial AT are able to modify their phenotype in response to local signals of vascular and myocardial origin, respectively. Utilisation of this unique property of certain AT depots to dynamically track cardiovascular biology may reveal novel diagnostic and prognostic tools against CVD. Better understanding of the mechanisms controlling the 'quality' of AT secretome, as well as the communication links between AT and the cardiovascular system, is required for the efficient management of CVD. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For Permissions, please email: journals.permissions@oup.com.

  8. Tissue Functioning and Remodeling in the Circulatory and Ventilatory Systems

    CERN Document Server

    Thiriet, Marc

    2013-01-01

    The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. Volume 5 is devoted to cells, tissues, and organs of the cardiovascular and ventilatory systems with an emphasis on mechanotransduction-based regulation of flow. The blood vessel wall is a living tissue that quickly reacts to loads applied on it by the flowing blood. In any segment of a blood vessel, the endothelial and smooth muscle cells can sense unusual time variations in small-magnitude wall shear stress and large-amplitude wall stretch generated by abnormal hemodynamic stresses. These cells respond with a short-time scale (from seconds to hours) to adapt the vessel caliber. Since such adaptive cell activities can be described using mathematical models, a key objective of this volume is to identify the mesoscopic agents and nanoscopic mediators required to derive adequate mathematical models...

  9. Prognostic value of tissue Doppler imaging for predicting ventricular arrhythmias and cardiovascular mortality in ischaemic cardiomyopathy

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Olsen, Flemming Javier; Storm, Katrine

    2016-01-01

    AIMS: Only 30% of patients receiving an implantable cardioverter defibrillator (ICD) for primary prevention receive appropriately therapy. We sought to investigate the value of tissue Doppler imaging (TDI) to predict ventricular tachycardia (VT), ventricular fibrillation (VF), and cardiovascular...

  10. Cardiovascular cine imaging and flow evaluation using Fast Interrupted Steady-State (FISS) magnetic resonance.

    Science.gov (United States)

    Edelman, Robert R; Serhal, Ali; Pursnani, Amit; Pang, Jianing; Koktzoglou, Ioannis

    2018-02-19

    Existing cine imaging techniques rely on balanced steady-state free precession (bSSFP) or spoiled gradient-echo readouts, each of which has limitations. For instance, with bSSFP, artifacts occur from rapid through-plane flow and off-resonance effects. We hypothesized that a prototype cine technique, radial fast interrupted steady-state (FISS), could overcome these limitations. The technique was compared with standard cine bSSFP for cardiac function, coronary artery conspicuity, and aortic valve morphology. Given its advantageous properties, we further hypothesized that the cine FISS technique, in combination with arterial spin labeling (ASL), could provide an alternative to phase contrast for visualizing in-plane flow patterns within the aorta and branch vessels. The study was IRB-approved and subjects provided consent. Breath-hold cine FISS and bSSFP were acquired using similar imaging parameters. There was no significant difference in biplane left ventricular ejection fraction or cardiac image quality between the two techniques. Compared with cine bSSFP, cine FISS demonstrated a marked decrease in fat signal which improved conspicuity of the coronary arteries, while suppression of through-plane flow artifact on thin-slice cine FISS images improved visualization of the aortic valve. Banding artifacts in the subcutaneous tissues were reduced. In healthy subjects, dynamic flow patterns were well visualized in the aorta, coronary and renal arteries using cine FISS ASL, even when the slice was substantially thicker than the vessel diameter. Cine FISS demonstrates several benefits for cardiovascular imaging compared with cine bSSFP, including better suppression of fat signal and reduced artifacts from through-plane flow and off-resonance effects. The main drawback is a slight (~ 20%) decrease in temporal resolution. In addition, preliminary results suggest that cine FISS ASL provides a potential alternative to phase contrast techniques for in-plane flow

  11. Balancing tissue perfusion demands: cardiovascular dynamics of Cancer magister during exposure to low salinity and hypoxia.

    Science.gov (United States)

    McGaw, Iain J; McMahon, Brian R

    2003-01-01

    Decapod crustaceans inhabit aquatic environments that are frequently subjected to changes in salinity and oxygen content. The physiological responses of decapod crustaceans to either salinity or hypoxia are well documented; however, there are many fewer reports on the physiological responses during exposure to these parameters in combination. We investigated the effects of simultaneous and sequential combinations of low salinity and hypoxia on the cardiovascular physiology of the Dungeness crab, Cancer magister. Heart rate, as well as haemolymph flow rates through the anterolateral, hepatic, sternal and posterior arteries were measured using a pulsed-Doppler flowmeter. Summation of flows allowed calculation of cardiac output and division of this by heart rate yielded stroke volume. When hypoxia and low salinity were encountered simultaneously, the observed changes in cardiac properties tended to be a mix of both factors. Hypoxia caused a bradycardia, whereas exposure to low salinity was associated with a tachycardia. However, the hypoxic conditions had the dominant effect on heart rate. Although hypoxia caused an increase in stroke volume of the heart, the low salinity had a more pronounced effect, causing an overall decrease in stroke volume. The patterns of haemolymph flow through the arterial system also varied when hypoxia and low salinity were offered together. The resulting responses were a mix of those resulting from exposure to either parameter alone. When low salinity and hypoxia were offered sequentially, the parameter experienced first tended to have the dominant effect on cardiac function and haemolymph flows. Low salinity exposure was associated with an increase in heart rate, a decrease in stroke volume and cardiac output, and a concomitant decrease in haemolymph flow rates. Subsequent exposure to hypoxic conditions caused a slight decrease in rate, but other cardiovascular variables were largely unaffected. In contrast, when low salinity followed

  12. Modeling the impact of scaffold architecture and mechanical loading on collagen turnover in engineered cardiovascular tissues

    NARCIS (Netherlands)

    Argento, G.; de Jonge, N.; Söntjens, S.H.M.; Oomens, C.W.J.; Bouten, C.V.C.; Baaijens, F.P.T.

    2015-01-01

    The anisotropic collagen architecture of an engineered cardiovascular tissue has a major impact on its in vivo mechanical performance. This evolving collagen architecture is determined by initial scaffold microstructure and mechanical loading. Here, we developed and validated a theoretical and

  13. Cardiovascular magnetic resonance in hypertrophic cardiomyopathy and infiltrative cardiomyopathy

    OpenAIRE

    Schofield, Rebecca; Manacho, Katia; Castelletti, Silvia; Moon, James C.

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease. Cardiac imaging plays a key role in the diagnosis and management, with cardiovascular magnetic resonance (CMR) an important modality. CMR provides a number of different techniques in one examination: structure and function, flow imaging and tissue characterisation particularly with the late gadolinium enhancement (LGE) technique. Other techniques include vasodilator perfusion, mapping (especially T1 mapping and ex...

  14. Modeling microelectrode biosensors: free-flow calibration can substantially underestimate tissue concentrations.

    Science.gov (United States)

    Newton, Adam J H; Wall, Mark J; Richardson, Magnus J E

    2017-03-01

    Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments. NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue

  15. Tissue Motion and Assembly During Early Cardiovascular Morphogenesis

    Science.gov (United States)

    Rongish, Brenda

    2010-03-01

    Conventional dogma in the field of cardiovascular developmental biology suggests that cardiac precursor cells migrate to the embryonic midline to form a tubular heart. These progenitors are believed to move relative to their extracellular matrix (ECM); responding to stimulatory and inhibitory cues in their environment. The tubular heart that is formed by 30 hours post fertilization is comprised of two concentric layers: the muscular myocardium and the endothelial-like endocardium, which are separated by a thick layer of ECM believed to be secreted predominantly by the myocardial cells. Here we describe the origin and motility of fluorescently tagged endocardial precursors in transgenic (Tie1-YFP) quail embryos (R. Lansford, Caltech) using epifluorescence time-lapse imaging. To visualize the environment of migrating endocardial progenitors, we labeled two ECM components, fibronectin and fibrillin-2, via in vivo microinjection of fluorochrome-conjugated monoclonal antibodies. Dynamic imaging was performed at stages encompassing tubular heart assembly and early looping. We established the motion of endocardial precursor cells and presumptive cardiac ECM fibrils using both object tracking and particle image velocimetry (image cross correlation). We determined the relative importance of directed cell autonomous motility versus passive tissue movements in endocardial morphogenesis. The data show presumptive endocardial cells and cardiac ECM fibrils are swept passively into the anterior and posterior poles of the elongating tubular heart. These quantitative data indicate the contribution of cell autonomous motility displayed by endocardial precursors is limited. Thus, tissue motion drives most of the cell displacements during endocardial morphogenesis.

  16. Modeling the impact of scaffold architecture and mechanical loading on collagen turnover in engineered cardiovascular tissues.

    Science.gov (United States)

    Argento, G; de Jonge, N; Söntjens, S H M; Oomens, C W J; Bouten, C V C; Baaijens, F P T

    2015-06-01

    The anisotropic collagen architecture of an engineered cardiovascular tissue has a major impact on its in vivo mechanical performance. This evolving collagen architecture is determined by initial scaffold microstructure and mechanical loading. Here, we developed and validated a theoretical and computational microscale model to quantitatively understand the interplay between scaffold architecture and mechanical loading on collagen synthesis and degradation. Using input from experimental studies, we hypothesize that both the microstructure of the scaffold and the loading conditions influence collagen turnover. The evaluation of the mechanical and topological properties of in vitro engineered constructs reveals that the formation of extracellular matrix layers on top of the scaffold surface influences the mechanical anisotropy on the construct. Results show that the microscale model can successfully capture the collagen arrangement between the fibers of an electrospun scaffold under static and cyclic loading conditions. Contact guidance by the scaffold, and not applied load, dominates the collagen architecture. Therefore, when the collagen grows inside the pores of the scaffold, pronounced scaffold anisotropy guarantees the development of a construct that mimics the mechanical anisotropy of the native cardiovascular tissue.

  17. Advances in cardiovascular fluid mechanics: bench to bedside.

    Science.gov (United States)

    Dasi, Lakshmi P; Sucosky, Philippe; de Zelicourt, Diane; Sundareswaran, Kartik; Jimenez, Jorge; Yoganathan, Ajit P

    2009-04-01

    This paper presents recent advances in cardiovascular fluid mechanics that define the current state of the art. These studies include complex multimodal investigations with advanced measurement and simulation techniques. We first discuss the complex flows within the total cavopulmonary connection in Fontan patients. We emphasize the quantification of energy losses by studying the importance of caval offsets as well as the differences among various Fontan surgical protocols. In our studies of the fluid mechanics of prosthetic heart valves, we reveal for the first time the full three-dimensional complexity of flow fields in the vicinity of bileaflet and trileaflet valves and the microscopic hinge flow dynamics. We also present results of these valves functioning in a patient-specific native aorta geometry. Our in vitro mitral valve studies show the complex mechanism of the native mitral valve apparatus. We demonstrate that the different components of the mitral valve have independent and synergistically complex functions that allow the valve to operate efficiently. We also show how valve mechanics change under pathological and repair conditions associated with enlarged ventricles. Finally, our ex vivo studies on the interactions between the aortic valve and its surrounding hemodynamic environment are aimed at providing insights into normal valve function and valve pathology. We describe the development of organ- and tissue-culture systems and the biological response of the tissue subjected to their respective simulated mechanical environment. The studies noted above have enhanced our understanding of the complex fluid mechanics associated with the cardiovascular system and have led to new translational technologies.

  18. Application of acoustic microscopy to assessment of cardiovascular biomechanics

    Science.gov (United States)

    Saijo, Yoshifumi; Sasaki, Hidehiko; Nitta, Shin-ichi; Tanaka, Motonao; Joergensen, Claus S.; Falk, Erling

    2002-11-01

    Acoustic microscopy provides information on physical and mechanical properties of biological tissues, while optical microscopy with various staining techniques provides chemical properties. The biomechanics of tissues is especially important in cardiovascular system because its pathophysiology is closely related with mechanical stresses such as blood pressure or blood flow. A scanning acoustic microscope (SAM) system with tone-burst ultrasound in the frequency range of 100-200 MHz has been developed, and attenuation and sound speed of tissues have been measured. In human coronary arteries, attenuation and sound speed were high in calcification and collagen, while both values were low in smooth muscle and lipid. Another SAM system with 800-MHz-1.3-GHz ultrasound was applied for aortas of Apo-E deficient mouse, which is known to develop atherosclerosis. Attenuation of ultrasound was significantly higher in type 1 collagen compared to type 3 collagen. Recently, a new type FFT-SAM using a single-pulse, broadband frequency range ultrasound (20-150 MHz) has been developed. Cardiac allograft was observed by FFT-SAM and the acoustic properties were able to grade allograft rejection. SAM provides very useful information for assessing cardiovascular biomechanics and for understanding normal and abnormal images of clinical ultrasound.

  19. Immunohistochemical abnormalities of fibrillin in cardiovascular tissues in Marfan's syndrome.

    Science.gov (United States)

    Fleischer, K J; Nousari, H C; Anhalt, G J; Stone, C D; Laschinger, J C

    1997-04-01

    Molecular defects in the glycoprotein fibrillin are believed to be responsible for impaired structural integrity of cardiovascular, skeletal, and ocular tissues in Marfan's syndrome (MFS). Traditionally, excellent results have been achieved with the Bentall composite graft repair of aneurysms of the ascending aorta in MFS. However, because of the potential complications associated with prosthetic valves, there is growing interest in techniques that preserve the native aortic valve. Between May 1994 and February 1995, 15 patients with a history of concomitant or remote aortic root aneurysms or dissection underwent operation for valvular heart disease. Specimens of aortic valve, ascending aortic wall, and mitral valve were obtained specifically to observe differences in fibrillin content and architecture between patients with (n = 9) and without (n = 6) MFS. In addition, control specimens of aortic valve, aortic wall, and mitral valve were obtained from 4 patients with isolated valvular or coronary artery disease but no evidence of connective tissue disorders or other aortic pathologic conditions. Fibrillin immunostaining using indirect immunofluorescence was used. Specimens were coded and graded by a blinded observer to determine quantity, homogeneity, and fragmentation of fibrillin. Observed fibrillin abnormalities in MFS and control patients were limited to the midportion (elastin-associated microfibrils) of the aortic valve, aortic wall, and mitral valve tissues. Fibrillin abnormalities of aortic valve, aortic wall, and mitral valve tissues were seen in all patients with MFS and were most severe in those older than 20 years. Similar fibrillin abnormalities of aortic valve and aortic wall specimens were observed in control patients more than 60 years old. Even in the setting of a normal-appearing aortic valve, the current rationale for widespread use of valve-sparing repairs of aortic root aneurysms in patients with MFS and patients older than 60 years should be

  20. Cardiovascular dysfunction in obesity and new diagnostic imaging techniques: the role of noninvasive image methods

    Directory of Open Access Journals (Sweden)

    Barbosa JA

    2011-05-01

    Full Text Available José Augusto A Barbosa¹, Alexandre B Rodrigues¹, Cleonice Carvalho C Mota¹, Márcia M Barbosa², Ana C Simões e Silva¹¹Department of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais (UFMG, Belo Horizonte, Minas Gerais, Brazil; ²Ecocenter, Socor Hospital, Belo Horizonte, Minas Gerais, BrazilAbstract: Obesity is a major public health problem affecting adults and children in both developed and developing countries. This condition often leads to metabolic syndrome, which increases the risk of cardiovascular disease. A large number of studies have been carried out to understand the pathogenesis of cardiovascular dysfunction in obese patients. Endothelial dysfunction plays a key role in the progression of atherosclerosis and the development of coronary artery disease, hypertension and congestive heart failure. Noninvasive methods in the field of cardiovascular imaging, such as measuring intima-media thickness, flow-mediated dilatation, tissue Doppler, and strain, and strain rate, constitute new tools for the early detection of cardiac and vascular dysfunction. These techniques will certainly enable a better evaluation of initial cardiovascular injury and allow the correct, timely management of obese patients. The present review summarizes the main aspects of cardiovascular dysfunction in obesity and discusses the application of recent noninvasive imaging methods for the early detection of cardiovascular alterations.Keywords: cardiovascular risk, endothelium dysfunction, obesity, strain and strain rate, tissue Doppler

  1. Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery.

    Science.gov (United States)

    Huang, Alex L; Silver, Annemarie E; Shvenke, Elena; Schopfer, David W; Jahangir, Eiman; Titas, Megan A; Shpilman, Alex; Menzoian, James O; Watkins, Michael T; Raffetto, Joseph D; Gibbons, Gary; Woodson, Jonathan; Shaw, Palma M; Dhadly, Mandeep; Eberhardt, Robert T; Keaney, John F; Gokce, Noyan; Vita, Joseph A

    2007-10-01

    Reactive hyperemia is the compensatory increase in blood flow that occurs after a period of tissue ischemia, and this response is blunted in patients with cardiovascular risk factors. The predictive value of reactive hyperemia for cardiovascular events in patients with atherosclerosis and the relative importance of reactive hyperemia compared with other measures of vascular function have not been previously studied. We prospectively measured reactive hyperemia and brachial artery flow-mediated dilation by ultrasound in 267 patients with peripheral arterial disease referred for vascular surgery (age 66+/-11 years, 26% female). Median follow-up was 309 days (range 1 to 730 days). Fifty patients (19%) had an event, including cardiac death (15), myocardial infarction (18), unstable angina (8), congestive heart failure (6), and nonhemorrhagic stroke (3). Patients with an event were older and had lower hyperemic flow velocity (75+/-39 versus 95+/-50 cm/s, P=0.009). Patients with an event also had lower flow-mediated dilation (4.5+/-3.0 versus 6.9+/-4.6%, P<0.001), and when these 2 measures of vascular function were included in the same Cox proportional hazards model, lower hyperemic flow (OR 2.7, 95% CI 1.2 to 5.9, P=0.018) and lower flow-mediated dilation (OR 4.2, 95% CI: 1.8 to 9.8, P=0.001) both predicted cardiovascular events while adjusting for other risk factors. Thus, lower reactive hyperemia is associated with increased cardiovascular risk in patients with peripheral arterial disease. Furthermore, flow-mediated dilation and reactive hyperemia incrementally relate to cardiovascular risk, although impaired flow-mediated dilation was the stronger predictor in this population. These findings further support the clinical relevance of vascular function measured in the microvasculature and conduit arteries in the upper extremity.

  2. Calf blood flow at rest evaluated by thermal measurement with tissue temperature and heat flow and 133Xe clearance

    International Nuclear Information System (INIS)

    Tamura, Toshiyo; Togawa, Tatsuo; Fukuoka, Masakazu; Kawakami, Kenji.

    1982-01-01

    The regional blood flow in the calf was determined simultaneously by thermal measurement and by 133 Xe clearance technique. Calf blood flow (Ft) by thermal measurement was accounted for by the equation of the form Ft=(CdT*d+Ho-Mb)/rho sub(b)c su b(D) (Ta-Td), where Cd is thermal capacitance of the calf compartment, T*d is the change of calf tissue temperature, Ta is arterila blood temperature, Td is calf tissue temperature, Ho is the heat dissipation from the compartment to the environment, Mb is estimated metabolism of the calf tissue and rho sub(b)c sub(b) is the product of density and specific heat of blood. The healthy men were chosen for the experiments. Total calf blood flow was 2.53+-1.31ml/(min-100ml calf), and muscle blood flow was 2.63+-1.69ml/(min- 100ml muscle) and skin blood flow 7.19+-3.83ml/(min-100ml skin) measured by 133 Xe clearance. On the basis of the results, an estimate has been made of the proportions of the calf volume which can be ascribed to skin and muscle respectively. Estimated muscle and skin blood flow were correlated with total calf blood flow(r=0.98). (author)

  3. Relationship between insulin resistance and tissue blood flow in preeclampsia.

    Science.gov (United States)

    Anim-Nyame, Nick; Gamble, John; Sooranna, Suren R; Johnson, Mark R; Steer, Philip J

    2015-05-01

    Preeclampsia is characterized by generalized endothelial dysfunction and impaired maternal tissue perfusion, and insulin resistance is a prominent feature of this disease. The aim of this study was to test the hypothesis that insulin resistance in preeclampsia is related to the reduced resting tissue blood flow. We used venous occlusion plethysmography to compare the resting calf muscle blood flow (measured as QaU) in 20 nulliparous women with preeclampsia and 20 normal pregnant controls matched for maternal age, gestational age, parity and BMI during the third trimester. Fasting blood samples were obtained to measure the plasma concentrations of insulin and glucose, and to calculate the fasting insulin resistance index (FIRI), a measure of insulin resistance in both groups of women. Calf blood flow was significantly reduced in the preeclampsia group (1.93 ± 0.86 QaU), compared with normal pregnant controls (3.94 ± 1.1 QaU, P insulin concentrations and Insulin Resistance Index were significantly higher in preeclampsia compared with normal pregnancy (P insulin concentrations (r = -0.57, P = 0.008) and FIRI (r = -0.59, P = 0.006) in preeclampsia, but not in normal pregnancy. These findings support our hypothesis and raise the possibility that reduced tissue blood flow may a play a role in the increased insulin resistance seen in preeclampsia.

  4. Adipose tissue and skeletal muscle blood flow during mental stress

    Energy Technology Data Exchange (ETDEWEB)

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  5. Adipose tissue and skeletal muscle blood flow during mental stress

    International Nuclear Information System (INIS)

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress [a modified Stroop color word conflict test (CWT)] increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation

  6. Cardiovascular responses of snakes to hypergravity

    Science.gov (United States)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.; Rosenberg, H. I.

    1997-01-01

    Snakes have provided useful vertebrate models for understanding circulatory adaptation to gravity, attributable to their elongate body shape and evolutionary diversificaton in terms of ecology and behavior. Recently we have studied cardiovascular responses of snakes to hypergravic acceleration forces produced acutely in the head-to-tail direction (+Gz) on a short-arm centrifuge. Snakes were held in a nearly straight position within a horizontal plastic tube and subjected to a linear force gradient during acceleration. Carotid blood flow provided an integrated measure of cardiovascular performance. Thus, cardiovascular tolerance of snakes to stepwise increments of Gz was measured as the caudal Gz force at which carotid blood flow ceased. Tolerance to increasing Gz varies according to adaptive evolutionary history inferred from the ecology and behavior of species. With respect to data for six species we investigated, multiple regression analysis demonstrates that Gz tolerance correlates with gravitational habitat, independently of body length. Relative to aquatic and non-climbing species, carotid blood flow is better maintained in arboreal or scansorial species, which tolerate hypergravic forces of +2 to +3.5 Gz. Additionally, semi-arboreal rat snakes (Elaphe obsoleta) exhibit plasticity of responses to long-term, intermittent +1.5 Gz stress. Compared to non-acclimated controls, acclimated snakes show greater increases of heart rate during head-up tilt or acceleration, greater sensitivity of arterial pressure to circulating catecholamines, higher blood levels of prostaglandin ratios favorable to maintenance of arterial blood pressure, and medial hypertrophy in major arteries and veins. As in other vertebrates, Gz tolerance of snakes is enhanced by acclimation, high arterial pressure, comparatively large blood volume, and body movements. Vascular studies of snakes suggest the importance to acclimation of local responses involving vascular tissue, in addition to

  7. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications.

    Science.gov (United States)

    Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C Ronald

    2014-10-01

    Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-TFAM-KO) mice had a 75-81% reduction in TFAM in the subcutaneous and intra-abdominal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), causing decreased expression and enzymatic activity of proteins in complexes I, III, and IV of the electron transport chain (ETC). This mitochondrial dysfunction led to adipocyte death and inflammation in WAT and a whitening of BAT. As a result, adipo-TFAM-KO mice were resistant to weight gain, but exhibited insulin resistance on both normal chow and high-fat diets. These lipodystrophic mice also developed hypertension, cardiac hypertrophy, and cardiac dysfunction. Thus, isolated mitochondrial dysfunction in adipose tissue can lead a syndrome of lipodystrophy with metabolic syndrome and cardiovascular complications. © FASEB.

  8. Cardiovascular dysfunction in obesity and new diagnostic imaging techniques: the role of noninvasive image methods.

    Science.gov (United States)

    Barbosa, José Augusto A; Rodrigues, Alexandre B; Mota, Cleonice Carvalho C; Barbosa, Márcia M; Simões e Silva, Ana C

    2011-01-01

    Obesity is a major public health problem affecting adults and children in both developed and developing countries. This condition often leads to metabolic syndrome, which increases the risk of cardiovascular disease. A large number of studies have been carried out to understand the pathogenesis of cardiovascular dysfunction in obese patients. Endothelial dysfunction plays a key role in the progression of atherosclerosis and the development of coronary artery disease, hypertension and congestive heart failure. Noninvasive methods in the field of cardiovascular imaging, such as measuring intima-media thickness, flow-mediated dilatation, tissue Doppler, and strain, and strain rate, constitute new tools for the early detection of cardiac and vascular dysfunction. These techniques will certainly enable a better evaluation of initial cardiovascular injury and allow the correct, timely management of obese patients. The present review summarizes the main aspects of cardiovascular dysfunction in obesity and discusses the application of recent noninvasive imaging methods for the early detection of cardiovascular alterations.

  9. Studies of nontarget-mediated distribution of human full-length IgG1 antibody and its FAb fragment in cardiovascular and metabolic-related tissues.

    Science.gov (United States)

    Davidsson, Pia; Söderling, Ann-Sofi; Svensson, Lena; Ahnmark, Andrea; Flodin, Christine; Wanag, Ewa; Screpanti-Sundqvist, Valentina; Gennemark, Peter

    2015-05-01

    Tissue distribution and pharmacokinetics (PK) of full-length nontargeted antibody and its antigen-binding fragment (FAb) were evaluated for a range of tissues primarily of interest for cardiovascular and metabolic diseases. Mice were intravenously injected with a dose of 10 mg/kg of either human IgG1or its FAb fragment; perfused tissues were collected at a range of time points over 3 weeks for the human IgG1 antibody and 1 week for the human FAb antibody. Tissues were homogenized and antibody concentrations were measured by specific immunoassays on the Gyros system. Exposure in terms of maximum concentration (Cmax ) and area under the curve was assessed for all nine tissues. Tissue exposure of full-length antibody relative to plasma exposure was found to be between 1% and 10%, except for brain (0.2%). Relative concentrations of FAb antibody were the same, except for kidney tissue, where the antibody concentration was found to be ten times higher than in plasma. However, the absolute tissue uptake of full-length IgG was significantly higher than the absolute tissue uptake of the FAb antibody. This study provides a reference PK state for full-length whole and FAb antibodies in tissues related to cardiovascular and metabolic diseases that do not include antigen or antibody binding. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Quantitative characterization of myocardial infarction by cardiovascular magnetic resonance predicts future cardiovascular events in patients with ischemic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Pauly John M

    2008-04-01

    Full Text Available Abstract Background Cardiovascular magnetic resonance (CMR can provide quantitative data of the myocardial tissue utilizing high spatial and temporal resolution along with exquisite tissue contrast. Previous studies have correlated myocardial scar tissue with the occurrence of ventricular arrhythmia. This study was conducted to evaluate whether characterization of myocardial infarction by CMR can predict cardiovascular events in patients with ischemic cardiomyopathy (ICM. Results We consecutively studied 86 patients with ICM (LVEF Conclusion Quantification of the scar volume and scar percentage by CMR is superior to LVEDV, LVESV, and LVEF in prognosticating the future likelihood of the development of cardiovascular events in patients with ICM.

  11. Hemodynamic effects of various support modes of continuous flow LVADs on the cardiovascular system: A numerical study

    Science.gov (United States)

    Song, Zhiming; Gu, Kaiyun; Gao, Bin; Wan, Feng; Chang, Yu; Zeng, Yi

    2014-01-01

    Background The aim of this study was to determine the hemodynamic effects of various support modes of continuous flow left ventricular assist devices (CF-LVADs) on the cardiovascular system using a numerical cardiovascular system model. Material/Methods Three support modes were selected for controlling the CF-LVAD: constant flow mode, constant speed mode, and constant pressure head mode of CF-LVAD. The CF-LVAD is established between the left ventricular apex and the ascending aorta, and was incorporated into the numerical model. Various parameters were evaluated, including the blood assist index (BAI), the left ventricular external work (LVEW), the energy of blood flow (EBF), pulsatility index (PI), and surplus hemodynamic energy (SHE). Results The results show that the constant flow mode, when compared to the constant speed mode and the constant pressure head mode, increases LVEW by 31% and 14%, and EBF by 21% and 15%, respectively, indicating that this mode achieved the best ventricular unloading among the 3 support modes. As BAI is increased, PI and SHE are gradually decreased, whereas PI of the constant pressure head reaches the maximum value. Conclusions The study demonstrates that the continuous flow control mode of the CF-LVAD may achieve the highest ventricular unloading. In contrast, the constant rotational speed mode permits the optimal blood perfusion. Finally, the constant pressure head strategy, permitting optimal pulsatility, should optimize the vascular function. PMID:24793178

  12. Non-Newtonian Flow-Induced Deformation From Pressurized Cavities in Absorbing Porous Tissues

    Science.gov (United States)

    Ahmed, Aftab; Siddique, Javed

    2017-11-01

    We investigate the behavior of a spherical cavity in a soft biological tissue modeled as a deformable porous material during an injection of non-Newtonian fluid that follows a power law model. Fluid flows into the neighboring tissue due to high cavity pressure where it is absorbed by capillaries and lymphatics at a rate proportional to the local pressure. Power law fluid pressure and displacement of solid in the tissue are computed as function of radial distance and time. Numerical solutions indicate that shear thickening fluids exhibit less fluid pressure and induce small solid deformation as compared to shear thinning fluids. The absorption in the biological tissue increases as a consequence of flow induced deformation for power law fluids. In most cases non-Newtonian results are compared with viscous fluid case to magnify the differences.

  13. Modeling collagen remodeling in tissue engineered cardiovascular tissues

    NARCIS (Netherlands)

    Soares, A.L.F.

    2012-01-01

    Commonly, heart valve replacements consist of non-living materials lacking the ability to grow, repair and remodel. Tissue engineering (TE) offers a promising alternative to these replacement strategies since it can overcome its disadvantages. The technique aims to create an autologous living tissue

  14. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue.

    Science.gov (United States)

    Cowin, Stephen C; Cardoso, Luis

    2015-03-18

    There are two main types of fluid in bone tissue, blood and interstitial fluid. The chemical composition of these fluids varies with time and location in bone. Blood arrives through the arterial system containing oxygen and other nutrients and the blood components depart via the venous system containing less oxygen and reduced nutrition. Within the bone, as within other tissues, substances pass from the blood through the arterial walls into the interstitial fluid. The movement of the interstitial fluid carries these substances to the cells within the bone and, at the same time, carries off the waste materials from the cells. Bone tissue would not live without these fluid movements. The development of a model for poroelastic materials with hierarchical pore space architecture for the description of blood flow and interstitial fluid flow in living bone tissue is reviewed. The model is applied to the problem of determining the exchange of pore fluid between the vascular porosity and the lacunar-canalicular porosity in bone tissue due to cyclic mechanical loading and blood pressure. These results are basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Carbon nanotubes reinforced chitosan films: mechanical properties and cell response of a novel biomaterial for cardiovascular tissue engineering.

    Science.gov (United States)

    Kroustalli, A; Zisimopoulou, A E; Koch, S; Rongen, L; Deligianni, D; Diamantouros, S; Athanassiou, G; Kokozidou, M; Mavrilas, D; Jockenhoevel, S

    2013-12-01

    Carbon nanotubes have been proposed as fillers to reinforce polymeric biomaterials for the strengthening of their structural integrity to achieve better biomechanical properties. In this study, a new polymeric composite material was introduced by incorporating various low concentrations of multiwalled carbon nanotubes (MWCNTs) into chitosan (CS), aiming at achieving a novel composite biomaterial with superior mechanical and biological properties compared to neat CS, in order to be used in cardiovascular tissue engineering applications. Both mechanical and biological characteristics in contact with the two relevant cell types (endothelial cells and vascular myofibroblasts) were studied. Regarding the mechanical behavior of MWCNT reinforced CS (MWCNT/CS), 5 and 10 % concentrations of MWCNTs enhanced the mechanical behavior of CS, with that of 5 % exhibiting a superior mechanical strength compared to 10 % concentration and neat CS. Regarding biological properties, MWCNT/CS best supported proliferation of endothelial and myofibroblast cells, MWCNTs and MWCNT/CS caused no apoptosis and were not toxic of the examined cell types. Conclusively, the new material could be suitable for tissue engineering (TE) and particularly for cardiovascular TE applications.

  16. Biology and Mechanics of Blood Flows Part I: Biology

    CERN Document Server

    Thiriet, Marc

    2008-01-01

    Biology and Mechanics of Blood Flows presents the basic knowledge and state-of-the-art techniques necessary to carry out investigations of the cardiovascular system using modeling and simulation. Part I of this two-volume sequence, Biology, addresses the nanoscopic and microscopic scales. The nanoscale corresponds to the scale of biochemical reaction cascades involved in cell adaptation to mechanical stresses among other stimuli. The microscale is the scale of stress-induced tissue remodeling associated with acute or chronic loadings. The cardiovascular system, like any physiological system, has a complicated three-dimensional structure and composition. Its time dependent behavior is regulated, and this complex system has many components. In this authoritative work, the author provides a survey of relevant cell components and processes, with detailed coverage of the electrical and mechanical behaviors of vascular cells, tissues, and organs. Because the behaviors of vascular cells and tissues are tightly coupl...

  17. Noncontact 3-D Speckle Contrast Diffuse Correlation Tomography of Tissue Blood Flow Distribution.

    Science.gov (United States)

    Huang, Chong; Irwin, Daniel; Zhao, Mingjun; Shang, Yu; Agochukwu, Nneamaka; Wong, Lesley; Yu, Guoqiang

    2017-10-01

    Recent advancements in near-infrared diffuse correlation techniques and instrumentation have opened the path for versatile deep tissue microvasculature blood flow imaging systems. Despite this progress there remains a need for a completely noncontact, noninvasive device with high translatability from small/testing (animal) to large/target (human) subjects with trivial application on both. Accordingly, we discuss our newly developed setup which meets this demand, termed noncontact speckle contrast diffuse correlation tomography (nc_scDCT). The nc_scDCT provides fast, continuous, portable, noninvasive, and inexpensive acquisition of 3-D tomographic deep (up to 10 mm) tissue blood flow distributions with straightforward design and customization. The features presented include a finite-element-method implementation for incorporating complex tissue boundaries, fully noncontact hardware for avoiding tissue compression and interactions, rapid data collection with a diffuse speckle contrast method, reflectance-based design promoting experimental translation, extensibility to related techniques, and robust adjustable source and detector patterns and density for high resolution measurement with flexible regions of interest enabling unique application-specific setups. Validation is shown in the detection and characterization of both high and low contrasts in flow relative to the background using tissue phantoms with a pump-connected tube (high) and phantom spheres (low). Furthermore, in vivo validation of extracting spatiotemporal 3-D blood flow distributions and hyperemic response during forearm cuff occlusion is demonstrated. Finally, the success of instrument feasibility in clinical use is examined through the intraoperative imaging of mastectomy skin flap.

  18. Blood flow and oxygenation in peritendinous tissue and calf muscle during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, H; Green, Sara Marie Ehrenreich

    2000-01-01

    1. Circulation around tendons may act as a shunt for muscle during exercise. The perfusion and oxygenation of Achilles' peritendinous tissue was measured in parallel with that of calf muscle during exercise to determine (1) whether blood flow is restricted in peritendinous tissue during exercise......, and (2) whether blood flow is coupled to oxidative metabolism. 2. Seven individuals performed dynamic plantar flexion from 1 to 9 W. Radial artery and popliteal venous blood were sampled for O2, peritendinous blood flow was determined by 133Xe-washout, calf blood flow by plethysmography, cardiac output...

  19. Pericardial and thoracic peri-aortic adipose tissues contribute to systemic inflammation and calcified coronary atherosclerosis independent of body fat composition, anthropometric measures and traditional cardiovascular risks

    International Nuclear Information System (INIS)

    Yun, Chun-Ho; Lin, Tin-Yu; Wu, Yih-Jer; Liu, Chuan-Chuan; Kuo, Jen-Yuan; Yeh, Hung-I.; Yang, Fei-Shih; Chen, Su-Chiu; Hou, Charles Jia-Yin; Bezerra, Hiram G.; Hung, Chung-Lieh; Cury, Ricardo C.

    2012-01-01

    Background: Coronary atherosclerosis has traditionally been proposed to be associated with several cardiovascular risk factors and anthropometric measures. However, clinical data regarding the independent value of visceral adipose tissue in addition to such traditional predictors remains obscure. Materials and methods: We subsequently studied 719 subjects (age: 48.1 ± 8.3 years, 25% females) who underwent multidetector computed tomography (MDCT) for coronary calcium score (CCS) quantification. Baseline demographic data and anthropometric measures were taken with simultaneous body fat composition estimated. Visceral adipose tissue of pericardial and thoracic peri-aortic fat was quantified by MDCT using TeraRecon Aquarius workstation (San Mateo, CA). Traditional cardiovascular risk stratification was calculated by metabolic (NCEP ATP III) and Framingham (FRS) scores and high-sensitivity CRP (Hs-CRP) was taken to represent systemic inflammation. The independent value of visceral adipose tissue to systemic inflammation and CCS was assessed by utilizing multivariable regression analysis. Results: Of all subjects enrolled in this study, the mean values for pericardial and peri-aortic adipose tissue were 74.23 ± 27.51 and 7.23 ± 3.69 ml, respectively. Higher visceral fat quartile groups were associated with graded increase of risks for cardiovascular diseases. Both adipose burdens strongly correlated with anthropometric measures including waist circumference, body weight and body mass index (all p < 0.001). In addition, both visceral amount correlates well with ATP and FRS scores, all lipid profiles and systemic inflammation marker in terms of Hs-CRP (all p < 0.001). After adjustment for baseline variables, both visceral fat were independently related to Hs-CRP levels (all p < 0.05), but only pericardial fat exerted independent role in coronary calcium deposit. Conclusion: Both visceral adipose tissues strongly correlated with systemic inflammation beyond traditional

  20. Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: toward fine-tuning flow in biological microfluidics applications.

    Science.gov (United States)

    Cheah, Lih Tyng; Fritsch, Ingrid; Haswell, Stephen J; Greenman, John

    2012-07-01

    A microfluidic system containing a chamber for heart tissue biopsies, perfused with Krebs-Henseleit buffer containing glucose and antibiotic (KHGB) using peristaltic pumps and continuously stimulated, was used to evaluate tissue viability under redox-magnetohydrodynamics (redox-MHD) conditions. Redox-MHD possesses unique capabilities to control fluid flow using ionic current from oxidation and reduction processes at electrodes in a magnetic field, making it attractive to fine-tune fluid flow around tissues for "tissue-on-a-chip" applications. The manuscript describes a parallel setup to study two tissue samples simultaneously, and 6-min static incubation with Triton X100. Tissue viability was subsequently determined by assaying perfusate for lactate dehydrogenase (LDH) activity, where LDH serves as an injury marker. Incubation with KHGB containing 5 mM hexaammineruthenium(III) (ruhex) redox species with and without a pair of NdFeB magnets (∼ 0.39 T, placed parallel to the chamber) exhibited no additional tissue insult. MHD fluid flow, viewed by tracking microbeads with microscopy, occurred only when the magnet was present and stimulating electrodes were activated. Pulsating MHD flow with a frequency similar to the stimulating waveform was superimposed over thermal convection (from a hotplate) for Triton-KHGB, but fluid speed was up to twice as fast for ruhex-Triton-KHGB. A large transient ionic current, achieved when switching on the stimulating electrodes, generates MHD perturbations visible over varying peristaltic flow. The well-controlled flow methodology of redox-MHD is applicable to any tissue type, being useful in various drug uptake and toxicity studies, and can be combined equally with on- or off-device analysis modalities. Copyright © 2012 Wiley Periodicals, Inc.

  1. Measurement of coronary flow response to cold pressor stress in asymptomatic women with cardiovascular risk factors using spiral velocity-encoded cine MRI at 3 Tesla

    International Nuclear Information System (INIS)

    Maroules, Christopher D.; Peshock, Ronald M.; Chang, Alice Y.; Kontak, Andrew; Dimitrov, Ivan; Kotys, Melanie

    2010-01-01

    Background: Coronary sinus (CS) flow in response to a provocative stress has been used as a surrogate measure of coronary flow reserve, and velocity-encoded cine (VEC) magnetic resonance imaging (MRI) is an established technique for measuring CS flow. In this study, the cold pressor test (CPT) was used to measure CS flow response because it elicits an endothelium-dependent coronary vasodilation that may afford greater sensitivity for detecting early changes in coronary endothelial function. Purpose: To investigate the feasibility and reproducibility of CS flow reactivity (CSFR) to CPT using spiral VEC MRI at 3 Tesla in a sample of asymptomatic women with cardiovascular risk factors. Material and Methods: Fourteen asymptomatic women (age 38 years ± 10) with cardiovascular risk factors were studied using 3D spiral VEC MRI of the CS at 3 T. The CPT was utilized as a provocative stress to measure changes in CS flow. CSFR to CPT was calculated from the ratio of CS flow during peak stress to baseline CS flow. Results: CPT induced a significant hemodynamic response as measured by a 45% increase in rate-pressure product (P<0.01). A significant increase in CS volume flow was also observed (baseline, 116 ± 26 ml/min; peak stress, 152 ± 34 ml/min, P=0.01). CSFR to CPT was 1.31 ± 0.20. Test-retest variability of CS volume flow was 5% at baseline and 6% during peak stress. Conclusion: Spiral CS VEC MRI at 3 T is a feasible and reproducible technique for measuring CS flow in asymptomatic women at risk for cardiovascular disease. Significant changes in CSFR to CPT are detectable, without demanding pharmacologic stress

  2. Cardiovascular effects of intravenous ghrelin infusion in healthy young men

    DEFF Research Database (Denmark)

    Vestergaard, Esben Thyssen; Andersen, Niels Holmark; Hansen, Troels Krarup

    2007-01-01

    Ghrelin infusion improves cardiac function in patients suffering from cardiac failure, and bolus administration of ghrelin increases cardiac output in healthy subjects. The cardiovascular effects of more continuous intravenous ghrelin exposure remain to be studied. We therefore studied the cardio......Ghrelin infusion improves cardiac function in patients suffering from cardiac failure, and bolus administration of ghrelin increases cardiac output in healthy subjects. The cardiovascular effects of more continuous intravenous ghrelin exposure remain to be studied. We therefore studied...... the cardiovascular effects of a constant infusion of human ghrelin at a rate of 5 pmol/kg per minute for 180 min. Fifteen healthy, young (aged 23.2 ± 0.5 yr), normal-weight (23.0 ± 0.4 kg/m2) men volunteered in a randomized double-blind, placebo-controlled crossover study. With the subjects remaining fasting, peak...... myocardial systolic velocity S′, tissue tracking TT, left ventricular ejection fraction EF, and endothelium-dependent flow-mediated vasodilatation were measured. Ghrelin infusion increased S′ 9% (P = 0.002) and TT 10% (P

  3. Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications.

    Science.gov (United States)

    Hidalgo-Bastida, L Araida; Thirunavukkarasu, Sundaramoorthy; Griffiths, Sarah; Cartmell, Sarah H; Naire, Shailesh

    2012-04-01

    Perfusion bioreactors have been used in different tissue engineering applications because of their consistent distribution of nutrients and flow-induced shear stress within the tissue-engineering scaffold. A widely used configuration uses a scaffold with a circular cross-section enclosed within a cylindrical chamber and inlet and outlet pipes which are connected to the chamber on either side through which media is continuously circulated. However, fluid-flow experiments and simulations have shown that the majority of the flow perfuses through the center. This pattern creates stagnant zones in the peripheral regions as well as in those of high flow rate near the inlet and outlet. This non-uniformity of flow and shear stress, owing to a circular design, results in limited cell proliferation and differentiation in these areas. The focus of this communication is to design an optimized perfusion system using computational fluid dynamics as a mathematical tool to overcome the time-consuming trial and error experimental method. We compared the flow within a circular and a rectangular bioreactor system. Flow simulations within the rectangular bioreactor are shown to overcome the limitations in the circular design. This communication challenges the circular cross-section bioreactor configuration paradigm and provides proof of the advantages of the new design over the existing one. Copyright © 2011 Wiley Periodicals, Inc.

  4. Micro- and nanotechnology in cardiovascular tissue engineering

    International Nuclear Information System (INIS)

    Zhang Boyang; Xiao Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-01-01

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  5. Changes in regional blood flow of normal and tumor tissues following hyperthermia and combined X-ray irradiation

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi

    1986-01-01

    Hyperthermia and X-ray irradiation were given to Ehrlich tumors, which were induced in the ventrum of the right hind foot of ICR mice, and to the normal tissues. Their effects on regional blood flow were examined using Xe-133 local clearance method. Blood flow of the normal tissues remained unchanged by heating at 41 deg C for 30 minutes, and increased by heating at 43 deg C and 45 deg C for 30 minutes. On the contrary, blood flow of the tumors decreased with an increase in temperature. When hypertermia (43 deg C for 30 minutes) was combined with irradiation of 30 Gy, decrease in blood flow of the tumors was greater than the normal tissues at 24 hours. Blood flow of the tumors depended on tumor size. The decreased amount of blood flow by hyperthermia was more for tumors > 250 mm 3 than tumors 3 . Blood flow ratios of tumor to normal tissues were also smaller in tumors > 250 mm 3 than tumors 3 . In the case of tumors 3 , blood flow tended to return to normal at 3 hr after heating at 43 deg C for 30 min. However, this was not seen in tumors > 250 mm 3 . (Namekawa, K.)

  6. Cardiovascular magnetic resonance frontiers: Tissue characterisation with mapping

    Directory of Open Access Journals (Sweden)

    Rebecca Schofield

    2016-11-01

    Full Text Available The clinical use of cardiovascular magnetic resonance (CMR imaging has expanded rapidly over the last decade. Its role in cardiac morphological and functional assessment is established, with perfusion and late gadolinium enhancement (LGE imaging for scar increasingly used in day-to-day clinical decision making. LGE allows a virtual histological assessment of the myocardium, with the pattern of scar suggesting disease aetiology, and the extent of predicting risk. However, even combined, the full range of pathological processes occurring in the myocardium are not interrogated. Mapping is a new frontier where the intrinsic magnetic properties of heart muscle are measured to probe further. T1, T2 and T2* mapping measures the three fundamental tissue relaxation rate constants before contrast, and the extracellular volume (ECV after contrast. These are displayed in colour, often providing an immediate appreciation of pathology. These parameters are differently sensitive to pathologies. Iron (cardiac siderosis, intramyocardial haemorrhage makes T1, T2 and T2* fall. T2 also falls with fat infiltration (Fabry disease. T2 increases with oedema (acute infarction, takotsubo cardiomyopathy, myocarditis, rheumatological disease. Native T1 increases with fibrosis, oedema and amyloid. Some of these changes are large (e.g. iron, oedema, amyloid, others more modest (diffuse fibrosis. They can be used to detect early disease, distinguish aetiology and, in some circumstances, guide therapy. In this review, we discuss these processes, illustrating clinical application and future advances.

  7. Radionuclide investigation of the blood flow in tumor and normal rat tissues in induced hyperglycemia

    International Nuclear Information System (INIS)

    Istomin, Yu.P.; Shitikov, B.D.; Markova, L.V.

    1991-01-01

    Radionuclide angiography was performed in rats with transplantable tumors. Induced hyperglycemia was shown to result in blood flow inhibition in tumor and normal tissues of tumor-bearing rats. Some differences were revealed in a degree of reversibility of blood flow disorders in tissues of the above strains. The results obtained confirmed the advisability of radiation therapy at the height of a decrease in tumor blood

  8. Relationship between coronary flow reserve evaluated by phase-contrast cine cardiovascular magnetic resonance and serum eicosapentaenoic acid

    Science.gov (United States)

    2013-01-01

    Background Long-term intake of long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs), especially eicosapentaenoic acid (EPA) is associated with a low risk for cardiovascular disease. Phase-contrast cine cardiovascular magnetic resonance (PC cine CMR) can assess coronary flow reserve (CFR). The present study investigates the relationship between CFR evaluated by PC cine CMR and the serum EPA. Methods We studied 127 patients (male, 116 (91%); mean age, 72.2 ± 7.4 years) with known or suspected coronary artery disease (CAD). X-ray coronary angiography revealed no significant coronary arterial stenoses (defined as luminal diameter reduction ≥50% on quantitative coronary angiogram (QCA) analysis) in all study participants. Breath-hold PC cine CMR images of the coronary sinus (CS) were acquired to assess blood flow of the CS both at rest and during adenosine triphosphate (ATP) infusion. We calculated CFR as CS blood flow during ATP infusion divided by that at rest. Patients were allocated to groups according to whether they had high (n = 64, EPA ≥ 75.8 μg/mL) or low (n = 63, EPA  2.5, which is the previously reported lower limit of normal flow reserve without obstructive CAD. Multivariate analysis revealed that EPA is an independent predictor of CFR > 2.5 (odds ratio, 1.01; 95% confidence interval, 1.00 – 1.02, p = 0.008). Conclusions The serum EPA is significantly correlated with CFR in CAD patients without significant coronary artery stenosis. PMID:24359564

  9. Adipokines and the cardiovascular system: mechanisms mediating health and disease.

    Science.gov (United States)

    Northcott, Josette M; Yeganeh, Azadeh; Taylor, Carla G; Zahradka, Peter; Wigle, Jeffrey T

    2012-08-01

    This review focuses on the role of adipokines in the maintenance of a healthy cardiovascular system, and the mechanisms by which these factors mediate the development of cardiovascular disease in obesity. Adipocytes are the major cell type comprising the adipose tissue. These cells secrete numerous factors, termed adipokines, into the blood, including adiponectin, leptin, resistin, chemerin, omentin, vaspin, and visfatin. Adipose tissue is a highly vascularised endocrine organ, and different adipose depots have distinct adipokine secretion profiles, which are altered with obesity. The ability of many adipokines to stimulate angiogenesis is crucial for adipose tissue expansion; however, excessive blood vessel growth is deleterious. As well, some adipokines induce inflammation, which promotes cardiovascular disease progression. We discuss how these 7 aforementioned adipokines act upon the various cardiovascular cell types (endothelial progenitor cells, endothelial cells, vascular smooth muscle cells, pericytes, cardiomyocytes, and cardiac fibroblasts), the direct effects of these actions, and their overall impact on the cardiovascular system. These were chosen, as these adipokines are secreted predominantly from adipocytes and have known effects on cardiovascular cells.

  10. Effect of bupivacaine and adjuvant drugs for regional anesthesia on nerve tissue oximetry and nerve blood flow

    Directory of Open Access Journals (Sweden)

    Wiesmann T

    2018-01-01

    Full Text Available Thomas Wiesmann,1 Stefan Müller,1,2 Hans-Helge Müller,3 Hinnerk Wulf,1 Thorsten Steinfeldt1,4 1Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Marburg, Philipps University, Marburg, 2Department of Anesthesiology and Intensive Care Medicine, University Hospital Giessen, Justus-Liebig-University, Giessen, 3Institute of Medical Biometry and Epidemiology, Philipps University, Marburg, 4Department of Anesthesiology and Intensive Care Medicine, Diakoniekrankenhaus Schwäbisch Hall, Schwäbisch Hall, Germany Background: Nerve blood flow has a critical role in acute and chronic pathologies in peripheral nerves. Influences of local anesthetics and adjuvants on tissue perfusion and oxygenation are deemed as relevant factors for nerve damage after peripheral regional anesthesia. The link between low tissue perfusion due to local anesthetics and resulting tissue oxygenation is unclear.Methods: Combined tissue spectrophotometry and laser-Doppler flowmetry were used to assess nerve blood flow in 40 surgically exposed median nerves in pigs, as well as nerve tissue oximetry for 60 min. After baseline measurements, test solutions saline (S, bupivacaine (Bupi, bupivacaine with epinephrine (BupiEpi, and bupivacaine with clonidine (BupiCloni were applied topically.Results: Bupivacaine resulted in significant decrease in nerve blood flow, as well as tissue oximetry values, compared with saline control. Addition of epinephrine resulted in a rapid, but nonsignificant, reduction of nerve blood flow and extensive lowering of tissue oximetry levels. The use of clonidine resulted in a reduction of nerve blood flow, comparable to bupivacaine alone (relative blood flow at T60 min compared with baseline, S: 0.86 (0.67–1.18, median (25th–75th percentile; Bupi: 0.33 (0.25–0.60; BupiCloni: 0.43 (0.38–0.63; and BupiEpi: 0.41(0.30–0.54. The use of adjuvants did not result in any relevant impairment of tissue oximetry

  11. Flow rate of transport network controls uniform metabolite supply to tissue.

    Science.gov (United States)

    Meigel, Felix J; Alim, Karen

    2018-05-01

    Life and functioning of higher organisms depends on the continuous supply of metabolites to tissues and organs. What are the requirements on the transport network pervading a tissue to provide a uniform supply of nutrients, minerals or hormones? To theoretically answer this question, we present an analytical scaling argument and numerical simulations on how flow dynamics and network architecture control active spread and uniform supply of metabolites by studying the example of xylem vessels in plants. We identify the fluid inflow rate as the key factor for uniform supply. While at low inflow rates metabolites are already exhausted close to flow inlets, too high inflow flushes metabolites through the network and deprives tissue close to inlets of supply. In between these two regimes, there exists an optimal inflow rate that yields a uniform supply of metabolites. We determine this optimal inflow analytically in quantitative agreement with numerical results. Optimizing network architecture by reducing the supply variance over all network tubes, we identify patterns of tube dilation or contraction that compensate sub-optimal supply for the case of too low or too high inflow rate. © 2018 The Authors.

  12. Cardiovascular risk and subclinical cardiovascular disease in polycystic ovary syndrome.

    Science.gov (United States)

    Bajuk Studen, Katica; Jensterle Sever, Mojca; Pfeifer, Marija

    2013-01-01

    In addition to its effects on reproductive health, it is now well recognized that polycystic ovary syndrome (PCOS) is a metabolic disorder, characterized by decreased insulin sensitivity which leads to an excess lifetime risk of type 2 diabetes and cardiovascular disease. PCOS patients are often obese, hypertensive, dyslipidemic and insulin resistant; they have obstructive sleep apnea and have been reported to have higher aldosterone levels in comparison to normal healthy controls. These are all components of an adverse cardiovascular risk profile. Many studies exploring subclinical atherosclerosis using different methods (flow-mediated dilatation, intima media thickness, arterial stiffness, coronary artery calcification) as well as assessing circulating cardiovascular risk markers, point toward an increased cardiovascular risk and early atherogenesis in PCOS. The risk and early features of subclinical atherosclerosis can be reversed by non-medical (normalization of weight, healthy lifestyle) and medical (metformin, thiazolidinediones, spironolactone, and statins) interventions. However, the long-term risk for cardiovascular morbidity and mortality as well as the clinical significance of different interventions still need to be properly addressed in a large prospective study. Copyright © 2013 S. Karger AG, Basel.

  13. Space research on organs and tissues

    Science.gov (United States)

    Tischler, Marc E.; Morey-Holton, Emily

    1993-01-01

    Studies in space on various physiological systems have and will continue to provide valuable information on how they adapt to reduced gravitational conditions, and how living in a 1 g (gravity) environment has guided their development. Muscle and bone are the most notable tissues that respond to unweighting caused by lack of gravity. The function of specific muscles and bones relates directly to mechanical loading, so that removal of 'normal forces' in space, or in bedridden patients, causes dramatic loss of tissue mass. The cardiovascular system is also markedly affected by reduced gravity. Adaptation includes decreased blood flow to the lower extremities, thus decreasing the heart output requirement. Return to 1 g is associated with a period of reconditioning due to the deconditioning that occurs in space. Changes in the cardiovascular system are also related to responses of the kidney and certain endocrine (hormone-producing) organs. Changes in respiratory function may also occur, suggesting an effect on the lungs, though this adaptation is poorly understood. The neurovestibular system, including the brain and organs of the inner ear, must adapt to the disorientation caused by lack of gravity. Preliminary findings have been reported for liver. Additionally, endocrine organs responsible for release of hormones such as insulin, growth hormone, glucocorticoids, and thyroid hormone may respond to spaceflight.

  14. Two-dimensional real-time blood flow and temperature of soft tissue around maxillary anterior implants.

    Science.gov (United States)

    Nakamoto, Tetsuji; Kanao, Masato; Kondo, Yusuke; Kajiwara, Norihiro; Masaki, Chihiro; Takahashi, Tetsu; Hosokawa, Ryuji

    2012-12-01

    The aims of this study were to (1) evaluate the basic nature of soft tissue surrounding maxillary anterior implants by simultaneous measurements of blood flow and surface temperature and (2) analyze differences with and without bone grafting associated with implant placement to try to detect the signs of surface morphology change. Twenty maxillary anterior implant patients, 10 bone grafting and 10 graftless, were involved in this clinical trial. Soft tissue around the implant was evaluated with 2-dimensional laser speckle imaging and a thermograph. Blood flow was significantly lower in attached gingiva surrounding implants in graftless patients (P = 0.0468). On the other hand, it was significantly lower in dental papillae (P = 0.0254), free gingiva (P = 0.0198), and attached gingiva (P = 0.00805) in bone graft patients. Temperature was significantly higher in free gingiva (P = 0.00819) and attached gingiva (P = 0.00593) in graftless patients, whereas it was significantly higher in dental papilla and free gingiva in implants with bone grafting. The results suggest that simultaneous measurements of soft-tissue blood flow and temperature is a useful technique to evaluate the microcirculation of soft tissue surrounding implants.

  15. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    Science.gov (United States)

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Concomitant administration of nitrous oxide and remifentanil reduces oral tissue blood flow without decreasing blood pressure during sevoflurane anesthesia in rabbits.

    Science.gov (United States)

    Kasahara, Masataka; Ichinohe, Tatsuya; Okamoto, Sota; Okada, Reina; Kanbe, Hiroaki; Matsuura, Nobuyuki

    2015-06-01

    To determine whether continuous administration of nitrous oxide and remifentanil—either alone or together—alters blood flow in oral tissues during sevoflurane anesthesia. Eight male tracheotomized Japanese white rabbits were anesthetized with sevoflurane under mechanical ventilation. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), common carotid arterial blood flow (CCBF), tongue mucosal blood flow (TMBF), mandibular bone marrow blood flow (BBF), masseter muscle blood flow (MBF), upper alveolar tissue blood flow (UBF), and lower alveolar tissue blood flow (LBF) were recorded in the absence of all test agents and after administration of the test agents (50 % nitrous oxide, 0.4 μg/kg/min remifentanil, and their combination) for 20 min. Nitrous oxide increased SBP, DBP, MAP, CCBF, BBF, MBF, UBF, and LBF relative to baseline values but did not affect HR or TMBF. Remifentanil decreased all hemodynamic variables except DBP. Combined administration of nitrous oxide and remifentanil recovered SBP, DBP, MAP, and CCBF to baseline levels, but HR and oral tissue blood flow remained lower than control values. Our findings suggest that concomitant administration of nitrous oxide and remifentanil reduces blood flow in oral tissues without decreasing blood pressure during sevoflurane anesthesia in rabbits.

  17. Micro- and nanotechnology in cardiovascular tissue engineering.

    Science.gov (United States)

    Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-12-09

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  18. Trace Elements in Cardiovascular Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Masironi, R. [Cardiovascular Diseases Unit, World Health Organization, Geneva (Switzerland)

    1970-07-01

    Cardiovascular diseases are the leading cause of death in industrialized countries. Their incidence increases, apparently, as a, function of technological progress so that in the future they may become a major public health problem in developing countries too. Early diagnosis and prevention are the tools best suited to curb such an alarming trend, but our knowledge of these topics is unsatisfactory, Valuable information would be obtained through a systematic investigation of trace elements in relation to cardiovascular function and to various types of cardiovascular diseases. Such studies would provide clues to the following questions: 1. Why does the incidence and type of cardiovascular disease differ from one country to another? May this be related to differences in tissue mineral concentrations among various population groups? 2. Which trace elements if any are beneficial to cardiovascular health, and which are harmful ones that may act as aetiological agents for some cardiovascular diseases? 3. Is it possible to utilize measurements of mineral element concentration for diagnostic purposes in cardiovascular disease? (author)

  19. Effect of computed tomography noise and tissue heterogeneity on cerebral blood flow determination by xenon-enhanced computed tomography

    International Nuclear Information System (INIS)

    Good, W.F.; Gur, D.

    1987-01-01

    The errors associated with derivation of cerebral blood flow values by the xenon-enhanced computed tomography (CT) method have been evaluated as a function of tissue heterogeneity and CT noise. The results of this study indicate that CT noise introduces large errors in the derived flow value when data for a single, unprocessed voxel are used for this purpose. CT noise increases the derived flow values in a systematic way. Tissue heterogeneity results in a systematic error which lowers the derived flow values. Errors due to both parameters are computed for typical and extreme conditions

  20. Blood flow responses to mild-intensity exercise in ectopic vs. orthotopic prostate tumors; dependence upon host tissue hemodynamics and vascular reactivity.

    Science.gov (United States)

    Garcia, Emmanuel; Becker, Veronika G C; McCullough, Danielle J; Stabley, John N; Gittemeier, Elizabeth M; Opoku-Acheampong, Alexander B; Sieman, Dietmar W; Behnke, Bradley J

    2016-07-01

    Given the critical role of tumor O2 delivery in patient prognosis and the rise in preclinical exercise oncology studies, we investigated tumor and host tissue blood flow at rest and during exercise as well as vascular reactivity using a rat prostate cancer model grown in two transplantation sites. In male COP/CrCrl rats, blood flow (via radiolabeled microspheres) to prostate tumors [R3327-MatLyLu cells injected in the left flank (ectopic) or ventral prostate (orthotopic)] and host tissue was measured at rest and during a bout of mild-intensity exercise. α-Adrenergic vasoconstriction to norepinephrine (NE: 10(-9) to 10(-4) M) was determined in arterioles perforating the tumors and host tissue. To determine host tissue exercise hyperemia in healthy tissue, a sham-operated group was included. Blood flow was lower at rest and during exercise in ectopic tumors and host tissue (subcutaneous adipose) vs. the orthotopic tumor and host tissue (prostate). During exercise, blood flow to the ectopic tumor significantly decreased by 25 ± 5% (SE), whereas flow to the orthotopic tumor increased by 181 ± 30%. Maximal vasoconstriction to NE was not different between arterioles from either tumor location. However, there was a significantly higher peak vasoconstriction to NE in subcutaneous adipose arterioles (92 ± 7%) vs. prostate arterioles (55 ± 7%). Establishment of the tumor did not alter host tissue blood flow from either location at rest or during exercise. These data demonstrate that blood flow in tumors is dependent on host tissue hemodynamics and that the location of the tumor may critically affect how exercise impacts the tumor microenvironment and treatment outcomes. Copyright © 2016 the American Physiological Society.

  1. Cardiovascular tissue engineering and regeneration based on adipose tissue-derived stem/stromal cells

    NARCIS (Netherlands)

    Parvizi, Mojtaba

    2016-01-01

    Currently, the pre-clinical field is rapidly progressing in search of new therapeutic modalities that replace or complement current medication to treat cardiovascular disease. Among these are the single or combined use of stem cells, biomaterials and instructive factors, which together form the

  2. Cyclooxygenase-2 Selectively Controls Renal Blood Flow Through a Novel PPARβ/δ-Dependent Vasodilator Pathway.

    Science.gov (United States)

    Kirkby, Nicholas S; Sampaio, Walkyria; Etelvino, Gisele; Alves, Daniele T; Anders, Katie L; Temponi, Rafael; Shala, Fisnik; Nair, Anitha S; Ahmetaj-Shala, Blerina; Jiao, Jing; Herschman, Harvey R; Xiaomeng, Wang; Wahli, Walter; Santos, Robson A; Mitchell, Jane A

    2018-02-01

    Cyclooxygenase-2 (COX-2) is an inducible enzyme expressed in inflammation and cancer targeted by nonsteroidal anti-inflammatory drugs. COX-2 is also expressed constitutively in discreet locations where its inhibition drives gastrointestinal and cardiovascular/renal side effects. Constitutive COX-2 expression in the kidney regulates renal function and blood flow; however, the global relevance of the kidney versus other tissues to COX-2-dependent blood flow regulation is not known. Here, we used a microsphere deposition technique and pharmacological COX-2 inhibition to map the contribution of COX-2 to regional blood flow in mice and compared this to COX-2 expression patterns using luciferase reporter mice. Across all tissues studied, COX-2 inhibition altered blood flow predominantly in the kidney, with some effects also seen in the spleen, adipose, and testes. Of these sites, only the kidney displayed appreciable local COX-2 expression. As the main site where COX-2 regulates blood flow, we next analyzed the pathways involved in kidney vascular responses using a novel technique of video imaging small arteries in living tissue slices. We found that the protective effect of COX-2 on renal vascular function was associated with prostacyclin signaling through PPARβ/δ (peroxisome proliferator-activated receptor-β/δ). These data demonstrate the kidney as the principle site in the body where local COX-2 controls blood flow and identifies a previously unreported PPARβ/δ-mediated renal vasodilator pathway as the mechanism. These findings have direct relevance to the renal and cardiovascular side effects of drugs that inhibit COX-2, as well as the potential of the COX-2/prostacyclin/PPARβ/δ axis as a therapeutic target in renal disease. © 2018 The Authors.

  3. Blood Flow Changes in Subsynovial Connective Tissue on Contrast-Enhanced Ultrasonography in Patients With Carpal Tunnel Syndrome Before and After Surgical Decompression.

    Science.gov (United States)

    Motomiya, Makoto; Funakoshi, Tadanao; Ishizaka, Kinya; Nishida, Mutsumi; Matsui, Yuichiro; Iwasaki, Norimasa

    2017-11-24

    Although qualitative alteration of the subsynovial connective tissue in the carpal tunnel is considered to be one of the most important factors in the pathophysiologic mechanisms of carpal tunnel syndrome (CTS), little information is available about the microcirculation in the subsynovial connective tissue in patients with CTS. The aims of this study were to use contrast-enhanced ultrasonography (US) to evaluate blood flow in the subsynovial connective tissue proximal to the carpal tunnel in patients with CTS before and after carpal tunnel release. The study included 15 volunteers and 12 patients with CTS. The blood flow in the subsynovial connective tissue and the median nerve was evaluated preoperatively and at 1, 2, and 3 months postoperatively using contrast-enhanced US. The blood flow in the subsynovial connective tissue was higher in the patients with CTS than in the volunteers. In the patients with CTS, there was a significant correlation between the blood flow in the subsynovial connective tissue and the median nerve (P = .01). The blood flow in both the subsynovial connective tissue and the median nerve increased markedly after carpal tunnel release. Our results suggest that increased blood flow in the subsynovial connective tissue may play a role in the alteration of the microcirculation within the median nerve related to the pathophysiologic mechanisms of CTS. The increase in the blood flow in the subsynovial connective tissue during the early postoperative period may contribute to the changes in intraneural circulation, and these changes may lead to neural recovery. © 2017 by the American Institute of Ultrasound in Medicine.

  4. Geochemistry of water in relation to cardiovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Relations between trace and major element chemistry of drinking water and cardiovascular diseases are reviewed and documented. Several aspects of the problem, related both to the pathway that drinking water takes to man and to its transit through man, are reviewed. Several steps in the pathogenesis of cardiovascular disease that could be affected by water factors were explored. There is little evidence bearing on the contribution from drinking water to human tissue levels of cadmium, chromium, or zinc. Copper and magnesium levels of tissues may be related to drinking water, but confirmatory evidence is needed. Lead levels in blood and other tissues are most certainly affected by lead levels in drinking water in areas where these levels are unusually elevated. There is little evidence that relatively low levels of lead are toxic to the cardiovascular system, except for the causation of cardiomyopathy. The protective action of selenium and zinc applies mainly to cadmium toxicity. The mode of the protective action of silicon, if any, is unclear at present. Some epidemiological associations between the cadmium level or cadmium:zinc ratio and cardiovascular disease have been reported, but are contradictory. Some epidemiological support exists for a protective effect by selenium; results for zinc are equivocal. Interactions within the human system involving calcium and selected trace elements might be very important for the cardiovascular system. Review of the epidemiological literature indicates that there may be a water factor associated with cardiovascular disease. Its effects, if any, must be very weak in comparison with the effects of known risk factors. The reported inverse relationship between mortality from cardiovascular diseases and hardness of local drinking water supplies appears to be considerably less distinctive in small regional studies. (ERB)

  5. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues.

    Science.gov (United States)

    Shang, Yu; Yu, Guoqiang

    2014-09-29

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a N th-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD B ). The purpose of this study is to extend the capability of the N th-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD B in the brain layer with a step decrement of 10% while maintaining αD B values constant in other layers. Simulation results demonstrate the accuracy (errors model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  6. Effect of spinal sympathetic blockade upon postural changes of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Skagen, K; Haxholdt, O; Henriksen, O

    1982-01-01

    local nervous blockade was induced by Lidocaine in 133Xe labelled subcutaneous tissue on one side. During epidural blockade and tilt blood flow increased by 12% whereas blood flow decreased by 30% on the control side. Thus epidural blockade had no influence on the vasoconstrictor response...

