WorldWideScience

Sample records for tissue-spanning redox gradient-dependent

  1. Plant redox proteomics

    DEFF Research Database (Denmark)

    Navrot, Nicolas; Finnie, Christine; Svensson, Birte

    2011-01-01

    In common with other aerobic organisms, plants are exposed to reactive oxygen species resulting in formation of post-translational modifications related to protein oxidoreduction (redox PTMs) that may inflict oxidative protein damage. Accumulating evidence also underscores the importance of redox...... PTMs in regulating enzymatic activities and controlling biological processes in plants. Notably, proteins controlling the cellular redox state, e.g. thioredoxin and glutaredoxin, appear to play dual roles to maintain oxidative stress resistance and regulate signal transduction pathways via redox PTMs....... To get a comprehensive overview of these types of redox-regulated pathways there is therefore an emerging interest to monitor changes in redox PTMs on a proteome scale. Compared to some other PTMs, e.g. protein phosphorylation, redox PTMs have received less attention in plant proteome analysis, possibly...

  2. Chloroplast Redox Poise

    DEFF Research Database (Denmark)

    Steccanella, Verdiana

    The redox state of the chloroplast is maintained by a delicate balance between energy production and consumption and is affected by the need to avoid increased production of reactive oxygen species (ROS). Redox power and ROS generated in the chloroplast are essential for maintaining physiological...... the redox status of the plastoquinone pool and chlorophyll biosynthesis. Furthermore, in the plant cell, the equilibrium between redox reactions and ROS signals is also maintained by various balancing mechanisms among which the thioredoxin reductase-thioredoxin system (TR-Trx) stands out as a mediator...

  3. Redox signaling in plants.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2013-06-01

    Our aim is to deliver an authoritative and challenging perspective of current concepts in plant redox signaling, focusing particularly on the complex interface between the redox and hormone-signaling pathways that allow precise control of plant growth and defense in response to metabolic triggers and environmental constraints and cues. Plants produce significant amounts of singlet oxygen and other reactive oxygen species (ROS) as a result of photosynthetic electron transport and metabolism. Such pathways contribute to the compartment-specific redox-regulated signaling systems in plant cells that convey information to the nucleus to regulate gene expression. Like the chloroplasts and mitochondria, the apoplast-cell wall compartment makes a significant contribution to the redox signaling network, but unlike these organelles, the apoplast has a low antioxidant-buffering capacity. The respective roles of ROS, low-molecular antioxidants, redox-active proteins, and antioxidant enzymes are considered in relation to the functions of plant hormones such as salicylic acid, jasmonic acid, and auxin, in the composite control of plant growth and defense. Regulation of redox gradients between key compartments in plant cells such as those across the plasma membrane facilitates flexible and multiple faceted opportunities for redox signaling that spans the intracellular and extracellular environments. In conclusion, plants are recognized as masters of the art of redox regulation that use oxidants and antioxidants as flexible integrators of signals from metabolism and the environment.

  4. Redox Species of Redox Flow Batteries: A Review.

    Science.gov (United States)

    Pan, Feng; Wang, Qing

    2015-11-18

    Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  5. Redox Buffer Strength

    Science.gov (United States)

    de Levie, Robert

    1999-04-01

    The proper functioning of enzymes in bodily fluids requires that the pH be maintained within rather narrow limits. The first line of defense against large pH fluctuations in such fluids is the passive control provided by the presence of pH buffers. The ability of pH buffers to stabilize the pH is indicated by the buffer value b introduced in 1922 by van Slyke. It is equally important for many enzymes that the redox potential is kept within a narrow range. In that case, stability of the potential is most readily achieved with a redox buffer. In this communication we define the redox buffer strength by analogy with acid-base buffer strength.

  6. Redox Flow Batteries, a Review

    Energy Technology Data Exchange (ETDEWEB)

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  7. Redox-capacitor to connect electrochemistry to redox-biology.

    Science.gov (United States)

    Kim, Eunkyoung; Leverage, W Taylor; Liu, Yi; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-01-07

    It is well-established that redox-reactions are integral to biology for energy harvesting (oxidative phosphorylation), immune defense (oxidative burst) and drug metabolism (phase I reactions), yet there is emerging evidence that redox may play broader roles in biology (e.g., redox signaling). A critical challenge is the need for tools that can probe biologically-relevant redox interactions simply, rapidly and without the need for a comprehensive suite of analytical methods. We propose that electrochemistry may provide such a tool. In this tutorial review, we describe recent studies with a redox-capacitor film that can serve as a bio-electrode interface that can accept, store and donate electrons from mediators commonly used in electrochemistry and also in biology. Specifically, we (i) describe the fabrication of this redox-capacitor from catechols and the polysaccharide chitosan, (ii) discuss the mechanistic basis for electron exchange, (iii) illustrate the properties of this redox-capacitor and its capabilities for promoting redox-communication between biology and electrodes, and (iv) suggest the potential for enlisting signal processing strategies to "extract" redox information. We believe these initial studies indicate broad possibilities for enlisting electrochemistry and signal processing to acquire "systems level" redox information from biology.

  8. Ediacaran Redox Fluctuations

    Science.gov (United States)

    Sahoo, S. K.; Jiang, G.; Planavsky, N. J.; Kendall, B.; Owens, J. D.; Anbar, A. D.; Lyons, T. W.

    2013-12-01

    Evidence for pervasive oxic conditions, and likely even deep ocean oxygenation has been documented at three intervals in the lower (ca. 632 Ma), middle (ca. 580 Ma) and upper (ca. 551 Ma) Ediacaran. The Doushantuo Formation in South China hosts large enrichments of redox-sensitive trace element (e.g., molybdenum, vanadium and uranium) in anoxic shales, which are indicative of a globally oxic ocean-atmosphere system. However, ocean redox conditions between these periods continue to be a topic of debate and remain elusive. We have found evidence for widespread anoxic conditions through much of the Ediacaran in the deep-water Wuhe section in South China. During most of the Ediacaran-early Cambrian in basinal sections is characterized by Fe speciation data and pyrite morphologies that indicate deposition under euxinic conditions with near-crustal enrichments of redox-sensitive element and positive pyrite-sulfur isotope values, which suggest low levels of marine sulfate and widespread euxinia. Our work reinforces an emerging view that the early Earth, including the Ediacaran, underwent numerous rises and falls in surface oxidation state, rather than a unidirectional rise as originally imagined. The Ediacaran ocean thus experienced repetitive expansion and contraction of marine chalcophilic trace-metal levels that may have had fundamental impact on the slow evolution of early animals and ecosystems. Further, this framework forces us to re-examine the relationship between Neoproterozoic oxygenation and metazoan diversification. Varying redox conditions through the Cryogenian and Ediacaran may help explain molecular clock and biomarker evidence for an early appearance and initial diversification of metazoans but with a delay in the appearance of most major metazoan crown groups until close to Ediacaran-Cambrian boundary.

  9. Direct electrochemistry of redox proteins

    NARCIS (Netherlands)

    Heering, H.A.

    1995-01-01

    The goal of the project was to obtain more detailed insight in interactions between redox proteins and solid electrodes and the mechanisms of electron transfer. In addition to this, the influence of the protein environment on the redox properties of the active site and the possible

  10. Redox Properties of Free Radicals.

    Science.gov (United States)

    Neta, P.

    1981-01-01

    Describes pulse radiolysis as a useful means in studing one-electron redox potentials. This method allows the production of radicals and the determination of their concentration and rates of reaction. (CS)

  11. Redox meets protein trafficking.

    Science.gov (United States)

    Bölter, Bettina; Soll, Jürgen; Schwenkert, Serena

    2015-09-01

    After the engulfment of two prokaryotic organisms, the thus emerged eukaryotic cell needed to establish means of communication and signaling to properly integrate the acquired organelles into its metabolism. Regulatory mechanisms had to evolve to ensure that chloroplasts and mitochondria smoothly function in accordance with all other cellular processes. One essential process is the post-translational import of nuclear encoded organellar proteins, which needs to be adapted according to the requirements of the plant. The demand for protein import is constantly changing depending on varying environmental conditions, as well as external and internal stimuli or different developmental stages. Apart from long-term regulatory mechanisms such as transcriptional/translation control, possibilities for short-term acclimation are mandatory. To this end, protein import is integrated into the cellular redox network, utilizing the recognition of signals from within the organelles and modifying the efficiency of the translocon complexes. Thereby, cellular requirements can be communicated throughout the whole organism. This article is part of a Special Issue entitled: Chloroplast Biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Redox regulation of protein damage in plasma

    Directory of Open Access Journals (Sweden)

    Helen R. Griffiths

    2014-01-01

    In this review, we focus on redox regulatory control of those enzymes and processes which control protein maturation during synthesis, produce reactive species, repair and remove damaged plasma proteins. We have highlighted the potential for alterations in the extracellular redox compartment to regulate intracellular redox state and, conversely, for intracellular oxidative stress to alter the cellular secretome and composition of extracellular vesicles. Through secreted, redox-active regulatory molecules, changes in redox state may be transmitted to distant sites.

  13. Redox regulation of plant development.

    Science.gov (United States)

    Considine, Michael J; Foyer, Christine H

    2014-09-20

    We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context.

  14. Redox reactions in food fermentations

    DEFF Research Database (Denmark)

    Hansen, Egon Bech

    2018-01-01

    Food fermentations are typically performed without actively supplying air. Except for possible surface microorganisms, oxygen will only be transiently available and the redox reactions during the fermentation need to be in balance. Production of ATP from fermentation of carbohydrates typically in...... of the redox properties of strains used to compose food cultures.......Food fermentations are typically performed without actively supplying air. Except for possible surface microorganisms, oxygen will only be transiently available and the redox reactions during the fermentation need to be in balance. Production of ATP from fermentation of carbohydrates typically...... involves oxidative steps in the early part of the pathways whereas a multitude of different reactions are used as compensating reductions. Much of the diversity seen between food fermentations arise from the different routes and the different electron acceptors used by microorganisms to counterbalance...

  15. Redox Pioneer: Professor Joseph Loscalzo

    OpenAIRE

    Leopold, Jane A.

    2010-01-01

    Dr. Joseph Loscalzo (M.D., 1978; Ph.D., 1977) is recognized here as a Redox Pioneer because he has published two articles in the field of antioxidant/redox biology that have been cited more than 1,000 times and 22 articles that have been cited more than 100 times. Dr. Loscalzo is known for his seminal contributions to our understanding of the vascular biology of nitric oxide. His initial discovery that the antiplatelet effects of organic nitrates are potentiated by thiols through a mechanism ...

  16. Acupuncture Mechanism and Redox Equilibrium

    Directory of Open Access Journals (Sweden)

    Xiang-Hong Zeng

    2014-01-01

    Full Text Available Oxidative stress participates in the pathological process of various diseases. Acupuncture is a component of the health care system in China that can be traced back for at least 3000 years. Recently, increased evidences indicate that acupuncture stimulation could reduce oxidative damage in organisms under pathological state, but the exact mechanism remains unclear. This review focuses on the emerging links between acupuncture and redox modulation in various disorders, such as vascular dementia, Parkinson’s disease, and hypertension, ranging from redox system, antioxidant system, anti-inflammatory system, and nervous system to signaling pathway. Although the molecular and cellular pathways studies of acupuncture effect on oxidative stress are preliminary, they represent an important step forward in the research of acupuncture antioxidative effect.

  17. Redox signaling in acute pancreatitis

    Science.gov (United States)

    Pérez, Salvador; Pereda, Javier; Sabater, Luis; Sastre, Juan

    2015-01-01

    Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF–VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis. PMID:25778551

  18. Dissecting Redox Biology Using Fluorescent Protein Sensors.

    Science.gov (United States)

    Schwarzländer, Markus; Dick, Tobias P; Meyer, Andreas J; Morgan, Bruce

    2016-05-01

    Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.

  19. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor.

    Science.gov (United States)

    Kim, Eunkyoung; Gordonov, Tanya; Bentley, William E; Payne, Gregory F

    2013-02-19

    Redox cycling provides a mechanism to amplify electrochemical signals for analyte detection. Previous studies have shown that diverse mediators/shuttles can engage in redox-cycling reactions with a biobased redox capacitor that is fabricated by grafting redox-active catechols onto a chitosan film. Here, we report that redox cycling with this catechol-chitosan redox capacitor can amplify electrochemical signals for detecting a redox-active bacterial metabolite. Specifically, we studied the redox-active bacterial metabolite pyocyanin that is reported to be a virulence factor and signaling molecule for the opportunistic pathogen P. aeruginosa. We demonstrate that redox cycling can amplify outputs from various electrochemical methods (cyclic voltammetry, chronocoulometry, and differential pulse voltammetry) and can lower the detection limit of pyocyanin to 50 nM. Further, the compatibility of this biobased redox capacitor allows the in situ monitoring of the production of redox-active metabolites (e.g., pyocyanin) during the course of P. aeruginosa cultivation. We anticipate that the amplified output of redox-active virulence factors should permit an earlier detection of life-threatening infections by the opportunistic pathogen P. aeruginosa while the "bio-compatibility" of this measurement approach should facilitate in situ study of the spatiotemporal dynamics of bacterial redox signaling.

  20. Engineering redox balance through cofactor systems.

    Science.gov (United States)

    Chen, Xiulai; Li, Shubo; Liu, Liming

    2014-06-01

    Redox balance plays an important role in the production of enzymes, pharmaceuticals, and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximal carbon flux towards target metabolites with no fluctuations in redox. This requires functional cofactor systems that support dynamic homeostasis between different redox states or functional stability in a given redox state. Redox balance can be achieved by improving the self-balance of a cofactor system, regulating the substrate balance of a cofactor system, and engineering the synthetic balance of a cofactor system. This review summarizes how cofactor systems can be manipulated to improve redox balance in microbes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Characterization of redox proteins using electrochemical methods

    OpenAIRE

    Verhagen, M.

    1995-01-01

    The use of electrochemical techniques in combination with proteins started approximately a decade ago and has since then developed into a powerfull technique for the study of small redox proteins. In addition to the determination of redox potentials, electrochemistry can be used to obtain information about the kinetics of electron transfer between proteins and about the dynamic behaviour of redox cofactors in proteins. This thesis describes the results of a study, initiated to get a ...

  2. Radii of Redox Components from Absolute Redox Potentials Compared with Covalent and Aqueous Ionic Radii

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2010-01-01

    Roč. 22, č. 9 (2010), s. 903-907 ISSN 1040-0397 Institutional support: RVO:68081707 Keywords : Electrochemistry * Absolute redox potentials * Radii of redox components Subject RIV: BO - Biophysics Impact factor: 2.721, year: 2010

  3. Zinc and the modulation of redox homeostasis

    Science.gov (United States)

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  4. Redox pioneer: professor Barry Halliwell.

    Science.gov (United States)

    Pervaiz, Shazib

    2011-05-01

    Professor Barry Halliwell is recognized as a Redox Pioneer because he has published eight articles on redox biology that have been each cited more than 1000 times, and 158 articles that have been each cited more than 100 times. His contributions go back as far as 1976, when he was involved in elucidation of the Foyer-Halliwell-Asada cycle, an efficient mechanism for preventing oxidative damage to chloroplasts. His subsequent work established the important role of iron and zinc in free radical reactions and their relevance to human pathologies. Professor Halliwell is also a leader in developing novel methodology for detecting free radical intermediates in vivo, and his contributions to our knowledge of reactive nitrogen species are highly significant. His sustained excellence won him the top-cited scientist award in the United Kingdom in biomedical sciences in 1999, and in 2003 he was recognized as a highly cited scientist by Institute of Scientific Information (ISI) for work on plant antioxidants, and the same year ranked 28 out of 5494 biochemists/biologists for scientific impact. Two pieces of his scholarly work have been listed as Citation Classics by ISI, and in 2007 his laboratory was ranked number 1 worldwide based on highest citation score in research on free radicals.

  5. Information processing through a bio-based redox capacitor: signatures for redox-cycling.

    Science.gov (United States)

    Liu, Yi; Kim, Eunkyoung; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-08-01

    Redox-cycling compounds can significantly impact biological systems and can be responsible for activities that range from pathogen virulence and contaminant toxicities, to therapeutic drug mechanisms. Current methods to identify redox-cycling activities rely on the generation of reactive oxygen species (ROS), and employ enzymatic or chemical methods to detect ROS. Here, we couple the speed and sensitivity of electrochemistry with the molecular-electronic properties of a bio-based redox-capacitor to generate signatures of redox-cycling. The redox capacitor film is electrochemically-fabricated at the electrode surface and is composed of a polysaccharide hydrogel with grafted catechol moieties. This capacitor film is redox-active but non-conducting and can engage diffusible compounds in either oxidative or reductive redox-cycling. Using standard electrochemical mediators ferrocene dimethanol (Fc) and Ru(NH3)6Cl3 (Ru(3+)) as model redox-cyclers, we observed signal amplifications and rectifications that serve as signatures of redox-cycling. Three bio-relevant compounds were then probed for these signatures: (i) ascorbate, a redox-active compound that does not redox-cycle; (ii) pyocyanin, a virulence factor well-known for its reductive redox-cycling; and (iii) acetaminophen, an analgesic that oxidatively redox-cycles but also undergoes conjugation reactions. These studies demonstrate that the redox-capacitor can enlist the capabilities of electrochemistry to generate rapid and sensitive signatures of biologically-relevant chemical activities (i.e., redox-cycling). Published by Elsevier B.V.

  6. Characterization of redox proteins using electrochemical methods

    NARCIS (Netherlands)

    Verhagen, M.

    1995-01-01

    The use of electrochemical techniques in combination with proteins started approximately a decade ago and has since then developed into a powerfull technique for the study of small redox proteins. In addition to the determination of redox potentials, electrochemistry can be used to obtain

  7. Interplay between redox status and inflammasome activation

    NARCIS (Netherlands)

    Rubartelli, A.; Gattorno, M.; Netea, M.G.; Dinarello, C.A.

    2011-01-01

    Several inflammation-related processes, including inflammasome activation and interleukin (IL)-1beta secretion, are dependent on redox signaling. However, the type of redox response involved as well as the relevant role of pro-oxidant and antioxidant events are matters of intense debate. By

  8. Characterization of redox conditions in pollution plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bjerg, Poul Løgstrup; Banwart, Steven A.

    2000-01-01

    Evalution of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few...

  9. Redox activity of naphthalene secondary organic aerosol

    Science.gov (United States)

    McWhinney, R. D.; Zhou, S.; Abbatt, J. P. D.

    2013-04-01

    Chamber secondary organic aerosol (SOA) from low-NOx photooxidation of naphthalene by hydroxyl radical was examined with respect to its redox cycling behaviour using the dithiothreitol (DTT) assay. Naphthalene SOA was highly redox active, consuming DTT at an average rate of 118 ± 14 pmol per minute per μg of SOA material. Measured particle-phase masses of the major previously identified redox active products, 1,2- and 1,4-naphthoquinone, accounted for only 21 ± 3% of the observed redox cycling activity. The redox-active 5-hydroxy-1,4-naphthoquinone was identified as a new minor product of naphthalene oxidation, and including this species in redox activity predictions increased the predicted DTT reactivity to 30 ± 5% of observations. Similar attempts to predict redox behaviour of oxidised two-stroke engine exhaust particles by measuring 1,2-naphthoquinone, 1,4-naphthoquinone and 9,10-phenanthrenequinone predicted DTT decay rates only 4.9 ± 2.5% of those observed. Together, these results suggest that there are substantial unidentified redox-active SOA constituents beyond the small quinones that may be important toxic components of these particles. A gas-to-SOA particle partitioning coefficient was calculated to be (7.0 ± 2.5) × 10-4 m3 μg-1 for 1,4-naphthoquinone at 25 °C. This value suggests that under typical warm conditions, 1,4-naphthoquinone is unlikely to contribute strongly to redox behaviour of ambient particles, although further work is needed to determine the potential impact under conditions such as low temperatures where partitioning to the particle is more favourable. As well, higher order oxidation products that likely account for a substantial fraction of the redox cycling capability of the naphthalene SOA are likely to partition much more strongly to the particle phase.

  10. Engineered Proteins: Redox Properties and Their Applications

    Science.gov (United States)

    Prabhulkar, Shradha; Tian, Hui; Wang, Xiaotang; Zhu, Jun-Jie

    2012-01-01

    Abstract Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices. Antioxid. Redox Signal. 17, 1796–1822. PMID:22435347

  11. Controls on the redox potential of rainwater.

    Science.gov (United States)

    Willey, Joan D; Mullaugh, Katherine M; Kieber, Robert J; Avery, G Brooks; Mead, Ralph N

    2012-12-18

    Hydrogen peroxide acting as a reductant affects the redox potential of rainwater collected at the Bermuda Atlantic Time Series Station, the South Island of New Zealand, the contiguous USA, and the primary study site in Wilmington, NC. Analytical measurements of both halves of redox couples for dissolved iron, mercury, and the nitrate-nitrite-ammonium system can predict the rainwater redox potential measured directly by a platinum electrode. Measurements of these redox couples along with the pH in rain yields pe⁻ between 8 and 11; the half reaction for hydrogen peroxide acting as a reductant using typical rainwater conditions of 15 μM H₂O₂ at pH 4.7 gives pe⁻ = 9.12, where pe⁻ = negative log of the activity of hydrated electrons. Of the six rainwater redox systems investigated, only manganese speciation appeared to be controlled by molecular oxygen (pe⁻ = 15.90). Copper redox speciation was consistent with superoxide acting as a reductant (pe⁻ = 2.7). The concentration of H₂O₂ in precipitation has more than doubled over the preceding decade due to a decrease in SO₂ emissions, which suggests the redox chemistry of rainwater is dynamic and changing, potentially altering the speciation of many organic compounds and trace metals in atmospheric waters.

  12. Redox activity of naphthalene secondary organic aerosol

    OpenAIRE

    R. D. McWhinney; S. Zhou; J. P. D. Abbatt

    2013-01-01

    Chamber secondary organic aerosol (SOA) from low-NOx photooxidation of naphthalene by hydroxyl radical was examined with respect to its redox cycling behaviour using the dithiothreitol (DTT) assay. Naphthalene SOA was highly redox active, consuming DTT at an average rate of 118 ± 14 pmol per minute per μg of SOA material. Measured particle-phase masses of the major previously identified redox active products, 1,2- and 1,4-naphthoquinone, accounted for only 21 ± 3% of the obse...

  13. Redox regulation of cell proliferation: Bioinformatics and redox proteomics approaches to identify redox-sensitive cell cycle regulators.

    Science.gov (United States)

    Foyer, Christine H; Wilson, Michael H; Wright, Megan H

    2018-03-29

    Plant stem cells are the foundation of plant growth and development. The balance of quiescence and division is highly regulated, while ensuring that proliferating cells are protected from the adverse effects of environment fluctuations that may damage the genome. Redox regulation is important in both the activation of proliferation and arrest of the cell cycle upon perception of environmental stress. Within this context, reactive oxygen species serve as 'pro-life' signals with positive roles in the regulation of the cell cycle and survival. However, very little is known about the metabolic mechanisms and redox-sensitive proteins that influence cell cycle progression. We have identified cysteine residues on known cell cycle regulators in Arabidopsis that are potentially accessible, and could play a role in redox regulation, based on secondary structure and solvent accessibility likelihoods for each protein. We propose that redox regulation may function alongside other known posttranslational modifications to control the functions of core cell cycle regulators such as the retinoblastoma protein. Since our current understanding of how redox regulation is involved in cell cycle control is hindered by a lack of knowledge regarding both which residues are important and how modification of those residues alters protein function, we discuss how critical redox modifications can be mapped at the molecular level. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  14. Redox Modulations, Antioxidants, and Neuropsychiatric Disorders

    Science.gov (United States)

    Fraunberger, Erik A.; Laliberté, Victoria L. M.; Duong, Angela; Andreazza, Ana C.

    2016-01-01

    Although antioxidants, redox modulations, and neuropsychiatric disorders have been widely studied for many years, the field would benefit from an integrative and corroborative review. Our primary objective is to delineate the biological significance of compounds that modulate our redox status (i.e., reactive species and antioxidants) as well as outline their current role in brain health and the impact of redox modulations on the severity of illnesses. Therefore, this review will not enter into the debate regarding the perceived medical legitimacy of antioxidants but rather seek to clarify their abilities and limitations. With this in mind, antioxidants may be interpreted as natural products with significant pharmacological actions in the body. A renewed understanding of these often overlooked compounds will allow us to critically appraise the current literature and provide an informed, novel perspective on an important healthcare issue. In this review, we will introduce the complex topics of redox modulations and their role in the development of select neuropsychiatric disorders. PMID:26640614

  15. Mitochondrial redox biology and homeostasis in plants.

    Science.gov (United States)

    Noctor, Graham; De Paepe, Rosine; Foyer, Christine H

    2007-03-01

    Mitochondria are key players in plant cell redox homeostasis and signalling. Earlier concepts that regarded mitochondria as secondary to chloroplasts as the powerhouses of photosynthetic cells, with roles in cell proliferation, death and ageing described largely by analogy to animal paradigms, have been replaced by the new philosophy of integrated cellular energy and redox metabolism involving mitochondria and chloroplasts. Thanks to oxygenic photosynthesis, plant mitochondria often operate in an oxygen- and carbohydrate-rich environment. This rather unique environment necessitates extensive flexibility in electron transport pathways and associated NAD(P)-linked enzymes. In this review, mitochondrial redox metabolism is discussed in relation to the integrated cellular energy and redox function that controls plant cell biology and fate.

  16. Symproportionation versus Disproportionation in Bromine Redox Systems

    International Nuclear Information System (INIS)

    Toporek, Marcin; Michałowska-Kaczmarczyk, Anna M.; Michałowski, Tadeusz

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: • The disproportionation and symproportionation of bromine in different media is presented. • All the redox systems are elaborated according to the principles of the generalized approach to electrolytic redox systems (GATES/GEB). • All physicochemical knowledge is involved in the algorithm applied for this purpose. • The graphical representation of the systems is the basis of gaining the detailed physicochemical knowledge on the systems in question. -- Abstract: The paper refers to dynamic (titration) redox systems where symproportionation or disproportionation of bromine species occur. The related systems are modeled according to principles assumed in the Generalized Approach to Electrolytic Redox Systems (GATES), with Generalized Electron Balance (GEB) concept involved in the GATES/GEB software. The results obtained from calculations made with use of iterative computer programs prepared according to MATLAB computational software, are presented graphically, as 2D and 3D graphs

  17. Polyarene mediators for mediated redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Delnick, Frank M.; Ingersoll, David; Liang, Chengdu

    2018-01-02

    The fundamental charge storage mechanisms in a number of currently studied high energy redox couples are based on intercalation, conversion, or displacement reactions. With exception to certain metal-air chemistries, most often the active redox materials are stored physically in the electrochemical cell stack thereby lowering the practical gravimetric and volumetric energy density as a tradeoff to achieve reasonable power density. In a general embodiment, a mediated redox flow battery includes a series of secondary organic molecules that form highly reduced anionic radicals as reaction mediator pairs for the reduction and oxidation of primary high capacity redox species ex situ from the electrochemical cell stack. Arenes are reduced to stable anionic radicals that in turn reduce a primary anode to the charged state. The primary anode is then discharged using a second lower potential (more positive) arene. Compatible separators and solvents are also disclosed herein.

  18. Redox Behavior of Fe2+/Fe3+ Redox Couple by Absorption Spectroscopy and Measurement

    International Nuclear Information System (INIS)

    Oh, J. Y.; Park, S.; Yun, J. I.

    2010-01-01

    Redox behavior has influences on speciation and other geochemical reactions of radionuclides such as sorption, solubility, and colloid formation, etc. It is one of the factors for evaluation of long-term safety assessment under high-level radioactive waste (HLW) disposal conditions. Accordingly, redox potential (Eh) measurement in aquatic system is important to investigate the redox conditions. Eh is usually measured with redox active electrodes (Pt, Au, glassy carbon, etc.). Nevertheless, Eh measurements by general methods using electrodes provide low accuracy and high uncertainty problem. Therefore, Eh calculated from the concentration of redox active elements with a proper complexing reagent by using UV-Vis absorption spectroscopy is progressed. Iron exists mostly as spent nuclear waste container material and in hydro-geologic minerals. In this system, iron controls the redox condition in near-field area and influences chemical behavior and speciation of radionuclides including redox sensitive actinides such as U, Np, and Pu. In the present work, we present the investigation on redox phenomena of iron in aquatic system by a combination of absorption spectroscopy and redox potential measurements

  19. The redox status of cystinotic fibroblasts.

    Science.gov (United States)

    Vitvitsky, Victor; Witcher, Marc; Banerjee, Ruma; Thoene, Jess

    2010-04-01

    A key unresolved question in the pathogenesis of phenotype development in nephropathic cystinosis is whether intralysosomal cystine, the hallmark of this lethal inborn error of metabolism, alters cytoplasmic redox potential. Variable findings on this issue have been reported. This study of fetal and non-fetal skin and lung-derived cystinotic fibroblasts compared to origin and age-matched normal control fibroblasts reveals that cystinotic cells do not exhibit redox perturbations. We find that the steady-state redox status as assessed by the [GSH]/[GSSG] ratio, an indicator of the intracellular redox poise, is unchanged in cystinotic cells. Furthermore, the dependence of the intracellular GSH and cysteine pool sizes and the [GSH]/[GSSG] ratio are similarly dependent on the two major sources of cysteine, i.e. the transsulfuration pathway and the plasma membrane cystine transporter, xc(-), in both cystinotic and control cells, and the presence of lysosomal cystine has no measurable effect on the redox status of these cells. Hence, mechanisms other than cytosolic redox perturbations are involved in the etiology of nephropathic cystinosis. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Membranes for Redox Flow Battery Applications

    Science.gov (United States)

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention. PMID:24958177

  1. Membranes for Redox Flow Battery Applications

    Directory of Open Access Journals (Sweden)

    Maria Skyllas-Kazacos

    2012-06-01

    Full Text Available The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  2. Redox interplay between mitochondria and peroxisomes

    Directory of Open Access Journals (Sweden)

    Celien eLismont

    2015-05-01

    Full Text Available Reduction-oxidation or ‘redox’ reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from ‘omics’ technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of

  3. De Novo Construction of Redox Active Proteins.

    Science.gov (United States)

    Moser, C C; Sheehan, M M; Ennist, N M; Kodali, G; Bialas, C; Englander, M T; Discher, B M; Dutton, P L

    2016-01-01

    Relatively simple principles can be used to plan and construct de novo proteins that bind redox cofactors and participate in a range of electron-transfer reactions analogous to those seen in natural oxidoreductase proteins. These designed redox proteins are called maquettes. Hydrophobic/hydrophilic binary patterning of heptad repeats of amino acids linked together in a single-chain self-assemble into 4-alpha-helix bundles. These bundles form a robust and adaptable frame for uncovering the default properties of protein embedded cofactors independent of the complexities introduced by generations of natural selection and allow us to better understand what factors can be exploited by man or nature to manipulate the physical chemical properties of these cofactors. Anchoring of redox cofactors such as hemes, light active tetrapyrroles, FeS clusters, and flavins by His and Cys residues allow cofactors to be placed at positions in which electron-tunneling rates between cofactors within or between proteins can be predicted in advance. The modularity of heptad repeat designs facilitates the construction of electron-transfer chains and novel combinations of redox cofactors and new redox cofactor assisted functions. Developing de novo designs that can support cofactor incorporation upon expression in a cell is needed to support a synthetic biology advance that integrates with natural bioenergetic pathways. © 2016 Elsevier Inc. All rights reserved.

  4. Compartmentation of redox metabolism in malaria parasites.

    Directory of Open Access Journals (Sweden)

    Sebastian Kehr

    Full Text Available Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito - a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes--glutathione reductase and thioredoxin reductase--Plasmodium makes use of alternative-translation-initiation (ATI to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention.

  5. Redox conversions of methemoglobin during redox cycling of quinones and aromatic nitrocompounds.

    Science.gov (United States)

    Cénas, N; Ollinger, K

    1994-11-15

    The study focused on the effects on various redox states of hemoglobin during NADPH: cytochrome P-450 reductase-catalyzed redox cycling of quinones and nitrocompounds. The following reactions involving quinone/semiquinone and methemoglobin/oxyhemoglobin redox couples were observed: (i) the direct oxidation of oxyhemoglobin by quinones, (ii) the reduction of methemoglobin by quinones, (ii) the reduction of methemoglobin during redox cycling of quinones and nitrocompounds was partially inhibited by superoxide dismutase, and (iii) the reoxidation of oxyhemoglobin by hydrogen peroxide, formed during redox cycling was accompanied by the formation of choleglobin. Hydrogen peroxide was produced during redox cycling, and upon depletion of hydrogen peroxide by catalase, the reduction of methemoglobin significantly prevailed over oxidation of oxyhemoglobin. Furthermore, the reduction of ferrylhemoglobin to oxyhemoglobin during redox cycling was about twice as slow as the reduction of methemoglobin. For a series of compounds possessing a single-electron reduction potential (E1(7)) between 0.01 and -0.355 V, the rate constants for methemoglobin reduction by their corresponding radicals was estimated to range from 4.1 x 10(5) to 7.6 x 10(7) M-1 S-1. Radicals of the nitrocompounds were approximately 10 times less reactive as compared to quinones possessing similar E1(7) values.

  6. TEMPOL increases NAD+ and improves redox imbalance in obese mice

    OpenAIRE

    Yamato, Mayumi; Kawano, Kimika; Yamanaka, Yuki; Saiga, Misako; Yamada, Ken-ichi

    2016-01-01

    Continuous energy conversion is controlled by reduction–oxidation (redox) processes. NAD+ and NADH represent an important redox couple in energy metabolism. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) is a redox-cycling nitroxide that promotes the scavenging of several reactive oxygen species (ROS) and is reduced to hydroxylamine by NADH. TEMPOL is also involved in NAD+ production in the ascorbic acid–glutathione redox cycle. We utilized the chemical properties of TEMPOL to invest...

  7. Redox-active nanomaterials for nanomedicine applications.

    Science.gov (United States)

    Sims, Christopher M; Hanna, Shannon K; Heller, Daniel A; Horoszko, Christopher P; Johnson, Monique E; Montoro Bustos, Antonio R; Reipa, Vytas; Riley, Kathryn R; Nelson, Bryant C

    2017-10-19

    Nanomedicine utilizes the remarkable properties of nanomaterials for the diagnosis, treatment, and prevention of disease. Many of these nanomaterials have been shown to have robust antioxidative properties, potentially functioning as strong scavengers of reactive oxygen species. Conversely, several nanomaterials have also been shown to promote the generation of reactive oxygen species, which may precipitate the onset of oxidative stress, a state that is thought to contribute to the development of a variety of adverse conditions. As such, the impacts of nanomaterials on biological entities are often associated with and influenced by their specific redox properties. In this review, we overview several classes of nanomaterials that have been or projected to be used across a wide range of biomedical applications, with discussion focusing on their unique redox properties. Nanomaterials examined include iron, cerium, and titanium metal oxide nanoparticles, gold, silver, and selenium nanoparticles, and various nanoscale carbon allotropes such as graphene, carbon nanotubes, fullerenes, and their derivatives/variations. Principal topics of discussion include the chemical mechanisms by which the nanomaterials directly interact with biological entities and the biological cascades that are thus indirectly impacted. Selected case studies highlighting the redox properties of nanomaterials and how they affect biological responses are used to exemplify the biologically-relevant redox mechanisms for each of the described nanomaterials.

  8. Redox characteristics of the eukaryotic cytosol

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R

    2007-01-01

    organism, Saccharomyces cerevisiae, where the combination of genetic and biochemical approaches has brought us furthest in understanding the mechanisms underlying cellular redox regulation. It has been shown in yeast that, in addition to the enzyme glutathione reductase, other mechanisms may exist...

  9. Investigating improvements on redox flow batteries

    CSIR Research Space (South Africa)

    Swartbooi, AM

    2006-09-01

    Full Text Available storage devices coupled to most of their applications. Lead-acid batteries have long been used as the most economical option to store electricity in many small scale applications, but lately more interest have been shown in redox flow batteries. The low...

  10. Methods for using redox liposome biosensors

    Science.gov (United States)

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  11. Redox regulation in cancer stem cells

    Science.gov (United States)

    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processe...

  12. Redox Control of Skeletal Muscle Regeneration.

    Science.gov (United States)

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  13. Redox flow cell energy storage systems

    Science.gov (United States)

    Thaller, L. H.

    1979-01-01

    NASA-Redox systems are electrochemical storage devices that use two fully soluble Redox couples, anode and cathode fluids, as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of Redox flow cells where the electrochemical reactions (reduction and oxidation) take place at porous carbon felt electrodes. A string or stack of these power producing cells is connected in series in a bipolar manner. Redox energy storage systems promise to be inexpensive and possess many features that provide for flexible design, long life, high reliability and minimal operation and maintenance costs. These features include independent sizing of power and storage capacity requirements and inclusion within the cell stack of a cell that monitors the state of charge of the system as a whole, and a rebalance cell which permits continuous correction to be made for minor side reactions that would tend to result in the anode fluid and cathode fluids becoming electrochemically out of balance. These system features are described and discussed.

  14. Bimetallic redox synergy in oxidative palladium catalysis.

    Science.gov (United States)

    Powers, David C; Ritter, Tobias

    2012-06-19

    Polynuclear transition metal complexes, which are embedded in the active sites of many metalloenzymes, are responsible for effecting a diverse array of oxidation reactions in nature. The range of chemical transformations remains unparalleled in the laboratory. With few noteworthy exceptions, chemists have primarily focused on mononuclear transition metal complexes in developing homogeneous catalysis. Our group is interested in the development of carbon-heteroatom bond-forming reactions, with a particular focus on identifying reactions that can be applied to the synthesis of complex molecules. In this context, we have hypothesized that bimetallic redox chemistry, in which two metals participate synergistically, may lower the activation barriers to redox transformations relevant to catalysis. In this Account, we discuss redox chemistry of binuclear Pd complexes and examine the role of binuclear intermediates in Pd-catalyzed oxidation reactions. Stoichiometric organometallic studies of the oxidation of binuclear Pd(II) complexes to binuclear Pd(III) complexes and subsequent C-X reductive elimination from the resulting binuclear Pd(III) complexes have confirmed the viability of C-X bond-forming reactions mediated by binuclear Pd(III) complexes. Metal-metal bond formation, which proceeds concurrently with oxidation of binuclear Pd(II) complexes, can lower the activation barrier for oxidation. We also discuss experimental and theoretical work that suggests that C-X reductive elimination is also facilitated by redox cooperation of both metals during reductive elimination. The effect of ligand modification on the structure and reactivity of binuclear Pd(III) complexes will be presented in light of the impact that ligand structure can exert on the structure and reactivity of binuclear Pd(III) complexes. Historically, oxidation reactions similar to those discussed here have been proposed to proceed via mononuclear Pd(IV) intermediates, and the hypothesis of mononuclear Pd

  15. Using a redox-sensitive phosphorescent probe for optical evaluation of an intracellular redox environment.

    Science.gov (United States)

    Liu, Shujuan; Zhou, Na; Chen, Zejing; Wei, Huanjie; Zhu, Yana; Guo, Song; Zhao, Qiang

    2017-01-01

    A reducing intracellular environment is necessary for living cells. Here a redox-sensitive phosphorescent probe Ir-NO has been developed for evaluating the redox environment in living cells. Upon addition of reducing molecules, such as glutathione and ascorbic acid, the phosphorescent intensity of the probe is turned on, and the emission lifetime is elongated evidently. Furthermore, this probe has been used for optical imaging of the intracellular reducing environment by utilizing confocal laser scanning microscopy and phosphorescence lifetime imaging microscopy.

  16. Redox models in chemistry :  A depiction of the conceptions held by secondary school students of redox reactions

    OpenAIRE

    Österlund, Lise-Lotte

    2010-01-01

    According to previous research, students show difficulties in learning redox reactions. By the historical development different redox models exist to explain redox reactions, the oxygen model, the hydrogen model, the electron model and the oxidation number model. This thesis reports about three studies concerning conceptions held by secondary school students of redox reactions. A textbook analysis is also included in the thesis. The first study was an investigation of the students’ use of red...

  17. Mesoporous tungsten oxynitride as electrocatalyst for promoting redox reactions of vanadium redox couple and performance of vanadium redox flow battery

    Science.gov (United States)

    Lee, Wonmi; Jo, Changshin; Youk, Sol; Shin, Hun Yong; Lee, Jinwoo; Chung, Yongjin; Kwon, Yongchai

    2018-01-01

    For enhancing the performance of vanadium redox flow battery (VRFB), a sluggish reaction rate issue of V2+/V3+ redox couple evaluated as the rate determining reaction should be addressed. For doing that, mesoporous tungsten oxide (m-WO3) and oxyniride (m-WON) structures are proposed as the novel catalysts, while m-WON is gained by NH3 heat treatment of m-WO3. Their specific surface area, crystal structure, surface morphology and component analysis are measured using BET, XRD, TEM and XPS, while their catalytic activity for V2+/V3+ redox reaction is electrochemically examined. As a result, the m-WON shows higher peak current, smaller peak potential difference, higher electron transfer rate constant and lower charge transfer resistance than other catalysts, like the m-WO3, WO3 nanoparticle and mesoporous carbon, proving that it is superior catalyst. Regarding the charge-discharge curve tests, the VRFB single cell employing the m-WON demonstrates high voltage and energy efficiencies, high specific capacity and low capacity loss rate. The excellent results of m-WON are due to the reasons like (i) reduced energy band gap, (ii) reaction familiar surface functional groups and (ii) greater electronegativity.

  18. Anion permselective membrane. [For redox fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, S.S.; Hodgdon, R.B.

    1978-01-01

    Experimental anion permeselective membranes were improved and characterized for use as separators in a chemical redox, power storage cell being developed at the NASA Lewis Research Center. The goal of minimal Fe/sup +3/ ion transfer was achieved for each candidate membrane system. Minimal membrane resistivity was demonstrated by reduction of film thickness using synthetic backing materials but usefulness of thin membranes was limited by the scarcity of compatible fabrics. The most durable and useful backing fabrics were modacrylics. One membrane, a copolymer of 4 vinylpyridine and vinyl benzylchloride was outstanding in overall electrochemical and physical properties. Long term (1000 hrs) membrane chemical and thermal durability in redox environment was shown by three candidate polymers and two membranes. The remainder had good durability at ambient temperature. Manufacturing capability was demonstrated for large scale production of membrane sheets 5.5 ft/sup 2/ in area for two candidate systems.

  19. Redox pioneer:Professor Christine Helen Foyer.

    Science.gov (United States)

    Del Río, Luis A

    2011-10-15

    Dr. Christine Foyer (B.Sc. 1974; Ph.D. 1977) is recognized here as a Redox Pioneer because she has published an article on redox biology that has been cited more than 1000 times, 4 other articles that have been cited more than 500 times, and a further 32 articles that have been each cited more than 100 times. During her Ph.D. at the Kings College, University of London, United Kingdom, Dr. Foyer discovered that ascorbate and glutathione and enzymes linking NADPH, glutathione, and ascorbate are localized in isolated chloroplast preparations. These observations pioneered the discovery of the ascorbate-glutathione cycle, now known as Foyer-Halliwell-Asada pathway after the names of the three major contributors, a crucial mechanism for H(2)O(2) metabolism in both animals and plants. Dr. Foyer has made a very significant contribution to our current understanding of the crucial roles of ascorbate and glutathione in redox biology, particularly in relation to photosynthesis, respiration, and chloroplast and mitochondrial redox signaling networks. "My view is that science…is compulsive and you have to keep with it all the time and not get despondent when things do not work well. Being passionate about science is what carries you through the hard times so that it isn't so much work, as a hobby that you do for a living. It is the thrill of achieving a better understanding and finding real pleasure in putting new ideas together, explaining data and passing on knowledge that keeps you going no matter what!" --Prof. Christine Helen Foyer.

  20. Chronopotentiometric determination of redox states of peptides

    Czech Academy of Sciences Publication Activity Database

    Dorčák, Vlastimil; Paleček, Emil

    2007-01-01

    Roč. 19, č. 23 (2007), s. 2405-2412 ISSN 1040-0397 R&D Projects: GA AV ČR(CZ) IAA500040513; GA ČR(CZ) GA301/07/0490; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : peptide redox states * constant current chronopotentiometry * catalytic hydrogen evolution Subject RIV: BO - Biophysics Impact factor: 2.949, year: 2007

  1. Electrochemical determination of thioredoxin redox states

    Czech Academy of Sciences Publication Activity Database

    Dorčák, Vlastimil; Paleček, Emil

    2009-01-01

    Roč. 81, č. 4 (2009), s. 1543-1548 ISSN 0003-2700 R&D Projects: GA AV ČR(CZ) KAN400310651; GA ČR(CZ) GA301/07/0490; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : thioredoxin redox states * constant current chronopotentiometric stripping * carbon and mercury electrodes Subject RIV: BO - Biophysics Impact factor: 5.214, year: 2009

  2. Measurement of Redox Potential in Nanoecotoxicological Investigations

    Directory of Open Access Journals (Sweden)

    Ratna Tantra

    2012-01-01

    Full Text Available Redox potential has been identified by the Organisation for Economic Co-operation and Development (OECD as one of the parameters that should be investigated for the testing of manufactured nanomaterials. There is still some ambiguity concerning this parameter, i.e., as to what and how to measure, particularly when in a nanoecotoxicological context. In this study the redox potentials of six nanomaterials (either zinc oxide (ZnO or cerium oxide (CeO2 dispersions were measured using an oxidation-reduction potential (ORP electrode probe. The particles under testing differed in terms of their particle size and dispersion stability in deionised water and in various ecotox media. The ORP values of the various dispersions and how they fluctuate relative to each other are discussed. Results show that the ORP values are mainly governed by the type of liquid media employed, with little contributions from the nanoparticles. Seawater was shown to have reduced the ORP value, which was attributed to an increase in the concentration of reducing agents such as sulphites or the reduction of dissolved oxygen concentration. The lack of redox potential value contribution from the particles themselves is thought to be due to insufficient interaction of the particles at the Pt electrode of the ORP probe.

  3. Redox Regulation in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Sonam Parakh

    2013-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a neurodegenerative disease that results from the death of upper and lower motor neurons. Due to a lack of effective treatment, it is imperative to understand the underlying mechanisms and processes involved in disease progression. Regulations in cellular reduction/oxidation (redox processes are being increasingly implicated in disease. Here we discuss the possible involvement of redox dysregulation in the pathophysiology of ALS, either as a cause of cellular abnormalities or a consequence. We focus on its possible role in oxidative stress, protein misfolding, glutamate excitotoxicity, lipid peroxidation and cholesterol esterification, mitochondrial dysfunction, impaired axonal transport and neurofilament aggregation, autophagic stress, and endoplasmic reticulum (ER stress. We also speculate that an ER chaperone protein disulphide isomerase (PDI could play a key role in this dysregulation. PDI is essential for normal protein folding by oxidation and reduction of disulphide bonds, and hence any disruption to this process may have consequences for motor neurons. Addressing the mechanism underlying redox regulation and dysregulation may therefore help to unravel the molecular mechanism involved in ALS.