  7. Sympathetic reflex control of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Henriksen, O

    1991-01-01

    Sympathetic vasoconstrictor reflexes are essential for the maintenance of arterial blood pressure in upright position. It has been generally believed that supraspinal sympathetic vasoconstrictor reflexes elicited by changes in baroreceptor activity play an important role. Recent studies on human...... sympathetic vasoconstrictor reflexes are blocked. Blood flow has been measure by the local 133Xe-technique. The results indicate the presence of spinal as well as supraspinal sympathetic vasoconstrictor reflexes to human peripheral tissues. Especially is emphasized the presence of a local sympathetic veno...... skeletal muscle, cutaneous and subcutaneous tissues of the limbs indicate that the situation is more complex. Measurements have been carried out during acute as well as chronic sympathetic denervation. Spinal sympathetic reflex mechanisms have been evaluated in tetraplegic patients, where supraspinal...

  8. Trends in Tissue Engineering for Blood Vessels

    Directory of Open Access Journals (Sweden)

    Judee Grace Nemeno-Guanzon

    2012-01-01

    Full Text Available Over the years, cardiovascular diseases continue to increase and affect not only human health but also the economic stability worldwide. The advancement in tissue engineering is contributing a lot in dealing with this immediate need of alleviating human health. Blood vessel diseases are considered as major cardiovascular health problems. Although blood vessel transplantation is the most convenient treatment, it has been delimited due to scarcity of donors and the patient’s conditions. However, tissue-engineered blood vessels are promising alternatives as mode of treatment for blood vessel defects. The purpose of this paper is to show the importance of the advancement on biofabrication technology for treatment of soft tissue defects particularly for vascular tissues. This will also provide an overview and update on the current status of tissue reconstruction especially from autologous stem cells, scaffolds, and scaffold-free cellular transplantable constructs. The discussion of this paper will be focused on the historical view of cardiovascular tissue engineering and stem cell biology. The representative studies featured in this paper are limited within the last decade in order to trace the trend and evolution of techniques for blood vessel tissue engineering.

  9. Adipose tissue, the skeleton and cardiovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Wiklund, Peder

    2011-07-01

    Cardiovascular disease (CVD) is the leading cause of death in the Western World, although the incidence of myocardial infarction (MI) has declined over the last decades. However, obesity, which is one of the most important risk factors for CVD, is increasingly common. Osteoporosis is also on the rise because of an aging population. Based on considerable overlap in the prevalence of CVD and osteoporosis, a shared etiology has been proposed. Furthermore, the possibility of interplay between the skeleton and adipose tissue has received increasing attention the last few years with the discovery that leptin can influence bone metabolism and that osteocalcin can influence adipose tissue. A main aim of this thesis was to investigate the effects of fat mass distribution and bone mineral density on the risk of MI. Using dual-energy x-ray absorptiometry (DEXA) we measured 592 men and women for regional fat mass in study I. In study II this was expanded to include 3258 men and women. In study III 6872 men and women had their bone mineral density measured in the total hip and femoral neck using DEXA. We found that a fat mass distribution with a higher proportion of abdominal fat mass was associated with both an adverse risk factor profile and an increased risk of MI. In contrast, a higher gynoid fat mass distribution was associated with a more favorable risk factor profile and a decreased risk of MI, highlighting the different properties of abdominal and gynoid fat depots (study I-II). In study III, we investigated the association of bone mineral density and risk factors shared between CVD and osteoporosis, and risk of MI. We found that lower bone mineral density was associated with hypertension, and also tended to be associated to other CVD risk factors. Low bone mineral density was associated with an increased risk of MI in both men and women, apparently independently of the risk factors studied (study III). In study IV, we investigated 50 healthy, young men to determine if

  10. Adipose tissue, the skeleton and cardiovascular disease

    International Nuclear Information System (INIS)

    Wiklund, Peder

    2011-01-01

    Cardiovascular disease (CVD) is the leading cause of death in the Western World, although the incidence of myocardial infarction (MI) has declined over the last decades. However, obesity, which is one of the most important risk factors for CVD, is increasingly common. Osteoporosis is also on the rise because of an aging population. Based on considerable overlap in the prevalence of CVD and osteoporosis, a shared etiology has been proposed. Furthermore, the possibility of interplay between the skeleton and adipose tissue has received increasing attention the last few years with the discovery that leptin can influence bone metabolism and that osteocalcin can influence adipose tissue. A main aim of this thesis was to investigate the effects of fat mass distribution and bone mineral density on the risk of MI. Using dual-energy x-ray absorptiometry (DEXA) we measured 592 men and women for regional fat mass in study I. In study II this was expanded to include 3258 men and women. In study III 6872 men and women had their bone mineral density measured in the total hip and femoral neck using DEXA. We found that a fat mass distribution with a higher proportion of abdominal fat mass was associated with both an adverse risk factor profile and an increased risk of MI. In contrast, a higher gynoid fat mass distribution was associated with a more favorable risk factor profile and a decreased risk of MI, highlighting the different properties of abdominal and gynoid fat depots (study I-II). In study III, we investigated the association of bone mineral density and risk factors shared between CVD and osteoporosis, and risk of MI. We found that lower bone mineral density was associated with hypertension, and also tended to be associated to other CVD risk factors. Low bone mineral density was associated with an increased risk of MI in both men and women, apparently independently of the risk factors studied (study III). In study IV, we investigated 50 healthy, young men to determine if

  11. Relationship between Inflammation and Cardiovascular Diseases

    OpenAIRE

    Riddhi Patel; Henish Patel; Rachana Sarawade

    2013-01-01

    Inflammation is a part of complex biological response of vascular tissue to harmful stimuli such as pathogens, damaged cells or irritants. Recent advance in basic science have established a fundamental role for inflammation immediating all stages of cardiovascular diseases from initiation, progression and complications. Inflammation is thread linking to cardiovascular diseases. Clinical studies have shown that this emerging biology of inflammation play important role in pathogenesis of acute ...

  12. Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation

    Directory of Open Access Journals (Sweden)

    Stalder Aurelien F

    2008-06-01

    Full Text Available Abstract Aneurysm formation is a life-threatening complication after operative therapy in coarctation. The identification of patients at risk for the development of such secondary pathologies is of high interest and requires a detailed understanding of the link between vascular malformation and altered hemodynamics. The routine morphometric follow-up by magnetic resonance angiography is a well-established technique. However, the intrinsic sensitivity of magnetic resonance (MR towards motion offers the possibility to additionally investigate hemodynamic consequences of morphological changes of the aorta. We demonstrate two cases of aneurysm formation 13 and 35 years after coarctation surgery based on a Waldhausen repair with a subclavian patch and a Vosschulte repair with a Dacron patch, respectively. Comprehensive flow visualization by cardiovascular MR (CMR was performed using a flow-sensitive, 3-dimensional, and 3-directional time-resolved gradient echo sequence at 3T. Subsequent analysis included the calculation of a phase contrast MR angiography and color-coded streamline and particle trace 3D visualization. Additional quantitative evaluation provided regional physiological information on blood flow and derived vessel wall parameters such as wall shear stress and oscillatory shear index. The results highlight the individual 3D blood-flow patterns associated with the different vascular pathologies following repair of aortic coarctation. In addition to known factors predisposing for aneurysm formation after surgical repair of coarctation these findings indicate the importance of flow sensitive CMR to follow up hemodynamic changes with respect to the development of vascular disease.

  13. Blood transfusion in preterm infants improves intestinal tissue oxygenation without alteration in blood flow.

    Science.gov (United States)

    Banerjee, J; Leung, T S; Aladangady, N

    2016-11-01

    The objective of the study was to investigate the splanchnic blood flow velocity and oximetry response to blood transfusion in preterm infants according to postnatal age. Preterm infants receiving blood transfusion were recruited to three groups: 1-7 (group 1; n = 20), 8-28 (group 2; n = 21) and ≥29 days of life (group 3; n = 18). Superior mesenteric artery (SMA) peak systolic (PSV) and diastolic velocities were measured 30-60 min pre- and post-transfusion using Doppler ultrasound scan. Splanchnic tissue haemoglobin index (sTHI), tissue oxygenation index (sTOI) and fractional tissue oxygen extraction (sFTOE) were measured from 15-20 min before to post-transfusion using near-infrared spectroscopy. The mean pretransfusion Hb in group 1, 2 and 3 was 11, 10 and 9 g/dl, respectively. The mean (SD) pretransfusion SMA PSV in group 1, 2 and 3 was 0·63 (0·32), 0·81 (0·33) and 0·97 (0·40) m/s, respectively, and this did not change significantly following transfusion. The mean (SD) pretransfusion sTOI in group 1, 2 and 3 was 36·7 (19·3), 44·6 (10·4) and 41·3 (10·4)%, respectively. The sTHI and sTOI increased (P transfusion in all groups. On multivariate analysis, changes in SMA PSV and sTOI following blood transfusion were not associated with PDA, feeding, pretransfusion Hb and mean blood pressure. Pretransfusion baseline splanchnic tissue oximetry and blood flow velocity varied with postnatal age. Blood transfusion improved intestinal tissue oxygenation without altering mesenteric blood flow velocity irrespective of postnatal ages. © 2016 International Society of Blood Transfusion.

  14. Cerebral blood flow changes in response to elevated intracranial pressure in rabbits and bluefish: a comparative study.

    Science.gov (United States)

    Beiner, J M; Olgivy, C S; DuBois, A B

    1997-03-01

    In mammals, the cerebrovascular response to increases in intracranial pressure may take the form of the Cushing response, which includes increased mean systemic arterial pressure, bradycardia and diminished respirations. The mechanism, effect and value of these responses are debated. Using laser-Doppler flowmetry to measure cerebral blood flow, we analyzed the cardiovascular responses to intracranial pressure raised by epidural infusion of mock cerebrospinal fluid in the bluefish and in the rabbit, and compare the results. A decline in cerebral blood flow preceding a rise in mean systemic arterial pressure was observed in both species. Unlike bluefish, rabbits exhibit a threshold of intracranial pressure below which cerebral blood flow was maintained and no cardiovascular changes were observed. The difference in response between the two species was due to the presence of an active autoregulatory system in the cerebral tissue of rabbits and its absence in bluefish. For both species studied, the stimulus for the Cushing response seems to be a decrement in cerebral blood flow. The resulting increase in the mean systemic arterial pressure restores cerebral blood flow to levels approaching controls.

  15. World Health Organization cardiovascular risk stratification and target organ damage.

    Science.gov (United States)

    Piskorz, D; Bongarzoni, L; Citta, L; Citta, N; Citta, P; Keller, L; Mata, L; Tommasi, A

    2016-01-01

    Prediction charts allow treatment to be targeted according to simple markers of cardiovascular risk; many algorithms do not recommend screening asymptomatic target organ damage which could change dramatically the assessment. To demonstrate that target organ damage is present in low cardiovascular risk hypertensive patients and it is more frequent and severe as global cardiovascular risk increases. Consecutive hypertensive patients treated at a single Latin American center. Cardiovascular risk stratified according to 2013 WHO/ISH risk prediction chart America B. Left ventricular mass assessed by Devereux method, left ventricular hypertrophy considered >95g/m(2) in women and >115g/m(2) in men. Transmitral diastolic peak early flow velocity to average septal/lateral peak early diastolic relaxation velocity (E/e' ratio) measured cut off value >13. Systolic function assessed by tissue Doppler average interventricular septum/lateral wall mitral annulus rate systolic excursion (s wave). A total of 292 patients were included of whom 159 patients (54.5%) had cardiovascular risk of 20%. Left ventricular hypertrophy was detected in 17.6% low risk patients, 27.8% in medium risk and 23.3% in high risk (p<0.05), abnormal E/e' ratio was found in 13.8%, 31.1% and 27.9%, respectively (p<0.05). Mean s wave was 8.03+8, 8.1+9 and 8.7+1cm/s for low, intermediate and high risk patients, respectively (p<0.025). Target organ damage is more frequent and severe in high risk; one over four subjects was misclassified due to the presence of asymptomatic target organ damage. Copyright © 2015 SEHLELHA. Published by Elsevier España, S.L.U. All rights reserved.

  16. An investigation of the flow dependence of temperature gradients near large vessels during steady state and transient tissue heating

    International Nuclear Information System (INIS)

    Kolios, M.C.; Worthington, A.E.; Hunt, J.W.; Holdsworth, D.W.; Sherar, M.D.

    1999-01-01

    Temperature distributions measured during thermal therapy are a major prognostic factor of the efficacy and success of the procedure. Thermal models are used to predict the temperature elevation of tissues during heating. Theoretical work has shown that blood flow through large blood vessels plays an important role in determining temperature profiles of heated tissues. In this paper, an experimental investigation of the effects of large vessels on the temperature distribution of heated tissue is performed. The blood flow dependence of steady state and transient temperature profiles created by a cylindrical conductive heat source and an ultrasound transducer were examined using a fixed porcine kidney as a flow model. In the transient experiments, a 20 s pulse of hot water, 30 deg. C above ambient, heated the tissues. Temperatures were measured at selected locations in steps of 0.1 mm. It was observed that vessels could either heat or cool tissues depending on the orientation of the vascular geometry with respect to the heat source and that these effects are a function of flow rate through the vessels. Temperature gradients of 6 deg. C mm -1 close to large vessels were routinely measured. Furthermore, it was observed that the temperature gradients caused by large vessels depended on whether the heating source was highly localized (i.e. a hot needle) or more distributed (i.e. external ultrasound). The gradients measured near large vessels during localized heating were between two and three times greater than the gradients measured during ultrasound heating at the same location, for comparable flows. Moreover, these gradients were more sensitive to flow variations for the localized needle heating. X-ray computed tomography data of the kidney vasculature were in good spatial agreement with the locations of all of the temperature variations measured. The three-dimensional vessel path observed could account for the complex features of the temperature profiles. The flow

  17. Tissues viability and blood flow sensing based on a new nanophotonics method

    Science.gov (United States)

    Yariv, Inbar; Haddad, Menashe; Duadi, Hamootal; Motiei, Menachem; Fixler, Dror

    2018-02-01

    Extracting optical parameters of turbid medium (e.g. tissue) by light reflectance signals is of great interest and has many applications in the medical world, life science, material analysis and biomedical optics. The reemitted light from an irradiated tissue is affected by the light's interaction with the tissue components and contains the information about the tissue structure and physiological state. In this research we present a novel noninvasive nanophotonics technique, i.e., iterative multi-plane optical property extraction (IMOPE) based on reflectance measurements. The reflectance based IMOPE was applied for tissue viability examination, detection of gold nanorods (GNRs) within the blood circulation as well as blood flow detection using the GNRs presence within the blood vessels. The basics of the IMOPE combine a simple experimental setup for recording light intensity images with an iterative Gerchberg-Saxton (G-S) algorithm for reconstructing the reflected light phase and computing its standard deviation (STD). Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. This work presents reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography) to low quantities of GNRs (<3 mg).

  18. Tissue perfusion during normovolemic hemodilution investigated by a hydraulic model of the cardiovascular system.

    Science.gov (United States)

    Mirhashemi, S; Messmer, K; Intaglietta, M

    1987-01-01

    Normovolemic hemodilution on a whole body basis is studied by means of a steady flow, hydraulic analogue simulation of the cardiovascular system, based on the Casson's model and current hemodynamic and rheological data. The vasculature is divided into serially connected compartments whose hydraulic resistance is characterized by the average diameter, length, number of vessels, and the corresponding rheological properties of blood formulated by Dintenfass (1971) and Lipowsky et al. (1980). This model computes the pressure distributions in all compartments, where the calculated venous pressure modulates the cardiac function according to the Starling mechanism for cardiac performance. The alterations of flow induced by the action of the heart are added to the effects due to changes in peripheral vascular resistance as a result of hematocrit variation. This model shows that when the response of heart to the changes of venous pressure is impaired, the maximum oxygen carrying capacity occurs at 40% hematocrit (H) where it is 1% higher than normal hematocrit (H = 44%). The normal cardiac response to the changes of venous pressure, causes the maximum oxygen carrying capacity to occur at 32% H where it is 12% greater than that at normal hematocrit. Mean arteriolar pressure and capillary pressure increase while venular pressure is slightly reduced during normovolemic hemodilution.

  19. KATP Channels in the Cardiovascular System.

    Science.gov (United States)

    Foster, Monique N; Coetzee, William A

    2016-01-01

    KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease. Copyright © 2016 the American Physiological Society.

  20. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Yu; Yu, Guoqiang, E-mail: guoqiang.yu@uky.edu [Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2014-09-29

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD{sub B}). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD{sub B} in the brain layer with a step decrement of 10% while maintaining αD{sub B} values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  1. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues

    International Nuclear Information System (INIS)

    Shang, Yu; Yu, Guoqiang

    2014-01-01

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD B ). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD B in the brain layer with a step decrement of 10% while maintaining αD B values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  2. Wall shear stress fixed points in cardiovascular fluid mechanics.

    Science.gov (United States)

    Arzani, Amirhossein; Shadden, Shawn C

    2018-05-17

    Complex blood flow in large arteries creates rich wall shear stress (WSS) vectorial features. WSS acts as a link between blood flow dynamics and the biology of various cardiovascular diseases. WSS has been of great interest in a wide range of studies and has been the most popular measure to correlate blood flow to cardiovascular disease. Recent studies have emphasized different vectorial features of WSS. However, fixed points in the WSS vector field have not received much attention. A WSS fixed point is a point on the vessel wall where the WSS vector vanishes. In this article, WSS fixed points are classified and the aspects by which they could influence cardiovascular disease are reviewed. First, the connection between WSS fixed points and the flow topology away from the vessel wall is discussed. Second, the potential role of time-averaged WSS fixed points in biochemical mass transport is demonstrated using the recent concept of Lagrangian WSS structures. Finally, simple measures are proposed to quantify the exposure of the endothelial cells to WSS fixed points. Examples from various arterial flow applications are demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Caffeine and cardiovascular health.

    Science.gov (United States)

    Turnbull, Duncan; Rodricks, Joseph V; Mariano, Gregory F; Chowdhury, Farah

    2017-10-01

    This report evaluates the scientific literature on caffeine with respect to potential cardiovascular outcomes, specifically relative risks of total cardiovascular disease (CVD), coronary heart disease (CHD) and acute myocardial infarction (AMI), effects on arrhythmia, heart failure, sudden cardiac arrest, stroke, blood pressure, hypertension, and other biomarkers of effect, including heart rate, cerebral blood flow, cardiac output, plasma homocysteine levels, serum cholesterol levels, electrocardiogram (EKG) parameters, heart rate variability, endothelial/platelet function and plasma/urine catecholamine levels. Caffeine intake has been associated with a range of reversible and transient physiological effects broadly and cardiovascular effects specifically. This report attempts to understand where the delineations exist in caffeine intake and corresponding cardiovascular effects among various subpopulations. The available literature suggests that cardiovascular effects experienced by caffeine consumers at levels up to 600 mg/day are in most cases mild, transient, and reversible, with no lasting adverse effect. The point at which caffeine intake may cause harm to the cardiovascular system is not readily identifiable in part because data on the effects of daily intakes greater than 600 mg is limited. However, the evidence considered within this review suggests that typical moderate caffeine intake is not associated with increased risks of total cardiovascular disease; arrhythmia; heart failure; blood pressure changes among regular coffee drinkers; or hypertension in baseline populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Mannan-Binding Lectin in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Izabela Pągowska-Klimek

    2014-01-01

    Full Text Available Cardiovascular disease remains the leading cause of mortality and morbidity worldwide so research continues into underlying mechanisms. Since innate immunity and its potent component mannan-binding lectin have been proven to play an important role in the inflammatory response during infection and ischaemia-reperfusion injury, attention has been paid to its role in the development of cardiovascular complications as well. This review provides a general outline of the structure and genetic polymorphism of MBL and its role in inflammation/tissue injury with emphasis on associations with cardiovascular disease. MBL appears to be involved in the pathogenesis of atherosclerosis and, in consequence, coronary artery disease and also inflammation and tissue injury after myocardial infarction and heart transplantation. The relationship between MBL and disease is rather complex and depends on different genetic and environmental factors. That could be why the data obtained from animal and clinical studies are sometimes contradictory proving not for the first time that innate immunity is a “double-edge sword,” sometimes beneficial and, at other times disastrous for the host.

  5. Blood flow in skin, subcutaneous adipose tissue and skeletal muscle in the forearm of normal man during an oral glucose load

    DEFF Research Database (Denmark)

    Bülow, J; Astrup, A; Christensen, N J

    1987-01-01

    Blood flow to the forearm, and the subcutaneous tissue and skin in the forearm were measured by strain gauge plethysmography, 133Xe-elimination and Laser Doppler flowmetry during an oral glucose load (I g glucose kg-1 lean body mass) and during control conditions. The forearm blood flow remained...... constant during both experiments. Glucose induced a two-fold vasodilatation in subcutaneous tissue. In skin, glucose induced a relative vasodilatation and later a relative vasoconstriction compared with control experiments. When estimated from forearm blood flow and subcutaneous and skin blood flows......, muscle blood flow decreased about 20-30% during both experiments. Proximal nervous blockade did not abolish the glucose-induced vasodilatation in subcutaneous tissue. In the glucose experiment, arterial glucose concentration increased to 7.8 +/- 1.17 mmol l-1 30 min after the load was given...

  6. The effects of different lying positions on interface pressure, skin temperature, and tissue blood flow in nursing home residents.

    Science.gov (United States)

    Källman, Ulrika; Engström, Maria; Bergstrand, Sara; Ek, Anna-Christina; Fredrikson, Mats; Lindberg, Lars-Göran; Lindgren, Margareta

    2015-03-01

    Although repositioning is considered an important intervention to prevent pressure ulcers, tissue response during loading in different lying positions has not been adequately explored. To compare the effects of different lying positions on interface pressure, skin temperature, and tissue blood flow in nursing home residents. From May 2011 to August 2012, interface pressure, skin temperature, and blood flow at three tissue depths were measured for 1 hr over the sacrum in 30° supine tilt and 0° supine positions and over the trochanter major in 30° lateral and 90° lateral positions in 25 residents aged 65 years or older. Measurement of interface pressure was accomplished using a pneumatic pressure transmitter connected to a digital manometer, skin temperature using a temperature sensor, and blood flow using photoplethysmography and laser Doppler flowmetry. Interface pressure was significantly higher in the 0° supine and 90° lateral positions than in 30° supine tilt and 30° lateral positions. The mean skin temperature increased from baseline in all positions. Blood flow was significantly higher in the 30° supine tilt position compared to the other positions. A hyperemic response in the post pressure period was seen at almost all tissue depths and positions. The 30° supine tilt position generated less interface pressure and allowed greater tissue perfusion, suggesting that this position is the most beneficial. © The Author(s) 2014.

  7. Cardiovascular magnetic resonance frontiers: Tissue characterisation with mapping

    OpenAIRE

    Schofield, R.; Bhuva, A.; Manacho, K.; Moon, J. C.

    2016-01-01

    The clinical use of cardiovascular magnetic resonance (CMR) imaging has expanded rapidly over the last decade. Its role in cardiac morphological and functional assessment is established, with perfusion and late gadolinium enhancement (LGE) imaging for scar increasingly used in day-to-day clinical decision making. LGE allows a virtual histological assessment of the myocardium, with the pattern of scar suggesting disease aetiology, and the extent of predicting risk. However, even combined, the ...

  8. Enjoying hobbies is related to desirable cardiovascular effects.

    Science.gov (United States)

    Saihara, Keishi; Hamasaki, Shuichi; Ishida, Sanemasa; Kataoka, Tetsuro; Yoshikawa, Akiko; Orihara, Koji; Ogawa, Masakazu; Oketani, Naoya; Fukudome, Tsuyoshi; Atsuchi, Nobuhiko; Shinsato, Takuro; Okui, Hideki; Kubozono, Takuro; Ichiki, Hitoshi; Kuwahata, So; Mizoguchi, Etsuko; Fujita, Shoji; Takumi, Takuro; Ninomiya, Yuichi; Tomita, Kaai; Tei, Chuwa

    2010-03-01

    An unhealthy lifestyle can increase the risk of cardiovascular disease. However, the mechanism by which lifestyle influences the development of cardiovascular disease remains unclear. Since coronary endothelial function is a predictor of cardiovascular prognosis, the goal of this study was to characterize the effect of enjoying hobbies on coronary endothelial function and cardiovascular outcomes. A total of 121 consecutive patients (76 men, 45 women) with almost normal coronary arteries underwent Doppler flow study of the left anterior descending coronary artery following sequential administration of papaverine, acetylcholine, and nitroglycerin. On the basis of responses to questionnaires, patients were divided into two groups; the Hobby group (n = 71) who enjoyed hobbies, and the Non-hobby group (n = 50) who had no hobbies. Cardiovascular outcomes were assessed at long-term follow-up using medical records or questionnaire surveys for major adverse cardiovascular events (MACE).The average follow-up period was 916 +/- 515 days. There were no significant differences in demographics when comparing the two groups. The percent change in coronary blood flow and coronary artery diameter induced by acetylcholine was significantly greater in the Hobby group than in the Non-hobby group (49% +/- 77% vs 25% +/- 37%, P hobbies was the only independent predictor of MACE (odds ratio 8.1 [95% confidence interval 1.60, 41.90], P = 0.01) among the variables tested. In the early stages of arteriosclerosis, enjoying hobbies may improve cardiovascular outcomes via its favorable effects on coronary endothelial function.

  9. Diet-induced changes in subcutaneous adipose tissue blood flow in man: effect of beta-adrenoceptor inhibition

    DEFF Research Database (Denmark)

    Simonsen, L; Bülow, J; Astrup, A

    1990-01-01

    : the forearm, the thigh and the abdomen. The subjects were given a meal consisting of white bread, jam, honey and apple juice (about 2300 kJ). The meal induced a twofold increase in blood flow in the examined tissues. Propranolol abolished the flow increase in the thigh and the abdomen and reduced...

  10. Correlation of Endostatin and Tissue Inhibitor of Metalloproteinases 2 (TIMP2 Serum Levels With Cardiovascular Involvement in Systemic Sclerosis Patients

    Directory of Open Access Journals (Sweden)

    Bozena Dziankowska-Bartkowiak

    2005-01-01

    pathogenesis of SSc. Heart fibrosis is one of the most important prognostic factors in SSc patients. So, the aim of our study was to examine cardiovascular dysfunction in SSc patients and its correlation with serum levels of vascular endothelial growth factor (VEGF, endostatin, and tissue inhibitor of metalloproteinase 2 (TIMP2. The study group comprised 34 patients (19 with limited scleroderma (lSSc and 15 with diffuse scleroderma (dSSc. The control group consisted of 20 healthy persons, age and sex matched. Internal organ involvement was assessed on the basis of specialist procedures. Serum VEGF, endostatin, and TIMP2 levels were evaluated by ELISA. We found cardiovascular changes in 15 patients with SSc (8 with lSSc and 7 with dSSc. The observed symptoms were of different characters and also coexisted with each other. Higher endostatin serum levels in all systemic sclerosis patients in comparison to the control group were demonstrated (P<.05. Also higher serum levels of endostatin and TIMP2 were observed in patients with cardiovascular changes in comparison to the patients without such changes (P<.05. The obtained results support the notion that angiogenesis and fibrosis disturbances may play an important role in SSc. Evaluation of endostatin and TIMP2 serum levels seems to be one of the noninvasive, helpful examinations of heart involvement in the course of systemic sclerosis.

  11. Measurement of subcutaneous adipose tissue blood flow in the morbidly obese using a laser Doppler velocimeter

    Science.gov (United States)

    Klassen, Gerald A.; Paton, Barry E.; Maksym, Geoff; Janigan, David; Perey, Bernard

    1992-08-01

    Using a laser Doppler velocimeter (LDV) subcutaneous adipose tissue blood flow (AF) was recorded in the upright and supine positions in the upper and lower abdomen in 22 morbidly obese patients before gastroplasty. Age was 42 +/- 3 (mean +/- SEM), weight 135 +/- 7 kg, and body mass index (BMI) 51 +/- 3. Adipose flow expressed as mV was: supine, upper abdomen 647 +/- 23, lower abdomen 604 +/- 24; upright, upper abdomen 621 +/- 27, lower abdomen 607 +/- 29. AF was significantly more in the upper than lower abdomen (supine position) and AF was significantly lower in the lower abdomen upright than the upper abdomen supine. Regression analysis of age indicates that blood flow decreases in the lower abdomen so that in the supine position the difference between upper and lower abdomen AF increases. Similar analysis of BMI did not indicate significant trends. These data indicate that with morbid obesity there is lower tissue blood flow to the lower abdomen. This may explain why such patients may develop areas of painful ischemic necrosis in the dependent region of their anterior abdominal pannus.

  12. Biomaterials in myocardial tissue engineering

    Science.gov (United States)

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  13. Flow-Through Free Fibula Osteocutaneous Flap in Reconstruction of Tibial Bone, Soft Tissue, and Main Artery Segmental Defects.

    Science.gov (United States)

    Li, Zonghuan; Yu, Aixi; Qi, Baiwen; Pan, Zhenyu; Ding, Junhui

    2017-08-01

    The aim of this report was to present the use of flow-through free fibula osteocutaneous flap for the repair of complex tibial bone, soft tissue, and main artery segmental defects. Five patients with bone, soft tissue, and segmental anterior tibial artery defects were included. The lengths of injured tibial bones ranged from 4 to 7 cm. The sizes of impaired soft tissues were between 9 × 4 and 15 × 6 cm. The lengths of defect of anterior tibial artery segments ranged from 6 to 10 cm. Two patients had distal limb perfusion problems. Flow-through free fibula osteocutaneous flap was performed for all 5 patients. Patients were followed for 12 to 18 months. All wounds healed after 1-stage operation, and all flow-through flaps survived. The distal perfusion after vascular repair was normal in all patients. Superficial necrosis of flap edge was noted in 1 case. After the local debridement and partial thickness skin graft, the flap healed uneventfully, and the surgical operation did not increase injury to the donor site. Satisfactory bone union was achieved in all patients in 2 to 4 months postoperation. Enlargement of fibula graft was observed during follow-up from 12 to 18 months. The functions of adjacent joints were recovered, and all patients were able to walk normally. Flow-through free fibula osteocutaneous flap was shown to be an effective and efficient technique for repairing composite tibial bone, soft tissue, and main artery segmental defects. This 1-stage operation should be useful in clinical practice for the treatment of complex bone, soft tissue, and vessel defects.

  14. Determination of adipose tissue blood flow with local 133Xe clearance. Evaluation of a new labelling technique

    DEFF Research Database (Denmark)

    Simonsen, Lene; Enevoldsen, Lotte Hahn; Bülow, Jens

    2003-01-01

    Adipose tissue blood flow was measured in six healthy, non-obese subjects with the xenon wash-out technique after labelling of the tissue by either injection of 133Xe dissolved in isotonic sodium chloride (water depot) or injection of 133Xe in gas form (gas depot). The wash-out rates were...

  15. Cardiovascular effects. Chapter 3.1

    International Nuclear Information System (INIS)

    Lecomte, J.

    1975-01-01

    The cardiovascular effects of various radioprotective substances are reviewed. Reports of the cardiovascular reactions of different species have been analysed to show that there is no relationship between the principal cardiovascular activities and the specific effects of the radioprotective agents; sometimes radioprotection develops simultaneously with a general lowering of arterial pressure, sometimes it occurs with a rise in blood pressure. In contrast, lowered arterial pressure in the chicken is not sufficient to raise the resistance to X-rays. No common characteristics were revealed by a comparative study of the effects of radioprotective agents on blood pressure, histamine liberation and concentration of catecholamines in blood. The effect on tissue perfusion, at the level of the microcirculation, may be of more significance, but techniques are not yet available for investigating the mechanism of action at this level. (U.K.)

  16. Free flow and capillary isoelectric focusing of bacteria from the tomatoes plant tissues

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Horký, J.; Matoušková, H.; Šlais, Karel

    2009-01-01

    Roč. 1216, č. 6 (2009), s. 1019-1024 ISSN 0021-9673 R&D Projects: GA AV ČR IAAX00310701 Institutional research plan: CEZ:AV0Z40310501 Keywords : free flow and capillary IEF * isoelectric point of microbes * tomatoes plant tissue suspension Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.101, year: 2009

  17. In situ monitoring of localized shear stress and fluid flow within developing tissue constructs by Doppler optical coherence tomography

    Science.gov (United States)

    Jia, Yali; Bagnaninchi, Pierre O.; Wang, Ruikang K.

    2008-02-01

    Mechanical stimuli can be introduced to three dimensional (3D) cell cultures by use of perfusion bioreactor. Especially in musculoskeletal tissues, shear stress caused by fluid flow generally increase extra-cellular matrix (ECM) production and cell proliferation. The relationship between the shear stress and the tissue development in situ is complicated because of the non-uniform pore distribution within the cell-seeded scaffold. In this study, we firstly demonstrated that Doppler optical coherence tomography (DOCT) is capable of monitoring localized fluid flow and shear stress in the complex porous scaffold by examining their variation trends at perfusion rate of 5, 8, 10 and 12 ml/hr. Then, we developed the 3D porous cellular constructs, cell-seeded chitosan scaffolds monitored during several days by DOCT. The fiber based fourier domain DOCT employed a 1300 nm superluminescent diode with a bandwidth of 52 nm and a xyz resolution of 20×20×15 μm in free space. This setup allowed us not only to assess the cell growth and ECM deposition by observing their different scattering behaviors but also to further investigate how the cell attachment and ECM production has the effect on the flow shear stress and the relationship between flow rate and shear stress in the developing tissue construct. The possibility to monitor continuously the constructs under perfusion will easily indicate the effect of flow rate or shear stress on the cell viability and cell proliferation, and then discriminate the perfusion parameters affecting the pre-tissue formation rate growth.

  18. Effect of cocoa/chocolate ingestion on brachial artery flow-mediated dilation and its relevance to cardiovascular health and disease in humans.

    Science.gov (United States)

    Monahan, Kevin D

    2012-11-15

    Prospective studies indicate that high intake of dietary flavanols, such as those contained in cocoa/chocolate, are associated with reduced rates of cardiovascular-related morbidity and mortality in humans. Numerous mechanisms may underlie these associations such as favorable effects of flavanols on blood pressure, platelet aggregation, thrombosis, inflammation, and the vascular endothelium. The brachial artery flow-mediated dilation (FMD) technique has emerged as a robust method to quantify endothelial function in humans. Collectively, the preponderance of evidence indicates that FMD is a powerful surrogate measure for firm cardiovascular endpoints, such as cardiovascular-related mortality, in humans. Thus, literally thousands of studies have utilized this technique to document group differences in FMD, as well as to assess the effects of various interventions on FMD. In regards to the latter, numerous studies indicate that both acute and chronic ingestion of cocoa/chocolate increases FMD in humans. Increases in FMD after cocoa/chocolate ingestion appear to be dose-dependent such that greater increases in FMD are observed after ingestion of larger quantities. The mechanisms underlying these responses are likely diverse, however most data suggest an effect of increased nitric oxide bioavailability. Thus, positive vascular effects of cocoa/chocolate on the endothelium may underlie (i.e., be linked mechanistically to) reductions in cardiovascular risk in humans. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Acute effects of nicotine and smoking on blood flow, tissue oxygen, and aerobe metabolism of the skin and subcutis

    DEFF Research Database (Denmark)

    Sørensen, Lars Tue; Jørgensen, Stig; Petersen, Lars J

    2009-01-01

    BACKGROUND: Nicotine released from tobacco smoke causing reduction in blood flow has been suggested as causative for postoperative wound complications in smokers, but the mechanism remains unknown. MATERIALS AND METHODS: In eight healthy male smokers and eight ex-smokers, the cutaneous and subcut......BACKGROUND: Nicotine released from tobacco smoke causing reduction in blood flow has been suggested as causative for postoperative wound complications in smokers, but the mechanism remains unknown. MATERIALS AND METHODS: In eight healthy male smokers and eight ex-smokers, the cutaneous...... and subcutaneous blood flow (QBF, SqBF) was assessed by Laser Doppler and 133Xe clearance. Tissue oxygen tension (TO(2)) was measured by a LICOX O(2)-electrode. Tissue glucose and lactate (Tgluc, Tlact) were assessed by microdialysis. The parameters were studied after intravenous infusion of 1.0 mg nicotine......, smoking of one cigarette, arterial occlusion, and reperfusion. RESULTS: Nicotine infusion decreased SqBF from 4.2 +/- 2.0 to 3.1 +/- 1.2 mL/100 g tissue/min (P

  20. Association between Serum Osteopontin Levels and Cardiovascular Risk in Hypothyrodism

    OpenAIRE

    Türkan Mete; Gülhan Duman; Eda Melek Ertörer; Emre Bozkırlı; Okan Sefa Bakıner; Neslihan Başçıl Tütüncü

    2016-01-01

    Purpose: Cardiovascular effects of hypothyroidism are well known. Osteopontin (OPN) is a new inflammatory marker which was first isolated from the bone. Flow-mediated dilatation (FMD), a noninvasive technique to measure this endothelium-dependent function, has been used in several clinical studies to show cardiovascular risks. The aim of our study was to assess FMD value in hypothyroidism patients and to investigate whether plasma OPN level is a parameter which can predict cardiovascular risk...

  1. Bridging the gap between measurements and modelling: a cardiovascular functional avatar.

    Science.gov (United States)

    Casas, Belén; Lantz, Jonas; Viola, Federica; Cedersund, Gunnar; Bolger, Ann F; Carlhäll, Carl-Johan; Karlsson, Matts; Ebbers, Tino

    2017-07-24

    Lumped parameter models of the cardiovascular system have the potential to assist researchers and clinicians to better understand cardiovascular function. The value of such models increases when they are subject specific. However, most approaches to personalize lumped parameter models have thus far required invasive measurements or fall short of being subject specific due to a lack of the necessary clinical data. Here, we propose an approach to personalize parameters in a model of the heart and the systemic circulation using exclusively non-invasive measurements. The personalized model is created using flow data from four-dimensional magnetic resonance imaging and cuff pressure measurements in the brachial artery. We term this personalized model the cardiovascular avatar. In our proof-of-concept study, we evaluated the capability of the avatar to reproduce pressures and flows in a group of eight healthy subjects. Both quantitatively and qualitatively, the model-based results agreed well with the pressure and flow measurements obtained in vivo for each subject. This non-invasive and personalized approach can synthesize medical data into clinically relevant indicators of cardiovascular function, and estimate hemodynamic variables that cannot be assessed directly from clinical measurements.

  2. Microvascularity, blood flow and tissue structure at the subchondral plate using an X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Muthuvelu, P.; Ellis, R.E.; Green, E.M.; Attenburrow, D.; Arkill, K.; Colridge, D.B.; Winlove, C.P.; Bradley, D.A.

    2007-01-01

    The measurement of blood flow and blood in bone and cartilaginous tissues is crucial to understanding of the development of various diseases, but it presents a formidable technical challenge. We have therefore developed a method based on the detection of metallized microspheres using X-ray fluorescence. This approach provides unrivalled sensitivity and spatial resolution and also allows us simultaneously to measure other markers of the metabolic status of the tissue. (author)

  3. Impaired autoregulation of blood flow in skeletal muscle and subcutaneous tissue in long-term Type 1 (insulin-dependent) diabetic patients with microangiopathy

    DEFF Research Database (Denmark)

    Faris, I; Vagn Nielsen, H; Henriksen, O

    1983-01-01

    Autoregulation of blood flow was studied in skeletal muscle and subcutaneous tissue in seven Type 1 (insulin-dependent) diabetic patients (median age: 36 years) with nephropathy and retinopathy and in eight normal subjects of the same age. Blood flow was measured by the local 133Xe washout...... technique. Reduction in arterial perfusion pressure was produced by elevating the limb 20 and 40 cm above heart level. Blood flow remained within 10% of control values when the limb was elevated in normal subjects. In five of the seven diabetic subjects blood flow fell significantly in both tissues when...

  4. In-Situ Characterization of Tissue Blood Flow, Blood Content, and Water State Using New Techniques in Magnetic Resonance Imaging.

    Science.gov (United States)

    Conturo, Thomas Edward

    Tissue blood flow, blood content, and water state have been characterized in-situ with new nuclear magnetic resonance imaging techniques. The sensitivities of standard techniques to the physiologic tissue parameters spin density (N_{rm r}) and relaxation times (T_1 and T_2 ) are mathematically defined. A new driven inversion method is developed so that tissue T_1 and T_2 changes produce cooperative intensity changes, yielding high contrast, high signal to noise, and sensitivity to a wider range of tissue parameters. The actual tissue parameters were imaged by automated collection of multiple-echo data having multiple T _1 dependence. Data are simultaneously fit by three-parameters to a closed-form expression, producing lower inter-parameter correlation and parameter noise than in separate T_1 or T_2 methods or pre-averaged methods. Accurate parameters are obtained at different field strengths. Parametric images of pathology demonstrate high sensitivity to tissue heterogeneity, and water content is determined in many tissues. Erythrocytes were paramagnetically labeled to study blood content and relaxation mechanisms. Liver and spleen relaxation were enhanced following 10% exchange of animal blood volumes. Rapid water exchange between intracellular and extracellular compartments was validated. Erythrocytes occupied 12.5% of renal cortex volume, and blood content was uniform in the liver, spleen and kidney. The magnitude and direction of flow velocity was then imaged. To eliminate directional artifacts, a bipolar gradient technique sensitized to flow in different directions was developed. Phase angle was reconstructed instead of intensity since the former has a 2pi -fold higher dynamic range. Images of flow through curves demonstrated secondary flow with a centrifugally-biased laminar profile and stationary velocity peaks along the curvature. Portal vein flow velocities were diminished or reversed in cirrhosis. Image artifacts have been characterized and removed. The

  5. The Emerging Role of TLR and Innate Immunity in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Rolf Spirig

    2012-01-01

    Full Text Available Cardiovascular disease is a complex disorder involving multiple pathophysiological processes, several of which involve activation of toll-like receptors (TLRs of the innate immune system. As sentinels of innate immunity TLRs are nonclonally germline-encoded molecular pattern recognition receptors that recognize exogenous as well as tissue-derived molecular dangers signals promoting inflammation. In addition to their expression in immune cells, TLRs are found in other tissues and cell types including cardiomyocytes, endothelial and vascular smooth muscle cells. TLRs are differentially regulated in various cell types by several cardiovascular risk factors such as hypercholesterolemia, hyperlipidemia, and hyperglycemia and may represent a key mechanism linking chronic inflammation, cardiovascular disease progression, and activation of the immune system. Modulation of TLR signaling by specific TLR agonists or antagonists, alone or in combination, may be a useful therapeutic approach to treat various cardiovascular inflammatory conditions such as atherosclerosis, peripheral arterial disease, secondary microvascular complications of diabetes, autoimmune disease, and ischemia reperfusion injury. In this paper we discuss recent developments and current evidence for the role of TLR in cardiovascular disease as well as the therapeutic potential of various compounds on inhibition of TLR-mediated inflammatory responses.

  6. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles.

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Seo, Seung-Jun; Lim, Jae-Hong; Lee, Sang-Joon

    2015-03-06

    Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases.

  7. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Seo, Seung-Jun; Lim, Jae-Hong; Lee, Sang-Joon

    2015-01-01

    Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases. PMID:25744850

  8. NMR imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Canby, R.C.; Evanochko, W.T.; Pohost, G.M.

    1986-01-01

    Proton nuclear magnetic resonance (NMR) imaging permits high-resolution tomographic and three-dimensional images of the human body to be obtained without exposure to ionizing radiation. Such imaging not only yields anatomic resolution comparable to X-ray examinations but also provides a potential means to discriminate between healthy tissue and diseased tissue. This potential is based on certain NMR properties known as relaxation times, which determine, in part, the signal intensity in an image. These properties are related to such factors as the sizes and concentrations of proteins and mobile lipids and the compartmentalization of the protons of water. Although NMR imaging (also called magnetic resonance imaging, MRI) is becoming widely available for clinical use, application to the cardiovascular system, though promising, remains primarily a research tool. Gated proton NMR imaging can generate cardiac images with excellent morphologic detail and contrast; however, its ultimate importance as a cardiovascular diagnostic modality will depend on the development of several unique applications. These applications are discussed in this paper

  9. Spectral indices of cardiovascular adaptations to short-term simulated microgravity exposure

    Science.gov (United States)

    Patwardhan, A. R.; Evans, J. M.; Berk, M.; Grande, K. J.; Charles, J. B.; Knapp, C. F.

    1995-01-01

    We investigated the effects of exposure to microgravity on the baseline autonomic balance in cardiovascular regulation using spectral analysis of cardiovascular variables measured during supine rest. Heart rate, arterial pressure, radial flow, thoracic fluid impedance and central venous pressure were recorded from nine volunteers before and after simulated microgravity, produced by 20 hours of 6 degrees head down bedrest plus furosemide. Spectral powers increased after simulated microgravity in the low frequency region (centered at about 0.03 Hz) in arterial pressure, heart rate and radial flow, and decreased in the respiratory frequency region (centered at about 0.25 Hz) in heart rate. Reduced heart rate power in the respiratory frequency region indicates reduced parasympathetic influence on the heart. A concurrent increase in the low frequency power in arterial pressure, heart rate, and radial flow indicates increased sympathetic influence. These results suggest that the baseline autonomic balance in cardiovascular regulation is shifted towards increased sympathetic and decreased parasympathetic influence after exposure to short-term simulated microgravity.

  10. The importance of bicarbonate and nonbicarbonate buffer systems in batch and continuous flow bioreactors for articular cartilage tissue engineering.

    Science.gov (United States)

    Khan, Aasma A; Surrao, Denver C

    2012-05-01

    In cartilage tissue engineering an optimized culture system, maintaining an appropriate extracellular environment (e.g., pH of media), can increase cell proliferation and extracellular matrix (ECM) accumulation. We have previously reported on a continuous-flow bioreactor that improves tissue growth by supplying the cells with a near infinite supply of medium. Previous studies have observed that acidic environments reduce ECM synthesis and chondrocyte proliferation. Hence, in this study we investigated the combined effects of a continuous culture system (bioreactor) together with additional buffering agents (e.g., sodium bicarbonate [NaHCO₃]) on cartilaginous tissue growth in vitro. Isolated bovine chondrocytes were grown in three-dimensional cultures, either in static conditions or in a continuous-flow bioreactor, in media with or without NaHCO₃. Tissue constructs cultivated in the bioreactor with NaHCO₃-supplemented media were characterized with significantly increased (p<0.05) ECM accumulation (glycosaminoglycans a 98-fold increase; collagen a 25-fold increase) and a 13-fold increase in cell proliferation, in comparison with static cultures. Additionally, constructs grown in the bioreactor with NaHCO₃-supplemented media were significantly thicker than all other constructs (p<0.05). Further, the chondrocytes from the primary construct expanded and synthesized ECM, forming a secondary construct without a separate expansion phase, with a diameter and thickness of 4 mm and 0.72 mm respectively. Tissue outgrowth was negligible in all other culturing conditions. Thus this study demonstrates the advantage of employing a continuous flow bioreactor coupled with NaHCO₃ supplemented media for articular cartilage tissue engineering.

  11. IgG4-related cardiovascular disease. The emerging role of cardiovascular imaging.

    Science.gov (United States)

    Mavrogeni, Sophie; Markousis-Mavrogenis, George; Kolovou, Genovefa

    2017-01-01

    Immunoglobulin 4-related disease (IgG4-related disease) is a systemic inflammatory disease that presents with increases of serum IgG4. It may affect various systems, including the cardiovascular (CV) system. Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis. IgG4-related disease is characterized by fibrosclerosis, lymphocytic infiltration and presence of IgG4-positive plasma cells. The disease usually responds to treatment with corticosteroids and/or immunosuppressive medication. CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. IgG4-related cardiovascular disorders can severely affect patient prognosis. Various imaging techniques, including echocardiography, Computed Tomography (CT), 18FDG-PET, Cardiovascular Magnetic Resonance (CMR) and cardiac catheterisation, have been successfully used for early disease detection and follow-up. Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques for the evaluation of IgG4-related CV disease. Periaortitis/periarteritis can be also assessed by CT, showing a soft tissue thickening around arteries. Coronary artery aneurysms can be easily diagnosed by coronary CT. In case of active periarterial or coronary artery inflammation, 18FDG-PET will show FDG uptake at the area of the lesion. CMR, due to its capability to perform function and tissue characterisation, can offer an integrated imaging of aorta, coronary arteries and the heart, assessment of disease acuity, extent of fibrosis and guide further treatment. However, multimodality imaging may be necessary for assessment of disease activity and fibrosis extent in those cases with multifocal CV involvement. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Cocoa, chocolate, and cardiovascular disease.

    Science.gov (United States)

    Galleano, Monica; Oteiza, Patricia I; Fraga, Cesar G

    2009-12-01

    A significant body of evidence demonstrates that diets rich in fruits and vegetables promote health and attenuate, or delay, the onset of various diseases, including cardiovascular disease, diabetes, certain cancers, and several other age-related degenerative disorders. The concept that moderate chocolate consumption could be part of a healthy diet has gained acceptance in past years based on the health benefits ascribed to selected cocoa components. Specifically, cocoa as a plant and chocolate as food contain a series of chemicals that can interact with cell and tissue components, providing protection against the development and amelioration of pathological conditions. The most relevant effects of cocoa and chocolate have been related to cardiovascular disease. The mechanisms behind these effects are still under investigation. However, the maintenance or restoration of vascular NO production and bioavailability and the antioxidant effects are the mechanisms most consistently supported by experimental data. This review will summarize the most recent research on the cardiovascular effects of cocoa flavanols and related compounds.

  13. Cardiovascular imaging environment: will the future be cloud-based?

    Science.gov (United States)

    Kawel-Boehm, Nadine; Bluemke, David A

    2017-07-01

    In cardiovascular CT and MR imaging large datasets have to be stored, post-processed, analyzed and distributed. Beside basic assessment of volume and function in cardiac magnetic resonance imaging e.g., more sophisticated quantitative analysis is requested requiring specific software. Several institutions cannot afford various types of software and provide expertise to perform sophisticated analysis. Areas covered: Various cloud services exist related to data storage and analysis specifically for cardiovascular CT and MR imaging. Instead of on-site data storage, cloud providers offer flexible storage services on a pay-per-use basis. To avoid purchase and maintenance of specialized software for cardiovascular image analysis, e.g. to assess myocardial iron overload, MR 4D flow and fractional flow reserve, evaluation can be performed with cloud based software by the consumer or complete analysis is performed by the cloud provider. However, challenges to widespread implementation of cloud services include regulatory issues regarding patient privacy and data security. Expert commentary: If patient privacy and data security is guaranteed cloud imaging is a valuable option to cope with storage of large image datasets and offer sophisticated cardiovascular image analysis for institutions of all sizes.

  14. Cerebral tissue oxygenation index and superior vena cava blood flow in the very low birth weight infant.

    LENUS (Irish Health Repository)

    Moran, M

    2012-02-01

    BACKGROUND: Superior vena cava (SVC) flow assesses blood flow from the upper body, including the brain. Near infrared spectroscopy (NIRS) provides information on brain perfusion and oxygenation. AIM: To assess the relationship between cerebral tissue oxygenation index (cTOI) and cardiac output measures in the very low birth weight (VLBW) infant in the first day of life. METHODS: A prospective observational cohort study. Neonates with birth weight less than 1500 g (VLBW) were eligible for enrollment. Newborns with congenital heart disease, major congenital malformations and greater than Papile grade1 Intraventricular Haemorrhage on day 1 of life were excluded. Echocardiographic evaluation of SVC flow was performed in the first 24 h of life. Low SVC flow states were defined as a flow less than 40 mL\\/kg\\/min. cTOI was measured using NIRO 200 Hamamatsu. RESULTS: Twenty-seven VLBW neonates had both echocardiography and NIRS performed. The median (range) gestation was 29\\/40 (25 + 3 to 31 + 5 weeks) and median birth weight was 1.2 kg (0.57-1.48 kg). The mean (SD) TOI was 68.1 (7.9)%. The mean (SD) SVC flow was 70.36(39.5) mLs\\/kg\\/min. The correlation coefficient of cerebral tissue oxygenation and SVC flow was r = 0.53, p-value 0.005. There was a poor correlation between right and left ventricular output and cTOI which is not surprising considering the influence of intra- and extracardiac shunts. CONCLUSION: There is a positive relationship between cerebral TOI values and SVC flow in the very low birth infant on day one of life.

  15. MicroRNAs Control Macrophage Formation and Activation: The Inflammatory Link between Obesity and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Richard Cheng-An Chang

    2014-07-01

    Full Text Available Activation and recruitment of resident macrophages in tissues in response to physiological stress are crucial regulatory processes in promoting the development of obesity-associated metabolic disorders and cardiovascular diseases. Recent studies have provided compelling evidence that microRNAs play important roles in modulating monocyte formation, macrophage maturation, infiltration into tissues and activation. Macrophage-dependent systemic physiological and tissue-specific responses also involve cell-cell interactions between macrophages and host tissue niche cell components, including other tissue-resident immune cell lineages, adipocytes, vascular smooth muscle and others. In this review, we highlight the roles of microRNAs in regulating the development and function of macrophages in the context of obesity, which could provide insights into the pathogenesis of obesity-related metabolic syndrome and cardiovascular diseases.

  16. Understanding the application of stem cell therapy in cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Sharma RK

    2012-10-01

    Full Text Available Rakesh K Sharma, Donald J Voelker, Roma Sharma, Hanumanth K ReddyUniversity of Arkansas for Medical Sciences, Medical Center of South Arkansas, El Dorado, AR, USAAbstract: Throughout their lifetime, an individual may sustain many injuries and recover spontaneously over a period of time, without even realizing the injury in the first place. Wound healing occurs due to a proliferation of stem cells capable of restoring the injured tissue. The ability of adult stem cells to repair tissue is dependent upon the intrinsic ability of tissues to proliferate. The amazing capacity of embryonic stem cells to give rise to virtually any type of tissue has intensified the search for similar cell lineage in adults to treat various diseases including cardiovascular diseases. The ability to convert adult stem cells into pluripotent cells that resemble embryonic cells, and to transplant those in the desired organ for regenerative therapy is very attractive, and may offer the possibility of treating harmful disease-causing mutations. The race is on to find the best cells for treatment of cardiovascular disease. There is a need for the ideal stem cell, delivery strategies, myocardial retention, and time of administration in the ideal patient population. There are multiple modes of stem cell delivery to the heart with different cell retention rates that vary depending upon method and site of injection, such as intra coronary, intramyocardial or via coronary sinus. While there are crucial issues such as retention of stem cells, microvascular plugging, biodistribution, homing to myocardium, and various proapoptotic factors in the ischemic myocardium, the regenerative potential of stem cells offers an enormous impact on clinical applications in the management of cardiovascular diseases.Keywords: stem cell therapy, stem cell delivery, cardiovascular diseases, myocardial infarction, cardiomyopathy

  17. Emerging issues in radiogenic cataracts and cardiovascular disease

    International Nuclear Information System (INIS)

    Hamada, Nobuyuki; Fujimichi, Yuki; Iwasaki, Toshiyasu; Nomura, Takaharu; Fujii, Noriko; Furuhashi, Masato; Kubo, Eri; Minamino, Tohru; Sato, Hitoshi

    2014-01-01

    In 2011, the International Commission on Radiological Protection issued a statement on tissue reactions (formerly termed non-stochastic or deterministic effects) to recommend lowering the threshold for cataracts and the occupational equivalent dose limit for the crystalline lens of the eye. Furthermore, this statement was the first to list circulatory disease (cardiovascular and cerebrovascular disease) as a health hazard of radiation exposure and to assign its threshold for the heart and brain. These changes have stimulated various discussions and may have impacts on some radiation workers, such as those in the medical sector. This paper considers emerging issues associated with cataracts and cardiovascular disease. For cataracts, topics dealt with herein include (1) the progressive nature, stochastic nature, target cells and trigger events of lens opacification, (2) roles of lens protein denaturation, oxidative stress, calcium ions, tumor suppressors and DNA repair factors in cataractogenesis, (3) dose rate effect, radiation weighting factor, and classification systems for cataracts, and (4) estimation of the lens dose in clinical settings. Topics for cardiovascular disease include experimental animal models, relevant surrogate markers, latency period, target tissues, and roles of inflammation and cellular senescence. Future research needs are also discussed. (author)

  18. Incremental value of PET and MRI in the evaluation of cardiovascular abnormalities.

    Science.gov (United States)

    Chalian, Hamid; O'Donnell, James K; Bolen, Michael; Rajiah, Prabhakar

    2016-08-01

    The cardiovascular system is affected by a wide range of pathological processes, including neoplastic, inflammatory, ischemic, and congenital aetiology. Magnetic resonance imaging (MRI) and positron emission tomography (PET) are state-of-the-art imaging modalities used in the evaluation of these cardiovascular disorders. MRI has good spatial and temporal resolutions, tissue characterization and multi-planar imaging/reconstruction capabilities, which makes it useful in the evaluation of cardiac morphology, ventricular and valvar function, disease characterization, and evaluation of myocardial viability. FDG-PET provides valuable information on the metabolic activity of the cardiovascular diseases, including ischemia, inflammation, and neoplasm. MRI and FDG-PET can provide complementary information on the evaluation of several cardiovascular disorders. For example, in cardiac masses, FDG-PET provides the metabolic information for indeterminate cardiac masses. MRI can be used for localizing and characterizing abnormal hypermetabolic foci identified incidentally on PET scan and also for local staging. A recent advance in imaging technology has been the development of integrated PET/MRI systems that utilize the advantages of PET and MRI in a single examination. The goal of this manuscript is to provide a comprehensive review on the incremental value of PET and MRI in the evaluation of cardiovascular diseases. • MRI has good spatial and temporal resolutions, tissue characterization, and multi-planar reconstruction • FDG-PET provides valuable information on the metabolic activity of cardiovascular disorders • PET and MRI provide complementary information on the evaluation of cardiovascular disorders.

  19. Balanced high fat diet reduces cardiovascular risk in obese women although changes in adipose tissue, lipoproteins, and insulin resistance differ by race.

    Science.gov (United States)

    Niswender, Kevin D; Fazio, Sergio; Gower, Barbara A; Silver, Heidi J

    2018-05-01

    We previously reported that consuming a balanced high fat diet (BHFD) wherein total saturated fat was reduced and total unsaturated fat increased by proportionately balancing the type of fat (1/3 saturated, 1/3 monounsaturated, 1/3 polyunsaturated) led to significant improvements in inflammatory burden, blood pressure, and vascular function in obese premenopausal European American (EA) and African American (AA) women. Here we compared changes in adipose tissue, lipoproteins, insulin resistance, and cardiovascular risk between EA and AA women. Dietary intakes, plasma fatty acids, lipids, apolipoproteins, lipoproteins, HOMA-IR and ASCVD risk was measured in 144 women who consumed BHFD for 16 weeks. Generalized linear modeling was performed while controlling for change in body weight. EA women had greater reductions in visceral adipose tissue. Only EA women had significant reductions in fasting insulin levels (↓24.8%) and HOMA-IR (↓29%) scores. In EA women, the most significant improvements occurred in VLDL particle size (↑), apolipoprotein B levels (↑), serum TG (↓), number of plasma LDL particles (↓), and serum LDL-cholesterol (↓). In AA women, significant improvements occurred in HDL particle size (↑), number of large HDL particles (↑), and apolipoprotein AI levels (↑). Consequently, both groups had improved ASCVD risk scores (↓5.5%). Consuming the balanced high fat diet led to significant reduction in cardiovascular risk factors in both groups. However, the pattern of response to BHFD differed with EA women responding more in components of the apolipoprotein B pathway versus AA women responding more in components of the apolipoprotein AI pathway. Published by Elsevier Inc.

  20. Transplantation of Normal Adipose Tissue Improves Blood Flow and Reduces Inflammation in High Fat Fed Mice With Hindlimb Ischemia

    Directory of Open Access Journals (Sweden)

    Liyuan Chen

    2018-03-01

    Full Text Available Background: Fat deposition is associated with peripheral arterial disease. Adipose tissue has recently been implicated in vascular remodeling and angiogenic activity. We hypothesized that the transplantation of adipose tissues from normal mice improves blood flow perfusion and neovascularization in high-fat diet fed mice.Methods: After 14 weeks of high-fat diet (HFD-fed mice, unilateral hind limb ischemia was performed. Subcutaneous white adipose tissue (WAT and brown adipose tissue (BAT fat pads were harvested from normal EGFP mice, and subcutaneously transplanted over the region of the adductor muscles of HFD mice. Blood flow was measured using Laser Doppler Scanner. Vascular density, macrophages infiltration, and macrophage polarization were examined by RT-qPCR, and immunohistochemistry.Results: We found that the transplantation of WAT derived from normal mice improved functional blood flow in HFD-fed mice compared to mice transplanted with BAT and sham-treated mice. WAT transplantation increased the recruitment of pericytes associated with nascent blood vessels, but did not affect capillary formation. Furthermore, transplantation of WAT ameliorated HFD-induced insulin resistance, M2 macrophage predominance and the release of arteriogenic factors in ischemic muscles. Mice receiving WAT also displayed a marked reduction in several proinflammatory cytokines. In contrast, mice transplanted with BAT were glucose intolerant and demonstrated increased IL-6 levels in ischemic muscles.Conclusion: These results indicate that transplantation of adipose tissue elicits improvements in blood perfusion and beneficial effects on systemic glucose homeostasis and could be a promising therapeutic option for the treatment of diabetic peripheral arterial disease.

  1. A Protocol for the Comprehensive Flow Cytometric Analysis of Immune Cells in Normal and Inflamed Murine Non-Lymphoid Tissues

    Science.gov (United States)

    Yu, Yen-Rei A.; O’Koren, Emily G.; Hotten, Danielle F.; Kan, Matthew J.; Kopin, David; Nelson, Erik R.; Que, Loretta; Gunn, Michael D.

    2016-01-01

    Flow cytometry is used extensively to examine immune cells in non-lymphoid tissues. However, a method of flow cytometric analysis that is both comprehensive and widely applicable has not been described. We developed a protocol for the flow cytometric analysis of non-lymphoid tissues, including methods of tissue preparation, a 10-fluorochrome panel for cell staining, and a standardized gating strategy, that allows the simultaneous identification and quantification of all major immune cell types in a variety of normal and inflamed non-lymphoid tissues. We demonstrate that our basic protocol minimizes cell loss, reliably distinguishes macrophages from dendritic cells (DC), and identifies all major granulocytic and mononuclear phagocytic cell types. This protocol is able to accurately quantify 11 distinct immune cell types, including T cells, B cells, NK cells, neutrophils, eosinophils, inflammatory monocytes, resident monocytes, alveolar macrophages, resident/interstitial macrophages, CD11b- DC, and CD11b+ DC, in normal lung, heart, liver, kidney, intestine, skin, eyes, and mammary gland. We also characterized the expression patterns of several commonly used myeloid and macrophage markers. This basic protocol can be expanded to identify additional cell types such as mast cells, basophils, and plasmacytoid DC, or perform detailed phenotyping of specific cell types. In examining models of primary and metastatic mammary tumors, this protocol allowed the identification of several distinct tumor associated macrophage phenotypes, the appearance of which was highly specific to individual tumor cell lines. This protocol provides a valuable tool to examine immune cell repertoires and follow immune responses in a wide variety of tissues and experimental conditions. PMID:26938654

  2. THE EFFECTS OF PHYSICAL TRAINING ON CARDIOVASCULAR PARAMETERS AND REDUCTION OF VISCERAL FATTY TISSUE

    Directory of Open Access Journals (Sweden)

    Todorka Savic

    2007-12-01

    Full Text Available Regular physical activity and good physical condition are widely accepted as factors that reduce all-cause mortality and improve a number of health outcomes.The aim of this study was to investigate the effects of aerobic exercise training on cardiovascular parameters and reduction of visceral obesity in patients with stable coronary artery disease participating in a cardiovascular rehabilitation exercise program. Fifty-two patients with stable coronary heart disease who had been accepted into the outpatient Phase II cardiovascular rehabilitation program at the Institute for Treatment and Rehabilitation of Cardiovascular Diseases Niska Banja, Nis, Serbia,were recruited for this study. All patients were divided into two groups: group with stable coronary heart disease who had regular aerobic physical training during 6weeks and control without physical training. There were not significant differences in body weight, body mass index, waist circumference and waist /hip ratio in start and at the end of physical training program. Physical training did not reduce the above mentioned parameters after 6 weeks. There were not significant differences in systolic and diastolic blood pressure at the beginning and at the end of the observed period.In group with physical training, a significant reduction of systolic and diastolic blood pressure after cardiovascular rehabilitation were reported (p<0.05. In patients with moderate aerobic physical training, a significant decrease in the heart rate was registered after the 6-week follow-up (p<0.05, while heart rate was significantly lower in this group compared to group with sedentary lifestyle (p<0.05. The effects of the 6-week cardiovascular rehabilitation on lipid parameters is visible only in slight reduction of triglyceride values in group with physical training (p<0.05. The concentration of triglycerides were significantly lower in this group compared to sedentary patients after the 6-week follow-up (p<0

  3. Real-time quantification of subcellular H2O2 and glutathione redox potential in living cardiovascular tissues.

    Science.gov (United States)

    Panieri, Emiliano; Millia, Carlo; Santoro, Massimo M

    2017-08-01

    Detecting and measuring the dynamic redox events that occur in vivo is a prerequisite for understanding the impact of oxidants and redox events in normal and pathological conditions. These aspects are particularly relevant in cardiovascular tissues wherein alterations of the redox balance are associated with stroke, aging, and pharmacological intervention. An ambiguous aspect of redox biology is how redox events occur in subcellular organelles including mitochondria, and nuclei. Genetically-encoded Rogfp2 fluorescent probes have become powerful tools for real-time detection of redox events. These probes detect hydrogen peroxide (H 2 O 2 ) levels and glutathione redox potential (E GSH ), both with high spatiotemporal resolution. By generating novel transgenic (Tg) zebrafish lines that express compartment-specific Rogfp2-Orp1 and Grx1-Rogfp2 sensors we analyzed cytosolic, mitochondrial, and the nuclear redox state of endothelial cells and cardiomyocytes of living zebrafish embryos. We provide evidence for the usefulness of these Tg lines for pharmacological compounds screening by addressing the blocking of pentose phosphate pathways (PPP) and glutathione synthesis, thus altering subcellular redox state in vivo. Rogfp2-based transgenic zebrafish lines represent valuable tools to characterize the impact of redox changes in living tissues and offer new opportunities for studying metabolic driven antioxidant response in biomedical research. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effect of flow on vascular endothelial cells grown in tissue culture on polytetrafluoroethylene grafts

    International Nuclear Information System (INIS)

    Sentissi, J.M.; Ramberg, K.; O'Donnell, T.F. Jr.; Connolly, R.J.; Callow, A.D.

    1986-01-01

    Vascular grafts lined with endothelial cells (EC) grown to confluence in culture before implantation may provide a thromboresistant flow surface. Growth of EC on and their adherence to currently available prosthetic materials under conditions of flow are two impediments remaining in the development of such a graft. To address these problems, 22 polytetrafluoroethylene grafts (PTFE) (5 cm by 4 mm inside diameter) were pretreated with collagen and fibronectin, seeded with 2 to 3 X 10(6) bovine aortic EC per graft, and placed in tissue culture (seeded grafts). Twenty-two grafts pretreated with collagen and fibronectin alone served as controls. After 2 weeks morphologic studies revealed that 20/22 seeded grafts were lined with a confluent endothelial layer. Indium 111-oxine was then used to label the EC-seeded grafts. After exposure to either low (25 ml/min) or high (200 ml/min) flow rates for 60 minutes in an in vitro circuit, examination of the luminal surface of the graft by light microscopy and scanning electron microscopy revealed minimal loss of EC. These findings were corroborated by radionuclide scans that showed an insignificant loss of the EC-associated indium label during exposure to flow (7% low flow, 11% high flow). Pretreatment of PTFE grafts with collagen and fibronectin thus promotes both attachment and adherence of EC even under flow conditions

  5. The Cardiovascular Function Profile and Physical Fitness in Overweight Subjects

    Science.gov (United States)

    Megawati, E. R.; Lubis, L. D.; Harahap, F. Y.