  4. Measurement of redox potential in nanoecotoxicological investigations.

    Science.gov (United States)

    Tantra, Ratna; Cackett, Alex; Peck, Roger; Gohil, Dipak; Snowden, Jacqueline

    2012-01-01

    Redox potential has been identified by the Organisation for Economic Co-operation and Development (OECD) as one of the parameters that should be investigated for the testing of manufactured nanomaterials. There is still some ambiguity concerning this parameter, i.e., as to what and how to measure, particularly when in a nanoecotoxicological context. In this study the redox potentials of six nanomaterials (either zinc oxide (ZnO) or cerium oxide (CeO(2))) dispersions were measured using an oxidation-reduction potential (ORP) electrode probe. The particles under testing differed in terms of their particle size and dispersion stability in deionised water and in various ecotox media. The ORP values of the various dispersions and how they fluctuate relative to each other are discussed. Results show that the ORP values are mainly governed by the type of liquid media employed, with little contributions from the nanoparticles. Seawater was shown to have reduced the ORP value, which was attributed to an increase in the concentration of reducing agents such as sulphites or the reduction of dissolved oxygen concentration. The lack of redox potential value contribution from the particles themselves is thought to be due to insufficient interaction of the particles at the Pt electrode of the ORP probe.

  5. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress

    Directory of Open Access Journals (Sweden)

    Hossain eSazzad

    2016-05-01

    Full Text Available Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g. the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH, alternative oxidase (AOX, the plastid terminal oxidase (PTOX and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.

  6. Redox Paradox: A Novel Approach to Therapeutics-Resistant Cancer.

    Science.gov (United States)

    Chaiswing, Luksana; St Clair, William H; St Clair, Daret K

    2018-02-21

    Cancer cells that are resistant to radiation and chemotherapy are a major problem limiting the success of cancer therapy. Aggressive cancer cells depend on elevated intracellular levels of reactive oxygen species (ROS) to proliferate, self-renew, and metastasize. As a result, these aggressive cancers maintain high basal levels of ROS compared with normal cells. The prominence of the redox state in cancer cells led us to consider whether increasing the redox state to the condition of oxidative stress could be used as a successful adjuvant therapy for aggressive cancers. Recent Advances: Past attempts using antioxidant compounds to inhibit ROS levels in cancers as redox-based therapy have met with very limited success. However, recent clinical trials using pro-oxidant compounds reveal noteworthy results, which could have a significant impact on the development of strategies for redox-based therapies. The major objective of this review is to discuss the role of the redox state in aggressive cancers and how to utilize the shift in redox state to improve cancer therapy. We also discuss the paradox of redox state parameters; that is, hydrogen peroxide (H 2 O 2 ) as the driver molecule for cancer progression as well as a target for cancer treatment. Based on the biological significance of the redox state, we postulate that this system could potentially be used to create a new avenue for targeted therapy, including the potential to incorporate personalized redox therapy for cancer treatment. Antioxid. Redox Signal. 00, 000-000.

  7. Characterisation of the Redox Sensitive NMDA Receptor

    KAUST Repository

    Alzahrani, Ohood

    2016-05-01

    Glucose entry into the brain and its subsequent metabolism to L-lactate, regulated by astrocytes, plays a major role in synaptic plasticity and memory formation. A recent study has shown that L-lactate produced by the brain upon stimulation of glycolysis, and glycogen-derived L-lactate from astrocytes and its transport into neurons, is crucial for memory formation. A recent study revealed the molecular mechanisms that underlie the role of L-lactate in neuronal plasticity and long-term memory formation. L-lactate was shown to induce a cascade of molecular events via modulation of redox-sensitive N-Methyl-D-aspartate (NMDA) receptor activity that was mimicked by nicotinamide adenine dinucleotide hydride (NADH) co-enzyme. This indicated that changes in cellular redox state, following L-lactate transport inside the cells and its subsequent metabolism, production of NADH, and favouring a reduced state are the key effects of L-lactate. Therefore, we are investigating the role of L-lactate in modulating NMDA receptor function via redox modulatory sites. Accordingly, crucial redox-sensitive cysteine residues, Cys320 and Cys87, of the NR2A NMDA receptor subunit are mutated using site-directed mutation, transfected, and expressed in HEK293 cells. This cellular system will then be used to characterise and monitor its activity upon Llactate stimulation, compared to the wild type. This will be achieved by calcium imaging, using fluorescent microscopy. Our data shows that L-lactate potentiated NMDA receptor activity and increased intracellular calcium influx in NR1/NR2A wild type compared to the control condition (WT NR1/NR2A perfused with (1μM) glutamate and (1μM) glycine agonist only), showing faster response initiation and slower decay rate of the calcium signal to the baseline. Additionally, stimulating with L-lactate associated with greater numbers of cells having high fluorescent intensity (peak amplitude) compared to the control. Furthermore, L-lactate rescued the

  8. Multiple redox states of multiheme cytochromes may enable bacterial response to changing redox environments

    Science.gov (United States)

    Arbour, T.; Wrighton, K. C.; Mullin, S. W.; Castelle, C.; Luef, B.; Gilbert, B.; Banfield, J. F.

    2013-12-01

    Multiheme c-type cytochromes (MHCs) are key components in electron-transport pathways that enable some microorganisms to transfer electron byproducts of metabolism to a variety of minerals. As a response to changes in mineral redox potential, microbial communities may shift their membership, or individual organisms may adjust protein expression. Alternatively, the ability to respond may be conferred by the innate characteristics of certain electron-transport-chain components. Here, we used potentiostat-controlled microbial fuel cells (MFCs) to measure the timescale of response to imposed changes in redox conditions, thus placing constraints on the importance of these different mechanisms. In the experiments, a solid electrode acts as an electron-accepting mineral whose redox potential can be precisely controlled. We inoculated duplicate MFCs with a sediment/groundwater mixture from an aquifer at Rifle, Colorado, supplied acetate as an electron donor, and obtained stable, mixed-species biofilms dominated by Geobacter and a novel Geobacter-related family. We poised the anode at potentials spanning the range of natural Fe(III)-reduction, then performed cyclic voltammetry (CV) to characterize the overall biofilm redox signature. The apparent biofilm midpoint potential shifted directly with anode set potential when the latter was changed within the range from about -250 to -50 mV vs. SHE. Following a jump in set potential by 200 mV, the CV-midpoint shift by ~100 mV over a timescale of ~30 minutes to a few hours, depending on the direction of the potential change. The extracellular electron transfer molecules, whose overall CV signature is very similar to those of purified MHCs, appear to span a broad redox range (~200 mV), supporting the hypothesis that MHCs confer substantial redox flexibility. This flexibility may be a principle reason for the abundance of MHCs expressed by microorganisms capable of extracellular electron transfer to minerals.

  9. Sepiapterin Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells*

    Science.gov (United States)

    Yang, Shaojun; Jan, Yi-Hua; Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2013-01-01

    In the lung, chemical redox cycling generates highly toxic reactive oxygen species that can cause alveolar inflammation and damage to the epithelium, as well as fibrosis. In this study, we identified a cytosolic NADPH-dependent redox cycling activity in mouse lung epithelial cells as sepiapterin reductase (SPR), an enzyme important for the biosynthesis of tetrahydrobiopterin. Human SPR was cloned and characterized. In addition to reducing sepiapterin, SPR mediated chemical redox cycling of bipyridinium herbicides and various quinones; this activity was greatest for 1,2-naphthoquinone followed by 9,10-phenanthrenequinone, 1,4-naphthoquinone, menadione, and 2,3-dimethyl-1,4-naphthoquinone. Whereas redox cycling chemicals inhibited sepiapterin reduction, sepiapterin had no effect on redox cycling. Additionally, inhibitors such as dicoumarol, N-acetylserotonin, and indomethacin blocked sepiapterin reduction, with no effect on redox cycling. Non-redox cycling quinones, including benzoquinone and phenylquinone, were competitive inhibitors of sepiapterin reduction but noncompetitive redox cycling inhibitors. Site-directed mutagenesis of the SPR C-terminal substrate-binding site (D257H) completely inhibited sepiapterin reduction but had minimal effects on redox cycling. These data indicate that SPR-mediated reduction of sepiapterin and redox cycling occur by distinct mechanisms. The identification of SPR as a key enzyme mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. This activity, together with inhibition of sepiapterin reduction by redox-active chemicals and consequent deficiencies in tetrahydrobiopterin, may contribute to tissue injury. PMID:23640889

  10. Liquid Redox Electrolytes for Dye-Sensitized Solar Cells

    OpenAIRE

    Yu, Ze

    2012-01-01

    This thesis focuses on liquid redox electrolytes in dye-sensitized solar cells (DSCs). A liquid redox electrolyte, as one of the key constituents in DSCs, typically consists of a redox mediator, additives and a solvent. This thesis work concerns all these three aspects of liquid electrolytes, aiming through fundamental insights to enhance the photovoltaic performances of liquid DSCs. Initial attention has been paid to the iodine concentration effects in ionic liquid (IL)-based electrolytes. I...

  11. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Paulenova, Alena [Principal Investigator; Vandegrift, III, George F. [Collaborator

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  12. Dimensional behavior of Ni-YSZ composites during redox cycling

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Kaiser, Andreas; Larsen, Peter Halvor

    2009-01-01

    The dimensional behavior of Ni-yttria-stabilized zirconia (YSZ) cermets during redox cycling was tested in dilatometry within the temperature range 600-1000 degrees C. The effect Of humidity oil redox stability was investigated at intermediate and low temperatures. We show that both the sintering...... of nickel depending on temperature of the initial reduction and the operating conditions, and the temperature of reoxidation are very important for the size of the dimensional change. Cumulative redox strain (CRS) is shown to be correlated with temperature. Measured maximum CRS after three redox cycles...

  13. Biogeochemical redox processes and their impact on contaminant dynamics

    Science.gov (United States)

    Borch, Thomas; Kretzschmar, Ruben; Kappler, Andreas; Van Cappellen, Philippe; Ginder-Vogel, Matthew; Campbell, Kate M.

    2010-01-01

    Life and element cycling on Earth is directly related to electron transfer (or redox) reactions. An understanding of biogeochemical redox processes is crucial for predicting and protecting environmental health and can provide new opportunities for engineered remediation strategies. Energy can be released and stored by means of redox reactions via the oxidation of labile organic carbon or inorganic compounds (electron donors) by microorganisms coupled to the reduction of electron acceptors including humic substances, iron-bearing minerals, transition metals, metalloids, and actinides. Environmental redox processes play key roles in the formation and dissolution of mineral phases. Redox cycling of naturally occurring trace elements and their host minerals often controls the release or sequestration of inorganic contaminants. Redox processes control the chemical speciation, bioavailability, toxicity, and mobility of many major and trace elements including Fe, Mn, C, P, N, S, Cr, Cu, Co, As, Sb, Se, Hg, Tc, and U. Redox-active humic substances and mineral surfaces can catalyze the redox transformation and degradation of organic contaminants. In this review article, we highlight recent advances in our understanding of biogeochemical redox processes and their impact on contaminant fate and transport, including future research needs.

  14. Exercise redox biochemistry: Conceptual, methodological and technical recommendations

    Directory of Open Access Journals (Sweden)

    James N. Cobley

    2017-08-01

    Full Text Available Exercise redox biochemistry is of considerable interest owing to its translational value in health and disease. However, unaddressed conceptual, methodological and technical issues complicate attempts to unravel how exercise alters redox homeostasis in health and disease. Conceptual issues relate to misunderstandings that arise when the chemical heterogeneity of redox biology is disregarded: which often complicates attempts to use redox-active compounds and assess redox signalling. Further, that oxidised macromolecule adduct levels reflect formation and repair is seldom considered. Methodological and technical issues relate to the use of out-dated assays and/or inappropriate sample preparation techniques that confound biochemical redox analysis. After considering each of the aforementioned issues, we outline how each issue can be resolved and provide a unifying set of recommendations. We specifically recommend that investigators: consider chemical heterogeneity, use redox-active compounds judiciously, abandon flawed assays, carefully prepare samples and assay buffers, consider repair/metabolism, use multiple biomarkers to assess oxidative damage and redox signalling. Keywords: Exercise, Oxidative stress, Free radical, Antioxidants, Redox signalling

  15. Redox-mediated quorum sensing in plants.

    Science.gov (United States)

    Fuller, Alexandra W; Young, Phoebe; Pierce, B Daniel; Kitson-Finuff, Jamie; Jain, Purvi; Schneider, Karl; Lazar, Stephen; Taran, Olga; Palmer, Andrew G; Lynn, David G

    2017-01-01

    The rhizosphere, the narrow zone of soil around plant roots, is a complex network of interactions between plants, bacteria, and a variety of other organisms. The absolute dependence on host-derived signals, or xenognosins, to regulate critical developmental checkpoints for host commitment in the obligate parasitic plants provides a window into the rhizosphere's chemical dynamics. These sessile intruders use H2O2 in a process known as semagenesis to chemically modify the mature root surfaces of proximal host plants and generate p-benzoquinones (BQs). The resulting redox-active signaling network regulates the spatial and temporal commitments necessary for host attachment. Recent evidence from non-parasites, including Arabidopsis thaliana, establishes that reactive oxygen species (ROS) production regulates similar redox circuits related to root recognition, broadening xenognosins' role beyond the parasites. Here we compare responses to the xenognosin dimethoxybenzoquinone (DMBQ) between the parasitic plant Striga asiatica and the non-parasitic A. thaliana. Exposure to DMBQ simulates the proximity of a mature root surface, stimulating an increase in cytoplasmic Ca2+ concentration in both plants, but leads to remarkably different phenotypic responses in the parasite and non-parasite. In S. asiatica, DMBQ induces development of the host attachment organ, the haustorium, and decreases ROS production at the root tip, while in A. thaliana, ROS production increases and further growth of the root tip is arrested. Obstruction of Ca2+ channels and the addition of antioxidants both lead to a decrease in the DMBQ response in both parasitic and non-parasitic plants. These results are consistent with Ca2+ regulating the activity of NADPH oxidases, which in turn sustain the autocatalytic production of ROS via an external quinone/hydroquinone redox cycle. Mechanistically, this chemistry is similar to black and white photography with the emerging dynamic reaction-diffusion network

  16. Redox-mediated quorum sensing in plants.

    Directory of Open Access Journals (Sweden)

    Alexandra W Fuller

    Full Text Available The rhizosphere, the narrow zone of soil around plant roots, is a complex network of interactions between plants, bacteria, and a variety of other organisms. The absolute dependence on host-derived signals, or xenognosins, to regulate critical developmental checkpoints for host commitment in the obligate parasitic plants provides a window into the rhizosphere's chemical dynamics. These sessile intruders use H2O2 in a process known as semagenesis to chemically modify the mature root surfaces of proximal host plants and generate p-benzoquinones (BQs. The resulting redox-active signaling network regulates the spatial and temporal commitments necessary for host attachment. Recent evidence from non-parasites, including Arabidopsis thaliana, establishes that reactive oxygen species (ROS production regulates similar redox circuits related to root recognition, broadening xenognosins' role beyond the parasites. Here we compare responses to the xenognosin dimethoxybenzoquinone (DMBQ between the parasitic plant Striga asiatica and the non-parasitic A. thaliana. Exposure to DMBQ simulates the proximity of a mature root surface, stimulating an increase in cytoplasmic Ca2+ concentration in both plants, but leads to remarkably different phenotypic responses in the parasite and non-parasite. In S. asiatica, DMBQ induces development of the host attachment organ, the haustorium, and decreases ROS production at the root tip, while in A. thaliana, ROS production increases and further growth of the root tip is arrested. Obstruction of Ca2+ channels and the addition of antioxidants both lead to a decrease in the DMBQ response in both parasitic and non-parasitic plants. These results are consistent with Ca2+ regulating the activity of NADPH oxidases, which in turn sustain the autocatalytic production of ROS via an external quinone/hydroquinone redox cycle. Mechanistically, this chemistry is similar to black and white photography with the emerging dynamic reaction

  17. Redox polymer mediation for enzymatic biofuel cells

    Science.gov (United States)

    Gallaway, Joshua

    Mediated biocatalytic cathodes prepared from the oxygen-reducing enzyme laccase and redox-conducting osmium hydrogels were characterized for use as cathodes in enzymatic biofuel cells. A series of osmium-based redox polymers was synthesized with redox potentials spanning the range from 0.11 V to 0.85 V (SHE), and the resulting biocatalytic electrodes were modeled to determine reaction kinetic constants using the current response, measured osmium concentration, and measured apparent electron diffusion. As in solution-phase systems, the bimolecular rate constant for mediation was found to vary greatly with mediator potential---from 250 s-1M-1 when mediator and enzyme were close in potential to 9.4 x 10 4 s-1M-1 when this overpotential was large. Optimum mediator potential for a cell operating with a non-limiting platinum anode and having no mass transport limitation from bulk solution was found to be 0.66 V (SHE). Redox polymers were synthesized under different concentrations, producing osmium variation. An increase from 6.6% to 7.2% osmium increased current response from 1.2 to 2.1 mA/cm2 for a planar film in 40°C oxygen-saturated pH 4 buffer, rotating at 900 rpm. These results translated to high surface area electrodes, nearly doubling current density to 13 mA/cm2, the highest to date for such an electrode. The typical fungal laccase from Trametes versicolor was replaced by a bacterially-expressed small laccase from Streptomyces coelicolor, resulting in biocatalytic films that reduced oxygen at increased pH, with full functionality at pH 7, producing 1.5 mA/cm 2 in planar configuration. Current response was biphasic with pH, matching the activity profile of the free enzyme in solution. The mediated enzyme electrode system was modeled with respect to apparent electron diffusion, mediator concentration, and transport of oxygen from bulk solution, all of which are to some extent controlled by design. Each factor was found to limit performance in certain circumstances

  18. Aqueous electrolytes for redox flow battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tianbiao; Li, Bin; Wei, Xiaoliang; Nie, Zimin; Wang, Wei; Liu, Jun; Sprenkle, Vincent L.

    2017-10-17

    An aqueous redox flow battery system includes an aqueous catholyte and an aqueous anolyte. The aqueous catholyte may comprise (i) an optionally substituted thiourea or a nitroxyl radical compound and (ii) a catholyte aqueous supporting solution. The aqueous anolyte may comprise (i) metal cations or a viologen compound and (ii) an anolyte aqueous supporting solution. The catholyte aqueous supporting solution and the anolyte aqueous supporting solution independently may comprise (i) a proton source, (ii) a halide source, or (iii) a proton source and a halide source.

  19. Sedimentary cobalt concentrations track marine redox evolution

    Science.gov (United States)

    Swanner, Elizabeth; Planavsky, Noah; Lalonde, Stefan; Robbins, Jamie; Bekker, Andrey; Rouxel, Olivier; Konhauser, Kurt O.; Mojzsis, Stephen J.

    2013-04-01

    Oxygen production by photosynthesis drove the redox evolution of the atmosphere and ocean. Primary productivity by oxygenic photosynthesizers in the modern surface ocean is limited by trace nutrients such as iron, but previous studies have also observed high Co uptake associated with natural cyanobacterial populations. Constraining the size and variation of the oceanic reservoir of Co through time will help to understand the regulation of primary productivity and hence oxygenation through time. In this study, Co concentrations from iron formations (IF), shales and marine pyrites deposited over nearly 4 billion years of Earth's history are utilized to reconstruct secular changes in the mechanisms of Co removal from the oceanic reservoir. The Co reservoir prior to ~2 Ga was dominated by hydrothermal inputs and Fe(III)oxyhydroxides were likely involved in the removal of Co from the water column. Fe(II) oxidation in the water column resulted in the deposition of IF in the Archean and Paleoproterozoic, and the Co inventory of IF records a large oceanic reservoir of Co during this time. Lower Co concentrations in sediments during the Middle Proterozoic signify a decrease in the oceanic reservoir due to the expansion euxinic environments, corresponding to the results of previous studies. A transition to an oxidized deep ocean in the Phanerozoic is evidenced by correlation between Co and manganese (Mn) concentrations in hydrothermal and exhalative deposits, and in marine pyrites. This relationship between Co and Mn, signifying deposition of Co in association with Mn(IV)oxides, does not occur in the Precambrian. Mn(II) oxidation occurs at higher redox potentials than that required for Fe(II) oxidation, and the extent of Mn redox cycling prior to full ventilation of the oceans at the end of the Neoproterozoic was likely limited to spatially restricted oxic surface waters. In this regard, Co is another valuable redox proxy for tracking the growth and decline in oxygenated

  20. Redox-active and Redox-silent Compounds: Synergistic Therapeutics in Cancer

    Czech Academy of Sciences Publication Activity Database

    Tomasetti, M.; Santarelli, L.; Alleva, R.; Dong, L.F.; Neužil, Jiří

    2015-01-01

    Roč. 22, č. 5 (2015), s. 552-568 ISSN 0929-8673 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Apoptosis * autophagy * redox-active agents Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.455, year: 2015

  1. Salt stress affects the redox status of Arabidopsis root meristems

    Directory of Open Access Journals (Sweden)

    Keni eJiang

    2016-02-01

    Full Text Available We report the redox status (profiles for specific populations of cells that comprise the Arabidopsis root tip. For recently germinated, 3-5-day-old seedlings we show that the region of the root tip with the most reduced redox status includes the root cap initials, the quiescent center and the most distal portion of the proximal meristem, and coincides with (overlays the region of the auxin maximum. As one moves basally, further into the proximal meristem, and depending on the growth conditions, the redox status becomes more oxidized, with a 5-10 mV difference in redox potential between the two borders delimiting the proximal meristem. At the point on the root axis at which cells of the proximal meristem cease division and enter the transition zone, the redox potential levels off and remains more or less unchanged throughout the transition zone. As cells leave the transition zone and enter the zone of elongation the redox potentials become more oxidized. Treating roots with salt (50, 100 and 150 mM NaCl results in marked changes in root meristem structure and development, and is preceded by changes in the redox profile, which flattens, and initially becomes more oxidized, with pronounced changes in the redox potentials of the root cap, the root cap initials and the quiescent center. Roots exposed to relatively mild levels of salt (< 100 mM are able to re-establish a normal, pre-salt treatment redox profile 3-6 days after exposure to salt. Coincident with the salt-associated changes in redox profiles are changes in the distribution of auxin transporters (AUX1, PIN1/2, which become more diffuse in their localization. We conclude that salt stress affects root meristem maintenance, in part, through changes in redox and auxin transport.

  2. Redox regulation of mammalian sperm capacitation

    Directory of Open Access Journals (Sweden)

    Cristian O′Flaherty

    2015-01-01

    Full Text Available Capacitation is a series of morphological and metabolic changes necessary for the spermatozoon to achieve fertilizing ability. One of the earlier happenings during mammalian sperm capacitation is the production of reactive oxygen species (ROS that will trigger and regulate a series of events including protein phosphorylation, in a time-dependent fashion. The identity of the sperm oxidase responsible for the production of ROS involved in capacitation is still elusive, and several candidates are discussed in this review. Interestingly, ROS-induced ROS formation has been described during human sperm capacitation. Redox signaling during capacitation is associated with changes in thiol groups of proteins located on the plasma membrane and subcellular compartments of the spermatozoon. Both, oxidation of thiols forming disulfide bridges and the increase on thiol content are necessary to regulate different sperm proteins associated with capacitation. Reducing equivalents such as NADH and NADPH are necessary to support capacitation in many species including humans. Lactate dehydrogenase, glucose-6-phospohate dehydrogenase, and isocitrate dehydrogenase are responsible in supplying NAD (P H for sperm capacitation. Peroxiredoxins (PRDXs are newly described enzymes with antioxidant properties that can protect mammalian spermatozoa; however, they are also candidates for assuring the regulation of redox signaling required for sperm capacitation. The dysregulation of PRDXs and of enzymes needed for their reactivation such as thioredoxin/thioredoxin reductase system and glutathione-S-transferases impairs sperm motility, capacitation, and promotes DNA damage in spermatozoa leading to male infertility.