    2017-03-01

    Obesity in children and young adult is associated with cardiovascular risk in short term and long term. The aim of this study was to describe the profile of the cardiovascular functions parameters and physical fitness in overweight. This is an analytical observational study with cross sectional approach. The samples of this study were 85 randomly selected subjects aged 18 to 24 years with normoweight and body mass index <40. The parameters measures were body mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), cardiovascular function parameters (resting pulse, blood pressure, and peak flow meter) and physical fitness parameters (VO2max dengan McArdle step test). The mean BMI was 24,53±4,929. The WC and WHR mean were 86,7±14,10 cms and 0,89±0,073 cm respectively. The mean of resting pulses were higher in normoweight subject (p=0,0209). The mean systole were lower in normoweight subject (p=0,0026). No differences VO2 max between groups (p=0,3888). The peak flow meter was higher in normoweight (p=0,0274). The result of this study indicate that heart rate, systole and peak flow meter are signifantly different between groups. The heart rate and the peak flow meter in the overweight subjects were lower meanwhile the systole blood pressure was higher compared to normoweight subjects.

  6. L-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats.

    Science.gov (United States)

    Rodríguez-Gómez, Isabel; Moliz, Juan N; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Osuna, Antonio; Wangensteen, Rosemary; Vargas, Félix

    2016-03-01

    This study assessed the effects of thyroid hormones on the enzymes involved in l-arginine metabolism and the metabolites generated by the different metabolic pathways. Compounds of l-arginine metabolism were measured in the kidney, heart, aorta, and liver of euthyroid, hyperthyroid, and hypothyroid rats after 6 weeks of treatment. Enzymes studied were NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]), arginases I and II, ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and l-arginine decarboxylase (ADC). Metabolites studied were l-arginine, l-citrulline, spermidine, spermine, and l-proline. Kidney heart and aorta levels of eNOS and iNOS were augmented and reduced (P hyperthyroid rats and was decreased in kidney and aorta of hypothyroid rats (P hyperthyroid rats and remained unchanged in all organs of hypothyroid rats. The substrate for these enzymes, l-arginine, was reduced (P hyperthyroid rats. Levels of ODC and spermidine, its product, were increased and decreased (P metabolic pathways. The changes recorded in the abundance of eNOS, arginases I and II, and ADC protein in renal and cardiovascular tissues may play a role in the hemodynamic and renal manifestations observed in thyroid disorders. Furthermore, the changes in ODC and spermidine might contribute to the changes in cardiac and renal mass observed in thyroid disorders. © 2015 by the Society for Experimental Biology and Medicine.

  7. Emergency repair of upper extremity large soft tissue and vascular injuries with flow-through anterolateral thigh free flaps.

    Science.gov (United States)

    Zhan, Yi; Fu, Guo; Zhou, Xiang; He, Bo; Yan, Li-Wei; Zhu, Qing-Tang; Gu, Li-Qiang; Liu, Xiao-Lin; Qi, Jian

    2017-12-01

    Complex extremity trauma commonly involves both soft tissue and vascular injuries. Traditional two-stage surgical repair may delay rehabilitation and functional recovery, as well as increase the risk of infections. We report a single-stage reconstructive surgical method that repairs soft tissue defects and vascular injuries with flow-through free flaps to improve functional outcomes. Between March 2010 and December 2016 in our hospital, 5 patients with severe upper extremity trauma received single-stage reconstructive surgery, in which a flow-through anterolateral thigh free flap was applied to repair soft tissue defects and vascular injuries simultaneously. Cases of injured artery were reconstructed with the distal trunk of the descending branch of the lateral circumflex femoral artery. A segment of adjacent vein was used if there was a second artery injury. Patients were followed to evaluate their functional recoveries, and received computed tomography angiography examinations to assess peripheral circulation. Two patients had post-operative thumb necrosis; one required amputation, and the other was healed after debridement and abdominal pedicle flap repair. The other 3 patients had no major complications (infection, necrosis) to the recipient or donor sites after surgery. All the patients had achieved satisfactory functional recovery by the end of the follow-up period. Computed tomography angiography showed adequate circulation in the peripheral vessels. The success of these cases shows that one-step reconstructive surgery with flow-through anterolateral thigh free flaps can be a safe and effective treatment option for patients with complex upper extremity trauma with soft tissue defects and vascular injuries. Copyright © 2017. Published by Elsevier Ltd.

  8. Connective tissue diseases and noninvasive evaluation of atherosclerosis

    Directory of Open Access Journals (Sweden)

    Ardita G

    2014-06-01

    Full Text Available Giorgio Ardita, Giacomo Failla, Paolo Maria Finocchiaro, Francesco Mugno, Luigi Attanasio, Salvatore Timineri, Michelangelo Maria Di SalvoCardiovascular Department, Angiology Unit, Ferrarotto Hospital, Catania, ItalyAbstract: Connective tissue diseases (CTDs are associated with increased risk of cardiovascular disease due to accelerated atherosclerosis. In patients with autoimmune disorders, in addition to traditional risk factors, an immune-mediated inflammatory process of the vasculature seems to contribute to atherogenesis. Several pathogenetic mechanisms have been proposed, including chronic inflammation and immunologic abnormalities, both able to produce vascular damage. Macrovascular atherosclerosis can be noninvasively evaluated by ultrasound measurement of carotid or femoral plaque. Subclinical atherosclerosis can be evaluated by well-established noninvasive techniques which rely on ultrasound detection of carotid intima-media thickness. Flow-mediated vasodilatation and arterial stiffness are considered markers of endothelial dysfunction and subclinical atherosclerosis, respectively, and have been recently found to be impaired early in a wide spectrum of autoimmune diseases. Carotid intima-media thickness turns out to be a leading marker of subclinical atherosclerosis, and many studies recognize its role as a predictor of future vascular events, both in non-CTD individuals and in CTD patients. In rheumatic diseases, flow-mediated dilatation and arterial stiffness prove to be strongly correlated with inflammation, disease damage index, and with subclinical atherosclerosis, although their prognostic role has not yet been conclusively shown. Systemic lupus erythematosus, rheumatoid arthritis, and likely antiphospholipid syndrome are better associated with premature and accelerated atherosclerosis. Inconclusive results were reported in systemic sclerosis.Keywords: rheumatic disease, subclinical atherosclerosis, arterial stiffness

  9. Spatially Resolved MR-Compatible Doppler Ultrasound: Proof of Concept for Triggering of Diagnostic Quality Cardiovascular MRI for Function and Flow Quantification at 3T.

    Science.gov (United States)

    Crowe, Lindsey Alexandra; Manasseh, Gibran; Chmielewski, Aneta; Hachulla, Anne-Lise; Speicher, Daniel; Greiser, Andreas; Muller, Hajo; de Perrot, Thomas; Vallee, Jean-Paul; Salomir, Rares

    2018-02-01

    We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.

  10. Intracardiac flow patterns studied by cine MR flow imaging

    International Nuclear Information System (INIS)

    Underwood, S.R.; Firmin, D.N.; Klipstein, R.H.; Rees, R.S.O.; Longmore, D.B.

    1986-01-01

    Velocity mapping by means of cine-MR imaging allows accurate measurement of velocity and flow within the cardiovascular system. A cine display and color coding simplify interpretation. The author have used the technique in a variety of patients to illustrate its potential. Velocity mapping in coronary artery by pass grafts in six patients provided a measure of graft function. Coronary artery velocities were measured in three subjects. Flow was measured through defects in the atrial septum, the ventricular septum, and a Gerbode defect. Velocity was reduced distal to coarctation of the aorta and was increased at the level of a partial venous occlusion by thrombosis. In a patient with isomerism, velocity mapping in the central vessels aided interpretation. Cine-MR imaging velocity mapping combined with conventional imaging yields important functional information on the cardiovascular system

  11. Microgravity cultivation of cells and tissues

    Science.gov (United States)

    Freed, L. E.; Pellis, N.; Searby, N.; de Luis, J.; Preda, C.; Bordonaro, J.; Vunjak-Novakovic, G.

    1999-01-01

    In vitro studies of cells and tissues in microgravity, either simulated by cultivation conditions on earth or actual, during spaceflight, are expected to help identify mechanisms underlying gravity sensing and transduction in biological organisms. In this paper, we review rotating bioreactor studies of engineered skeletal and cardiovascular tissues carried out in unit gravity, a four month long cartilage tissue engineering study carried out aboard the Mir Space Station, and the ongoing laboratory development and testing of a system for cell and tissue cultivation aboard the International Space Station.

  12. The association between measurement sites of visceral adipose tissue and cardiovascular risk factors after caloric restriction in obese Korean women.

    Science.gov (United States)

    Lee, Hye-Ok; Yim, Jung-Eun; Lee, Jeong-Sook; Kim, Young-Seol; Choue, Ryowon

    2013-02-01

    Quantities as well as distributions of adipose tissue (AT) are significantly related to cardiovascular disease (CVD) risk factors and can be altered with caloric restriction. This study investigated which cross-sectional slice location of AT is most strongly correlated with changes in CVD risk factors after caloric restriction in obese Korean women. Thirty-three obese pre-menopausal Korean women (32.4 ± 8.5 yrs, BMI 27.1 ± 2.3 kg/m(2)) participated in a 12 weeks caloric restriction program. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were measured using computed tomography (CT) scans at the sites of L2-L3, L3-L4, and L4-L5. Fasting serum levels of glucose, insulin, triglyceride, total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), leptin and homeostasis model assessment-insulin resistance (HOMA-IR) were observed. Pearson's partial correlation coefficients were used to assess the relationship between AT measurement sites and changes in CVD risk factors after calorie restriction. When calories were reduced by 350 kcal/day for 12 weeks, body weight (-2.7%), body fat mass (-8.2%), and waist circumference (-5.8%) all decreased (P restriction, serum levels of glucose (-4.6%), TC (-6.2%), LDL-C (-5.3%), leptin (-17.6%) and HOMA-IR (-18.2%) decreased significantly (P restriction.

  13. Cardiovascular system simulation in biomedical engineering education.

    Science.gov (United States)

    Rideout, V. C.

    1972-01-01

    Use of complex cardiovascular system models, in conjunction with a large hybrid computer, in biomedical engineering courses. A cardiovascular blood pressure-flow model, driving a compartment model for the study of dye transport, was set up on the computer for use as a laboratory exercise by students who did not have the computer experience or skill to be able to easily set up such a simulation involving some 27 differential equations running at 'real time' rate. The students were given detailed instructions regarding the model, and were then able to study effects such as those due to septal and valve defects upon the pressure, flow, and dye dilution curves. The success of this experiment in the use of involved models in engineering courses was such that it seems that this type of laboratory exercise might be considered for use in physiology courses as an adjunct to animal experiments.

  14. Cardiovascular risk factors and collateral artery formation.

    Science.gov (United States)

    de Groot, D; Pasterkamp, G; Hoefer, I E

    2009-12-01

    Arterial lumen narrowing and vascular occlusion is the actual cause of morbidity and mortality in atherosclerotic disease. Collateral artery formation (arteriogenesis) refers to an active remodelling of non-functional vascular anastomoses to functional collateral arteries, capable to bypass the site of obstruction and preserve the tissue that is jeopardized by ischaemia. Hemodynamic forces such as shear stress and wall stress play a pivotal role in collateral artery formation, accompanied by the expression of various cytokines and invasion of circulating leucocytes. Arteriogenesis hence represents an important compensatory mechanism for atherosclerotic vessel occlusion. As arteriogenesis mostly occurs when lumen narrowing by atherosclerotic plaques takes place, presence of cardiovascular risk factors (e.g. hypertension, hypercholesterolaemia and diabetes) is highly likely. Risk factors for atherosclerotic disease affect collateral artery growth directly and indirectly by altering hemodynamic forces or influencing cellular function and proliferation. Adequate collateralization varies significantly among atherosclerotic patients, some profit from the presence of extensive collateral networks, whereas others do not. Cardiovascular risk factors could increase the risk of adverse cardiovascular events in certain patients because of the reduced protection through an alternative vascular network. Likewise, drugs primarily thought to control cardiovascular risk factors might contribute or counteract collateral artery growth. This review summarizes current knowledge on the influence of cardiovascular risk factors and the effects of cardiovascular medication on the development of collateral vessels in experimental and clinical studies.

  15. Autophagy in health and disease: focus on the cardiovascular system.

    Science.gov (United States)

    Mialet-Perez, Jeanne; Vindis, Cécile

    2017-12-12

    Autophagy is a highly conserved mechanism of lysosome-mediated protein and organelle degradation that plays a crucial role in maintaining cellular homeostasis. In the last few years, specific functions for autophagy have been identified in many tissues and organs. In the cardiovascular system, autophagy appears to be essential to heart and vessel homeostasis and function; however defective or excessive autophagy activity seems to contribute to major cardiovascular disorders including heart failure (HF) or atherosclerosis. Here, we review the current knowledge on the role of cardiovascular autophagy in physiological and pathophysiological conditions. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. Investigating tissue respiration and skin microhaemocirculation under adaptive changes and the synchronization of blood flow and oxygen saturation rhythms

    International Nuclear Information System (INIS)

    Dunaev, A V; Palmer, S G; Stewart, N A; Sokolovski, S G; Rafailov, E U; Sidorov, V V; Krupatkin, A I; Rafailov, I E

    2014-01-01

    Multi-functional laser non-invasive diagnostic systems allow the study of a number of microcirculatory parameters, including index of blood microcirculation (I m ) (by laser Doppler flowmetry, LDF) and oxygen saturation (S t O 2 ) of skin tissue (by tissue reflectance oximetry, TRO). This research aimed to use such a system to investigate the synchronization of microvascular blood flow and oxygen saturation rhythms under normal and adaptive change conditions. Studies were conducted on eight healthy volunteers of 21–49 years. These volunteers were observed between one and six months, totalling 422 basic tests (3 min each). Measurements were performed on the palmar surface of the right middle finger and the lower forearm's medial surface. Rhythmic oscillations of LDF and TRO were studied using wavelet analysis. Combined tissue oxygen consumption data for all volunteers during ‘adaptive changes’ increased relative to normal conditions with and without arteriovenous anastomoses. Data analysis revealed resonance and synchronized rhythms in microvascular blood flow and oxygen saturation as an adaptive change in myogenic oscillation (vasomotion) resulting from exercise and possibly psychoemotional stress. Synchronization of myogenic rhythms during adaptive changes may lead to increased oxygen consumption as a result of increased microvascular blood flow velocity. (paper)

  17. Cardiovascular responses to treadmill exercise in Nigerian ...

    African Journals Online (AJOL)

    2011-07-25

    Jul 25, 2011 ... The systolic blood pressure (SBP) and pressure rate product (PRP) ... Left ventricular hypertrophy (LVH) has been shown to be ... and functional evaluation of patients with cardiovascular ... excursion of the mitral valve leaflets. ..... blood flow reflecting diastolic behavior of the left ventricle in health and.

  18. Laser therapy in cardiovascular disease

    Science.gov (United States)

    Rindge, David

    2009-02-01

    Cardiovascular disease is the number one cause of death worldwide. It is broadly defined to include anything which adversely affects the heart or blood vessels. One-third of Americans have one or more forms of it. By one estimate, average human life expectancy would increase by seven years if it were eliminated. The mainstream medical model seeks mostly to "manage" cardiovascular disease with pharmaceuticals or to surgically bypass or reopen blocked vessels via angioplasty. These methods have proven highly useful and saved countless lives. Yet drug therapy may be costly and ongoing, and it carries the risk of side effects while often doing little or nothing to improve underlying health concerns. Similarly, angioplasty or surgery are invasive methods which entail risk. Laser therapy1 regenerates tissue, stimulates biological function, reduces inflammation and alleviates pain. Its efficacy and safety have been increasingly well documented in cardiovascular disease of many kinds. In this article we will explore the effects of laser therapy in angina, atherosclerosis, coronary artery disease, hypertension, hyperlipidemia, myocardial infarction, stroke and other conditions. The clinical application of various methods of laser therapy, including laserpuncture and transcutaneous, supravascular and intravenous irradiation of blood will be discussed. Implementing laser therapy in the treatment of cardiovascular disease offers the possibility of increasing the health and wellbeing of patients while reducing the costs and enhancing safety of medical care.

  19. Modeling of hyaluronan clearance with application to estimation of lymph flow

    International Nuclear Information System (INIS)

    Rössler, Andreas; Goswami, Nandu; Fink, Martin; Batzel, Jerry J

    2011-01-01

    One of the important factors in blood pressure regulation is the maintenance of the level of blood volume, which depends on several factors including the rate of lymph flow. Lymph flow can be measured directly using cannulation of lymphatic vessels, which is not clinically feasible, or indirectly by the tracer appearance rate, which is the rate at which macromolecules appear into the blood from the peritoneal cavity. However, indirect lymph flow measurements do not always provide consistent results. Through its contribution to osmotic pressure and resistance to flow, the macromolecule hyaluronan takes part in the regulation of tissue hydration and the maintenance of water and protein homeostasis. It arrives in blood plasma through lymph flow. Lymphatic hyaluronic acid (HA, hyaluronan) concentration is several times higher than that in plasma, suggesting that the lymphatic route may account for the majority of HA found in plasma. Furthermore, circulating levels of HA reflect the dynamic state between delivery to—and removal from—the bloodstream. To develop an accurate estimation of the fluid volume distribution and dynamics, the rate of lymph flow needs to be taken into account and hyaluronan could be used as a marker in estimating this flow. To examine the HA distribution and system fluid dynamics, a six-compartment model, which could reflect both the steady-state relationships and qualitative characteristics of the dynamics, was developed. This was then applied to estimate fluid shifts from the interstitial space via the lymphatic system to the plasma during different physiological stresses (orthostatic stress and the stress of ultrafiltration during dialysis). Sensitivity analysis shows that during ultrafiltration, lymph flow is a key parameter influencing the total HA level, thus suggesting that the model may find applications in addressing the problem of estimating lymph flow. Since the fluid balance between interstitium and plasma is maintained by lymph

  20. Relationship Between Changes in Fat and Lean Depots Following Weight Loss and Changes in Cardiovascular Disease Risk Markers.

    Science.gov (United States)

    Clifton, Peter M

    2018-04-04

    Gluteofemoral fat mass has been associated with improved cardiovascular disease risk factors. It is not clear if loss of this protective fat during weight loss partially negates the effect of loss of visceral fat. The aim of this study was to examine regional fat loss in a large weight-loss cohort from one center and to determine if fat loss in the leg and total lean tissue loss is harmful. We combined the data from 7 of our previously published 3-month weight-loss studies and examined the relationship between regional fat and lean tissue loss and changes in cardiovascular disease risk factors in 399 participants. At baseline, leg fat was positively associated with high-density lipoprotein cholesterol in women and inversely with fasting triglyceride level in both sexes. Abdominal lean tissue was also related to systolic blood pressure in men. Changes in regional fat and lean tissue were positively associated with changes in glucose, insulin, total cholesterol, triglycerides, low-density lipoprotein cholesterol and systolic and diastolic blood pressure ( r =0.11-0.22, P lean tissue dominating in multivariate regression. After adjustment for total weight or total fat change, these relationships disappeared except for a positive relationship between arm and lean leg mass loss and changes in triglycerides and systolic blood pressure. Loss of leg fat and leg lean tissue was directly associated with beneficial changes in cardiovascular disease risk markers. Loss of lean tissue may not have an adverse effect on cardiovascular disease risk, and measures to retain lean tissue during weight loss may not be necessary. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  1. Influence of oxidative stress on cardiovascular parameters in patients with combined flow of chronic obstructive pulmonary disease and arterial hypertension

    Directory of Open Access Journals (Sweden)

    V. G. Deinega

    2013-04-01

    Full Text Available Introduction. It is well known that active forms of oxygen, such as hydrogen peroxide, superoxide anion, hydroxyl radical and others are involved in different pathological conditions, such as cell necrosis, senescence, apoptosis, autophagy, inflammatory responses, remodeling of extracellular matrix and blood vessels, endothelial dysfunction, inactivation of antiproteases, and impaired tissue repair. The pathological increased production of mentioned active forms is called “oxidative stress”. From the literature data, we know that oxidative stress is involved in pathogenesis of arterial hypertension (AH, chronic obstructive pulmonary disease (COPD, atherosclerosis and others. The influence of oxidative stress on cardiovascular disorders in patients with combined flow of COPD and AH is not clearly known. Objective. To study peculiarities and links between parameters of oxidative stress and lesions of heart and vessels in patients with combined flow of COPD and AH. Materials and methods. A total of 101 patients with COPD, AH and with combined flow of COPD and AH were examined. The patients were divided into 3 groups. The first group was formed by patients with AH (n=29 the second group was formed by patients with COPD (n=29, the third group was formed by patients with combined flow of COPD and AH (n=57. Control group was formed from healthy persons of the same age and sex (n=22.All patients underwent spirography, echocardiography, ultrasound measurement of common carotid artery intimal-medial thickness and estimation of endhothelium-dependent vasodilatation. As oxidative stress markers, the levels of oxidative protein modification, spontaneous and iron induced aldehydephenylhydrazone’s (APH, ketondinitrophenylhydrazone’s (KPH and medium size molecules (MSM were measured. Results. Patients with combined flow of COPD and AH had higher levels of spontaneous APH (p<0,01 comparing with first and second group. The levels of spontaneous KPH were

  2. Carbon dioxide balneotherapy and cardiovascular disease

    Science.gov (United States)

    Pagourelias, Efstathios D.; Zorou, Paraskevi G.; Tsaligopoulos, Miltiadis; Athyros, Vasilis G.; Karagiannis, Asterios; Efthimiadis, Georgios K.

    2011-09-01

    Carbon dioxide (CO2) balneotherapy is a kind of remedy with a wide spectrum of applications which have been used since the Middle Ages. However, its potential use as an adjuvant therapeutic option in patients with cardiovascular disease is not yet fully clarified. We performed a thorough review of MEDLINE Database, EMBASE, ISI WEB of Knowledge, COCHRANE database and sites funded by balneotherapy centers across Europe in order to recognize relevant studies and aggregate evidence supporting the use of CO2 baths in various cardiovascular diseases. The three main effects of CO2 hydrotherapy during whole body or partial immersion, including decline in core temperature, an increase in cutaneous blood flow, and an elevation of the score on thermal sensation, are analyzed on a pathophysiology basis. Additionally, the indications and contra-indications of the method are presented in an evidence-based way, while the need for new methodologically sufficient studies examining the use of CO2 baths in other cardiovascular substrates is discussed.

  3. Prioritizing blood flow: cardiovascular performance in response to the competing demands of locomotion and digestion for the Burmese python, Python molurus.

    Science.gov (United States)

    Secor, Stephen M; White, Scott E

    2010-01-01

    Individually, the metabolic demands of digestion or movement can be fully supported by elevations in cardiovascular performance, but when occurring simultaneously, vascular perfusion may have to be prioritized to either the gut or skeletal muscles. Burmese pythons (Python molurus) experience similar increases in metabolic rate during the digestion of a meal as they do while crawling, hence each would have an equal demand for vascular supply when these two actions are combined. To determine, for the Burmese python, whether blood flow is prioritized when snakes are digesting and moving, we examined changes in cardiac performance and blood flow in response to digestion, movement, and the combination of digestion and movement. We used perivascular blood flow probes to measure blood flow through the left carotid artery, dorsal aorta, superior mesenteric artery and hepatic portal vein, and to calculate cardiac output, heart rate and stroke volume. Fasted pythons while crawling experienced a 2.7- and 3.3-fold increase, respectively, in heart rate and cardiac output, and a 66% decrease in superior mesenteric flow. During the digestion of a rodent meal equaling in mass to 24.7% of the snake's body mass, heart rate and cardiac output increased by 3.3- and 4.4-fold, respectively. Digestion also resulted in respective 11.6- and 14.1-fold increases in superior mesenteric and hepatic portal flow. When crawling while digesting, cardiac output and dorsal aorta flow increased by only 21% and 9%, respectively, a modest increase compared with that when they start to crawl on an empty stomach. Crawling did triggered a significant reduction in blood flow to the digesting gut, decreasing superior mesenteric and hepatic portal flow by 81% and 47%, respectively. When faced with the dual demands of digestion and crawling, Burmese pythons prioritize blood flow, apparently diverting visceral supply to the axial muscles.

  4. Functional Characterization of Preadipocytes Derived from Human Periaortic Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Diana Vargas

    2017-01-01

    Full Text Available Adipose tissue can affect the metabolic control of the cardiovascular system, and its anatomic location can affect the vascular function differently. In this study, biochemical and phenotypical characteristics of adipose tissue from periaortic fat were evaluated. Periaortic and subcutaneous adipose tissues were obtained from areas surrounding the ascending aorta and sternotomy incision, respectively. Adipose tissues were collected from patients undergoing myocardial revascularization or mitral valve replacement surgery. Morphological studies with hematoxylin/eosin and immunohistochemical assay were performed in situ to quantify adipokine expression. To analyze adipogenic capacity, adipokine expression, and the levels of thermogenic proteins, adipocyte precursor cells were isolated from periaortic and subcutaneous adipose tissues and induced to differentiation. The precursors of adipocytes from the periaortic tissue accumulated less triglycerides than those from the subcutaneous tissue after differentiation and were smaller than those from subcutaneous adipose tissue. The levels of proteins involved in thermogenesis and energy expenditure increased significantly in periaortic adipose tissue. Additionally, the expression levels of adipokines that affect carbohydrate metabolism, such as FGF21, increased significantly in mature adipocytes induced from periaortic adipose tissue. These results demonstrate that precursors of periaortic adipose tissue in humans may affect cardiovascular events and might serve as a target for preventing vascular diseases.

  5. Dose-dependent variations in blood flow evaluation of canine nerve, nerve graft, tendon, and ligament tissue by the radiolabeled-microsphere technique

    International Nuclear Information System (INIS)

    Riggi, K.; Wood, M.B.; Ilstrup, D.M.

    1990-01-01

    This study evaluates the dose-dependent accuracy of the radionuclide-labeled microsphere technique for blood flow evaluation in nerve, tendon, and ligament. In eight dogs, blood flows were determined for nerve, nerve graft, tendon, and ligament tissue by simultaneous injection of high- and low-dose microspheres with different radiolabels. The results demonstrated no significant differences in blood flow as measured from the small number of microspheres (less than 400) and the high number (more than 400) for nerve and tendon tissue. For nerve tissue, microsphere counts of 50 to 100, 100 to 200, 200 to 300, and more than 300 produced mean percentage errors of 12.74% (n = 5, SEM = 4.52), 5.45% (n = 13, SEM = 1.22), 10.22% (n = 6, SEM = 4.37), and 17.08% (n = 12, SEM = 3.30), respectively. For tendon tissue, the same microsphere subdivisions had mean percentage errors of 7.47% (n = 4, SEM = 2.66), 3.63% (n = 6, SEM = 1.34), 15.54% (n = 4, SEM = 4.43), and 12.91% (n = 1), respectively. For ligament tissue, percentage errors were consistently higher; microsphere counts of 30 to 100, 100 to 200, and 200 to 300 produced mean errors of 20.14% (n = 4, SEM = 6.38), 18.66% (n = 4, SEM = 6.24), and 25.78% (n = 2, SEM = 1.97), respectively. Although there was no direct relationship between percentage error and number of microspheres retrieved, we suggest that microsphere counts in the range of 100 to 200 should be considered acceptable for nerve and tendon in the canine. Ligament tissue seems to be less well suited to the microsphere technique; however, further study is warranted

  6. Predicting patient exposure to nickel released from cardiovascular devices using multi-scale modeling.

    Science.gov (United States)

    Saylor, David M; Craven, Brent A; Chandrasekar, Vaishnavi; Simon, David D; Brown, Ronald P; Sussman, Eric M

    2018-04-01

    Many cardiovascular device alloys contain nickel, which if released in sufficient quantities, can lead to adverse health effects. However, in-vivo nickel release from implanted devices and subsequent biodistribution of nickel ions to local tissues and systemic circulation are not well understood. To address this uncertainty, we have developed a multi-scale (material, tissue, and system) biokinetic model. The model links nickel release from an implanted cardiovascular device to concentrations in peri-implant tissue, as well as in serum and urine, which can be readily monitored. The model was parameterized for a specific cardiovascular implant, nitinol septal occluders, using in-vitro nickel release test results, studies of ex-vivo uptake into heart tissue, and in-vivo and clinical measurements from the literature. Our results show that the model accurately predicts nickel concentrations in peri-implant tissue in an animal model and in serum and urine of septal occluder patients. The congruity of the model with these data suggests it may provide useful insight to establish nickel exposure limits and interpret biomonitoring data. Finally, we use the model to predict local and systemic nickel exposure due to passive release from nitinol devices produced using a wide range of manufacturing processes, as well as general relationships between release rate and exposure. These relationships suggest that peri-implant tissue and serum levels of nickel will remain below 5 μg/g and 10 μg/l, respectively, in patients who have received implanted nitinol cardiovascular devices provided the rate of nickel release per device surface area does not exceed 0.074 μg/(cm 2  d) and is less than 32 μg/d in total. The uncertainty in whether in-vitro tests used to evaluate metal ion release from medical products are representative of clinical environments is one of the largest roadblocks to establishing the associated patient risk. We have developed and validated a multi

  7. The incremental value of brachial flow-mediated dilation measurements in risk stratification for incident cardiovascular events: a systematic review.

    Science.gov (United States)

    Peters, Sanne A E; den Ruijter, Hester M; Bots, Michiel L

    2012-06-01

    Abstract Adequate risk assessment for cardiovascular disease (CVD) is essential as a guide to initiate drug treatment. Current methods based on traditional risk factors could be improved considerably. Although brachial flow-mediated dilation (FMD) predicts subsequent cardiovascular events, its predictive value on top of traditional risk factors is unknown. We performed a systematic review to evaluate the incremental predictive value of FMD on top of traditional risk factors in asymptomatic individuals. Using PubMed and reference tracking, three studies were identified that reported on the incremental value of FMD using change in the area under the curve (AUC). Two large cohort studies found no improvement in AUC when FMD was added to traditional risk prediction models, whereas one small case-control study found an improvement. One study used the net reclassification improvement (NRI) to assess whether FMD measurement leads to correct risk stratification in risk categories. Although this study did not find an improvement in AUC, the NRI was statistically significant. Based on the reclassification results of this study, FMD measurement might be helpful in risk prediction. Evidence supporting the use of FMD measurement in clinical practice for risk stratification for CVD on top of traditional risk factors is limited, and future studies are needed.

  8. 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of Fallot

    Science.gov (United States)

    2012-01-01

    Background To assess changes in right heart flow and pulmonary artery hemodynamics in patients with repaired Tetralogy of Fallot (rTOF) we used whole heart, four dimensional (4D) velocity mapping (VM) cardiovascular magnetic resonance (CMR). Methods CMR studies were performed in 11 subjects with rTOF (5M/6F; 20.1 ± 12.4 years) and 10 normal volunteers (6M/4F; 34.2 ± 13.4 years) on clinical 1.5T and 3.0T MR scanners. 4D VM-CMR was performed using PC VIPR (Phase Contrast Vastly undersampled Isotropic Projection Reconstruction). Interactive streamline and particle trace visualizations of the superior and inferior vena cava (IVC and SVC, respectively), right atrium (RA), right ventricle (RV), and pulmonary artery (PA) were generated and reviewed by three experienced readers. Main PA net flow, retrograde flow, peak flow, time-to-peak flow, peak acceleration, resistance index and mean wall shear stress were quantified. Differences in flow patterns between the two groups were tested using Fisher's exact test. Differences in quantitative parameters were analyzed with the Kruskal-Wallis rank sum test. Results 4D VM-CMR was successfully performed in all volunteers and subjects with TOF. Right heart flow patterns in rTOF subjects were characterized by (a) greater SVC/IVC flow during diastole than systole, (b) increased vortical flow patterns in the RA and in the RV during diastole, and (c) increased helical or vortical flow features in the PA's. Differences in main PA retrograde flow, resistance index, peak flow, time-to-peak flow, peak acceleration and mean wall shear stress were statistically significant. Conclusions Whole heart 4D VM-CMR with PC VIPR enables detection of both normal and abnormal right heart flow patterns, which may allow for comprehensive studies to evaluate interdependencies of post-surgically altered geometries and hemodynamics. PMID:22313680

  9. Platelet-derived growth factor-C and -D in the cardiovascular system and diseases.

    Science.gov (United States)

    Lee, Chunsik; Li, Xuri

    2018-08-01

    The cardiovascular system is among the first organs formed during development and is pivotal for the formation and function of the rest of the organs and tissues. Therefore, the function and homeostasis of the cardiovascular system are finely regulated by many important molecules. Extensive studies have shown that platelet-derived growth factors (PDGFs) and their receptors are critical regulators of the cardiovascular system. Even though PDGF-C and PDGF-D are relatively new members of the PDGF family, their critical roles in the cardiovascular system as angiogenic and survival factors have been amply demonstrated. Understanding the functions of PDGF-C and PDGF-D and the signaling pathways involved may provide novel insights into both basic biomedical research and new therapeutic possibilities for the treatment of cardiovascular diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Localization of microfibrillar-associated protein 4 (MFAP4 in human tissues: clinical evaluation of serum MFAP4 and its association with various cardiovascular conditions.

    Directory of Open Access Journals (Sweden)

    Helle Wulf-Johansson

    Full Text Available Microfibrillar-associated protein 4 (MFAP4 is located in the extracellular matrix (ECM. We sought to identify tissues with high levels of MFAP4 mRNA and MFAP4 protein expression. Moreover, we aimed to evaluate the significance of MFAP4 as a marker of cardiovascular disease (CVD and to correlate MFAP4 with other known ECM markers, such as fibulin-1, osteoprotegerin (OPG, and osteopontin (OPN. Quantitative real-time PCR demonstrated that MFAP4 mRNA was more highly expressed in the heart, lung, and intestine than in other elastic tissues. Immunohistochemical studies demonstrated high levels of MFAP4 protein mainly at sites rich in elastic fibers and within blood vessels in all tissues investigated. The AlphaLISA technique was used to determine serum MFAP4 levels in a clinical cohort of 172 patients consisting of 5 matched groups with varying degrees of CVD: 1: patients with ST elevation myocardial infarction (STEMI, 2: patients with non-STEMI, 3: patients destined for vascular surgery because of various atherosclerotic diseases (stable atherosclerotic disease, 4: apparently healthy individuals with documented coronary artery calcification (CAC-positive, and 5: apparently healthy individuals without signs of coronary artery calcification (CAC-negative. Serum MFAP4 levels were significantly lower in patients with stable atherosclerotic disease than CAC-negative individuals (p<0.05. Furthermore, lower serum MFAP4 levels were present in patients with stable atherosclerotic disease compared with STEMI and non-STEMI patients (p<0.05. In patients with stable atherosclerotic disease, positive correlations between MFAP4 and both fibulin-1 (ρ = 0.50; p = 0.0244 and OPG (ρ = 0.62; p = 0.0014 were found. Together, these results indicate that MFAP4 is mainly located in elastic fibers and is highly expressed in blood vessels. The present study suggests that serum MFAP4 varies in groups of patients with different cardiovascular conditions

  11. Data on metabolic-dependent antioxidant response in the cardiovascular tissues of living zebrafish under stress conditions

    Directory of Open Access Journals (Sweden)

    Emiliano Panieri

    2017-06-01

    Full Text Available In this article we used transgenic zebrafish lines that express compartment-specific isoforms of the roGFP2-Orp1 and Grx1-roGFP2 biosensors, described in Panieri et al (2017 [1], to test the contribute of the pentose phosphate pathway and of the glutathione biosynthesis in the antioxidant capacity of myocardial and endothelial cells in vivo. The transgenic zebrafish embryos were subdued to metabolic inhibition and subsequently challenged with H2O2 or the redox-cycling agent menadione to respectively mimic acute or chronic oxidative stress. Confocal time-lapse recordings were performed to follow the compartmentalized H2O2 and EGSH changes in the cardiovascular tissues of zebrafish embryos at 48 h post fertilization. After sequential excitation at 405 nm and 488 nm the emission was collected between 500–520 nm every 2 min for an overall duration of 60 min. The 405/488 nm ratio was normalized to the initial value obtained before oxidants addition and plotted over time. The analysis and the interpretation of the data can be found in the associated article [1].

  12. Design Approaches to Myocardial and Vascular Tissue Engineering.

    Science.gov (United States)

    Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y

    2017-06-21

    Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.

  13. Regional blood flow in the domestic fowl immediately following chronic acceleration

    International Nuclear Information System (INIS)

    Weidner, W.J.; Hoffman, L.F.; Clark, S.D.

    1982-01-01

    In order to examine the effects of chronic low G acceleration on blood flow distribution and cardiac output, chickens (N.10) were centrifuged at +2Gz for 30-61 d. Controls (N.12) were not centrifuged. The animals were anesthetized with sodium pentobarbital after removal from the centrifuge and surgically prepared in order to measure cardiac output and regional blood flows by the reference sample method with 85 Sr labeled microspheres (15 +/- 5 mum diam.). Both brachial arteries were cannulated to withdraw timed, paired blood samples at a known rate. The chest was opened and a cannula inserted into the left ventricle for administration of microspheres. Tissue samples were taken after completion of experimental procedures and their radioactivity was determined. The cardiac outputs in the two groups were not significantly different. Regional blood flows to the kidney, eyes, and skeletal muscle were significantly increased in the animals subjected to chronic +2Gz. While the mechanism by which these increases in blood flow occurred is not known, results indicate that chronic exposure to hyperdynamic gravitational fields can alter circulatory dynamics. We conclude that the cardiovascular system is directly involved in the process of adaptation to chronic positive acceleration

  14. Improvement of the in vivo cellular repopulation of decellularized cardiovascular tissues by a detergent-free, non-proteolytic, actin-disassembling regimen.

    Science.gov (United States)

    Assmann, Alexander; Struß, Marc; Schiffer, Franziska; Heidelberg, Friederike; Munakata, Hiroshi; Timchenko, Elena V; Timchenko, Pavel E; Kaufmann, Tim; Huynh, Khon; Sugimura, Yukiharu; Leidl, Quentin; Pinto, Antonio; Stoldt, Volker R; Lichtenberg, Artur; Akhyari, Payam

    2017-12-01

    Low immunogenicity and high repopulation capacity are crucial determinants for the functional and structural performance of acellular cardiovascular implants. The present study evaluates a detergent-free, non-proteolytic, actin-disassembling regimen (BIO) for decellularization of heart valve and vessel grafts, particularly focusing on their bio-functionality. Rat aortic conduits (rAoC; n = 89) and porcine aortic valve samples (n = 106) are decellularized using detergents (group DET) or the BIO regimen. BIO decellularization results in effective elimination of cellular proteins and significantly improves removal of DNA as compared with group DET, while the extracellular matrix (ECM) structure as well as mechanical properties are preserved. The architecture of rAoC in group BIO allows for improved bio-functionalization with fibronectin (FN) in a standardized rat implantation model: BIO treatment significantly increases speed and amount of autologous medial cellular repopulation in vivo (p < 0.001) and decreases the formation of hyperplastic intima (p < 0.001) as compared with FN-coated DET-decellularized grafts. Moreover, there are no signs of infiltration with inflammatory cells. The present biological, detergent-free, non-proteolytic regimen balances effective decellularization and ECM preservation in cardiovascular grafts, and provides optimized bio-functionality. Additionally, this study implies that the actin-disassembling regimen may be a promising approach for bioengineering of acellular scaffolds from other muscular tissues, as for example myocardium or intestine. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Binding sites for endothelin-1 in rat tissues: An autoradiographic study

    International Nuclear Information System (INIS)

    Koseki, C.; Imai, M.; Hirata, Y.; Yanagisawa, M.; Masaki, T.

    1989-01-01

    By tissue autoradiography in the rat, we demonstrated that receptors for endothelin-1 (ET-1) were distributed not only in the cardiovascular system but also in the noncardiovascular organs including the brain, lung, intestine, etc. In the brain, the receptors were mainly found in the basal ganglia and brainstem, in which nuclei are known to be cardiovascular regulatory sites. In addition to its direct vasoconstricting action, ET-1 may exert neural cardiovascular control as a neuropeptide

  16. Blood flow and tissue oxygen pressures of liver and pancreas in rats: effects of volatile anesthetics and of hemorrhage.

    Science.gov (United States)

    Vollmar, B; Conzen, P F; Kerner, T; Habazettl, H; Vierl, M; Waldner, H; Peter, K

    1992-09-01

    The object of this investigation was to compare the effects of volatile anesthetics and of hemorrhage at comparable arterial blood pressures on splanchnic blood flow (radioactive microspheres) and tissue oxygenation of the liver and pancreas (surface PO2 [PSO2] electrodes). In contrast to earlier studies, we did not use identical minimum alveolar anesthetic concentration multiples as a reference to compare volatile anesthetics; rather, we used the splanchnic perfusion pressure. Under general anesthesia (intravenous chloralose) and controlled ventilation, 12 Sprague-Dawley rats underwent laparotomy to allow access to abdominal organs. Mean arterial pressure was decreased from 84 +/- 3 mm Hg (mean +/- SEM) at control to 50 mm Hg by 1.0 +/- 0.1 vol% halothane, 2.2 +/- 0.2 vol% enflurane, and 2.3 +/- 0.1 vol% isoflurane in a randomized sequence. For hemorrhagic hypotension, blood was withdrawn gradually until a mean arterial pressure of 50 mm Hg was attained. Volatile anesthetics and hemorrhage reduced cardiac output, and hepatic arterial, portal venous, and total hepatic blood flows by comparable degrees. Mean hepatic PSO2 decreased significantly from 30.7 +/- 2.6 mm Hg at control to 17.4 +/- 2 and 17.5 +/- 2 mm Hg during enflurane and isoflurane (each P less than 0.05) anesthesia, respectively. The decrease to 11.5 +/- 2.5 mm Hg was more pronounced during halothane anesthesia. Hemorrhagic hypotension was associated with the lowest hepatic PSO2 (3.4 +/- 1.3 mm Hg) and the highest number of hypoxic (0-5 mm Hg 86%) and anoxic PSO2 values (0 mm Hg 46%). Pancreatic blood flow and oxygenation remained unchanged from control during halothane and enflurane administration, whereas isoflurane increased both variables. Hemorrhagic hypotension slightly reduced pancreatic flow (-8%) but significantly decreased PSO2 from 58 +/- 5 mm Hg at control to 36 +/- 3 mm Hg, with 7% of all measured values in the hypoxic range. Thus, volatile anesthetics preserved pancreatic but not hepatic

  17. The influence of freezing and tissue porosity on the material properties of vegetable tissues

    International Nuclear Information System (INIS)

    Ralfs, Julie D.

    2002-01-01

    Tissue porosity and fluid flow have been shown to be important parameters affecting the mechanical and sensorial behaviour of edible plant tissues. The quantity of fluid and the manner with which it was released on compression of the plant tissue were also important regarding the sensory perception and a good indication of any structural damage resulting from freezing, for example. Potato, carrot and Chinese water chestnut were used to study the effects freezing has on model plant tissues. Mechanical and structural measurements of the plant tissue were correlated with sensory analysis. Conventional freezing was shown to cause severe structural damage predominantly in the form of cavities between or through cells, resulting in decreases in mechanical strength and stiffness, and samples that were perceived in the mouth as 'soft' and 'wet'. The location and size of the cavities formed from ice crystals, depended on the particular plant tissue being frozen, the processing it was subjected to prior to freezing, the size of the sample and the cooling regime employed to freeze the tissue. Cavitation in the tissue resulted in an increase in tissue porosity, which enabled fluid to flow more easily from the tissue on compression, thus affecting the mechanical properties and sensory perception. Freezing damage to plant tissues was shown to be reduced, and sometimes prevented, when active antifreeze proteins (AFPs) were introduced into the tissues by vacuum infiltration or transformation and the tissue was frozen at a suitable cooling rate. Theoretical modelling was applied to the fluid flow and porosity data to test the validity of the models and to subsequently predict the mechanical behaviour of potato from the structural properties of the tissue. (author)

  18. Regional disturbances in blood flow and metabolism in equine limb wound healing with formation of exuberant granulation tissue

    DEFF Research Database (Denmark)

    Sørensen, Mette A.; Petersen, Lars; Bundgaard, Louise

    2014-01-01

    As in other fibroproliferative disorders, hypoxia has been suggested to play a key role in the pathogenesis of exuberant granulation tissue (EGT). The purpose of this study was to investigate metabolism and blood flow locally in full-thickness wounds healing with (limb wounds) and without (body...

  19. On conditions of negativity of friction resistance for nonstationary modes of blood flow and possible mechanism of affecting of environmental factors on energy effectiveness of cardiovascular system function

    Directory of Open Access Journals (Sweden)

    Sergey G. Chefranov

    2013-05-01

    Full Text Available It is shown that initiated by action of molecular viscosity impulse flow, directed usually from the moving fluid to limiting it solid surface, can, under certain conditions, turn to zero and get negative values in the case of non-stationary flow caused by alternating in time longitudinal (along the pipe axis pressure gradient. It is noted that this non-equilibrium mechanism of negative friction resistance in the similar case of pulsating blood flow in the blood vessels, in addition to the stable to turbulent disturbances swirled blood flow structure providing, can also constitute hydro-mechanical basis of the observed but not explained yet paradoxically high energy effectiveness of the normal functioning of the cardiovascular system (CVS. We consider respective mechanism of affecting on the stability of the normal work of CVS by environmental variable factors using shifting of hydro-dynamic mode with negative resistance realization range boundaries and variation of linear hydrodynamic instability leading to the structurally stable swirled blood flow organization.

  20. Carotenoids: potential allies of cardiovascular health?

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2015-02-01

    Full Text Available Carotenoids are a class of natural, fat-soluble pigments found principally in plants. They have potential antioxidant biological properties because of their chemical structure and interaction with biological membranes. Epidemiologic studies supported the hypothesis that antioxidants could be used as an inexpensive means of both primary and secondary cardiovascular disease (CVD prevention. In fact, the oxidation of low-density lipoproteins (LDL in the vessels plays a key role in the development of atherosclerotic lesions. The resistance of LDL to oxidation is increased by high dietary antioxidant intake, so that carotenoids, as part of food patterns such as the Mediterranean diet, may have beneficial effects on cardiovascular health too. Further properties of carotenoids leading to a potential reduction of cardiovascular risk are represented by lowering of blood pressure, reduction of pro-inflammatory cytokines and markers of inflammation (such as C-reactive protein, and improvement of insulin sensitivity in muscle, liver, and adipose tissues. In addition, recent nutrigenomics studies have focused on the exceptional ability of carotenoids in modulating the expression of specific genes involved in cell metabolism. The aim of this review is to focus attention to this effect of some carotenoids to prevent CVD.

  1. Wireless Monitoring for Patients with Cardiovascular Diseases and Parkinson's Disease.

    Science.gov (United States)

    Kefaliakos, Antonios; Pliakos, Ioannis; Charalampidou, Martha; Diomidous, Marianna

    2016-01-01

    The use of applications for mobile devices and wireless sensors is common for the sector of telemedicine. Recently various studies and systems were developed in order to help patients suffering from severe diseases such as cardiovascular diseases and Parkinson's disease. They present a challenge for the sector because such systems demand the flow of accurate data in real time and the use of specialized sensors. In this review will be presented some very interesting applications developed for patients with cardiovascular diseases and Parkinson's disease.

  2. Cardiovascular and Metabolic Heterogeneity of Obesity: Clinical Challenges and Implications for Management.

    Science.gov (United States)

    Neeland, Ian J; Poirier, Paul; Després, Jean-Pierre

    2018-03-27

    The prevalence of obesity has increased globally over the last 2 decades. Although the body mass index has been a convenient and simple index of obesity at the population level, studies have shown that obesity defined by body mass index alone is a remarkably heterogeneous condition with varying cardiovascular and metabolic manifestations across individuals. Adipose tissue is an exquisitely active metabolic organ engaged in cross-talk between various systems; perturbation of adipose tissue results in a pathological response to positive caloric balance in susceptible individuals that directly and indirectly contributes to cardiovascular and metabolic disease. Inadequate subcutaneous adipose tissue expansion in the face of dietary triglycerides leads to visceral and ectopic fat deposition, inflammatory/adipokine dysregulation, and insulin resistance. Conversely, preferential fat storage in the lower body depot may act as a metabolic buffer and protect other tissues from lipotoxicity caused by lipid overflow and ectopic fat. Translational, epidemiological, and clinical studies over the past 30 years have clearly demonstrated a strong link between visceral and ectopic fat and the development of a clinical syndrome characterized by atherogenic dyslipidemia, hyperinsulinemia/glucose intolerance, hypertension, atherosclerosis, and adverse cardiac remodeling/heart failure. This relationship is even more nuanced when clinical entities such as metabolically healthy obesity phenotype and the obesity paradox are considered. Although it is clear that the accumulation of visceral/ectopic fat is a major contributor to cardiovascular and metabolic risk above and beyond the body mass index, implementation of fat distribution assessment into clinical practice remains a challenge. Anthropometric indexes of obesity are easily implemented, but newer imaging-based methods offer improved sensitivity and specificity for measuring specific depots. Lifestyle, pharmacological, and surgical

  3. Photocurable surgical tissue adhesive glues composed of photoreactive gelatin and poly(ethylene glycol) diacrylate.

    Science.gov (United States)

    Nakayama, Y; Matsuda, T

    1999-01-01

    This article presents a novel photochemically driven surgical tissue adhesive technology using photoreactive gelatins and a water-soluble difunctional macromer (poly(ethylene glycol) diacrylate: PEGDA).The gelatins were partially derivatized with photoreactive groups, such as ultraviolet light (UV)-reactive benzophenone and visible light-reactive xanthene dye (e.g., fluorescein sodium salt, eosin Y, and rose bengal). A series of the prepared photocurable tissue adhesive glues, consisting of the photoreactive gelatin, PEGDA, and a saline solution with or without ascorbic acid as a reducing agent, were viscous solutions under warming, and their effectiveness was evaluated as hemostasis- and anastomosis-aid in cardiovascular surgery. Regardless of the type of photoreactive groups, the irradiation of the photocurable tissue adhesive glues by UV or visible light within 1 min produced water-swollen gels, which had a high adhesive strength to wet collagen film. These were due to the synergistic action of photoreactive group-initiated photo-cross-linking and photograft polymerization. An increase in the irradiation time resulted in increased gel yield and reduced water swellability. A decrease in the molecular weight of PEGDA and an increase in concentration of both gelatin and PEGDA resulted in reduced water swellability and increased tensile and burst strengths of the resultant gels. In rats whose livers were injured with a trephine in laparotomy, the bleeding spots were coated with the photocurable adhesive glue and irradiated through an optical fiber. The coated solution was immediately converted to a swollen gel. The gel was tightly adhered to the liver tissue presumably by interpenetration, and concomitantly hemostasis was completed. The anastomosis treatment with the photocurable glue in the canine abdominal or thoracic aortas incised with a knife resulted in little bleeding under pulsatile flow after declamping. Histological examination showed that the glues

  4. [Soya isoflavones and evidences on cardiovascular protection].

    Science.gov (United States)

    González Cañete, Natalia; Durán Agüero, Samuel

    2014-06-01

    Soya isoflavones represent a group of non-nutritive, bioactive compounds, of non-steroidal phenolic nature that are present in soy bean and derived foods. They share with other compounds the capacity of binding to estrogenic receptors from different cells and tissues so that they may act as phytoestrogens. The current interest in these compounds comes from the knowledge that in Asian populations with high levels of their consumption the prevalence of cancer and cardiovascular disease is lower, as compared to the Western countries populations. This cardiovascular benefit would be the result not only of the modulation of plasma lipids, which is a widely studied mechanism. This paper reviews the published evidence about the beneficial effects of soya isoflavones and the different mechanisms of action that would benefit cardiovascular health and that surpass the mechanisms traditionally approached such as the modulation of plasma lipids, and that implicate the regulation of cellular and enzymatic functions in situations such as inflammation, thrombosis, and atherosclerotic progression. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures.

    Science.gov (United States)

    Wong, Kelvin K L; Wang, Defeng; Ko, Jacky K L; Mazumdar, Jagannath; Le, Thu-Thao; Ghista, Dhanjoo

    2017-03-21

    Cardiac dysfunction constitutes common cardiovascular health issues in the society, and has been an investigation topic of strong focus by researchers in the medical imaging community. Diagnostic modalities based on echocardiography, magnetic resonance imaging, chest radiography and computed tomography are common techniques that provide cardiovascular structural information to diagnose heart defects. However, functional information of cardiovascular flow, which can in fact be used to support the diagnosis of many cardiovascular diseases with a myriad of hemodynamics performance indicators, remains unexplored to its full potential. Some of these indicators constitute important cardiac functional parameters affecting the cardiovascular abnormalities. With the advancement of computer technology that facilitates high speed computational fluid dynamics, the realization of a support diagnostic platform of hemodynamics quantification and analysis can be achieved. This article reviews the state-of-the-art medical imaging and high fidelity multi-physics computational analyses that together enable reconstruction of cardiovascular structures and hemodynamic flow patterns within them, such as of the left ventricle (LV) and carotid bifurcations. The combined medical imaging and hemodynamic analysis enables us to study the mechanisms of cardiovascular disease-causing dysfunctions, such as how (1) cardiomyopathy causes left ventricular remodeling and loss of contractility leading to heart failure, and (2) modeling of LV construction and simulation of intra-LV hemodynamics can enable us to determine the optimum procedure of surgical ventriculation to restore its contractility and health This combined medical imaging and hemodynamics framework can potentially extend medical knowledge of cardiovascular defects and associated hemodynamic behavior and their surgical restoration, by means of an integrated medical image diagnostics and hemodynamic performance analysis framework.

  6. Cardiovascular Physiology of Dinosaurs.

    Science.gov (United States)

    Seymour, Roger S

    2016-11-01

    Cardiovascular function in dinosaurs can be inferred from fossil evidence with knowledge of how metabolic rate, blood flow rate, blood pressure, and heart size are related to body size in living animals. Skeletal stature and nutrient foramen size in fossil femora provide direct evidence of a high arterial blood pressure, a large four-chambered heart, a high aerobic metabolic rate, and intense locomotion. But was the heart of a huge, long-necked sauropod dinosaur able to pump blood up 9 m to its head? ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  7. Molecular, cellular, and tissue engineering

    CERN Document Server

    Bronzino, Joseph D

    2015-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug deliver...

  8. IgG4-related cardiovascular disease. The emerging role of cardiovascular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mavrogeni, Sophie, E-mail: soma13@otenet.gr; Markousis-Mavrogenis, George; Kolovou, Genovefa

    2017-01-15

    Highlights: • Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis of IgG4-related disease. • CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. • Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques. • CT can assess periarteritis and coronary artery aneurysms, while 18FDG-PET shows FDG uptake at the area of the lesion. • CMR offers an integrated imaging of CV system, including assessment of disease acuity, extent of fibrosis and can guide further treatment. - Abstract: Immunoglobulin 4-related disease (IgG4-related disease) is a systemic inflammatory disease that presents with increases of serum IgG4. It may affect various systems, including the cardiovascular (CV) system. Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis. IgG4-related disease is characterized by fibrosclerosis, lymphocytic infiltration and presence of IgG4-positive plasma cells. The disease usually responds to treatment with corticosteroids and/or immunosuppressive medication. CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. IgG4-related cardiovascular disorders can severely affect patient prognosis. Various imaging techniques, including echocardiography, Computed Tomography (CT), 18FDG-PET, Cardiovascular Magnetic Resonance (CMR) and cardiac catheterisation, have been successfully used for early disease detection and follow-up. Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques for the evaluation of IgG4-related CV disease. Periaortitis/periarteritis can be also assessed by CT, showing a soft tissue thickening around arteries. Coronary artery aneurysms can be easily diagnosed by coronary CT. In case of active periarterial or coronary artery inflammation, 18

  9. IgG4-related cardiovascular disease. The emerging role of cardiovascular imaging

    International Nuclear Information System (INIS)

    Mavrogeni, Sophie; Markousis-Mavrogenis, George; Kolovou, Genovefa

    2017-01-01

    Highlights: • Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis of IgG4-related disease. • CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. • Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques. • CT can assess periarteritis and coronary artery aneurysms, while 18FDG-PET shows FDG uptake at the area of the lesion. • CMR offers an integrated imaging of CV system, including assessment of disease acuity, extent of fibrosis and can guide further treatment. - Abstract: Immunoglobulin 4-related disease (IgG4-related disease) is a systemic inflammatory disease that presents with increases of serum IgG4. It may affect various systems, including the cardiovascular (CV) system. Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis. IgG4-related disease is characterized by fibrosclerosis, lymphocytic infiltration and presence of IgG4-positive plasma cells. The disease usually responds to treatment with corticosteroids and/or immunosuppressive medication. CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. IgG4-related cardiovascular disorders can severely affect patient prognosis. Various imaging techniques, including echocardiography, Computed Tomography (CT), 18FDG-PET, Cardiovascular Magnetic Resonance (CMR) and cardiac catheterisation, have been successfully used for early disease detection and follow-up. Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques for the evaluation of IgG4-related CV disease. Periaortitis/periarteritis can be also assessed by CT, showing a soft tissue thickening around arteries. Coronary artery aneurysms can be easily diagnosed by coronary CT. In case of active periarterial or coronary artery inflammation, 18

  10. The influence of freezing and tissue porosity on the material properties of vegetable tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ralfs, Julie D

    2002-07-01

    Tissue porosity and fluid flow have been shown to be important parameters affecting the mechanical and sensorial behaviour of edible plant tissues. The quantity of fluid and the manner with which it was released on compression of the plant tissue were also important regarding the sensory perception and a good indication of any structural damage resulting from freezing, for example. Potato, carrot and Chinese water chestnut were used to study the effects freezing has on model plant tissues. Mechanical and structural measurements of the plant tissue were correlated with sensory analysis. Conventional freezing was shown to cause severe structural damage predominantly in the form of cavities between or through cells, resulting in decreases in mechanical strength and stiffness, and samples that were perceived in the mouth as 'soft' and 'wet'. The location and size of the cavities formed from ice crystals, depended on the particular plant tissue being frozen, the processing it was subjected to prior to freezing, the size of the sample and the cooling regime employed to freeze the tissue. Cavitation in the tissue resulted in an increase in tissue porosity, which enabled fluid to flow more easily from the tissue on compression, thus affecting the mechanical properties and sensory perception. Freezing damage to plant tissues was shown to be reduced, and sometimes prevented, when active antifreeze proteins (AFPs) were introduced into the tissues by vacuum infiltration or transformation and the tissue was frozen at a suitable cooling rate. Theoretical modelling was applied to the fluid flow and porosity data to test the validity of the models and to subsequently predict the mechanical behaviour of potato from the structural properties of the tissue. (author)

  11. The regulation of subcutaneous adipose tissue blood flow in the ischaemic forefoot during 24 hours

    International Nuclear Information System (INIS)

    Jelnes, R.

    1988-01-01

    A method for continuous measurement of subcutaneous adipose tissue blood flow in the forefoot during 24 hours (SBF) is described. The method is based on the radioisotope wash-out principle using 133-Xenon. A portable semiconductor detector is placed just above a local depot of 1-2 μCi 133-Xenon in 0.1 ml isotonic saline injected into the subcutaneous adipose tissue in the forefoot. The detector is connected to a memory unit allowing for storage of data. Due to the short distance, the recorded elimination rate constant must be corrected for combined convection and diffusion of the radioactive indicator. After reconstructive vascular surgery, the 24-hour blood flow pattern normalized although the ankle/arm systolic blood pressure index did not come within normal range. SBF during day-time activities decreased by up to 50% postoperatively. This is caused by the reappearance of the local, sympathetic, veno-arteriolar vasoconstrictor response. During sleep SBF increased by 71%. The term postreconstructuve hyperamia seems improper, at least in a long-term context, normalization of preoperative ischaemia is a more correct notation. The coefficient of variation of nocturnal SBF was calculated to 10%. The method thus seems apt as a monitor in medical therapy for occlusive arterial disease. Changes of λ has, however, to be considered in each study. 94 refs. (EG)

  12. Secondary flow structures under stent-induced perturbations for cardiovascular flow in a curved artery model

    International Nuclear Information System (INIS)

    Glenn, Autumn L.; Bulusu, Kartik V.; Shu Fangjun; Plesniak, Michael W.

    2012-01-01

    Secondary flows within curved arteries with unsteady forcing result from amplified centrifugal instabilities and are expected to be driven by the rapid accelerations and decelerations inherent in physiological waveforms. These secondary flows may also affect the function of curved arteries through pro-atherogenic wall shear stresses, platelet residence time and other vascular response mechanisms. Planar PIV measurements were performed under multi-harmonic non-zero-mean and physiological carotid artery waveforms at various locations in a rigid bent-pipe curved artery model. Results revealed symmetric counter-rotating vortex pairs that developed during the acceleration phases of both multi-harmonic and physiological waveforms. An idealized stent model was placed upstream of the bend, which initiated flow perturbations under physiological inflow conditions. Changes in the secondary flow structures were observed during the systolic deceleration phase (t/T ≈ 0.20–0.50). Proper Orthogonal Decomposition (POD) analysis of the flow morphologies under unsteady conditions indicated similarities in the coherent secondary-flow structures and correlation with phase-averaged velocity fields. A regime map was created that characterizes the kaleidoscope of vortical secondary flows with multiple vortex pairs and interesting secondary flow morphologies. This regime map in the curved artery model was created by plotting the secondary Reynolds number against another dimensionless acceleration-based parameter marking numbered regions of vortex pairs.

  13. Secondary flow structures under stent-induced perturbations for cardiovascular flow in a curved artery model

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, Autumn L.; Bulusu, Kartik V. [Department of Mechanical and Aerospace Engineering, George Washington University, 801 22nd Street, NW., Washington, DC 20052 (United States); Shu Fangjun [Department of Mechanical and Aerospace Engineering, New Mexico State University, MSC 3450, P.O. Box 30001, Las Cruces, NM 88003-8001 (United States); Plesniak, Michael W., E-mail: plesniak@gwu.edu [Department of Mechanical and Aerospace Engineering, George Washington University, 801 22nd Street, NW., Washington, DC 20052 (United States)

    2012-06-15

    Secondary flows within curved arteries with unsteady forcing result from amplified centrifugal instabilities and are expected to be driven by the rapid accelerations and decelerations inherent in physiological waveforms. These secondary flows may also affect the function of curved arteries through pro-atherogenic wall shear stresses, platelet residence time and other vascular response mechanisms. Planar PIV measurements were performed under multi-harmonic non-zero-mean and physiological carotid artery waveforms at various locations in a rigid bent-pipe curved artery model. Results revealed symmetric counter-rotating vortex pairs that developed during the acceleration phases of both multi-harmonic and physiological waveforms. An idealized stent model was placed upstream of the bend, which initiated flow perturbations under physiological inflow conditions. Changes in the secondary flow structures were observed during the systolic deceleration phase (t/T Almost-Equal-To 0.20-0.50). Proper Orthogonal Decomposition (POD) analysis of the flow morphologies under unsteady conditions indicated similarities in the coherent secondary-flow structures and correlation with phase-averaged velocity fields. A regime map was created that characterizes the kaleidoscope of vortical secondary flows with multiple vortex pairs and interesting secondary flow morphologies. This regime map in the curved artery model was created by plotting the secondary Reynolds number against another dimensionless acceleration-based parameter marking numbered regions of vortex pairs.

  14. An analytical phantom for the evaluation of medical flow imaging algorithms

    International Nuclear Information System (INIS)

    Pashaei, A; Fatouraee, N

    2009-01-01

    Blood flow characteristics (e.g. velocity, pressure, shear stress, streamline and volumetric flow rate) are effective tools in diagnosis of cardiovascular diseases such as atherosclerotic plaque, aneurism and cardiac muscle failure. Noninvasive estimation of cardiovascular blood flow characteristics is mostly limited to the measurement of velocity components by medical imaging modalities. Once the velocity field is obtained from the images, other flow characteristics within the cardiovascular system can be determined using algorithms relating them to the velocity components. In this work, we propose an analytical flow phantom to evaluate these algorithms accurately. The Navier-Stokes equations are used to derive this flow phantom. The exact solution of these equations obtains analytical expression for the flow characteristics inside the domain. Features such as pulsatility, incompressibility and viscosity of flow are included in a three-dimensional domain. The velocity domain of the resulted system is presented as reference images. These images could be employed to evaluate the performance of different flow characteristic algorithms. In this study, we also present some applications of the obtained phantom. The calculation of pressure domain from velocity data, volumetric flow rate, wall shear stress and particle trace are the characteristics whose algorithms are evaluated here. We also present the application of this phantom in the analysis of noisy and low-resolution images. The presented phantom can be considered as a benchmark test to compare the accuracy of different flow characteristic algorithms.

  15. Sequential use of human-derived medium supplements favours cardiovascular tissue engineering

    NARCIS (Netherlands)

    Riem Vis, P.W.; Sluijter, J.P.G.; Soekhradj - Soechit, R.S.; Herwerden, van L.A.; Kluin, J.; Bouten, C.V.C.

    2012-01-01

    For clinical application of tissue engineering strategies, the use of animal-derived serum in culture medium is not recommended, because it can evoke immune responses in patients. We previously observed that human platelet-lysate (PL) is favourable for cell expansion, but generates weaker tissue as

  16. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Bülow, J

    2010-01-01

    The adipose tissue metabolism is dependent on its blood perfusion. During lipid mobilization e.g. during exercise and during lipid deposition e.g. postprandial, adipose tissue blood flow is increased. This increase in blood flow may involve capillary recruitment in the tissue. We investigated...... of ultrasound contrast agent to establish the reproducibility of the technique. In nine subjects, the effect of an oral glucose load on blood flow and microvascular volume was measured in abdominal subcutaneous adipose tissue and forearm skeletal muscle. ¹³³Xe washout and venous occlusion strain......-gauge plethysmography was used to measure the adipose tissue and forearm blood flow, respectively. Ultrasound signal intensity of the first plateau phases was 27 ± dB in the abdominal subcutaneous adipose tissue and 18 ± 2 dB (P

  17. Prediabetes and Cardiovascular Parameters in Obese Children and Adolescents

    Science.gov (United States)

    Eklioğlu, Beray Selver; Atabek, Mehmet Emre; Akyürek, Nesibe; Alp, Hayrullah

    2016-01-01

    Objective: In this study, our aim was to determine cardiovascular risk and cardiac function in prediabetic obese children and adolescents. Methods: The study was conducted on 198 obese children and adolescents 6-18 years of age. Anthropometric measurements, blood pressure measurements, oral glucose tolerance test, lipid profile, and HbA1c levels of patients were assessed. Prediabetes was defined according to American Diabetes Association criteria. Left ventricular mass index (LVMi), carotid intima-media thickness (c-IMT), and tissue Doppler measurements records were used. Results: LVMi was found to be significantly higher in the prediabetes group (p=0.03). There were no statistically significant differences in right ventricular tissue Doppler measurements between the prediabetic and non-prediabetic groups. Left ventricular tissue Doppler measurements were significantly higher in the prediabetes group: LVEEM (left ventricular E/e ratio) (p=0.04); LVEM (left ventricular myocardial velocity cm/s) (p=0.035). LVMi was found to positively correlate with triglyceride level, diastolic blood pressure, waist circumference, body weight standard deviation score and to negatively correlate with high-density lipoprotein cholesterol (p=0.043, r=0.15; p=0.039, r=0.15; p=0.025, r=0.17; p=0.009, r=0.19; p=0.038, r=-0.15, respectively). LVEM was correlated with glucose (p=0.046, r=0.15) and LVEEM was correlated with systolic blood pressure (p=0.035, r=0.15). In linear regression analysis for clinical cardiovascular risk factors, fasting glucose level was the best predictor of LVEM. Conclusion: In this study, deterioration of cardiac function in prediabetic obese children and adolescents was shown. We recommend determining cardiovascular risk and cardiac dysfunction at early stages in prediabetic obese children and adolescents. PMID:26759114

  18. Prediabetes and Cardiovascular Parameters in Obese Children and Adolescents.

    Science.gov (United States)

    Eklioğlu, Beray Selver; Atabek, Mehmet Emre; Akyürek, Nesibe; Alp, Hayrullah

    2016-03-05

    In this study, our aim was to determine cardiovascular risk and cardiac function in prediabetic obese children and adolescents. The study was conducted on 198 obese children and adolescents 6-18 years of age. Anthropometric measurements, blood pressure measurements, oral glucose tolerance test, lipid profile, and HbA1c levels of patients were assessed. Prediabetes was defined according to American Diabetes Association criteria. Left ventricular mass index (LVMi), carotid intima-media thickness (c-IMT), and tissue Doppler measurements records were used. LVMi was found to be significantly higher in the prediabetes group (p=0.03). There were no statistically significant differences in right ventricular tissue Doppler measurements between the prediabetic and non-prediabetic groups. Left ventricular tissue Doppler measurements were significantly higher in the prediabetes group: LVEEM (left ventricular E/e ratio) (p=0.04); LVEM (left ventricular myocardial velocity cm/s) (p=0.035). LVMi was found to positively correlate with triglyceride level, diastolic blood pressure, waist circumference, body weight standard deviation score and to negatively correlate with high-density lipoprotein cholesterol (p=0.043, r=0.15; p=0.039, r=0.15; p=0.025, r=0.17; p=0.009, r=0.19; p=0.038, r=-0.15, respectively). LVEM was correlated with glucose (p=0.046, r=0.15) and LVEEM was correlated with systolic blood pressure (p=0.035, r=0.15). In linear regression analysis for clinical cardiovascular risk factors, fasting glucose level was the best predictor of LVEM. In this study, deterioration of cardiac function in prediabetic obese children and adolescents was shown. We recommend determining cardiovascular risk and cardiac dysfunction at early stages in prediabetic obese children and adolescents.

  19. The effects of short-chain fatty acids on the cardiovascular system

    NARCIS (Netherlands)

    Richards, L.B.; Li, M.; van Esch, B.C.A.M.; Garssen, J.; Folkerts, G.

    2016-01-01

    The development of cardiovascular diseases is often attributable to loss of endothelial functions of the vascular tissue or to decreased contractile function of the heart muscle. These disturbances are often caused by imbalances in lipid and glucose metabolism. For instance, these imbalances can

  20. Improving hemodynamics of cardiovascular system under a novel intraventricular assist device support via modeling and simulations.

    Science.gov (United States)

    Zhu, Shidong; Luo, Lin; Yang, Bibo; Li, Xinghui; Wang, Xiaohao

    2017-12-01

    Ventricular assist devices (LVADs) are increasingly recognized for supporting blood circulation in heart failure patients who are non-transplant eligible. Because of its volume, the traditional pulsatile device is not easy to implant intracorporeally. Continuous flow LVADs (CF-LVADs) reduce arterial pulsatility and only offer continuous flow, which is different from physiological flow, and may cause long-term complications in the cardiovascular system. The aim of this study was to design a new pulsatile assist device that overcomes this disadvantage, and to test this device in the cardiovascular system. Firstly, the input and output characteristics of the new device were tested in a simple cardiovascular mock system. A detailed mathematical model was established by fitting the experimental data. Secondly, the model was tested in four pathological cases, and was simulated and coupled with a fifth-order cardiovascular system and a new device model using Matlab software. Using assistance of the new device, we demonstrated that the left ventricle pressure, aortic pressure, and aortic flow of heart failure patients improved to the levels of a healthy individual. Especially, in state IV level heart failure patients, the systolic blood pressure increased from 81.34 mmHg to 132.1 mmHg, whereas the diastolic blood pressure increased from 54.28 mmHg to 78.7 mmHg. Cardiac output increased from 3.21 L/min to 5.16 L/min. The newly-developed assist device not only provided a physiological flow that was similar to healthy individuals, but also effectively improved the ability of the pathological ventricular volume. Finally, the effects of the new device on other hemodynamic parameters are discussed.

  1. Simulation of Cardiovascular Response to the Head-Up/Head-Down Tilt at Different Angles

    Science.gov (United States)

    Liu, Yang; Lu, Hong-Bing; Jiao, Chun; Zhang, Li-Fan

    2008-06-01

    The disappearance of hydrostatic pressure is the original factor that causes the changes of cardiovascular system under microgravity. The hydrostatical changes can be simulated by postural changes. Especially the head-down position can be used to simulate the effects of microgravity. The goal of this investigation was to develop a mathematical model for simulation of the human cardiovascular responses to acute and prolonged exposure under microgravity environment. We were particularly interested in the redistribution of transmural pressures, flows, blood volume, and the consequent alterations in local hemodynamics in different cardiovascular compartments during acute exposure and chronic adjustments. As a preliminary study, we first developed a multi-element, distributed hemodynamic model of human cardiovascular system, and verified the model to simulate cardiovascular changes during head up/down tilt at various angles.

  2. Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

    Directory of Open Access Journals (Sweden)

    Anna Maria Pappa

    2015-01-01

    Full Text Available Electrospun nanofibrous scaffolds have been extensively used in several biomedical applications for tissue engineering due to their morphological resemblance to the extracellular matrix (ECM. Especially, there is a need for the cardiovascular implants to exhibit a nanostructured surface that mimics the native endothelium in order to promote endothelialization and to reduce the complications of thrombosis and implant failure. Thus, we herein fabricated poly-ε-caprolactone (PCL electrospun nanofibrous scaffolds, to serve as coatings for cardiovascular implants and guide tissue regeneration. Oxygen plasma treatment was applied in order to modify the surface chemistry of the scaffold and its effect on cell attachment and growth was evaluated. The conditions of the surface modification were properly adjusted in order to define those conditions of the treatment that result in surfaces favorable for cell growth, while maintaining morphological integrity and mechanical behavior. Goniometry (contact angle measurements, scanning electron microscopy (SEM, atomic force microscopy (AFM, and X-ray photoelectron spectroscopy (XPS measurements were used to evaluate the morphological and chemical changes induced by the plasma treatment. Moreover, depth-sensing nanoindentation was performed to study the resistance of the plasma-treated scaffolds to plastic deformation. Lastly, the cell studies indicated that all scaffolds were cytocompatible, with the plasma-treated ones expressing a more pronounced cell viability and adhesion. All the above findings demonstrate the great potential of these biomimetic tissue-engineering constructs as efficient coatings for enhanced compatibility of cardiovascular implants.

  3. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yosuke Kayama

    2015-10-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM. DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD, cardiac hypertrophy, and heart failure (HF. HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS. ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

  4. Mechanisms in cardiovascular diseases: how useful are medical textbooks, eMedicine, and YouTube?

    Science.gov (United States)

    Azer, Samy A

    2014-06-01

    The aim of this study was to assess the contents of medical textbooks, eMedicine (Medscape) topics, and YouTube videos on cardiovascular mechanisms. Medical textbooks, eMedicine articles, and YouTube were searched for cardiovascular mechanisms. Using appraisal forms, copies of these resources and videos were evaluated independently by three assessors. Most textbooks were brief in explaining mechanisms. Although the overall average percentage committed to cardiovascular mechanisms in physiology textbooks (n=7) was 16.1% and pathology textbooks (n=4) was 17.5%, there was less emphasis on mechanisms in most internal medicine textbooks (n=6), with a total average of 6.9%. In addition, flow diagrams explaining mechanisms were lacking. However, eMedicine topics (n=48) discussed mechanisms adequately in 22.9% (11 of 48) topics, and the percentage of content allocated to cardiovascular mechanisms was higher (15.8%, 46.2 of 292) compared with that of any internal medicine textbooks. Only 29 YouTube videos fulfilled the inclusion criteria. Of these, 16 YouTube were educationally useful, scoring 14.1 ± 0.5 (mean ± SD). The remaining 13 videos were not educationally useful, scoring 6.1 ± 1.7. The concordance between the assessors on applying the criteria measured by κ score was in the range of 0.55–0.96. In conclusion, despite the importance of mechanisms, most textbooks and You-Tube videos were deficient in cardiovascular mechanisms. eMedicine topics discussed cardiovascular mechanisms for some diseases, but there were no flow diagrams or multimedia explaining mechanisms. These deficiencies in learning resources could add to the challenges faced by students in understanding cardiovascular mechanisms.

  5. Soluble elastin peptides in cardiovascular homeostasis: Foe or ally.

    Science.gov (United States)

    Qin, Zhenyu

    2015-05-01

    Elastin peptides, also known as elastin-derived peptides or elastokines, are soluble polypeptides in blood and tissue. The blood levels of elastin peptides are usually low but can increase during cardiovascular diseases, such as atherosclerosis, aortic aneurysm and diabetes with vascular complications. Generally, elastin peptides are derived from the degradation of insoluble elastic polymers. The biological activities of elastin peptides are bidirectional, e.g., a pro-inflammatory effect on monocyte migration induction vs. a protective effect on vasodilation promotion. However, recent in vivo studies have demonstrated that elastin peptides promote the formation of atherosclerotic plaques in hypercholesterolemic mice and induce hyperglycemia and elevations in plasma lipid levels in fasted mice. More important, the detrimental effects induced by elastin peptides can be largely inhibited by genetic or pharmacological blockade of the elastin receptor complex or by neutralization of an antibody against elastin peptides. These studies indicate new therapeutic strategies for the treatment of cardiovascular diseases by targeting elastin peptide metabolism. Therefore, the goal of this review is to summarize current knowledge about elastin peptides relevant to cardiovascular pathologies to further delineate their potential application in cardiovascular disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Riesgo cardiovascular, una herramienta útil para la prevención de las enfermedades cardiovasculares Cardiovascular risk, a useful tool for prevention of cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Jorge Vega Abascal

    2011-03-01

    Full Text Available El riesgo cardiovascular se define como la probabilidad de padecer un evento cardiovascular en un determinado período. Mejorar la exactitud en la predicción del riesgo requiere la evaluación y el tratamiento de múltiples factores de riesgo cardiovascular, los que tienen un efecto sinérgico, más que aditivo, sobre el riesgo cardiovascular total. El cálculo utilizando métodos cuantitativos es más preciso que el obtenido con métodos cualitativos. La predicción del riesgo cardiovascular ha constituido, en los últimos años, la piedra angular en las guías clínicas de prevención cardiovascular, y deviene una herramienta útil del Médico de Familia para establecer prioridades en la atención primaria, mejorando la atención a los pacientes y eligiendo más eficazmente la terapéutica a seguir, con el objetivo de acercarnos más a la realidad multifactorial de las enfermedades cardiovasculares y a su prevención.The cardiovascular risk is defined like a probability of suffering a cardiovascular event in a determined period. To improve the accuracy in risk prediction requires the assessment and treatment of different cardiovascular risk factors, which have a synergistic effect more than additive on the total cardiovascular risk. The calculus using quantitative methods is more accurate than that obtained with qualitative methods. The prediction of cardiovascular risk has been in past years the cornerstone in clinical guidances of cardiovascular prevention and becomes an useful tool for Family Physician to establish priorities in the primary care, improving the patients care and selecting in a more effective way the therapy to be followed to bring closer more to multifactor reality of cardiovascular diseases and its prevention.

  7. Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System

    Science.gov (United States)

    2011-01-01

    Background Zero-dimensional (lumped parameter) and one dimensional models, based on simplified representations of the components of the cardiovascular system, can contribute strongly to our understanding of circulatory physiology. Zero-D models provide a concise way to evaluate the haemodynamic interactions among the cardiovascular organs, whilst one-D (distributed parameter) models add the facility to represent efficiently the effects of pulse wave transmission in the arterial network at greatly reduced computational expense compared to higher dimensional computational fluid dynamics studies. There is extensive literature on both types of models. Method and Results The purpose of this review article is to summarise published 0D and 1D models of the cardiovascular system, to explore their limitations and range of application, and to provide an indication of the physiological phenomena that can be included in these representations. The review on 0D models collects together in one place a description of the range of models that have been used to describe the various characteristics of cardiovascular response, together with the factors that influence it. Such models generally feature the major components of the system, such as the heart, the heart valves and the vasculature. The models are categorised in terms of the features of the system that they are able to represent, their complexity and range of application: representations of effects including pressure-dependent vessel properties, interaction between the heart chambers, neuro-regulation and auto-regulation are explored. The examination on 1D models covers various methods for the assembly, discretisation and solution of the governing equations, in conjunction with a report of the definition and treatment of boundary conditions. Increasingly, 0D and 1D models are used in multi-scale models, in which their primary role is to provide boundary conditions for sophisticate, and often patient-specific, 2D and 3D models

  8. Cardiovascular risk factors cause premature rarefaction of the collateral circulation and greater ischemic tissue injury.

    Science.gov (United States)

    Moore, Scott M; Zhang, Hua; Maeda, Nobuyo; Doerschuk, Claire M; Faber, James E

    2015-07-01

    Collaterals lessen tissue injury in occlusive disease. However, aging causes progressive decline in their number and smaller diameters in those that remain (collateral rarefaction), beginning at 16 months of age in mice (i.e., middle age), and worse ischemic injury-effects that are accelerated in even 3-month-old eNOS(-/-) mice. These findings have found indirect support in recent human studies. We sought to determine whether other cardiovascular risk factors (CVRFs) associated with endothelial dysfunction cause collateral rarefaction, investigate possible mechanisms, and test strategies for prevention. Mice with nine different models of CVRFs of 4-12 months of age were assessed for number and diameter of native collaterals in skeletal muscle and brain and for collateral-dependent perfusion and ischemic injury after arterial occlusion. Hypertension caused collateral rarefaction whose severity increased with duration and level of hypertension, accompanied by greater hindlimb ischemia and cerebral infarct volume. Chronic treatment of wild-type mice with L-N (G)-nitro-arginine methylester caused similar rarefaction and worse ischemic injury which were not prevented by lowering arterial pressure with hydralazine. Metabolic syndrome, hypercholesterolemia, diabetes mellitus, and obesity also caused collateral rarefaction. Neither chronic statin treatment nor exercise training lessened hypertension-induced rarefaction. Chronic CVRF presence caused collateral rarefaction and worse ischemic injury, even at relatively young ages. Rarefaction was associated with increased proliferation rate of collateral endothelial cells, effects that may promote accelerated endothelial cell senescence.

  9. Matrix production and organization by endothelial colony forming cells in mechanically strained engineered tissue constructs.

    Directory of Open Access Journals (Sweden)

    Nicky de Jonge

    Full Text Available AIMS: Tissue engineering is an innovative method to restore cardiovascular tissue function by implanting either an in vitro cultured tissue or a degradable, mechanically functional scaffold that gradually transforms into a living neo-tissue by recruiting tissue forming cells at the site of implantation. Circulating endothelial colony forming cells (ECFCs are capable of differentiating into endothelial cells as well as a mesenchymal ECM-producing phenotype, undergoing Endothelial-to-Mesenchymal-transition (EndoMT. We investigated the potential of ECFCs to produce and organize ECM under the influence of static and cyclic mechanical strain, as well as stimulation with transforming growth factor β1 (TGFβ1. METHODS AND RESULTS: A fibrin-based 3D tissue model was used to simulate neo-tissue formation. Extracellular matrix organization was monitored using confocal laser-scanning microscopy. ECFCs produced collagen and also elastin, but did not form an organized matrix, except when cultured with TGFβ1 under static strain. Here, collagen was aligned more parallel to the strain direction, similar to Human Vena Saphena Cell-seeded controls. Priming ECFC with TGFβ1 before exposing them to strain led to more homogenous matrix production. CONCLUSIONS: Biochemical and mechanical cues can induce extracellular matrix formation by ECFCs in tissue models that mimic early tissue formation. Our findings suggest that priming with bioactives may be required to optimize neo-tissue development with ECFCs and has important consequences for the timing of stimuli applied to scaffold designs for both in vitro and in situ cardiovascular tissue engineering. The results obtained with ECFCs differ from those obtained with other cell sources, such as vena saphena-derived myofibroblasts, underlining the need for experimental models like ours to test novel cell sources for cardiovascular tissue engineering.

  10. Reduced levels of potential circulating biomarkers of cardiovascular diseases in apparently healthy vegetarian men.

    Science.gov (United States)

    Navarro, Julio Acosta; de Gouveia, Luiza Antoniazzi; Rocha-Penha, Lilliam; Cinegaglia, Naiara; Belo, Vanessa; Castro, Michele Mazzaron de; Sandrim, Valeria Cristina

    2016-10-01

    Several evidences report that a vegetarian diet is protector against cardiovascular diseases. Few studies have demonstrated the circulating profile of cardiovascular biomarkers in vegetarians. Therefore, the aims of the current study were compared the plasma concentrations of myeloperoxidase (MPO), metalloproteinase (MMP)-9, MMP-2, tissue inhibitor of MMP (TIMP)-1 and TIMP-2 between healthy vegetarian (Veg) and healthy omnivorous (Omn). Using ELISA and multiplexed bead immunoassay, we measured in plasma from 43 Veg and 41 Omn the cardiovascular biomarkers concentrations cited above. We found significant lower concentrations of MPO, MMP-9, MMP-2 and MMP-9/TIMP-1 ratio in Veg compared to Omn (all Pvegetarian diet is associated with a healthier profile of cardiovascular biomarkers compared to omnivorous. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes.

    Science.gov (United States)

    Patel, Tushar P; Rawal, Komal; Bagchi, Ashim K; Akolkar, Gauri; Bernardes, Nathalia; Dias, Danielle da Silva; Gupta, Sarita; Singal, Pawan K

    2016-01-01

    Sedentary life style and high calorie dietary habits are prominent leading cause of metabolic syndrome in modern world. Obesity plays a central role in occurrence of various diseases like hyperinsulinemia, hyperglycemia and hyperlipidemia, which lead to insulin resistance and metabolic derangements like cardiovascular diseases (CVDs) mediated by oxidative stress. The mortality rate due to CVDs is on the rise in developing countries. Insulin resistance (IR) leads to micro or macro angiopathy, peripheral arterial dysfunction, hampered blood flow, hypertension, as well as the cardiomyocyte and the endothelial cell dysfunctions, thus increasing risk factors for coronary artery blockage, stroke and heart failure suggesting that there is a strong association between IR and CVDs. The plausible linkages between these two pathophysiological conditions are altered levels of insulin signaling proteins such as IR-β, IRS-1, PI3K, Akt, Glut4 and PGC-1α that hamper insulin-mediated glucose uptake as well as other functions of insulin in the cardiomyocytes and the endothelial cells of the heart. Reduced AMPK, PFK-2 and elevated levels of NADP(H)-dependent oxidases produced by activated M1 macrophages of the adipose tissue and elevated levels of circulating angiotensin are also cause of CVD in diabetes mellitus condition. Insulin sensitizers, angiotensin blockers, superoxide scavengers are used as therapeutics in the amelioration of CVD. It evidently becomes important to unravel the mechanisms of the association between IR and CVDs in order to formulate novel efficient drugs to treat patients suffering from insulin resistance-mediated cardiovascular diseases. The possible associations between insulin resistance and cardiovascular diseases are reviewed here.

  12. Clinical Application of Induced Pluripotent Stem Cells in Cardiovascular Medicine.

    Science.gov (United States)

    Chi, Hong-jie; Gao, Song; Yang, Xin-chun; Cai, Jun; Zhao, Wen-shu; Sun, Hao; Geng, Yong-Jian

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are generated by reprogramming human somatic cells through the overexpression of four transcription factors: Oct4, Sox2, Klf4 and c-Myc. iPSCs are capable of indefinite self-renewal, and they can differentiate into almost any type of cell in the body. These cells therefore offer a highly valuable therapeutic strategy for tissue repair and regeneration. Recent experimental and preclinical research has revealed their potential for cardiovascular disease diagnosis, drug screening and cellular replacement therapy. Nevertheless, significant challenges remain in terms of the development and clinical application of human iPSCs. Here, we review current progress in research related to patient-specific iPSCs for ex vivo modeling of cardiovascular disorders and drug screening, and explore the potential of human iPSCs for use in the field of cardiovascular regenerative medicine. © 2015 S. Karger AG, Basel.

  13. Are women with polycystic ovary syndrome at increased cardiovascular disease risk later in life?

    Science.gov (United States)

    Gunning, M N; Fauser, B C J M

    2017-06-01

    To date, the world's leading cause of death amongst women is cardiovascular disease. Polycystic ovary syndrome (PCOS) is associated with an unfavorable cardiometabolic profile in early life. Apart from dyslipidemia, obesity and onset of type 2 diabetes mellitus, androgens are thought to influence cardiovascular health. The question rises whether women with PCOS are truly at risk for cardiovascular disease in later life. In this review paper, we aim to reflect on this assumed relation based on studies in different stages of life in women with PCOS. Cardiovascular risk factors (type 2 diabetes mellitus, obesity and metabolic syndrome), surrogate outcomes (flow-mediated dilation, carotid intima-media thickness and coronary artery calcium) and clinical long-term outcomes (cardiovascular disease and mortality) will be summarized. Data on cardiovascular disease and mortality in peri- and postmenopausal women with PCOS appear to be controversial. Whether androgens have a protective or unfavorable influence on the manifestation of cardiovascular disease remains uncertain. The need for large, prospective, well-phenotyped cohort studies of women with PCOS is high. Only then will we be able to answer this research question.

  14. Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue

    DEFF Research Database (Denmark)

    Smith, Julie; Fahrenkrug, Jan; Jørgensen, Henrik L

    2015-01-01

    Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart, but the tem......Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart......, but the temporal expression profile of their cognate receptors has not been examined in white adipose tissue. We therefore collected peri-renal white adipose tissue and serum from WT mice. Tissue mRNA contents of NPRs - NPR-A and NPR-C, the clock genes Per1 and Bmal1, and transcripts involved in lipid metabolism...... in serum peaked in the active dark period (P=0.003). In conclusion, NPR-A and NPR-C gene expression is associated with the expression of clock genes in white adipose tissue. The reciprocal expression may thus contribute to regulate lipolysis and energy homeostasis in a diurnal manner....

  15. Subtracted dynamic MR perfusion source images (sMRP-SI) provide collateral blood flow assessment in MCA occlusions and predict tissue fate

    International Nuclear Information System (INIS)

    Villringer, Kersten; Serrano-Sandoval, Rafael; Galinovic, Ivana; Ostwaldt, Ann-Christin; Brunecker, Peter; Fiebach, Jochen B.; Grittner, Ulrike; Schneider, Alice; Rocco, Andrea

    2016-01-01

    Collateral blood flow is accepted as a predictive factor of tissue fate in ischemic stroke. Thus, we aimed to evaluate a new method derived from MR perfusion source images to assess collateral flow in patients with ICA/MCA occlusions. A total of 132 patients of the prospective 1000+ study were examined. MR perfusion source images were assessed according to Δimg n = img n + 1 - img n - 1 using the five-grade Higashida collateral flow rating system. Higashida scores were correlated to mismatch (MM) volume, mismatch ratio, day 6 FLAIR lesion volumes and day 90 mRS. Patients with Higashida scores 3 and 4 had significantly lower admission NIHSS, smaller FLAIR day 6 lesion volumes (p < 0.001) and higher rates of better long-term outcome (mRS 0-2, p = 0.002). There was a linear trend for the association of Higashida grade 1 (p = 0.002) and 2 (p = 0.001) with unfavourable outcome (day 90 mRS 3-6), but no significant association was found for MM volume, MM ratio and day 90 mRS. Inter-rater agreement was 0.58 (95 % CI 0.43-0.73) on day 1, 0.70 (95 % CI 0.58-0.81) on day 2. sMRP-SI Higashida score offers a non-invasive collateral vessel and tissue perfusion assessment of ischemic tissue. The predictive value of Higashida rating proved superior to MM with regard to day 90 mRS. (orig.)

  16. Subtracted dynamic MR perfusion source images (sMRP-SI) provide collateral blood flow assessment in MCA occlusions and predict tissue fate

    Energy Technology Data Exchange (ETDEWEB)

    Villringer, Kersten; Serrano-Sandoval, Rafael; Galinovic, Ivana; Ostwaldt, Ann-Christin; Brunecker, Peter; Fiebach, Jochen B. [Charite-Universitaetsmedizin, Academic Neuroradiology, Center for Stroke Research (CSB), Berlin (Germany); Grittner, Ulrike [Charite, Universitaetsmedizin Berlin, Center for Stroke Research, Berlin (Germany); Charite, Department for Biostatistics and Clinical Epidemiology, Berlin (Germany); Schneider, Alice [Charite, Universitaetsmedizin Berlin, Center for Stroke Research, Berlin (Germany); Rocco, Andrea [Charite, Department of Neurology and Center for Stroke Research, Berlin (Germany)

    2016-05-15

    Collateral blood flow is accepted as a predictive factor of tissue fate in ischemic stroke. Thus, we aimed to evaluate a new method derived from MR perfusion source images to assess collateral flow in patients with ICA/MCA occlusions. A total of 132 patients of the prospective 1000+ study were examined. MR perfusion source images were assessed according to Δimg{sub n} = img{sub n} + 1 - img{sub n} - 1 using the five-grade Higashida collateral flow rating system. Higashida scores were correlated to mismatch (MM) volume, mismatch ratio, day 6 FLAIR lesion volumes and day 90 mRS. Patients with Higashida scores 3 and 4 had significantly lower admission NIHSS, smaller FLAIR day 6 lesion volumes (p < 0.001) and higher rates of better long-term outcome (mRS 0-2, p = 0.002). There was a linear trend for the association of Higashida grade 1 (p = 0.002) and 2 (p = 0.001) with unfavourable outcome (day 90 mRS 3-6), but no significant association was found for MM volume, MM ratio and day 90 mRS. Inter-rater agreement was 0.58 (95 % CI 0.43-0.73) on day 1, 0.70 (95 % CI 0.58-0.81) on day 2. sMRP-SI Higashida score offers a non-invasive collateral vessel and tissue perfusion assessment of ischemic tissue. The predictive value of Higashida rating proved superior to MM with regard to day 90 mRS. (orig.)

  17. Pan-FGFR inhibition leads to blockade of FGF23 signaling, soft tissue mineralization, and cardiovascular dysfunction.

    Science.gov (United States)

    Yanochko, Gina M; Vitsky, Allison; Heyen, Jonathan R; Hirakawa, Brad; Lam, Justine L; May, Jeff; Nichols, Tim; Sace, Frederick; Trajkovic, Dusko; Blasi, Eileen

    2013-10-01

    The fibroblast growth factor receptors (FGFR) play a major role in angiogenesis and are desirable targets for the development of therapeutics. Groups of Wistar Han rats were dosed orally once daily for 4 days with a small molecule pan-FGFR inhibitor (5mg/kg) or once daily for 6 days with a small molecule MEK inhibitor (3mg/kg). Serum phosphorous and FGF23 levels increased in all rats during the course of the study. Histologically, rats dosed with either drug exhibited multifocal, multiorgan soft tissue mineralization. Expression levels of the sodium phosphate transporter Npt2a and the vitamin D-metabolizing enzymes Cyp24a1 and Cyp27b1 were modulated in kidneys of animals dosed with the pan-FGFR inhibitor. Both inhibitors decreased ERK phosphorylation in the kidneys and inhibited FGF23-induced ERK phosphorylation in vitro in a dose-dependent manner. A separate cardiovascular outcome study was performed to monitor hemodynamics and cardiac structure and function of telemetered rats dosed with either the pan-FGFR inhibitor or MEK inhibitor for 3 days. Both compounds increased blood pressure (~+ 17 mmHg), decreased heart rate (~-75 bpm), and modulated echocardiography parameters. Our data suggest that inhibition of FGFR signaling following administration of either pan-FGFR inhibitor or MEK inhibitor interferes with the FGF23 pathway, predisposing animals to hyperphosphatemia and a tumoral calcinosis-like syndrome in rodents.

  18. Genomics in cardiovascular diseases: analysis of the importance of the toll-like receptor signaling pathway

    Directory of Open Access Journals (Sweden)

    Bustamante J

    2012-10-01

    Full Text Available J Bustamante,1 E Tamayo,2 J Herreros3,41Department of Cardiovascular Surgery, Hospital Universitario La Princesa, Madrid, 2Department of Anesthesiology and Intensive Care, Hospital Clinico Universitario de Valladolid, Valladolid, 3Department of Cardiovascular Surgery, Hospital Universitario Valdecilla, Santander, 4Biomedical Engineering Institute of Santander, Santander, SpainAbstract: The development of techniques for genomics study makes it possible for us to further our knowledge about the physiopathology of various immunological or infectious diseases. These techniques improve our understanding of the development and evolution of such diseases, including those of cardiovascular origin, whilst they help to bring about the design of new therapeutic strategies. We are reviewing the genetic alterations of immunity in said field, and focusing on the signaling pathway of toll-like receptors because not only does this play a decisive role in response to microorganisms, it is also heavily involved in modulating the inflammatory response to tissue damage, a side effect of numerous cardiovascular diseases. These alterations in tissue homeostasis are present under a wide range of circumstances, such as reperfusion ischemia (myocardial infarction phenomena, arteriosclerosis, or valvulopathy.Keywords: genome-wide association study, single-nucleotide polymorphism, innate immune system, ischemic/reperfusion, myocardial infarction

  19. Bone tissue engineering: the role of interstitial fluid flow

    Science.gov (United States)

    Hillsley, M. V.; Frangos, J. A.

    1994-01-01

    It is well established that vascularization is required for effective bone healing. This implies that blood flow and interstitial fluid (ISF) flow are required for healing and maintenance of bone. The fact that changes in bone blood flow and ISF flow are associated with changes in bone remodeling and formation support this theory. ISF flow in bone results from transcortical pressure gradients produced by vascular and hydrostatic pressure, and mechanical loading. Conditions observed to alter flow rates include increases in venous pressure in hypertension, fluid shifts occurring in bedrest and microgravity, increases in vascularization during the injury-healing response, and mechanical compression and bending of bone during exercise. These conditions also induce changes in bone remodeling. Previously, we hypothesized that interstitial fluid flow in bone, and in particular fluid shear stress, serves to mediate signal transduction in mechanical loading- and injury-induced remodeling. In addition, we proposed that a lack or decrease of ISF flow results in the bone loss observed in disuse and microgravity. The purpose of this article is to review ISF flow in bone and its role in osteogenesis.

  20. High Prevalence of Cardiovascular Disease in End-Stage Kidney Disease Patients Ongoing Hemodialysis in Peru: Why Should We Care About It?

    Science.gov (United States)

    Bravo-Jaimes, Katia; Whittembury, Alvaro; Santivañez, Vilma

    2015-01-01

    Purpose. To determine clinical, biochemical, and pharmacological characteristics as well as cardiovascular disease prevalence and its associated factors among end-stage kidney disease patients receiving hemodialysis in the main hemodialysis center in Lima, Peru. Methods. This cross-sectional study included 103 patients. Clinical charts were reviewed and an echocardiogram was performed to determine prevalence of cardiovascular disease, defined as the presence of systolic/diastolic dysfunction, coronary heart disease, ventricular dysrhythmias, cerebrovascular disease, and/or peripheral vascular disease. Associations between cardiovascular disease and clinical, biochemical, and dialysis factors were sought using prevalence ratio. A robust Poisson regression model was used to quantify possible associations. Results. Cardiovascular disease prevalence was 81.6%, mainly due to diastolic dysfunction. It was significantly associated with age older than 50 years, metabolic syndrome, C-reactive protein levels, effective blood flow ≤ 300 mL/min, severe anemia, and absence of mild anemia. However, in the regression analysis only age older than 50 years, effective blood flow ≤ 300 mL/min, and absence of mild anemia were associated. Conclusions. Cardiovascular disease prevalence is high in patients receiving hemodialysis in the main center in Lima. Diastolic dysfunction, age, specific hemoglobin levels, and effective blood flow may play an important role.

  1. High Prevalence of Cardiovascular Disease in End-Stage Kidney Disease Patients Ongoing Hemodialysis in Peru: Why Should We Care About It?

    Directory of Open Access Journals (Sweden)

    Katia Bravo-Jaimes

    2015-01-01

    Full Text Available Purpose. To determine clinical, biochemical, and pharmacological characteristics as well as cardiovascular disease prevalence and its associated factors among end-stage kidney disease patients receiving hemodialysis in the main hemodialysis center in Lima, Peru. Methods. This cross-sectional study included 103 patients. Clinical charts were reviewed and an echocardiogram was performed to determine prevalence of cardiovascular disease, defined as the presence of systolic/diastolic dysfunction, coronary heart disease, ventricular dysrhythmias, cerebrovascular disease, and/or peripheral vascular disease. Associations between cardiovascular disease and clinical, biochemical, and dialysis factors were sought using prevalence ratio. A robust Poisson regression model was used to quantify possible associations. Results. Cardiovascular disease prevalence was 81.6%, mainly due to diastolic dysfunction. It was significantly associated with age older than 50 years, metabolic syndrome, C-reactive protein levels, effective blood flow ≤ 300 mL/min, severe anemia, and absence of mild anemia. However, in the regression analysis only age older than 50 years, effective blood flow ≤ 300 mL/min, and absence of mild anemia were associated. Conclusions. Cardiovascular disease prevalence is high in patients receiving hemodialysis in the main center in Lima. Diastolic dysfunction, age, specific hemoglobin levels, and effective blood flow may play an important role.

  2. Reinforced chitosan-based heart valve scaffold and utility of bone marrow-derived mesenchymal stem cells for cardiovascular tissue engineering

    Science.gov (United States)

    Albanna, Mohammad Zaki

    utility for cardiovascular tissue engineering applications. Moreover, we evaluated the effect of various glycosaminoglycans (GAGs) on MSCs morphology and proliferation. Lastly, we studied the effect of stiffness of mechanically improved chitosan fibers on MSCs viability, attachment and proliferation. Results showed that MSCs proliferation improved in proportion to fiber stiffness.

  3. Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition

    Directory of Open Access Journals (Sweden)

    Valverde Israel

    2012-04-01

    Full Text Available Abstract Background Systemic-to-pulmonary collateral flow (SPCF may constitute a risk factor for increased morbidity and mortality in patients with single-ventricle physiology (SV. However, clinical research is limited by the complexity of multi-vessel two-dimensional (2D cardiovascular magnetic resonance (CMR flow measurements. We sought to validate four-dimensional (4D velocity acquisition sequence for concise quantification of SPCF and flow distribution in patients with SV. Methods 29 patients with SV physiology prospectively underwent CMR (1.5 T (n = 14 bidirectional cavopulmonary connection [BCPC], age 2.9 ± 1.3 years; and n = 15 Fontan, 14.4 ± 5.9 years and 20 healthy volunteers (age, 28.7 ± 13.1 years served as controls. A single whole-heart 4D velocity acquisition and five 2D flow acquisitions were performed in the aorta, superior/inferior caval veins, right/left pulmonary arteries to serve as gold-standard. The five 2D velocity acquisition measurements were compared with 4D velocity acquisition for validation of individual vessel flow quantification and time efficiency. The SPCF was calculated by evaluating the disparity between systemic (aortic minus caval vein flows and pulmonary flows (arterial and venour return. The pulmonary right to left and the systemic lower to upper body flow distribution were also calculated. Results The comparison between 4D velocity and 2D flow acquisitions showed good Bland-Altman agreement for all individual vessels (mean bias, 0.05±0.24 l/min/m2, calculated SPCF (−0.02±0.18 l/min/m2 and significantly shorter 4D velocity acquisition-time (12:34 min/17:28 min,p 2; Fontan 0.62±0.82 l/min/m2 and not in controls (0.01 + 0.16 l/min/m2, (3 inverse relation of right/left pulmonary artery perfusion and right/left SPCF (Pearson = −0.47,p = 0.01 and (4 upper to lower body flow distribution trend related to the weight (r = 0.742, p  Conclusions 4D

  4. Using Polymeric Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Alida Abruzzo

    2014-01-01

    Full Text Available With the high occurrence of cardiovascular disease and increasing numbers of patients requiring vascular access, there is a significant need for small-diameter (<6 mm inner diameter vascular graft that can provide long-term patency. Despite the technological improvements, restenosis and graft thrombosis continue to hamper the success of the implants. Vascular tissue engineering is a new field that has undergone enormous growth over the last decade and has proposed valid solutions for blood vessels repair. The goal of vascular tissue engineering is to produce neovessels and neoorgan tissue from autologous cells using a biodegradable polymer as a scaffold. The most important advantage of tissue-engineered implants is that these tissues can grow, remodel, rebuild, and respond to injury. This review describes the development of polymeric materials over the years and current tissue engineering strategies for the improvement of vascular conduits.

  5. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    Energy Technology Data Exchange (ETDEWEB)

    Verreth, Wim; Verhamme, Peter; Pelat, Michael; Ganame, Javier; Bielicki, John K.; Mertens, Ann; Quarck, Rozenn; Benhabiles, Nora; Marguerie, Gerard; Mackness, Bharti; Mackness, Mike; Ninio, Ewa; Herregods, Marie-Christine; Balligand, Jean-Luc; Holvoet, Paul

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and of key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.

  6. Exploring the feasibility of multi-site flow cytometric processing of gut associated lymphoid tissue with centralized data analysis for multi-site clinical trials.

    Directory of Open Access Journals (Sweden)

    Ian McGowan

    Full Text Available The purpose of this study was to determine whether the development of a standardized approach to the collection of intestinal tissue from healthy volunteers, isolation of gut associated lymphoid tissue mucosal mononuclear cells (MMC, and characterization of mucosal T cell phenotypes by flow cytometry was sufficient to minimize differences in the normative ranges of flow parameters generated at two trial sites. Forty healthy male study participants were enrolled in Pittsburgh and Los Angeles. MMC were isolated from rectal biopsies using the same biopsy acquisition and enzymatic digestion protocols. As an additional comparator, peripheral blood mononuclear cells (PBMC were collected from the study participants. For quality control, cryopreserved PBMC from a single donor were supplied to both sites from a central repository (qPBMC. Using a jointly optimized standard operating procedure, cells were isolated from tissue and blood and stained with monoclonal antibodies targeted to T cell phenotypic markers. Site-specific flow data were analyzed by an independent center which analyzed all data from both sites. Ranges for frequencies for overall CD4+ and CD8+ T cells, derived from the qPBMC samples, were equivalent at both UCLA and MWRI. However, there were significant differences across sites for the majority of T cell activation and memory subsets in qPBMC as well as PBMC and MMC. Standardized protocols to collect, stain, and analyze MMC and PBMC, including centralized analysis, can reduce but not exclude variability in reporting flow data within multi-site studies. Based on these data, centralized processing, flow cytometry, and analysis of samples may provide more robust data across multi-site studies. Centralized processing requires either shipping of fresh samples or cryopreservation and the decision to perform centralized versus site processing needs to take into account the drawbacks and restrictions associated with each method.

  7. Exploring the feasibility of multi-site flow cytometric processing of gut associated lymphoid tissue with centralized data analysis for multi-site clinical trials.

    Science.gov (United States)

    McGowan, Ian; Anton, Peter A; Elliott, Julie; Cranston, Ross D; Duffill, Kathryn; Althouse, Andrew D; Hawkins, Kevin L; De Rosa, Stephen C

    2015-01-01

    The purpose of this study was to determine whether the development of a standardized approach to the collection of intestinal tissue from healthy volunteers, isolation of gut associated lymphoid tissue mucosal mononuclear cells (MMC), and characterization of mucosal T cell phenotypes by flow cytometry was sufficient to minimize differences in the normative ranges of flow parameters generated at two trial sites. Forty healthy male study participants were enrolled in Pittsburgh and Los Angeles. MMC were isolated from rectal biopsies using the same biopsy acquisition and enzymatic digestion protocols. As an additional comparator, peripheral blood mononuclear cells (PBMC) were collected from the study participants. For quality control, cryopreserved PBMC from a single donor were supplied to both sites from a central repository (qPBMC). Using a jointly optimized standard operating procedure, cells were isolated from tissue and blood and stained with monoclonal antibodies targeted to T cell phenotypic markers. Site-specific flow data were analyzed by an independent center which analyzed all data from both sites. Ranges for frequencies for overall CD4+ and CD8+ T cells, derived from the qPBMC samples, were equivalent at both UCLA and MWRI. However, there were significant differences across sites for the majority of T cell activation and memory subsets in qPBMC as well as PBMC and MMC. Standardized protocols to collect, stain, and analyze MMC and PBMC, including centralized analysis, can reduce but not exclude variability in reporting flow data within multi-site studies. Based on these data, centralized processing, flow cytometry, and analysis of samples may provide more robust data across multi-site studies. Centralized processing requires either shipping of fresh samples or cryopreservation and the decision to perform centralized versus site processing needs to take into account the drawbacks and restrictions associated with each method.

  8. Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI

    Science.gov (United States)

    Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger

    2015-03-01

    In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.

  9. Clarifying tetrapod embryogenesis by a dorso-ventral analysis of the tissue flows during early stages of chicken development.

    Science.gov (United States)

    Fleury, Vincent

    2012-09-01

    The formation of an animal body remains largely a mystery. It is still not clear whether anything like an organization plan or an "archetype" as coined by Darwin himself, actually exists, or whether animals are organized by a succession of stop-and-go genetic, non-linear, instructions with no global pattern. Nevertheless, it was recognized long ago that the early stages of amniote development consist of large scale rotatory movements over a discoidal blastula (Wetzel, 1924). Such rotatory movements reshuffle a mass inside a finite volume, and thus may have to bear physical conservation laws which contribute to establish the plan of animals in a global fashion. In this article I use dual dorso-ventral imaging of the chicken blastula, to show experimentally that the global movement of early vertebrate embryogenesis is organized with a very simple topology, around and away of a series of hyperbolic points in the vector flow of movement. At the first hyperbolic point, a layer of tissue (the mesoderm) ingresses and moves as a viscous sheet radially. It is found that the sheet flows away with a scaling law for the radius R(t)∼exp(t/τ). Also, the movement of this mesoderm changes the flow on the other layer (the ectoderm) by the principle of action and reaction. By mesoderm wetting the ectoderm, the first hyperbolic point migrates from the anal region, to the umbilical region. The final location of the hyperbolic point defines eventually the central part of the body (the umbilical region). Thus, the formation of the vertebrate body is fixed, as a global movement, by the dynamics of singular points in the visco-elastic flow, governed by mechanical forces within the tissue. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Abnormal cardiovascular response to exercise in hypertension: contribution of neural factors.

    Science.gov (United States)

    Mitchell, Jere H

    2017-06-01

    During both dynamic (e.g., endurance) and static (e.g., strength) exercise there are exaggerated cardiovascular responses in hypertension. This includes greater increases in blood pressure, heart rate, and efferent sympathetic nerve activity than in normal controls. Two of the known neural factors that contribute to this abnormal cardiovascular response are the exercise pressor reflex (EPR) and functional sympatholysis. The EPR originates in contracting skeletal muscle and reflexly increases sympathetic efferent nerve activity to the heart and blood vessels as well as decreases parasympathetic efferent nerve activity to the heart. These changes in autonomic nerve activity cause an increase in blood pressure, heart rate, left ventricular contractility, and vasoconstriction in the arterial tree. However, arterial vessels in the contracting skeletal muscle have a markedly diminished vasoconstrictor response. The markedly diminished vasoconstriction in contracting skeletal muscle has been termed functional sympatholysis. It has been shown in hypertension that there is an enhanced EPR, including both its mechanoreflex and metaboreflex components, and an impaired functional sympatholysis. These conditions set up a positive feedback or vicious cycle situation that causes a progressively greater decrease in the blood flow to the exercising muscle. Thus these two neural mechanisms contribute significantly to the abnormal cardiovascular response to exercise in hypertension. In addition, exercise training in hypertension decreases the enhanced EPR, including both mechanoreflex and metaboreflex function, and improves the impaired functional sympatholysis. These two changes, caused by exercise training, improve the muscle blood flow to exercising muscle and cause a more normal cardiovascular response to exercise in hypertension. Copyright © 2017 the American Physiological Society.

  11. Business Process Flow Diagrams in Tissue Bank Informatics System Design, and Identification and Communication of Best Practices: The Pharmaceutical Industry Experience.

    Science.gov (United States)

    McDonald, Sandra A; Velasco, Elizabeth; Ilasi, Nicholas T

    2010-12-01

    Pfizer, Inc.'s Tissue Bank, in conjunction with Pfizer's BioBank (biofluid repository), endeavored to create an overarching internal software package to cover all general functions of both research facilities, including sample receipt, reconciliation, processing, storage, and ordering. Business process flow diagrams were developed by the Tissue Bank and Informatics teams as a way of characterizing best practices both within the Bank and in its interactions with key internal and external stakeholders. Besides serving as a first step for the software development, such formalized process maps greatly assisted the identification and communication of best practices and the optimization of current procedures. The diagrams shared here could assist other biospecimen research repositories (both pharmaceutical and other settings) for comparative purposes or as a guide to successful informatics design. Therefore, it is recommended that biorepositories consider establishing formalized business process flow diagrams for their laboratories, to address these objectives of communication and strategy.

  12. The Role of Cardiovascular Magnetic Resonance Imaging in Heart Failure.

    Science.gov (United States)

    Peterzan, Mark A; Rider, Oliver J; Anderson, Lisa J

    2016-11-01

    Cardiovascular imaging is key for the assessment of patients with heart failure. Today, cardiovascular magnetic resonance imaging plays an established role in the assessment of patients with suspected and confirmed heart failure syndromes, in particular identifying aetiology. Its role in informing prognosis and guiding decisions around therapy are evolving. Key strengths include its accuracy; reproducibility; unrestricted field of view; lack of radiation; multiple abilities to characterise myocardial tissue, thrombus and scar; as well as unparalleled assessment of left and right ventricular volumes. T2* has an established role in the assessment and follow-up of iron overload cardiomyopathy and a role for T1 in specific therapies for cardiac amyloid and Anderson-Fabry disease is emerging.

  13. The role of tissue oxygen tension in the control of local blood flow in the microcirculation of skeletal muscles

    DEFF Research Database (Denmark)

    Ngo, Thuc Anh

    2010-01-01

    In the microcirculation blood flow is highly regulated dependent on the metabolic activity of the tissues. Among several mechanisms, mechanisms involved in the coupling of changes in tissue oxygen tension due to changes in the metabolic activity of the tissue play an important role. In the systemic...... (inhibitor of KATP channels) in the superfusate abolished both vasodilatation and constriction to low and high oxygen superfusate, indicating that KATP channels are involved in both hypoxic vasodilatation and hyperoxic vasoconstriction. Red blood cells (RBCs) have been proposed to release ATP and...... as in the intact blood-perfused arteriole. This indicates that RBCs are not essential for hypoxic vasodilatation. In addition several potential pathways were evaluated. Application of DPCPX (inhibitor of adenosine A1 and A2 receptors) and L-NAME (inhibitor of NO-synthase) did not affect vasomotor responses to low...

  14. Non-cardiovascular findings in clinical cardiovascular magnetic resonance imaging in children

    International Nuclear Information System (INIS)

    Ghadimi Mahani, Maryam; Morani, Ajaykumar C.; Lu, Jimmy C.; Dorfman, Adam L.; Fazeli Dehkordy, Soudabeh; Jeph, Sunil; Agarwal, Prachi P.

    2016-01-01

    With increasing use of pediatric cardiovascular MRI, it is important for all imagers to become familiar with the spectrum of non-cardiovascular imaging findings that can be encountered. This study aims to ascertain the prevalence and nature of these findings in pediatric cardiovascular MRIs performed at our institution. We retrospectively evaluated reports of all cardiovascular MRI studies performed at our institute from January 2008 to October 2012 in patients younger than18 years. Most studies (98%) were jointly interpreted by a pediatric cardiologist and a radiologist. We reviewed the electronic medical records of all cases with non-cardiovascular findings, defined as any imaging finding outside the cardiovascular system. Non-cardiovascular findings were classified into significant and non-significant, based on whether they were known at the time of imaging or they required additional workup or a change in management. In 849 consecutive studies (mean age 9.7 ± 6.3 years), 145 non-cardiovascular findings were found in 140 studies (16.5% of total studies). Overall, 51.0% (74/145) of non-cardiovascular findings were in the abdomen, 30.3% (44/145) were in the chest, and 18.6% (27/145) were in the spine. A total of 19 significant non-cardiovascular findings were observed in 19 studies in individual patients (2.2% of total studies, 47% male, mean age 5.9 ± 6.7 years). Significant non-cardiovascular findings included hepatic adenoma, arterially enhancing focal liver lesions, asplenia, solitary kidney, pelvicaliectasis, renal cystic diseases, gastric distention, adrenal hemorrhage, lung hypoplasia, air space disease, bronchial narrowing, pneumomediastinum and retained surgical sponge. Non-cardiovascular findings were seen in 16.5% of cardiovascular MRI studies in children, of which 2.2% were clinically significant findings. Prevalence and nature of these non-cardiovascular findings are different from those reported in adults. Attention to these findings is important

  15. Non-cardiovascular findings in clinical cardiovascular magnetic resonance imaging in children

    Energy Technology Data Exchange (ETDEWEB)

    Ghadimi Mahani, Maryam [University of Michigan Health System, C.S. Mott Children' s Hospital, Department of Radiology, Section of Pediatric Radiology, Ann Arbor, MI (United States); Morani, Ajaykumar C. [The University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, TX (United States); Lu, Jimmy C.; Dorfman, Adam L. [University of Michigan Health System, C.S. Mott Children' s Hospital, Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, Ann Arbor, MI (United States); Fazeli Dehkordy, Soudabeh [University of Michigan Health System, C.S. Mott Children' s Hospital, Department of Radiology, Section of Pediatric Radiology, Ann Arbor, MI (United States); Providence Hospital and Medical Centers, Department of Graduate Medical Education, Southfield, MI (United States); Jeph, Sunil [The University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, TX (United States); Geisinger Medical Center, Department of Radiology, Danville, PA (United States); Agarwal, Prachi P. [University of Michigan Health System, Department of Radiology, Division of Cardiothoracic Radiology, Ann Arbor, MI (United States)

    2016-04-15

    With increasing use of pediatric cardiovascular MRI, it is important for all imagers to become familiar with the spectrum of non-cardiovascular imaging findings that can be encountered. This study aims to ascertain the prevalence and nature of these findings in pediatric cardiovascular MRIs performed at our institution. We retrospectively evaluated reports of all cardiovascular MRI studies performed at our institute from January 2008 to October 2012 in patients younger than18 years. Most studies (98%) were jointly interpreted by a pediatric cardiologist and a radiologist. We reviewed the electronic medical records of all cases with non-cardiovascular findings, defined as any imaging finding outside the cardiovascular system. Non-cardiovascular findings were classified into significant and non-significant, based on whether they were known at the time of imaging or they required additional workup or a change in management. In 849 consecutive studies (mean age 9.7 ± 6.3 years), 145 non-cardiovascular findings were found in 140 studies (16.5% of total studies). Overall, 51.0% (74/145) of non-cardiovascular findings were in the abdomen, 30.3% (44/145) were in the chest, and 18.6% (27/145) were in the spine. A total of 19 significant non-cardiovascular findings were observed in 19 studies in individual patients (2.2% of total studies, 47% male, mean age 5.9 ± 6.7 years). Significant non-cardiovascular findings included hepatic adenoma, arterially enhancing focal liver lesions, asplenia, solitary kidney, pelvicaliectasis, renal cystic diseases, gastric distention, adrenal hemorrhage, lung hypoplasia, air space disease, bronchial narrowing, pneumomediastinum and retained surgical sponge. Non-cardiovascular findings were seen in 16.5% of cardiovascular MRI studies in children, of which 2.2% were clinically significant findings. Prevalence and nature of these non-cardiovascular findings are different from those reported in adults. Attention to these findings is important

  16. Subcutaneous adipose tissue blood flow in the forefoot during 24 hours. Labeling pattern and reproducibility

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Bülow, J; Tønnesen, K H

    1987-01-01

    Wash-out of 133xenon from a local depot in the subcutaneous adipose tissue in the forefoot was measured continuously during 24 hours on subsequent recordings in 51 feet (normal circulation: 10, intermittent claudication: 22 and ischaemic nocturnal rest pain: 19) with a mean time interval of 26 da...... was calculated to 10%, and for the ratio of blood flow from day to night to 5%. The method is thus considered apt as a monitor in the treatment of peripheral vascular disease, for example, surgery and medical therapy. As predominant source of error is the formation of oedema....

  17. Use of flow cytometry for high-throughput cell population estimates in fixed brain tissue

    Directory of Open Access Journals (Sweden)

    Nicole A Young

    2012-07-01

    Full Text Available The numbers and types of cells in an area of cortex define its function. Therefore it is essential to characterize the numbers and distributions of total cells in areas of the cortex, as well as to identify numbers of subclasses of neurons and glial cells. To date, the large size of the primate brain and the lack of innovation in cell counting methods have been a roadblock to obtaining high-resolution maps of cell and neuron density across the cortex in humans and non-human primates. Stereological counting methods and the isotropic fractionator are valuable tools for estimating cell numbers, but are better suited to smaller, well-defined brain structures or to cortex as a whole. In the present study, we have extended our flow-cytometry based counting method, the flow fractionator (Collins et al., 2010a, to include high-throughput total cell population estimates in homogenized cortical samples. We demonstrate that our method produces consistent, accurate and repeatable cell estimates quickly. The estimates we report are in excellent agreement with estimates for the same samples obtained using a Neubauer chamber and a fluorescence microscope. We show that our flow cytometry-based method for total cell estimation in homogenized brain tissue is more efficient and more precise than manual counting methods. The addition of automated nuclei counting to our flow fractionator method allows for a fully automated, rapid characterization of total cells and neuronal and non-neuronal populations in human and non-human primate brains, providing valuable data to further our understanding of the functional organization of normal, aging and diseased brains.

  18. The use of soft robotics in cardiovascular therapy.

    Science.gov (United States)

    Wamala, Isaac; Roche, Ellen T; Pigula, Frank A

    2017-10-01

    Robots have been employed in cardiovascular therapy as surgical tools and for automation of hospital systems. Soft robots are a new kind of robot made of soft deformable materials, that are uniquely suited for biomedical applications because they are inherently less likely to injure body tissues and more likely to adapt to biological environments. Awareness of the soft robotic systems under development will help promote clinician involvement in their successful clinical translation. Areas covered: The most advanced soft robotic systems, across the size scale from nano to macro, that have shown the most promise for clinical application in cardiovascular therapy because they offer solutions where a clear therapeutic need still exists. We discuss nano and micro scale technology that could help improve targeted therapy for cardiac regeneration in ischemic heart disease, and soft robots for mechanical circulatory support. Additionally, we suggest where the gaps in the technology currently lie. Expert commentary: Soft robotic technology has now matured from the proof-of-concept phase to successful animal testing. With further refinement in materials and clinician guided application, they will be a useful complement for cardiovascular therapy.

  19. Clinical Perspectives of Urocortin and Related Agents for the Treatment of Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Keiichi Ikeda

    2012-01-01

    Full Text Available The effects of corticotropin-releasing hormone, also known as corticotropin-releasing factor (CRF, on the cardiovascular system have been intensively researched since its discovery. Moreover, the actions of urocortin (Ucn I on the cardiovascular system have also been intensively scrutinized following the cloning and identification of its receptor, CRF receptor type 2 (CRFR2, in peripheral tissues including the heart. Given the cardioprotective actions of CRFR2 ligands, the clinical potential of not only Ucn I but also Ucn II and III, which were later identified as more specific ligands for CRFR2, has received considerable attention from researchers. In addition, recent work has indicated that CRF type 1 receptor may be also involved in cardioprotection against ischemic/reperfusion injury. Here we provide a historical overview of research on Ucn I and related agents, their effects on the cardiovascular system, and the clinical potential of the use of such agents to treat cardiovascular diseases.

  20. Mathematical model of microbicidal flow dynamics and optimization of rheological properties for intra-vaginal drug delivery: Role of tissue mechanics and fluid rheology.

    Science.gov (United States)

    Anwar, Md Rajib; Camarda, Kyle V; Kieweg, Sarah L

    2015-06-25

    Topically applied microbicide gels can provide a self-administered and effective strategy to prevent sexually transmitted infections (STIs). We have investigated the interplay between vaginal tissue elasticity and the yield-stress of non-Newtonian fluids during microbicide deployment. We have developed a mathematical model of tissue deformation driven spreading of microbicidal gels based on thin film lubrication approximation and demonstrated the effect of tissue elasticity and fluid yield-stress on the spreading dynamics. Our results show that both elasticity of tissue and yield-stress rheology of gel are strong determinants of the coating behavior. An optimization framework has been demonstrated which leverages the flow dynamics of yield-stress fluid during deployment to maximize retention while reaching target coating length for a given tissue elasticity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Hemophilia as a defect of the tissue factor pathway of blood coagulation: Effect of factors VIII and IX on factor X activation in a continuous-flow reactor

    International Nuclear Information System (INIS)

    Repke, D.; Gemmell, C.H.; Guha, A.; Turitto, V.T.; Nemerson, Y.; Broze, G.J. Jr.

    1990-01-01

    The effect of factors VIII and IX on the ability of the tissue factor-factor VIIa complex to activate factor X was studied in a continuous-flow tubular enzyme reactor. Tissue factor immobilized in a phospholipid bilayer on the inner surface of the tube was exposed to a perfusate containing factors VIIa, VIII, IX, and X flowing at a wall shear rate of 57, 300, or 1130 sec -1 . The addition of factors VIII and IX at their respective plasma concentrations resulted in a further 2 endash-to 3 endash fold increase. The direct activation of factor X by tissue factor-factor VIIa could be virtually eliminated by the lipoprotein-associated coagulation inhibitor. These results suggest that the tissue factor pathway, mediated through factors VIII and IX, produces significant levels of factor Xa even in the presence of an inhibitor of the tissue factor-factor VIIa complex; moreover, the activation is dependent on local shear conditions. These findings are consistent both with a model of blood coagulation in which initiation of the system results from tissue factor and with the bleeding observed in hemophilia

  2. A definition of normovolaemia and consequences for cardiovascular control during orthostatic and environmental stress.

    Science.gov (United States)

    Truijen, Jasper; Bundgaard-Nielsen, Morten; van Lieshout, Johannes J

    2010-05-01

    The Frank-Starling mechanism describes the relationship between stroke volume and preload to the heart, or the volume of blood that is available to the heart--the central blood volume. Understanding the role of the central blood volume for cardiovascular control has been complicated by the fact that a given central blood volume may be associated with markedly different central vascular pressures. The central blood volume varies with posture and, consequently, stroke volume and cardiac output (Q) are affected, but with the increased central blood volume during head-down tilt, stroke volume and Q do not increase further indicating that in the supine resting position the heart operates on the plateau of the Frank-Starling curve which, therefore, may be taken as a functional definition of normovolaemia. Since the capacity of the vascular system surpasses the blood volume, orthostatic and environmental stress including bed rest/microgravity, exercise and training, thermal loading, illness, and trauma/haemorrhage is likely to restrict venous return and Q. Consequently the cardiovascular responses are determined primarily by their effect on the central blood volume. Thus during environmental stress, flow redistribution becomes dependent on sympathetic activation affecting not only skin and splanchnic blood flow, but also flow to skeletal muscles and the brain. This review addresses the hypothesis that deviations from normovolaemia significantly influence these cardiovascular responses.

  3. Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis.

    Science.gov (United States)

    Elbaz, Mohammed S M; Calkoen, Emmeline E; Westenberg, Jos J M; Lelieveldt, Boudewijn P F; Roest, Arno A W; van der Geest, Rob J

    2014-09-27

    LV diastolic vortex formation has been suggested to critically contribute to efficient blood pumping function, while altered vortex formation has been associated with LV pathologies. Therefore, quantitative characterization of vortex flow might provide a novel objective tool for evaluating LV function. The objectives of this study were 1) assess feasibility of vortex flow analysis during both early and late diastolic filling in vivo in normal subjects using 4D Flow cardiovascular magnetic resonance (CMR) with retrospective cardiac gating and 3D vortex core analysis 2) establish normal quantitative parameters characterizing 3D LV vortex flow during both early and late ventricular filling in normal subjects. With full ethical approval, twenty-four healthy volunteers (mean age: 20±10 years) underwent whole-heart 4D Flow CMR. The Lambda2-method was used to extract 3D LV vortex ring cores from the blood flow velocity field during early (E) and late (A) diastolic filling. The 3D location of the center of vortex ring core was characterized using cylindrical cardiac coordinates (Circumferential, Longitudinal (L), Radial (R)). Comparison between E and A filling was done with a paired T-test. The orientation of the vortex ring core was measured and the ring shape was quantified by the circularity index (CI). Finally, the Spearman's correlation between the shapes of mitral inflow pattern and formed vortex ring cores was tested. Distinct E- and A-vortex ring cores were observed with centers of A-vortex rings significantly closer to the mitral valve annulus (E-vortex L=0.19±0.04 versus A-vortex L=0.15±0.05; p=0.0001), closer to the ventricle's long-axis (E-vortex: R=0.27±0.07, A-vortex: R=0.20±0.09, p=0.048) and more elliptical in shape (E-vortex: CI=0.79±0.09, A-vortex: CI=0.57±0.06; vortex. The circumferential location and orientation relative to LV long-axis for both E- and A-vortex ring cores were similar. Good to strong correlation was found between vortex shape and

  4. Adipocytokines, C-reactive protein, and cardiovascular disease

    DEFF Research Database (Denmark)

    Seven, Ekim; Husemoen, Lise L N; Sehested, Thomas S G

    2015-01-01

    BACKGROUND: Being overweight or obese is associated with a greater risk of coronary heart disease and stroke compared with normal weight. The role of the specific adipose tissue-derived substances, called adipocytokines, in overweight- and obesity-related cardiovascular disease (CVD) is still...... defined a composite outcome comprising of the first event of fatal and nonfatal coronary heart disease and fatal and nonfatal stroke. RESULTS: During the follow-up period, 453 composite CV outcomes occurred among participants with complete datasets. In models, including gender, age, smoking status...

  5. Leptin and its cardiovascular effects: Focus on angiogenesis

    Directory of Open Access Journals (Sweden)

    Zoya Tahergorabi

    2015-01-01

    Full Text Available Leptin is an endocrine hormone synthesized by adipocytes. It plays a key role in the energy homeostasis in central and peripheral tissues and has additional roles are attributed to it, such as the regulation of reproduction, immune function, bone homeostasis, and angiogenesis. The plasma concentration of leptin significantly increases in obese individuals. In the present review, we give an introduction concerning leptin, its receptors, signaling pathways, and its effect on cardiovascular system, especially on angiogenesis.

  6. Blood flow in healed and inflamed periodontal tissues of dogs

    International Nuclear Information System (INIS)

    Hock, J.M.; Kim, S.

    1987-01-01

    The objectives of this study were to determine if increased blood flow associated with gingivitis would decrease following resolution of gingival inflammation in dogs with periodontitis; if increased blood flow in inflamed gingiva was associated with changes in the blood flow of alveolar bone, and if blood flow in gingiva and alveolar bone increased if periodontitis was reactivated by ligating teeth. Regional blood flow was measured in dogs with pre-existing periodontitis, using radioisotope-labelled, plastic microspheres. In the first experiment on 4 adult Beagle dogs, teeth in the left jaws were treated to resolve the periodontitis, while teeth in the right jaws were not treated. Gingival and bone blood flow were measured after 12 wk. Blood flow was significantly (p 1 and gingiva with G.I.<2 was significant (p<0.04). Blood flow in bone was not altered by changes in the inflammatory status of the overlying gingiva. The findings suggest that changes in blood flow associated with inflammation are reversible and that blood flow alveolar bone is regulated independently of gingival blood flow. (author)

  7. Applications of three-dimensional printing technology in the cardiovascular field.

    Science.gov (United States)

    Shi, Di; Liu, Kai; Zhang, Xin; Liao, Hang; Chen, Xiaoping

    2015-10-01

    Three-dimensional (3-D) printing technology has rapidly developed in the last few decades. Meanwhile, the application of this technology has reached beyond the engineering field and expanded to almost all disciplines, including medicine. There has been much research on the medical applications of 3-D printing in neurosurgery, orthopedics, maxillofacial surgery, plastic surgery, tissue engineering, as well as other fields. Because of the complexity of the cardiovascular system, the application of this technology is limited and difficult, as compared to other disciplines, and thus there is much room for future development. Many of the difficulties associated with this technology must be overcome. Nonetheless, there is no doubt that 3-D printing technology will benefit patients with cardiovascular diseases in the near future.

  8. Use of fibrin sealants in cardiovascular surgery: a systematic review.

    Science.gov (United States)

    Rousou, John A

    2013-05-01

    Fibrin sealants are used for hemostasis and tissue adherence. This systematic review summarizes published clinical data for fibrin sealant use in cardiovascular surgery. A literature search for the following terms was conducted using PubMed and EMBASE: (TISSEEL or Tissucol or Beriplast P or Evicel or Quixil or Crosseal or Reliseal or Fibringluraas or Bolheal or Tachosil or Vivostat or Vitagel or Artiss or "fibrin glue" or "fibrin sealant" or "fibrin tissue adhesive") and (cardiac or cardiovascular or vascular or heart or coronary or surgery). Case reports and series were excluded; although reports of controlled trials were preferred, uncontrolled trial data were also considered. Clinical trials and chart review analyses of fibrin sealants were identified and summarized. Although clinical trial data were available for other agents, the majority of published studies examined TISSEEL. Overall, TISSEEL and other fibrin sealants showed improvements over standard of care or control groups for a variety of predefined endpoints. Safety findings are also summarized. Data from these studies showed that fibrin sealants were well tolerated and provided effective hemostasis in a range of cardiac and aortic surgeries. © 2013 Wiley Periodicals, Inc.

  9. Carbon monoxide: from toxin to endogenous modulator of cardiovascular functions

    Directory of Open Access Journals (Sweden)

    R.A. Johnson

    1999-01-01

    Full Text Available Carbon monoxide (CO is a pollutant commonly recognized for its toxicological attributes, including CNS and cardiovascular effects. But CO is also formed endogenously in mammalian tissues. Endogenously formed CO normally arises from heme degradation in a reaction catalyzed by heme oxygenase. While inhibitors of endogenous CO production can raise arterial pressure, heme loading can enhance CO production and lead to vasodepression. Both central and peripheral tissues possess heme oxygenases and generate CO from heme, but the inability of heme substrate to cross the blood brain barrier suggests the CNS heme-heme oxygenase-CO system may be independent of the periphery. In the CNS, CO apparently acts in the nucleus tractus solitarii (NTS promoting changes in glutamatergic neurotransmission and lowering blood pressure. At the periphery, the heme-heme oxygenase-CO system can affect cardiovascular functions in a two-fold manner; specifically: 1 heme-derived CO generated within vascular smooth muscle (VSM can promote vasodilation, but 2 its actions on the endothelium apparently can promote vasoconstriction. Thus, it seems reasonable that the CNS-, VSM- and endothelial-dependent actions of the heme-heme oxygenase-CO system may all affect cardiac output and vascular resistance, and subsequently blood pressure.

  10. Brown adipose tissue: The heat is on the heart.

    Science.gov (United States)

    Thoonen, Robrecht; Hindle, Allyson G; Scherrer-Crosbie, Marielle

    2016-06-01

    The study of brown adipose tissue (BAT) has gained significant scientific interest since the discovery of functional BAT in adult humans. The thermogenic properties of BAT are well recognized; however, data generated in the last decade in both rodents and humans reveal therapeutic potential for BAT against metabolic disorders and obesity. Here we review the current literature in light of a potential role for BAT in beneficially mediating cardiovascular health. We focus mainly on BAT's actions in obesity, vascular tone, and glucose and lipid metabolism. Furthermore, we discuss the recently discovered endocrine factors that have a potential beneficial role in cardiovascular health. These BAT-secreted factors may have a favorable effect against cardiovascular risk either through their metabolic role or by directly affecting the heart. Copyright © 2016 the American Physiological Society.

  11. Cardiovascular responses of semi-arboreal snakes to chronic, intermittent hypergravity

    Science.gov (United States)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.

    1996-01-01

    Cardiovascular functions were studied in semi-arboreal rat snakes (Elaphe obsoleta) following long-term, intermittent exposure to +1.5 Gz (head-to-tail acceleration) on a centrifuge. Snakes were held in a nearly straight position within horizontal plastic tubes during periods of centrifugation. Centrifugal acceleration, therefore, subjected snakes to a linear force gradient with the maximal force being experienced at the tail. Compared to non-centrifuged controls, Gz-acclimated snakes showed greater increases of heart rate during head-up tilt or acceleration, greater sensitivity of arterial pressure to circulating catecholamines, higher blood levels of corticosterone, and higher blood ratios of prostaglandin F 2 alpha/prostaglandin E2. Cardiovascular tolerance to increased gravity during graded Gz acceleration was measured as the maximum (caudal) acceleration force at which carotid arterial blood flow became null. When such tolerances were adjusted for effects of body size and other continuous variables incorporated into an analysis of covariance, the difference between the adjusted mean values of control and acclimated snakes (2.37 and 2.84 Gz, respectively) corresponded closely to the 0.5 G difference between the acclimation G (1.5) and Earth gravity (1.0). As in other vertebrates, cardiovascular tolerance to Gz stress tended to be increased by acclimation, short body length, high arterial pressure, and comparatively large blood volume. Voluntary body movements were important for promoting carotid blood flow at the higher levels of Gz stress.

  12. CELLULAR CONTROL OF CONNECTIVE TISSUE MATRIX TENSION†

    Science.gov (United States)

    Langevin, Helene M.; Nedergaard, Maiken; Howe, Alan

    2013-01-01

    The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function and cancer. PMID:23444198

  13. Cellular control of connective tissue matrix tension.

    Science.gov (United States)

    Langevin, Helene M; Nedergaard, Maiken; Howe, Alan K

    2013-08-01

    The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function, and cancer. Copyright © 2013 Wiley Periodicals, Inc.

  14. Cardiovascular disease in patients with osteogenesis imperfecta - a nationwide, register-based cohort study

    DEFF Research Database (Denmark)

    Folkestad, Lars; Hald, Jannie Dahl; Gram, Jeppe

    2016-01-01

    BACKGROUND: Osteogenesis imperfecta (OI) is a hereditary connective tissue disease often due to mutations in genes coding for type 1 collagen. Collagen type 1 is important in the development of the heart and vasculature. Little is known about the risk of cardiovascular disease (CVD) in OI...