  3. Redox regulation of photosynthetic gene expression.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine H

    2012-12-19

    Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in low molecular weight antioxidant were therefore compared to determine how different antioxidant systems that process hydrogen peroxide influence transcripts encoding proteins targeted to the chloroplasts or mitochondria. Less than 10 per cent overlap was observed in the transcriptome patterns of leaves that are deficient in either photorespiratory (catalase (cat)2) or chloroplastic (thylakoid ascorbate peroxidase (tapx)) hydrogen peroxide processing. Transcripts encoding photosystem II (PSII) repair cycle components were lower in glutathione-deficient leaves, as were the thylakoid NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) dehydrogenases (NDH) mRNAs. Some thylakoid NDH mRNAs were also less abundant in tAPX-deficient and ascorbate-deficient leaves. Transcripts encoding the external and internal respiratory NDHs were increased by low glutathione and low ascorbate. Regulation of transcripts encoding specific components of the photosynthetic and respiratory electron transport chains by hydrogen peroxide, ascorbate and glutathione may serve to balance non-cyclic and cyclic electron flow pathways in relation to oxidant production and reductant availability.

  4. Redox regulation of mammalian sperm capacitation

    Science.gov (United States)

    O’Flaherty, Cristian

    2015-01-01

    Capacitation is a series of morphological and metabolic changes necessary for the spermatozoon to achieve fertilizing ability. One of the earlier happenings during mammalian sperm capacitation is the production of reactive oxygen species (ROS) that will trigger and regulate a series of events including protein phosphorylation, in a time-dependent fashion. The identity of the sperm oxidase responsible for the production of ROS involved in capacitation is still elusive, and several candidates are discussed in this review. Interestingly, ROS-induced ROS formation has been described during human sperm capacitation. Redox signaling during capacitation is associated with changes in thiol groups of proteins located on the plasma membrane and subcellular compartments of the spermatozoon. Both, oxidation of thiols forming disulfide bridges and the increase on thiol content are necessary to regulate different sperm proteins associated with capacitation. Reducing equivalents such as NADH and NADPH are necessary to support capacitation in many species including humans. Lactate dehydrogenase, glucose-6-phospohate dehydrogenase, and isocitrate dehydrogenase are responsible in supplying NAD (P) H for sperm capacitation. Peroxiredoxins (PRDXs) are newly described enzymes with antioxidant properties that can protect mammalian spermatozoa; however, they are also candidates for assuring the regulation of redox signaling required for sperm capacitation. The dysregulation of PRDXs and of enzymes needed for their reactivation such as thioredoxin/thioredoxin reductase system and glutathione-S-transferases impairs sperm motility, capacitation, and promotes DNA damage in spermatozoa leading to male infertility. PMID:25926608

  5. Dissolution of UO2 in redox conditions

    International Nuclear Information System (INIS)

    Casas, I.; Pablo de, J.; Rovira, M.

    1998-01-01

    The performance assessment of the final disposal of the spent nuclear fuel in geological formations is strongly dependent on the spent fuel matrix dissolution. Unirradiated uranium (IV) dioxide has shown to be very useful for such purposes. The stability of UO 2 is very dependent on vault redox conditions. At reducing conditions, which are expected in deep groundwaters, the dissolution of the UO 2 -matrix can be explained in terms of solubility, while under oxidizing conditions, the UO 2 is thermodynamically unstable and the dissolution is kinetically controlled. In this report the parameters which affect the uranium solubility under reducing conditions, basically pH and redox potential are discussed. Under oxidizing conditions, UO 2 dissolution rate equations as a function of pH, carbonate concentration and oxidant concentration are reported. Dissolution experiments performed with spent fuel are also reviewed. The experimental equations presented in this work, have been used to model independent dissolution experiments performed with both unirradiated and irradiated UO 2 . (Author)

  6. Redox characterization of functioning skeletal muscle

    Directory of Open Access Journals (Sweden)

    Li eZuo

    2015-11-01

    Full Text Available Skeletal muscle physiology is influenced by the presence of chemically reactive molecules such as reactive oxygen species (ROS. These molecules regulate multiple redox-sensitive signaling pathways that play a critical role in cellular processes including gene expression and protein modification. While ROS have gained much attention for their harmful effects in muscle fatigue and dysfunction, research has also shown ROS to facilitate muscle adaptation after stressors such as physical exercise. This manuscript aims to provide a comprehensive review of the current understanding of redox signaling in skeletal muscle. ROS-induced oxidative stress and its role in the aging process are discussed. Mitochondria have been shown to generate large amounts of ROS during muscular contractions, and thus are susceptible to oxidative stress. ROS can modify proteins located in the mitochondrial membrane leading to cell death and osmotic swelling. ROS also contribute to the necrosis and inflammation of muscle fibers that is associated with muscular diseases including Duchenne muscular dystrophy (DMD. It is imperative that future research continues to investigate the exact role of ROS in normal skeletal muscle function as well as muscular dysfunction and disease.

  7. Redox zones of a landfill leachate pollution plume (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Lyngkilde, John; Christensen, Thomas Højlund

    1992-01-01

    , ferrogenic, nitrate-reducing and aerobic environments overa distance of 370 m. This redox zone sequence is consistent with thermodynamical principles and is closely matched by the leachate plume determined by the chloride plume distribution. The redox zone sequence is believed to be key in controlling...

  8. Development of redox stable, multifunctional substrates for anode supported SOFCS

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Foghmoes, Søren Preben Vagn; Ramos, Tania

    2017-01-01

    upon redox cycling, while other properties such as catalytic activity for methane reforming and/or water gas shift, thermal conductivity in addition to electronic conductivity for current pickup are highly wanted for SOFC applications. In order to combine the advantages of a redox stable anode...

  9. Investigation of activity and selectivity of redox catalysts in oxidative ...

    African Journals Online (AJOL)

    In this study, oxidative coupling of methane on Redox catalysts in fluidized bed reactor was investigated. For this purpose, the catalyst Mn-Na2WO4/SiO2 was selected as a Redox catalyst. In order to investigate this catalyst, transient state experiments were designed and performed. Then, the different reaction conditions on ...

  10. Redox Impact on Starch Biosynthetic Enzymes in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Skryhan, Katsiaryna

    Summary The thesis provides new insight into the influence of the plant cell redox state on the transient starch metabolism in Arabidopsis thaliana with a focus on starch biosynthetic enzymes. Two main hypotheses forms the basis of this thesis: 1) photosynthesis and starch metabolism...... are coordinated by the redox state of the cell via post-translational modification of the starch metabolic enzymes containing redox active cysteine residues and these cysteine residues became cross-linked upon oxidation providing a conformational change leading to activity loss; 2) cysteine residues...... of chloroplast enzymes can play a role not only in enzyme activity and redox sensitivity but also in protein folding and stability upon oxidation. Several redox sensitive enzymes identified in this study can serve as potential targets to control the carbon flux to and from starch during the day and night...

  11. Redox-Based Regulation of Bacterial Development and Behavior.

    Science.gov (United States)

    Sporer, Abigail J; Kahl, Lisa J; Price-Whelan, Alexa; Dietrich, Lars E P

    2017-06-20

    Severe changes in the environmental redox potential, and resulting alterations in the oxidation states of intracellular metabolites and enzymes, have historically been considered negative stressors, requiring responses that are strictly defensive. However, recent work in diverse organisms has revealed that more subtle changes in the intracellular redox state can act as signals, eliciting responses with benefits beyond defense and detoxification. Changes in redox state have been shown to influence or trigger chromosome segregation, sporulation, aerotaxis, and social behaviors, including luminescence as well as biofilm establishment and dispersal. Connections between redox state and complex behavior allow bacteria to link developmental choices with metabolic state and coordinate appropriate responses. Promising future directions for this area of study include metabolomic analysis of species- and condition-dependent changes in metabolite oxidation states and elucidation of the mechanisms whereby the redox state influences circadian regulation.

  12. Energy storage device including a redox-enhanced electrolyte

    Science.gov (United States)

    Stucky, Galen; Evanko, Brian; Parker, Nicholas; Vonlanthen, David; Auston, David; Boettcher, Shannon; Chun, Sang-Eun; Ji, Xiulei; Wang, Bao; Wang, Xingfeng; Chandrabose, Raghu Subash

    2017-08-08

    An electrical double layer capacitor (EDLC) energy storage device is provided that includes at least two electrodes and a redox-enhanced electrolyte including two redox couples such that there is a different one of the redox couples for each of the electrodes. When charged, the charge is stored in Faradaic reactions with the at least two redox couples in the electrolyte and in a double-layer capacitance of a porous carbon material that comprises at least one of the electrodes, and a self-discharge of the energy storage device is mitigated by at least one of electrostatic attraction, adsorption, physisorption, and chemisorption of a redox couple onto the porous carbon material.

  13. Molecular analysis of Ku redox regulation

    Directory of Open Access Journals (Sweden)

    Shatilla Andrea

    2009-08-01

    Full Text Available Abstract Background DNA double-strand breaks (DSBs can occur in response to ionizing radiation (IR, radiomimetic agents and from endogenous DNA-damaging reactive oxygen metabolites. Unrepaired or improperly repaired DSBs are potentially the most lethal form of DNA damage and can result in chromosomal translocations and contribute to the development of cancer. The principal mechanism for the repair of DSBs in humans is non-homologous end-joining (NHEJ. Ku is a key member of the NHEJ pathway and plays an important role in the recognition step when it binds to free DNA termini. Ku then stimulates the assembly and activation of other NHEJ components. DNA binding of Ku is regulated by redox conditions and evidence from our laboratory has demonstrated that Ku undergoes structural changes when oxidized that results in a reduction in DNA binding activity. The C-terminal domain and cysteine 493 of Ku80 were investigated for their contribution to redox regulation of Ku. Results We effectively removed the C-terminal domain of Ku80 generating a truncation mutant and co-expressed this variant with wild type Ku70 in an insect cell system to create a Ku70/80ΔC heterodimer. We also generated two single amino acid variants of Cys493, replacing this amino acid with either an alanine (C493A or a serine (C493S, and over-expressed the variant proteins in SF9 insect cells in complex with wild type Ku70. Neither the truncation nor the amino acid substitutions alters protein expression or stability as determined by SDS-PAGE and Western blot analysis. We show that the C493 mutations do not alter the ability of Ku to bind duplex DNA in vitro under reduced conditions while truncation of the Ku80 C-terminus slightly reduced DNA binding affinity. Diamide oxidation of cysteines was shown to inhibit DNA binding similarly for both the wild-type and all variant proteins. Interestingly, differential DNA binding activity following re-reduction was observed for the Ku70/80

  14. Redox biology response in germinating Phaseolus vulgaris seeds exposed to copper: Evidence for differential redox buffering in seedlings and cotyledon.

    Science.gov (United States)

    Karmous, Inès; Trevisan, Rafael; El Ferjani, Ezzeddine; Chaoui, Abdelilah; Sheehan, David

    2017-01-01

    In agriculture, heavy metal contamination of soil interferes with processes associated with plant growth, development and productivity. Here, we describe oxidative and redox changes, and deleterious injury within cotyledons and seedlings caused by exposure of germinating (Phaseolus vulgaris L. var. soisson nain hâtif) seeds to copper (Cu). Cu induced a marked delay in seedling growth, and was associated with biochemical disturbances in terms of intracellular oxidative status, redox regulation and energy metabolism. In response to these alterations, modulation of activities of antioxidant proteins (thioredoxin and glutathione reductase, peroxiredoxin) occurred, thus preventing oxidative damage. In addition, oxidative modification of proteins was detected in both cotyledons and seedlings by one- and two-dimensional electrophoresis. These modified proteins may play roles in redox buffering. The changes in activities of redox proteins underline their fundamental roles in controlling redox homeostasis. However, observed differential redox responses in cotyledon and seedling tissues showed a major capacity of the seedlings' redox systems to protect the reduced status of protein thiols, thus suggesting quantitatively greater antioxidant protection of proteins in seedlings compared to cotyledon. To our knowledge, this is the first comprehensive redox biology investigation of the effect of Cu on seed germination.

  15. Identification of redox-sensitive cysteines in the arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method

    KAUST Repository

    Liu, Pei

    2014-01-28

    Cellular redox status plays a key role in mediating various physiological and developmental processes often through modulating activities of redox-sensitive proteins. Various stresses trigger over-production of reactive oxygen/nitrogen species which lead to oxidative modifications of redox-sensitive proteins. Identification and characterization of redox-sensitive proteins are important steps toward understanding molecular mechanisms of stress responses. Here, we report a high-throughput quantitative proteomic approach termed OxiTRAQ for identifying proteins whose thiols undergo reversible oxidative modifications in Arabidopsis cells subjected to oxidative stress. In this approach, a biotinylated thiol-reactive reagent is used for differential labeling of reduced and oxidized thiols. The biotin-tagged peptides are affinity purified, labeled with iTRAQ reagents, and analyzed using a paralleled HCD-CID fragmentation mode in an LTQ-Orbitrap. With this approach, we identified 195 cysteine-containing peptides from 179 proteins whose thiols underwent oxidative modifications in Arabidopsis cells following the treatment with hydrogen peroxide. A majority of those redox-sensitive proteins, including several transcription factors, were not identified by previous redox proteomics studies. This approach allows identification of the specific redox-regulated cysteine residues, and offers an effective tool for elucidation of redox proteomes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Exercise and Glycemic Control: Focus on Redox Homeostasis and Redox-Sensitive Protein Signaling

    Science.gov (United States)

    Parker, Lewan; Shaw, Christopher S.; Stepto, Nigel K.; Levinger, Itamar

    2017-01-01

    Physical inactivity, excess energy consumption, and obesity are associated with elevated systemic oxidative stress and the sustained activation of redox-sensitive stress-activated protein kinase (SAPK) and mitogen-activated protein kinase signaling pathways. Sustained SAPK activation leads to aberrant insulin signaling, impaired glycemic control, and the development and progression of cardiometabolic disease. Paradoxically, acute exercise transiently increases oxidative stress and SAPK signaling, yet postexercise glycemic control and skeletal muscle function are enhanced. Furthermore, regular exercise leads to the upregulation of antioxidant defense, which likely assists in the mitigation of chronic oxidative stress-associated disease. In this review, we explore the complex spatiotemporal interplay between exercise, oxidative stress, and glycemic control, and highlight exercise-induced reactive oxygen species and redox-sensitive protein signaling as important regulators of glucose homeostasis. PMID:28529499

  17. Iron-sulfide redox flow batteries

    Science.gov (United States)

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  18. Redox Equilibria in SO2 Oxidation Catalysts

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Eriksen, Kim Michael; Boghosian, Soghomon

    1999-01-01

    The catalyst used for sulfuric acid production is well described by the molten salt-gas system M2S2O7-V2O5/SO2-O2-SO3-N2 (M=Na, K, Cs) at 400 - 600°C.In order to understand the mechanism of the oxidation of SO2 by O2 to SO3, catalyzed by the above mentioned system, rather intensive research has...... been carried out regarding the complex and compound formation of V(V) and the formation of V(IV) and V(III) compounds with low solubility causing catalyst deactivation. However, the redox chemistry of vanadium and the complex formation of V(IV) is much less investigated and further information...

  19. Hybrid anodes for redox flow batteries

    Science.gov (United States)

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-15

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  20. High energy density redox flow device

    Science.gov (United States)

    Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  1. Applying the redox process to arsenical concentrates

    Science.gov (United States)

    Beattie, M. J. V.; Ismay, Arnaldo

    1990-01-01

    Extensive batch and continuous testing has been completed using a high-temperature, nitric acid pressure leach (Redox) process for oxidizing the refractory gold-containing arsenopyrite tailings presently stockpiled at Snow Lake, Manitoba. This process has achieved up to 99% oxidation of the arsenopyrite compound and precipitated more than 90% arsenic into a stable iron-arsenic compound (resembling ferric arsenate) in less than eight minutes of overall retention time at temperatures of 195-210°C and an oxygen overpressure of 345 kPa. The oxidation step then exposes the contained gold, allowing a recovery of 91.5% in a standard carbon-in-leach circuit. The main advantages of this process are fast reaction rates, the high proportion of arsenic precipitated, and the stability of the precipitate.

  2. High energy density redox flow device

    Science.gov (United States)

    Chiang, Yet -Ming; Carter, W. Craig; Duduta, Mihai; Limthongkul, Pimpa

    2015-10-06

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  3. Chemistry and Redox Biology of Mycothiol.

    Science.gov (United States)

    Reyes, Aníbal M; Pedre, Brandán; De Armas, María Inés; Tossounian, Maria-Armineh; Radi, Rafael; Messens, Joris; Trujillo, Madia

    2018-02-20

    Mycothiol (MSH, AcCys-GlcN-Ins) is the main low-molecular weight (LMW) thiol of most Actinomycetes, including the human pathogen Mycobacterium tuberculosis that affects millions of people worldwide. Strains with decreased MSH content show increased susceptibilities to hydroperoxides and electrophilic compounds. In M. tuberculosis, MSH modulates the response to several antituberculosis drugs. Enzymatic routes involving MSH could provide clues for specific drug design. Recent Advances: Physicochemical data argue against a rapid, nonenzymatic reaction of MSH with oxidants, disulfides, or electrophiles. Moreover, exposure of the bacteria to high concentrations of two-electron oxidants resulted in protein mycothiolation. The recently described glutaredoxin-like protein mycoredoxin-1 (Mrx-1) provides a route for catalytic reduction of mycothiolated proteins, protecting critical cysteines from irreversible oxidation. The description of MSH/Mrx-1-dependent activities of peroxidases helped to explain the higher susceptibility to oxidants observed in Actinomycetes lacking MSH. Moreover, the first mycothiol-S-transferase, member of the DinB superfamily of proteins, was described. In Corynebacterium, both the MSH/Mrx-1 and the thioredoxin pathways reduce methionine sulfoxide reductase A. A novel tool for in vivo imaging of the MSH/mycothiol disulfide (MSSM) status allows following changes in the mycothiol redox state during macrophage infection and its relationship with antibiotic sensitivity. Redundancy of MSH with other LMW thiols is starting to be unraveled and could help to rationalize the differences in the reported importance of MSH synthesis observed in vitro versus in animal infection models. Future work should be directed to establish the structural bases of the specificity of MSH-dependent enzymes, thus facilitating drug developments. Antioxid. Redox Signal. 28, 487-504.

  4. Redox reactivity and coordination chemistry of uranium

    International Nuclear Information System (INIS)

    Nocton, G.

    2009-09-01

    The study and the understanding of actinides chemistry have important implications in the nuclear field both for the development of new actinides materials and the retreatment of the nuclear wastes. One of the major issues in that chemistry is that the actinides elements are known to undergo redox reaction and to form assemblies of different size and different topologies. In that context uranium can be a good model of the heavier radioelement because it is much less radioactive. So, this work concerns the synthesis and the study of the spectroscopy and the magnetic properties of several uranium based polymetallic assemblies synthesized by taking advantage of the redox properties and the coordination chemistry of uranium. The hydrolysis reactivity of trivalent uranium has been studied in absence of sterically hindered ligands and led to the synthesis of oxo/hydroxo uranium assemblies with different sizes by changing the starting complex or the reaction conditions. By following the same strategy, the controlled oxidation of trivalent uranium complexes led to an original azido/nitrido uranium complex. The coordination chemistry of the pentavalent uranyl polymer {[UO 2 py 5 ][KI 2 py 3 ]} n has also been studied with different ligand and in different conditions and led to several cation-cation complexes for which the stability is sufficient for studying there dismutation by proton NMR. By changing the ancillary ligands stable monomeric complexes of pentavalent uranyl complexes were also obtained. The magnetic properties of all the complexes, monomers and polymetallic complexes were studied and an antiferromagnetic coupling was observed for the cation-cation pentavalent uranyl dimer [UO 2 (dbm) 2 (K 18 C 6 )] 2 . (author)

  5. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling.

    Science.gov (United States)

    Rohrbach, Arno; Schmidt, Max W

    2011-04-14

    Very low seismic velocity anomalies in the Earth's mantle may reflect small amounts of melt present in the peridotite matrix, and the onset of melting in the Earth's upper mantle is likely to be triggered by the presence of small amounts of carbonate. Such carbonates stem from subducted oceanic lithosphere in part buried to depths below the 660-kilometre discontinuity and remixed into the mantle. Here we demonstrate that carbonate-induced melting may occur in deeply subducted lithosphere at near-adiabatic temperatures in the Earth's transition zone and lower mantle. We show experimentally that these carbonatite melts are unstable when infiltrating ambient mantle and are reduced to immobile diamond when recycled at depths greater than ∼250 kilometres, where mantle redox conditions are determined by the presence of an (Fe,Ni) metal phase. This 'redox freezing' process leads to diamond-enriched mantle domains in which the Fe(0), resulting from Fe(2+) disproportionation in perovskites and garnet, is consumed but the Fe(3+) preserved. When such carbon-enriched mantle heterogeneities become part of the upwelling mantle, diamond will inevitably react with the Fe(3+) leading to true carbonatite redox melting at ∼660 and ∼250 kilometres depth to form deep-seated melts in the Earth's mantle.

  6. A multi-electron redox mediator for redox-targeting lithium-sulfur flow batteries

    Science.gov (United States)

    Li, Guochun; Yang, Liuqing; Jiang, Xi; Zhang, Tianran; Lin, Haibin; Yao, Qiaofeng; Lee, Jim Yang

    2018-02-01

    The lithium-sulfur flow battery (LSFB) is a new addition to the rechargeable lithium flow batteries (LFBs) where sulfur or a sulfur compound is used as the cathode material against the lithium anode. We report here our evaluation of an organic sulfide - dimethyl trisulfide (DMTS), as 1) a catholyte of a LFB and 2) a multi-electron redox mediator for discharging and charging a solid sulfur cathode without any conductive additives. The latter configuration is also known as the redox-targeting lithium-sulfur flow battery (RTLSFB). The LFB provides an initial discharge capacity of 131.5 mAh g-1DMTS (1.66 A h L-1), which decreases to 59 mAh g-1DMTS (0.75 A h L-1) after 40 cycles. The RTLSFB delivers a significantly higher application performance - initial discharge capacity of 1225.3 mAh g-1sulfur (3.83 A h L-1), for which 1030.9 mAh g-1sulfur (3.23 A h L-1) is still available after 40 cycles. The significant increase in the discharge and charge duration of the LFB after sulfur addition indicates that DMTS is better used as a redox mediator in a RTLSFB than as a catholyte in a LFB.

  7. Polyoxometalate active charge-transfer material for mediated redox flow battery

    Science.gov (United States)

    Anderson, Travis Mark; Hudak, Nicholas; Staiger, Chad; Pratt, Harry

    2017-01-17

    Redox flow batteries including a half-cell electrode chamber coupled to a current collecting electrode are disclosed herein. In a general embodiment, a separator is coupled to the half-cell electrode chamber. The half-cell electrode chamber comprises a first redox-active mediator and a second redox-active mediator. The first redox-active mediator and the second redox-active mediator are circulated through the half-cell electrode chamber into an external container. The container includes an active charge-transfer material. The active charge-transfer material has a redox potential between a redox potential of the first redox-active mediator and a redox potential of the second redox-active mediator. The active charge-transfer material is a polyoxometalate or derivative thereof. The redox flow battery may be particularly useful in energy storage solutions for renewable energy sources and for providing sustained power to an electrical grid.