  15. Progress in scaffold-free bioprinting for cardiovascular medicine.

    Science.gov (United States)

    Moldovan, Nicanor I

    2018-06-01

    Biofabrication of tissue analogues is aspiring to become a disruptive technology capable to solve standing biomedical problems, from generation of improved tissue models for drug testing to alleviation of the shortage of organs for transplantation. Arguably, the most powerful tool of this revolution is bioprinting, understood as the assembling of cells with biomaterials in three-dimensional structures. It is less appreciated, however, that bioprinting is not a uniform methodology, but comprises a variety of approaches. These can be broadly classified in two categories, based on the use or not of supporting biomaterials (known as "scaffolds," usually printable hydrogels also called "bioinks"). Importantly, several limitations of scaffold-dependent bioprinting can be avoided by the "scaffold-free" methods. In this overview, we comparatively present these approaches and highlight the rapidly evolving scaffold-free bioprinting, as applied to cardiovascular tissue engineering. © 2018 The Author. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. IgG4-positive cell infiltration in various cardiovascular disorders - results from histopathological analysis of surgical samples.

    Science.gov (United States)

    Hourai, Ryoto; Kasashima, Satomi; Sohmiya, Koichi; Yamauchi, Yohei; Ozawa, Hideki; Hirose, Yoshinobu; Ogino, Yasuhiro; Katsumata, Takahiro; Daimon, Masahiro; Fujita, Shu-Ichi; Hoshiga, Masaaki; Ishizaka, Nobukazu

    2017-02-03

    The diagnosis of Immunoglobulin G4 (IgG4)-related disease (IgG4-RD), in general, depends on serum IgG4 concentrations and histopathological findings; therefore, diagnosis of IgG4-RD in cardiovascular organs/tissues is often difficult owing to the risk of tissue sampling. Prevalence of IgG4-positive lymphoplasmacytic infiltration in 103 consecutive cardiovascular surgical samples from 98 patients with various cardiovascular diseases was analyzed immunohistochemically. The diagnoses of the enrolled patients included aortic aneurysm (abdominal, n = 8; thoracic, n = 9); aortic dissection (n = 20); aortic stenosis (n = 24), aortic regurgitation (n = 10), and mitral stenosis/regurgitation (n = 17). In total, 10 (9.7%) of the 103 specimens showed IgG4-positive cell infiltration with various intensities; five of these were aortic valve specimens from aortic stenosis, and IgG4-positive cell infiltration was present at >10 /HPF in three of them. In one aortic wall sample from an abdominal aortic aneurysm, various histopathological features of IgG4-RD, such as IgG4-positive cell infiltration, obliterating phlebitis, and storiform fibrosis, were observed. IgG4-positive cell infiltration was observed in 9.7% of the surgical cardiovascular specimens, mainly in the aortic valve from aortic stenosis and in the aortic wall from aortic aneurysm. Whether IgG4-positive cell infiltration has pathophysiological importance in the development or progression of cardiovascular diseases should be investigated in future studies.

  17. Blood flow in healed and inflamed periodontal tissues of dogs

    Energy Technology Data Exchange (ETDEWEB)

    Hock, J.M.; Kim, S.

    1987-01-01

    The objectives of this study were to determine if increased blood flow associated with gingivitis would decrease following resolution of gingival inflammation in dogs with periodontitis; if increased blood flow in inflamed gingiva was associated with changes in the blood flow of alveolar bone, and if blood flow in gingiva and alveolar bone increased if periodontitis was reactivated by ligating teeth. Regional blood flow was measured in dogs with pre-existing periodontitis, using radioisotope-labelled, plastic microspheres. In the first experiment on 4 adult Beagle dogs, teeth in the left jaws were treated to resolve the periodontitis, while teeth in the right jaws were not treated. Gingival and bone blood flow were measured after 12 wk. Blood flow was significantly (p<0.05) lower in non-inflamed healed gingiva (32.1 +- 2.7 ml/min/100 g) than in inflamed gingiva (46.1 +- 5.3 ml/min/100 g). No differences in the blood flow of the alveolar bone underlying inflamed or non-inflamed gingiva were present. In the second experiment, the right mandibular teeth of 5 dogs were treated to resolve periodontitis while teeth in the other quadrants were ligated for 4, 10 or 12 wk. The duration of ligation did not alter blood flow. Gingival blood flow around ligated maxillary and mandibular teeth was comparable and approximately 54% higher than around non-ligated teeth (p<0.03). The difference in blood flow between gingiva with G.I.>1 and gingiva with G.I.<2 was significant (p<0.04). Blood flow in bone was not altered by changes in the inflammatory status of the overlying gingiva. The findings suggest that changes in blood flow associated with inflammation are reversible and that blood flow alveolar bone is regulated independently of gingival blood flow.

  18. IN-VITRO EVALUATION OF BLOOD-FLOW THROUGH AUTOPERFUSION BALLOON CATHETERS

    NARCIS (Netherlands)

    DEMUINCK, ED; ANGELINI, P; DOUGHERTY, K; VERKERKE, BJ; RAKHORST, G; VANDIJK, RB; LIE, KI

    The effective flow rates with human blood through an autoperfusion catheter cannot be monitored in vivo and have not been experimentally determined in vitro. The manufacturers (Advanced Cardiovascular Systems [ACS], Temecula, CA) have suggested that ''the flow rate'' through the Stack(TM) over the

  19. Cardiovascular magnetic resonance in hypertrophic cardiomyopathy and infiltrative cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Rebecca Schofield

    2016-11-01

    Full Text Available Hypertrophic cardiomyopathy (HCM is the most common inherited cardiac disease. Cardiac imaging plays a key role in the diagnosis and management, with cardiovascular magnetic resonance (CMR an important modality. CMR provides a number of different techniques in one examination: structure and function, flow imaging and tissue characterisation particularly with the late gadolinium enhancement (LGE technique. Other techniques include vasodilator perfusion, mapping (especially T1 mapping and extracellular volume quantification [ECV] and diffusion-weighted imaging with its potential to detect disarray. Clinically, the uses of CMR are diverse. The imaging must be considered within the context of work-up, particularly the personal and family history, Electrocardiogram (ECG and echocardiogram findings. Subtle markers of possible HCM can be identified in genotype positive left ventricular hypertrophy (LVH-negative subjects. CMR has particular advantages for assessment of the left ventricle (LV apex and is able to detect both missed LVH (apical and basal antero-septum, when the echocardiography is normal but the ECG abnormal. CMR is important in distinguishing HCM from both common phenocopies (hypertensive heart disease, athletic adaptation, ageing related changes and rarer pheno and/or genocopies such as Fabry disease and amyloidosis. For these, in particular the LGE technique and T1 mapping are very useful with a low T1 in Fabry’s, and high T1 and very high ECV in amyloidosis. Moreover, the tissue characterisation that is possible using CMR offers a potential role in patient risk stratification, as scar is a very strong predictor of future heart failure. Scar may also play a role in the prediction of sudden death. CMR is helpful in follow-up assessment, especially after septal alcohol ablation and myomectomy.

  20. Modeling and remodeling of the collagen architecture in cardiovascular tissues

    NARCIS (Netherlands)

    Driessen, N.J.B.

    2006-01-01

    Heart valve replacement by a mechanical or biological prosthesis represents a common surgical therapy for end-stage valvular heart diseases. A critical drawback of these prostheses is the inability to grow, repair and remodel in response to changes in the tissue’s environment. Tissue engineering

  1. Cardiorespiratory and cardiovascular interactions in cardiomyopathy patients using joint symbolic dynamic analysis.

    Science.gov (United States)

    Giraldo, Beatriz F; Rodriguez, Javier; Caminal, Pere; Bayes-Genis, Antonio; Voss, Andreas

    2015-01-01

    Cardiovascular diseases are the first cause of death in developed countries. Using electrocardiographic (ECG), blood pressure (BP) and respiratory flow signals, we obtained parameters for classifying cardiomyopathy patients. 42 patients with ischemic (ICM) and dilated (DCM) cardiomyopathies were studied. The left ventricular ejection fraction (LVEF) was used to stratify patients with low risk (LR: LVEF>35%, 14 patients) and high risk (HR: LVEF≤ 35%, 28 patients) of heart attack. RR, SBP and TTot time series were extracted from the ECG, BP and respiratory flow signals, respectively. The time series were transformed to a binary space and then analyzed using Joint Symbolic Dynamic with a word length of three, characterizing them by the probability of occurrence of the words. Extracted parameters were then reduced using correlation and statistical analysis. Principal component analysis and support vector machines methods were applied to characterize the cardiorespiratory and cardiovascular interactions in ICM and DCM cardiomyopathies, obtaining an accuracy of 85.7%.

  2. Cardiovascular magnetic resonance in adults with previous cardiovascular surgery.

    Science.gov (United States)

    von Knobelsdorff-Brenkenhoff, Florian; Trauzeddel, Ralf Felix; Schulz-Menger, Jeanette

    2014-03-01

    Cardiovascular magnetic resonance (CMR) is a versatile non-invasive imaging modality that serves a broad spectrum of indications in clinical cardiology and has proven evidence. Most of the numerous applications are appropriate in patients with previous cardiovascular surgery in the same manner as in non-surgical subjects. However, some specifics have to be considered. This review article is intended to provide information about the application of CMR in adults with previous cardiovascular surgery. In particular, the two main scenarios, i.e. following coronary artery bypass surgery and following heart valve surgery, are highlighted. Furthermore, several pictorial descriptions of other potential indications for CMR after cardiovascular surgery are given.

  3. Tissue engineering of heart valves: in vitro experiences.

    Science.gov (United States)

    Sodian, R; Hoerstrup, S P; Sperling, J S; Daebritz, S H; Martin, D P; Schoen, F J; Vacanti, J P; Mayer, J E

    2000-07-01

    Tissue engineering is a new approach, whereby techniques are being developed to transplant autologous cells onto biodegradable scaffolds to ultimately form new functional tissue in vitro and in vivo. Our laboratory has focused on the tissue engineering of heart valves, and we have fabricated a trileaflet heart valve scaffold from a biodegradable polymer, a polyhydroxyalkanoate. In this experiment we evaluated the suitability of this scaffold material as well as in vitro conditioning to create viable tissue for tissue engineering of a trileaflet heart valve. We constructed a biodegradable and biocompatible trileaflet heart valve scaffold from a porous polyhydroxyalkanoate (Meatabolix Inc, Cambridge, MA). The scaffold consisted of a cylindrical stent (1 x 15 x 20 mm inner diameter) and leaflets (0.3 mm thick), which were attached to the stent by thermal processing techniques. The porous heart valve scaffold (pore size 100 to 240 microm) was seeded with vascular cells grown and expanded from an ovine carotid artery and placed into a pulsatile flow bioreactor for 1, 4, and 8 days. Analysis of the engineered tissue included biochemical examination, enviromental scanning electron microscopy, and histology. It was possible to create a trileaflet heart valve scaffold from polyhydroxyalkanoate, which opened and closed synchronously in a pulsatile flow bioreactor. The cells grew into the pores and formed a confluent layer after incubation and pulsatile flow exposure. The cells were mostly viable and formed connective tissue between the inside and the outside of the porous heart valve scaffold. Additionally, we demonstrated cell proliferation (DNA assay) and the capacity to generate collagen as measured by hydroxyproline assay and movat-stained glycosaminoglycans under in vitro pulsatile flow conditions. Polyhydroxyalkanoates can be used to fabricate a porous, biodegradable heart valve scaffold. The cells appear to be viable and extracellular matrix formation was induced

  4. Platelet lysate as an autologous alternative for fetal bovine serum in cardiovascular tissue engineering

    NARCIS (Netherlands)

    Riem Vis, P.W.; Bouten, C.V.C.; Sluijter, J.P.G.; Herwerden, van L.A.; Kluin, J.

    2010-01-01

    There is an ongoing search for alternative tissue culture sera to engineer autologous tissues, since use of fetal bovine serum (FBS) is limited under Good Tissue Practice (GTP) guidelines. We compared FBS with human Platelet-lysate (PL) in media for in vitro cell culture. A threefold increase in

  5. Tissue expansion and fluid absorption by skin tissue following intradermal injections through hollow microneedles

    Science.gov (United States)

    Shrestha, Pranav; Stoeber, Boris

    2017-11-01

    Hollow microneedles provide a promising alternative to conventional drug delivery techniques due to improved patient compliance and the dose sparing effect. The dynamics of fluid injected through hollow microneedles into skin, which is a heterogeneous and deformable porous medium, have not been investigated extensively in the past. We have introduced the use of Optical Coherence Tomography (OCT) for real-time visualization of fluid injections into excised porcine tissue. The results from ex-vivo experiments, including cross-sectional tissue images from OCT and pressure/flow-rate measurements, show a transient mode of high flow-rate into the tissue followed by a lower steady-state infusion rate. The injected fluid expands the underlying tissue and causes the external free surface of the skin to rise, forming a characteristic intradermal wheal. We have used OCT to visualize the evolution of tissue and free surface deformation, and advancement of the boundary between regions of expanding and stationary tissue. We will show the effect of different injection parameters such as fluid pressure, viscosity and microneedle retraction on the injected volume. This work has been supported through funding from the Collaborative Health Research Program by the Natural Science and Engineering Research Council of Canada and the Canadian Health Research Institute, and through the Canada Research Chairs program.

  6. Cardiovascular disease in obstructive sleep apnoea syndrome: the role of intermittent hypoxia and inflammation.

    LENUS (Irish Health Repository)

    Garvey, J F

    2012-02-01

    There is increasing evidence that intermittent hypoxia plays a role in the development of cardiovascular risk in obstructive sleep apnoea syndrome (OSAS) through the activation of inflammatory pathways. The development of translational models of intermittent hypoxia has allowed investigation of its role in the activation of inflammatory mechanisms and promotion of cardiovascular disease in OSAS. There are noticeable differences in the response to intermittent hypoxia between body tissues but the hypoxia-sensitive transcription factors hypoxia-inducible factor-1 and nuclear factor-kappaB appear to play a key role in mediating the inflammatory and cardiovascular consequences of OSAS. Expanding our understanding of these pathways, the cross-talk between them and the activation of inflammatory mechanisms by intermittent hypoxia in OSAS will provide new avenues of therapeutic opportunity for the disease.

  7. Effects of flow configuration on bone tissue engineering using human mesenchymal stem cells in 3D chitosan composite scaffolds.

    Science.gov (United States)

    Sellgren, Katelyn L; Ma, Teng

    2015-08-01

    Perfusion bioreactor plays important role in supporting 3D bone construct development. Scaffolds of chitosan composites have been studied to support bone tissue regeneration from osteogenic progenitor cells including human mesenchymal stem cells (hMSC). In this study, porous scaffolds of hydroxyapatite (H), chitosan (C), and gelatin (G) were fabricated by phase-separation and press-fitted in the perfusion bioreactor system where media flow is configured either parallel or transverse with respect to the scaffolds to investigate the impact of flow configuration on hMSC proliferation and osteogenic differentiation. The in vitro results showed that the interstitial flow in the transverse flow (TF) constructs reduced cell growth during the first week of culture but improved spatial cell distribution and early onset of osteogenic differentiation measured by alkaline phosphatase and expression of osteogenic genes. After 14 days of bioreactor culture, the TF constructs have comparable cell number but higher expression of bone markers genes and proteins compared to the parallel flow constructs. To evaluate ectopic bone formation, the HCG constructs seeded with hMSCs pre-cultured under two flow configurations for 7 days were implanted in CD-1 nude mice. While Masson's Trichrom staining revealed bone formation in both constructs, the TF constructs have improved spatial cell and osteoid distribution throughout the 2.0 mm constructs. The results highlight the divergent effects of media flow over the course of construct development and suggest that the flow configuration is an important parameter regulating the cellular events leading to bone construct formation in the HCG scaffolds. © 2014 Wiley Periodicals, Inc.

  8. Effect of Piper sarmentosum Extract on the Cardiovascular System of Diabetic Sprague-Dawley Rats: Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Zar Chi Thent

    2012-01-01

    Full Text Available Although Piper sarmentosum (PS is known to possess the antidiabetic properties, its efficacy towards diabetic cardiovascular tissues is still obscured. The present study aimed to observe the electron microscopic changes on the cardiac tissue and proximal aorta of experimental rats treated with PS extract. Thirty-two male Sprague-Dawley rats were divided into four groups: untreated control group (C, PS-treated control group (CTx, untreated diabetic group (D, and PS-treated diabetic group (DTx. Intramuscular injection of streptozotocin (STZ, 50 mg/kg body weight was given to induce diabetes. Following 28 days of diabetes induction, PS extract (0.125 g/kg body weight was administered orally for 28 days. Body weight, fasting blood glucose, and urine glucose levels were measured at 4-week interval. At the end of the study, cardiac tissues and the aorta were viewed under transmission electron microscope (TEM. DTx group showed increase in body weight and decrease in fasting blood glucose and urine glucose level compared to the D group. Under TEM study, DTx group showed lesser ultrastructural degenerative changes in the cardiac tissues and the proximal aorta compared to the D group. The results indicate that PS restores ultrastructural integrity in the diabetic cardiovascular tissues.

  9. Increased insulin-like growth factor-1 in relation to cardiovascular function in polycystic ovary syndrome: friend or foe?

    Science.gov (United States)

    Desai, Namrata Ajaykumar; Patel, Snehal S

    2015-10-01

    The incidence of cardiovascular disease (CVD) in patients with polycystic ovary syndrome (PCOS) is very high and conventional risk factors only partially explain excessive risk of developing CVD in patients of PCOS. The pathophysiology of PCOS is very unique, and several hormonal and metabolic changes occur. Several observations suggest that serum IGF-1 levels decrease in insulin resistance, which results in IGF-1 deficiency. In patient of PCOS, close relationships have been demonstrated between insulin resistance and serum IGF-1 levels. Hyperinsulinemic insulin resistance results in a general augmentation of steroidogenesis and LH release in PCOS. The action of IGF-1 varies in different tissues possibly via autocrine or paracrine mechanisms. The increase or decrease in IGF-1 in different tissues results in differential outcomes. Several studies suggest that lowered circulating IGF-1 levels play important role in the initiation of the cardiac hypertrophic response which results in the risk of cardiovascular disease. While recent results suggests that individual with elevated IGF-1 is protected against cardiovascular disease. Thus IGF-1 shows versatile pleiotropic actions. This review provides a current perspective on increased level of IGF-1 in PCOS and also adds to the current controversy regarding the roles of IGF-1 in cardiovascular disease.

  10. New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements

    Directory of Open Access Journals (Sweden)

    Yariv I

    2016-10-01

    Full Text Available Inbar Yariv,1 Menashe Haddad,2,3 Hamootal Duadi,1 Menachem Motiei,1 Dror Fixler1 1Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel; 2Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; 3Mayanei Hayeshua Medical Center, Benei Brak, Israel Abstract: Physiological substances pose a challenge for researchers since their optical properties change constantly according to their physiological state. Examination of those substances noninvasively can be achieved by different optical methods with high sensitivity. Our research suggests the application of a novel noninvasive nanophotonics technique, ie, iterative multi-plane optical property extraction (IMOPE based on reflectance measurements, for tissue viability examination and gold nanorods (GNRs and blood flow detection. The IMOPE model combines an experimental setup designed for recording light intensity images with the multi-plane iterative Gerchberg-Saxton algorithm for reconstructing the reemitted light phase and calculating its standard deviation (STD. Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. We have demonstrated this new concept of correlating the light phase STD and the optical properties of a substance, using transmission measurements only. This paper presents, for the first time, reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography to low quantities of GNRs (<3 mg. Keywords: Gerchberg-Saxton, optical properties, gold nanorods, blood vessel, tissue viability

  11. Performance of uncertainty quantification methodologies and linear solvers in cardiovascular simulations

    Science.gov (United States)

    Seo, Jongmin; Schiavazzi, Daniele; Marsden, Alison

    2017-11-01

    Cardiovascular simulations are increasingly used in clinical decision making, surgical planning, and disease diagnostics. Patient-specific modeling and simulation typically proceeds through a pipeline from anatomic model construction using medical image data to blood flow simulation and analysis. To provide confidence intervals on simulation predictions, we use an uncertainty quantification (UQ) framework to analyze the effects of numerous uncertainties that stem from clinical data acquisition, modeling, material properties, and boundary condition selection. However, UQ poses a computational challenge requiring multiple evaluations of the Navier-Stokes equations in complex 3-D models. To achieve efficiency in UQ problems with many function evaluations, we implement and compare a range of iterative linear solver and preconditioning techniques in our flow solver. We then discuss applications to patient-specific cardiovascular simulation and how the problem/boundary condition formulation in the solver affects the selection of the most efficient linear solver. Finally, we discuss performance improvements in the context of uncertainty propagation. Support from National Institute of Health (R01 EB018302) is greatly appreciated.

  12. HIV and Cardiovascular Disease

    Science.gov (United States)

    ... Select a Language: Fact Sheet 652 HIV and Cardiovascular Disease HIV AND CARDIOVASCULAR DISEASE WHY SHOULD PEOPLE WITH HIV CARE ABOUT CVD? ... OF CVD? WHAT ABOUT CHANGING MEDICATIONS? HIV AND CARDIOVASCULAR DISEASE Cardiovascular disease (CVD) includes a group of problems ...

  13. Isometric stress in cardiovascular magnetic resonance - a simple and easily replicable method of assessing cardiovascular differences not apparent at rest

    International Nuclear Information System (INIS)

    Mortensen, Kristian H.; Jones, Alexander; Steeden, Jennifer A.; Taylor, Andrew M.; Muthurangu, Vivek

    2016-01-01

    Isometric exercise may unmask cardiovascular disease not evident at rest, and cardiovascular magnetic resonance (CMR) imaging is proven for comprehensive resting assessment. This study devised a simple isometric exercise CMR methodology and assessed the hemodynamic response evoked by isometric exercise. A biceps isometric exercise technique was devised for CMR, and 75 healthy volunteers were assessed at rest, after 3-minute biceps exercise, and 5-minute of recovery using: (1) blood pressure (BP) and (2) CMR measured aortic flow and left ventricular function. Total peripheral resistance (SVR) and arterial compliance (TAC), cardiac output (CO), left ventricular volumes and function (ejection fraction, stroke volume, power output), blood pressure (BP), heart rate (HR), and rate pressure product were assessed at all time points. Image quality was preserved during stress. During exercise there were increases in CO (+14.9 %), HR (+17.0 %), SVR (+9.8 %), systolic BP (+22.4 %), diastolic BP (+25.4 %) and mean BP (+23.2 %). In addition, there were decreases in TAC (-22.0 %) and left ventricular ejection fraction (-6.3 %). Age and body mass index modified the evoked response, even when resting measures were similar. Isometric exercise technique evokes a significant cardiovascular response in CMR, unmasking physiological differences that are not apparent at rest. (orig.)

  14. Isometric stress in cardiovascular magnetic resonance - a simple and easily replicable method of assessing cardiovascular differences not apparent at rest

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, Kristian H.; Jones, Alexander; Steeden, Jennifer A.; Taylor, Andrew M.; Muthurangu, Vivek [UCL Centre for Cardiovascular MR, UCL Institute of Cardiovascular Science, Level 6 Old Nurses Home, Cardiorespiratory Unit, Great Ormond Street Hospital for Children, London (United Kingdom)

    2016-04-15

    Isometric exercise may unmask cardiovascular disease not evident at rest, and cardiovascular magnetic resonance (CMR) imaging is proven for comprehensive resting assessment. This study devised a simple isometric exercise CMR methodology and assessed the hemodynamic response evoked by isometric exercise. A biceps isometric exercise technique was devised for CMR, and 75 healthy volunteers were assessed at rest, after 3-minute biceps exercise, and 5-minute of recovery using: (1) blood pressure (BP) and (2) CMR measured aortic flow and left ventricular function. Total peripheral resistance (SVR) and arterial compliance (TAC), cardiac output (CO), left ventricular volumes and function (ejection fraction, stroke volume, power output), blood pressure (BP), heart rate (HR), and rate pressure product were assessed at all time points. Image quality was preserved during stress. During exercise there were increases in CO (+14.9 %), HR (+17.0 %), SVR (+9.8 %), systolic BP (+22.4 %), diastolic BP (+25.4 %) and mean BP (+23.2 %). In addition, there were decreases in TAC (-22.0 %) and left ventricular ejection fraction (-6.3 %). Age and body mass index modified the evoked response, even when resting measures were similar. Isometric exercise technique evokes a significant cardiovascular response in CMR, unmasking physiological differences that are not apparent at rest. (orig.)

  15. Modified Beer-Lambert law for blood flow.

    Science.gov (United States)

    Baker, Wesley B; Parthasarathy, Ashwin B; Busch, David R; Mesquita, Rickson C; Greenberg, Joel H; Yodh, A G

    2014-11-01

    We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues.

  16. Postirradiation cardiovascular dysfunction

    International Nuclear Information System (INIS)

    Hawkins, R.N.; Cockerham, L.G.

    1987-01-01

    Cardiovascular dysfunction may be defined as the inability of any element of the cardiovascular system to perform adequately upon demand, leading to inadequate performance and nutritive insufficiency of various parts of the body. Exposure to supralethal doses of radiation (accidental and therapeutic) has been show to induce significant alterations in cardiovascular function in man. These findings indicate that, after irradiation, cardiovascular function is a major determinant of continued performance and even survival. For the two persons who received massive radiation doses (45 and 88 Gy, respectively) in criticality accidents, the inability to maintain systematic arterial blood pressure (AP) was the immediate cause of death. In a study of cancer patients given partial-body irradiation, two acute lethalities were attributed to myocardial infarction after an acute hypotensive episode during the first few hours postexposure. Although radiation-induced cardiovascular dysfunction has been observed in many species, its severity, duration, and even etiology may vary with the species, level of exposure, and dose rate. For this reason, our consideration of the effects of radiation on cardiovascular performance is limited to the circulatory derangements that occur in rat, dog, and monkey after supralethal doses and lead to radiation-induced cardiovascular dysfunction in these experimental models. The authors consider other recent data as they pertain to the etiology of cardiovascular dysfunction in irradiated animals

  17. Strategies for reducing body fat mass: effects of liposuction and exercise on cardiovascular risk factors and adiposity

    Directory of Open Access Journals (Sweden)

    Benatti FB

    2011-04-01

    Full Text Available Fabiana Braga Benatti1, Fábio Santos Lira2, Lila Missae Oyama2, Cláudia Maria da Penha Oller do Nascimento2, Antonio Herbert Lancha Junior11School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil; 2Department of Physiology, Division of Nutrition Physiology, Federal University of Sao Paulo, Sao Paulo, BrazilAbstract: Liposuction is the most popular aesthetic surgery performed in Brazil and worldwide. Evidence showing that adipose tissue is a metabolically active tissue has led to the suggestion that liposuction could be a viable method for improving metabolic profile through the immediate loss of adipose tissue. However, the immediate liposuction-induced increase in the proportion of visceral to subcutaneous adipose tissue could be detrimental to metabolism, because a high proportion of visceral to subcutaneous adipose tissue is associated with risk factors for cardiovascular disease. The results of studies investigating the effects of liposuction on the metabolic profile are inconsistent, however, with most studies reporting either no change or improvements in one or more cardiovascular risk factors. In addition, animal studies have demonstrated a compensatory growth of intact adipose tissue in response to lipectomy, although studies with humans have reported inconsistent results. Exercise training improves insulin sensitivity, inflammatory balance, lipid oxidation, and adipose tissue distribution; increases or preserves the fat-free mass; and increases total energy expenditure. Thus, liposuction and exercise appear to directly affect metabolism in similar ways, which suggests a possible interaction between these two strategies. To our knowledge, no studies have reported the associated effects of liposuction and exercise in humans. Nonetheless, one could suggest that exercise training associated with liposuction could attenuate or even block the possible compensatory fat deposition in intact depots or regrowth of the

  18. The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Butler, David L.; Goldstein, Steven A.; Guo, X. Edward; Kamm, Roger; Laurencin, Cato T.; McIntire, Larry V.; Mow, Van C.; Nerem, Robert M.; Sah, Robert L.; Soslowsky, Louis J.; Spilker, Robert L.; Tranquillo, Robert T.

    2009-01-01

    Biomechanical factors profoundly influence the processes of tissue growth, development, maintenance, degeneration, and repair. Regenerative strategies to restore damaged or diseased tissues in vivo and create living tissue replacements in vitro have recently begun to harness advances in understanding of how cells and tissues sense and adapt to their mechanical environment. It is clear that biomechanical considerations will be fundamental to the successful development of clinical therapies based on principles of tissue engineering and regenerative medicine for a broad range of musculoskeletal, cardiovascular, craniofacial, skin, urinary, and neural tissues. Biomechanical stimuli may in fact hold the key to producing regenerated tissues with high strength and endurance. However, many challenges remain, particularly for tissues that function within complex and demanding mechanical environments in vivo. This paper reviews the present role and potential impact of experimental and computational biomechanics in engineering functional tissues using several illustrative examples of past successes and future grand challenges. PMID:19583462

  19. Multifocal fibrosclerosis and IgG4-related disease involving the cardiovascular system

    International Nuclear Information System (INIS)

    Ishizaka, Nobukazu; Terasaki, Fumio; Sakamoto, Aiko; Imai, Yasushi; Nagai, Ryozo

    2012-01-01

    The cardiovascular system may be involved as a target organ of multifocal fibrosclerosis, which may manifest as idiopathic retroperitoneal fibrosis, inflammatory aortic aneurysm, inflammatory periarteritis, and inflammatory pericarditis. These pathological conditions can sometimes occur concomitantly. Idiopathic retroperitoneal fibrosis and inflammatory abdominal aortic aneurysm are both characterized by the presence of fibro-inflammatory tissue around the abdominal aorta expanding into the surrounding retroperitoneal structures, and together they may be termed 'chronic periaortitis'. Cardiovascular fibrosclerosis has become non-uncommonly encountered condition since imaging modalities have made its diagnosis more feasible. In addition, recent studies have demonstrated that a certain fraction, but not all, of cardiovascular fibrosclerosis may have a link with immunoglobulin-G4 (IgG4)-related sclerosing disease (IgG4-SD). IgG4-SD is histologically characterized by dense fibrosclerosis and infiltration of lymphocytes and IgG4-positive plasma cells, and these histopathologic findings seem to be essentially similar regardless of the organs involved. In this mini review, we summarize what is known so far about multifocal fibrosclerosis of the cardiovascular system and its association with IgG4-SD, and what remains to be clarified in future investigations. (author)

  20. Drugs Involved in Dyslipidemia and Obesity Treatment: Focus on Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Sofia Dias

    2018-01-01

    Full Text Available Metabolic syndrome can be defined as a state of disturbed metabolic homeostasis characterized by visceral obesity, atherogenic dyslipidemia, arterial hypertension, and insulin resistance. The growing prevalence of metabolic syndrome will certainly contribute to the burden of cardiovascular disease. Obesity and dyslipidemia are main features of metabolic syndrome, and both can present with adipose tissue dysfunction, involved in the pathogenic mechanisms underlying this syndrome. We revised the effects, and underlying mechanisms, of the current approved drugs for dyslipidemia and obesity (fibrates, statins, niacin, resins, ezetimibe, and orlistat; sibutramine; and diethylpropion, phentermine/topiramate, bupropion and naltrexone, and liraglutide on adipose tissue. Specifically, we explored how these drugs can modulate the complex pathways involved in metabolism, inflammation, atherogenesis, insulin sensitivity, and adipogenesis. The clinical outcomes of adipose tissue modulation by these drugs, as well as differences of major importance for clinical practice between drugs of the same class, were identified. Whether solutions to these issues will be found in further adjustments and combinations between drugs already in use or necessarily in new advances in pharmacology is not known. To better understand the effect of drugs used in dyslipidemia and obesity on adipose tissue not only is challenging for physicians but could also be the next step to tackle cardiovascular disease.

  1. Electromechanical Model of Blood Flow in Vessels

    OpenAIRE

    Ivo Cap; Barbora Czippelova

    2008-01-01

    The present paper deals with some theoretical derivations connected with very efficient method of solution of hydrodynamic problems of blood flow in human cardiovascular system. The electromechanical analogy of liquid flow in a tube and electromagnetic wave propagating along an electric transmission line is discussed. We have derived a detailed circuit-like model of an elementary section of the elastic tube with viscose Newtonian liquid. The analogy harmonic current electrical cir...

  2. The effects of age on the spontaneous low-frequency oscillations in cerebral and systemic cardiovascular dynamics

    International Nuclear Information System (INIS)

    Peng, Tingying; Rowley, Alex B; Payne, Stephen J; Ainslie, Philip N; Murrell, Carissa; Thomas, Kate; Cotter, James D; Williams, Michael J A; George, Keith; Shave, Rob

    2008-01-01

    Although the effects of ageing on cardiovascular control and particularly the response to orthostatic stress have been the subject of many studies, the interaction between the cardiovascular and cerebral regulation mechanisms is still not fully understood. Wavelet cross-correlation is used here to assess the coupling and synchronization between low-frequency oscillations (LFOs) observed in cerebral hemodynamics, as measured using cerebral blood flow velocity (CBFV) and cerebral oxygenation (O 2 Hb), and systemic cardiovascular dynamics, as measured using heart rate (HR) and arterial blood pressure (ABP), in both old and young healthy subjects undergoing head-up tilt table testing. Statistically significant increases in correlation values are found in the interaction of cerebral and cardiovascular LFOs for young subjects (P 2 Hb and ABP–O 2 Hb), but not in old subjects under orthostatic stress. The coupling between the cerebrovascular and wider cardiovascular systems in response to orthostatic stress thus appears to be impaired with ageing

  3. Assessment of Energy Metabolic Changes in Adipose Tissue-Derived Stem Cells

    NARCIS (Netherlands)

    Hajmousa, Ghazaleh; Harmsen, Martin C; Di Nardo, Paolo; Dhingra, Sanjiv; Singla, Dinender K.

    2017-01-01

    Adipose tissue-derived stem cells (ADSC) are promising candidates for therapeutic applications in cardiovascular regenerative medicine. By definition, the phenotype ADSCs, e.g., the ubiquitous secretion of growth factors, cytokines, and extracellular matrix components is not met in vivo, which

  4. Multi-scale mechanical characterization of scaffolds for heart valve tissue engineering

    NARCIS (Netherlands)

    Argento, G.; Simonet, M.; Oomens, C.W.J.; Baaijens, F.P.T.

    2012-01-01

    Electrospinning is a promising technology to produce scaffolds for cardiovascular tissue engineering. Each electrospun scaffold is characterized by a complex micro-scale structure that is responsible for its macroscopic mechanical behavior. In this study, we focus on the development and the

  5. A definition of normovolaemia and consequences for cardiovascular control during orthostatic and environmental stress

    DEFF Research Database (Denmark)

    Truijen, Jasper; Bundgaard-Nielsen, Morten; van Lieshout, Johannes J

    2010-01-01

    The Frank-Starling mechanism describes the relationship between stroke volume and preload to the heart, or the volume of blood that is available to the heart--the central blood volume. Understanding the role of the central blood volume for cardiovascular control has been complicated by the fact...... stress including bed rest/microgravity, exercise and training, thermal loading, illness, and trauma/haemorrhage is likely to restrict venous return and Q. Consequently the cardiovascular responses are determined primarily by their effect on the central blood volume. Thus during environmental stress, flow...

  6. Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk.

    Science.gov (United States)

    Matsuda, Morihiro; Shimomura, Iichiro

    2014-08-01

    Obesity leads to the development of type 2 diabetes mellitus, which is a strong risk factor for cardiovascular disease. A better understanding of the molecular basis of obesity will lead to the establishment of effective prevention strategies for cardiovascular diseases. Adipocytes have been shown to generate a variety of endocrine factors termed adipokines/adipocytokines. Obesity-associated changes to these adipocytokines contribute to the development of cardiovascular diseases. Adiponectin, which is one of the most well-characterized adipocytokines, is produced exclusively by adipocytes and exerts insulin-sensitizing and anti-atherogenic effects. Obese subjects have lower levels of circulating adiponectin, and this is recognized as one of the factors involved in obesity-induced insulin resistance and atherosclerosis. Another pathophysiological feature of obesity may involve the low-grade chronic inflammation in adipose tissue. This inflammatory process increases oxidative stress in adipose tissue, which may affect remote organs, leading to the development of diabetes, hypertension, and atherosclerosis. Nuclear hormone receptors (NRs) regulate the transcription of the target genes in response to binding with their ligands, which include metabolic and nutritional substrates. Among the various NRs, peroxisome proliferator-activated receptor γ promotes the transcription of adiponectin and antioxidative enzymes, whereas mineralocorticoid receptor mediates the effects of aldosterone and glucocorticoid to induce oxidative stress in adipocytes. It is hypothesized that both play crucial roles in the pathophysiology of obesity-associated insulin resistance and cardiovascular diseases. Thus, reduced adiponectin and increased oxidative stress play pathological roles in obesity-associated insulin resistance to increase the cardiovascular disease risk, and various NRs may be involved in this pathogenesis.

  7. Hydro-mechanical foundation for blood swirling vortex flows formation in the cardio-vascular system and the problem of artificial heart creation

    Directory of Open Access Journals (Sweden)

    Sergey G. Chefranov

    2013-11-01

    Full Text Available Leonardo da Vinci perhaps was the first who paid attention to the energetic efficiency of existence of vortices emerging near sines of Valsalva and defining normal functioning (opening of aortal valve. However up to now a fundamental problem of defining of mechanisms of mysterious energetic efficiency of functioning of cardio-vascular system (CVS of blood feeding of the organism is still remaining significantly not solved and this is, for example, one of the main restriction for the creation of artificial heart and corresponding valve systems. In the present paper, results witnessing possible important role of the very hydro-mechanical mechanism in the realization of the noted energetic efficiency of CVS due to formation in the CVS of spiral structural organization of the arterial blood flow observed by methods of MRT and color Doppler-measuring in the left ventricular of the heart and in aorta.

  8. Soy Isoflavones in Nutritionally Relevant Amounts Have Varied Nutrigenomic Effects on Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Elena Giordano

    2015-01-01

    Full Text Available Soy consumption has been suggested to afford protection from cardiovascular disease (CVD. Indeed, accumulated albeit controversial evidence suggests that daily consumption of ≥25 g of soy protein with its associated phytochemicals intact can improve lipid profiles in hypercholesterolemic humans. However, the belief that soy foods and supplements positively impact human health has become increasingly controversial among the general public because of the reported estrogenic activities of soy isoflavones. In this study, we investigated the nutrigenomic actions of soy isoflavones (in nutritionally-relevant amounts with a specific focus on the adipose tissue, due to its pivotal role in cardiometabolism. Young C57BL/6 mice were maintained for eight weeks under two different diet regimes: (1 purified control diet; or (2 purified control diet supplemented with 0.45 g% soybean dry purified extract (a genistein/daidzein mix. Soy isoflavones increased plasma total cholesterol concentrations and decreased triglyceride ones. Circulating leptin levels was also increased by soy consumption. Differentially expressed genes in adipose tissue were classified according to their role(s in cellular or metabolic pathways. Our data show that soy isoflavones, administered in nutritionally-relevant amounts, have diverse nutrigenomic effects on adipose tissue. Taking into account the moderate average exposure to such molecules, their impact on cardiovascular health needs to be further investigated to resolve the issue of whether soy consumption does indeed increase or decrease cardiovascular risk.

  9. Soy isoflavones in nutritionally relevant amounts have varied nutrigenomic effects on adipose tissue.

    Science.gov (United States)

    Giordano, Elena; Dávalos, Alberto; Crespo, Maria Carmen; Tomé-Carneiro, Joao; Gómez-Coronado, Diego; Visioli, Francesco

    2015-01-30

    Soy consumption has been suggested to afford protection from cardiovascular disease (CVD). Indeed, accumulated albeit controversial evidence suggests that daily consumption of ≥25 g of soy protein with its associated phytochemicals intact can improve lipid profiles in hypercholesterolemic humans. However, the belief that soy foods and supplements positively impact human health has become increasingly controversial among the general public because of the reported estrogenic activities of soy isoflavones. In this study, we investigated the nutrigenomic actions of soy isoflavones (in nutritionally-relevant amounts) with a specific focus on the adipose tissue, due to its pivotal role in cardiometabolism. Young C57BL/6 mice were maintained for eight weeks under two different diet regimes: (1) purified control diet; or (2) purified control diet supplemented with 0.45 g% soybean dry purified extract (a genistein/daidzein mix). Soy isoflavones increased plasma total cholesterol concentrations and decreased triglyceride ones. Circulating leptin levels was also increased by soy consumption. Differentially expressed genes in adipose tissue were classified according to their role(s) in cellular or metabolic pathways. Our data show that soy isoflavones, administered in nutritionally-relevant amounts, have diverse nutrigenomic effects on adipose tissue. Taking into account the moderate average exposure to such molecules, their impact on cardiovascular health needs to be further investigated to resolve the issue of whether soy consumption does indeed increase or decrease cardiovascular risk.

  10. On the correlation between the radioprotective effectiveness of serotonin and its derivatives and their ability to modify the local blood flow in animal tissues

    International Nuclear Information System (INIS)

    Abramov, M.M.; Vasin, M.V.

    1978-01-01

    Radioprotective effectiveness of serotonin and its alkoxy derivatives and their ability to modify a local blood flow in hemopoietic tissues have been comparatively studied in albino mice and rats. The correlation between these two parameters is nonlinear and may be approximated by a hyperbola equation. The correlation coefficient is - 0.88. A high radioprotective effect of serotonin and its derivatives is observed in the case of a three-fold decrease of the blood flow in the spleen

  11. Exercise Training Increases Parietal Lobe Cerebral Blood Flow in Chronic Stroke: An Observational Study

    Directory of Open Access Journals (Sweden)

    Andrew D. Robertson

    2017-09-01

    Full Text Available Exercise is increasingly recommended as an essential component of stroke rehabilitation, yet uncertainty remains with respect to its direct effect on the cerebral vasculature. The current study first demonstrated the repeatability of pseudo-continuous arterial spin labeling (ASL magnetic resonance imaging (MRI in older adults with stroke, and then investigated the change in cerebrovascular function following a 6-month cardiovascular rehabilitation program. In the repeatability study, 12 participants at least 3 months post-stroke underwent two ASL imaging scans 1 month apart. In the prospective observational study, eight individuals underwent ASL imaging and aerobic fitness testing before and after a 6-month cardiovascular rehabilitation program. Cerebral blood flow (CBF and the spatial coefficient of variation of CBF (sCoV were quantified to characterize tissue-level perfusion and large cerebral artery transit time properties, respectively. In repeat scanning, intraclass correlation (ICC indicated moderate test-retest reliability for global gray matter CBF (ICC = 0.73 and excellent reliability for sCoV (ICC = 0.94. In the observational study, gray matter CBF increased after training (baseline: 40 ± 13 vs. 6-month: 46 ± 12 ml·100 g−1·min−1, P = 0.036. The greatest change occurred in the parietal lobe (+18 ± 12%. Gray matter sCoV, however, did not change following training (P = 0.31. This study provides preliminary evidence that exercise-based rehabilitation in chronic stroke enhances tissue-level perfusion, without changing the relative hemodynamic properties of the large cerebral arteries.

  12. Exercise Training Increases Parietal Lobe Cerebral Blood Flow in Chronic Stroke: An Observational Study

    Science.gov (United States)

    Robertson, Andrew D.; Marzolini, Susan; Middleton, Laura E.; Basile, Vincenzo S.; Oh, Paul I.; MacIntosh, Bradley J.

    2017-01-01

    Exercise is increasingly recommended as an essential component of stroke rehabilitation, yet uncertainty remains with respect to its direct effect on the cerebral vasculature. The current study first demonstrated the repeatability of pseudo-continuous arterial spin labeling (ASL) magnetic resonance imaging (MRI) in older adults with stroke, and then investigated the change in cerebrovascular function following a 6-month cardiovascular rehabilitation program. In the repeatability study, 12 participants at least 3 months post-stroke underwent two ASL imaging scans 1 month apart. In the prospective observational study, eight individuals underwent ASL imaging and aerobic fitness testing before and after a 6-month cardiovascular rehabilitation program. Cerebral blood flow (CBF) and the spatial coefficient of variation of CBF (sCoV) were quantified to characterize tissue-level perfusion and large cerebral artery transit time properties, respectively. In repeat scanning, intraclass correlation (ICC) indicated moderate test-retest reliability for global gray matter CBF (ICC = 0.73) and excellent reliability for sCoV (ICC = 0.94). In the observational study, gray matter CBF increased after training (baseline: 40 ± 13 vs. 6-month: 46 ± 12 ml·100 g−1·min−1, P = 0.036). The greatest change occurred in the parietal lobe (+18 ± 12%). Gray matter sCoV, however, did not change following training (P = 0.31). This study provides preliminary evidence that exercise-based rehabilitation in chronic stroke enhances tissue-level perfusion, without changing the relative hemodynamic properties of the large cerebral arteries. PMID:29033829

  13. Inotrópicos en el postoperatorio de cirugía cardiovascular: estudio de corte transversal

    NARCIS (Netherlands)

    Munoz, L.A.; Susunaga, P.A.; Gomez, M.; Villabon, M.; Arevalo, J.J.

    2014-01-01

    Background: Inotropes are frequently used in the intensive care unit to maintain tissue perfusion in case of shock while the cause is resolved. Patients who undergo cardiovascular surgery will frequently require treatment with these drugs during postoperative care. Aim: To describe the frequency and

  14. Non-dimensional physics of pulsatile cardiovascular networks and energy efficiency.

    Science.gov (United States)

    Yigit, Berk; Pekkan, Kerem

    2016-01-01

    In Nature, there exist a variety of cardiovascular circulation networks in which the energetic ventricular load has both steady and pulsatile components. Steady load is related to the mean cardiac output (CO) and the haemodynamic resistance of the peripheral vascular system. On the other hand, the pulsatile load is determined by the simultaneous pressure and flow waveforms at the ventricular outlet, which in turn are governed through arterial wave dynamics (transmission) and pulse decay characteristics (windkessel effect). Both the steady and pulsatile contributions of the haemodynamic power load are critical for characterizing/comparing disease states and for predicting the performance of cardiovascular devices. However, haemodynamic performance parameters vary significantly from subject to subject because of body size, heart rate and subject-specific CO. Therefore, a 'normalized' energy dissipation index, as a function of the 'non-dimensional' physical parameters that govern the circulation networks, is needed for comparative/integrative biological studies and clinical decision-making. In this paper, a complete network-independent non-dimensional formulation that incorporates pulsatile flow regimes is developed. Mechanical design variables of cardiovascular flow systems are identified and the Buckingham Pi theorem is formally applied to obtain the corresponding non-dimensional scaling parameter sets. Two scaling approaches are considered to address both the lumped parameter networks and the distributed circulation components. The validity of these non-dimensional number sets is tested extensively through the existing empirical allometric scaling laws of circulation systems. Additional validation studies are performed using a parametric numerical arterial model that represents the transmission and windkessel characteristics, which are adjusted to represent different body sizes and non-dimensional haemodynamic states. Simulations demonstrate that the proposed non

  15. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System.

    Science.gov (United States)

    Burford, Natalie G; Webster, Natalia A; Cruz-Topete, Diana

    2017-10-16

    The collective of endocrine organs acting in homeostatic regulation-known as the hypothalamic-pituitary-adrenal (HPA) axis-comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.

  16. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Natalie G. Burford

    2017-10-01

    Full Text Available The collective of endocrine organs acting in homeostatic regulation—known as the hypothalamic-pituitary-adrenal (HPA axis—comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.

  17. Effect of exercise training on in vivo lipolysis in intra-abdominal adipose tissue in rats

    DEFF Research Database (Denmark)

    Enevoldsen, L H; Stallknecht, B; Fluckey, J D

    2000-01-01

    Intra-abdominal obesity is associated with cardiovascular disease and non-insulin-dependent diabetes mellitus, and physical training has been suggested to alleviate these conditions. We compared epinephrine-stimulated lipolysis in vivo in three intra-abdominal adipose tissues (ATs: retroperitonea...... be beneficial in alleviating intra-abdominal obesity by enhancing lipolysis in intra-abdominal fat depots.......Intra-abdominal obesity is associated with cardiovascular disease and non-insulin-dependent diabetes mellitus, and physical training has been suggested to alleviate these conditions. We compared epinephrine-stimulated lipolysis in vivo in three intra-abdominal adipose tissues (ATs: retroperitoneal......: 73 +/- 12 (trained) vs. 14 +/- 4 (sedentary) ml. 100 g(-1). min(-1), P abdominal than in subcutaneous AT in both trained...

  18. Genomic and non-genomic effects of androgens in the cardiovascular system: clinical implications.

    Science.gov (United States)

    Lucas-Herald, Angela K; Alves-Lopes, Rheure; Montezano, Augusto C; Ahmed, S Faisal; Touyz, Rhian M

    2017-07-01

    The principle steroidal androgens are testosterone and its metabolite 5α-dihydrotestosterone (DHT), which is converted from testosterone by the enzyme 5α-reductase. Through the classic pathway with androgens crossing the plasma membrane and binding to the androgen receptor (AR) or via mechanisms independent of the ligand-dependent transactivation function of nuclear receptors, testosterone induces genomic and non-genomic effects respectively. AR is widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Androgens are essential for many developmental and physiological processes, especially in male reproductive tissues. It is now clear that androgens have multiple actions besides sex differentiation and sexual maturation and that many physiological systems are influenced by androgens, including regulation of cardiovascular function [nitric oxide (NO) release, Ca 2+ mobilization, vascular apoptosis, hypertrophy, calcification, senescence and reactive oxygen species (ROS) generation]. This review focuses on evidence indicating that interplay between genomic and non-genomic actions of testosterone may influence cardiovascular function. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  19. Neuromodulation therapy does not influence blood flow distribution or left-ventricular dynamics during acute myocardial ischemia.

    Science.gov (United States)

    Kingma, J G; Linderoth, B; Ardell, J L; Armour, J A; DeJongste, M J; Foreman, R D

    2001-08-13

    Electrical stimulation of the dorsal aspect of the upper thoracic spinal cord is used increasingly to treat patients with angina pectoris refractory to conventional therapeutic strategies. The purpose of this study was to determine whether spinal cord stimulation (SCS) in dogs affects regional myocardial blood flow and left-ventricular (LV) function before and during transient obstruction of the left anterior descending coronary artery (LAD). In anesthetized dogs, regional myocardial blood flow distribution was determined using radiolabeled microspheres and left-ventricular function was measured by impedance-derived pressure-volume loops. SCS was accomplished by stimulating the dorsal T1-T2 segments of the spinal cord using epidural bipolar electrodes at 90% of motor threshold (MT) (50 Hz, 0.2-ms duration). Effects of 5-min SCS were assessed under basal conditions and during 4-min occlusion of the LAD. SCS alone evoked no change in regional myocardial blood flow or cardiovascular indices. Transient LAD occlusion significantly diminished blood flow within ischemic, but not in non-ischemic myocardial tissue. Left ventricular pressure-volume loops were shifted rightward during LAD occlusion. Cardiac indices were altered similarly during LAD occlusion and concurrent SCS. SCS does not influence the distribution of blood flow within the non-ischemic or ischemic myocardium. Nor does it modify LV pressure-volume dynamics in the anesthetized experimental preparation.

  20. Mortality of mothers from cardiovascular and non-cardiovascular causes following pregnancy complications in first delivery

    DEFF Research Database (Denmark)

    Lykke, Jacob Alexander; Langhoff-Roos, Jens; Lockwood, Charles J

    2010-01-01

    cardiovascular and non-cardiovascular causes following preterm delivery, small-for-gestational-age offspring and hypertensive disorders of pregnancy. We found that preterm delivery and small-for-gestational-age were both associated with subsequent death of mothers from cardiovascular and non...... cardiovascular and non-cardiovascular causes, while hypertensive disorders of pregnancy are markers of early death of mothers from cardiovascular causes....

  1. The role of urocortins in the cardiovascular system.

    Science.gov (United States)

    Walczewska, J; Dzieza-Grudnik, A; Siga, O; Grodzicki, T

    2014-12-01

    Urocortins (Ucn) 1, 2 and 3 are a group of endogenous peptide hormones belonging to the corticotropin-releasing hormone (CRH) family of peptides. The presence of urocortins has been detected in the central nervous system as well as in peripheral tissues. They play an important role in a stress response (with respect to its duration, intensity and restoration of homeostasis). They also act as regulatory factors of the cardiovascular, gastrointestinal, reproductive and immune systems. Urocortins act by binding to G-protein-coupled receptors (GPCR). The "central" effects of urocortins are mediated mainly by activation of CRH receptor 1 (CRH-R1), and the "peripheral" effects by activation of CRH-R2. Ucn2 and Ucn3 are selective CRH-R2 agonists and have much higher binding affinity to this receptor than CRH and Ucn1. Recent studies have shown that urocortins exert various biological effects in the cardiovascular system, such as vasodilation, positive inotropic and lusitropic effects, as well as cardioprotection against ischemia-reperfusion injury. They also suppress the renin-angiotensin system and may have an impact on the sympathetic nervous system. Urocortins and CRH-R2 may be a potential therapeutic target in coronary heart disease, congestive heart failure and hypertension. This review summarizes the data published to date on the role of urocortins in the cardiovascular system.

  2. Effect of transcervical resection of adhesion combined with low-dose aspirin on uterine artery blood flow and Smad2/3 in endometrial tissue

    Directory of Open Access Journals (Sweden)

    Qian-Wen Chen

    2016-11-01

    Full Text Available Objective: To study the effect of transcervical resection of adhesion combined with lowdose aspirin on uterine artery blood flow and Smad2/3 in endometrial tissue. Methods: A total of 78 patients with severe intrauterine adhesions who received transcervical resection of adhesion in our hospital between June 2012 and October 2014 were prospectively studied and randomly divided into two groups, observation group received postoperative estrogenprogestogen combined with low-dose aspirin therapy, and control group received postoperative estrogen-progestogen therapy. Ultrasound examination was conducted before and after treatment to determine uterine artery and endometrial blood flow parameters, intrauterine adhesion tissue was collected to detect the expression levels of Smad2 and Smad3 as well as downstream molecules, and serum was collected to determine the levels of cytokines. Results: On the ovulation day after 3 cycles of treatment, uterine artery RI and PI of observation group were significantly lower than those of control group, and endometrial VI, FI and VFI were significantly higher than those of control group; uPA expression level in intrauterine adhesion tissue of observation group was significantly higher than that of control group, Smad2, Smad3, PAI-1, ADAM15 and ADAM17 expression levels were significantly lower than those of control group, and serum TGF-β, VEGF, CTGF, IGF-I and TNF-α levels were significantly lower than those of control group. Conclusions: Transcervical resection of adhesion combined with low-dose aspirin therapy can improve the postoperative uterine artery and endometrial blood flow state, inhibit extracellular matrix deposition mediated by Smad2/3 signaling pathway and prevent intrauterine re-adhesion in patients with intrauterine adhesions.

  3. The effect of non-esterified long-chain fatty acids on blood flow and thermogenesis in brown adipose tissue in the young dog

    DEFF Research Database (Denmark)

    Astrup, A; Bülow, J; Christensen, N J

    1985-01-01

    In vitro experiments have demonstrated that increasing the molar ratio of extracellular non-esterified fatty acids (NEFA) to albumin stimulates thermogenesis in brown adipocytes. To test these results, in vivo blood flow and local temperature were measured in perirenal brown adipose tissue (BAT...... level. Plasma noradrenaline concentration increased about three-fold and plasma adrenaline concentration about six-fold. The BAT temperature increased by an average of 0.9 degrees C. However, since BAT blood flow was simultaneously reduced by about 50%, it can be calculated that the local heat...... production was also reduced. Consequently, the increase in whole body oxygen consumption was not due to stimulation of BAT thermogenesis. It is concluded that in vivo assessment of BAT thermogenesis requires concomitant measurements of both local BAT temperature and blood flow....

  4. Management of cardiovascular risk in systemic lupus erythematosus: a systematic review.

    Science.gov (United States)

    Andrades, C; Fuego, C; Manrique-Arija, S; Fernández-Nebro, A

    2017-11-01

    Systemic lupus erythematosus is associated with accelerated atherosclerosis and increased risk of cardiovascular complications. The aim of this study was to review the effectiveness of interventions for primary and secondary prevention of cardiovascular events and mortality and to review the effectiveness of interventions for cardiovascular risk factor reduction in systemic lupus erythematosus patients. A systematic review was conducted. Electronic databases Medline and Embase (1961-2015) were searched. Nineteen articles met the inclusion criteria and were selected. Low-calorie and/or low glycaemic index calories may be a useful option for secondary prevention in obese patients with systemic lupus erythematosus, and exercise would be useful in improving the endothelial function measured by flow-mediated dilation in this group of patients. The use of lipid-lowering drugs may improve the lipid profile in patients with systemic lupus erythematosus and hyperlipidaemia, but the effect of this treatment on overall cardiovascular mortality remains unknown. Antiplatelets, anticoagulants, antimalarials and lipid-lowering drugs may be effective in the primary and secondary prevention of major cardiovascular events, such as acute myocardial infarction or stroke. Similarly, lipid-lowering drugs and antimalarial drugs appear to reduce the serum levels of total cholesterol, low-density lipoprotein, glucose, diastolic blood pressure and calcium deposition at the coronary arteries. They may also improve insulin resistance and the level of high-density lipoproteins. It appears that treatment with antihypertensive drugs reduces blood pressure in patients with systemic lupus erythematosus, but the available studies are of low quality.

  5. Inhibition of NET Release Fails to Reduce Adipose Tissue Inflammation in Mice

    NARCIS (Netherlands)

    Braster, Quinte; Silvestre Roig, Carlos; Hartwig, Helene; Beckers, Linda; den Toom, Myrthe; Döring, Yvonne; Daemen, Mat J.; Lutgens, Esther; Soehnlein, Oliver

    2016-01-01

    Obesity-associated diseases such as Type 2 diabetes, liver disease and cardiovascular diseases are profoundly mediated by low-grade chronic inflammation of the adipose tissue. Recently, the importance of neutrophils and neutrophil-derived myeloperoxidase and neutrophil elastase on the induction of

  6. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Thang S Han

    2016-02-01

    Full Text Available The metabolic syndrome is a condition characterized by a special constellation of reversible major risk factors for cardiovascular disease and type 2 diabetes. The main, diagnostic, components are reduced HDL-cholesterol, raised triglycerides, blood pressure and fasting plasma glucose, all of which are related to weight gain, specifically intra-abdominal/ectopic fat accumulation and a large waist circumference. Using internationally adopted arbitrary cut-off values for waist circumference, having metabolic syndrome doubles the risk of cardiovascular disease, but offers an effective treatment approach through weight management. Metabolic syndrome now affects 30–40% of people by age 65, driven mainly by adult weight gain, and by a genetic or epigenetic predisposition to intra-abdominal/ectopic fat accumulation related to poor intra-uterine growth. Metabolic syndrome is also promoted by a lack of subcutaneous adipose tissue, low skeletal muscle mass and anti-retroviral drugs. Reducing weight by 5–10%, by diet and exercise, with or without, anti-obesity drugs, substantially lowers all metabolic syndrome components, and risk of type 2 diabetes and cardiovascular disease. Other cardiovascular disease risk factors such as smoking should be corrected as a priority. Anti-diabetic agents which improve insulin resistance and reduce blood pressure, lipids and weight should be preferred for diabetic patients with metabolic syndrome. Bariatric surgery offers an alternative treatment for those with BMI ≥ 40 or 35–40 kg/m 2 with other significant co-morbidity. The prevalence of the metabolic syndrome and cardiovascular disease is expected to rise along with the global obesity epidemic: greater emphasis should be given to effective early weight-management to reduce risk in pre-symptomatic individuals with large waists.

  7. An in vivo approach for globally estimating the drug flow between blood and tissue for nafamostat mesilate: the main hydrolysis site determination in human.

    Science.gov (United States)

    Cao, Yan-Guang; Chen, Yuan-Cheng; Hao, Kun; Zhang, Ming; Liu, Xiao-Quan

    2008-11-01

    Nafamostat mesilate, an ester drug with extensive hydrolysis in vivo, exhibits species difference in the relative contribution for its hydrolysis in blood and tissues. For the rat, the main hydrolysis site may be blood and human may be tissue (mainly by liver). The paper gave in vivo evidence that human tissue may give more contribution for its hydrolysis. In the initial phase of drug administration, the drug accumulating level in tissue was low; the efflux fraction from tissue into blood can be ignorable comparing with the drug influx into tissue. Based on urine and plasma metabolite analysis, we concluded that in the initial phase almost all the drug hydrolysis in blood was excreted into urine. Then according to the initial urine metabolite analysis, we can estimate the drug hydrolysis rate in blood. The rate of drug diffusion from blood into tissues can be deduced based on the mass balance analysis of the initial blood drug. With the estimated rate constants, the drug efflux from tissues into blood was calculated according to equation: OFT-B (efflux from tissues) = OFB-U (blood hydrolysis fraction)+OFB-T (influx into tissues)-DB (hydrolysis in blood). The net flow (influent flux minus effluent flux) represented the drug hydrolysis fraction in tissue. As the result indicated, in human about 20% drug administrated was hydrolyzed in blood and nearly 80% in tissues. The relative hydrolysis fraction indicated that the main hydrolysis site in human body may locate in tissue, which was different to rats.

  8. Flow cytometric examination of apoptotic effect on brain tissue in postnatal period created by intrauterine oxcarbazepine and gabapentin exposure.

    Science.gov (United States)

    Erisgin, Z; Tekelioglu, Y

    For epileptics, pregnancy contains the balance between no seizure period and antiepileptic use having the least teratogenicity risk. The purpose is to analyse with flow cytometry the apoptotic effects on postnatal brain tissue caused by prenatal use of second generation antiepileptics oxcarbazepine (OXC) and gabapentin (GBP) having different effect mechanisms. 30 (n = 5 each group) Wistar albino male rats (45-days-old) are used. First 3 groups are exposed to OXC (100 mg/kg/day), GBP (50 mg/kg/day), and saline, respectively on the 1st-5th prenatal days (preimplantation-implantation period) while the second 3 groups are exposed to the same substances on the 6th-15th prenatal days (organogenesis), respectively. After sacrifice, brain tissue samples were made into suspension with mechanic and enzymatic digestion and examined with flow cytometry. While apoptosis rate appeared high in rats exposed to OXC on the 1st-5th (p effect in three treatment groups, while difference was not significant for PSS and GBP groups (p = 0.847 and p = 0.934), apoptosis rate was significantly high for OXC on the 6th-15th days compared to the 1st-5th days (p < 0.001). It is observed that the use of OXC causes neurotoxicity during preimplantation, implantation and, especially, organogenesis period (neurogenesis) whereas GBP does not (Fig. 3, Ref. 32).

  9. Inhibition of α-adrenergic tone disturbs the distribution of blood flow in the exercising human limb.

    Science.gov (United States)

    Heinonen, Ilkka; Wendelin-Saarenhovi, Maria; Kaskinoro, Kimmo; Knuuti, Juhani; Scheinin, Mika; Kalliokoski, Kari K

    2013-07-15

    The role of neuronal regulation of human cardiovascular function remains incompletely elucidated, especially during exercise. Here we, by positron emission tomography, monitored tissue-specific blood flow (BF) changes in nine healthy young men during femoral arterial infusions of norepinephrine (NE) and phentolamine. At rest, the α-adrenoceptor agonist NE reduced BF by ~40%, similarly in muscles (from 3.2 ± 1.9 to 1.4 ± 0.3 ml·min(-1)·100 g(-1) in quadriceps femoris muscle), bone (from 1.1 ± 0.4 to 0.5 ± 0.2 ml·min(-1)·100 g(-1)) and adipose tissue (AT) (from 1.2 ± 0.7 to 0.7 ± 0.3 ml·min(-1)·100 g(-1)). During exercise, NE reduced exercising muscle BF by ~16%. BF in AT was reduced similarly as rest. The α-adrenoceptor antagonist phentolamine increased BF similarly in the different muscles and other tissues of the limb at rest. During exercise, BF in inactive muscle was increased 3.4-fold by phentolamine compared with exercise without drug, but BF in exercising muscles was not influenced. Bone and AT (P = 0.055) BF were also increased by phentolamine in the exercise condition. NE increased and phentolamine decreased oxygen extraction in the limb during exercise. We conclude that inhibition of α-adrenergic tone markedly disturbs the distribution of BF and oxygen extraction in the exercising human limb by increasing BF especially around inactive muscle fibers. Moreover, although marked functional sympatholysis also occurs during exercise, the arterial NE infusion that mimics the exaggerated sympathetic nerve activity commonly seen in patients with cardiovascular disease was still capable of directly limiting BF in the exercising leg muscles.

  10. Diabetes Drugs and Cardiovascular Safety

    Directory of Open Access Journals (Sweden)

    Ji Cheol Bae

    2016-06-01

    Full Text Available Diabetes is a well-known risk factor of cardiovascular morbidity and mortality, and the beneficial effect of improved glycemic control on cardiovascular complications has been well established. However, the rosiglitazone experience aroused awareness of potential cardiovascular risk associated with diabetes drugs and prompted the U.S. Food and Drug Administration to issue new guidelines about cardiovascular risk. Through postmarketing cardiovascular safety trials, some drugs demonstrated cardiovascular benefits, while some antidiabetic drugs raised concern about a possible increased cardiovascular risk associated with drug use. With the development of new classes of drugs, treatment options became wider and the complexity of glycemic management in type 2 diabetes has increased. When choosing the appropriate treatment strategy for patients with type 2 diabetes at high cardiovascular risk, not only the glucose-lowering effects, but also overall benefits and risks for cardiovascular disease should be taken into consideration.

  11. Cardiovascular function in term fetal sheep conceived, gestated and studied in the hypobaric hypoxia of the Andean altiplano.

    Science.gov (United States)

    Herrera, Emilio A; Rojas, Rodrigo T; Krause, Bernardo J; Ebensperger, Germán; Reyes, Roberto V; Giussani, Dino A; Parer, Julian T; Llanos, Aníbal J

    2016-03-01

    High-altitude hypoxia causes intrauterine growth restriction and cardiovascular programming. However, adult humans and animals that have evolved at altitude show certain protection against the effects of chronic hypoxia. Whether the highland fetus shows similar protection against high altitude gestation is unclear. We tested the hypothesis that high-altitude fetal sheep have evolved cardiovascular compensatory mechanisms to withstand chronic hypoxia that are different from lowland sheep. We studied seven high-altitude (HA; 3600 m) and eight low-altitude (LA; 520 m) pregnant sheep at ∼90% gestation. Pregnant ewes and fetuses were instrumented for cardiovascular investigation. A three-period experimental protocol was performed in vivo: 30 min of basal, 1 h of acute superimposed hypoxia (∼10% O2) and 30 min of recovery. Further, we determined ex vivo fetal cerebral and femoral arterial function. HA pregnancy led to chronic fetal hypoxia, growth restriction and altered cardiovascular function. During acute superimposed hypoxia, LA fetuses redistributed blood flow favouring the brain, heart and adrenals, whereas HA fetuses showed a blunted cardiovascular response. Importantly, HA fetuses have a marked reduction in umbilical blood flow versus LA. Isolated cerebral arteries from HA fetuses showed a higher contractile capacity but a diminished response to catecholamines. In contrast, femoral arteries from HA fetuses showed decreased contractile capacity and increased adrenergic contractility. The blunting of the cardiovascular responses to hypoxia in fetuses raised in the Alto Andino may indicate a change in control strategy triggered by chronic hypoxia, switching towards compensatory mechanisms that are more cost-effective in terms of oxygen uptake. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  12. Computational fluid dynamics modelling in cardiovascular medicine.

    Science.gov (United States)

    Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2016-01-01

    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. Published by the BMJ Publishing Group Limited. For permission

  13. Milan PM1 induces adverse effects on mice lungs and cardiovascular system.

    Science.gov (United States)

    Farina, Francesca; Sancini, Giulio; Longhin, Eleonora; Mantecca, Paride; Camatini, Marina; Palestini, Paola

    2013-01-01

    Recent studies have suggested a link between inhaled particulate matter (PM) exposure and increased mortality and morbidity associated with cardiorespiratory diseases. Since the response to PM1 has not yet been deeply investigated, its impact on mice lungs and cardiovascular system is here examined. A repeated exposure to Milan PM1 was performed on BALB/c mice. The bronchoalveolar lavage fluid (BALf) and the lung parenchyma were screened for markers of inflammation (cell counts, tumor necrosis factor-α (TNF-α); macrophage inflammatory protein-2 (MIP-2); heme oxygenase-1 (HO-1); nuclear factor kappa-light-chain-enhancer of activated B cells p50 subunit (NFκB-p50); inducible nitric oxide synthetase (iNOS); endothelial-selectin (E-selectin)), cytotoxicity (lactate dehydrogenase (LDH); alkaline phosphatase (ALP); heat shock protein 70 (Hsp70); caspase-8-p18), and a putative pro-carcinogenic marker (cytochrome 1B1 (Cyp1B1)). Heart tissue was tested for HO-1, caspase-8-p18, NFκB-p50, iNOS, E-selectin, and myeloperoxidase (MPO); plasma was screened for markers of platelet activation and clot formation (soluble platelet-selectin (sP-selectin); fibrinogen; plasminogen activator inhibitor 1 (PAI-1)). PM1 triggers inflammation and cytotoxicity in lungs. A similar cytotoxic effect was observed on heart tissues, while plasma analyses suggest blood-endothelium interface activation. These data highlight the importance of lung inflammation in mediating adverse cardiovascular events following increase in ambient PM1 levels, providing evidences of a positive correlation between PM1 exposure and cardiovascular morbidity.

  14. Milan PM1 Induces Adverse Effects on Mice Lungs and Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Francesca Farina

    2013-01-01

    Full Text Available Recent studies have suggested a link between inhaled particulate matter (PM exposure and increased mortality and morbidity associated with cardiorespiratory diseases. Since the response to PM1 has not yet been deeply investigated, its impact on mice lungs and cardiovascular system is here examined. A repeated exposure to Milan PM1 was performed on BALB/c mice. The bronchoalveolar lavage fluid (BALf and the lung parenchyma were screened for markers of inflammation (cell counts, tumor necrosis factor-α (TNF-α; macrophage inflammatory protein-2 (MIP-2; heme oxygenase-1 (HO-1; nuclear factor kappa-light-chain-enhancer of activated B cells p50 subunit (NFκB-p50; inducible nitric oxide synthetase (iNOS; endothelial-selectin (E-selectin, cytotoxicity (lactate dehydrogenase (LDH; alkaline phosphatase (ALP; heat shock protein 70 (Hsp70; caspase-8-p18, and a putative pro-carcinogenic marker (cytochrome 1B1 (Cyp1B1. Heart tissue was tested for HO-1, caspase-8-p18, NFκB-p50, iNOS, E-selectin, and myeloperoxidase (MPO; plasma was screened for markers of platelet activation and clot formation (soluble platelet-selectin (sP-selectin; fibrinogen; plasminogen activator inhibitor 1 (PAI-1. PM1 triggers inflammation and cytotoxicity in lungs. A similar cytotoxic effect was observed on heart tissues, while plasma analyses suggest blood-endothelium interface activation. These data highlight the importance of lung inflammation in mediating adverse cardiovascular events following increase in ambient PM1 levels, providing evidences of a positive correlation between PM1 exposure and cardiovascular morbidity.

  15. Electromechanical Model of Blood Flow in Vessels

    Directory of Open Access Journals (Sweden)

    Ivo Cap

    2008-01-01

    Full Text Available The present paper deals with some theoretical derivations connected with very efficient method of solution of hydrodynamic problems of blood flow in human cardiovascular system. The electromechanical analogy of liquid flow in a tube and electromagnetic wave propagating along an electric transmission line is discussed. We have derived a detailed circuit-like model of an elementary section of the elastic tube with viscose Newtonian liquid. The analogy harmonic current electrical circuit has been designed

  16. Rheumatic Diseases and Obesity: Adipocytokines as Potential Comorbidity Biomarkers for Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Rossana Scrivo

    2013-01-01

    Full Text Available Inflammation has been recognized as a common trait in the pathogenesis of multifactorial diseases including obesity, where a low-grade inflammation has been established and may be responsible for the cardiovascular risk related to the disease. Obesity has also been associated with the increased incidence and a worse outcome of rheumatoid arthritis (RA and osteoarthritis (OA. RA is characterized by systemic inflammation, which is thought to play a key role in accelerated atherosclerosis and in the increased incidence of cardiovascular disease, an important comorbidity in patients with RA. The inflammatory process underlying the cardiovascular risk both in obesity and RA may be mediated by adipocytokines, a heterogeneous group of soluble proteins mainly secreted by the adipocytes. Many adipocytokines are mainly produced by white adipose tissue. Adipocytokines may also be involved in the pathogenesis of OA since a positive association with obesity has been found for weight-bearing and nonweight-bearing joints, suggesting that, in addition to local overload, systemic factors may contribute to joint damage. In this review we summarize the current knowledge on experimental models and clinical studies in which adipocytokines were examined in obesity, RA, and OA and discuss the potential of adipocytokines as comorbidity biomarkers for cardiovascular risk.

  17. Biological markers of oxidative stress: Applications to cardiovascular research and practice

    Directory of Open Access Journals (Sweden)

    Edwin Ho

    2013-01-01

    Full Text Available Oxidative stress is a common mediator in pathogenicity of established cardiovascular risk factors. Furthermore, it likely mediates effects of emerging, less well-defined variables that contribute to residual risk not explained by traditional factors. Functional oxidative modifications of cellular proteins, both reversible and irreversible, are a causal step in cellular dysfunction. Identifying markers of oxidative stress has been the focus of many researchers as they have the potential to act as an “integrator” of a multitude of processes that drive cardiovascular pathobiology. One of the major challenges is the accurate quantification of reactive oxygen species with very short half-life. Redox-sensitive proteins with important cellular functions are confined to signalling microdomains in cardiovascular cells and are not readily available for quantification. A popular approach is the measurement of stable by-products modified under conditions of oxidative stress that have entered the circulation. However, these may not accurately reflect redox stress at the cell/tissue level. Many of these modifications are “functionally silent”. Functional significance of the oxidative modifications enhances their validity as a proposed biological marker of cardiovascular disease, and is the strength of the redox cysteine modifications such as glutathionylation. We review selected biomarkers of oxidative stress that show promise in cardiovascular medicine, as well as new methodologies for high-throughput measurement in research and clinical settings. Although associated with disease severity, further studies are required to examine the utility of the most promising oxidative biomarkers to predict prognosis or response to treatment.

  18. YKL-40 - an emerging biomarker in cardiovascular disease and diabetes

    Directory of Open Access Journals (Sweden)

    Rathcke Camilla

    2009-01-01

    Full Text Available Abstract Several inflammatory cytokines are involved in vascular inflammation resulting in endothelial dysfunction which is the earliest event in the atherosclerotic process leading to manifest cardiovascular disease. YKL-40 is an inflammatory glycoprotein involved in endothelial dysfunction by promoting chemotaxis, cell attachment and migration, reorganization and tissue remodelling as a response to endothelial damage. YKL-40 protein expression is seen in macrophages and smooth muscle cells in atherosclerotic plaques with the highest expression seen in macrophages in the early lesion of atherosclerosis. Several studies demonstrate, that elevated serum YKL-levels are independently associated with the presence and extent of coronary artery disease and even higher YKL-40 levels are documented in patients with myocardial infarction. Moreover, elevated serum YKL-40 levels have also been found to be associated with all-cause as well as cardiovascular mortality. Finally, YKL-40 levels are elevated both in patients with type 1 and type 2 diabetes, known to be at high risk for the development of cardiovascular diseases, when compared to non-diabetic persons. A positive association between elevated circulating YKL-40 levels and increasing levels of albuminuria have been described in patients with type 1 diabetes indicating a role of YKL-40 in the progressing vascular damage resulting in microvascular disease. This review describes the present knowledge about YKL-40 and discusses its relation to endothelial dysfunction, atherosclerosis, cardiovascular disease and diabetes and look ahead on future perspectives of YKL-40 research.

  19. Drug perfusion enhancement in tissue model by steady streaming induced by oscillating microbubbles.

    Science.gov (United States)

    Oh, Jin Sun; Kwon, Yong Seok; Lee, Kyung Ho; Jeong, Woowon; Chung, Sang Kug; Rhee, Kyehan

    2014-01-01

    Drug delivery into neurological tissue is challenging because of the low tissue permeability. Ultrasound incorporating microbubbles has been applied to enhance drug delivery into these tissues, but the effects of a streaming flow by microbubble oscillation on drug perfusion have not been elucidated. In order to clarify the physical effects of steady streaming on drug delivery, an experimental study on dye perfusion into a tissue model was performed using microbubbles excited by acoustic waves. The surface concentration and penetration length of the drug were increased by 12% and 13%, respectively, with streaming flow. The mass of dye perfused into a tissue phantom for 30s was increased by about 20% in the phantom with oscillating bubbles. A computational model that considers fluid structure interaction for streaming flow fields induced by oscillating bubbles was developed, and mass transfer of the drug into the porous tissue model was analyzed. The computed flow fields agreed with the theoretical solutions, and the dye concentration distribution in the tissue agreed well with the experimental data. The computational results showed that steady streaming with a streaming velocity of a few millimeters per second promotes mass transfer into a tissue. © 2013 Published by Elsevier Ltd.

  20. Blood flow autoregulation in pedicled flaps

    DEFF Research Database (Denmark)

    Bonde, Christian T; Holstein-Rathlou, Niels-Henrik; Elberg, Jens J

    2009-01-01

    was to evaluate if, and to what extent, a tissue flap could compensate a reduction in blood flow due to an acute constriction of the feed artery. Further, we wanted to examine the possible role of smooth muscle L-type calcium channels in the autoregulatory mechanism by pharmacological intervention with the L......, the flow in the pedicle was reduced and the flow was recorded. RESULTS: The flaps showed a strong autoregulatory response with complete compensation for flow reductions of up to 70-80%. Infusion of nimodipine caused a 28+/-10% increase in blood flow and removed the autoregulation. Papaverine caused...... a further increase in blood flow by 61+/-19%. The time control experiments proved that the experimental procedure was reproducible and stable over time. CONCLUSIONS: A tissue flap can nearly completely compensate for repeated flow reductions of up to 70-80%. This is due to a decrease in the peripheral...

  1. Intravaginal Administration of Sildenafil Citrate Increases Blood Flow in the Bovine Uterus

    Directory of Open Access Journals (Sweden)

    Dzięcioł Michał

    2015-04-01

    Full Text Available The aim of the study was to evaluate the influence of sildenafil citrate administrated intravaginaly on the blood flow in the bovine uterus during dioestrus. Uterine blood flow was examined in six healthy adult cows. Sildenafil was administrated intravaginaly to each co w between the 6th and 8th d of the ovarian cycle, in the form of vaginal suppositories containing 100 mg of active substance at a dose of 100, 200, or 300 mg per animal. Uterine perfusion was estimated by the colour Doppler examination, and obtained results were analysed with the Pixel Flux Software (Chameleon, Germany. Moreover, cardiovascular parameters were also evaluated. Animals were examined before and five times after drug application (two times at 15 min intervals, and three times at 2 h intervals. A placebo suppository was also given to the cows. The analysis of the intensity and velocity of blood flow in the uterus proved that sildenafil administrated intravaginaly significantly increased blood flow in the uterus and the effect of increased perfusion was observed for 4 h and 30 min after administration. The effect of increased uterine perfusion was observed after low as well as high doses of sildenafil. Significant changes in the cardio-vascular parameters were not detected. There were no changes in the uterine perfusion as well as in cardiovascular parameters after placebo administration.

  2. AT2 Receptor and Tissue Injury

    DEFF Research Database (Denmark)

    Namsolleck, Pawel; Recarti, Chiara; Foulquier, Sébastien

    2014-01-01

    The renin-angiotensin system (RAS) plays an important role in the initiation and progression of tissue injuries in the cardiovascular and nervous systems. The detrimental actions of the AT1 receptor (AT1R) in hypertension and vascular injury, myocardial infarction and brain ischemia are well...... established. In the past twenty years, protective actions of the RAS, not only in the cardiovascular, but also in the nervous system, have been demonstrated. The so-called protective arm of the RAS includes AT2-receptors and Mas receptors (AT2R and MasR) and is characterized by effects different from...... and often opposing those of the AT1R. These include anti-inflammation, anti-fibrosis, anti-apoptosis and neuroregeneration that can counterbalance pathological processes and enable recovery from disease. The recent development of novel, small-molecule AT2R agonists offers a therapeutic potential in humans...

  3. Patch esophagoplasty using an in-body-tissue-engineered collagenous connective tissue membrane.

    Science.gov (United States)

    Okuyama, Hiroomi; Umeda, Satoshi; Takama, Yuichi; Terasawa, Takeshi; Nakayama, Yasuhide

    2018-02-01

    Although many approaches to esophageal replacement have been investigated, these efforts have thus far only met limited success. In-body-tissue-engineered connective tissue tubes have been reported to be effective as vascular replacement grafts. The aim of this study was to investigate the usefulness of an In-body-tissue-engineered collagenous connective tissue membrane, "Biosheet", as a novel esophageal scaffold in a beagle model. We prepared Biosheets by embedding specially designed molds into subcutaneous pouches in beagles. After 1-2months, the molds, which were filled with ingrown connective tissues, were harvested. Rectangular-shaped Biosheets (10×20mm) were then implanted to replace defects of the same size that had been created in the cervical esophagus of the beagle. An endoscopic evaluation was performed at 4 and 12weeks after implantation. The esophagus was harvested and subjected to a histological evaluation at 4 (n=2) and 12weeks (n=2) after implantation. The animal study protocols were approved by the National Cerebral and Cardiovascular Centre Research Institute Committee (No. 16048). The Biosheets showed sufficient strength and flexibility to replace the esophagus defect. All animals survived with full oral feeding during the study period. No anastomotic leakage was observed. An endoscopic study at 4 and 12weeks after implantation revealed that the anastomotic sites and the internal surface of the Biosheets were smooth, without stenosis. A histological analysis at 4weeks after implantation demonstrated that stratified squamous epithelium was regenerated on the internal surface of the Biosheets. A histological analysis at 12weeks after implantation showed the regeneration of muscle tissue in the implanted Biosheets. The long-term results of patch esophagoplasty using Biosheets showed regeneration of stratified squamous epithelium and muscular tissues in the implanted sheets. These results suggest that Biosheets may be useful as a novel esophageal

  4. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    Science.gov (United States)

    Soltani, M; Chen, P

    2013-01-01

    Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  5. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    Directory of Open Access Journals (Sweden)

    M Soltani

    Full Text Available Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  6. Quantitative myocardial blood flow with Rubidium-82 PET

    DEFF Research Database (Denmark)

    Hagemann, Christoffer E; Ghotbi, Adam A; Kjær, Andreas

    2015-01-01

    Positron emission tomography (PET) allows assessment of myocardial blood flow in absolute terms (ml/min/g). Quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR) extend the scope of conventional semi-quantitative myocardial perfusion imaging (MPI): e.g. in 1) identificat......Positron emission tomography (PET) allows assessment of myocardial blood flow in absolute terms (ml/min/g). Quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR) extend the scope of conventional semi-quantitative myocardial perfusion imaging (MPI): e.g. in 1...... global MFR and major adverse cardiovascular events (MACE), and together with new diagnostic possibilities from measuring the longitudinal myocardial perfusion gradient, cardiac (82)Rb PET faces a promising clinical future. This article reviews current evidence on quantitative (82)Rb PET's ability...

  7. Cardiovascular radiology

    International Nuclear Information System (INIS)

    VanAman, M.; Mueller, C.F.

    1985-01-01

    Soon after Roentgen documented the uses of x-rays in 1895, fluoroscopic and film evaluation of the heart began. Even today the chest roentgenogram remains one of the first and most frequently used studies for the evaluation of the normal and abnormal heart and great vessels. This chapter gives an overview of plain film evaluation of the cardiovascular system and follow up with comments on the newer imaging modalities of computed tomography, and digital subtraction angiography, in the cardiovascular disease workup. The authors present an evaluation of plain films of the chest, which remains their most cost effective, available, simple, and reliable initial screening tool in the evaluation of cardiovascular disease

  8. Critical Windows of Cardiovascular Susceptibility to Developmental Hypoxia in Common Snapping Turtle (Chelydra serpentina) Embryos.

    Science.gov (United States)

    Tate, Kevin B; Kohl, Zachary F; Eme, John; Rhen, Turk; Crossley, Dane A

    2015-01-01

    Environmental conditions fluctuate dramatically in some reptilian nests. However, critical windows of environmental sensitivity for cardiovascular development have not been identified. Continuous developmental hypoxia has been shown to alter cardiovascular form and function in embryonic snapping turtles (Chelydra serpentina), and we used this species to identify critical periods during which hypoxia modifies the cardiovascular phenotype. We hypothesized that incubation in 10% O2 during specific developmental periods would have differential effects on the cardiovascular system versus overall somatic growth. Two critical windows were identified with 10% O2 from 50% to 70% of incubation, resulting in relative heart enlargement, either via preservation of or preferential growth of this tissue, while exposure to 10% O2 from 20% to 70% of incubation resulted in a reduction in arterial pressure. The deleterious or advantageous aspects of these embryonic phenotypes in posthatching snapping turtles have yet to be explored. However, identification of these critical windows has provided insight into how the developmental environment alters the phenotype of reptiles and will also be pivotal in understanding its impact on the fitness of egg-laying reptiles.

  9. Physiological Changes to the Cardiovascular System at High Altitude and Its Effects on Cardiovascular Disease.

    Science.gov (United States)

    Riley, Callum James; Gavin, Matthew

    2017-06-01

    Riley, Callum James, and Matthew Gavin. Physiological changes to the cardiovascular system at high altitude and its effects on cardiovascular disease. High Alt Med Biol. 18:102-113, 2017.-The physiological changes to the cardiovascular system in response to the high altitude environment are well understood. More recently, we have begun to understand how these changes may affect and cause detriment to cardiovascular disease. In addition to this, the increasing availability of altitude simulation has dramatically improved our understanding of the physiology of high altitude. This has allowed further study on the effect of altitude in those with cardiovascular disease in a safe and controlled environment as well as in healthy individuals. Using a thorough PubMed search, this review aims to integrate recent advances in cardiovascular physiology at altitude with previous understanding, as well as its potential implications on cardiovascular disease. Altogether, it was found that the changes at altitude to cardiovascular physiology are profound enough to have a noteworthy effect on many forms of cardiovascular disease. While often asymptomatic, there is some risk in high altitude exposure for individuals with certain cardiovascular diseases. Although controlled research in patients with cardiovascular disease was largely lacking, meaning firm conclusions cannot be drawn, these risks should be a consideration to both the individual and their physician.

  10. Environmental conditions influence tissue regeneration rates in scleractinian corals.

    Science.gov (United States)

    Sabine, Alexis M; Smith, Tyler B; Williams, Dana E; Brandt, Marilyn E

    2015-06-15

    Natural and anthropogenic factors may influence corals' ability to recover from partial mortality. To examine how environmental conditions affect lesion healing, we assessed several water quality parameters and tissue regeneration rates in corals at six reefs around St. Thomas, US Virgin Islands. We hypothesized that sites closer to developed areas would have poor water quality due to proximity to anthropogenic stresses, which would impede tissue regeneration. We found that water flow and turbidity most strongly influenced lesion recovery rates. The most impacted site, with high turbidity and low flow, recovered almost three times slower than the least impacted site, with low turbidity, high flow, and low levels of anthropogenic disturbance. Our results illustrate that in addition to lesion-specific factors known to affect tissue regeneration, environmental conditions can also control corals' healing rates. Resource managers can use this information to protect low-flow, turbid nearshore reefs by minimizing sources of anthropogenic stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Prevalence of stroke/cardiovascular risk factors in Hungary

    Science.gov (United States)

    Bodo, M.; Sipos, K.; Thuroczy, G.; Panczel, G.; Ilias, L.; Szonyi, P.; Bodo, M., Jr.; Nebella, T.; Banyasz, A.; Nagy, Z.

    2010-04-01

    A cross-sectional survey was conducted in Hungary using the Cerberus system which includes: 1) a questionnaire addressing the risk factors for stroke/cardiovascular disease; 2) amplifiers to record the pulse waves of cerebral arteries (rheoencephalography) and peripheral arteries, electrocardiogram and electroencephalogram. Additionally, subjects were measured for carotid stenosis by Doppler ultrasound and 12-lead electrocardiogram; subjects were also screened for blood cholesterol, glucose, and triglyceride levels. Prevalence of the following stroke risk factors was identified: overweight, 63.25%; sclerotic brain arteries (by rheoencephalogram), 54.29%; heart disease, 37.92%; pathologic carotid flow, 34.24%; smoking, 30.55%; high blood cholesterol, 28.70%; hypertension, 27.83%; high triglyceride, 24.35%; abnormality in electrocardiogram, 20%; high glucose, 15.95%; symptoms of transient ischemic attack, 16.07%; alcohol abuse, 6.74%; and diabetes, 4.53%. The study demonstrates a possible model for primary cardiovascular disease/stroke prevention. This method offers a standardizable, cost effective, practical technique for mass screenings by identifying the population at high risk for cardiovascular disturbances, especially cerebrovascular disease (primary prevention). In this model, the rheoencephalogram can detect cerebrovascular arteriosclerosis in the susceptibility/presymptomatic phase, earlier than the Doppler ultrasound technique. The method also provides a model for storing analog physiological signals in a computer-based medical record and is a first step in applying an expert system to stroke prevention.

  12. Heat Generation in Axial and Centrifugal Flow Left Ventricular Assist Devices.

    Science.gov (United States)

    Yost, Gardner; Joseph, Christine Rachel; Royston, Thomas; Tatooles, Antone; Bhat, Geetha

    Despite increasing use of left ventricular assist devices (LVADs) as a surgical treatment for advanced heart failure in an era of improved outcomes with LVAD support, the mechanical interactions between these pumps and the cardiovascular system are not completely understood. We utilized an in vitro mock circulatory loop to analyze the heat production incurred by operation of an axial flow and centrifugal flow LVAD. A HeartMate II and a HeartWare HVAD were connected to an abbreviated flow loop and were implanted in a viscoelastic gel. Temperature was measured at the surface of each LVAD. Device speed and fluid viscosity were altered and, in the HeartMate II, as artificial thrombi were attached to the inflow stator, impeller, and outflow stator. The surface temperatures of both LVADs increased in all trials and reached a plateau within 80 minutes of flow initiation. Rate of heat generation and maximum system temperature were greater when speed was increased, when viscosity was increased, and when artificial thrombi were attached to the HeartMate II impeller. Normal operation of these two widely utilized LVADs results in appreciable heat generation in vitro. Increased pump loading resulted in more rapid heat generation, which was particularly severe when a large thrombus was attached to the impeller of the HeartMate II. While heat accumulation in vivo is likely minimized by greater dissipation in the blood and soft tissues, focal temperature gains with the pump housing of these two devices during long-term operation may have negative hematological consequences.

  13. Ethnic variability in adiposity and cardiovascular risk: the variable disease selection hypothesis.

    Science.gov (United States)

    Wells, Jonathan C K

    2009-02-01

    Evidence increasingly suggests that ethnic differences in cardiovascular risk are partly mediated by adipose tissue biology, which refers to the regional distribution of adipose tissue and its differential metabolic activity. This paper proposes a novel evolutionary hypothesis for ethnic genetic variability in adipose tissue biology. Whereas medical interest focuses on the harmful effect of excess fat, the value of adipose tissue is greatest during chronic energy insufficiency. Following Neel's influential paper on the thrifty genotype, proposed to have been favoured by exposure to cycles of feast and famine, much effort has been devoted to searching for genetic markers of 'thrifty metabolism'. However, whether famine-induced starvation was the primary selective pressure on adipose tissue biology has been questioned, while the notion that fat primarily represents a buffer against starvation appears inconsistent with historical records of mortality during famines. This paper reviews evidence for the role played by adipose tissue in immune function and proposes that adipose tissue biology responds to selective pressures acting through infectious disease. Different diseases activate the immune system in different ways and induce different metabolic costs. It is hypothesized that exposure to different infectious disease burdens has favoured ethnic genetic variability in the anatomical location of, and metabolic profile of, adipose tissue depots.

  14. Association of diastolic blood pressure with cardiovascular events in older people varies upon cardiovascular history

    DEFF Research Database (Denmark)

    Wijsman, Liselotte W.; Muller, Majon; de Craen, Anton J .M.

    2018-01-01

    with those with normal DBP. After further adjusting for cardiovascular factors, this association attenuated to 1.05 (0.86; 1.28). A previous history of cardiovascular disease significantly modified the relation between DBP and risk of cardiovascular events (P-interaction 0.042). In participants without......BACKGROUND: In older age, a low DBP has been associated with increased risk of cardiovascular events, especially in frail older people. We tested the hypothesis that low DBP is associated with a high risk of cardiovascular events in people with a previous history of cardiovascular disease......-90 mmHg) or high (>90 mmHg). Cox proportional hazards analyses were used to estimate hazard ratio with 95% confidence intervals (CI); analyses were stratified for cardiovascular history. RESULTS: Participants with low DBP had a 1.24-fold (1.04; 1.49) increased risk of cardiovascular events compared...

  15. Rat Models of Cardiovascular Disease Demonstrate Distinctive Pulmonary Gene Expressions for Vascular Response Genes: Impact of Ozone Exposure

    Science.gov (United States)

    Comparative gene expression profiling of multiple tissues from rat strains with genetic predisposition to diverse cardiovascular diseases (CVD) can help decode the transcriptional program that governs organ-specific functions. We examined expressions of CVD genes in the lungs of ...

  16. Flow measurement at the aortic root

    DEFF Research Database (Denmark)

    Bertelsen, Litten; Svendsen, Jesper Hastrup; Køber, Lars

    2016-01-01

    during CMR and aortic stenosis were excluded from the analyses. Stroke volumes were measured volumetrically (SVref) from steady-state free precision short axis images covering the entire left ventricle, excluding the papillary muscles and including the left ventricular outflow tract. Flow sequences......BACKGROUND: Cardiovascular magnetic resonance (CMR) is considered the gold standard of cardiac volumetric measurements. Flow in the aortic root is often measured at the sinotubular junction, even though placing the slice just above valve level may be more precise. It is unknown how much flow...... theoretically be equal to flow measurements, SVV and SVST were compared to SVref. RESULTS: Initially, 152 patients were included. 22 were excluded because of arrhythmias during scans and 9 were excluded for aortic stenosis. Accordingly, data from 121 patients were analysed and of these 63 had visually evident...

  17. Mortality of mothers from cardiovascular and non-cardiovascular causes following pregnancy complications in first delivery

    DEFF Research Database (Denmark)

    Lykke, Jacob Alexander; Langhoff-Roos, Jens; Lockwood, Charles J

    2010-01-01

    The combined effects of preterm delivery, small-for-gestational-age offspring, hypertensive disorders of pregnancy, placental abruption and stillbirth on early maternal death from cardiovascular causes have not previously been described in a large cohort. We investigated the effects of pregnancy...... cardiovascular and non-cardiovascular causes following preterm delivery, small-for-gestational-age offspring and hypertensive disorders of pregnancy. We found that preterm delivery and small-for-gestational-age were both associated with subsequent death of mothers from cardiovascular and non......-cardiovascular causes. Severe pre-eclampsia was associated with death from cardiovascular causes only. There was a less than additive effect on cardiovascular mortality hazard ratios with increasing number of pregnancy complications: preterm delivery 1.90 [95% confidence intervals 1.49, 2.43]; preterm delivery...

  18. Strategies and methods to study sex differences in cardiovascular structure and function: a guide for basic scientists

    Directory of Open Access Journals (Sweden)

    Miller Virginia M

    2011-12-01

    Full Text Available Abstract Background Cardiovascular disease remains the primary cause of death worldwide. In the US, deaths due to cardiovascular disease for women exceed those of men. While cultural and psychosocial factors such as education, economic status, marital status and access to healthcare contribute to sex differences in adverse outcomes, physiological and molecular bases of differences between women and men that contribute to development of cardiovascular disease and response to therapy remain underexplored. Methods This article describes concepts, methods and procedures to assist in the design of animal and tissue/cell based studies of sex differences in cardiovascular structure, function and models of disease. Results To address knowledge gaps, study designs must incorporate appropriate experimental material including species/strain characteristics, sex and hormonal status. Determining whether a sex difference exists in a trait must take into account the reproductive status and history of the animal including those used for tissue (cell harvest, such as the presence of gonadal steroids at the time of testing, during development or number of pregnancies. When selecting the type of experimental animal, additional consideration should be given to diet requirements (soy or plant based influencing consumption of phytoestrogen, lifespan, frequency of estrous cycle in females, and ability to investigate developmental or environmental components of disease modulation. Stress imposed by disruption of sleep/wake cycles, patterns of social interaction (or degree of social isolation, or handling may influence adrenal hormones that interact with pathways activated by the sex steroid hormones. Care must be given to selection of hormonal treatment and route of administration. Conclusions Accounting for sex in the design and interpretation of studies including pharmacological effects of drugs is essential to increase the foundation of basic knowledge upon which to

  19. Epicardial, pericardial and total cardiac fat and cardiovascular disease in type 2 diabetic patients with elevated urinary albumin excretion rate

    DEFF Research Database (Denmark)

    Christensen, Regitse H.; Von Scholten, Bernt J.; Hansen, Christian S.

    2017-01-01

    of 200 patients with type 2 diabetes and elevated urinary albumin excretion rate (UAER). Methods Cardiac adipose tissue was measured from baseline echocardiography. The composite endpoint comprised incident cardiovascular disease and all-cause mortality. Coronary artery calcium, carotid intima media.......7, p = 0.017) models. Cardiac adipose tissue (p = 0.033) was associated with baseline coronary artery calcium (model 1) and interleukin-8 (models 1-3, all p type 2 diabetes patients without coronary artery disease, high cardiac adipose tissue levels were associated...

  20. [Sudden death and cardiovascular complications in Marfan syndrome: impact of surgical intervention].

    Science.gov (United States)

    Ohtsubo, Satoshi; Itoh, Tsuyoshi

    2005-07-01

    Marfan syndrome is an autosomal dominant disorder of connective tissue characterized by abnormalities involving the skeletal, ocular, and cardiovascular systems. The cardiovascular complications of the syndrome lead to a reduced life expectancy for affected individuals if left untreated. Major cause of death include acute aortic dissection, aortic rupture, and sudden death, which resulted from congenital vascular fragility. Such life-threatening complications in Marfan syndrome can be managed effectively, by routine aortic imaging, beta-adrenergic blockade, and prophylactic replacement of the aortic root before the diameter exceeds 5.0 to 5.5 mm. Valve preserving aortic root reconstruction yielded improved postoperative quality of life compared with Bentall operation, by reducing late complications related to anticoagulants. It should be carried out before onset of aortic regurgitation for long-term native valve durability.

  1. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI

    DEFF Research Database (Denmark)

    Rispoli, Vinicius C; Nielsen, Jon; Nayak, Krishna S

    2015-01-01

    BACKGROUND: Phase contrast magnetic resonance imaging (PC-MRI) is used clinically for quantitative assessment of cardiovascular flow and function, as it is capable of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be estimated from model-based computation fluid dyn...

  2. Switching to a 10-day Mediterranean-style diet improves mood and cardiovascular function in a controlled crossover study.

    Science.gov (United States)

    Lee, Jaime; Pase, Matthew; Pipingas, Andrew; Raubenheimer, Jessica; Thurgood, Madeline; Villalon, Lorena; Macpherson, Helen; Gibbs, Amy; Scholey, Andrew

    2015-05-01

    Even short-term adherence to a Mediterranean-style diet may benefit aspects of psychological functioning. The aim of the present study was to assess the effects of switching to a 10-d Mediterranean-style diet on mood, cognition, and cardiovascular measures. Using a crossover design, 24 women were randomly assigned to either the diet change (where they switched to a Mediterranean-style diet) or no diet change (normal diet) condition for 10 days before switching to the other condition for the same duration. Mood, cognition, and cardiovascular measures of blood pressure, blood flow velocity, and arterial stiffness were assessed at baseline and at the completion of the two diets (days 11 and 22). Independent of whether the Mediterranean-style diet was undertaken before or after the crossover, it was associated with significantly elevated contentment and alertness, and significantly reduced confusion. Additionally, aspects of cognition, such as memory recall, improved significantly as a result of switching to the Mediterranean-style diet. Regarding cardiovascular measures, there was a significant reduction in augmentation pressure associated with the Mediterranean-style diet intervention, but blood flow velocity through the common carotid artery did not change. This Mediterranean-style diet has the potential to enhance aspects of mood, cognition, and cardiovascular function in a young, healthy adult sample. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Expanding application of the Wiggers diagram to teach cardiovascular physiology

    Science.gov (United States)

    Wang, Jiun-Jr

    2014-01-01

    Dr. Carl Wiggers' careful observations have provided a meaningful resource for students to learn how the heart works. Throughout the many years from his initial reports, the Wiggers diagram has been used, in various degrees of complexity, as a fundamental tool for cardiovascular instruction. Often, the various electrical and mechanical plots are the novice learner's first exposure to simulated data. As the various temporal relationships throughout a heartbeat could simply be memorized, the challenge for the cardiovascular instructor is to engage the learner so the underlying mechanisms governing the changing electrical and mechanical events are truly understood. Based on experience, we suggest some additions to the Wiggers diagram that are not commonly used to enhance cardiovascular pedagogy. For example, these additions could be, but are not limited to, introducing the concept of energy waves and their role in influencing pressure and flow in health and disease. Also, integrating concepts of exercise physiology, and the differences in cardiac function and hemodynamics between an elite athlete and normal subject, can have a profound impact on student engagement. In describing the relationship between electrical and mechanical events, the instructor may find the introduction of premature ventricular contractions as a useful tool to further understanding of this important principle. It is our hope that these examples can aid cardiovascular instructors to engage their learners and promote fundamental understanding at the expense of simple memorization. PMID:24913453

  4. Triglycerides and cardiovascular disease

    DEFF Research Database (Denmark)

    Nordestgaard, Børge G; Varbo, Anette

    2014-01-01

    cholesterol might not cause cardiovascular disease as originally thought has now generated renewed interest in raised concentrations of triglycerides. This renewed interest has also been driven by epidemiological and genetic evidence supporting raised triglycerides, remnant cholesterol, or triglyceride......-rich lipoproteins as an additional cause of cardiovascular disease and all-cause mortality. Triglycerides can be measured in the non-fasting or fasting states, with concentrations of 2-10 mmol/L conferring increased risk of cardiovascular disease, and concentrations greater than 10 mmol/L conferring increased risk...... of acute pancreatitis and possibly cardiovascular disease. Although randomised trials showing cardiovascular benefit of triglyceride reduction are scarce, new triglyceride-lowering drugs are being developed, and large-scale trials have been initiated that will hopefully provide conclusive evidence...

  5. From cells to tissue: A continuum model of epithelial mechanics

    Science.gov (United States)

    Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru

    2017-08-01

    A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.

  6. Modeling of Cardiovascular Response to Weightlessness

    Science.gov (United States)

    Sharp, M. Keith

    1999-01-01

    It was the hypothesis of this Project that the Simple lack of hydrostatic pressure in microgravity generates several purely physical reactions that underlie and may explain, in part, the cardiovascular response to weightlessness. For instance, hydrostatic pressure within the ventricles of the heart may improve cardiac performance by promoting expansion of ventricular volume during diastole. The lack of hydrostatic pressure in microgravity might, therefore, reduce diastolic filling and cardiac performance. The change in transmural pressure is possible due to the difference in hydrostatic pressure gradients between the blood inside the ventricle and the lung tissue surrounding the ventricle due to their different densities. On the other hand, hydrostatic pressure within the vasculature may reduce cardiac inlet pressures because of the typical location of the heart above the hydrostatic indifference level (the level at which pressure remains constant throughout changes in gravity). Additional physical responses of the body to changing gravitational conditions may influence cardiovascular performance. For instance, fluid shifts from the lower body to the thorax in microgravity may serve to increase central venous pressure (CVP) and boost cardiac output (CO). The concurrent release of gravitational force on the rib cage may tend to increase chest girth and decrease pedcardial pressure, augmenting ventricular filling. The lack of gravity on pulmonary tissue may allow an upward shifting of lung mass, causing a further decrease in pericardial pressure and increased CO. Additional effects include diuresis early in the flight, interstitial fluid shifts, gradual spinal extension and movement of abdominal mass, and redistribution of circulatory impedance because of venous distention in the upper body and the collapse of veins in the lower body. In this project, the cardiovascular responses to changes in intraventricular hydrostatic pressure, in intravascular hydrostatic

  7. Phenylalanine kinetics in human adipose tissue.

    OpenAIRE

    Coppack, S W; Persson, M; Miles, J M

    1996-01-01

    Very little is known about the regulation of protein metabolism in adipose tissue. In this study systemic, adipose tissue, and forearm phenylalanine kinetics were determined in healthy postabsorptive volunteers before and during a 2-h glucose infusion (7 mg.kg-1.min-1). [3H]Phenylalanine was infused and blood was sampled from a radial artery, a subcutaneous abdominal vein, and a deep forearm vein. Adipose tissue and forearm blood flow were measured with 133Xe and plethysmography, respectively...

  8. Cardiovascular involvement in systemic rheumatic diseases: An integrated view for the treating physicians.

    Science.gov (United States)

    Lee, Kwang Seob; Kronbichler, Andreas; Eisenhut, Michael; Lee, Keum Hwa; Shin, Jae Il

    2018-03-01

    Systemic autoimmune diseases can affect various kinds of organs including the kidney, the skin, soft tissue and the bone. Among others, cardiovascular involvement in rheumatic diseases has been shown to affect myocardium, pericardium, cardiac vessels, conduction system and valves, eventually leading to increased mortality. In general, underlying chronic inflammation leads to premature atherosclerosis, but also other manifestations such as arrhythmia and heart failure may have a 'silent' progress. Traditional cardiovascular risk factors play a secondary role, while disease-specific factors (i.e. disease duration, severity, antibody positivity, persistent disease activity) can directly influence the cardiovascular system. Therefore, early diagnosis is critical to optimize management and to control inflammatory activity and recent data suggest that risk factors (i.e. hypercholesterolemia and hypertension) need intensive treatment as well. With the advent of immunosuppressive agents, most rheumatic diseases are well controlled on treatment, but information related to their cardioprotective efficacy is not well-defined. In this review, we focus on cardiovascular involvement in rheumatic diseases and highlight current evidence which should be of help for the treating physicians. Moreover, cardiotoxicity of immunosuppressive drugs is a rare issue and such potential adverse events will be briefly discussed. Copyright © 2018. Published by Elsevier B.V.

  9. A Dual Flow Bioreactor for Cartilage Tissue Engineering

    NARCIS (Netherlands)

    Spitters, Tim

    2014-01-01

    Preventing the onset of a degenerative disease like osteoarthritis by restoring tissue function before cartilage degradation occurs will decrease health costs, reduce socio-economic burdens of patients and preserve quality of life. However, producing ex vivo cartilage implants of clinically relevant

  10. From penicillin-streptomycin to amikacin-vancomycin: antibiotic decontamination of cardiovascular homografts in Singapore.

    Directory of Open Access Journals (Sweden)

    Wee Ling Heng

    Full Text Available BACKGROUND: In February 2012, the National Cardiovascular Homograft Bank (NCHB became the first tissue bank outside of North America to receive accreditation from the American Association of Tissue Banks. From 2008 to 2009, NCHB had been decontaminating its cardiovascular homografts with penicillin and streptomycin. The antibiotic decontamination protocol was changed in January 2010 as amikacin and vancomycin were recommended, in order to cover bacteria isolated from post-recovery and post- antibiotic incubation tissue cultures. AIM: The objective of this study is to determine the optimal incubation conditions for decontamination of homografts by evaluating the potencies of amikacin and vancomycin in different incubation conditions. Retrospective reviews of microbiological results were also performed for homografts recovered from 2008 to 2012, to compare the effectiveness of penicillin-streptomycin versus the amikacin-vancomycin regimens. METHODS: Based on microbiological assays stated in United States Pharmacopeia 31, potency of amikacin was evaluated by turbidimetric assay using Staphylococcus aureus, while vancomycin was by diffusion assay using Bacillus subtilis sporulate. Experiments were performed to investigate the potencies of individual antibiotic 6-hours post incubation at 4°C and 37°C and 4°C for 24 hours, after the results suggested that amikacin was more potent at lower temperature. FINDINGS: Tissue incubation at 4°C for 24 hours is optimal for both antibiotics, especially for amikacin, as its potency falls drastically at 37°C. CONCLUSION: The decontamination regimen of amikacin-vancomycin at 4°C for 24 hours is effective. Nevertheless, it is imperative to monitor microbiological trends closely and evaluate the efficacy of current antibiotics regimen against emerging strains of micro-organisms.

  11. Impact of vitamin D3 on cardiovascular responses to glucocorticoid excess.

    Science.gov (United States)

    Ahmed, Mona A

    2013-06-01

    Although the cardiovascular system is not a classical target for 1,25-dihydroxyvitamin D3, both cardiac myocytes and vascular smooth muscle cells respond to this hormone. The present study aimed to elucidate the effect of active vitamin D3 on cardiovascular functions in rats exposed to glucocorticoid excess. Adult male Wistar rats were allocated into three groups: control group, dexamethasone (Dex)-treated group receiving Dex (200 μg/kg) subcutaneously for 12 days, and vitamin D3-Dex-treated group receiving 1,25-(OH)2D3 (100 ng/kg) and Dex (200 μg/kg) subcutaneously for 12 days. Rats were subjected to measurement of systolic (SBP), diastolic (DBP), and mean arterial (MAP) blood pressures and heart rate. Rate pressure product (RPP) was calculated. Rats' isolated hearts were perfused in Langendorff preparation and studied for basal activities (heart rate, peaked developed tension, time to peak tension, half relaxation time, and myocardial flow rate) and their responses to isoproterenol infusion. Blood samples were collected for determination of plasma level of nitrite, nitric oxide surrogate. Dex-treated group showed significant increase in SBP, DBP, MAP, and RPP, as well as cardiac hypertrophy and enhancement of basal cardiac performance evidenced by increased heart rate, rapid and increased contractility, and accelerated lusitropy, together with impaired contractile and myocardial flow rate responsiveness to beta-adrenergic activation and depressed inotropic and coronary vascular reserves. Such alterations were accompanied by low plasma nitrite. These changes were markedly improved by vitamin D3 treatment. In conclusion, vitamin D3 is an efficacious modulator of the deleterious cardiovascular responses induced by glucocorticoid excess, probably via accentuation of nitric oxide.

  12. Invasion of Porphyromonas gingivalis strains into vascular cells and tissue

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2015-08-01

    Full Text Available Porphyromonas gingivalis is considered a major pathogen in adult periodontitis and is also associated with multiple systemic diseases, for example, cardiovascular diseases. One of its most important virulence factors is invasion of host cells. The invasion process includes attachment, entry/internalization, trafficking, persistence, and exit. The present review discusses these processes related to P. gingivalis in cardiovascular cells and tissue. Although most P. gingivalis strains invade, the invasion capacity of strains and the mechanisms of invasion including intracellular trafficking among them differ. This is consistent with the fact that there are significant differences in the pathogenicity of P. gingivalis strains. P. gingivalis invasion mechanisms are also dependent on types of host cells. Although much is known about the invasion process of P. gingivalis, we still have little knowledge of its exit mechanisms. Nevertheless, it is intriguing that P. gingivalis can remain viable in human cardiovascular cells and atherosclerotic plaque and later exit and re-enter previously uninfected host cells.

  13. Understanding cardiovascular disease

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000759.htm Understanding cardiovascular disease To use the sharing features on this page, ... lead to heart attack or stroke. Types of Cardiovascular Disease Coronary heart disease (CHD) is the most common ...

  14. A role for collagen IV in cardiovascular disease?

    DEFF Research Database (Denmark)

    Steffensen, Lasse Bach; Rasmussen, Lars M

    2018-01-01

    Over the past decade, studies have repeatedly found single nucleotide polymorphisms located in the COL4A1 and COL4A2 genes to be associated with cardiovascular disease (CVD), and the 13q34 locus harboring these genes is one of approximately 160 genome-wide significant risk loci for coronary artery...... disease. COL4A1 and COL4A2 encode the ⍺1- and ⍺2-chains of collagen IV, a major component of basement membranes in various tissues including arteries. In spite of the growing body of evidence indicating a role for collagen IV in CVD, remarkably few studies aim at directly investigating such a role....... The purpose of this review is to summarize the clinical reports linking 13q34 to coronary artery disease, atherosclerosis and artery stiffening and to assemble the scattered pieces of evidence from experimental studies based on vascular cells and -tissue collectively supporting a role for collagen IV...

  15. In situ tissue engineering: endothelial growth patterns as a function of flow diverter design.

    Science.gov (United States)

    Marosfoi, Miklos; Langan, Erin T; Strittmatter, Lara; van der Marel, Kajo; Vedantham, Srinivasan; Arends, Jennifer; Lylyk, Ivan R; Loganathan, Siddharth; Hendricks, Gregory M; Szikora, Istvan; Puri, Ajit S; Wakhloo, Ajay K; Gounis, Matthew J

    2017-10-01

    Vascular remodeling in response to implantation of a tissue engineering scaffold such as a flow diverter (FD) leads to the cure of intracranial aneurysms. We hypothesize that the vascular response is dependent on FD design, and CD34+ progenitor cells play an important role in the endothelialization of the implant. Sixteen rabbit aneurysms were randomly treated with two different single-layer braided FDs made of cobalt-chrome alloys. The FD-48 and FD-72 devices had 48 and 72 wires, respectively. Aneurysm occlusion rate was assessed during the final digital subtraction angiogram at 10, 20, 30, and 60 days (n=2 per device per time point). Implanted vessels were analyzed with scanning electron microscopy for tissue coverage, endothelialization, and immuno-gold labeling for CD34+ cells. Complete aneurysm occlusion rates were similar between the devices; however, complete or near complete occlusion was more frequently observed in aneurysms with neck ≤4.2 mm (p=0.008). Total tissue coverage at 10 days over the surface of the FD-48 and FD-72 devices was 56.4±11.6% and 76.6±3.6%, respectively. Endothelial cell growth over the surface was time-dependent for the FD-72 device (Spearman's r=0.86, p=0.013) but not for the FD-48 device (Spearman's r=-0.59, p=0.094). The endothelialization score was marginally correlated with the distance from the aneurysm neck for the FD-48 device (Spearman's r=1, p=0.083) but not for the FD-72 device (Spearman's r=0.8, p=0.33). CD34+ cells were present along the entirety of both devices at all time points. This study gives preliminary evidence that temporal and spatial endothelialization is dependent on FD design. Circulating CD34+ progenitor cells contribute to endothelialization throughout the healing process. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Slow breathing and cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Ashish Chaddha

    2015-01-01

    Full Text Available Cardiovascular disease is the leading cause of death for both men and women worldwide. Much emphasis has been placed on the primary and secondary prevention of cardiovascular disease. While depression and anxiety increase the risk of developing cardiovascular disease, cardiovascular disease also increases the risk of developing anxiety and depression. Thus, promoting optimal mental health may be important for both primary and secondary prevention of cardiovascular disease. Like lowering blood pressure, lipids, and body weight, lowering anger and hostility and improving depression and anxiety may also be an important intervention in preventive cardiology. As we strive to further improve cardiovascular outcomes, the next bridge to cross may be one of offering patients nonpharmacologic means for combating daily mental stress and promoting mental health, such as yoga and pranayama. Indeed, the best preventive cardiovascular medicine may be a blend of both Western and Eastern medicine.

  17. NMR techniques in the study of cardiovascular structure and functions

    International Nuclear Information System (INIS)

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy? NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance

  18. Modelling organs, tissues, cells and devices using Matlab and Comsol multiphysics

    CERN Document Server

    Dokos, Socrates

    2017-01-01

    This book presents a theoretical and practical overview of computational modeling in bioengineering, focusing on a range of applications including electrical stimulation of neural and cardiac tissue, implantable drug delivery, cancer therapy, biomechanics, cardiovascular dynamics, as well as fluid-structure interaction for modelling of organs, tissues, cells and devices. It covers the basic principles of modeling and simulation with ordinary and partial differential equations using MATLAB and COMSOL Multiphysics numerical software. The target audience primarily comprises postgraduate students and researchers, but the book may also be beneficial for practitioners in the medical device industry.

  19. Exploring the potential of blood flow network data

    NARCIS (Netherlands)

    Poelma, C.

    2015-01-01

    To gain a better understanding of the role of haemodynamic forces during the development of the cardiovascular system, a series of studies have been reported recently that describe flow fields in the vasculature of model systems. Such data sets, in particular those reporting networks at multiple

  20. Molecular cardiovascular imaging

    International Nuclear Information System (INIS)

    Schaefers, M.

    2007-01-01

    Although huge and long-lasting research efforts have been spent on the development of new diagnostic techniques investigating cardiovascular diseases, still fundamental challenges exist; the main challenge being the diagnosis of a suspected or known coronary artery disease or its consequences (myocardial infarction, heart failure etc.). Beside morphological techniques, functional imaging modalities are available in clinical diagnostic algorithms, whereas molecular cardiovascular imaging techniques are still under development. This review summarizes clinical-diagnostical challenges of modern cardiovascular medicine as well as the potential of new molecular imaging techniques to face these. (orig.)

  1. The effect of diet on the acute and chronic responses to exercise with a particular focus on adipose tissue

    OpenAIRE

    Chen, Yung-Chih

    2016-01-01

    Long-term excessive positive energy balance results in overweight and obesity, which is caused by adipose tissue deposition. This increases the occurrence of cardiovascular diseases and type 2 diabetes. Adipose tissue plays an active role in the development of these diseases and so it is important to understand how this tissue responds to relevant stimuli such as feeding, fasting and physical activity. The study in Chapter 4 examined the impact of fasting and feeding, on adipose tissue respon...

  2. Oxidative regulation of the Na(+)-K(+) pump in the cardiovascular system.

    Science.gov (United States)

    Figtree, Gemma A; Keyvan Karimi, Galougahi; Liu, Chia-Chi; Rasmussen, Helge H

    2012-12-15

    The Na(+)-K(+) pump is an essential heterodimeric membrane protein, which maintains electrochemical gradients for Na(+) and K(+) across cell membranes in all tissues. We have identified glutathionylation, a reversible posttranslational redox modification, of the Na(+)-K(+) pump's β1 subunit as a regulatory mechanism of pump activity. Oxidative inhibition of the Na(+)-K(+) pump by angiotensin II- and β1-adrenergic receptor-coupled signaling via NADPH oxidase activation demonstrates the relevance of this regulatory mechanism in cardiovascular physiology and pathophysiology. This has implications for dysregulation of intracellular Na(+) and Ca(2+) as well as increased oxidative stress in heart failure, myocardial ischemia-reperfusion, and regulation of vascular tone under conditions of elevated oxidative stress. Treatment strategies that are able to reverse this oxidative inhibition of the Na(+)-K(+) pump have the potential for cardiovascular-protective effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The application of phase analysis of gated myocardial perfusion imaging to assess left ventricular mechanical dyssynchrony in cardiovascular disease

    International Nuclear Information System (INIS)

    Wang Jianfeng; Wang Yuetao

    2013-01-01

    Left ventricular mechanical dyssynchrony is closely related to the severity of cardiovascular disease, it is essential to assess left ventricular mechanical dyssynchrony accurately for early prediction of adverse cardiac events and prognosis assessment of the cardiac resynchronization therapy. As a new technology to assess left ventricular mechanical dyssynchrony, the phase analysis of gated myocardial perfusion imaging (GMPI) can get both quantitative indicators of regional myocardial perfusion, evaluation of regional myocardial viability and scar tissue, as well as quantitative analysis of left ventricular function and left ventricular mechanical synchrony, it has broad application prospects in cardiovascular disease to assess left ventricular mechanical dyssynchrony and prognosis assessment. This review mainly described the applications of GMPI phase analysis in the cardiovascular disease. (authors)

  4. [Strategies for cardiovascular disease prevention].

    Science.gov (United States)

    Gabus, Vincent; Wuerzner, Grégoire; Saubade, Mathieu; Favre, Lucie; Jacot Sadowski, Isabelle; Nanchen, David

    2018-02-28

    Atherosclerosis is a disease which develops very gradually over decades. Under the influence of modifiable cardiovascular risk factors, such as blood pressure, LDL-cholesterol level, smoking or lifestyle, clinical symptoms of atherosclerosis manifest more or less early in life. When cardiovascular risk factors accumulate, the risk of having a cardiovascular event increases and the benefits of prevention measures are greater. This article summarizes existing strategies for controlling modifiable cardiovascular risk factors in primary prevention. The physician can rely on an interprofessional network of cardiovascular prevention. Managing risk factors while respecting the autonomy and priorities of the patient will bring the greatest benefit.

  5. E-cigarettes and cardiovascular risk: beyond science and mysticism.

    Science.gov (United States)

    Lippi, Giuseppe; Favaloro, Emmanuel J; Meschi, Tiziana; Mattiuzzi, Camilla; Borghi, Loris; Cervellin, Gianfranco

    2014-02-01

    Cigarette smoking is the most important cause of premature death, and it is currently listed as a major independent risk factor for cardiovascular disease. Because of restrictive measures and widespread control policies, tobacco companies are now using aggressive marketing strategies in favor of smokeless tobacco, including electronic nicotine delivery systems, which are also known as electronic cigarettes or e-cigarettes. Although the regular use of these devices appears less hazardous than traditional cigarettes or other forms of smokeless tobacco, recent studies have shown that various potentially harmful substances, especially nicotine, ultraparticles, and volatile organic compounds, may be effectively inhaled or liberated in exhaled air during repeated e-cigarette puffing. This would enhance the risk of cardiac arrhythmias and hypertension, which may predispose some users to increased risk of cardiovascular events, which may be further magnified by other potential adverse effects such as arrhythmias, increased respiratory, and flow respiratory resistance. Some cases of intoxication have also been described, wherein large amounts of nicotine and other harmful compounds may be effectively absorbed. As the use of e-cigarettes is continuously rising, and it is also considered a potentially effective method for smoking cessation, more focused research is urgently needed to definitely establish the cardiovascular safeness of these devices. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. "TRP inflammation" relationship in cardiovascular system.

    Science.gov (United States)

    Numata, Tomohiro; Takahashi, Kiriko; Inoue, Ryuji

    2016-05-01

    Despite considerable advances in the research and treatment, the precise relationship between inflammation and cardiovascular (CV) disease remains incompletely understood. Therefore, understanding the immunoinflammatory processes underlying the initiation, progression, and exacerbation of many cardiovascular diseases is of prime importance. The innate immune system has an ancient origin and is well conserved across species. Its activation occurs in response to pathogens or tissue injury. Recent studies suggest that altered ionic balance, and production of noxious gaseous mediators link to immune and inflammatory responses with altered ion channel expression and function. Among plausible candidates for this are transient receptor potential (TRP) channels that function as polymodal sensors and scaffolding proteins involved in many physiological and pathological processes. In this review, we will first focus on the relevance of TRP channel to both exogenous and endogenous factors related to innate immune response and transcription factors related to sustained inflammatory status. The emerging role of inflammasome to regulate innate immunity and its possible connection to TRP channels will also be discussed. Secondly, we will discuss about the linkage of TRP channels to inflammatory CV diseases, from a viewpoint of inflammation in a general sense which is not restricted to the innate immunity. These knowledge may serve to provide new insights into the pathogenesis of various inflammatory CV diseases and their novel therapeutic strategies.

  7. AMP-Activated Protein Kinase: An Ubiquitous Signaling Pathway With Key Roles in the Cardiovascular System.

    Science.gov (United States)

    Salt, Ian P; Hardie, D Grahame

    2017-05-26

    The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions. © 2017 American Heart Association, Inc.

  8. Acute Cardiovascular Care Association Position Paper on Intensive Cardiovascular Care Units

    DEFF Research Database (Denmark)

    Bonnefoy-Cudraz, Eric; Bueno, Hector; Casella, Gianni

    2018-01-01

    , the recommended management structure, the optimal number of staff, the need for specially trained cardiologists and cardiovascular nurses, the desired equipment and architecture, and the interaction with other departments in the hospital and other intensive cardiovascular care units in the region...

  9. Blood flow MR imaging of the uterine arteries and of normal and malignant cervical tissue. Initial experiences with a 2D-STAR technique

    International Nuclear Information System (INIS)

    Hawighorst, H.; Bock, M.; Knopp, M.V.; Essig, M.; Schoenberg, S.O.; Schad, L.R.; Kaick, G. van; Knapstein, P.G.

    1998-01-01

    Purpose. The aim of this pilot study was to evaluate a 2D-STAR technique as a non contrast-enhanced approach to demonstrate the uterine artery and its branches and to assess the cervical uterine blood flow in healthy volunteers and in patients with advanced uterine cervical carcinoma. Materials and methods. Seven healthy volunteers (mean age, 29 years) and twentytwo patients (mean age, 52 years) with advanced cancer of the uterine cervix (FIGO IIB-IVA) were prospectively examined by 2D-STAR imaging at different inversion delay times (300 ms-1900 ms) which showed the passage of a blood bolus through normal and malignant tissue of the uterine cervix. Results. The uterine artery was well visualized with short inversion delay times of 300 ms to 500 ms. It was characterized as single or multiple helical loops before dividing into its intracervical branches. The intracervical branching was observed at inversion delay times of 500 ms-700 ms. With longer inversion delay times arterial signal enhancement disappeared and cervical tissue enhancement was noted. Enhancement of benign tissue was observed at inversion delay times of 1100 ms-1700 ms, and in malignant tissue at shorter inversion delay times of 900 ms-1300 ms. The maximum of this diffuse signal enhancement of benign tissue was seen at inversion dealy times of 1500 ms (1100 ms-1700 ms), in malignant tissue at significantly (P [de

  10. Determination of the tissue-to-blood partition coefficient for 131iodo-antipyrine in human subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Jelnes, R; Astrup, A

    1985-01-01

    131Iodo-antipyrine (131I-AP) is commonly used for blood flow measurements in adipose tissue. These estimations have been based on the assumption of the tissue-to-blood partition coefficient being 1 ml g-1. No exact determination of the tissue-to-blood partition coefficient for 131I-AP in adipose...... tissue has been carried out. In the present study a partition coefficient of 1.12 +/- 0.06 (mean +/- S.D.) for 131I-AP in adipose tissue has been determined based on the partition coefficient for 131I-AP between lipid-saline (1.24 ml g-1), red blood cells-plasma (0.64 ml g-1), protein-saline (0.19 ml g-1...

  11. Computational Fluid Dynamics and Additive Manufacturing to Diagnose and Treat Cardiovascular Disease.

    Science.gov (United States)

    Randles, Amanda; Frakes, David H; Leopold, Jane A

    2017-11-01

    Noninvasive engineering models are now being used for diagnosing and planning the treatment of cardiovascular disease. Techniques in computational modeling and additive manufacturing have matured concurrently, and results from simulations can inform and enable the design and optimization of therapeutic devices and treatment strategies. The emerging synergy between large-scale simulations and 3D printing is having a two-fold benefit: first, 3D printing can be used to validate the complex simulations, and second, the flow models can be used to improve treatment planning for cardiovascular disease. In this review, we summarize and discuss recent methods and findings for leveraging advances in both additive manufacturing and patient-specific computational modeling, with an emphasis on new directions in these fields and remaining open questions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Cardiovascular diseases, depression disorders and potential effects of omega-3 fatty acids.

    Science.gov (United States)

    Trebatická, J; Dukát, A; Ďuračková, Z; Muchová, J

    2017-07-18

    Cardiovascular disease (CVD) and depressive disorders (DD) are two of the most prevalent health problems in the world. Although CVD and depression have different origin, they share some common pathophysiological characteristics and risk factors, such as the increased production of proinflammatory cytokines, endothelial dysfunction, blood flow abnormalities, decreased glucose metabolism, elevated plasma homocysteine levels, oxidative stress and disorder in vitamin D metabolism. Current findings confirm the common underlying factors for both pathologies, which are related to dramatic dietary changes in the mid-19th century. By changing dietary ratio of omega-6 to omega-3 fatty acids from 1:1 to 15-20:1 some changes in metabolism were induced, such as increased pro-inflammatory mediators and modulations of different signaling pathways following pathophysiological response related to both, cardiovascular diseases and depressive disorders.

  13. K-Cl cotransport function and its potential contribution to cardiovascular disease.

    Science.gov (United States)

    Adragna, Norma C; Lauf, Peter K

    2007-12-01

    K-Cl cotransport is the coupled electroneutral movement of K and Cl ions carried out by at least four protein isoforms, KCC1-4. These transporters belong to the SLC12A family of coupled cotransporters and, due to their multiple functions, play an important role in the maintenance of cellular homeostasis. Significant information exists on the overall function of these transporters, but less is known about the role of the specific isoforms. Most functional studies were done on K-Cl cotransport fluxes without knowing the molecular details, and only recently attention has been paid to the isoforms and their individual contribution to the fluxes. This review summarizes briefly and updates the information on the overall functions of this transporter, and offers some ideas on its potential contribution to the pathophysiological basis of cardiovascular disease. By virtue of its properties and the cellular ionic distribution, K-Cl cotransport participates in volume regulation of the nucleated and some enucleated cells studied thus far. One of the hallmarks in cardiovascular disease is the inability of the organism to maintain water and electrolyte balance in effectors and/or target tissues. Oxidative stress is another compounding factor in cardiovascular disease and of great significance in our modern life styles. Several functions of the transporter are modulated by oxidative stress, which in turn may cause the transporter to operate in either "overdrive" with the purpose to counteract homeostatic changes, or not to respond at all, again setting the stage for pathological changes leading to cardiovascular disease. Intracellular Mg, a second messenger, acts as an inhibitor of K-Cl cotransport and plays a crucial role in regulating the activity of protein kinases and phosphatases, which, in turn, regulate a myriad of cellular functions. Although the role of Mg in cardiovascular disease has been dealt with for several decades, this chapter is evolving nowadays at a faster

  14. Mortality of mothers from cardiovascular and non-cardiovascular causes following pregnancy complications in first delivery.

    Science.gov (United States)

    Lykke, Jacob A; Langhoff-Roos, Jens; Lockwood, Charles J; Triche, Elizabeth W; Paidas, Michael J

    2010-07-01

    The combined effects of preterm delivery, small-for-gestational-age offspring, hypertensive disorders of pregnancy, placental abruption and stillbirth on early maternal death from cardiovascular causes have not previously been described in a large cohort. We investigated the effects of pregnancy complications on early maternal death in a registry-based retrospective cohort study of 782 287 women with a first singleton delivery in Denmark 1978-2007, followed for a median of 14.8 years (range 0.25-30.2) accruing 11.6 million person-years. We employed Cox proportional hazard models of early death from cardiovascular and non-cardiovascular causes following preterm delivery, small-for-gestational-age offspring and hypertensive disorders of pregnancy. We found that preterm delivery and small-for-gestational-age were both associated with subsequent death of mothers from cardiovascular and non-cardiovascular causes. Severe pre-eclampsia was associated with death from cardiovascular causes only. There was a less than additive effect on cardiovascular mortality hazard ratios with increasing number of pregnancy complications: preterm delivery 1.90 [95% confidence intervals 1.49, 2.43]; preterm delivery and small-for-gestational-age offspring 3.30 [2.25, 4.84]; preterm delivery, small-for-gestational-age offspring and pre-eclampsia 3.85 [2.07, 7.19]. Thus, we conclude that, separately and combined, preterm delivery and small-for-gestational-age are strong markers of early maternal death from both cardiovascular and non-cardiovascular causes, while hypertensive disorders of pregnancy are markers of early death of mothers from cardiovascular causes.

  15. Epicardial adipose tissue is associated with visceral fat, metabolic syndrome, and insulin resistance in menopausal women.

    Science.gov (United States)

    Fernández Muñoz, María J; Basurto Acevedo, Lourdes; Córdova Pérez, Nydia; Vázquez Martínez, Ana Laura; Tepach Gutiérrez, Nayive; Vega García, Sara; Rocha Cruz, Alberto; Díaz Martínez, Alma; Saucedo García, Renata; Zárate Treviño, Arturo; González Escudero, Eduardo Alberto; Degollado Córdova, José Antonio

    2014-06-01

    Epicardial adipose tissue has been associated with several obesity-related parameters and with insulin resistance. Echocardiographic assessment of this tissue is an easy and reliable marker of cardiometabolic risk. However, there are insufficient studies on the relationship between epicardial fat and insulin resistance during the postmenopausal period, when cardiovascular risk increases in women. The objective of this study was to examine the association between epicardial adipose tissue and visceral adipose tissue, waist circumference, body mass index, and insulin resistance in postmenopausal women. A cross sectional study was conducted in 34 postmenopausal women with and without metabolic syndrome. All participants underwent a transthoracic echocardiogram and body composition analysis. A positive correlation was observed between epicardial fat and visceral adipose tissue, body mass index, and waist circumference. The values of these correlations of epicardial fat thickness overlying the aorta-right ventricle were r = 0.505 (P < .003), r = 0.545 (P < .001), and r = 0.515 (P < .003), respectively. Epicardial adipose tissue was higher in postmenopausal women with metabolic syndrome than in those without this syndrome (mean [standard deviation], 544.2 [122.9] vs 363.6 [162.3] mm(2); P = .03). Epicardial fat thickness measured by echocardiography was associated with visceral adipose tissue and other obesity parameters. Epicardial adipose tissue was higher in postmenopausal women with metabolic syndrome. Therefore, echocardiographic assessment of epicardial fat may be a simple and reliable marker of cardiovascular risk in postmenopausal women. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  16. Post-operative ventricular flow dynamics following atrioventricular valve surgical and device therapies: A review.

    Science.gov (United States)

    Nguyen, Yen Ngoc; Ismail, Munirah; Kabinejadian, Foad; Tay, Edgar Lik Wui; Leo, Hwa Liang

    2018-04-01

    Intra-ventricular flow dynamics has recently emerged as an important evaluation and diagnosis tool in different cardiovascular conditions. The formation of vortex pattern during the cardiac cycle has been suggested to play important epigenetic and energy-modulation roles in cardiac remodelling, adaptations and mal-adaptations. In this new perspective, flow alterations due to different cardiovascular procedures can affect the long-term outcome of those procedures. Especially, repairs and replacements performed on atrioventricular valves are likely to exert direct impact on intra-ventricular flow pattern. In this review, current consensus around the roles of vortex dynamics in cardiac function is discussed. An overview of physiological vortex patterns found in healthy left and right ventricles as well as post-operative ventricular flow phenomenon owing to different atrioventricular valvular procedures are reviewed, followed by the summary of different vortex identification schemes used to characterise intraventricular flow. This paper also emphasises on future research directions towards a comprehensive understanding of intra-cardiac flow and its clinical relevance. The knowledge could encourage more effective pre-operative planning and better outcomes for current clinical practices. Copyright © 2018. Published by Elsevier Ltd.

  17. The effect of flow limitation on the cardiorespiratory response to arousal from sleep under controlled conditions of chemostimulation in healthy older adults.

    Science.gov (United States)

    Goff, Elizabeth A; Nicholas, Christian L; Kleiman, Jan; Spear, Owen; Morrell, Mary J; Trinder, John

    2012-12-01

    The influence of flow limitation on the magnitude of the cardiorespiratory response to arousal from sleep is of interest in older people, because they experience considerable flow limitation and frequent arousals from sleep. We studied older flow-limiting subjects, testing the hypothesis that the cardiorespiratory activation response would be larger when arousal occurred during flow limitation, compared to no flow limitation, and chemical stimuli were controlled. In 11 older adults [mean ± standard deviation (SD) age: 68 ± 5 years] ventilation was stabilized using continuous positive airway pressure, and flow limitation was induced by dialling down the pressure. Partial pressure of end-tidal carbon dioxide (PetCO(2)) was maintained by titration of the inspired CO(2) and hyperoxia was maintained using 40% O(2) balanced with nitrogen. Flow limitation at the time of arousal did not augment cardiovascular activation response (heart rate P = 0.7; systolic blood pressure P = 0.6; diastolic blood pressure P = 0.3), whereas ventilation was greater following arousals during flow limitation compared to no flow limitation (P sleep is not influenced by flow limitation at the time of arousal, when chemical stimuli are controlled in older adults. This finding may contribute to the decreased cardiovascular burden associated with sleep-disordered breathing reported in older adults, although our data do not exclude the possibility that flow limitation in the presence of mild hypoxic hypercapnia could increase the cardiovascular response to arousal. © 2012 European Sleep Research Society.

  18. Lycopene Deficiency in Ageing and Cardiovascular Disease

    Science.gov (United States)

    Petyaev, Ivan M.