  8. Chronoamperometry-Based Redox Cycling for Application to Immunoassays.

    Science.gov (United States)

    Lee, Ga-Yeon; Park, Jun-Hee; Chang, Young Wook; Cho, Sungbo; Kang, Min-Jung; Pyun, Jae-Chul

    2018-01-26

    In this work, the chronoamperometry-based redox cycling of 3,3',5,5'-tetramethylbenzidine (TMB) was performed by using interdigitated electrode (IDE). The signal was obtained from two sequential chronoamperometric profiles: (1) with the generator at the oxidative potential of TMB and the collector at the reductive potential of TMB, and (2) with the generator at the reductive potential of TMB and the collector at the oxidative potential of TMB. The chronoamperometry-based redox cycling (dual mode) showed a sensitivity of 1.49 μA/OD, and the redox cycling efficiency was estimated to be 94% (n = 10). The sensitivities of conventional redox cycling with the same interdigitated electrode and chronoamperometry using a single working electrode (single mode) were estimated to be 0.67 μA/OD and 0.18 μA/OD, respectively. These results showed that the chronoamperometry-based redox cycling (dual mode) could be more effectively used to quantify the oxidized TMB than other amperometric methods. The chronoamperometry-based redox cycling (dual mode) was applied to immunoassays using a commercial ELISA kit for medical diagnosis of the human hepatitis B virus surface antigen (hHBsAg). Finally, the chronoamperometry-based redox cycling (dual mode) provided more than a 10-fold higher sensitivity than conventional chronoamperometry using a single working electrode (single mode) when applied to a commercial ELISA kit for medical diagnosis of hHBsAg.

  9. Managing the cellular redox hub in photosynthetic organisms.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2012-02-01

    Light-driven redox chemistry is a powerful source of redox signals that has a decisive input into transcriptional control within the cell nucleus. Like photosynthetic electron transport pathways, the respiratory electron transport chain exerts a profound control over gene function, in order to balance energy (reductant and ATP) supply with demand, while preventing excessive over-reduction or over-oxidation that would be adversely affect metabolism. Photosynthetic and respiratory redox chemistries are not merely housekeeping processes but they exert a controlling influence over every aspect of plant biology, participating in the control of gene transcription and translation, post-translational modifications and the regulation of assimilatory reactions, assimilate partitioning and export. The number of processes influenced by redox controls and signals continues to increase as do the components that are recognized participants in the associated signalling pathways. A step change in our understanding of the overall importance of the cellular redox hub to plant cells has occurred in recent years as the complexity of the management of the cellular redox hub in relation to metabolic triggers and environmental cues has been elucidated. This special issue describes aspects of redox regulation and signalling at the cutting edge of current research in this dynamic and rapidly expanding field. © 2011 Blackwell Publishing Ltd.

  10. Redox chemistry of americium in nitric acid media

    International Nuclear Information System (INIS)

    Picart, S.; Jobelin, I.; Armengol, G.; Adnet, JM.

    2004-01-01

    The redox properties of the actinides are very important parameters for speciation studies and spent nuclear fuel reprocessing based on liquid-liquid extraction of actinides at different oxidation states (as in the Purex or Sesame process). They are also very useful for developing analytical tools including coulometry and redox titration. This study addressed the americium(IV)/americium(III) and americium(VI)/americium(V) redox couples, focusing on exhaustive acquisition of the thermodynamic and kinetic parameters of americium oxidation at an electrode in a complexing nitric acid medium. (authors)

  11. Disentangling interfacial redox processes of proteins by SERR spectroscopy.

    Science.gov (United States)

    Murgida, Daniel H; Hildebrandt, Peter

    2008-05-01

    Surface-enhanced resonance-Raman spectroelectrochemistry represents a powerful approach for studying the structure and reaction dynamics of redox proteins immobilized on biocompatible electrodes in fundamental and applied sciences. Using this approach it has been recently shown that electric fields of biologically relevant magnitude are able to influence crucial parameters for the functioning of a variety of soluble and membrane bound heme proteins. Electric field effects discussed in this tutorial review include modulation of redox potentials, reorganization energies, protein dynamics and redox-linked structural changes.

  12. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  13. An Excel Workbook for Identifying Redox Processes in Ground Water

    Science.gov (United States)

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  14. Influence of charged microenvironment on redox potential and ...

    Indian Academy of Sciences (India)

    Unknown

    sulphur cluster undergoes a. 220-mV anodic shift in redox potential in the pres- ence of bovine serum albumin.9 Theoretical studies have also revealed that solvent exposure plays a ma- jor role in determining electrostatic environment and.

  15. Redox Dysregulation in the Pathophysiology of Schizophrenia and Bipolar Disorder

    DEFF Research Database (Denmark)

    Kulak, Anita; Steullet, Pascal; Cabungcal, Jan-Harry

    2013-01-01

    Abstract Significance: Schizophrenia (SZ) and bipolar disorder (BD) are classified as two distinct diseases. However, accumulating evidence shows that both disorders share genetic, pathological, and epidemiological characteristics. Based on genetic and functional findings, redox dysregulation due...

  16. Redox substoichiometric determination of thallium [Paper No. RA-20

    International Nuclear Information System (INIS)

    Ashok Rao, K.; Rao, A.A.P.; Rangamannar, B.

    1982-01-01

    A method for the redox substoichiometric determination of thallium employing chlorate as oxident for thallium(I) has been developed. The substoichiometric amount of Tl(III) formed was isolated by extraction with iso-amyl acetate. (author)

  17. Redox mechanisms and superconductivity in layered copper oxides

    International Nuclear Information System (INIS)

    Raveau, B.; Michel, C.; Hervieu, M.; Provost, J.

    1992-01-01

    Redox reactions in high T c superconductors cuprates are complex and play an important role in superconductivity: oxygen non-stoichiometry is influencing the critical temperature, and rock salt layers interact with copper layers. 25 refs., 7 figs

  18. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  19. Accelerated redox reaction between chromate and phenolic pollutants during freezing

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Jinjung; Kim, Jaesung [Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252 (Korea, Republic of); Vetráková, Ľubica [Department of Chemistry and Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Seo, Jiwon [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919 (Korea, Republic of); Heger, Dominik [Department of Chemistry and Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Lee, Changha [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919 (Korea, Republic of); Yoon, Ho-Il [Korea Polar Research Institute (KOPRI), Incheon 21990 (Korea, Republic of); Kim, Kitae, E-mail: ktkim@kopri.re.kr [Korea Polar Research Institute (KOPRI), Incheon 21990 (Korea, Republic of); Kim, Jungwon, E-mail: jwk@hallym.ac.kr [Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252 (Korea, Republic of)

    2017-05-05

    Highlights: • Redox conversion of 4-CP/Cr(VI) was significantly accelerated during freezing. • Accelerated redox conversion in ice is ascribed to the freeze concentration effect. • 4-CP, Cr(VI), and protons are concentrated in the liquid brine by freezing. • Redox conversions of various phenolic pollutants/Cr(VI) were significant in ice. • Freezing-accelerated redox conversion was observed in real polluted water. - Abstract: The redox reaction between 4-chlorophenol (4-CP) and chromate (Cr(VI)) (i.e., the simultaneous oxidation of 4-CP by Cr(VI) and reduction of Cr(VI) by 4-CP) in ice (i.e., at −20 °C) was compared with the corresponding reaction in water (i.e., at 25 °C). The redox conversion of 4-CP/Cr(VI), which was negligible in water, was significantly accelerated in ice. This accelerated redox conversion of 4-CP/Cr(VI) in ice is ascribed to the freeze concentration effect occurring during freezing, which excludes solutes (i.e., 4-CP and Cr(VI)) and protons from the ice crystals and subsequently concentrates them in the liquid brine. The concentrations of Cr(VI) and protons in the liquid brine were confirmed by measuring the optical image and the UV–vis absorption spectra of cresol red (CR) as a pH indicator of frozen solution. The redox conversion of 4-CP/Cr(VI) was observed in water when the concentrations of 4-CP/protons or Cr(VI)/protons increased by 100/1000-fold. These results corroborate the freeze concentration effect as the reason for the accelerated redox conversion of 4-CP/Cr(VI) in ice. The redox conversion of various phenolic pollutants/Cr(VI) and 4-CP/Cr(VI) in real wastewater was successfully achieved in ice, which verifies the environmental relevance and importance of freezing-accelerated redox conversion of phenolic pollutants/Cr(VI) in cold regions.

  20. Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments

    Directory of Open Access Journals (Sweden)

    Jason eBenzine

    2013-12-01

    Full Text Available Microorganisms capable of reducing or oxidizing structural iron (Fe in Fe-bearing phyllosilicate minerals were enriched and isolated from a subsurface redox transition zone at the Hanford 300 Area site in eastern Washington, USA. Both conventional and in situ i-chip enrichment strategies were employed. One Fe(III-reducing Geobacter (G. bremensis strain R1, Deltaproteobacteria and six Fe(II phyllosilicate-oxidizing isolates from the Alphaproteobacteria (Bradyrhizobium japonicum strains 22, is5, and in8p8, Betaproteobacteria (Cupriavidus necator strain A5-1, Dechloromonas agitata strain is5, and Actinobacteria (Nocardioides sp. strain in31 were recovered. The G. bremensis isolate grew by oxidizing acetate with the oxidized form of NAu-2 smectite as the electron acceptor. The Fe(II-oxidizers grew by oxidation of chemically reduced smectite as the energy source with nitrate as the electron acceptor. The Bradyrhizobium isolates could also carry out aerobic oxidation of biotite. This is the first report of the recovery of a Fe(II-oxidizing Nocardioides, and to date only one other Fe(II-oxidizing Bradyrhizobium is known. The 16S rRNA gene sequences of the isolates were similar to ones found in clone libraries from Hanford 300 sediments and groundwater, suggesting that such organisms may be present and active in situ. Whole genome sequencing of the isolates is underway, the results of which will enable comparative genomic analysis of mechanisms of extracellular phyllosilicate Fe redox metabolism, and facilitate development of techniques to detect the presence and expression of genes associated with microbial phyllosilicate Fe redox cycling in sediments.

  1. Wine consumption and intestinal redox homeostasis

    Science.gov (United States)

    Biasi, Fiorella; Deiana, Monica; Guina, Tina; Gamba, Paola; Leonarduzzi, Gabriella; Poli, Giuseppe

    2014-01-01

    Regular consumption of moderate doses of wine is an integral part of the Mediterranean diet, which has long been considered to provide remarkable health benefits. Wine׳s beneficial effect has been attributed principally to its non-alcoholic portion, which has antioxidant properties, and contains a wide variety of phenolics, generally called polyphenols. Wine phenolics may prevent or delay the progression of intestinal diseases characterized by oxidative stress and inflammation, especially because they reach higher concentrations in the gut than in other tissues. They act as both free radical scavengers and modulators of specific inflammation-related genes involved in cellular redox signaling. In addition, the importance of wine polyphenols has recently been stressed for their ability to act as prebiotics and antimicrobial agents. Wine components have been proposed as an alternative natural approach to prevent or treat inflammatory bowel diseases. The difficulty remains to distinguish whether these positive properties are due only to polyphenols in wine or also to the alcohol intake, since many studies have reported ethanol to possess various beneficial effects. Our knowledge of the use of wine components in managing human intestinal inflammatory diseases is still quite limited, and further clinical studies may afford more solid evidence of their beneficial effects. PMID:25009781

  2. Cellular redox, cancer and human papillomavirus.

    Science.gov (United States)

    Cruz-Gregorio, Alfredo; Manzo-Merino, Joaquín; Lizano, Marcela

    2018-02-15

    High-risk Human Papillomavirus (HR-HPV) is the causative agent of different human cancers. A persistent HR-HPV infection alters several cellular processes involved in cell proliferation, apoptosis, immune evasion, genomic instability and transformation. Cumulative evidence from past studies indicates that HR-HPV proteins are associated with oxidative stress (OS) and has been proposed as a risk factor for cancer development. Reactive oxygen and nitrogen species (RONS) regulate a plethora of processes inducing cellular proliferation, differentiation and death. Oxidative stress (OS) is generated when an imbalance in the redox state occurs due to deregulation of the oxidant and antioxidant systems, which, in turn, promotes the damage of DNA, proteins and lipids, allowing the accumulation of mutations and genome instability. OS has been associated with the establishment and development of different cancers, and it has recently been proposed as a co-factor in cervical cancer development. This review is focused on evidence regarding the association of OS with HR-HPV proteins, and the interplay of the viral proteins with different elements of the antioxidant and DNA damage response (DDR) systems, emphasizing the processes that might be required for the viral life cycle and viral DNA integration into the host genome, which is a key element in the carcinogenic process induced by HR-HPV. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Redox Conditions Among the Terrestrial Planets

    Science.gov (United States)

    Jones, J. H.

    2004-01-01

    Early solar system conditions should have been extremely reducing. The redox state of the early solar nebula was determined by the H2O/H2 of the gas, which is calculated (based on solar composition) to have been about IW-5. At high temperature under such conditions, ferrous iron would exist only as a trace element in silicates and the most common type of chondritic material should have been enstatite chondrites. The observation that E-chondrites form only a subset of the chondrite suite and that the terrestrial planets (Earth, Moon, Mars, Venus, 4 Vesta) contain ferrous and ferric iron as major and minor elements, respectively, implies that either most chondritic materials formed under conditions that were not solar or that early-formed metals oxidized at low temperature, producing FeO. For example, equilibrated ordinary chondrites (by definition, common chondritic materials), by their phase assemblage of olivine, orthopyroxene and metal, must fall not far from the QFI (Quartz-Fayalite-Iron) oxygen buffer. The QFI buffer is about IW-0.5 and, as we shall see, this fo2 is close to that inferred for many materials in the inner solar system.

  4. Hydrologic influence on redox dynamics in estuarine environments

    Science.gov (United States)

    Michael, H. A.; Kim, K. H.; Guimond, J. A.; Heiss, J.; Ullman, W. J.; Seyfferth, A.

    2017-12-01

    Redox conditions in coastal aquifers control reactions that impact nutrient cycling, contaminant release, and carbon budgets, with implications for water resources and ecosystem health. Hydrologic changes can shift redox boundaries and inputs of reactants, especially in dynamic coastal systems subject to fluctuations on tidal, lunar, and longer timescales. We present two examples of redox shifts in estuarine systems in Delaware, USA: a beach aquifer and a saltmarsh. Beach aquifers are biogeochemical hot spots due to mixing between fresh groundwater and infiltrating seawater. At Cape Henlopen, DE, geochemical measurements identified reactions in the intertidal aquifer that include cycling of carbon, nitrogen, iron, and sulfur. Measurements and modeling illustrate that redox potential as well as the locations of redox reactions shift on tidal to seasonal timescales and in response to changing beach and aquifer properties, impacting overall rates of reactions such as denitrification that reduces N loads to coastal waters. In the St. Jones National Estuarine Research Reserve, tidal fluctuations in channels cause periodic groundwater-surface water exchange, water table movement, and intermittent flooding that varies spatially across the saltmarsh. These changes create shifts in redox potential that are greatest near channels and in the top 20 cm of sediments. The magnitude of redox change depends on hydrologic setting (near channels or in marsh interior), hydrologic conditions (tidal stage, seasonal shifts), as well as prevalence of macropores created by crab burrows that change seasonally with crab activity. These shifts correspond to changes in porewater chemistry that have implications for nutrient cycling and carbon export to the ocean. Understanding hydrologic influence on redox geochemistry is critical for predicting how these systems and their ecosystem services may change in the future in response to anthropogenic and climate change.

  5. Developing a Redox-Sensitive Red Fluorescent Protein Biosensor

    Science.gov (United States)

    Koon, N.; Yei, S.M.; Risenmay, A.J.; Kallio, K.; Remington, S.J.; Magpiong, I.

    2011-01-01

    Redox environments are of particular interest, especially in the mitochondria with its highly reducing environment and its role as the central processing unit of apoptosis. Monitoring of mitochondrial redox environments is crucial to the study of apoptotic disorders. Reporting of the thiol/disulfide status in live cells was made possible with the development of redox-sensitive green fluorescent protein (roGFP). We aim to develop a red version redox-sensitive fluorescent protein (roRFP). Expanding the array of redox-sensitive proteins with a red version will enable simultaneous visualization of multiple reducing intracellular compartments. mKeima is a monomeric red fluorescent protein that absorbs light maximally at 440nm and emits red light at 620nm. This large Stokes shift is dramatically decreased in acidic environments. By following protocol similar to that used in the development of roGFP, surface residues at key positions were changed to cysteines and random mutagenesis was performed on varying excitation species of mKeima. Mutants were screened and a ratiometric variant of mKeima was identified (roRFP2) which exhibits changes in its spectral properties as a result of changes in the thiol/disulfide equilibrium. Preliminary fluorescence spectroscopy measurements of roRFP2 indicate a highly reducing redox potential of −330mV indicating it may be a useful probe in reducing subcellular compartments such as mitochondria or in the cytoplasm. By employing vector recombination of shuttle vector PYX142, we successfully targeted roRFP2 in vivo to the mitochondria and cytoplasm of Saccharomyces cerevisiae. Expression of roRFP2 was visualized using fluorescence microscopy. Thus, through mutagenesis and residue substitution we successfully created a red version redox sensitive biosensor that tested effectively as a ratiometric indicator and expressed in the mitochondria and cytoplasm of S. cerevisiae. Moreover, the redox potential of roRFP2 is significantly more negative

  6. A biomimetic redox flow battery based on flavin mononucleotide

    OpenAIRE

    Orita, A; Verde, MG; Sakai, M; Meng, YS

    2016-01-01

    The versatility in design of redox flow batteries makes them apt to efficiently store energy in large-scale applications at low cost. The discovery of inexpensive organic electroactive materials for use in aqueous flow battery electrolytes is highly attractive, but is thus far limited. Here we report on a flow battery using an aqueous electrolyte based on the sodium salt of flavin mononucleotide. Flavins are highly versatile electroactive molecules, which catalyse a multitude of redox reactio...

  7. Preparation of redox polymer cathodes for thin film rechargeable batteries

    Science.gov (United States)

    Skotheim, Terje A.; Lee, Hung S.; Okamoto, Yoshiyuki

    1994-11-08

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  8. Redox modulation of curcumin stability: Redox active antioxidants increase chemical stability of curcumin.

    Science.gov (United States)

    Nimiya, Yoshiki; Wang, Weicang; Du, Zheyuan; Sukamtoh, Elvira; Zhu, Julia; Decker, Eric; Zhang, Guodong

    2016-03-01

    Substantial studies have shown that curcumin, a dietary compound from turmeric, has beneficial effects on many diseases. However, curcumin rapidly degrades at physiological pH, making it difficult to interpret whether the observed actions of curcumin are from curcumin itself or its degradation products. Therefore, it is important to better understand the mechanisms involved in curcumin degradation and the roles of degradation in its biological actions. Here, we show that a series of redox active antioxidants with diverse chemical structures, including gallic acid, ascorbate (vitamin C), tert-butylhydroquinone (TBHQ), caffeic acid, rosmarinic acid, and Trolox (a water-soluble analog of vitamin E), dramatically increased curcumin stability in phosphate buffer at physiological pH. When treated in basal cell culture medium in MC38 colon cancer cells, curcumin rapidly degraded with a half-life of several minutes and showed a weak antiproliferative effect; co-addition of antioxidants enhanced stability and antiproliferative effect of curcumin. Finally, co-administration of antioxidant significantly increased plasma level of curcumin in animal models. Together, these studies strongly suggest that a redox-dependent mechanism plays a critical role in mediating curcumin degradation. In addition, curcumin itself, instead of its degradation products, is largely responsible for the observed biological actions of curcumin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A Membrane-Free Redox Flow Battery with Two Immiscible Redox Electrolytes.

    Science.gov (United States)

    Navalpotro, Paula; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2017-10-02

    Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short-lifetimes, and expensive ion-selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane-free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, behaves as a reversible battery without any membrane. This proof-of-concept of a membrane-free battery has an open circuit voltage of 1.4 V with a high theoretical energy density of 22.5 Wh L -1 , and is able to deliver 90 % of its theoretical capacity while showing excellent long-term performance (coulombic efficiency of 100 % and energy efficiency of 70 %). © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Redox-Tag Processes: Intramolecular Electron Transfer and Its Broad Relationship to Redox Reactions in General.

    Science.gov (United States)

    Okada, Yohei; Chiba, Kazuhiro

    2017-12-08

    Explosive growth in the use of open shell reactivity, including neutral radicals and radical ions, in the field of synthetic organic chemistry has been observed in the past decade, particularly since the advent of ruthenium complexes in 2008. These complexes generally induce single-electron transfer (SET) processes via visible-light absorption. Additionally, recent significant advancements in organic electrochemistry involving SET processes to provide open shell reactivity offer a complementary method to traditional polarity-driven reactions described by two-electron transfer processes. In this Review, we highlight the importance of intramolecular SET processes in the field of synthetic organic chemistry, which seem to be more elusive than the intermolecular versions, since they are net redox-neutral and thus cannot simply be regarded as oxidations or reductions. Such intramolecular SET processes can rationally be understood in combination with concomitant bond formations and/or cleavages, and are regulated by a structural motif that we call a "redox tag." In order to describe modern radical-driven reactions involving SET processes, we focus on a classical formalism in which electrons are treated as particles rather than waves, which offers a practical yet powerful approach to explain and/or predict synthetic outcomes.

  11. Redox Proteomics and Platelet Activation: Understanding the Redox Proteome to Improve Platelet Quality for Transfusion

    Science.gov (United States)

    Sonego, Giona; Abonnenc, Mélanie; Tissot, Jean-Daniel; Prudent, Michel; Lion, Niels

    2017-01-01

    Blood banks use pathogen inactivation (PI) technologies to increase the safety of platelet concentrates (PCs). The characteristics of PI-treated PCs slightly differ from those of untreated PCs, but the underlying reasons are not well understood. One possible cause is the generation of oxidative stress during the PI process. This is of great interest since reactive oxygen species (ROS) act as second messengers in platelet functions. Furthermore, there are links between protein oxidation and phosphorylation, another mechanism that is critical for cell regulation. Current research efforts focus on understanding the underlying mechanisms and identifying new target proteins. Proteomics technologies represent powerful tools for investigating signaling pathways involving ROS and post-translational modifications such as phosphorylation, while quantitative techniques enable the comparison of the platelet resting state versus the stimulated state. In particular, redox cysteine is a key player in platelet activation upon stimulation by different agonists. This review highlights the experiments that have provided insights into the roles of ROS in platelet function and the implications for platelet transfusion, and potentially in diseases such as inflammation and platelet hyperactivity. The review also describes the implication of redox mechanism in platelet storage considerations. PMID:28208668

  12. Redox potential - field measurements - meassured vs. expected values

    Science.gov (United States)

    Stavělová, Monika; Kovář, Martin

    2016-04-01

    Oxidation and reduction (redox) potential is an important and theoretically very well defined parameter and can be calculated accurately. Its value is determinative for management of many electrochemical processes, chemical redox technologies as well as biotechnologies. To measure the redox value that would correspond with the accuracy level of theoretical calculations in field or operational conditions is however nearly impossible. Redox is in practice measured using combined argentochloride electrode with subsequent value conversion to standard hydrogen electrode (EH). Argentochloride electrode does not allow for precise calibration. Prior to the measurement the accuracy of measurement of particular electrode can only be verified in comparative/control solution with value corresponding with oxic conditions (25°C: +220 mV argentochloride electrode, i.e.. +427 mV after conversion to EH). A commercial product of stabile comparative solution for anoxic conditions is not available and therefore not used in every day practice - accuracy of negative redox is not verified. In this presentation results of two tests will be presented: a) monitoring during dynamic groundwater sampling from eight monitoring wells at a site contaminated by chlorinated ethenes (i.e. post-oxic to anoxic conditions) and b) laboratory test of groundwater contaminated by arsenic from two sites during reaction with highly oxidized compounds of iron (ferrates) - i.e. strongly oxic conditions. In both tests a simultaneous measurement by four argentochloride electrodes was implemented - all four electrodes were prior to the test maintained expertly. The redox values of testing electrodes in a comparative solution varied by max. 6 mV. The redox values measured by four electrodes in both anoxic and oxic variant varied by tens to a hundred mV, while with growing time of test the variance of measured redox values increased in both oxic and anoxic variant. Therefore the interpretation of measured redox

  13. Redox behaviour of uranium with iron compounds

    International Nuclear Information System (INIS)

    Ithurbide, A.

    2009-10-01

    An option investigated for the management of long-term nuclear waste is a repository in deep geological formations. It is generally admitted that the release of radionuclides from the spent fuel in the geosphere could occur several thousand years after the beginning of the storage. Therefore, to assess the safety of the long-term disposal, it is important to consider the phenomena that can reduce the migration, and in particular the migration of uranium. The aim of this work is to study if siderite, an iron compound present both in the near - and far -field, can limit this migration as well as the role played by the redox process. Siderite thin layers have been obtained by electrochemistry. The layers are adherent and homogeneous. Their thickness is about 1 μm and they are composed of spherical grains. Analytical characterizations performed show that siderite is free of any impurity and does not exhibit any trace of oxidation. The interactions between siderite and uranium (VI) have been carried out in solutions considered as representative of environmental waters, in terms of pH and carbonate concentration. The retention of uranium on the thin layer is important since, after 24 hours of interaction, it corresponds to retention capacities of several hundreds of uranium micro-moles per gram of siderite. XPS analysis show that, in any studied condition, part of uranium present on the thin layer is reduced into an over stoichiometric uranium dioxide. The process of interaction differs depending on the considered environment, specially on the stability of siderite. (author)

  14. Dihydroxybenzene/benzoquinone-containing polymers: organic redox polymers

    Energy Technology Data Exchange (ETDEWEB)

    Moulay, S. [Universite de Blida, Lab. de Chimie-Physique Macromoleculaire, Institut de Chimie Industrielle (Algeria)

    2000-08-01

    Polymers containing hydroquinone, catechol or their corresponding benzoquinones are a special class of redox polymers. Three pathways of their syntheses are possible: condensation polymerization of suitable monomers, addition polymerization of vinyl monomers containing redox moiety, and chemical attachment of redox unit onto pre-made polymeric matrix. A range of functionalized matrices have been employed such as polyethers, polyesters, polycarbonates, polyurethanes, polyamides and others. Protection of their phenolic functionality has conducted to chemically interesting redox polymer precursors. The presence of a redox moiety coupled with the extant functionalization of the polymer matrix makes the materials very valuable, of wide properties and consequently of vast applicability. For instance, in the oil field, some polymers such as carboxy-methyl-cellulose (CMC) are often applied as to bring about a viscosity improvement and therefore to facilitate the oil drilling. In this regard, Patel evaluated sulfo-alkylated polymeric catechol, namely sulfo-methylated and sulfo-ethylated resins. Indeed, polymeric catechol chemically modified as such exhibited a marked ability to control the viscosity, the gel strength, as well as the filtrate loss of aqueous oil drilling fluids.

  15. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2009-04-01

    Reactive oxygen species (ROS) have multifaceted roles in the orchestration of plant gene expression and gene-product regulation. Cellular redox homeostasis is considered to be an "integrator" of information from metabolism and the environment controlling plant growth and acclimation responses, as well as cell suicide events. The different ROS forms influence gene expression in specific and sometimes antagonistic ways. Low molecular antioxidants (e.g., ascorbate, glutathione) serve not only to limit the lifetime of the ROS signals but also to participate in an extensive range of other redox signaling and regulatory functions. In contrast to the low molecular weight antioxidants, the "redox" states of components involved in photosynthesis such as plastoquinone show rapid and often transient shifts in response to changes in light and other environmental signals. Whereas both types of "redox regulation" are intimately linked through the thioredoxin, peroxiredoxin, and pyridine nucleotide pools, they also act independently of each other to achieve overall energy balance between energy-producing and energy-utilizing pathways. This review focuses on current knowledge of the pathways of redox regulation, with discussion of the somewhat juxtaposed hypotheses of "oxidative damage" versus "oxidative signaling," within the wider context of physiological function, from plant cell biology to potential applications.

  16. Circadian redox signaling in plant immunity and abiotic stress.

    Science.gov (United States)

    Spoel, Steven H; van Ooijen, Gerben

    2014-06-20

    Plant crops are critically important to provide quality food and bio-energy to sustain a growing human population. Circadian clocks have been shown to deliver an adaptive advantage to plants, vastly increasing biomass production by efficient anticipation to the solar cycle. Plant stress, on the other hand, whether biotic or abiotic, prevents crops from reaching maximum productivity. Stress is associated with fluctuations in cellular redox and increased phytohormone signaling. Recently, direct links between circadian timekeeping, redox fluctuations, and hormone signaling have been identified. A direct implication is that circadian control of cellular redox homeostasis influences how plants negate stress to ensure growth and reproduction. Complex cellular biochemistry leads from perception of stress via hormone signals and formation of reactive oxygen intermediates to a physiological response. Circadian clocks and metabolic pathways intertwine to form a confusing biochemical labyrinth. Here, we aim to find order in this complex matter by reviewing current advances in our understanding of the interface between these networks. Although the link is now clearly defined, at present a key question remains as to what extent the circadian clock modulates redox, and vice versa. Furthermore, the mechanistic basis by which the circadian clock gates redox- and hormone-mediated stress responses remains largely elusive.

  17. Recent developments in organic redox flow batteries: A critical review

    Science.gov (United States)

    Leung, P.; Shah, A. A.; Sanz, L.; Flox, C.; Morante, J. R.; Xu, Q.; Mohamed, M. R.; Ponce de León, C.; Walsh, F. C.

    2017-08-01

    Redox flow batteries (RFBs) have emerged as prime candidates for energy storage on the medium and large scales, particularly at the grid scale. The demand for versatile energy storage continues to increase as more electrical energy is generated from intermittent renewable sources. A major barrier in the way of broad deployment and deep market penetration is the use of expensive metals as the active species in the electrolytes. The use of organic redox couples in aqueous or non-aqueous electrolytes is a promising approach to reducing the overall cost in long-term, since these materials can be low-cost and abundant. The performance of such redox couples can be tuned by modifying their chemical structure. In recent years, significant developments in organic redox flow batteries has taken place, with the introduction of new groups of highly soluble organic molecules, capable of providing a cell voltage and charge capacity comparable to conventional metal-based systems. This review summarises the fundamental developments and characterization of organic redox flow batteries from both the chemistry and materials perspectives. The latest advances, future challenges and opportunities for further development are discussed.

  18. New trends in studies on electrolytic redox systems

    International Nuclear Information System (INIS)

    Michałowski, Tadeusz; Toporek, Marcin; Michałowska-Kaczmarczyk, Anna M.; Asuero, Agustin G.

    2013-01-01

    Highlights: • The Generalized Electron Balance (GEB) is considered as a law of nature. • Two equivalent approaches to formulation of GEB are presented. • The GEB formulation is applied for resolution of some redox systems. • The results of calculations made according to GATES/GEB are presented graphically. -- Abstract: The paper provides comprehensive, compatible and consistent knowledge on thermodynamics of electrolytic redox systems, and referred to aqueous media. A keystone of the overall knowledge are elemental balances: f(H) for hydrogen (H), and f(O) for oxygen (O). A new approach (Approach II) to a Generalized Electron Balance (GEB) formulation is based on a linear combination pr-GEB = 2·f(O) − f(H) of the balances, considered as the primary form of GEB in redox systems. It is proved that the pr-GEB, as the essence of the Approach II, is equivalent to the Approach I to GEB, based on the principle of common pool of electrons. The fundamental advantage of the Approach II is that none prior knowledge on oxidation degree of elements in complex species of definite elemental composition and charge is needed. The GEB is perceived as the general law of matter conservation, related to electrolytic (aqueous media) redox systems. The Approaches I and II are illustrated with several redox systems

  19. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials.

    Science.gov (United States)

    Han, Lu; Zhang, Xiao-Yong; Wang, Yu-Long; Li, Xi; Yang, Xiao-Hong; Huang, Min; Hu, Kun; Li, Lu-Hai; Wei, Yen

    2017-08-10

    Spurred on by advances in materials chemistry and nanotechnology, scientists have developed many novel nanopreparations for cancer diagnosis and therapy. To treat complex malignant tumors effectively, multifunctional nanomedicines with targeting ability, imaging properties and controlled drug release behavior should be designed and exploited. The therapeutic efficiency of loaded drugs can be dramatically improved using redox-responsive nanoplatforms which can sense the differences in the redox status of tumor tissues and healthy ones. Redox-sensitive nanocarriers can be constructed from both organic and inorganic nanomaterials; however, at present, drug delivery nanovectors progressively lean towards inorganic nanomaterials because of their facile synthesis/modification and their unique physicochemical properties. In this review, we focus specifically on the preparation and application of redox-sensitive nanosystems based on mesoporous silica nanoparticles (MSNs), carbon nanomaterials, magnetic nanoparticles, gold nanomaterials and other inorganic nanomaterials. We discuss relevant examples of redox-sensitive nanosystems in each category. Finally, we discuss current challenges and future strategies from the aspect of material design and practical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Retinal Redox Stress and Remodeling in Cardiometabolic Syndrome and Diabetes

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2010-01-01

    Full Text Available Diabetic retinopathy (DR is a significant cause of global blindness; a major cause of blindness in the United States in people aged between 20–74. There is emerging evidence that retinopathy is initiated and propagated by multiple metabolic toxicities associated with excess production of reactive oxygen species (ROS. The four traditional metabolic pathways involved in the development of DR include: increased polyol pathway flux, advanced glycation end-product formation, activation of protein kinase Cisoforms and hexosamine pathway flux. These pathways individually and synergisticallycontribute to redox stress with excess ROS resulting in retinal tissue injury resulting in significant microvascular blood retinal barrier remodeling. The toxicity of hyperinsulinemia, hyperglycemia, hypertension, dyslipidemia, increased cytokines and growth factors, in conjunction with redox stress, contribute to the development and progression of DR. Redox stress contributes to the development and progression of abnormalities of endothelial cells and pericytes in DR. This review focuses on the ultrastructural observations of the blood retinal barrier including the relationship between the endothelial cell and pericyte remodeling in young nine week old Zucker obese (fa/ fa rat model of obesity; cardiometabolic syndrome, and the 20 week old alloxan induced diabetic porcine model. Preventing or delaying the blindness associated with these intersecting abnormal metabolic pathways may be approached through strategies targeted to reduction of tissue inflammation and oxidative—redox stress. Understanding these abnormal metabolic pathways and the accompanying redox stress and remodeling mayprovide both the clinician and researcher a new concept of approaching this complicated disease process

  1. TEMPOL increases NAD+ and improves redox imbalance in obese mice

    Science.gov (United States)

    Yamato, Mayumi; Kawano, Kimika; Yamanaka, Yuki; Saiga, Misako; Yamada, Ken-ichi

    2016-01-01

    Continuous energy conversion is controlled by reduction–oxidation (redox) processes. NAD+ and NADH represent an important redox couple in energy metabolism. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) is a redox-cycling nitroxide that promotes the scavenging of several reactive oxygen species (ROS) and is reduced to hydroxylamine by NADH. TEMPOL is also involved in NAD+ production in the ascorbic acid–glutathione redox cycle. We utilized the chemical properties of TEMPOL to investigate the effects of antioxidants and NAD+/NADH modulators on the metabolic imbalance in obese mice. Increases in the NAD+/NADH ratio by TEMPOL ameliorated the metabolic imbalance when combined with a dietary intervention, changing from a high-fat diet to a normal diet. Plasma levels of the superoxide marker dihydroethidium were higher in mice receiving the dietary intervention compared with a control diet, but were normalized with TEMPOL consumption. These findings provide novel insights into redox regulation in obesity. PMID:26942863

  2. TEMPOL increases NAD+ and improves redox imbalance in obese mice

    Directory of Open Access Journals (Sweden)

    Mayumi Yamato

    2016-08-01

    Full Text Available Continuous energy conversion is controlled by reduction–oxidation (redox processes. NAD+ and NADH represent an important redox couple in energy metabolism. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL is a redox-cycling nitroxide that promotes the scavenging of several reactive oxygen species (ROS and is reduced to hydroxylamine by NADH. TEMPOL is also involved in NAD+ production in the ascorbic acid–glutathione redox cycle. We utilized the chemical properties of TEMPOL to investigate the effects of antioxidants and NAD+/NADH modulators on the metabolic imbalance in obese mice. Increases in the NAD+/NADH ratio by TEMPOL ameliorated the metabolic imbalance when combined with a dietary intervention, changing from a high-fat diet to a normal diet. Plasma levels of the superoxide marker dihydroethidium were higher in mice receiving the dietary intervention compared with a control diet, but were normalized with TEMPOL consumption. These findings provide novel insights into redox regulation in obesity.

  3. TEMPOL increases NAD(+) and improves redox imbalance in obese mice.

    Science.gov (United States)

    Yamato, Mayumi; Kawano, Kimika; Yamanaka, Yuki; Saiga, Misako; Yamada, Ken-Ichi

    2016-08-01

    Continuous energy conversion is controlled by reduction-oxidation (redox) processes. NAD(+) and NADH represent an important redox couple in energy metabolism. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) is a redox-cycling nitroxide that promotes the scavenging of several reactive oxygen species (ROS) and is reduced to hydroxylamine by NADH. TEMPOL is also involved in NAD(+) production in the ascorbic acid-glutathione redox cycle. We utilized the chemical properties of TEMPOL to investigate the effects of antioxidants and NAD(+)/NADH modulators on the metabolic imbalance in obese mice. Increases in the NAD(+)/NADH ratio by TEMPOL ameliorated the metabolic imbalance when combined with a dietary intervention, changing from a high-fat diet to a normal diet. Plasma levels of the superoxide marker dihydroethidium were higher in mice receiving the dietary intervention compared with a control diet, but were normalized with TEMPOL consumption. These findings provide novel insights into redox regulation in obesity. Copyright © 2016. Published by Elsevier B.V.

  4. Synthesis and characterization of redox-active ferric nontronite

    Energy Technology Data Exchange (ETDEWEB)

    Ilgen, A. G.; Kukkadapu, R. K.; Dunphy, D. R.; Artyushkova, K.; Cerrato, J. M.; Kruichak, J. N.; Janish, M. T.; Sun, C. J.; Argo, J. M.; Washington, R. E.

    2017-10-01

    Heterogeneous redox reactions on clay mineral surfaces control mobility and bioavailability of redox-sensitive nutrients and contaminants. Iron (Fe) residing in clay mineral structures can either catalyze or directly participate in redox reactions; however, chemical controls over its reactivity are not fully understood. In our previous work we demonstrated that converting a minor portion of Fe(III) to Fe(II) (partial reduction) in the octahedral sheet of natural Fe-rich clay mineral nontronite (NAu-1) activates its surface, making it redox-active. In this study we produced and characterized synthetic ferric nontronite (SIP), highlighting structural and chemical similarities and differences between this synthetic nontronite and its natural counterpart NAu-1, and probed whether mineral surface is redox-active by reacting it with arsenic As(III) under oxic and anoxic conditions. We demonstrate that synthetic nontronite SIP undergoes the same activation as natural nontronite NAu-1 following the partial reduction treatment. Similar to NAu-1, SIP oxidized As(III) to As(V) under both oxic (catalytic pathway) and anoxic (direct oxidation) conditions. The similar reactivity trends observed for synthetic nontronite and its natural counterpart make SIP an appropriate analog for laboratory studies. The development of chemically pure analogs for ubiquitous soil minerals will allow for systematic research of the fundamental properties of these minerals.

  5. Systemic Redox Imbalance in Chronic Kidney Disease: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Konstantina P. Poulianiti

    2016-01-01

    Full Text Available Patients with chronic kidney disease (CKD experience imbalance between oxygen reactive species (ROS production and antioxidant defenses leading to cell and tissue damage. However, it remains unclear at which stage of renal insufficiency the redox imbalance becomes more profound. The aim of this systematic review was to provide an update on recent advances in our understanding of how the redox status changes in the progression of renal disease from predialysis stages 1 to 4 to end stage 5 and whether the various treatments and dialysis modalities influence the redox balance. A systematic review was conducted searching PubMed and Scopus by using the Cochrane and PRISMA guidelines. In total, thirty-nine studies met the inclusion criteria and were reviewed. Even from an early stage, imbalance in redox status is evident and as the kidney function worsens it becomes more profound. Hemodialysis therapy per se seems to negatively influence the redox status by the elevation of lipid peroxidation markers, protein carbonylation, and impairing erythrocyte antioxidant defense. However, other dialysis modalities do not so far appear to confer advantages. Supplementation with antioxidants might assist and should be considered as an early intervention to halt premature atherogenesis development at an early stage of CKD.

  6. Molecular Controls of the Oxygenation and Redox Reactions of Hemoglobin

    Science.gov (United States)

    Henkens, Robert; Alayash, Abdu I.; Banerjee, Sambuddha; Crumbliss, Alvin L.

    2013-01-01

    Abstract Significance: The broad classes of O2-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O2-binding functions. Recent Advances: The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. Critical Issues: An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. Future Directions: This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes. Antioxid. Redox Signal. 18, 2298–2313. PMID:23198874

  7. A biomimetic redox flow battery based on flavin mononucleotide

    Science.gov (United States)

    Orita, Akihiro; Verde, Michael G.; Sakai, Masanori; Meng, Ying Shirley

    2016-10-01

    The versatility in design of redox flow batteries makes them apt to efficiently store energy in large-scale applications at low cost. The discovery of inexpensive organic electroactive materials for use in aqueous flow battery electrolytes is highly attractive, but is thus far limited. Here we report on a flow battery using an aqueous electrolyte based on the sodium salt of flavin mononucleotide. Flavins are highly versatile electroactive molecules, which catalyse a multitude of redox reactions in biological systems. We use nicotinamide (vitamin B3) as a hydrotropic agent to enhance the water solubility of flavin mononucleotide. A redox flow battery using flavin mononucleotide negative and ferrocyanide positive electrolytes in strong base shows stable cycling performance, with over 99% capacity retention over the course of 100 cycles. We hypothesize that this is enabled due to the oxidized and reduced forms of FMN-Na being stabilized by resonance structures.

  8. Double-membrane triple-electrolyte redox flow battery design

    Energy Technology Data Exchange (ETDEWEB)

    Yushan, Yan; Gu, Shuang; Gong, Ke

    2018-03-13

    A redox flow battery is provided having a double-membrane (one cation exchange membrane and one anion exchange membrane), triple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and one electrolyte positioned between and in contact with the two membranes). The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte. This design physically isolates, but ionically connects, the negative electrolyte and positive electrolyte. The physical isolation offers great freedom in choosing redox pairs in the negative electrolyte and positive electrolyte, making high voltage of redox flow batteries possible. The ionic conduction drastically reduces the overall ionic crossover between negative electrolyte and positive one, leading to high columbic efficiency.

  9. Hybrid energy storage systems utilizing redox active organic compounds

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  10. Hydrogen peroxide and central redox theory for aerobic life: A tribute to Helmut Sies: Scout, trailblazer, and redox pioneer.

    Science.gov (United States)

    Jones, Dean P

    2016-04-01

    When Rafael Radi and I wrote about Helmut Sies for the Redox Pioneer series, I was disappointed that the Editor restricted us to the use of "Pioneer" in the title. My view is that Helmut was always ahead of the pioneers: He was a scout discovering paths for exploration and a trailblazer developing strategies and methods for discovery. I have known him for nearly 40 years and greatly enjoyed his collegiality as well as brilliance in scientific scholarship. He made monumental contributions to 20th century physiological chemistry beginning with his first measurement of H2O2 in rat liver. While continuous H2O2 production is dogma today, the concept of H2O2 production in mammalian tissues was largely buried for half a century. He continued this leadership in research on oxidative stress, GSH, selenium, and singlet oxygen, during the timeframe when physiological chemistry and biochemistry transitioned to contemporary 21st century systems biology. His impact has been extensive in medical and health sciences, especially in nutrition, aging, toxicology and cancer. I briefly summarize my interactions with Helmut, stressing our work together on the redox code, a set of principles to link mitochondrial respiration, bioenergetics, H2O2 metabolism, redox signaling and redox proteomics into central redox theory. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  11. Differential alkylation-based redox proteomics - Lessons learnt

    DEFF Research Database (Denmark)

    Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina

    2015-01-01

    -sulfenylation are crucial mediators of intracellular redox signalling, with known associations to health and disease. Study of their functionalities has intensified thanks to the development of various analytical strategies, with particular contribution from differential alkylation-based proteomics methods. Presented here...... is a critical evaluation of differential alkylation-based strategies for the analysis of S-nitrosylation and S-sulfenylation. The aim is to assess the current status and to provide insights for future directions in the dynamically evolving field of redox proteomics. To achieve that we collected 35 original...

  12. Measuring intracellular redox conditions using GFP-based sensors

    DEFF Research Database (Denmark)

    Björnberg, Olof; Ostergaard, Henrik; Winther, Jakob R

    2006-01-01

    Recent years have seen the development of methods for analyzing the redox conditions in specific compartments in living cells. These methods are based on genetically encoded sensors comprising variants of Green Fluorescent Protein in which vicinal cysteine residues have been introduced at solvent......-exposed positions. Several mutant forms have been identified in which formation of a disulfide bond between these cysteine residues results in changes of their fluorescence properties. The redox sensors have been characterized biochemically and found to behave differently, both spectroscopically and in terms...

  13. Impact of Redox on Glass Durability: The Glass Selection Process

    International Nuclear Information System (INIS)

    PEELER, DAVID

    2004-01-01

    Recent glass formulation activities have focused on developing alternative frit compositions for use with specific sludge batches to maximize melt rate and/or waste throughput. The general trend has been to increase the total alkali content in the glass through the use of a high alkali based frit, a less washed sludge, or a combination of the two. As a result, predictions of durability have become a limiting factor in defining the projected operating windows for the Defense Waste Processing Facility (DWPF) for certain systems. An additional issue for these high alkali glasses has been the effect of REDuction/OXidation (REDOX) on the durability of the glass. Recent analyses have indicated that the application of the durability model's value without consideration of the overall glass composition may lead to a more significant shift (larger magnitude) than needed. Therefore, activation of the REDOX term in the Product Composition Control System (PCCS) may have a significant impact on the predicted operational windows based on model predictions, but may not represent the realistic impact on the measured durability. In this report, two specific issues are addressed. First, a review of the data used to develop PCCS (in particular the durability model) showed the potential for a REDOX interaction that is not accounted for. More specifically, three terms were added to the current model and were found to be statistically significant at a confidence level of 95 per cent. These results suggest a possible interaction between REDOX and glass composition that is not accurately captured leading to potentially conservative decisions regarding the durability of reduced glasses. The second issue addressed in this report is the development of a 45 glass test matrix to assess the effect of REDOX on durability as well as to provide insight into specific interactive compositional effects on durability. The glasses were selected to support the assessment of the following specific

  14. Redox Active Polymers as Soluble Nanomaterials for Energy Storage.

    Science.gov (United States)

    Burgess, Mark; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2016-11-15

    It is an exciting time for exploring the synergism between the chemical and dimensional properties of redox nanomaterials for addressing the manifold performance demands faced by energy storage technologies. The call for widespread adoption of alternative energy sources requires the combination of emerging chemical concepts with redesigned battery formats. Our groups are interested in the development and implementation of a new strategy for nonaqueous flow batteries (NRFBs) for grid energy storage. Our motivation is to solve major challenges in NRFBs, such as the lack of membranes that simultaneously allow fast ion transport while minimizing redox active species crossover between anolyte (negative electrolyte) and catholyte (positive electrolyte) compartments. This pervasive crossover leads to deleterious capacity fade and materials underutilization. In this Account, we highlight redox active polymers (RAPs) and related polymer colloids as soluble nanoscopic energy storing units that enable the simple but powerful size-exclusion concept for NRFBs. Crossover of the redox component is suppressed by matching high molecular weight RAPs with simple and inexpensive nanoporous commercial separators. In contrast to the vast literature on the redox chemistry of electrode-confined polymer films, studies on the electrochemistry of solubilized RAPs are incipient. This is due in part to challenges in finding suitable solvents that enable systematic studies on high polymers. Here, viologen-, ferrocene- and nitrostyrene-based polymers in various formats exhibit properties that make amenable their electrochemical exploration as solution-phase redox couples. A main finding is that RAP solutions store energy efficiently and reversibly while offering chemical modularity and size versatility. Beyond the practicality toward their use in NRFBs, the fundamental electrochemistry exhibited by RAPs is fascinating, showing clear distinctions in behavior from that of small molecules. Whereas

  15. Pattern-oriented Agent-based Monte Carlo simulation of Cellular Redox Environment

    DEFF Research Database (Denmark)

    Tang, Jiaowei; Holcombe, Mike; Boonen, Harrie C.M.