    2016-01-01

    Lycopene is a hydrocarbon phytochemical belonging to the tetraterpene carotenoid family and is found in red fruit and vegetables. Eleven conjugated double bonds predetermine the antioxidant properties of lycopene and its ability to scavenge lipid peroxyl radicals, reactive oxygen species, and nitric oxide. Lycopene has a low bioavailability rate and appears in the blood circulation incorporated into chylomicrons and other apo-B containing lipoproteins. The recent body of evidence suggests that plasma concentration of lycopene is not only a function of intestinal absorption rate but also lycopene breakdown via enzymatic and oxidative pathways in blood and tissues. Oxidative stress and the accumulation of reactive oxygen species and nitric oxide may represent a major cause of lycopene depletion in ageing, cardiovascular disease, and type 2 diabetes mellitus. It has been shown recently that low carotenoid levels, and especially decreased serum lycopene levels, are strongly predictive of all-cause mortality and poor outcomes of cardiovascular disease. However, there is a poor statistical association between dietary and serum lycopene levels which occurs due to limited bioavailability of lycopene from dietary sources. Hence, it is very unlikely that nutritional intervention alone could be instrumental in the correction of lycopene and carotenoid deficiency. Therefore, new nutraceutical formulations of carotenoids with enhanced bioavailability are urgently needed. PMID:26881023

  19. Acrolein Can Cause Cardiovascular Disease: A Review.

    Science.gov (United States)

    Henning, Robert J; Johnson, Giffe T; Coyle, Jayme P; Harbison, Raymond D

    2017-07-01

    Acrolein is a highly reactive unsaturated aldehyde that is formed during the burning of gasoline and diesel fuels, cigarettes, woods and plastics. In addition, acrolein is generated during the cooking or frying of food with fats or oils. Acrolein is also used in the synthesis of many organic chemicals and as a biocide in agricultural and industrial water supply systems. The total emissions of acrolein in the United States from all sources are estimated to be 62,660 tons/year. Acrolein is classified by the Environmental Protection Agency as a high-priority air and water toxicant. Acrolein can exert toxic effects following inhalation, ingestion, and dermal exposures that are dose dependent. Cardiovascular tissues are particularly sensitive to the toxic effects of acrolein based primarily on in vitro and in vivo studies. Acrolein can generate free oxygen radical stress in the heart, decrease endothelial nitric oxide synthase phosphorylation and nitric oxide formation, form cytoplasmic and nuclear protein adducts with myocyte and vascular endothelial cell proteins and cause vasospasm. In this manner, chronic exposure to acrolein can cause myocyte dysfunction, myocyte necrosis and apoptosis and ultimately lead to cardiomyopathy and cardiac failure. Epidemiological studies of acrolein exposure and toxicity should be developed and treatment strategies devised that prevent or significantly limit acrolein cardiovascular toxicity.

  20. Time dependency of local cerebral blood flow measurements caused by regional variations in tissue transit time

    International Nuclear Information System (INIS)

    Lear, J.L.; Kasliwal, R.; Feyerabend, A.

    1990-01-01

    Calculated values of local cerebral blood flow (LCBF) using the diffusible tracer model are assumed to be independent of time as long as experiments are brief enough to prevent tissue saturation. This paper investigates the effects of CTT variation on LCBF measurements. Using double-label quantitative digital autoradiography, we compared iodoantipyrine (IAP)-based LCBF measurements obtained with tracer infusions of different lengths of time. Lightly anesthetized rats were given simultaneous ramp infusions of C-14 IAP (45 seconds) and I-123 IAP (15 seconds) and immediately sacrificed. Two autoradiograms of each brain section, one representing I-123 and the other representing C-14, were produced, digitized, and converted into images of LCBF based on the 15- and 45-second infusion periods. The LCBF image pairs were compared on a pixel-by-pixel basis

  1. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Science.gov (United States)

    Kashyap, Sonu; Warner, Gina; Hu, Zeng; Gao, Feng; Osman, Mazen; Al Saiegh, Yousif; Lien, Karen R; Nath, Karl; Grande, Joseph P

    2017-01-01

    Renovascular hypertension (RVH) has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C) model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO) protects the stenotic kidney (STK) from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS) was established in Wild-type (WT) and Smad3 KO mice (129 genetic background) by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  2. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Directory of Open Access Journals (Sweden)

    Sonu Kashyap

    Full Text Available Renovascular hypertension (RVH has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO protects the stenotic kidney (STK from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS was established in Wild-type (WT and Smad3 KO mice (129 genetic background by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  3. Cardiovascular and inflammatory effects of intratracheally instilled ambient dust from Augsburg, Germany, in spontaneously hypertensive rats (SHRs

    Directory of Open Access Journals (Sweden)

    Peters Annette

    2010-09-01

    Full Text Available Abstract Rationale Several epidemiological studies associated exposure to increased levels of particulate matter in Augsburg, Germany with cardiovascular mortality and morbidity. To elucidate the mechanisms of cardiovascular impairments we investigated the cardiopulmonary responses in spontaneously hypertensive rats (SHR, a model for human cardiovascular diseases, following intratracheal instillation of dust samples from Augsburg. Methods 250 μg, 500 μg and 1000 μg of fine ambient particles (aerodynamic diameter 2.5-AB collected from an urban background site in Augsburg during September and October 2006 (PM2.5 18.2 μg/m3, 10,802 particles/cm3 were instilled in 12 months old SHRs to assess the inflammatory response in bronchoalveolar lavage fluid (BALF, blood, lung and heart tissues 1 and 3 days post instillation. Radio-telemetric analysis was performed to investigate the cardiovascular responses following instillation of particles at the highest dosage based on the inflammatory response observed. Results Exposure to 1000 μg of PM2.5-AB was associated with a delayed increase in delta mean blood pressure (ΔmBP during 2nd-4th day after instillation (10.0 ± 4.0 vs. -3.9 ± 2.6 mmHg and reduced heart rate (HR on the 3rd day post instillation (325.1 ± 8.8 vs. 348.9 ± 12.5 bpm. BALF cell differential and inflammatory markers (osteopontin, interleukin-6, C-reactive protein, and macrophage inflammatory protein-2 from pulmonary and systemic level were significantly induced, mostly in a dose-dependent way. Protein analysis of various markers indicate that PM2.5-AB instillation results in an activation of endothelin system (endothelin1, renin-angiotensin system (angiotensin converting enzyme and also coagulation system (tissue factor, plasminogen activator inhibitor-1 in pulmonary and cardiac tissues during the same time period when alternation in ΔmBP and HR have been detected. Conclusions Our data suggests that high concentrations of PM2.5-AB

  4. Roles of the Chemokine System in Development of Obesity, Insulin Resistance, and Cardiovascular Disease

    Science.gov (United States)

    Yao, Longbiao; Herlea-Pana, Oana; Heuser-Baker, Janet; Chen, Yitong; Barlic-Dicen, Jana

    2014-01-01

    The escalating epidemic of obesity has increased the incidence of obesity-induced complications to historically high levels. Adipose tissue is a dynamic energy depot, which stores energy and mobilizes it during nutrient deficiency. Excess nutrient intake resulting in adipose tissue expansion triggers lipid release and aberrant adipokine, cytokine and chemokine production, and signaling that ultimately lead to adipose tissue inflammation, a hallmark of obesity. This low-grade chronic inflammation is thought to link obesity to insulin resistance and the associated comorbidities of metabolic syndrome such as dyslipidemia and hypertension, which increase risk of type 2 diabetes and cardiovascular disease. In this review, we focus on and discuss members of the chemokine system for which there is clear evidence of participation in the development of obesity and obesity-induced pathologies. PMID:24741577

  5. Roles of the Chemokine System in Development of Obesity, Insulin Resistance, and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Longbiao Yao

    2014-01-01

    Full Text Available The escalating epidemic of obesity has increased the incidence of obesity-induced complications to historically high levels. Adipose tissue is a dynamic energy depot, which stores energy and mobilizes it during nutrient deficiency. Excess nutrient intake resulting in adipose tissue expansion triggers lipid release and aberrant adipokine, cytokine and chemokine production, and signaling that ultimately lead to adipose tissue inflammation, a hallmark of obesity. This low-grade chronic inflammation is thought to link obesity to insulin resistance and the associated comorbidities of metabolic syndrome such as dyslipidemia and hypertension, which increase risk of type 2 diabetes and cardiovascular disease. In this review, we focus on and discuss members of the chemokine system for which there is clear evidence of participation in the development of obesity and obesity-induced pathologies.

  6. Exercise Modulates Oxidative Stress and Inflammation in Aging and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Nada Sallam

    2016-01-01

    Full Text Available Despite the wealth of epidemiological and experimental studies indicating the protective role of regular physical activity/exercise training against the sequels of aging and cardiovascular diseases, the molecular transducers of exercise/physical activity benefits are not fully identified but should be further investigated in more integrative and innovative approaches, as they bear the potential for transformative discoveries of novel therapeutic targets. As aging and cardiovascular diseases are associated with a chronic state of oxidative stress and inflammation mediated via complex and interconnected pathways, we will focus in this review on the antioxidant and anti-inflammatory actions of exercise, mainly exerted on adipose tissue, skeletal muscles, immune system, and cardiovascular system by modulating anti-inflammatory/proinflammatory cytokines profile, redox-sensitive transcription factors such as nuclear factor kappa B, activator protein-1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, antioxidant and prooxidant enzymes, and repair proteins such as heat shock proteins, proteasome complex, oxoguanine DNA glycosylase, uracil DNA glycosylase, and telomerase. It is important to note that the effects of exercise vary depending on the type, intensity, frequency, and duration of exercise as well as on the individual’s characteristics; therefore, the development of personalized exercise programs is essential.

  7. Asian & Pacific Islanders and Cardiovascular Diseases

    Science.gov (United States)

    ... Fact Sheet 2016 Update Asian & Pacific Islanders and Cardiovascular Diseases Cardiovascular Disease (CVD) (ICD 10 codes I00-I99, Q20- ... of na- tive Hawaiians or oth- A indicates cardiovascular disease plus congenital cardiovascular disease (ICD-10 I00- ...

  8. Non Hodgkin lymphoma metastasis to the heart detected by cardiovascular magnetic resonance; Metastasis cardiaca secundaria al linfoma de Hodgkin detectada por la resonancia magnetica cardiovascular

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Florange; Morales, Marisela; Pedreanez, Norma [Hospital Cardiologico Infantil Latinoamericano Dr Gilberto Rodriguez Ochoa, Carcacas (Venezuela, Bolivarian Republic of); Pabon, Luz; Carrillo, Milton [Universidad Central de Venezuela (UCV/HUC), Caracas (Venezuela, Bolivarian Republic of). Instituto de Hematoncologia. Hospital Universitario; Fernandes, Juliano Lara [Universidade de Campinas (UNICAMP), SP (Brazil)

    2009-10-15

    Primary and secondary heart tumors are relatively rare occurrences but usually imply significant treatment decisions. The differential diagnosis among these tumors and other masses can sometimes be difficult and require the use of different imaging modalities to establish a confident verdict. Cardiovascular magnetic resonance CMR imaging is a very useful tool in these cases by allowing for the application of different strategies to better delineate masses, heart structures and adjacent tissues. In this case description, we present a woman with shortness of breath and a paracardiac mass showing how CMR can be applied. (author)

  9. Human adipose tissue blood flow during prolonged exercise, III. Effect of beta-adrenergic blockade, nicotinic acid and glucose infusion

    DEFF Research Database (Denmark)

    Bülow, J

    1981-01-01

    Subcutaneous adipose tissue blood flow (ATBF) was measured in six male subjects by the 133Xe-washout technique during 3-4 h of exercise at a work load corresponding to an oxygen uptake of about 1.71/min. The measurements were done during control conditions, during blockade of lipolysis by nicotinic...... of work. No increase in lipolysis and no increase in ATBF were found when lipolysis was blocked by nicotinic acid (0.3 g/h). Propranolol treatment (0.15 mg/kg) reduced lipolysis and nearly abolished the increase in ATBF during exercise. Intravenous administration of glucose (about 0.25 g/min) did...

  10. The effect of ultrasound on arterial blood flow: 1. Steady fully developed flow

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1990-12-01

    The paper models the effects of ultrasound heating of the tissues and the resultant perturbation on blood flow in the arteries and veins. It is assumed that the blood vessel is rigid and the undisturbed flow is fully developed. Acoustical perturbation on this Poiseuille flow, for the general three-dimensional flow with heat transfer in an infinitely long pipe is considered. Closed form analytical solutions are obtained to the problem. It is discovered that the effects of the ultrasound heating are concentrated at the walls of the blood vessels. (author). 4 refs

  11. Marijuana Use and Cardiovascular Disease.

    Science.gov (United States)

    Franz, Christopher A; Frishman, William H

    2016-01-01

    Marijuana is currently the most used illicit substance in the world. With the current trend of decriminalization and legalization of marijuana in the US, physicians in the US will encounter more patients using marijuana recreationally over a diverse range of ages and health states. Therefore, it is relevant to review marijuana's effects on human cardiovascular physiology and disease. Compared with placebo, marijuana cigarettes cause increases in heart rate, supine systolic and diastolic blood pressures, and forearm blood flow via increased sympathetic nervous system activity. These actions increase myocardial oxygen demand to a degree that they can decrease the time to exercise-induced angina in patients with a history of stable angina. In addition, marijuana has been associated with triggering myocardial infarctions (MIs) in young male patients. Smoking marijuana has been shown to increase the risk of MI onset by a factor of 4.8 for the 60 minutes after marijuana consumption, and to increase the annual risk of MI in the daily cannabis user from 1.5% to 3% per year. Human and animal models suggest that this effect may be due to coronary arterial vasospasm. However, longitudinal studies have indicated that marijuana use may not have a significant effect on long-term mortality. While further research is required to definitively determine the impact of marijuana on cardiovascular disease, it is reasonable to recommend against recreational marijuana use, especially in individuals with a history of coronary artery disorders.

  12. Comparison of PIV with 4D-Flow in a physiological accurate flow phantom

    Science.gov (United States)

    Sansom, Kurt; Balu, Niranjan; Liu, Haining; Aliseda, Alberto; Yuan, Chun; Canton, Maria De Gador

    2016-11-01

    Validation of 4D MRI flow sequences with planar particle image velocimetry (PIV) is performed in a physiologically-accurate flow phantom. A patient-specific phantom of a carotid artery is connected to a pulsatile flow loop to simulate the 3D unsteady flow in the cardiovascular anatomy. Cardiac-cycle synchronized MRI provides time-resolved 3D blood velocity measurements in clinical tool that is promising but lacks a robust validation framework. PIV at three different Reynolds numbers (540, 680, and 815, chosen based on +/- 20 % of the average velocity from the patient-specific CCA waveform) and four different Womersley numbers (3.30, 3.68, 4.03, and 4.35, chosen to reflect a physiological range of heart rates) are compared to 4D-MRI measurements. An accuracy assessment of raw velocity measurements and a comparison of estimated and measureable flow parameters such as wall shear stress, fluctuating velocity rms, and Lagrangian particle residence time, will be presented, with justification for their biomechanics relevance to the pathophysiology of arterial disease: atherosclerosis and intimal hyperplasia. Lastly, the framework is applied to a new 4D-Flow MRI sequence and post processing techniques to provide a quantitative assessment with the benchmarked data. Department of Education GAANN Fellowship.

  13. Consequências cardiovasculares na SAOS Cardiovascular consequences of obstructive sleep apnea syndrome

    Directory of Open Access Journals (Sweden)

    Geraldo Lorenzi Filho

    2010-06-01

    Full Text Available Uma condição clínica muito comum é SAOS, que está associada a várias doenças cardiovasculares, incluindo hipertensão arterial sistêmica, fibrilação atrial e aterosclerose. A associação entre SAOS e doença cardiovascular não é somente uma consequência da sobreposição de fatores de risco, incluindo obesidade, sedentarismo, ser do sexo masculino e ter idade maior. Existem evidências crescentes de que SAOS contribui de forma independente para o aparecimento e a progressão de várias doenças cardiovasculares. Os mecanismos pelos quais SAOS pode afetar o sistema cardiovascular são múltiplos e incluem a ativação do sistema nervoso simpático, inflamação sistêmica, resistência a insulina e geração de estresse oxidativo. Existem evidências que o tratamento de SAOS com CPAP pode reduzir a pressão arterial, sinais precoces de aterosclerose, risco de recorrência de fibrilação atrial e mortalidade, principalmente por acidente vascular cerebral e infarto agudo do miocárdio, em pacientes com SAOS grave.Obstructive sleep apnea syndrome (OSAS is a common condition associated with various cardiovascular diseases, including systemic arterial hypertension, atrial fibrillation, and atherosclerosis. The association between OSAS and cardiovascular disease has been related to the overlapping of risk factors, including obesity, having a sedentary lifestyle, being male, and being older. However, there is mounting evidence that OSAS can also independently contribute to the development and progression of various cardiovascular diseases. The mechanisms by which OSAS can affect the cardiovascular system are multiple, including the activation of the sympathetic nervous system, systemic inflammation, insulin resistance, and oxidative stress. There is also evidence that the treatment of OSAS with CPAP can reduce arterial blood pressure, early signs of atherosclerosis, the risk of atrial fibrillation recurrence, and mortality (principally

  14. Stent revascularization restores cortical blood flow and reverses tissue hypoxia in atherosclerotic renal artery stenosis but fails to reverse inflammatory pathways or glomerular filtration rate.

    Science.gov (United States)

    Saad, Ahmed; Herrmann, Sandra M S; Crane, John; Glockner, James F; McKusick, Michael A; Misra, Sanjay; Eirin, Alfonso; Ebrahimi, Behzad; Lerman, Lilach O; Textor, Stephen C

    2013-08-01

    Atherosclerotic renal artery stenosis (ARAS) is known to reduce renal blood flow, glomerular filtration rate (GFR) and amplify kidney hypoxia, but the relationships between these factors and tubulointerstitial injury in the poststenotic kidney are poorly understood. The purpose of this study was to examine the effect of renal revascularization in ARAS on renal tissue hypoxia and renal injury. Inpatient studies were performed in patients with ARAS (n=17; >60% occlusion) before and 3 months after stent revascularization, or in patients with essential hypertension (n=32), during fixed Na(+) intake and angiotensin converting enzyme/angiotensin receptors blockers Rx. Single kidney cortical, medullary perfusion, and renal blood flow were measured using multidetector computed tomography, and GFR by iothalamate clearance. Tissue deoxyhemoglobin levels (R(2)*) were measured by blood oxygen level-dependent MRI at 3T, as was fractional kidney hypoxia (percentage of axial area with R(2)*>30/s). In addition, we measured renal vein levels of neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, and tumor necrosis factor-α. Pre-stent single kidney renal blood flow, perfusion, and GFR were reduced in the poststenotic kidney. Renal vein neutrophil gelatinase-associated lipocalin, tumor necrosis factor-α, monocyte chemoattractant protein-1, and fractional hypoxia were higher in untreated ARAS than in essential hypertension. After stent revascularization, fractional hypoxia fell (Pblood flow, whereas GFR and neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, and tumor necrosis factor-α remained unchanged. These data demonstrate that despite reversal of renal hypoxia and partial restoration of renal blood flow after revascularization, inflammatory cytokines and injury biomarkers remained elevated and GFR failed to recover in ARAS. Restoration of vessel patency alone failed to reverse tubulointerstitial damage and partly

  15. Subcutaneous blood flow in the temporal region of migraine patients

    International Nuclear Information System (INIS)

    Jensen, K.

    1987-01-01

    Subcutaneous blood flow in the temporal region (TSBF) was measured by the local 133 Xenon washout technique in 43 migraine patients; 19 were reexamined in the course of spontaneous attacks. During attacks, TSBF was normal compared to headache-free state. In 13 unilateral attacks, the median ipsilateral to contralateral ratio TSBF was 1: 1.276, (NS). During 30 deg C passive head-up tilt, TSBF descreased by a median of 27% during headache-free intervals and by a median, 21% during migraine attacks. The difference between the 2 occasions was not significant. Head-up tilt resulted in a median 4.5% increase in mean arterial blood pressure (MAP) and a median 5.3% increase in heart rate (HR) during headache-free intervals and 3.4% and 3.2% respectively during migraine attacks. These results are evidence against a vasomotor disturbance of the extracranial tissues during attacks of migraine. The cardio-vascular response to the orthostatic stimulus indicates a normal function of this part of the autonomic nervous system during migraine attacks. (author)

  16. Subcutaneous blood flow in the temporal region of migraine patients

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, K.

    1987-01-01

    Subcutaneous blood flow in the temporal region (TSBF) was measured by the local 133 Xenon washout technique in 43 migraine patients; 19 were reexamined in the course of spontaneous attacks. During attacks, TSBF was normal compared to headache-free state. In 13 unilateral attacks, the median ipsilateral to contralateral ratio TSBF was 1: 1.276, (NS). During 30 deg C passive head-up tilt, TSBF descreased by a median of 27% during headache-free intervals and by a median, 21% during migraine attacks. The difference between the 2 occasions was not significant. Head-up tilt resulted in a median 4.5% increase in mean arterial blood pressure (MAP) and a median 5.3% increase in heart rate (HR) during headache-free intervals and 3.4% and 3.2% respectively during migraine attacks. These results are evidence against a vasomotor disturbance of the extracranial tissues during attacks of migraine. The cardio-vascular response to the orthostatic stimulus indicates a normal function of this part of the autonomic nervous system during migraine attacks.

  17. 14 CFR 67.111 - Cardiovascular.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Cardiovascular. 67.111 Section 67.111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION First-Class Airman Medical Certificate § 67.111 Cardiovascular. Cardiovascular...

  18. 14 CFR 67.311 - Cardiovascular.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Cardiovascular. 67.311 Section 67.311 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION Third-Class Airman Medical Certificate § 67.311 Cardiovascular. Cardiovascular...

  19. 14 CFR 67.211 - Cardiovascular.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Cardiovascular. 67.211 Section 67.211 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION Second-Class Airman Medical Certificate § 67.211 Cardiovascular. Cardiovascular...

  20. Neurobehavioral and Cardiovascular Effects of Potassium Cyanide Administered Orally to Mice.

    Science.gov (United States)

    Hawk, Michael A; Ritchie, Glenn D; Henderson, Kim A; Knostman, Katherine A B; Roche, Brian M; Ma, Zhenxu J; Matthews, Claire M; Sabourin, Carol L; Wakayama, Edward J; Sabourin, Patrick J

    2016-09-01

    The Food and Drug Administration Animal Rule requires evaluation of cardiovascular and central nervous system (CNS) effects of new therapeutics. To characterize an adult and juvenile mouse model, neurobehavioral and cardiovascular effects and pathology of a single sublethal but toxic, 8 mg/kg, oral dose of potassium cyanide (KCN) for up to 41 days postdosing were investigated. This study describes the short- and long-term sensory, motor, cognitive, and behavioral changes associated with oral dosing of a sublethal but toxic dose of KCN utilizing functional observation battery and Tier II CNS testing in adult and juvenile mice of both sexes. Selected tissues (histopathology) were evaluated for changes associated with KCN exposure with special attention to brain regions. Telemetry (adult mice only) was used to evaluate cardiovascular and temperature changes. Neurobehavioral capacity, sensorimotor responsivity or spontaneous locomotor activity, and rectal temperature were significantly reduced in adult and juvenile mice at 30 minutes post-8 mg/kg KCN dose. Immediate effects of cyanide included bradycardia, adverse electrocardiogram arrhythmic events, hypotension, and hypothermia with recovery by approximately 1 hour for blood pressure and heart rate effects and by 2 hours for body temperature. Lesions consistent with hypoxia, such as mild acute tubular necrosis in the kidneys corticomedullary junction, were the only histopathological findings and occurred at a very low incidence. The mouse KCN intoxication model indicates rapid and completely reversible effects in adult and juvenile mice following a single oral 8 mg/kg dose. Neurobehavioral and cardiovascular measurements can be used in this animal model as a trigger for treatment. © The Author(s) 2016.

  1. Impact of hydrotherapy on skin blood flow: How much is due to moisture and how much is due to heat?

    Science.gov (United States)

    Petrofsky, Jerrold; Gunda, Shashi; Raju, Chinna; Bains, Gurinder S; Bogseth, Michael C; Focil, Nicholas; Sirichotiratana, Melissa; Hashemi, Vahideh; Vallabhaneni, Pratima; Kim, Yumi; Madani, Piyush; Coords, Heather; McClurg, Maureen; Lohman, Everett

    2010-02-01

    Hydrotherapy and whirlpool are used to increase skin blood flow and warm tissue. However, recent evidence seems to show that part of the increase in skin blood flow is not due to the warmth itself but due to the moisture content of the heat. Therefore, two series of experiments were accomplished on 10 subjects with an average age of 24.2 +/- 9.7 years and free of diabetes and cardiovascular disease. Subjects sat in a 37 degrees C hydrotherapy pool under two conditions: one in which a thin membrane protecting their skin from moisture while their arm was submerged in water and the second where their arm was allowed to be exposed to the water for 15 minutes. During this period of time, skin and body temperature were measured as well as skin blood flow by a Laser Doppler Imager. The results of the experiments showed that the vapor barrier blocked any change in skin moisture content during submersion in water, and while skin temperature was the same as during exposure to the water, the blood flow with the arm exposed to water increased from 101.1 +/- 10.4 flux to 224.9 +/- 18.2 flux, whereas blood flow increased to only 118.7 +/- 11.4 flux if the moisture of the water was blocked. Thus, a substantial portion of the increase in skin blood flow associated with warm water therapy is probably associated with moisturizing of the skin rather than the heat itself.

  2. Physiological system integrations with emphasis on the respiratory-cardiovascular system

    Science.gov (United States)

    Gallagher, R. R.

    1975-01-01

    The integration of two types of physiological system simulations is presented. The long term model is a circulatory system model which simulates long term blood flow variations and compartmental fluid shifts. The short term models simulate transient phenomena of the respiratory, thermoregulatory, and pulsatile cardiovascular systems as they respond to stimuli such as LBNP, exercise, and environmental gaseous variations. An overview of the interfacing approach is described. Descriptions of the variable interface for long term to short term and between the three short term models are given.

  3. Blood flow and blood volume in a transplanted rat fibrosarcoma

    International Nuclear Information System (INIS)

    Tozer, G.M.; Morris, C.C.

    1990-01-01

    Blood flow measurements following i.v. infusion of iodi-antipyrine labelled with 14 C ( 14 C-IAP) and blood volume measurements following i.v. injection of 125 I human serum albumin and 51 Cr-labelled red blood cells were made in a transplanted rat fibrosarcoma for comparison with various normal tissues. The tumour-blood partition co-efficient for 14 C-IAP w as found to be 0.79 ± 0.07 which is similar to most of the normal tissues studied. The solubility of 14 C-IAP in plasma was found to be higher than that in whole blood. Blood flow to tumours 3 was found to be 17.9 ± 4.0 ml blood 100 g tissue -1 xmin -1 . These values were considered to be primarily measurements of nutritive flow. Blood in the tumours was found to occupy around 1% of the tissue space which was similar to that found for normal muscle and skin. There was no direct correlation between % blood volume and blood flow for the different tissues studied. Th haematocrit of blood contained in tumour tissue was calculated to be significantly lower than that of blood contained in the normal tissues. It was suspected that permeability of tumour blood vessel walls to 125 I-HSA could have accounted for this difference. (author). 41 refs.; 2 figs.; 3 tabs

  4. Maintained intentional weight loss reduces cardiovascular outcomes: results from the Sibutramine Cardiovascular OUTcomes (SCOUT) trial.

    Science.gov (United States)

    Caterson, I D; Finer, N; Coutinho, W; Van Gaal, L F; Maggioni, A P; Torp-Pedersen, C; Sharma, A M; Legler, U F; Shepherd, G M; Rode, R A; Perdok, R J; Renz, C L; James, W P T

    2012-06-01

    The Sibutramine Cardiovascular OUTcomes trial showed that sibutramine produced greater mean weight loss than placebo but increased cardiovascular morbidity but not mortality. The relationship between 12-month weight loss and subsequent cardiovascular outcomes is explored. Overweight/obese subjects (N = 10 744), ≥55 years with cardiovascular disease and/or type 2 diabetes mellitus, received sibutramine plus weight management during a 6-week Lead-in Period before randomization to continue sibutramine (N = 4906) or to receive placebo (N = 4898). The primary endpoint was the time from randomization to first occurrence of a primary outcome event (non-fatal myocardial infarction, non-fatal stroke, resuscitated cardiac arrest or cardiovascular death). For the total population, mean weight change during Lead-in Period (sibutramine) was -2.54 kg. Post-randomization, mean total weight change to Month 12 was -4.18 kg (sibutramine) or -1.87 kg (placebo). Degree of weight loss during Lead-in Period or through Month 12 was associated with a progressive reduction in risk for the total population in primary outcome events and cardiovascular mortality over the 5-year assessment. Although more events occurred in the randomized sibutramine group, on an average, a modest weight loss of approximately 3 kg achieved in the Lead-in Period appeared to offset this increased event rate. Moderate weight loss (3-10 kg) reduced cardiovascular deaths in those with severe, moderate or mild cardiovascular disease. Modest weight loss over short-term (6 weeks) and longer-term (6-12 months) periods is associated with reduction in subsequent cardiovascular mortality for the following 4-5 years even in those with pre-existing cardiovascular disease. While the sibutramine group experienced more primary outcome events than the placebo group, greater weight loss reduced overall risk of these occurring in both groups. © 2011 Blackwell Publishing Ltd.

  5. Histopathologic and Flow-Cytometric Analysis of Neoplastic and Benign “background” Tissue in Breast Carcinoma Resections

    Directory of Open Access Journals (Sweden)

    Daniel W. Visscher

    1998-01-01

    Full Text Available Two-color, multiparametric synthesis phase fraction (SPF analysis of cytokeratin-labeled epithelial cells was flow cytometrically performed on both benign (SPFb and malignant tissue samples (if available, SPFt from 132 mastectomy/lumpectomy specimens. These data were then correlated with clinicopathologic features, including (1 tumor differentiation, (2 the proportion of tumor comprised of duct carcinoma-in situ (DCIS, and (3 the histology of accompanying benign breast tissue, classified by predominant microscopic pattern as intact, normal terminal duct lobular units (NTDLU, 34% of cases, atrophic (AT, 33% of cases, proliferative fibrocystic (PFC, 26% of cases, and non-proliferative fibrocystic (NPFC, 7% of cases. SPFt was inversely correlated with extent of DCIS (DCIS =0 – 20% tumor volume – 12.7% mean SPFt, vs. DCIS >20% tumor volume – 6.4% mean SPFt, p = 0.001. SPFt also correlated with the histology of background benign breast tissue (NTDLU – 14.8% mean SPFt vs. AT – 6.9% mean SPFt vs. PFC – 12.7% mean SPFt, p = 0.05 but it did not correlate with patient age or SPFb (overall mean =0.73%. SPFb was correlated with patient age (>56 yr – 0.59% mean SPFb vs. < yr – 0.84% mean SPFb, p = 0.02, with background histology (NTDLU – 1.1% mean SPFb vs. AT – 0.43% mean SPFb vs. PFC – 0.70% mean SPFb, p < 0.02 and with the grade of the neoplasm (well/moderate – 0.58% mean vs. poorly differentiated – 0.85% mean, p = 0.04. Patients having a background of PFC were significantly older than patients with a background of NTDLU (45.2 yr vs. 60.2 yr, p = 0.01.

  6. [Cardiovascular resistance to orthostatic stress in athletes after aerobic exercise].

    Science.gov (United States)

    Mel'nikov, A A; Popov, S G; Vikulov, A D

    2014-01-01

    In the paper cardiovascular resistance to orthostatic stress in the athletes in the two-hour recovery period after prolonged aerobic exercise was investigated. The reaction of the cardiac (stroke volume and cardiac output) and peripheral blood volumes in the lower and upper limbs, abdominal and neck regions in response to the tilt-test before and during two hours after exercise (30 min, heart rate = 156 +/- 8 beats/min) was determined by impedance method: It is found that: (1) at baseline distribution of blood flow in favor of the neck-region in response to the tilt-test, in spite of the decrease in cardiac output, was more efficient in athletes, that was due to a large decrease in blood flow to the lower extremities, and increased blood flow in the neck region; (2) after exercise it was established symptoms of potential orthostatic intolerance: postural hypotension and tachycardia, reduced peripheral pulse blood volume, expressed in a standing position, and reduced effectiveness of the distribution of blood flow in the direction of the neck region; (3) the abilityto effectively distribute blood flow in favor of the neck region in athletes after exercise remained elevated, which was due to a large decrease in blood flow in the abdominal region at the beginning, and in the lower limbs at the end of the recovery period.

  7. Cardiovascular diseases

    International Nuclear Information System (INIS)

    Kodama, Kazunori

    1992-01-01

    This paper is aimed to discuss the involvement of delayed radiation effects of A-bomb exposure in cardiovascular diseases. First, the relationship between radiation and cardiovascular diseases is reviewed in the literature. Animal experiments have confirmed the relationship between ionizing radiation and vascular lesions. There are many reports which describe ischemic heart disease, cervical and cerebrovascular diseases, and peripheral disease occurring after radiation therapy. The previous A-bomb survivor cohort studies, i.e., the RERF Life Span Study and Adult Health Study, have dealt with the mortality rate from cardiovascular diseases, the prevalence or incidence of cardiovascular diseases, pathological findings, clinical observation of arteriosclerosis, ECG abnormality, blood pressure abnormality, and cardiac function. The following findings have been suggested: (1) A-bomb exposure is likely to be involved in the mortality rate and incidence of ischemic heart disease and cerebrovascular diseases; (2) similarly, the involvement of A-bomb exposure is considered in the prevalence of the arch of aorta; (3) ECG abnormality corresponding to ischemic heart disease may reflect the involvement of A-bomb exposure. To confirm the above findings, further studies are required on the basis of more accurate information and the appropriate number of cohort samples. Little evidence has been presented for the correlation between A-bomb exposure and both rheumatic heart disease and congenital heart disease. (N.K.) 88 refs

  8. Relationship between level of forage intake, blood flow and oxygen consumption by splanchnic tissues of sheep fed a tropical grass forage.

    Science.gov (United States)

    Hentz, F; Kozloski, G V; Zeni, D; Brun, M V; Stefanello, S

    2017-02-01

    Four Polwarth castrated male sheep (42 ± 4.4 kg live weight (LW) surgically implanted with chronic indwelling catheters into the mesenteric, portal and hepatic veins, housed in metabolism cages and offered Cynodon sp. hay at rates (g of dry matter (DM)/kg LW) of 7, 14, 21 or ad libitum, were used in a 4 × 4 Latin square experiment to evaluate the effect of the level of forage intake on blood flow and oxygen consumption by the portal-drained viscera (PDV), liver and total splanchnic tissues (ST). The portal blood flow and the oxygen consumption by PDV linearly increased at increased organic matter (OM) intake. No effect of level of OM intake was obtained for the hepatic artery blood flow and oxygen consumption by liver. As a consequence, the level of OM intake only tended to directly affect hepatic blood flow and oxygen consumption by total ST. Oxygen consumption was linearly and positively related to blood flow across PDV, liver and total ST. The heat production by PDV and total ST, as proportion of metabolizable energy (ME) intake, decreased curvilinearly at increased ME intake. In conclusion, the oxygen consumption by PDV, but not by liver, was directly related to the level of forage intake by sheep. Moreover, when ingested at levels below maintenance, most of ME was spent as heat produced by ST. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  9. Optically measured microvascular blood flow contrast of malignant breast tumors.

    Directory of Open Access Journals (Sweden)

    Regine Choe

    Full Text Available Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS, a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92-2.63; tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94-2.66, and using normal tissue in the contralateral breast was 2.27 (1.90-2.70. Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography.

  10. Nonfasting hyperlipidemia and cardiovascular disease

    DEFF Research Database (Denmark)

    Nordestgaard, B G; Langsted, A; Freiberg, J J

    2009-01-01

    , total cholesterol/HDL cholesterol, and apolipoprotein B/apolipoprotein A1 all associate with increased risk of cardiovascular disease. These new data open the possibility that nonfasting rather than fasting lipid profiles can be used for cardiovascular risk prediction. If implemented, this would...... of cardiovascular disease and early death....

  11. Advanced flow MRI: emerging techniques and applications

    International Nuclear Information System (INIS)

    Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A.J.; Robinson, J.D.; Rigsby, C.K.

    2016-01-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented.

  12. Laser sintering fabrication of three-dimensional tissue engineering scaffolds with a flow channel network.

    Science.gov (United States)

    Niino, T; Hamajima, D; Montagne, K; Oizumi, S; Naruke, H; Huang, H; Sakai, Y; Kinoshita, H; Fujii, T

    2011-09-01

    The fabrication of tissue engineering scaffolds for the reconstruction of highly oxygen-dependent inner organs is discussed. An additive manufacturing technology known as selective laser sintering was employed to fabricate a highly porous scaffold with an embedded flow channel network. A porogen leaching system was used to obtain high porosity. A prototype was developed using the biodegradable plastic polycaprolactone and sodium chloride as the porogen. A high porosity of 90% was successfully obtained. Micro x-ray CT observation was carried out to confirm that channels with a diameter of approximately 1 mm were generated without clogging. The amount of residual salt was 930 µg while the overall volume of the scaffold was 13 cm(3), and it was confirmed that the toxicity of the salt was negligible. The hydrophilization of the scaffold to improve cell adhesion on the scaffold is also discussed. Oxygen plasma ashing and hydrolysis with sodium hydroxide, typically employed to improve the hydrophilicity of plastic surfaces, were tested. The improvement of hydrophilicity was confirmed by an increase in water retention by the porous scaffold from 180% to 500%.

  13. Cardiovascular transition at birth: a physiological sequence.

    Science.gov (United States)

    Hooper, Stuart B; Te Pas, Arjan B; Lang, Justin; van Vonderen, Jeroen J; Roehr, Charles Christoph; Kluckow, Martin; Gill, Andrew W; Wallace, Euan M; Polglase, Graeme R

    2015-05-01

    The transition to newborn life at birth involves major cardiovascular changes that are triggered by lung aeration. These include a large increase in pulmonary blood flow (PBF), which is required for pulmonary gas exchange and to replace umbilical venous return as the source of preload for the left heart. Clamping the umbilical cord before PBF increases reduces venous return and preload for the left heart and thereby reduces cardiac output. Thus, if ventilation onset is delayed following cord clamping, the infant is at risk of superimposing an ischemic insult, due to low cardiac output, on top of an asphyxic insult. Much debate has centered on the timing of cord clamping at birth, focusing mainly on the potential for a time-dependent placental to infant blood transfusion. This has prompted recommendations for delayed cord clamping for a set time after birth in infants not requiring resuscitation. However, recent evidence indicates that ventilation onset before cord clamping mitigates the adverse cardiovascular consequences caused by immediate cord clamping. This indicates that the timing of cord clamping should be based on the infant's physiology rather than an arbitrary period of time and that delayed cord clamping may be of greatest benefit to apneic infants.

  14. Optimal design and uncertainty quantification in blood flow simulations for congenital heart disease

    Science.gov (United States)

    Marsden, Alison

    2009-11-01

    Recent work has demonstrated substantial progress in capabilities for patient-specific cardiovascular flow simulations. Recent advances include increasingly complex geometries, physiological flow conditions, and fluid structure interaction. However inputs to these simulations, including medical image data, catheter-derived pressures and material properties, can have significant uncertainties associated with them. For simulations to predict clinically useful and reliable output information, it is necessary to quantify the effects of input uncertainties on outputs of interest. In addition, blood flow simulation tools can now be efficiently coupled to shape optimization algorithms for surgery design applications, and these tools should incorporate uncertainty information. We present a unified framework to systematically and efficient account for uncertainties in simulations using adaptive stochastic collocation. In addition, we present a framework for derivative-free optimization of cardiovascular geometries, and layer these tools to perform optimization under uncertainty. These methods are demonstrated using simulations and surgery optimization to improve hemodynamics in pediatric cardiology applications.

  15. Heating patterns during cancer heat therapy as a function of blood flow

    International Nuclear Information System (INIS)

    Mendecki, J.; Friedenthal, E.; Botstein, C.; Sterzer, F.; Paglione, R.W.

    1984-01-01

    Heating patterns as a function of regional blood flow were evaluated in healthy tissues with different vascular characteristics as well as in a variety of tumors submitted to microwave and RF-induced hyperthermia. Generally, faster heating and slower cooling was demonstrated for tumors. Definite correlation was found between the power needed to heat given tissue volume to a specific temperature and the ability of this tissue to dissipate heat via vascular flow. The measurements show that during the early phase of heating of tumors temperature rises slowly up to about 40 0 C. indicating good heat exchanges but that at this level rapid increase of temperature occurs for relatively small increments of power input. It is suggested that blood flow in malignant tissue remains competent and responsive to low grade heating, but that at higher temperature levels, in contrast to normal tissue, tumor blood flow rapidly decreases indicating compromised vascular system. Implication for treatment protocols are discussed

  16. Aldosterone dysregulation with aging predicts renal vascular function and cardiovascular risk.

    Science.gov (United States)

    Brown, Jenifer M; Underwood, Patricia C; Ferri, Claudio; Hopkins, Paul N; Williams, Gordon H; Adler, Gail K; Vaidya, Anand

    2014-06-01

    Aging and abnormal aldosterone regulation are both associated with vascular disease. We hypothesized that aldosterone dysregulation influences the age-related risk of renal vascular and cardiovascular disease. We conducted an analysis of 562 subjects who underwent detailed investigations under conditions of liberal and restricted dietary sodium intake (1124 visits) in the General Clinical Research Center. Aldosterone regulation was characterized by the ratio of maximal suppression to stimulation (supine serum aldosterone on a liberal sodium diet divided by the same measure on a restricted sodium diet). We previously demonstrated that higher levels of this Sodium-modulated Aldosterone Suppression-Stimulation Index (SASSI) indicate greater aldosterone dysregulation. Renal plasma flow (RPF) was determined via p-aminohippurate clearance to assess basal renal hemodynamics and the renal vascular responses to dietary sodium manipulation and angiotensin II infusion. Cardiovascular risk was calculated using the Framingham Risk Score. In univariate linear regression, older age (β=-4.60; Page and SASSI, where the inverse relationship between SASSI and RPF was most apparent with older age (Page may interact to mediate renal vascular disease. Our findings suggest that the combination of aldosterone dysregulation and renal vascular dysfunction could additively increase the risk of future cardiovascular outcomes; therefore, aldosterone dysregulation may represent a modifiable mechanism of age-related vascular disease.

  17. A mathematical model for fluid shear-sensitive 3D tissue construct development.

    Science.gov (United States)

    Liu, Dan; Chua, Chee-Kai; Leong, Kah-Fai

    2013-01-01

    This research studies dynamic culture for 3D tissue construct development with computational fluid dynamics. It proposes a mathematical model to evaluate the impact of flow rates and flow shear stress on cell growth in 3D constructs under perfusion. The modeling results show that dynamic flow, even at flow rate as low as 0.002 cm/s, can support much better mass exchange, higher cell number, and more even cell and nutrient distribution compared to static culture. Higher flow rate can further improve nutrient supply and mass exchange in the construct, promoting better nutritious environment and cell proliferation compared to lower flow rate. In addition, consideration of flow shear stress predicts much higher cell number in the construct compared to that without shear consideration. While the nutrient can dominate shear stress in influencing cell proliferation, the shear effect increases with flow rate. The proposed model helps tissue engineers better understand the cell-flow relationship at the molecular level during dynamic culture.

  18. Tissue Damage Characterization Using Non-invasive Optical Modalities

    Science.gov (United States)

    Diaz, David

    The ability to determine the degree of cutaneous and subcutaneous tissue damage is essential for proper wound assessment and a significant factor for determining patient treatment and morbidity. Accurate characterization of tissue damage is critical for a number of medical applications including surgical removal of nonviable tissue, severity assessment of subcutaneous ulcers, and depth assessment of visually open wounds. The main objective of this research was to develop a non-invasive method for identifying the extent of tissue damage underneath intact skin that is not apparent upon visual examination. This work investigated the relationship between tissue optical properties, blood flow, and tissue viability by testing the hypotheses that (a) changes in tissue oxygenation and/or microcirculatory blood flow measurable by Diffuse Near Infrared Spectroscopy (DNIRS) and Diffuse Correlation Spectroscopy (DCS) differ between healthy and damaged tissue and (b) the magnitude of those changes differs for different degrees of tissue damage. This was accomplished by developing and validating a procedure for measuring microcirculatory blood flow and tissue oxygenation dynamics at multiple depths (up to 1 centimeter) using non-invasive DCS and DNIRS technologies. Due to the lack of pressure ulcer animal models that are compatible with our optical systems, a proof of concept was conducted in a porcine burn model prior to conducting clinical trials in order to assess the efficacy of the system in-vivo. A reduction in total hemoglobin was observed for superficial (5%) and deep burns (35%) along with a statistically significant difference between the optical properties of superficial and deep burns (p differences detected in optical properties and hemoglobin content by optical measurements correlated with the extent of tissue injury observed in histological stains. After proof of concept in animals, a human study was conducted and optical data was collected from 20 healthy

  19. Research in cardiovascular care

    DEFF Research Database (Denmark)

    Jaarsma, Tiny; Deaton, Christi; Fitzsimmons, Donna

    2014-01-01

    with the increasing opportunities and challenges in multidisciplinary research, the Science Committee of the Council on Cardiovascular Nursing and Allied Professionals (CCNAP) recognised the need for a position statement to guide researchers, policymakers and funding bodies to contribute to the advancement...... of the body of knowledge that is needed to further improve cardiovascular care. In this paper, knowledge gaps in current research related to cardiovascular patient care are identified, upcoming challenges are explored and recommendations for future research are given....

  20. Measurement of vascular flow in the brain with the xenon/CT method

    International Nuclear Information System (INIS)

    Wist, A.O.; Cothran, A.; Fatouros, P.P.; Kishore, P.R.S.

    1988-01-01

    The authors are proposing a modification of the xenon/CT method that allows measurement of the flow in the different brain vessels. Based on an improved stable xenon/CT method, they developed several additional algorithms to differentiate the vessel flow from tissue flow and from artifacts and noise, which are based on the height, steepness, and other parameters of the detected flow values. The vessel flow maps, together with the tissue flow maps and new composite flow maps of recent patients, demonstrate that the stable xenon/CT technique can be extended to quantify vascular flow in the brain. The diagnostic capability of this method can be further improved by removing the vessel flow from the flow maps

  1. Erectile dysfunction in the cardiovascular patient.

    Science.gov (United States)

    Vlachopoulos, Charalambos; Jackson, Graham; Stefanadis, Christodoulos; Montorsi, Piero

    2013-07-01

    Erectile dysfunction is common in the patient with cardiovascular disease. It is an important component of the quality of life and it also confers an independent risk for future cardiovascular events. The usual 3-year time period between the onset of erectile dysfunction symptoms and a cardiovascular event offers an opportunity for risk mitigation. Thus, sexual function should be incorporated into cardiovascular disease risk assessment for all men. A comprehensive approach to cardiovascular risk reduction (comprising of both lifestyle changes and pharmacological treatment) improves overall vascular health, including sexual function. Proper sexual counselling improves the quality of life and increases adherence to medication. This review explores the critical connection between erectile dysfunction and cardiovascular disease and evaluates how this relationship may influence clinical practice. Algorithms for the management of patient with erectile dysfunction according to the risk for sexual activity and future cardiovascular events are proposed.

  2. Cardiovascular Disease and Diabetes

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Cardiovascular Disease & Diabetes Updated:Jan 29,2018 The following ... clear that there is a strong correlation between cardiovascular disease (CVD) and diabetes. At least 68 percent ...

  3. Regional cerebral blood flow measurement in brain tumors

    International Nuclear Information System (INIS)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-01-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of 133 Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors. (author)

  4. Regional cerebral blood flow measurement in brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-10-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of /sup 133/Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors.

  5. Blood flow restriction training and the exercise pressor reflex: a call for concern.

    Science.gov (United States)

    Spranger, Marty D; Krishnan, Abhinav C; Levy, Phillip D; O'Leary, Donal S; Smith, Scott A

    2015-11-01

    Blood flow restriction (BFR) training (also known as Kaatsu training) is an increasingly common practice employed during resistance exercise by athletes attempting to enhance skeletal muscle mass and strength. During BFR training, blood flow to the exercising muscle is mechanically restricted by placing flexible pressurizing cuffs around the active limb proximal to the working muscle. This maneuver results in the accumulation of metabolites (e.g., protons and lactic acid) in the muscle interstitium that increase muscle force and promote muscle growth. Therefore, the premise of BFR training is to simulate and receive the benefits of high-intensity resistance exercise while merely performing low-intensity resistance exercise. This technique has also been purported to provide health benefits to the elderly, individuals recovering from joint injuries, and patients undergoing cardiac rehabilitation. Since the seminal work of Alam and Smirk in the 1930s, it has been well established that reductions in blood flow to exercising muscle engage the exercise pressor reflex (EPR), a reflex that significantly contributes to the autonomic cardiovascular response to exercise. However, the EPR and its likely contribution to the BFR-mediated cardiovascular response to exercise is glaringly missing from the scientific literature. Inasmuch as the EPR has been shown to generate exaggerated increases in sympathetic nerve activity in disease states such as hypertension (HTN), heart failure (HF), and peripheral artery disease (PAD), concerns are raised that BFR training can be used safely for the rehabilitation of patients with cardiovascular disease, as has been suggested. Abnormal BFR-induced and EPR-mediated cardiovascular complications generated during exercise could precipitate adverse cardiovascular or cerebrovascular events (e.g., cardiac arrhythmia, myocardial infarction, stroke and sudden cardiac death). Moreover, although altered EPR function in HTN, HF, and PAD underlies our

  6. The Effects of Ocimum Gratissimum Leaf Extract on Cardiovascular ...

    African Journals Online (AJOL)

    At the end of the period the blood pressure, heart rate, packed cell volume ... Also determined were the urine output, urine flow rate and urinary excretion of ... No significant histological changes were observed in renal cortical tissue of O.

  7. Oral health and cardiovascular care: Perceptions of people with cardiovascular disease

    Science.gov (United States)

    Salamonson, Yenna; Ajwani, Shilpi; Bhole, Sameer; Bishop, Joshua; Lintern, Karen; Nolan, Samantha; Rajaratnam, Rohan; Redfern, Julie; Sheehan, Maria; Skarligos, Fiona; Spencer, Lissa; Srinivas, Ravi

    2017-01-01

    Main objective The aim of this study was to explore the perception of patients with cardiovascular disease towards oral health and the potential for cardiac care clinicians to promote oral health. Method A needs assessment was undertaken with twelve patients with cardiovascular disease attending cardiac rehabilitation between 2015 and 2016, in three metropolitan hospitals in Sydney, Australia. These patients participated in face-to-face semi-structured interviews. Data was analysed using thematic analysis. Results Results suggested that while oral health was considered relevant there was high prevalence of poor oral health among participants, especially those from socioeconomic disadvantaged background. Awareness regarding the importance of oral health care its impact on cardiovascular outcomes was poor among participants. Oral health issues were rarely discussed in the cardiac setting. Main barriers deterring participants from seeking oral health care included lack of awareness, high cost of dental care and difficulties in accessing the public dental service. Findings also revealed that participants were interested in receiving further information about oral health and suggested various mediums for information delivery. The concept of cardiac care clinicians, especially nurses providing education, assessment and referrals to ongoing dental care was well received by participants who felt the post-acute period was the most appropriate time to receive oral health care advice. The issues of oral health training for non-dental clinicians and how to address existing barriers were highlighted by participants. Relevance to clinical practice The lack of oral health education being provided to patients with cardiovascular disease offers an opportunity to improve care and potentially, outcomes. In view of the evidence linking poor oral health with cardiovascular disease, cardiac care clinicians, especially nurses, should be appropriately trained to promote oral health in

  8. Oral health and cardiovascular care: Perceptions of people with cardiovascular disease.

    Directory of Open Access Journals (Sweden)

    Paula Sanchez

    Full Text Available The aim of this study was to explore the perception of patients with cardiovascular disease towards oral health and the potential for cardiac care clinicians to promote oral health.A needs assessment was undertaken with twelve patients with cardiovascular disease attending cardiac rehabilitation between 2015 and 2016, in three metropolitan hospitals in Sydney, Australia. These patients participated in face-to-face semi-structured interviews. Data was analysed using thematic analysis.Results suggested that while oral health was considered relevant there was high prevalence of poor oral health among participants, especially those from socioeconomic disadvantaged background. Awareness regarding the importance of oral health care its impact on cardiovascular outcomes was poor among participants. Oral health issues were rarely discussed in the cardiac setting. Main barriers deterring participants from seeking oral health care included lack of awareness, high cost of dental care and difficulties in accessing the public dental service. Findings also revealed that participants were interested in receiving further information about oral health and suggested various mediums for information delivery. The concept of cardiac care clinicians, especially nurses providing education, assessment and referrals to ongoing dental care was well received by participants who felt the post-acute period was the most appropriate time to receive oral health care advice. The issues of oral health training for non-dental clinicians and how to address existing barriers were highlighted by participants.The lack of oral health education being provided to patients with cardiovascular disease offers an opportunity to improve care and potentially, outcomes. In view of the evidence linking poor oral health with cardiovascular disease, cardiac care clinicians, especially nurses, should be appropriately trained to promote oral health in their practice. Affordable and accessible

  9. Educational inequality in cardiovascular diseases

    DEFF Research Database (Denmark)

    Søndergaard, Grethe; Dalton, Susanne Oksbjerg; Mortensen, Laust Hvas

    2018-01-01

    AIMS: Educational inequality in diseases in the circulatory system (here termed cardiovascular disease) is well documented but may be confounded by early life factors. The aim of this observational study was to examine whether the associations between education and all cardiovascular diseases...... educational status was associated with a higher risk of cardiovascular disease, ischaemic heart disease and stroke. All associations attenuated in the within-sibship analyses, in particular in the analyses on ischaemic heart disease before age 45 years. For instance, in the cohort analyses, the hazard rate...... factors shared by siblings explained the associations between education and the cardiovascular disease outcomes but to varying degrees. This should be taken into account when planning interventions aimed at reducing educational inequalities in the development of cardiovascular disease, ischaemic heart...

  10. Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration.

    Science.gov (United States)

    Chen, Zhangjian; Wang, Yun; Zhuo, Lin; Chen, Shi; Zhao, Lin; Luan, Xianguo; Wang, Haifang; Jia, Guang

    2015-12-03

    Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in various consumer products, especially food and personal care products. Compared to the well-characterized adverse cardiovascular effect of inhaled ambient ultrafine particles, research on the health response to orally administrated TiO2 NPs is still limited. In our study, we performed an in vivo study in Sprague-Dawley rats to understand the cardiovascular effect of TiO2 NPs after oral intake. After daily gastrointestinal administration of TiO2 NPs at 0, 2, 10, 50 mg/kg for 30 and 90 days, heart rate (HR), blood pressure, blood biochemical parameters and histopathology of cardiac tissues was assessed to quantify cardiovascular damage. Mild and temporary reduction of HR and systolic blood pressure as well as an increase of diastolic blood pressure was observed after daily oral administration of TiO2 NPs for 30 days. Injury of cardiac function was observed after daily oral administration of TiO2 NPs for 90 days as reflected in decreased activities of lactate dehydrogenase (LDH), alpha-hydroxybutyrate dehydrogenase (HBDH) and creatine kinase (CK). Increased white blood cells count (WBC) and granulocytes (GRN) in blood as well as increased concentrations of tumor necrosis factor α (TNF α) and interleukin 6 (IL-6) in the serum indicated inflammatory response initiated by TiO2 NPs exposure. It was hypothesize that cardiac damage and inflammatory response are the possible mechanisms of the adverse cardiovascular effects induced by orally administrated TiO2 NPs. Data from our study suggested that even at low dose of TiO2 NPs can induce adverse cardiovascular effects after 30 days or 90 days of oral exposure, thus warranting concern for the dietary intake of TiO2 NPs for consumers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Nonlinear Rheology in a Model Biological Tissue

    Science.gov (United States)

    Matoz-Fernandez, D. A.; Agoritsas, Elisabeth; Barrat, Jean-Louis; Bertin, Eric; Martens, Kirsten

    2017-04-01

    The rheological response of dense active matter is a topic of fundamental importance for many processes in nature such as the mechanics of biological tissues. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with an increasing shear rate. To rationalize this nonlinear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are, respectively, generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.

  12. A multiscale analysis of nutrient transport and biological tissue growth in vitro

    KAUST Repository

    O'Dea, R. D.

    2014-10-15

    © The authors 2014. In this paper, we consider the derivation of macroscopic equations appropriate to describe the growth of biological tissue, employing a multiple-scale homogenization method to accommodate explicitly the influence of the underlying microscale structure of the material, and its evolution, on the macroscale dynamics. Such methods have been widely used to study porous and poroelastic materials; however, a distinguishing feature of biological tissue is its ability to remodel continuously in response to local environmental cues. Here, we present the derivation of a model broadly applicable to tissue engineering applications, characterized by cell proliferation and extracellular matrix deposition in porous scaffolds used within tissue culture systems, which we use to study coupling between fluid flow, nutrient transport, and microscale tissue growth. Attention is restricted to surface accretion within a rigid porous medium saturated with a Newtonian fluid; coupling between the various dynamics is achieved by specifying the rate of microscale growth to be dependent upon the uptake of a generic diffusible nutrient. The resulting macroscale model comprises a Darcy-type equation governing fluid flow, with flow characteristics dictated by the assumed periodic microstructure and surface growth rate of the porous medium, coupled to an advection-reaction equation specifying the nutrient concentration. Illustrative numerical simulations are presented to indicate the influence of microscale growth on macroscale dynamics, and to highlight the importance of including experimentally relevant microstructural information to correctly determine flow dynamics and nutrient delivery in tissue engineering applications.

  13. Longitudinal optical monitoring of blood flow in breast tumors during neoadjuvant chemotherapy

    Science.gov (United States)

    Cochran, J. M.; Chung, S. H.; Leproux, A.; Baker, W. B.; Busch, D. R.; DeMichele, A. M.; Tchou, J.; Tromberg, B. J.; Yodh, A. G.

    2017-06-01

    We measure tissue blood flow markers in breast tumors during neoadjuvant chemotherapy and investigate their correlation to pathologic complete response in a pilot longitudinal patient study (n  =  4). Tumor blood flow is quantified optically by diffuse correlation spectroscopy (DCS), and tissue optical properties, blood oxygen saturation, and total hemoglobin concentration are derived from concurrent diffuse optical spectroscopic imaging (DOSI). The study represents the first longitudinal DCS measurement of neoadjuvant chemotherapy in humans over the entire course of treatment; it therefore offers a first correlation between DCS flow indices and pathologic complete response. The use of absolute optical properties measured by DOSI facilitates significant improvement of DCS blood flow calculation, which typically assumes optical properties based on literature values. Additionally, the combination of the DCS blood flow index and the tissue oxygen saturation from DOSI permits investigation of tissue oxygen metabolism. Pilot results from four patients suggest that lower blood flow in the lesion-bearing breast is correlated with pathologic complete response. Both absolute lesion blood flow and lesion flow relative to the contralateral breast exhibit potential for characterization of pathological response. This initial demonstration of the combined optical approach for chemotherapy monitoring provides incentive for more comprehensive studies in the future and can help power those investigations.

  14. New Sides of Aldosterone Action in Cardiovascular System as Potential Targets for Therapeutic Intervention.

    Science.gov (United States)

    Kolodziejczyk, Patrycjusz; Gromotowicz-Poplawska, Anna; Aleksiejczuk, Michal; Chabielska, Ewa; Tutka, Piotr; Miltyk, Wojciech

    2018-03-26

    Aldosterone, the main mineralocorticoid hormone, plays a crucial role in the regulation of electrolyte homeostasis and blood pressure. Although, this role is undoubtedly important, it is not a hormonal action that attracts the most attention. Aldosterone seems to be very important important as a local messenger in the pathology of cardiovascular diseases (CVD). In the last few years, the attention was focused on the correlation between raised aldosterone level and increased risk of cardiovascular events. It has been demonstrated that aldosterone contributes to fibrosis, inflammation, endothelial dysfunction, fibrinolytic disordes, and oxidative stress leading to CVD development and progression. It used to be thought that the effects of aldosterone are mediated via classic nuclear receptors - mineralocorticoid receptors (MR). Now we know that the mechanism of aldosterone action in cardiovascular system is much more complex, since experimental and clinical studies indicate that MR blockade may be not sufficient to abolish aldosterone-incuced harmful effects in the cardiovascular system. Therefore, the involvement of some other than MR, receptors and factors is suggested. Moreover, in addition to the generally known genomic action of aldosterone, which involves MR activation, the nongenomic pathways are postulated in the mode of hormone action. More and more attention is focused on the membrane-coupled receptors, which mediate the rapid effects of aldosterone and have been already confirmed in different cells and tissues of a cardiovascular system. The confirmation of multiple mechanisms of aldosterone action opens a new perspective for more effective therapeutic intervention in aldosterone-related CVD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Environmental Factors and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Omer Faruk Tekbas

    2008-10-01

    Full Text Available Epidemiological and clinical observations have led to the hypothesis that the risk of developing cardiovascular diseases is influenced not only by genetic, lifestyle and major risk factors, but also by environmental factors. Environmental factors are considered key determinants of cardiovascular diseases. Although lifestyle choices such as smoking, diet, and exercise are viewed as major environmental influences, the contribution of pollutants and environmental chemicals is less clear. Accumulating evidence suggests that exposure to physically and chemical pollutants could elevate the risk of cardiovascular diseases. Many epidemiological studies report that exposure to physically, biologically and socio-cultural environmental factors are associated with an increase in cardiovascular mortality. Relationships between environmental factors and coronary arter disease, arhythmias, and cardiomyopathies have been reported. Exposures to arsenic, lead, cadmium, pollutant gases, solvents, and pesticides have also been linked to increased incidence of cardiovascular disease. In this paper, I review that relationships between exposure to physically, chemical, biologically and socio-cultural environmental factors and cardiovascular diseases. [TAF Prev Med Bull 2008; 7(5.000: 435-444

  16. The role of red blood cell deformability and Na,K-ATPase function in selected risk factors of cardiovascular diseases in humans: focus on hypertension, diabetes mellitus and hypercholesterolemia.

    Science.gov (United States)

    Radosinska, J; Vrbjar, N

    2016-09-19

    Deformability of red blood cells (RBC) is the ability of RBC to change their shape in order to pass through narrow capillaries in circulation. Deterioration in deformability of RBC contributes to alterations in microcirculatory blood flow and delivery of oxygen to tissues. Several factors are responsible for maintenance of RBC deformability. One of them is the Na,K-ATPase known as crucial enzyme in maintenance of intracellular ionic homeostasis affecting thus regulation of cellular volume and consequently RBC deformability. Decreased deformability of RBC has been found to be the marker of adverse outcomes in cardiovascular diseases (CVD) and the presence of cardiovascular risk factors influences rheological properties of the blood. This review summarizes knowledge concerning the RBC deformability in connection with selected risk factors of CVD, including hypertension, hyperlipidemia, and diabetes mellitus, based exclusively on papers from human studies. We attempted to provide an update on important issues regarding the role of Na,K-ATPase in RBC deformability. In patients suffering from hypertension as well as diabetes mellitus the Na,K-ATPase appears to be responsible for the changes leading to alterations in RBC deformability. The triggering factor for changes of RBC deformability during hypercholesterolemia seems to be the increased content of cholesterol in erythrocyte membranes.

  17. APOE Genotyping, Cardiovascular Disease

    Science.gov (United States)

    ... Resources For Health Professionals Subscribe Search APOE Genotyping, Cardiovascular Disease Send Us Your Feedback Choose Topic At a ... help understand the role of genetic factors in cardiovascular disease . However, the testing is sometimes used in clinical ...

  18. Multifactorial Prevention of Cardiovascular Disease in Patients with Hypertension : the Cardiovascular Polypill

    NARCIS (Netherlands)

    Lafeber, M; Spiering, W; Visseren, F L J; Grobbee, D E

    2016-01-01

    Hypertension is a major, if not the most important, contributor to the disease burden and premature death globally which is largely related to cardiovascular disease. In both the primary and the secondary preventions of cardiovascular disease, blood pressure (BP) targets are often not achieved which

  19. Tissue vascularization through 3D printing: Will technology bring us flow?

    Science.gov (United States)

    Paulsen, S J; Miller, J S

    2015-05-01

    Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. © 2015 Wiley Periodicals, Inc.

  20. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs.

    Science.gov (United States)

    Elomaa, Laura; Yang, Yunzhi Peter

    2017-10-01

    There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.

  1. ART-ML: a new markup language for modelling and representation of biological processes in cardiovascular diseases.

    Science.gov (United States)

    Karvounis, E C; Exarchos, T P; Fotiou, E; Sakellarios, A I; Iliopoulou, D; Koutsouris, D; Fotiadis, D I

    2013-01-01

    With an ever increasing number of biological models available on the internet, a standardized modelling framework is required to allow information to be accessed and visualized. In this paper we propose a novel Extensible Markup Language (XML) based format called ART-ML that aims at supporting the interoperability and the reuse of models of geometry, blood flow, plaque progression and stent modelling, exported by any cardiovascular disease modelling software. ART-ML has been developed and tested using ARTool. ARTool is a platform for the automatic processing of various image modalities of coronary and carotid arteries. The images and their content are fused to develop morphological models of the arteries in 3D representations. All the above described procedures integrate disparate data formats, protocols and tools. ART-ML proposes a representation way, expanding ARTool, for interpretability of the individual resources, creating a standard unified model for the description of data and, consequently, a format for their exchange and representation that is machine independent. More specifically, ARTool platform incorporates efficient algorithms which are able to perform blood flow simulations and atherosclerotic plaque evolution modelling. Integration of data layers between different modules within ARTool are based upon the interchange of information included in the ART-ML model repository. ART-ML provides a markup representation that enables the representation and management of embedded models within the cardiovascular disease modelling platform, the storage and interchange of well-defined information. The corresponding ART-ML model incorporates all relevant information regarding geometry, blood flow, plaque progression and stent modelling procedures. All created models are stored in a model repository database which is accessible to the research community using efficient web interfaces, enabling the interoperability of any cardiovascular disease modelling software

  2. Women's cardiovascular health in India.

    Science.gov (United States)

    Chow, Clara K; Patel, Anushka A

    2012-03-01

    Cardiovascular diseases (CVDs) are the leading cause of death among adult women in many parts of India and a major cause of morbidity. In some parts of the world, gender inequities have been observed in cardiovascular healthcare and cardiovascular outcomes. The authors discuss the data for potential disparities in cardiovascular healthcare for women in India. Data on cardiovascular healthcare provision and CVD outcomes among women in India are generally lacking. The little available data suggest that women in rural areas, younger women and girl children with CVD are less likely to receive appropriate management than men, with this disparity most apparent in those of lower socioeconomic status and education. However, there is a particular lack of information about the prevention and management of atherosclerotic heart disease in women from a range of communities that comprise the extremely diverse population of India.

  3. The Diagnosis of Gastric Mucosa-associated Lymphoid Tissue Lymphoma by Flow Cytometry and Fluorescence in situ Hybridization of Biopsy Specimens.

    Science.gov (United States)

    Matsueda, Katsunori; Omote, Sizuma; Sakata, Masahiro; Fujita, Isao; Horii, Jouichiro; Toyokawa, Tatsuya

    2018-04-15

    Mucosa-associated lymphoid tissue (MALT) lymphoma and reactive inflammatory lymphoid changes are frequently difficult to distinguish based on a routine histological differential diagnosis. We were unable to diagnose gastric MALT lymphoma histologically using specimens obtained by endoscopy, although a flow cytometry (FCM) analysis demonstrated clonality of neoplastic cells by separating cells by CD45 gating. Furthermore, a fluorescence in situ hybridization (FISH) analysis showed trisomy 18. We therefore diagnosed gastric MALT lymphoma with trisomy 18. We recommend that FCM and FISH analyses of biopsy specimens be considered for diagnosing gastric MALT lymphoma if this diagnosis is suspected based on endoscopic findings.

  4. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation

    DEFF Research Database (Denmark)

    Olufsen, M.S.; Ottesen, Johnny T.; Tran, H.T.

    2005-01-01

    Short-term cardiovascular responses to postural change from sitting to standing involve complex interactions between the autonomic nervous system, which regulates blood pressure, and cerebral autoregulation, which maintains cerebral perfusion. We present a mathematical model that can predict...... dynamic changes in beat-to-beat arterial blood pressure and middle cerebral artery blood flow velocity during postural change from sitting to standing. Our cardiovascular model utilizes 11 compartments to describe blood pressure, blood flow, compliance, and resistance in the heart and systemic circulation....... To include dynamics due to the pulsatile nature of blood pressure and blood flow, resistances in the large systemic arteries are modeled using nonlinear functions of pressure. A physiologically based submodel is used to describe effects of gravity on venous blood pooling during postural change. Two types...

  5. Mathematical multi-scale model of the cardiovascular system including mitral valve dynamics. Application to ischemic mitral insufficiency

    Directory of Open Access Journals (Sweden)

    Moonen Marie

    2011-09-01

    Full Text Available Abstract Background Valve dysfunction is a common cardiovascular pathology. Despite significant clinical research, there is little formal study of how valve dysfunction affects overall circulatory dynamics. Validated models would offer the ability to better understand these dynamics and thus optimize diagnosis, as well as surgical and other interventions. Methods A cardiovascular and circulatory system (CVS model has already been validated in silico, and in several animal model studies. It accounts for valve dynamics using Heaviside functions to simulate a physiologically accurate "open on pressure, close on flow" law. However, it does not consider real-time valve opening dynamics and therefore does not fully capture valve dysfunction, particularly where the dysfunction involves partial closure. This research describes an updated version of this previous closed-loop CVS model that includes the progressive opening of the mitral valve, and is defined over the full cardiac cycle. Results Simulations of the cardiovascular system with healthy mitral valve are performed, and, the global hemodynamic behaviour is studied compared with previously validated results. The error between resulting pressure-volume (PV loops of already validated CVS model and the new CVS model that includes the progressive opening of the mitral valve is assessed and remains within typical measurement error and variability. Simulations of ischemic mitral insufficiency are also performed. Pressure-Volume loops, transmitral flow evolution and mitral valve aperture area evolution follow reported measurements in shape, amplitude and trends. Conclusions The resulting cardiovascular system model including mitral valve dynamics provides a foundation for clinical validation and the study of valvular dysfunction in vivo. The overall models and results could readily be generalised to other cardiac valves.