    ] could be very important factors. In our project, an agent-based Monte Carlo modeling [6] is offered to study the dynamic relationship between extracellular and intracellular redox and complex networks of redox reactions. In the model, pivotal redox-related reactions will be included, and the reactants....../CYSS) and mitochondrial redox couples. Evidence suggests that both intracellular and extracellular redox can affect overall cell redox state. How redox is communicated between extracellular and intracellular environments is still a matter of debate. Some researchers conclude based on experimental data....... Because complex networks and dynamics of redox still is not completely understood , results of existing experiments will be used to validate the modeling according to ideas in pattern-oriented agent-based modeling[8]. The simulation of this model is computational intensive, thus an application 'FLAME...

  16. Thermo-Kinetic Investigation of Comparative Ligand Effect on Cysteine Iron Redox Reaction

    Directory of Open Access Journals (Sweden)

    Masood Ahmad Rizvi

    2015-03-01

    Full Text Available Transition metal ions in their free state bring unwanted biological oxidations generating oxidative stress. The ligand modulated redox potential can be indispensable in prevention of such oxidative stress by blocking the redundant bio-redox reactions. In this study we investigated the comparative ligand effect on the thermo-kinetic aspects of biologically important cysteine iron (III redox reaction using spectrophotometric and potentiometric methods. The results were corroborated with the complexation effect on redox potential of iron(III-iron(II redox couple. The selected ligands were found to increase the rate of cysteine iron (III redox reaction in proportion to their stability of iron (II complex (EDTA < terpy < bipy < phen. A kinetic profile and the catalytic role of copper (II ions by means of redox shuttle mechanism for the cysteine iron (III redox reaction in presence of 1,10-phenanthroline (phen ligand is also reported.

  17. Role of Redox Status in Development of Glioblastoma

    Science.gov (United States)

    Salazar-Ramiro, Aleli; Ramírez-Ortega, Daniela; Pérez de la Cruz, Verónica; Hérnandez-Pedro, Norma Y.; González-Esquivel, Dinora Fabiola; Sotelo, Julio; Pineda, Benjamín

    2016-01-01

    Glioblastoma multiforme (GBM) is a highly aggressive neoplasia, prognosis remains dismal, and current therapy is mostly palliative. There are no known risk factors associated with gliomagenesis; however, it is well established that chronic inflammation in brain tissue induces oxidative stress in astrocytes and microglia. High quantities of reactive species of oxygen into the cells can react with several macromolecules, including chromosomal and mitochondrial DNA, leading to damage and malfunction of DNA repair enzymes. These changes bring genetic instability and abnormal metabolic processes, favoring oxidative environment and increase rate of cell proliferation. In GBM, a high metabolic rate and increased basal levels of reactive oxygen species play an important role as chemical mediators in the regulation of signal transduction, protecting malignant cells from apoptosis, thus creating an immunosuppressive environment. New redox therapeutics could reduce oxidative stress preventing cellular damage and high mutation rate accompanied by chromosomal instability, reducing the immunosuppressive environment. In addition, therapies directed to modulate redox rate reduce resistance and moderate the high rate of cell proliferation, favoring apoptosis of tumoral cells. This review describes the redox status in GBM, and how this imbalance could promote gliomagenesis through genomic and mitochondrial DNA damage, inducing the pro-oxidant and proinflammatory environment involved in tumor cell proliferation, resistance, and immune escape. In addition, some therapeutic agents that modulate redox status and might be advantageous in therapy against GBM are described. PMID:27199982

  18. Role of redox status in development of glioblastoma

    Directory of Open Access Journals (Sweden)

    Aleli eSalazar-Ramiro

    2016-04-01

    Full Text Available Glioblastoma (GBM is a highly aggressive neoplasia, prognosis remains dismal and current therapy is mostly palliative. There are no known risk factors associated with gliomagenesis; however, it is well established that chronic inflammation in brain tissue induces oxidative stress in astrocytes and microglia. High quantities of reactive species of oxygen into the cells can react with several macromolecules, including chromosomal and mitochondrial DNA, leading to damage and malfunction of DNA repair enzymes. These changes bring genetic instability and abnormal metabolic processes favoring oxidative environment and increase rate of cell proliferation. In GBM, a high metabolic rate and increased basal levels of ROS play an important role as chemical mediators in the regulation of signal transduction, protecting malignant cells from apoptosis, thus creating an immunosuppressive environment. New redox therapeutics could reduce oxidative stress preventing cellular damage and high mutation rate accompanied by chromosomal instability, reducing the immunosuppressive environment. In addition, therapies directed to modulate redox rate reduce resistance and moderate the high rate of cell proliferation, favoring apoptosis of tumoral cells. This review describes the redox status in GBM and how this imbalance could promote gliomagenesis through genomic and mitochondrial DNA damage, inducing the pro-oxidant and pro-inflammatory environment involved in tumor cell proliferation, resistance and immune scape. In addition, are described some therapeutic agents that modulate redox status and might be advantageous in therapy against GBM.

  19. Synthesis, structure, redox and spectra of green iridium complexes ...

    Indian Academy of Sciences (India)

    TECS

    3. *For correspondence. Synthesis, structure, redox and spectra of green iridium complexes of tridentate azo-aromatic ligands. MANASHI PANDA,a CHAYAN DAS,a CHEN-HSIUNG HUNGb and. SREEBRATA ... Mn(II)7 and Fe(II)8 but also produces stable anionic ..... the EPR of the oxidized complexes were not suc- cessful ...

  20. Oxidative stress: impact in redox biology and medicine | Sies ...

    African Journals Online (AJOL)

    The field of oxidative stress research embraces chemistry, biochemistry, cell biology, physiology and pathophysiology, all the way to medicine and health and disease research. “Oxidative stress is an imbalance between oxidants and antioxidants in favor of the oxidants, leading to a disruption of redox signaling and control ...

  1. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Lages, Nuno; Oldiges, M.

    2009-01-01

    to induce widespread changes in metabolism. We present a detailed analysis of the impact of perturbations in redox cofactors in the cytosol or mitochondria on glucose and energy metabolism in Saccharomyces cerevisiae to aid metabolic engineering decisions that involve cofactor engineering. We enhanced NADH...

  2. Synthesis, spectral characterization and redox properties of iron (II ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis, spectral characterization and redox properties of iron. (II) complexes of 1-alkyl-2-(arylazo)imidazole. U S RAY, D BANERJEE and C SINHA*. Department of Chemistry, The University of Burdwan, Burdwan 713 104,. India e-mail: c_r_sinha@yahoo.com. MS received 26 February 2003; revised 12 May 2003.

  3. Reductant-dependent electron distribution among redox sites of laccase

    DEFF Research Database (Denmark)

    Farver, O; Goldberg, M; Wherland, S

    1978-01-01

    Rhus laccase (monophenol monooxygenase, monophenol,dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) an O2/H2O oxidoreductase containing four copper ions bound to three redox sites (type 1, type 2, and type 3 Cu pair), was titrated anaerobically with several reductants having various...

  4. Redox kinetics of monomethyl fuchsin by dithionite ion in aqueous ...

    African Journals Online (AJOL)

    Redox kinetics of monomethyl fuchsin by dithionite ion in aqueous hydrochloric acid. AD Onu, JF Iyun. Abstract. No Abstract. Nigerian Journal of Chemical Research Vol 5 2000: 33-37. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  5. Redox Potentials of Ligands and Complexes – a DFT Approach

    African Journals Online (AJOL)

    NICO

    behaviour at the nitro group,22,23,24 while good communication exists between this redox active centre and ... Infra-Red N-O stretching frequencies,

  6. Redox environment in stem and differentiated cells: A quantitative approach

    Directory of Open Access Journals (Sweden)

    O.G. Lyublinskaya

    2017-08-01

    Full Text Available Stem cells are believed to maintain a specific intracellular redox status through a combination of enhanced removal capacity and limited production of ROS. In the present study, we challenge this assumption by developing a quantitative approach for the analysis of the pro- and antioxidant ability of human embryonic stem cells in comparison with their differentiated descendants, as well as adult stem and non-stem cells. Our measurements showed that embryonic stem cells are characterized by low ROS level, low rate of extracellular hydrogen peroxide removal and low threshold for peroxide-induced cytotoxicity. However, biochemical normalization of these parameters to cell volume/protein leads to matching of normalized values in stem and differentiated cells and shows that tested in the present study cells (human embryonic stem cells and their fibroblast-like progenies, adult mesenchymal stem cells, lymphocytes, HeLa maintain similar intracellular redox status. Based on these observations, we propose to use ROS concentration averaged over the cell volume instead of ROS level as a measure of intracellular redox balance. We show that attempts to use ROS level for comparative analysis of redox status of morphologically different cells could lead to false conclusions. Methods for the assessment of ROS concentration based on flow cytometry analysis with the use of H2DCFDA dye and HyPer, genetically encoded probe for hydrogen peroxide, are discussed.

  7. Two Ideas of the Redox Reaction: Misconceptions and their ...

    African Journals Online (AJOL)

    Two Ideas of the Redox Reaction: Misconceptions and their Challenge in Chemistry Education. ... African Journal of Chemical Education ... In interpretations of chemical phenomena students like to mix the macro level of substances with the sub-micro level of atoms, ions and molecules: “water boils at 100 oC and has an ...

  8. Differential alkylation-based redox proteomics – Lessons learnt

    Science.gov (United States)

    Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina

    2015-01-01

    Cysteine is one of the most reactive amino acids. This is due to the electronegativity of sulphur atom in the side chain of thiolate group. It results in cysteine being present in several distinct redox forms inside the cell. Amongst these, reversible oxidations, S-nitrosylation and S-sulfenylation are crucial mediators of intracellular redox signalling, with known associations to health and disease. Study of their functionalities has intensified thanks to the development of various analytical strategies, with particular contribution from differential alkylation-based proteomics methods. Presented here is a critical evaluation of differential alkylation-based strategies for the analysis of S-nitrosylation and S-sulfenylation. The aim is to assess the current status and to provide insights for future directions in the dynamically evolving field of redox proteomics. To achieve that we collected 35 original research articles published since 2010 and analysed them considering the following parameters, (i) resolution of modification site, (ii) quantitative information, including correction of modification levels by protein abundance changes and determination of modification site occupancy, (iii) throughput, including the amount of starting material required for analysis. The results of this meta-analysis are the core of this review, complemented by issues related to biological models and sample preparation in redox proteomics, including conditions for free thiol blocking and labelling of target cysteine oxoforms. PMID:26282677

  9. Differential alkylation-based redox proteomics--Lessons learnt.

    Science.gov (United States)

    Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina

    2015-12-01

    Cysteine is one of the most reactive amino acids. This is due to the electronegativity of sulphur atom in the side chain of thiolate group. It results in cysteine being present in several distinct redox forms inside the cell. Amongst these, reversible oxidations, S-nitrosylation and S-sulfenylation are crucial mediators of intracellular redox signalling, with known associations to health and disease. Study of their functionalities has intensified thanks to the development of various analytical strategies, with particular contribution from differential alkylation-based proteomics methods. Presented here is a critical evaluation of differential alkylation-based strategies for the analysis of S-nitrosylation and S-sulfenylation. The aim is to assess the current status and to provide insights for future directions in the dynamically evolving field of redox proteomics. To achieve that we collected 35 original research articles published since 2010 and analysed them considering the following parameters, (i) resolution of modification site, (ii) quantitative information, including correction of modification levels by protein abundance changes and determination of modification site occupancy, (iii) throughput, including the amount of starting material required for analysis. The results of this meta-analysis are the core of this review, complemented by issues related to biological models and sample preparation in redox proteomics, including conditions for free thiol blocking and labelling of target cysteine oxoforms. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Phosphate-dependent modulation of antibacterial strategy: a redox ...

    Indian Academy of Sciences (India)

    The redox sensitivity of cerium oxide nanoparticles (CeNPs) was used to irreversibly scavenge phosphate ions fromthe microbial growth media resulting in nutrient starvation in microbes. Cerium oxide nanoparticles surface was engineeredwith different ratios of (Ce ( + 3)/Ce ( + 4)) cerium oxidation states and the effect of ...

  11. Reductant-dependent electron distribution among redox sites of laccase

    DEFF Research Database (Denmark)

    Farver, O; Goldberg, M; Wherland, S

    1978-01-01

    Rhus laccase (monophenol monooxygenase, monophenol,dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) an O2/H2O oxidoreductase containing four copper ions bound to three redox sites (type 1, type 2, and type 3 Cu pair), was titrated anaerobically with several reductants having various ch...

  12. Vanadium and Chromium Redox Behavior in borosilicate Nuclear Waste Glasses

    International Nuclear Information System (INIS)

    McKeown, D.; Muller, I.; Gan, H.; Feng, Z.; Viragh, C.; Pegg, I.

    2011-01-01

    X-ray absorption spectroscopy (XAS) was used to characterize vanadium (V) and chromium (Cr) environments in low activity nuclear waste (LAW) glasses synthesized under a variety of redox conditions. V 2 O 5 was added to the melt to improve sulfur incorporation from the waste; however, at sufficiently high concentrations, V increased melt foaming, which lowered melt processing rates. Foaming may be reduced by varying the redox conditions of the melt, while small amounts of Cr are added to reduce melter refractory corrosion. Three parent glasses were studied, where CO-CO 2 mixtures were bubbled through the corresponding melt for increasing time intervals so that a series of redox-adjusted-glasses was synthesized from each parent glass. XAS data indicated that V and Cr behaviors are significantly different in these glasses with respect to the cumulative gas bubbling times: V 4+ /V total ranges from 8 to 35%, while Cr 3+ /Cr total can range from 15 to 100% and even to population distributions including Cr 2+ . As Na-content decreased, V, and especially, Cr became more reduced, when comparing equivalent glasses within a series. The Na-poor glass series show possible redox coupling between V and Cr, where V 4+ populations increase after initial bubbling, but as bubbling time increases, V 4+ populations drop to near the level of the parent glass, while Cr becomes more reduced to the point of having increasing Cr 2+ populations.

  13. Redox zones of a landfill leachate pollution plume (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Lyngkilde, John; Christensen, Thomas Højlund

    1992-01-01

    Downgradient from an old municipal landfill allowing leachate, rich in dissolved organic carbon, to enter a shallow sandy aerobic aquifer, a sequence of redoxe zones is identified from groundwater chemical analysis. Below the landfill, methanogenic conditions prevail, followed by sulfidogenic...... the fate of reactive pollutants leached from the landfill....

  14. Redox Control of Leukemia: From Molecular Mechanisms to Therapeutic Opportunities

    Science.gov (United States)

    Irwin, Mary E.; Rivera-Del Valle, Nilsa

    2013-01-01

    Abstract Reactive oxygen species (ROS) play both positive and negative roles in the proliferation and survival of a cell. This dual nature has been exploited by leukemia cells to promote growth, survival, and genomic instability—some of the hallmarks of the cancer phenotype. In addition to altered ROS levels, many antioxidants are dysregulated in leukemia cells. Together, the production of ROS and the expression and activity of antioxidant enzymes make up the primary redox control of leukemia cells. By manipulating this system, leukemia cells gain proliferative and survival advantages, even in the face of therapeutic insults. Standard treatment options have improved leukemia patient survival rates in recent years, although relapse and the development of resistance are persistent challenges. Therapies targeting the redox environment show promise for these cases. This review highlights the molecular mechanisms that control the redox milieu of leukemia cells. In particular, ROS production by the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidoreductase, and cytochrome P450 will be addressed. Expression and activation of antioxidant enzymes such as superoxide dismutase, catalase, heme oxygenase, glutathione, thioredoxin, and peroxiredoxin are perturbed in leukemia cells, and the functional consequences of these molecular alterations will be described. Lastly, we delve into how these pathways can be potentially exploited therapeutically to improve treatment regimens and promote better outcomes for leukemia patients. Antioxid. Redox Signal. 18, 1349–1383. PMID:22900756

  15. Redox-switched amphiphilic ionic liquid behavior in aqueous solution.

    Science.gov (United States)

    Chamiot, Bénédicte; Rizzi, Cécile; Gaillon, Laurent; Sirieix-Plénet, Juliette; Lelièvre, Joël

    2009-02-03

    A new redox amphiphilic ionic liquid (AIL) containing ferrocene as a redox-active group was synthesized, 1-(11-ferrocenylundecyl)-3-methylimidazolium bromide (Fc11MIm+). Adsorption and aggregation of both reduced and oxidized forms of this ferrocenated AIL in aqueous solution were studied by surface tension measurements. The micellization was favored for the reduced ferrocenated AIL (Fc11MIm+) as compared with the oxidized ferrocenated AIL (Fc+11MIm+). Minimum areas at the air/aqueous solution interface were identical whereas limiting surface tensions were slightly different. This corroborated the formation of an expanded monolayer of redox active AIL at the interface. The electrochemical behavior of redox active AIL was investigated. The electrochemical responses of Fc11MIm+ aqueous solution interestingly differed, depending on its concentration. Below the cmc, the electrochemical reaction was dominated by ferrocenated AIL adsorbed onto the electrode surface; then above the cmc, it was controlled by the Fc11MIm+ diffusing to the electrode. For the latter, the electrochemical mechanism was suggested to couple with the disruption reaction of the reduced form micelles.

  16. Redox Modulation by Amaranth Oil in Human Lung Fibroblasts

    NARCIS (Netherlands)

    Semen, K.O.; den Hartog, G.J.M.; Kaminsky, D.V.; Sirota, T.V.; Maij, N.G.A.A.; Yelisyeyeva, O.P.; Bast, A.

    2013-01-01

    Amaranth oil has several health benefits. It has lipid lowering, anti-diabetic, immune modulatory and cytoprotective properties, activates the function of mitochondria and improves heart rate variability. It has been suggested that the effect of amaranth oil on redox status is involved in this

  17. Modelling non-redox enzymes: Anaerobic and aerobic acetylene ...

    Indian Academy of Sciences (India)

    Administrator

    Modelling non-redox enzymes: Anaerobic and aerobic acetylene hydratase. SABYASACHI SARKAR. Department of Chemistry, Indian Institute of Technology, Kanpur 208 016,. India. Acetaldehyde is the first metabolite produced during acetylene degradation by bacteria either aerobically or anaerobically. Conversion of ...

  18. Self-affine roughness influence on redox reaction charge admittance

    NARCIS (Netherlands)

    Palasantzas, G

    2005-01-01

    In this work we investigate the influence of self-affine electrode roughness on the admittance of redox reactions during facile charge transfer kinetics. The self-affine roughness is characterized by the rms roughness amplitude w, the correlation length xi and the roughness exponent H (0

  19. Elucidation of the Mechanism of Redox Grafting of Diazotated Anthraquinone

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Bousquet, Antoine; Torbensen, Kristian

    2012-01-01

    in detail, 1-anthraquinone (AQ) redox units were immobilized on these substrates by electroreduction of 9,10-dioxo-9,10-dihydroanthracene-1-diazo-nium tetrafluoroborate. Electrochemical quartz crystal microbalance was employed to follow the grafting process during a cyclic voltammetric sweep by recording...

  20. Electrochemical studies of redox probes in self-organized lyotropic ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Lyotropic liquid crystalline phases formed by surfactants are of special importance due to their close resemblance to biological systems. The redox reactions in such ordered media are of funda- mental interest in understanding several complex processes occurring in the biological media, where the former can act ...

  1. Sulfide Concentration and Redox Potential Patterns in Mangrove ...

    African Journals Online (AJOL)

    The conclusion of these results is that spatial and temporal variation in the soil redox potential and sulfide concentrations, which are results of microbial activities in the sediment, influence mangrove seedling establishment. These soil factors are modified by the root systems, whereby sediments in areas with plenty of ...

  2. Electrochemical studies of redox probes in self-organized lyotropic ...

    Indian Academy of Sciences (India)

    Lyotropic liquid crystalline phases formed by surfactants are of special importance due to their close resemblance to biological systems. The redox reactions in such ordered media are of fundamental interest in understanding several complex processes occurring in the biological media, where the former can act as model ...

  3. Synthesis, spectral characterization and redox properties of iron (II ...

    Indian Academy of Sciences (India)

    Unknown

    Arylazoheterocycles and their chemistry of transition and non-transition metals have been explored for more than two decades.1 Owing to their pH-response, photoactivity, light electron communication, stabilization of low valent metal oxidation state, exhibition of serial redox states of complexes, isolation of anion radicals, ...

  4. Redox-mediated polymerization and removal of benzidine from ...

    African Journals Online (AJOL)

    Peroxidase from Momordica charantia was highly effective, active and stable for the oxidation of benzidine from model wastewater. There was no oxidative polymerization of benzidine without any redox mediator. Various experimental parameters were standardized for the maximum oxidation of benzidine by peroxidase.

  5. Immobilization of redox mediators on functionalized carbon nanotube

    Indian Academy of Sciences (India)

    Chemical functionalization of single-walled carbon nanotubes with redox mediators, namely, toluidine blue and thionin have been carried out and the performance of graphite electrode modified with functionalized carbon nanotubes is described. Mechanical immobilization of functionalized single-walled nanotube (SWNT) ...

  6. a redox state-controlled toxicity of cerium oxide nanoparticles

    Indian Academy of Sciences (India)

    2017-09-22

    Sep 22, 2017 ... Specific reactivity of cerium oxide nanoparticles with phosphate ions was used to design a novel antibacterial system. The redox ... It is hypothesized that nutrient starvation by Ce (+3) leads to oxidative stress in microbes which is not .... from our earlier work of strong affinity of CeNPs (+3) with phosphate ...

  7. Connecting Biology to Electronics: Molecular Communication via Redox Modality.

    Science.gov (United States)

    Liu, Yi; Li, Jinyang; Tschirhart, Tanya; Terrell, Jessica L; Kim, Eunkyoung; Tsao, Chen-Yu; Kelly, Deanna L; Bentley, William E; Payne, Gregory F

    2017-12-01

    Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Conformational transitions and molecular hysteresis of cytochrome c oxidase: Varying the redox state by electronic wiring

    NARCIS (Netherlands)

    Nowak, Christoph; Santonicola, M.; Schach, Denise; Zhu, Jiapeng; Gennis, Robert B.; Ferguson-Miller, Shelagh; Baurecht, Dieter; Walz, Dieter; Knoll, Wolfgang; Naumann, Renate L.

    2010-01-01

    Even though the structures of cytochrome c oxidase (CcO) from different sources have been determined by X-ray crystallography in both the reduced and oxidized redox states, information about redox-induced structure-function relationships is still very limited. In the current work, redox-dependent

  9. Effect of redox proteins on the behavior of non-volatile memory.

    Science.gov (United States)

    Lee, Ji Hyun; Yew, Seung Chul; Cho, Jinhan; Kim, Youn Sang

    2012-12-21

    We demonstrated the memory effect of redox proteins in organic field-effect transistor (OFET) flash memory devices. Redox proteins include a heme structure, which has reversible redox reactions. These properties of the proteins could be successfully applied to the flash memory devices, which show a considerable memory window (~11 V) and relatively good endurance properties (~over 100 cycles).