  6. Risk factors for chronic transplant dysfunction and cardiovascular disease are related to accumulation of advanced glycation end-products in renal transplant recipients

    NARCIS (Netherlands)

    Hartog, Jasper W. L.; de Vries, Aiko P. J.; Bakker, Stephan J. L.; Graaff, Reindert; van Son, Willem J.; van der Heide, Jaap J. Homan; Gans, Reinold O. B.; Wolffenbuttel, Bruce H. R.; de Jong, Paul E.; Smit, Andries J.

    Background. Accumulation of advanced glycation end-products (AGEs) has been implicated in the pathogenesis of chronic transplant dysfunction and cardiovascular disease in renal transplant recipients. We aimed to investigate which factors are associated with tissue AGE accumulation in renal

  7. Risk factors for chronic transplant dysfunction and cardiovascular disease are related to accumulation of advanced glycation end-products in renal transplant recipients

    NARCIS (Netherlands)

    Hartog, Jasper W. L.; de Vries, Aiko P. J.; Bakker, Stephan J. L.; Graaff, Reindert; van Son, Willem J.; Homan van der Heide, Jaap J.; Gans, Reinold O. B.; Wolffenbuttel, Bruce H. R.; de Jong, Paul E.; Smit, Andries J.

    2006-01-01

    Accumulation of advanced glycation end-products (AGEs) has been implicated in the pathogenesis of chronic transplant dysfunction and cardiovascular disease in renal transplant recipients. We aimed to investigate which factors are associated with tissue AGE accumulation in renal transplant

  8. HEART: an automated beat-to-beat cardiovascular analysis package using Matlab.

    Science.gov (United States)

    Schroeder, M J Mark J; Perreault, Bill; Ewert, D L Daniel L; Koenig, S C Steven C

    2004-07-01

    A computer program is described for beat-to-beat analysis of cardiovascular parameters from high-fidelity pressure and flow waveforms. The Hemodynamic Estimation and Analysis Research Tool (HEART) is a post-processing analysis software package developed in Matlab that enables scientists and clinicians to document, load, view, calibrate, and analyze experimental data that have been digitally saved in ascii or binary format. Analysis routines include traditional hemodynamic parameter estimates as well as more sophisticated analyses such as lumped arterial model parameter estimation and vascular impedance frequency spectra. Cardiovascular parameter values of all analyzed beats can be viewed and statistically analyzed. An attractive feature of the HEART program is the ability to analyze data with visual quality assurance throughout the process, thus establishing a framework toward which Good Laboratory Practice (GLP) compliance can be obtained. Additionally, the development of HEART on the Matlab platform provides users with the flexibility to adapt or create study specific analysis files according to their specific needs. Copyright 2003 Elsevier Ltd.

  9. Crowdfunding for cardiovascular research.

    Science.gov (United States)

    Krittanawong, Chayakrit; Zhang, HongJu Janet; Aydar, Mehmet; Wang, Zhen; Sun, Tao

    2018-01-01

    The competition for public cardiovascular research grants has recently increased. Independent researchers are facing increasing competition for public research grant support and ultimately may need to seek alternative funding sources. Crowdfunding, a financing method of raising funds online by pooling together small donations from the online community to support a specific initiative, seems to have significant potential. However, the feasibility of crowdfunding for cardiovascular research remains unknown. Here, we performed exploratory data analysis of the feasibility of online crowdfunding in cardiovascular research. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Application of the ultrasound hyperthermia model for a multi-layered tissue system

    International Nuclear Information System (INIS)

    Loerincz, A

    2004-01-01

    This work models the thermal effect of several planar transducers targeting the tumour interactively in a ceramics-coupling-skin-muscle-tumour system. The most important inputs of the model include the following: emitted electric output, J/s; mechanical efficiency, %; number of transducers, pieces; surface area of the transducer, m 2 ; area, m 2 and temperature, K of the cooling surface, attenuation coefficients, Np/cm MHz; specific heats, J/gK; densities, g/cm 3 ; heat conductivities, J/msK; sound velocities m/s; flow rate of blood in the tissues, ml/gtissue/min; sound path in the tissues and in the blood flowing through the tissues, m. From the inputs, a number of intermediate data are determined, e.g. the geometry of the irradiated bodies that are in the path of ultrasound, acoustic hardness, Pas/m; sound reflection and sound transmission occurring at the interfaces, Np; heat exchanger wall thickness of the irradiated bodies, m; heat dissipation and heat exchanger surface areas, m 2 ; flow rate of blood in the tissues located in the path of ultrasound, ml/tissue mass in g/min; and the sound attenuation of the tissues, Np. The amount of generated heat, K/s decreased by the heat energy transported, J/s to the surrounding tissues by blood and heat conductivity, and the actual temperature, K of the irradiated tissue are the output parameters calculated by the model. The output results are available in the form of functions. The expected temperature of the target area, K can be set to either the denaturation temperature or to the respiratory decomposition temperature (43.5 deg. C) without damaging the surrounding tissues by setting in the following parameters properly: electric output power, W; the number and surface area, m 2 of the transducers; the area, m 2 and temperature, K of the cooling surfaces. After further development, the model will be suitable for handling more than three tissue layers, increased blood flow rates different angles of incidence, and

  11. Envejecimiento del sistema cardiovascular Cardiovascular system aging

    Directory of Open Access Journals (Sweden)

    José M Ocampo

    2005-08-01

    Full Text Available El envejecimiento del sistema cardiovascular está asociado con un número característico de cambios a nivel bioquímico, histológico y morfológico. Sin embargo, no todas las modificaciones presentadas se asocian con deterioro en la función. Entre los cambios a nivel cardiaco se tienen: disminución en el número de miocitos y en las células del sistema de conducción cardiaca, desarrollo de fibrosis, cambios en el transporte de calcio a través de las membranas y disminución del cronotropismo, inotropismo y lusitropismo mediados por estímulo b-adrenérgico. A nivel vascular, hay incremento en la rigidez de la pared de las arterias, con aumento en la velocidad de la onda de pulso, disfunción endotelial y disminución de la vasodilatación mediada por estímulo b-adrenérgico. Durante el reposo el sistema cardiovascular es capaz de desarrollar mecanismos adaptativos eficientes, pero en situaciones de estrés como el ejercicio, los cambios asociados con el envejecimiento se hacen evidentes ya que está disminuida la capacidad para obtener la frecuencia cardiaca máxima, está incrementada la postcarga y hay disminución de la contractilidad intrínseca. Por lo anterior, los ancianos deben utilizar al máximo el mecanismo de Frank-Starling para mantener el gasto cardiaco. Los cambios estructurales y funcionales asociados con el envejecimiento cardiovascular, disminuyen de forma significativa el umbral en el cual las enfermedades cardiacas llegan a ser evidentes, y deben ser conocidos por el personal de salud encargado de cuidar a los ancianos.Cardiovascular aging is associated with characteristic biochemical, histological and morphological changes. Nevertheless, these changes are not necessarily associated to a deterioration in its function. Among the cardiac changes found, there is a reduction in the number of myocytes and of the cardiac conduction system cells, development of fibrosis, changes in the trans-membrane calcium transport and a

  12. Doença cardiovascular e fatores de risco cardiovascular em candidatos a transplante renal Cardiovascular disease and risk factors in candidates for renal transplantation

    Directory of Open Access Journals (Sweden)

    Luís Henrique Wolff Gowdak

    2005-02-01

    Full Text Available OBJETIVO: Determinar a prevalência de doença cardiovascular (DCV e de fatores de risco tradicionais em portadores de insuficiência renal crônica em avaliação para inclusão em lista para transplante renal. MÉTODOS: Foram submetidos à avaliação clínica e exames complementares 195 pacientes com insuficiência renal crônica dialítica e comparados a grupo de 334 hipertensos pareados por idade. As equações de Framingham foram usadas para o cálculo do risco absoluto (RA; o risco relativo (RR foi calculado tendo como referência o risco absoluto da coorte de baixo risco de Framingham. RESULTADOS: Do total, 37% apresentaram algum tipo de doença cardiovascular na avaliação inicial, sendo que arteriopatia obstrutiva (23% foi a mais prevalente. Excluídos os pacientes com doença cardiovascular, em relação aos fatores de risco tradicionais, houve diferença significativa quanto à pressão arterial sistólica e colesterol total (maiores no grupo de hipertensos e às prevalências de homens, diabetes e tabagismo, maiores no grupo de insuficiência renal crônica, que apresentou maior grau de hipertrofia ventricular esquerda, menor pressão arterial diastólica e menor prevalência de história familiar de doença cardiovascular e obesidade. O risco relativo para doença cardiovascular dos pacientes com insuficiência renal crônica foi mais elevado em relação à população controle de Framingham porém não diferiu da observada no grupo de hipertensos. CONCLUSÃO: Em candidatos a transplante renal é significativa a prevalência de doença cardiovascular e de fatores de risco tradicionais; as equações de Framingham não quantificam adequadamente o risco cardiovascular real e outros fatores de risco específicos desta população devem contribuir para o maior risco cardiovascular.OBJECTIVE: To determine the prevalence of cardiovascular disease (CVD and traditional risk factors in patients with chronic renal failure undergoing

  13. Lifestyle in Cardiovascular Disease

    NARCIS (Netherlands)

    J.O. Younge (John)

    2015-01-01

    markdownabstract__Abstract__ Globally, the burden of cardiovascular disease (CVD) is still increasing. However, in recent decades, better treatment modalities have led to less cardiovascular related deaths. After years of research, we now generally accept that lifestyle factors are the most

  14. Multiparametric flow cytometry in the diagnosis and characterization of low-grade pulmonary mucosa-associated lymphoid tissue lymphomas.

    Science.gov (United States)

    Zaer, F S; Braylan, R C; Zander, D S; Iturraspe, J A; Almasri, N M

    1998-06-01

    Primary mucosa associated lymphoid tissue (MALT) lymphomas are rare neoplasms that seem to have a better prognosis than nodal lymphomas. Morphologic diagnosis of these lesions may be difficult because of features that overlap with those of benign lymphoid infiltrates. In this study, we assessed the contribution of multi-parametric flow cytometry in demonstrating clonality and further characterizing pulmonary MALT lymphomas. Based on a clinical or pathologic suspicion of MALT-lymphoma, 3 transbronchial biopsies, 4 fine needle aspirates, 1 core needle biopsy, and 13 wedge excisions of lung were submitted fresh (unfixed) to our laboratory for evaluation. Among the 13 cases diagnosed as MALT lymphomas, B-cell monoclonality was established by identifying expression of a single immunoglobulin light chain on CD20 or CD19-positive cells in 12 cases. One case lacked expression of both light chains on B-cells. Of 11 lymphoma cases in which CD5 and CD10 surface antigens were assessed, no cases expressed CD10, and 1 case demonstrated weak CD5 expression. Nine of 10 cases studied were diploid and 1 case was hyperdiploid. All of the lymphomas displayed low (< or = 3%) S-phase fractions consistent with low grade processes. In 10 patients with short follow-up, none died of their disease and the majority had no evidence of lymphoma dissemination. In seven of the remaining eight cases, B-cells were polyclonal consistent with reactive processes. In one morphologically reactive case, flow cytometric analysis was unsuccessful because of poor cell viability. The pulmonary MALT lymphomas in this study represent a group of B-cell tumors with distinctive morphologic, immunophenotypic, and cell kinetic characteristics. Multi-parametric flow cytometry is useful for confirming B-cell monoclonality and illustrating an antigenic profile compatible with this diagnosis. Flow cytometry can be particularly helpful when working with small biopsies and cytologic samples with limited diagnostic

  15. Assessment of permeation of lipoproteins in human carotid tissue

    Science.gov (United States)

    Ghosn, Mohamad G.; Syed, Saba H.; Leba, Michael; Morrisett, Joel D.; Tuchin, Valery V.; Larin, Kirill V.

    2010-02-01

    Cardiovascular disease is among the leading causes of death in the United States. Specifically, atherosclerosis is an increasingly devastating contributor to the tally and has been found to be a byproduct of arterial permeability irregularities in regards to lipoprotein penetration. To further explore arterial physiology and molecular transport, the imaging technique of Optical Coherence Tomography (OCT) was employed. With OCT, the permeation of glucose (MW = 180 Da), low density lipoprotein (LDL; MW = 2.1 × 106 Da), and high density lipoprotein (HDL; MW = 2.5 × 105 Da) in human carotid tissue was studied to determine the effect of different molecular characteristics on permeation in atherosclerotic tissues. The permeability rates calculated from the diffusion of the molecular agents into the abnormal carotid tissue samples is compared to those of normal, healthy tissue. The results show that in the abnormal tissue, the permeation of agents correlate to the size constraints. The larger molecules of LDL diffuse the slowest, while the smallest molecules of glucose diffuse the fastest. However, in normal tissue, LDL permeates at a faster rate than the other two agents, implying the existence of a transport mechanism that facilitates the passage of LDL molecules. These results highlight the capability of OCT as a sensitive and specific imaging technique as well as provide significant information to the understanding of atherosclerosis and its effect on tissue properties.

  16. Presurgical evaluation of cerebral perfusion reserve in patients for cardiovascular surgery using {sup 99m}Tc-ECD SPECT with diamox enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Kaname; Nakashima, Hiromichi; Tanaka, Kuniyoshi; Kitano, Tokio; Murashima, Shuichi; Takeda, Kan; Yuasa, Hiroshi; Yada, Isao; Nakagawa, Tsuyoshi [Mie Univ., Tsu (Japan). School of Medicine

    1996-03-01

    Cerebrovascular stroke is one of the major complications in cardiovascular surgery with cardiopulmonary bypass. The purpose of this study was to evaluate the usefulness of preoperative {sup 99m}Tc-ethyl cysteinate dimer (ECD) SPECT and acetazolamide (diamox) enhancement to predict neurological complications in cardiovascular surgery. Eighteen patients with coronary disease, valvular disease or aortic aneurysm were studied before the operations. Regional cerebral blood flow and perfusion reserve were evaluated using ECD SPECT before and after the intravenous administration of diamox (1 g). Three cases with moderate to severe baseline abnormalities and poor perfusion reserve had cerebral infarction postoperatively. Twelve cases with good to fair perfusion reserve had no neurological complication. Three cases having poor perfusion reserve had the operations with more intensive brain protection, in which higher perfusion pressure to the brain was maintained during cardiopulmonary bypass, and no neurological complication was observed. In conclusion, patients who have moderately or markedly abnormal baseline flow with poor perfusion reserve may have some risk of neurological complications in cardiovascular surgery. ECD SPECT with diamox enhancement may give information useful for selection of operation procedures. (author).

  17. Effects of kynurenic acid on cardiovascular system

    Directory of Open Access Journals (Sweden)

    Piotr Kozłowski

    2017-08-01

    Full Text Available Kynurenic Acid (KYNA is an endogenous metabolite of tryptophan (TRP which is produced by aminotransferase KAT I and KAT II in the central nervous system and peripheral tissues. Moreover it has been shown that it can be supplied with food. KYNA is an antagonist of glutamate receptors NMDA and antagonist of acetylcholine α7. As we know KYNA can not penetrate or penetrates in very small amounts through the blood-brain barier. Several studies have demonstrated that kynurenine metabolism plays an important role in many neurodegenerative diseases and psychiatric disorders (Parkinson's disease, Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis, multiple sclerosis, depression, schizophrenia. Less is known about a peripheral KYNA. Studies suggest that KYNA may have antiatherosclerotic activity and many other beneficial effects on cardiovascular system.

  18. Atherosclerotic plaque volume and composition in symptomatic carotid arteries assessed with multidetector CT angiography; relationship with severity of stenosis and cardiovascular risk factors

    International Nuclear Information System (INIS)

    Rozie, S.; Weert, T.T. de; Monye, C. de; Homburg, P.J.; Tanghe, H.L.J.; Lugt, A. van der; Dippel, D.W.J.

    2009-01-01

    The purpose of this study was to examine the volume and the composition of atherosclerotic plaque in symptomatic carotid arteries and to investigate the relationship between these plaque features and the severity of stenosis and the presence of cardiovascular risk factors. One hundred patients with cerebrovascular symptoms underwent CT angiography. We measured plaque volume (PV) and the relative contribution of plaque components (calcifications, fibrous tissue, and lipid) in the symptomatic artery. The contribution of different components was measured as the number of voxels within defined ranges of HU values (calcification >130 HU, fibrous tissue 60-130 HU, lipid core <60 HU). Fifty-seven patients had atherosclerotic plaque in the symptomatic carotid artery. The severity of stenosis and PV were moderately correlated. Age and smoking were independently related to PV. Patients with hypercholesterolemia had significantly less lipid and more calcium in their plaques than patients without hypercholesterolemia. Other cardiovascular risk factors were not significantly related to PV or plaque composition. Luminal stenosis of the carotid artery partly reflects the amount of atherosclerotic carotid disease. Plaque volume and plaque composition are associated with cardiovascular risk factors. (orig.)

  19. Atherosclerotic plaque volume and composition in symptomatic carotid arteries assessed with multidetector CT angiography; relationship with severity of stenosis and cardiovascular risk factors

    Energy Technology Data Exchange (ETDEWEB)

    Rozie, S.; Weert, T.T. de; Monye, C. de; Homburg, P.J.; Tanghe, H.L.J.; Lugt, A. van der [Erasmus MC, University Medical Center Rotterdam, Departments of Radiology, Rotterdam (Netherlands); Dippel, D.W.J. [Erasmus MC, University Medical Center Rotterdam, Department of Neurology, PO Box 2040, Rotterdam (Netherlands)

    2009-09-15

    The purpose of this study was to examine the volume and the composition of atherosclerotic plaque in symptomatic carotid arteries and to investigate the relationship between these plaque features and the severity of stenosis and the presence of cardiovascular risk factors. One hundred patients with cerebrovascular symptoms underwent CT angiography. We measured plaque volume (PV) and the relative contribution of plaque components (calcifications, fibrous tissue, and lipid) in the symptomatic artery. The contribution of different components was measured as the number of voxels within defined ranges of HU values (calcification >130 HU, fibrous tissue 60-130 HU, lipid core <60 HU). Fifty-seven patients had atherosclerotic plaque in the symptomatic carotid artery. The severity of stenosis and PV were moderately correlated. Age and smoking were independently related to PV. Patients with hypercholesterolemia had significantly less lipid and more calcium in their plaques than patients without hypercholesterolemia. Other cardiovascular risk factors were not significantly related to PV or plaque composition. Luminal stenosis of the carotid artery partly reflects the amount of atherosclerotic carotid disease. Plaque volume and plaque composition are associated with cardiovascular risk factors. (orig.)

  20. Cardiovascular Reactivity, Stress, and Physical Activity

    Directory of Open Access Journals (Sweden)

    Chun-Jung eHuang

    2013-11-01

    Full Text Available Psychological stress has been proposed as a major contributor to the progression of cardiovascular disease (CVD. Acute mental stress can activate the sympathetic-adrenal-medullary (SAM axis, eliciting the release of catecholamines (NE and EPI resulting in the elevation of heart rate (HR and blood pressure (BP. Combined stress (psychological and physical can exacerbate these cardiovascular responses, which may partially contribute to the elevated risk of CVD and increased proportionate mortality risks experienced by some occupations (e.g., firefighting and law enforcement. Studies have supported the benefits of physical activity on physiological and psychological health, including the cardiovascular response to acute stress. Aerobically trained individuals exhibit lower sympathetic nervous system (e.g., HR reactivity and enhanced cardiovascular efficiency (e.g., lower vascular reactivity and decreased recovery time in response to physical and/or psychological stress. In addition, resistance training has been demonstrated to attenuate cardiovascular responses and improve mental health. This review will examine stress-induced cardiovascular reactivity and plausible explanations for how exercise training and physical fitness (aerobic and resistance exercise can attenuate cardiovascular responses to stress. This enhanced functionality may facilitate a reduction in the incidence of stroke and myocardial infarction. Finally, this review will also address the interaction of obesity and physical activity on cardiovascular reactivity and CVD.

  1. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications

    OpenAIRE

    Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A.; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C. Ronald

    2014-01-01

    Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-...

  2. Precision Medicine in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2017-02-01

    Full Text Available Since President Obama announced the Precision Medicine Initiative in the United States, more and more attention has been paid to precision medicine. However, clinicians have already used it to treat conditions such as cancer. Many cardiovascular diseases have a familial presentation, and genetic variants are associated with the prevention, diagnosis, and treatment of cardiovascular diseases, which are the basis for providing precise care to patients with cardiovascular diseases. Large-scale cohorts and multiomics are critical components of precision medicine. Here we summarize the application of precision medicine to cardiovascular diseases based on cohort and omic studies, and hope to elicit discussion about future health care.

  3. Increased proteoglycan synthesis by the cardiovascular system of coarctation hypertensive rats

    International Nuclear Information System (INIS)

    Lipke, D.W.; Couchman, J.R.

    1991-01-01

    Proteoglycan (PG) synthesis in the cardiovascular system of coarctation hypertensive rats was examined by in vivo and in vitro labeling of glycosaminoglycans with 35SO4 in rats made hypertensive for short (4 days) and longer (14 days) durations. With in vivo labeling, only tissues directly exposed to elevated pressure (left ventricle, LV and aorta above the clip, AOR increases) exhibited elevated PG synthesis after 4 days of hypertension. By 14 days, tissues both exposed to (LV and AOR increases) and protected from elevated pressure (right ventricle and kidney) exhibited elevated PG synthetic rates. Slight elevations in the proportion of galactosaminoglycans were observed with a concurrent proportional decrease in heparan sulfate PGs. Using the in vitro labeling procedure, no significant increases in PG synthesis were observed in any tissue at either 4 days or 14 days of hypertension. These data indicate that: (1) coarctation hypertension stimulates PG production that is dependent initially on increased pressure and later, on additional non-pressure related factors, (2) these other factors are responsible for enhanced PG production in tissues not directly exposed to pressure overload, (3) pressure and/or these other factors are essential for enhanced PG production in coarctation hypertension, and (4) synthesis of all GAG types appears to be affected

  4. Regulation of DDAH1 as a Potential Therapeutic Target for Treating Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Xiaoyu Liu

    2013-01-01

    Full Text Available Asymmetric dimethylarginine (ADMA is an endogenous nitric oxide synthase inhibitor that blocks nitric oxide production, while congestive heart failure is associated with increased plasma and tissue ADMA content. Increased plasma ADMA is a strong and independent predictor of all-cause mortality in the community and the strongest predictor of mortality in patients after myocardial infarction. Recent studies demonstrated that dimethylarginine dimethylaminohydrolase-1 (DDAH1 is the critical enzyme for ADMA degradation and thereby plays an important role in maintaining cardiovascular nitric oxide bioavailability. Interestingly, activation of the farnesoid X receptor (FXR through the bile acid ursodeoxycholic acid (UDCA or synthetic FXR agonists, such as GW4064, can increase DDAH1 expression. Thus, modulating DDAH1 activity through FXR receptor agonists such as UDCA could be a therapeutic target for treating reduced nitric oxide bioavailability in congestive heart failure and other cardiovascular diseases.

  5. Association Between Leisure Time Physical Activity, Cardiopulmonary Fitness, Cardiovascular Risk Factors, and Cardiovascular Workload at Work in Firefighters.

    Science.gov (United States)

    Yu, Clare C W; Au, Chun T; Lee, Frank Y F; So, Raymond C H; Wong, John P S; Mak, Gary Y K; Chien, Eric P; McManus, Alison M

    2015-09-01

    Overweight, obesity, and cardiovascular disease risk factors are prevalent among firefighters in some developed countries. It is unclear whether physical activity and cardiopulmonary fitness reduce cardiovascular disease risk and the cardiovascular workload at work in firefighters. The present study investigated the relationship between leisure-time physical activity, cardiopulmonary fitness, cardiovascular disease risk factors, and cardiovascular workload at work in firefighters in Hong Kong. Male firefighters (n = 387) were randomly selected from serving firefighters in Hong Kong (n = 5,370) for the assessment of cardiovascular disease risk factors (obesity, hypertension, diabetes mellitus, dyslipidemia, smoking, known cardiovascular diseases). One-third (Target Group) were randomly selected for the assessment of off-duty leisure-time physical activity using the short version of the International Physical Activity Questionnaire. Maximal oxygen uptake was assessed, as well as cardiovascular workload using heart rate monitoring for each firefighter for four "normal" 24-hour working shifts and during real-situation simulated scenarios. Overall, 33.9% of the firefighters had at least two cardiovascular disease risk factors. In the Target Group, firefighters who had higher leisure-time physical activity had a lower resting heart rate and a lower average working heart rate, and spent a smaller proportion of time working at a moderate-intensity cardiovascular workload. Firefighters who had moderate aerobic fitness and high leisure-time physical activity had a lower peak working heart rate during the mountain rescue scenario compared with firefighters who had low leisure-time physical activities. Leisure-time physical activity conferred significant benefits during job tasks of moderate cardiovascular workload in firefighters in Hong Kong.

  6. Skin autofluorescence is a predictor of cardiovascular disease in chronic kidney disease patients.

    Science.gov (United States)

    Furuya, Fumihiko; Shimura, Hiroki; Takahashi, Kazuya; Akiyama, Daiichiro; Motosugi, Ai; Ikegishi, Yukinobu; Haraguchi, Kazutaka; Kobayashi, Tetsuro

    2015-02-01

    Accelerated formation and tissue accumulation of advanced glycation end products (AGEs), reflecting cumulative glycemic and oxidative stress, occurs in age-related and chronic diseases like diabetes mellitus (DM) and renal failure, and contributes to vascular damage. Skin autofluorescence (AFR), a noninvasive measurement method, reflects tissue accumulation of AGEs. AFR has been reported to be an independent predictor of mortality in Caucasian hemodialysis patients. We assessed the relationship between levels of AFR and the prevalence of cardiovascular disease (CVD), and clarified the prognostic usefulness of skin AFR levels in Asian (non-Caucasian) hemodialysis (HD) patients. AFR was measured with an autofluorescence reader in 64 HD patients. Overall and cardiovascular mortality was monitored prospectively during the 3-year follow-up. During follow-up, CVD events occurred in 21 patients. The deaths of 10 HD patients were associated with CVD. Multivariate logistic regression analyses showed that initial AFR was an independent risk factor for de novo CVD in HD patients with or without diabetes. When patients were classified on the basis of AFR tertiles, Cochran-Armitage analysis demonstrated that the highest tertile of AFR level showed an increased odds ratio for the prevalence of CVD. These findings suggest that AFR levels can be used to detect the prevalence of CVD in HD patients with or without diabetes. © 2014 The Authors. Therapeutic Apheresis and Dialysis © 2014 International Society for Apheresis.

  7. Role of Training and Detraining on Inflammatory and Metabolic Profile in Infarcted Rats: Influences of Cardiovascular Autonomic Nervous System

    Science.gov (United States)

    Santana, Aline Alves; Santamarina, Aline Boveto; Oyama, Lila Missae; Caperuto, Érico Chagas; de Souza, Cláudio Teodoro; Barboza, Catarina de Andrade; Rocha, Leandro Yanase; Figueroa, Diego; Mostarda, Cristiano; Irigoyen, Maria Cláudia; Lira, Fábio Santos

    2014-01-01

    The aim of this study was to evaluate the effects of exercise training (ET, 50–70% of VO2 max, 5 days/week) and detraining (DT) on inflammatory and metabolic profile after myocardial infarction (MI) in rats. Male Wistar rats were divided into control (C, n = 8), sedentary infarcted (SI, n = 9), trained infarcted (TI, n = 10; 3 months of ET), and detrained infarcted (DI, n = 11; 2 months of ET + 1 month of DT). After ET and DT protocols, ventricular function and inflammation, cardiovascular autonomic modulation (spectral analysis), and adipose tissue inflammation and lipolytic pathway were evaluated. ET after MI improved cardiac and vascular autonomic modulation, and these benefits were correlated with reduced inflammatory cytokines on the heart and adipose tissue. These positive changes were sustained even after 1 month of detraining. No expressive changes were observed in oxidative stress and lipolytic pathway in experimental groups. In conclusion, our results strongly suggest that the autonomic improvement promoted by ET, and maintained even after the detraining period, was associated with reduced inflammatory profile in the left ventricle and adipose tissue of rats subjected to MI. These data encourage enhancing cardiovascular autonomic function as a therapeutic strategy for the treatment of inflammatory process triggered by MI. PMID:25045207

  8. Role of Training and Detraining on Inflammatory and Metabolic Profile in Infarcted Rats: Influences of Cardiovascular Autonomic Nervous System

    Directory of Open Access Journals (Sweden)

    Bruno Rodrigues

    2014-01-01

    Full Text Available The aim of this study was to evaluate the effects of exercise training (ET, 50–70% of VO2 max, 5 days/week and detraining (DT on inflammatory and metabolic profile after myocardial infarction (MI in rats. Male Wistar rats were divided into control (C, n=8, sedentary infarcted (SI, n=9, trained infarcted (TI,  n=10; 3 months of ET, and detrained infarcted (DI, n=11; 2 months of ET + 1 month of DT. After ET and DT protocols, ventricular function and inflammation, cardiovascular autonomic modulation (spectral analysis, and adipose tissue inflammation and lipolytic pathway were evaluated. ET after MI improved cardiac and vascular autonomic modulation, and these benefits were correlated with reduced inflammatory cytokines on the heart and adipose tissue. These positive changes were sustained even after 1 month of detraining. No expressive changes were observed in oxidative stress and lipolytic pathway in experimental groups. In conclusion, our results strongly suggest that the autonomic improvement promoted by ET, and maintained even after the detraining period, was associated with reduced inflammatory profile in the left ventricle and adipose tissue of rats subjected to MI. These data encourage enhancing cardiovascular autonomic function as a therapeutic strategy for the treatment of inflammatory process triggered by MI.

  9. Influenza vaccines for preventing cardiovascular disease.

    Science.gov (United States)

    Clar, Christine; Oseni, Zainab; Flowers, Nadine; Keshtkar-Jahromi, Maryam; Rees, Karen

    2015-05-05

    This is an update of the original review published in 2008. The risk of adverse cardiovascular outcomes is increased with influenza-like infection, and vaccination against influenza may improve cardiovascular outcomes. To assess the potential benefits of influenza vaccination for primary and secondary prevention of cardiovascular disease. We searched the following electronic databases on 18 October 2013: The Cochrane Library (including Cochrane Central Register of Controlled Trials (CENTRAL), Database of Abstracts of Reviews of Effects (DARE), Economic Evaluation Database (EED) and Health Technology Assessment database (HTA)), MEDLINE, EMBASE, Science Citation Index Expanded, Conference Proceedings Citation Index - Science and ongoing trials registers (www.controlled-trials.com/ and www.clinicaltrials.gov). We examined reference lists of relevant primary studies and systematic reviews. We performed a limited PubMed search on 20 February 2015, just before publication. Randomised controlled trials (RCTs) of influenza vaccination compared with placebo or no treatment in participants with or without cardiovascular disease, assessing cardiovascular death or non-fatal cardiovascular events. We used standard methodological procedures as expected by The Cochrane Collaboration. We carried out meta-analyses only for cardiovascular death, as other outcomes were reported too infrequently. We expressed effect sizes as risk ratios (RRs), and we used random-effects models. We included eight trials of influenza vaccination compared with placebo or no vaccination, with 12,029 participants receiving at least one vaccination or control treatment. We included six new studies (n = 11,251), in addition to the two included in the previous version of the review. Four of these trials (n = 10,347) focused on prevention of influenza in the general or elderly population and reported cardiovascular outcomes among their safety analyses; four trials (n = 1682) focused on prevention of

  10. Cardiovascular magnetic resonance physics for clinicians: part I.

    Science.gov (United States)

    Ridgway, John P

    2010-11-30

    There are many excellent specialised texts and articles that describe the physical principles of cardiovascular magnetic resonance (CMR) techniques. There are also many texts written with the clinician in mind that provide an understandable, more general introduction to the basic physical principles of magnetic resonance (MR) techniques and applications. There are however very few texts or articles that attempt to provide a basic MR physics introduction that is tailored for clinicians using CMR in their daily practice. This is the first of two reviews that are intended to cover the essential aspects of CMR physics in a way that is understandable and relevant to this group. It begins by explaining the basic physical principles of MR, including a description of the main components of an MR imaging system and the three types of magnetic field that they generate. The origin and method of production of the MR signal in biological systems are explained, focusing in particular on the two tissue magnetisation relaxation properties (T1 and T2) that give rise to signal differences from tissues, showing how they can be exploited to generate image contrast for tissue characterisation. The method most commonly used to localise and encode MR signal echoes to form a cross sectional image is described, introducing the concept of k-space and showing how the MR signal data stored within it relates to properties within the reconstructed image. Before describing the CMR acquisition methods in detail, the basic spin echo and gradient pulse sequences are introduced, identifying the key parameters that influence image contrast, including appearances in the presence of flowing blood, resolution and image acquisition time. The main derivatives of these two pulse sequences used for cardiac imaging are then described in more detail. Two of the key requirements for CMR are the need for data acquisition first to be to be synchronised with the subject's ECG and to be fast enough for the subject

  11. Cardiovascular responses to apneic facial immersion during altered cardiac filling.

    Science.gov (United States)

    Journeay, W Shane; Reardon, Francis D; Kenny, Glen P

    2003-06-01

    The hypothesis that reduced cardiac filling, as a result of lower body negative pressure (LBNP) and postexercise hypotension (PEH), would attenuate the reflex changes to heart rate (HR), skin blood flow (SkBF), and mean arterial pressure (MAP) normally induced by facial immersion was tested. The purpose of this study was to investigate the cardiovascular control mechanisms associated with apneic facial immersion during different cardiovascular challenges. Six subjects randomly performed 30-s apneic facial immersions in 6.0 +/- 1.2 degrees C water under the following conditions: 1) -20 mmHg LBNP, 2) +40 mmHg lower body positive pressure (LBPP), 3) during a period of PEH, and 4) normal resting (control). Measurements included SkBF at one acral (distal phalanx of the thumb) and one nonacral region of skin (ventral forearm), HR, and MAP. Facial immersion reduced HR and SkBF at both sites and increased MAP under all conditions (P filling during LBNP and PEH significantly attenuated the absolute HR nadir observed during the control immersion (P facial immersion can be attenuated when cardiac filling is compromised.

  12. Cyclic Loading of Growing Tissue in a Bioreactor: Mathematical Model and Asymptotic Analysis

    KAUST Repository

    Pohlmeyer, J. V.

    2013-10-24

    A simplified 2D mathematical model for tissue growth within a cyclically-loaded tissue engineering scaffold is presented and analyzed. Such cyclic loading has the potential to improve yield and functionality of tissue such as bone and cartilage when grown on a scaffold within a perfusion bioreactor. The cyclic compression affects the flow of the perfused nutrient, leading to flow properties that are inherently unsteady, though periodic, on a timescale short compared with that of tissue proliferation. A two-timescale analysis based on these well-separated timescales is exploited to derive a closed model for the tissue growth on the long timescale of proliferation. Some sample numerical results are given for the final model, and discussed. © 2013 Society for Mathematical Biology.

  13. Thoracic and Cardiovascular Surgeons’ Perception of the Concentration of Cardiovascular Operations in Seoul Metropolitan Area’s Hospitals

    Directory of Open Access Journals (Sweden)

    Hyo Seon Jeong

    2016-12-01

    Full Text Available Background: The purpose of this study is to evaluate the concentration of cardiovascular surgical procedures in a metropolitan area and investigate the perception of specialists regarding governmental policies to resolve this imbalance. Methods: From March to May 2015, surveys were distributed to members of the Thoracic and Cardiovascular Surgery Association. The final pool of research subjects consisted of 75 respondents. Subjects were queried regarding the concentration of cardiovascular operations in metropolitan areas, alternatives to the imbalance, and governmental policies to resolve the inequalities. Results: Survey participants responded that South Korea needs governmental policies to alleviate the concentration of cardiovascular surgery patients in large metropolitan hospitals. Participants agreed that the freedom to choose medical institutions and improved accessibility to metropolitan hospitals due to advanced transportation systems were some of the causes for the concentration. A majority (98.7% of respondents thought establishing thoracic and cardiovascular surgery centers in provinces was an appropriate solution to alleviate the concentration. Thoracic and cardiovascular surgery specialists were ranked as the number one group on which to focus development. Conclusion: Developing and carrying out policies to establish thoracic and cardiovascular surgery centers in provinces will alleviate the regional imbalance in available heart surgery services and an overall improvement in cardiovascular disease treatment in South Korea.

  14. Evaluation of the cardiovascular effects of varenicline in rats

    Directory of Open Access Journals (Sweden)

    Selçuk EB

    2015-10-01

    prolongation was statistically significant in both the control and acute varenicline groups. Caspase-9 activity was also significantly increased by chronic exposure. Moreover, histopathological observations revealed severe morphological heart damage in both groups.Conclusion: Adverse effects of chronic varenicline exposure on cardiovascular tissue were confirmed by our electrocardiographic, biochemical, and histopathological analyses. This issue needs to be investigated with new experimental and clinical studies to evaluate the exact mechanism(s of the detrimental effects of varenicline. Physicians should bear in mind the toxic effects of varenicline on the cardiovascular system when prescribing it for smoking cessation.Keywords: varenicline, smoking, cardiovascular, rat, electrocardiogram, histopathological evaluation

  15. Cardiovascular involvement in myositis

    DEFF Research Database (Denmark)

    Diederichsen, Louise P

    2017-01-01

    PURPOSE OF REVIEW: The purpose of this review is to provide an update on cardiovascular involvement in idiopathic inflammatory myopathy (IIM). Studies from the past 18 months are identified and reviewed. Finally, the clinical impact of these findings is discussed. RECENT FINDINGS: Epidemiological...... on cardiac magnetic resonance (CMR) imaging suggests that CMR should be considered as a potentially viable diagnostic tool to evaluate the possibility of silent myocardial inflammation in IIM with normal routine noninvasive evaluation. SUMMARY: Updated literature on cardiovascular involvement in IIM has...... identified an increased risk for subclinical and clinical cardiovascular disease in these rare inflammatory muscle diseases....

  16. Cardiovascular complications of cirrhosis

    DEFF Research Database (Denmark)

    Møller, S; Henriksen, Jens Henrik Sahl

    2008-01-01

    Cardiovascular complications of cirrhosis include cardiac dysfunction and abnormalities in the central, splanchnic and peripheral circulation, and haemodynamic changes caused by humoral and nervous dysregulation. Cirrhotic cardiomyopathy implies systolic and diastolic dysfunction and electrophysi......Cardiovascular complications of cirrhosis include cardiac dysfunction and abnormalities in the central, splanchnic and peripheral circulation, and haemodynamic changes caused by humoral and nervous dysregulation. Cirrhotic cardiomyopathy implies systolic and diastolic dysfunction....... The clinical significance of cardiovascular complications and cirrhotic cardiomyopathy is an important topic for future research, and the initiation of new randomised studies of potential treatments for these complications is needed....

  17. Tissue Specific Roles of Dynein Light Chain 1 in Regulating Germ Cell Apoptosis in Ceanorhabditis elegans

    DEFF Research Database (Denmark)

    Morthorst, Tine Hørning

    2015-01-01

    in the etiology of many diseases, including cancer, neurodegenerative, cardiovascular and autoimmune diseases. Several of the first genes found to regulate apoptosis were discovered in the nematode Caenorhabditis elegans. In this project, two different and tissue specific roles of C. elegans dynein light chain 1...

  18. Facial skin blood flow responses during exposures to emotionally charged movies.

    Science.gov (United States)

    Matsukawa, Kanji; Endo, Kana; Ishii, Kei; Ito, Momoka; Liang, Nan

    2018-03-01

    The changes in regional facial skin blood flow and vascular conductance have been assessed for the first time with noninvasive two-dimensional laser speckle flowmetry during audiovisually elicited emotional challenges for 2 min (comedy, landscape, and horror movie) in 12 subjects. Limb skin blood flow and vascular conductance and systemic cardiovascular variables were simultaneously measured. The extents of pleasantness and consciousness for each emotional stimulus were estimated by the subjective rating from -5 (the most unpleasant; the most unconscious) to +5 (the most pleasant; the most conscious). Facial skin blood flow and vascular conductance, especially in the lips, decreased during viewing of comedy and horror movies, whereas they did not change during viewing of a landscape movie. The decreases in facial skin blood flow and vascular conductance were the greatest with the comedy movie. The changes in lip, cheek, and chin skin blood flow negatively correlated (P < 0.05) with the subjective ratings of pleasantness and consciousness. The changes in lip skin vascular conductance negatively correlated (P < 0.05) with the subjective rating of pleasantness, while the changes in infraorbital, subnasal, and chin skin vascular conductance negatively correlated (P < 0.05) with the subjective rating of consciousness. However, none of the changes in limb skin blood flow and vascular conductance and systemic hemodynamics correlated with the subjective ratings. The mental arithmetic task did not alter facial and limb skin blood flows, although the task influenced systemic cardiovascular variables. These findings suggest that the more emotional status becomes pleasant or conscious, the more neurally mediated vasoconstriction may occur in facial skin blood vessels.

  19. Evaluation of magnetic resonance velocimetry for steady flow.

    Science.gov (United States)

    Ku, D N; Biancheri, C L; Pettigrew, R I; Peifer, J W; Markou, C P; Engels, H

    1990-11-01

    Whole body magnetic resonance (MR) imaging has recently become an important diagnostic tool for cardiovascular diseases. The technique of magnetic resonance phase velocity encoding allows the quantitative measurement of velocity for an arbitrary component direction. A study was initiated to determine the ability and accuracy of MR velocimetry to measure a wide range of flow conditions including flow separation, three-dimensional secondary flow, high velocity gradients, and turbulence. A steady flow system pumped water doped with manganese chloride through a variety of test sections. Images were produced using gradient echo sequences on test sections including a straight tube, a curved tube, a smoothly converging-diverging nozzle, and an orifice. Magnetic resonance measurements of laminar and turbulent flows were depicted as cross-sectional velocity profiles. MR velocity measurements revealed such flow behavior as spatially varying velocity, recirculation and secondary flows over a wide range of conditions. Comparisons made with published experimental laser Doppler anemometry measurements and theoretical calculations for similar flow conditions revealed excellent accuracy and precision levels. The successful measurement of velocity profiles for a variety of flow conditions and geometries indicate that magnetic resonance imaging is an accurate, non-contacting velocimeter.

  20. Cardiovascular and metabolic risk profile and acylation-stimulating protein levels in children with Prader-Willi syndrome and effects of growth hormone treatment

    NARCIS (Netherlands)

    R.F.A. de Lind van Wijngaarden (Roderick); K. Cianflone (Katherine); Y. Gao; R.W.J. Leunissen (Ralph); A.C.S. Hokken-Koelega (Anita)

    2010-01-01

    textabstractContext: Reports on the cardiovascular and metabolic risk profile in children with Prader-Willi syndrome (PWS) and the effects of GH treatment are scarce. Acylation-stimulating protein (ASP) stimulates glucose uptake and triglyceride storage in adipose tissue. Objectives: The aim was to

  1. Factores de riesgo cardiovasculares e hiperreactividad cardiovascular en jóvenes venezolanos

    Directory of Open Access Journals (Sweden)

    Sady Montes Amador

    2015-07-01

    Full Text Available Fundamento: la hiperreactividad cardiovascular en los jóvenes se ha asociado a diferentes factores de riesgo y a la historia familiar de hipertensión arterial. Objetivo: determinar la asociación entre la historia familiar de hipertensión y los factores de riesgo cardiovasculares, con el estado de hiperreactividad cardiovascular. Método: se realizó un estudio descriptivo, correlacional y de corte transversal con un universo de 77 jóvenes entre 18 y 40 años, de la parroquia Churuguara, Estado Falcón en Venezuela. Se analizaron como variables: edad, sexo, color de la piel, antecedentes familiares de hipertensión arterial, antecedentes personales de hipertensión arterial y de diabetes mellitus, ingestión de bebidas alcohólicas y de sal, actividad física e índice de masa corporal. Se determinaron como variables hemodinámicas: presión arterial diastólica, presión arterial sistólica, antes y después de la respuesta presora desencadenada por la aplicación un ejercicio isométrico Resultados: el 13 % de los individuos presentó reactividad vascular ante la prueba del peso sostenido. Es tres veces mayor la hiperreactividad cardiovascular en las personas con historia familiar de hipertensión arterial, el 60 % de las personas con un índice de masa corporal mayor o igual a 27 kg/m2 son hiperreactivos cardiovasculares, en la medida que se ingiere más alcohol aumenta la respuesta cardiovascular a la prueba del peso sostenido, son hiperreactivos el 33,3 % de los que fuman. Conclusión: existe una asociación significativa entre la historia familiar de hipertensión arterial, la obesidad, la ingestión de sal, el consumo de bebidas alcohólicas y la hiperreactividad vascular.

  2. In vivo studies of peritendinous tissue in exercise

    DEFF Research Database (Denmark)

    Kjaer, M; Langberg, Henning; Skovgaard, D

    2000-01-01

    Soft tissue injury of tendons represents a major problem within sports medicine. Although several animal and cell culture studies have addressed this, human experiments have been limited in their ability to follow changes in specific tissue directly in response to interventions. Recently, methods...... have allowed for in vivo determination of tissue concentrations and release rates of substances involved in metabolism, inflammation and collagen synthesis, together with the measurement of tissue blood flow and oxygenation in the peritendinous region around the Achilles tendon in humans during...... exercise. This coincides with a surprisingly marked drop in tissue pressure during contraction. With regards to both circulation, metabolism and collagen formation, peritendinous tissue represents a dynamic, responsive region that adapts markedly to acute muscular activity....

  3. Cardiovascular nuclear medicine and MRI

    International Nuclear Information System (INIS)

    Reiber, J.H.C.; Wall, E.E. van der

    1992-01-01

    This book is based on a meeting of the Working Group on Nuclear Cardiology, which held March 22-23,1991 under the auspices of the European Society of Cardiology and the Interuniversity Cardiology Institute of the Netherlands, and on the Second International Symposium on Computer Applications in Nuclear Medicine and Cardiac Magnetic Resonance Imaging, which was held March 20-22,1991 in Rotterdam, the Netherlands. It covers almost every aspect of quantitative cardio-vascular nuclear medicine and magnetic resonance imaging. The main topics are: single photon emission computed tomography (technical aspects); new development in cardiovascular nuclear medicine; advances in cardiovascular imaging; cardiovascular clinical applications; and cardiac magnetic resonance imaging. (A.S.). refs.; figs.; tabs

  4. Consideraciones cardiovasculares del síndrome de Marfán en edades pediátricas Cardiovascular considerations about Marfan's syndrome at pediatric ages

    Directory of Open Access Journals (Sweden)

    Giselle Serrano Ricardo

    2012-06-01

    Full Text Available El síndrome de Marfán es una enfermedad hereditaria del tejido conectivo, que se describe en niños y en adultos, causada por una mutación en el gen que codifica la glicoproteína fibrilina tipo 1. Afecta múltiples órganos y sistemas, fundamentalmente cardiovascular, esquelético, oftalmológico, piel y tegumentos. Se presenta una revisión de los aspectos más actuales del diagnóstico, y la atención multidisciplinaria para lograr una reducción de la morbilidad y mortalidad en los pacientes pediátricos. Se concluye que el uso precoz de betabloqueadores e inhibidores del receptor AT-1 de la angiotensina II (losartán, constituyen actualmente los pilares fundamentales de la terapéutica farmacológica, pues disminuyen la frecuencia de complicaciones cardiovasculares, las cuales determinan el pronóstico de la enfermedad. La cirugía programada de la raíz aórtica, especialmente con preservación valvular, permite mejorar la expectativa de vida al evitar la alta mortalidad de los eventos agudos. Alternativas prometedoras son los procederes híbridos y el intervencionismo endovascular.Marfan syndrome is a hereditary disease of the connective tissue caused by mutation of type 1 fibrillin glycoprotein-coding gene in children and adults. This disease affects organs and systems, mainly cardiovascular, skeletal, ophthalmologic systems, skin and teguments. The review of the most current aspects of diagnosis, and the multidisciplinary care to reduce morbidity and mortality of pediatric patients were presented. It was concluded that the early use of betablockers and angiotensin II AT-1 receptor blocker (losarfan are the fundamental pillars of drug therapy, since they reduce the frequency of cardiovascular complications that determine the disease prognosis. The scheduled surgery of the aortic root, particularly valve preservation, allows improving the life expectancies because it prevents high mortality from acute events. Hybrid procedures and

  5. Cardiovascular investigations of airline pilots with excessive cardiovascular risk.

    Science.gov (United States)

    Wirawan, I Made Ady; Aldington, Sarah; Griffiths, Robin F; Ellis, Chris J; Larsen, Peter D

    2013-06-01

    This study examined the prevalence of airline pilots who have an excessive cardiovascular disease (CVD) risk score according to the New Zealand Guideline Group (NZGG) Framingham-based Risk Chart and describes their cardiovascular risk assessment and investigations. A cross-sectional study was performed among 856 pilots employed in an Oceania based airline. Pilots with elevated CVD risk that had been previously evaluated at various times over the previous 19 yr were reviewed retrospectively from the airline's medical records, and the subsequent cardiovascular investigations were then described. There were 30 (3.5%) pilots who were found to have 5-yr CVD risk score of 10-15% or higher. Of the 29 pilots who had complete cardiac investigations data, 26 pilots underwent exercise electrocardiography (ECG), 2 pilots progressed directly to coronary angiograms and 1 pilot with abnormal echocardiogram was not examined further. Of the 26 pilots, 7 had positive or borderline exercise tests, all of whom subsequently had angiograms. One patient with a negative exercise test also had a coronary angiogram. Of the 9 patients who had coronary angiograms as a consequence of screening, 5 had significant disease that required treatment and 4 had either trivial disease or normal coronary arteries. The current approach to investigate excessive cardiovascular risk in pilots relies heavily on exercise electrocardiograms as a diagnostic test, and may not be optimal either to detect disease or to protect pilots from unnecessary invasive procedures. A more comprehensive and accurate cardiac investigation algorithm to assess excessive CVD risk in pilots is required.

  6. Importance of Early Detection and Cardiovascular Surgical Intervention in Marfan Syndrome.

    Science.gov (United States)

    DelloStritto, Rita; Branham, Steve; Chemmachel, Christina; Patel, Jayna; Skolkin, Dayna; Gilani, Salima; Uleanya, Klever

    Marfan syndrome is an autosomal dominant connective tissue disorder that affects multiple systems, including the skeletal, ligamentous, oculofacial, pulmonary, abdominal, neurological, and cardiovascular systems. Cardiovascular complications, which involve the aorta and aortic valve, contribute most significantly to patient morbidity and mortality. A literature review was conducted on pathophysiology of the disease and recommendations for early diagnosis and treatment. Diagnosis largely relies on clinical features and a thorough history. Echocardiogram is used for monitoring aortic abnormalities and disease progression. Aortic valve-sparing surgery is indicated in any valvular abnormality and in patients with a murmur. Aortic root replacement is indicated prophylactically in women who want to give birth with diameters greater than 40 mm, anyone with a diameter greater than 50 mm, and progressive dilatation of greater than 5 mm per year. Medical management involves antihypertensive therapy. It is imperative for all health care providers to understand the clinical features, progression, and management of Marfan syndrome to appropriately care for their patients. Ensuring regular follow-up and adherence to medical and surgical prophylaxis is essential to patient well-being.

  7. Increased susceptibility to cardiovascular effects of dihydrocapcaicin in resuscitated rats. Cardiovascular effects of dihydrocapsaicin

    DEFF Research Database (Denmark)

    Fosgerau, Keld; Ristagno, Giuseppe; Jayatissa, Magdalena Niepsuj

    2010-01-01

    Survivors of a cardiac arrest often have persistent cardiovascular derangements following cardiopulmonary resuscitation including decreased cardiac output, arrhythmias and morphological myocardial damage. These cardiovascular derangements may lead to an increased susceptibility towards the extern...

  8. 21 CFR 870.3375 - Cardiovascular intravascular filter.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiovascular intravascular filter. 870.3375... Cardiovascular intravascular filter. (a) Identification. A cardiovascular intravascular filter is an implant that... and Revision of 2/12/90 (K90-1)” and (ii) “Guidance for Cardiovascular Intravascular Filter 510(k...

  9. Multi-Fidelity Uncertainty Propagation for Cardiovascular Modeling

    Science.gov (United States)

    Fleeter, Casey; Geraci, Gianluca; Schiavazzi, Daniele; Kahn, Andrew; Marsden, Alison

    2017-11-01

    Hemodynamic models are successfully employed in the diagnosis and treatment of cardiovascular disease with increasing frequency. However, their widespread adoption is hindered by our inability to account for uncertainty stemming from multiple sources, including boundary conditions, vessel material properties, and model geometry. In this study, we propose a stochastic framework which leverages three cardiovascular model fidelities: 3D, 1D and 0D models. 3D models are generated from patient-specific medical imaging (CT and MRI) of aortic and coronary anatomies using the SimVascular open-source platform, with fluid structure interaction simulations and Windkessel boundary conditions. 1D models consist of a simplified geometry automatically extracted from the 3D model, while 0D models are obtained from equivalent circuit representations of blood flow in deformable vessels. Multi-level and multi-fidelity estimators from Sandia's open-source DAKOTA toolkit are leveraged to reduce the variance in our estimated output quantities of interest while maintaining a reasonable computational cost. The performance of these estimators in terms of computational cost reductions is investigated for a variety of output quantities of interest, including global and local hemodynamic indicators. Sandia National Labs is a multimission laboratory managed and operated by NTESS, LLC, for the U.S. DOE under contract DE-NA0003525. Funding for this project provided by NIH-NIBIB R01 EB018302.

  10. Aging exacerbates obesity-induced oxidative stress and inflammation in perivascular adipose tissue in mice: a paracrine mechanism contributing to vascular redox dysregulation and inflammation.

    Science.gov (United States)

    Bailey-Downs, Lora C; Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2013-07-01

    Obesity in the elderly individuals is increasing at alarming rates and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging and obesity interact to promote the development of cardiovascular disease remain unclear. The present study was designed to test the hypothesis that aging exacerbates obesity-induced inflammation in perivascular adipose tissue, which contributes to increased vascular oxidative stress and inflammation in a paracrine manner. To test this hypothesis, we assessed changes in the secretome, reactive oxygen species production, and macrophage infiltration in periaortic adipose tissue of young (7 month old) and aged (24 month old) high-fat diet-fed obese C57BL/6 mice. High-fat diet-induced vascular reactive oxygen species generation significantly increased in aged mice, which was associated with exacerbation of endothelial dysfunction and vascular inflammation. In young animals, high-fat diet-induced obesity promoted oxidative stress in the perivascular adipose tissue, which was associated with a marked proinflammatory shift in the profile of secreted cytokines and chemokines. Aging exacerbated obesity-induced oxidative stress and inflammation and significantly increased macrophage infiltration in periaortic adipose tissue. Using cultured arteries isolated from young control mice, we found that inflammatory factors secreted from the perivascular fat tissue of obese aged mice promote significant prooxidative and proinflammatory phenotypic alterations in the vascular wall, mimicking the aging phenotype. Overall, our findings support an important role for localized perivascular adipose tissue inflammation in exacerbation of vascular oxidative stress and inflammation in aging, an effect that likely enhances the risk for development of cardiovascular diseases from obesity in the elderly individuals.

  11. Epicardial Adipose Tissue (EAT Thickness Is Associated with Cardiovascular and Liver Damage in Nonalcoholic Fatty Liver Disease.

    Directory of Open Access Journals (Sweden)

    Anna Ludovica Fracanzani

    Full Text Available Epicardial adipose tissue (EAT has been proposed as a cardiometabolic and hepatic fibrosis risk factor in patients with non alcoholic fatty liver disease (NAFLD. Aim of this study was to evaluate the role of EAT in NAFLD by analyzing 1 the association between EAT, the other metabolic parameters and the severity of steatosis 2 the relationship between cardiovascular (cIMT, cplaques, E/A, liver (presence of NASH and significant fibrosis damage and metabolic risk factors including EAT 3 the relationship between EAT and genetic factors strongly influencing liver steatosis.In a cross-sectional study, we considered 512 consecutive patients with NAFLD (confirmed by biopsy in 100. EAT, severity of steatosis, carotid intima-media thickness (cIMT and plaques were evaluated by ultrasonography and results analysed by multiple linear and logistic regression models. Variables independently associated with EAT (mm were female gender (p = 0.003, age (p = 0.001, BMI (p = 0.01, diastolic blood pressure (p = 0.009, steatosis grade 2 (p = 0.01 and 3 (p = 0.04, fatty liver index (p = 0.001 and statin use (p = 0.03. Variables independently associated with carotid IMT were age (p = 0.0001, hypertension (p = 0.009, diabetes (p = 0.04, smoking habits (p = 0.04 and fatty liver index (p = 0.02, with carotid plaques age (p = 0.0001, BMI (p = 0.03, EAT (p = 0.02, and hypertension (p = 0.02, and with E/A age (p = 0.0001, diabetes (p = 0.005, hypertension (p = 0.04 and fatty liver index (p = 0.004. In the 100 patients with available liver histology non alcoholic steatohepatitis (NASH was independently associated with EAT (p = 0.04 and diabetes (p = 0.054 while significant fibrosis with EAT (p = 0.02, diabetes (p = 0.01 and waist circumference (p = 0.05. No association between EAT and PNPLA3 and TM6SF2 polymorphisms was found.In patients with NAFLD, EAT is associated with the severity of liver and vascular damage besides with the known metabolic risk factors.

  12. National differences in screening programmes for cardiovascular risks could obstruct understanding of cardiovascular prevention studies in Europe

    NARCIS (Netherlands)

    Thio, S. L.; Twickler, Th B.; Cramer, M. J.; Giral, P.

    2011-01-01

    In North-West Europe, cardiovascular disease is still a major cause of death and despite several efforts (e.g. European guidelines and conferences) cardiovascular risk factors are still inconsistently diagnosed and treated. We evaluated the first consultations of patients in two cardiovascular

  13. Magnetic resonance imaging of the cardiovascular system: present state of the art and future potential

    International Nuclear Information System (INIS)

    Jacobson, H.G.

    1988-01-01

    State-of-the-art magnetic resonance imaging (MRI) generates high-resolution images of the cardiovascular system. Conventional MRI techniques provide images in six to ten minutes per tomographic slice. New strategies have substantially improved the speed of imaging. The technology is relatively expensive, and its cost-effectiveness remains to be defined in relation to other effective, less expensive, and noninvasive technologies, such as echocardiography and nuclear medicine. The ultimate role of MRI will depend on several factors, including the development of specific applications such as (1) noninvasive angiography, especially of the coronary arteries;(2) noninvasive, high-resolution assessment of regional myocardial blood flow distribution (e.g., using paramagnetic contrast agents); (3) characterization of myocardial diseases using proton-relaxation property changes; and (4) evaluation of in vivo myocardial biochemistry. The three-dimensional imaging capability and the ability to image cardiovascular structures without contrast material give MRI a potential advantage over existing noninvasive diagnostic imaging techniques. This report analyzes current applications of MRI to the cardiovascular system and speculates on their future

  14. PHB in Cardiovascular and Other Diseases: Present Knowledge and Implications.

    Science.gov (United States)

    Chowdhury, Debabrata; Kumar, Dinesh; Sarma, Pranjal; Tangutur, Anjana Devi; Bhadra, Manika Pal

    2017-11-30

    Prohibitin (PHB) is overtly conserved evolutionarily and ubiquitously expressed protein with pleiotropic functions in diverse cellular compartments. However, regulation and function of these proteins in different cells, tissues and in various diseases is different as evidenced by expression of these proteins which is found to be reduced in heart diseases, kidney diseases, lung disease, Crohn's disease and ulcerative colitis but this protein is highly expressed in diverse cancers. The mechanism by which this protein acts at the molecular level in different subcellular localizations or in different cells or tissues in different conditions (diseases or normal) has remained poorly understood. There are several studies reported to understand and decipher PHB's role in diseases and/or cancers of ovary, lung, stomach, thyroid, liver, blood, prostrate, gastric, esophagus, glioma, breast, bladder etc. where PHB is shown to act through mechanisms by acting as oncogene, tumor suppressor, antioxidant, antiapoptotic, in angiogenesis, autophagy etc. This review specifically gives attention to the functional role and regulatory mechanism of PHB proteins in cardiovascular health and diseases and its associated implications. Various molecular pathways involved in PHB function and its regulation are analyzed. PHB is rapidly emerging as a critical target molecule for cardiovascular signaling. Progress in delineating CVD and mechanisms of PHB in diverse molecular pathways is essential for determining when and how PHB targeted therapy might be feasible. In this regard, new therapies targeting PHB may best be applied in the future together with molecular profiling of CVD for clinical stratification of disease diagnosis and prognosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Effect of sodium nitroprusside-induced hypotension on the blood flow in subcutaneous and intramuscular BT4An tumors and normal tissues in rats

    International Nuclear Information System (INIS)

    Krossnes, Baard Kronen; Mella, Olav; Tyssebotn, Ingvald

    1996-01-01

    Purpose: To examine the effect of infusion of the vasodilator sodium nitroprusside (SNP) on the blood flow in normal tissues and BT 4 An tumors growing subcutaneously or intramusculary in BD IX rats. Methods and Materials: Sodium nitroprusside was given as a continuous intravenous infusion to keep the mean arterial pressure stable at 60 mmHg. The cardiac output, organ blood flow, and perfusion of the BT 4 An tumors were measured by injection of radiolabelled microspheres at control conditions and after 20 min SNP infusion in each animal. Two series of experiments were performed with two anesthetics with different mechanisms of action, Inactin and the midazolam-fentanyl-fluanisone combination (MFF), to secure reliable conclusions. Results: Cardiac output, heart rate, and blood flow to the skeletal muscles, heart, and liver increased during SNP infusion in either anesthetic group. In the kidneys and particularly in the skin, decreased blood flow by SNP was observed. When located subcutaneously on the foot, the blood flow in the tumor fell to 23.4% and 21.4% of the control values in the MFF- and Inactin-anesthetized animals, respectively. This was accompanied by a similar fall in the blood flow in the foot (tumor bed) itself. In the intramuscular tumor the blood flow fell to 24.8% of the control value in the MFF group, whereas the corresponding figure was 36.2% in the Inactin group. In the surrounding muscle (tumor bed) the blood flow increased significantly, most pronounced in the MFF experiment, where it was tripled. Conclusion: The fall in the tumor perfusion by SNP may be exploited therapeutically to increase the tumor temperature during hyperthermia. Predominant heating of the tumor compared to the tumor bed can be expected if the tumor is growing in or near skeletal muscles

  16. Dynamic interactions between musical, cardiovascular, and cerebral rhythms in humans.

    Science.gov (United States)

    Bernardi, Luciano; Porta, Cesare; Casucci, Gaia; Balsamo, Rossella; Bernardi, Nicolò F; Fogari, Roberto; Sleight, Peter

    2009-06-30

    Reactions to music are considered subjective, but previous studies suggested that cardiorespiratory variables increase with faster tempo independent of individual preference. We tested whether compositions characterized by variable emphasis could produce parallel instantaneous cardiovascular/respiratory responses and whether these changes mirrored music profiles. Twenty-four young healthy subjects, 12 musicians (choristers) and 12 nonmusician control subjects, listened (in random order) to music with vocal (Puccini's "Turandot") or orchestral (Beethoven's 9th Symphony adagio) progressive crescendos, more uniform emphasis (Bach cantata), 10-second period (ie, similar to Mayer waves) rhythmic phrases (Giuseppe Verdi's arias "Va pensiero" and "Libiam nei lieti calici"), or silence while heart rate, respiration, blood pressures, middle cerebral artery flow velocity, and skin vasomotion were recorded.Common responses were recognized by averaging instantaneous cardiorespiratory responses regressed against changes in music profiles and by coherence analysis during rhythmic phrases. Vocal and orchestral crescendos produced significant (P=0.05 or better) correlations between cardiovascular or respiratory signals and music profile, particularly skin vasoconstriction and blood pressures, proportional to crescendo, in contrast to uniform emphasis, which induced skin vasodilation and reduction in blood pressures. Correlations were significant both in individual and group-averaged signals. Phrases at 10-second periods by Verdi entrained the cardiovascular autonomic variables. No qualitative differences in recorded measurements were seen between musicians and nonmusicians. Music emphasis and rhythmic phrases are tracked consistently by physiological variables. Autonomic responses are synchronized with music, which might therefore convey emotions through autonomic arousal during crescendos or rhythmic phrases.

  17. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds.

    Science.gov (United States)

    Mondschein, Ryan J; Kanitkar, Akanksha; Williams, Christopher B; Verbridge, Scott S; Long, Timothy E

    2017-09-01

    This review highlights the synthesis, properties, and advanced applications of synthetic and natural polymers 3D printed using stereolithography for soft tissue engineering applications. Soft tissue scaffolds are of great interest due to the number of musculoskeletal, cardiovascular, and connective tissue injuries and replacements humans face each year. Accurately replacing or repairing these tissues is challenging due to the variation in size, shape, and strength of different types of soft tissue. With advancing processing techniques such as stereolithography, control of scaffold resolution down to the μm scale is achievable along with the ability to customize each fabricated scaffold to match the targeted replacement tissue. Matching the advanced manufacturing technique to polymer properties as well as maintaining the proper chemical, biological, and mechanical properties for tissue replacement is extremely challenging. This review discusses the design of polymers with tailored structure, architecture, and functionality for stereolithography, while maintaining chemical, biological, and mechanical properties to mimic a broad range of soft tissue types. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Anomalous properties of heat diffusion in living tissue caused by branching artery network. Qualitative description

    OpenAIRE

    Lubashevsky, I. A.; Gafiychuk, V. V.; Datsko, B. Y.

    2002-01-01

    We analyze the effect of blood flow through large arteries of peripheral circulation on heat transfer in living tissue. Blood flow in such arteries gives rise to fast heat propagation over large scales, which is described in terms of heat superdiffusion. The corresponding bioheat heat equation is derived. In particular, we show that under local strong heating of a small tissue domain the temperature distribution inside the surrounding tissue is affected substantially by heat superdiffusion.

  19. Carotid flow velocity/diameter ratio is a predictor of cardiovascular events in hypertensive patients

    DEFF Research Database (Denmark)

    Bellinazzi, Vera R; Cipolli, José A; Pimenta, Marcio V

    2015-01-01

    AD) greater than the median value presented the worst clinical outcome compared to those with isolated sFV less than the median value or sAD greater than the median value, suggesting an additive effect of these two variables. Further, Kaplan-Meier analysis demonstrated worse outcome for individuals with s...... intima-media thickness and clinically defined high cardiovascular risk did not. Furthermore, area under the receiver-operating characteristic curve for sFV/sAD was higher than that for Framingham risk score (0.77 versus 0.64; P = 0.045), whereas adding sFV/sAD to the Framingham risk factors resulted...

  20. Design of a tissue oxygenation monitor and verification on human skin

    Science.gov (United States)

    Liu, Hongyuan; Kohl-Bareis, Matthias; Huang, Xiabing

    2011-07-01

    We report the design of a tissue oxygen and temperature monitor. The non-invasive, fibre based device monitors tissue haemoglobin (Hb) and oxygen saturation (SO2) and is based on white-light reflectance spectroscopy.Visible light with wavelengths in the 500 - 650nm range is utilized. The spectroscopic algorithm takes into account the tissue scattering and melanin absorption for the calculation of tissue haemoglobin concentration and oxygen saturation. The monitor can probe superficial layers of tissue with a high spatial resolution (mm3) and a high temporal resolution (40 Hz). It provides an accurate measurement with the accuracy of SO2 at 2 % and high reliability with less than 2 % variation of continuous SO2 measurement over 12 hours. It can also form a modular system when used in conjunction with a laser Doppler monitor, enabling simultaneous measurements of Hb, SO2 and blood flow. We found experimentally that the influence of the source-detector separation on the haemoglobin parameters is small. This finding is discussed by Monte Carlo simulations for the depth sensitivity profile. The influence of probe pressure and the skin pigmentation on the measurement parameters are assessed before in vivo experimental data is presented. The combination with laser Doppler flowmetry demonstrates the importance of a measurement of both the haemoglobin and the blood flow parameters for a full description of blood tissue perfusion. This is discussed in experimental data on human skin during cuff occlusion and after hyperemisation by a pharmacological cream. Strong correlation is observed between tissue oxygen (Hb and SO2) and blood flow measurements.