  10. Separate effects of flooding and anaerobiosis on soil greenhouse gas emissions and redox sensitive biogeochemistry

    Science.gov (United States)

    Gavin McNicol; Whendee L. Silver

    2014-01-01

    Soils are large sources of atmospheric greenhouse gases, and both the magnitude and composition of soil gas emissions are strongly controlled by redox conditions. Though the effect of redox dynamics on greenhouse gas emissions has been well studied in flooded soils, less research has focused on redox dynamics without total soil inundation. For the latter, all that is...

  11. Photoinduced electron transfer as a design concept for luminescent redox indicators.

    Science.gov (United States)

    Magri, David C

    2015-11-21

    The general design principle for developing luminescent redox indicators based on photoinduced electron transfer is described. The first part of the review introduces colorimetric and fluorimetric redox indicators. The second part of the review highlights recent developments regarding molecular luminescent redox switches and logic gates. Potential future applications in biology, environmental analysis, biomedical diagnostics, corrosion science and materials science are mentioned.

  12. Redox chemistry and natural organic matter (NOM): Geochemists' dream, analytical chemists' nightmare

    Science.gov (United States)

    Macalady, Donald L.; Walton-Day, Katherine

    2011-01-01

    Natural organic matter (NOM) is an inherently complex mixture of polyfunctional organic molecules. Because of their universality and chemical reversibility, oxidation/reductions (redox) reactions of NOM have an especially interesting and important role in geochemistry. Variabilities in NOM composition and chemistry make studies of its redox chemistry particularly challenging, and details of NOM-mediated redox reactions are only partially understood. This is in large part due to the analytical difficulties associated with NOM characterization and the wide range of reagents and experimental systems used to study NOM redox reactions. This chapter provides a summary of the ongoing efforts to provide a coherent comprehension of aqueous redox chemistry involving NOM and of techniques for chemical characterization of NOM. It also describes some attempts to confirm the roles of different structural moieties in redox reactions. In addition, we discuss some of the operational parameters used to describe NOM redox capacities and redox states, and describe nomenclature of NOM redox chemistry. Several relatively facile experimental methods applicable to predictions of the NOM redox activity and redox states of NOM samples are discussed, with special attention to the proposed use of fluorescence spectroscopy to predict relevant redox characteristics of NOM samples.

  13. The Redox Potentials of n-type Colloidal Semiconductor Nanocrystals

    Science.gov (United States)

    Carroll, Gerard Michael

    This thesis presents investigations for two related fields of semiconductor electrochemistry: redox potential determination of colloidal semiconductor nanocrystals, and mechanistic analysis of photoelectrochemical water oxidation with electrocatalyst modified mesostructured hematite photoanodes. Adapting electrochemical techniques to colloidal semiconductor nanocrystals (SC NC) is a long-standing challenge for this class of materials. Subject to a variety of complications, standard voltammetric techniques are not as straight forward for SC NCs as they are for small molecules. As a result, researchers have developed creative ways to side step these complications by coupling electrochemistry with NC spectroscopy. Chapter 1 discusses the fundamental electronic and spectroscopic properties of SC NCs at different redox states. We present a brief review of some of the notable studies employing SC NC spectroelectrochemistry that provide the theoretical and experimental context for the following chapters. Chapter 2 presents an investigation on NC redox potentials of photochemically reduced colloidal ZnO NCs using a solvated redox-indicator method. In the one electron limit, conduction band electrons show evidence of quantum confinement, but at higher electron concentrations, the NC Fermi-level becomes dependent on the electron density across all NC sizes. Chapter 3 outlines a poteniometric method for monitoring the NC redox potentials in situ. NC redox potentials for ZnO and CdSe are measured, and as predicted from these measurements, spontaneous electron transfer from CdSe to ZnO is demonstrated. Chapter 4 details the impact of the surface of CdSe NCs on the NC redox potentials. We find that the ratio of Cd2+:Se2- on the surface of CdSe NCs changes both the NC band edge potentials, as well as the maximum electron density achievable by photochemical reduction. These changes are proposed to arise from interfacial dipoles when CdSe has a Se2-rich surface. Chapters 5 and 6

  14. Redox Control of Microglial Function: Molecular Mechanisms and Functional Significance

    Science.gov (United States)

    McBean, Gethin; Cindric, Marina; Egea, Javier; López, Manuela G.; Rada, Patricia; Zarkovic, Neven

    2014-01-01

    Abstract Neurodegenerative diseases are characterized by chronic microglial over-activation and oxidative stress. It is now beginning to be recognized that reactive oxygen species (ROS) produced by either microglia or the surrounding environment not only impact neurons but also modulate microglial activity. In this review, we first analyze the hallmarks of pro-inflammatory and anti-inflammatory phenotypes of microglia and their regulation by ROS. Then, we consider the production of reactive oxygen and nitrogen species by NADPH oxidases and nitric oxide synthases and the new findings that also indicate an essential role of glutathione (γ-glutamyl-l-cysteinylglycine) in redox homeostasis of microglia. The effect of oxidant modification of macromolecules on signaling is analyzed at the level of oxidized lipid by-products and sulfhydryl modification of microglial proteins. Redox signaling has a profound impact on two transcription factors that modulate microglial fate, nuclear factor kappa-light-chain-enhancer of activated B cells, and nuclear factor (erythroid-derived 2)-like 2, master regulators of the pro-inflammatory and antioxidant responses of microglia, respectively. The relevance of these proteins in the modulation of microglial activity and the interplay between them will be evaluated. Finally, the relevance of ROS in altering blood brain barrier permeability is discussed. Recent examples of the importance of these findings in the onset or progression of neurodegenerative diseases are also discussed. This review should provide a profound insight into the role of redox homeostasis in microglial activity and help in the identification of new promising targets to control neuroinflammation through redox control of the brain. Antioxid. Redox Signal. 21, 1766–1801. PMID:24597893

  15. Adaptive changes in renal mitochondrial redox status in diabetic nephropathy

    International Nuclear Information System (INIS)

    Putt, David A.; Zhong, Qing; Lash, Lawrence H.

    2012-01-01

    Nephropathy is a serious and common complication of diabetes. In the streptozotocin (STZ)-treated rat model of diabetes, nephropathy does not typically develop until 30 to 45 days post-injection, although hyperglycemia occurs within 24 h. We tested the hypothesis that chronic hyperglycemia results in a modest degree of oxidative stress that is accompanied by compensatory changes in certain antioxidants and mitochondrial redox status. We propose that as kidneys progress to a state of diabetic nephropathy, further adaptations occur in mitochondrial redox status. Basic parameters of renal function in vivo and several parameters of mitochondrial function and glutathione (GSH) and redox status in isolated renal cortical mitochondria from STZ-treated and age-matched control rats were examined at 30 days and 90 days post-injection. While there was no effect of diabetes on blood urea nitrogen, measurement of other, more sensitive parameters, such as urinary albumin and protein, and histopathology showed significant and progressive worsening in diabetic rats. Thus, renal function is compromised even prior to the onset of frank nephropathy. Changes in mitochondrial respiration and enzyme activities indicated existence of a hypermetabolic state. Higher mitochondrial GSH content and rates of GSH transport into mitochondria in kidneys from diabetic rats were only partially due to changes in expression of mitochondrial GSH carriers and were mostly due to higher substrate supply. Although there are few clear indicators of oxidative stress, there are several redox changes that occur early and change further as nephropathy progresses, highlighting the complexity of the disease. Highlights: ►Adaptive changes in renal mitochondrial and redox status in diabetic rats. ►Modest renal dysfunction even prior to onset of nephropathy. ►Elevated concentrations of mitochondrial GSH in diabetic kidneys. ►Change in GSH due partly to increased protein expression of transporter.

  16. Adaptive changes in renal mitochondrial redox status in diabetic nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Putt, David A.; Zhong, Qing; Lash, Lawrence H., E-mail: l.h.lash@wayne.edu

    2012-01-15

    Nephropathy is a serious and common complication of diabetes. In the streptozotocin (STZ)-treated rat model of diabetes, nephropathy does not typically develop until 30 to 45 days post-injection, although hyperglycemia occurs within 24 h. We tested the hypothesis that chronic hyperglycemia results in a modest degree of oxidative stress that is accompanied by compensatory changes in certain antioxidants and mitochondrial redox status. We propose that as kidneys progress to a state of diabetic nephropathy, further adaptations occur in mitochondrial redox status. Basic parameters of renal function in vivo and several parameters of mitochondrial function and glutathione (GSH) and redox status in isolated renal cortical mitochondria from STZ-treated and age-matched control rats were examined at 30 days and 90 days post-injection. While there was no effect of diabetes on blood urea nitrogen, measurement of other, more sensitive parameters, such as urinary albumin and protein, and histopathology showed significant and progressive worsening in diabetic rats. Thus, renal function is compromised even prior to the onset of frank nephropathy. Changes in mitochondrial respiration and enzyme activities indicated existence of a hypermetabolic state. Higher mitochondrial GSH content and rates of GSH transport into mitochondria in kidneys from diabetic rats were only partially due to changes in expression of mitochondrial GSH carriers and were mostly due to higher substrate supply. Although there are few clear indicators of oxidative stress, there are several redox changes that occur early and change further as nephropathy progresses, highlighting the complexity of the disease. Highlights: ►Adaptive changes in renal mitochondrial and redox status in diabetic rats. ►Modest renal dysfunction even prior to onset of nephropathy. ►Elevated concentrations of mitochondrial GSH in diabetic kidneys. ►Change in GSH due partly to increased protein expression of transporter.

  17. Preservation of organic matter in nontronite against iron redox cycling.

    Science.gov (United States)

    Zeng, Q.

    2015-12-01

    It is generally believed that clay minerals can protect organic matter from degradation in redox active environments, but both biotic and abiotic factors can influence the redox process and thus potentially change the clay-organic associations. However, the specific mechanisms involved in this process remain poorly understood. In this study, a model organic compound, 12-Aminolauric acid (ALA) was selected to intercalate into the structural interlayer of nontronite (an iron-rich smectite, NAu-2) to form an ALA-intercalated NAu-2 composite (ALA-NAu-2). Shawanella putrefaciens CN32 and sodium dithionite were used to reduce structural Fe(III) to Fe(II) in NAu-2 and ALA-NAu-2. The bioreduced ALA-NAu-2 was subsequently re-oxidized by air. The rates and extents of bioreduction and air re-oxidation were determined with wet chemistry methods. ALA release from ALA-NAu-2 via redox process was monitored. Mineralogical changes after iron redox cycle were investigated with X-ray diffraction, infrared spectroscopy, and scanning and transmission electron microscopy. At the beginning stage of bioreduction, S. putrefaciens CN32 reduced Fe(III) from the edges of nontronite and preferentially reduced and dissolved small and poorly crystalline particles, and released ALA, resulting a positive correlation between ALA release and iron reduction extent (selectivity in reducing ALA-NAu-2 particles, and a considerable amount of reductive dissolution was responsible for a large amount of ALA release (>80%). Because bacteria are the principal agent for mediating redox process in natural environments, our results demonstrated that the structural interlayer of smectite can serve as a potential shelter to protect organic matter from oxidation.

  18. Multiple-membrane multiple-electrolyte redox flow battery design

    Science.gov (United States)

    Yan, Yushan; Gu, Shuang; Gong, Ke

    2017-05-02

    A redox flow battery is provided. The redox flow battery involves multiple-membrane (at least one cation exchange membrane and at least one anion exchange membrane), multiple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and at least one electrolyte disposed between the two membranes) as the basic characteristic, such as a double-membrane, triple electrolyte (DMTE) configuration or a triple-membrane, quadruple electrolyte (TMQE) configuration. The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte.

  19. Fundamental studies of uranium and neptunium redox flow batteries (II)

    International Nuclear Information System (INIS)

    Shiokawa, Y.; Yamamura, T.; Watanabe, N.

    2002-01-01

    The atomic power generation entails production of so-called minor actinides and accumulation of depleted uranium. The theoretical and experimental investigations are underway to transmute minor actinides for minimizing the long-term radiotoxicity and reducing the radioactive waste. The utilization, however, would be alternative means. The actinide redox couples, An(VI)/An(V) and An(IV)/An(III), have excellent properties as battery active materials. Here j the uranium and neptunium redox flow batteries for the electric power storage are discussed from the electrochemical properties of U, Np, Pu and Am [1,2]. One of the required properties for the batteries for electric power storage is high energy efficiency, which is defined by the ratio of the discharge energy to the charge energy. These energies are dependent on the rapidness of kinetics in the electrode reactions, namely the standard rate constants and also the internal resistance of the battery

  20. TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State

    Directory of Open Access Journals (Sweden)

    Simone Cardaci

    2012-01-01

    Full Text Available Inborn defects of the tricarboxylic acid (TCA cycle enzymes have been known for more than twenty years. Until recently, only recessive mutations were described which, although resulted in severe multisystem syndromes, did not predispose to cancer onset. In the last ten years, a causal role in carcinogenesis has been documented for inherited and acquired alterations in three TCA cycle enzymes, succinate dehydrogenase (SDH, fumarate hydratase (FH, and isocitrate dehydrogenase (IDH, pointing towards metabolic alterations as the underlying hallmark of cancer. This paper summarizes the neoplastic alterations of the TCA cycle enzymes focusing on the generation of pseudohypoxic phenotype and the alteration of epigenetic homeostasis as the main tumor-promoting effects of the TCA cycle affecting defects. Moreover, we debate on the ability of these mutations to affect cellular redox state and to promote carcinogenesis by impacting on redox biology.

  1. TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State.

    Science.gov (United States)

    Cardaci, Simone; Ciriolo, Maria Rosa

    2012-01-01

    Inborn defects of the tricarboxylic acid (TCA) cycle enzymes have been known for more than twenty years. Until recently, only recessive mutations were described which, although resulted in severe multisystem syndromes, did not predispose to cancer onset. In the last ten years, a causal role in carcinogenesis has been documented for inherited and acquired alterations in three TCA cycle enzymes, succinate dehydrogenase (SDH), fumarate hydratase (FH), and isocitrate dehydrogenase (IDH), pointing towards metabolic alterations as the underlying hallmark of cancer. This paper summarizes the neoplastic alterations of the TCA cycle enzymes focusing on the generation of pseudohypoxic phenotype and the alteration of epigenetic homeostasis as the main tumor-promoting effects of the TCA cycle affecting defects. Moreover, we debate on the ability of these mutations to affect cellular redox state and to promote carcinogenesis by impacting on redox biology.

  2. Ocean redox change at the Permian-Triassic mass extinction

    DEFF Research Database (Denmark)

    Ruhl, Micha; Bjerrum, Christian J.; Canfield, Donald Eugene

    2013-01-01

    and marine (mass) ex¬tinction. The geographic and temporal extend and the intensity (ferruginous vs. euxinic) of anoxic con¬ditions is, however, strongly debated and not well constraint. This complicates understanding of close coupling between Earth’s physical, chemical and bi¬ological processes. We studied...... ocean redox change over the largest mass extinction event in Earth history, at the Permian-Tri¬assic boundary (at ~252 Ma). This event is marked by a major perturbation in the global exogenic carbon cycle (and associated major negative carbon isotope excursion (CIE)), likely initiated by carbon...... (anoxic but not euxinic) coinciding with the main extinction event. Molybdenum enrichments, often indicative for freely available sulfide in the water-column, only occur dur¬ing the second phase of euxinia. This pattern of ocean redox-change in Svalbard direct¬ly reflects similar trends in Greenland...

  3. Garlic protects the glutathione redox cycle in irradiated rats

    International Nuclear Information System (INIS)

    Abu-Ghadeer, A.R.M.; Osman, S.A.A.; Abbady, M.M.

    1999-01-01

    The aim of the present study is to evaluate the possible radioprotective role of garlic oil on the glutathione redox cycle (GSH, GSH-Px, GR and G6-PD) in blood and tissues (liver, spleen and intestine) of irradiated rats. Garlic oil was orally administered to rats (100 mg/Kg- b.w.) for 7 days before exposure to a fractionated of whole body gamma irradiation up to 9 Gy (3 Gy X 3 at 2 days intervals) and during the whole period of irradiation. The data showed that radiation exposure caused significant inhibition of the biochemical parameters in blood and tissue of irradiated rats all over the investigation periods (3,7 and 15 days). Garlic oil ameliorated the decrease in the tested parameters with noticeable effect on the 15 Th. day after radiation exposure. It is concluded that garlic oil could control the radiation induced changes in the glutathione redox cycle and provided some radioprotective effect

  4. Redox control of senescence and age-related disease

    Directory of Open Access Journals (Sweden)

    Akshaya Chandrasekaran

    2017-04-01

    Full Text Available The signaling networks that drive the aging process, associated functional deterioration, and pathologies has captured the scientific community's attention for decades. While many theories exist to explain the aging process, the production of reactive oxygen species (ROS provides a signaling link between engagement of cellular senescence and several age-associated pathologies. Cellular senescence has evolved to restrict tumor progression but the accompanying senescence-associated secretory phenotype (SASP promotes pathogenic pathways. Here, we review known biological theories of aging and how ROS mechanistically control senescence and the aging process. We also describe the redox-regulated signaling networks controlling the SASP and its important role in driving age-related diseases. Finally, we discuss progress in designing therapeutic strategies that manipulate the cellular redox environment to restrict age-associated pathology.

  5. Chiral cyclopentadienylruthenium sulfoxide catalysts for asymmetric redox bicycloisomerization

    Directory of Open Access Journals (Sweden)

    Barry M. Trost

    2016-06-01

    Full Text Available A full account of our efforts toward an asymmetric redox bicycloisomerization reaction is presented in this article. Cyclopentadienylruthenium (CpRu complexes containing tethered chiral sulfoxides were synthesized via an oxidative [3 + 2] cycloaddition reaction between an alkyne and an allylruthenium complex. Sulfoxide complex 1 containing a p-anisole moiety on its sulfoxide proved to be the most efficient and selective catalyst for the asymmetric redox bicycloisomerization of 1,6- and 1,7-enynes. This complex was used to synthesize a broad array of [3.1.0] and [4.1.0] bicycles. Sulfonamide- and phosphoramidate-containing products could be deprotected under reducing conditions. Catalysis performed with enantiomerically enriched propargyl alcohols revealed a matched/mismatched effect that was strongly dependent on the nature of the solvent.

  6. Redox control of senescence and age-related disease.

    Science.gov (United States)

    Chandrasekaran, Akshaya; Idelchik, Maria Del Pilar Sosa; Melendez, J Andrés

    2017-04-01

    The signaling networks that drive the aging process, associated functional deterioration, and pathologies has captured the scientific community's attention for decades. While many theories exist to explain the aging process, the production of reactive oxygen species (ROS) provides a signaling link between engagement of cellular senescence and several age-associated pathologies. Cellular senescence has evolved to restrict tumor progression but the accompanying senescence-associated secretory phenotype (SASP) promotes pathogenic pathways. Here, we review known biological theories of aging and how ROS mechanistically control senescence and the aging process. We also describe the redox-regulated signaling networks controlling the SASP and its important role in driving age-related diseases. Finally, we discuss progress in designing therapeutic strategies that manipulate the cellular redox environment to restrict age-associated pathology. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Redox flow batteries based on supporting solutions containing chloride

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang

    2017-11-14

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  8. Redox- and glucose-induced shape-memory polymers.

    Science.gov (United States)

    Dong, Zhen-Qiang; Cao, Ya; Yuan, Qi-Juan; Wang, Yi-Fu; Li, Jian-Hu; Li, Bang-Jing; Zhang, Sheng

    2013-05-27

    A novel redox-induced shape-memory polymer (SMP) is prepared by crosslinking β-cyclodextrin modified chitosan (β-CD-CS) and ferrocene modified branched ethylene imine polymer (Fc-PEI). The resulting β-CD-CS/Fc-PEI contains two crosslinks: reversible redox-sensitive β-CD-Fc inclusion complexes serving as reversible phases, and covalent crosslinks serving as fixing phases. It is shown that this material can be processed into temporary shapes as needed in the reduced state and recovers its initial shape after oxidation. The recovery ratio and the fixity ratio are both above 70%. Furthermore, after entrapping glucose oxidase (GOD) in the system, the material shows a shape memory effect in response to glucose. The recovery ratio and the fixity ratio are also above 70%. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.

    Science.gov (United States)

    Valko, Marian; Jomova, Klaudia; Rhodes, Christopher J; Kuča, Kamil; Musílek, Kamil

    2016-01-01

    Transition metal ions are key elements of various biological processes ranging from oxygen formation to hypoxia sensing, and therefore, their homeostasis is maintained within strict limits through tightly regulated mechanisms of uptake, storage and secretion. The breakdown of metal ion homeostasis can lead to an uncontrolled formation of reactive oxygen species, ROS (via the Fenton reaction, which produces hydroxyl radicals), and reactive nitrogen species, RNS, which may cause oxidative damage to biological macromolecules such as DNA, proteins and lipids. An imbalance between the formation of free radicals and their elimination by antioxidant defense systems is termed oxidative stress. Most vulnerable to free radical attack is the cell membrane which may undergo enhanced lipid peroxidation, finally producing mutagenic and carcinogenic malondialdehyde and 4-hydroxynonenal and other exocyclic DNA adducts. While redox-active iron (Fe) and copper (Cu) undergo redox-cycling reactions, for a second group of redox-inactive metals such as arsenic (As) and cadmium (Cd), the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. While arsenic is known to bind directly to critical thiols, other mechanisms, involving formation of hydrogen peroxide under physiological conditions, have been proposed. Redox-inert zinc (Zn) is the most abundant metal in the brain and an essential component of numerous proteins involved in biological defense mechanisms against oxidative stress. The depletion of zinc may enhance DNA damage by impairing DNA repair mechanisms. Intoxication of an organism by arsenic and cadmium may lead to metabolic disturbances of redox-active copper and iron, with the occurrence of oxidative stress induced by the enhanced formation of ROS/RNS. Oxidative stress occurs when excessive formation of ROS overwhelms the antioxidant defense system, as is maintained by antioxidants such as ascorbic acid, alpha

  10. Redox-gated electron transport in electrically wired ferrocene molecules

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Xiaoyin [Department of Electrical Engineering and Center for Solid State Electronic Research, Arizona State University, Tempe, AZ 85287 (United States); Brune, Daniel [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287 (United States); He Jin [Center for Single Molecule Biophysics, Biodesign Institute, Arizona State University, Tempe, AZ 85287 (United States); Lindsay, Stuart [Center for Single Molecule Biophysics, Biodesign Institute, Arizona State University, Tempe, AZ 85287 (United States); Gorman, Christopher B. [Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204 (United States); Tao Nongjian [Department of Electrical Engineering and Center for Solid State Electronic Research, Arizona State University, Tempe, AZ 85287 (United States)], E-mail: nongjian.tao@asu.edu

    2006-07-11

    We have synthesized cysteamine-terminated ferrocene molecules and determined the dependence of the electron transport properties of the molecules on their redox states by measuring the current through the molecules as a function of the electrode potential. The current fluctuates over a large range, but its average value increases with the potential. We attribute the current fluctuation and its increase with the potential to the switching of the molecules from low-conductance reduced state to high-conductance oxidized state.

  11. Redox-gated electron transport in electrically wired ferrocene molecules

    International Nuclear Information System (INIS)

    Xiao Xiaoyin; Brune, Daniel; He Jin; Lindsay, Stuart; Gorman, Christopher B.; Tao Nongjian

    2006-01-01

    We have synthesized cysteamine-terminated ferrocene molecules and determined the dependence of the electron transport properties of the molecules on their redox states by measuring the current through the molecules as a function of the electrode potential. The current fluctuates over a large range, but its average value increases with the potential. We attribute the current fluctuation and its increase with the potential to the switching of the molecules from low-conductance reduced state to high-conductance oxidized state

  12. Redox-active media for permeable reactive barriers

    International Nuclear Information System (INIS)

    Sivavec, T.M.; Mackenzie, P.D.; Horney, D.P.; Baghel, S.S.

    1997-01-01

    In this paper, three classes of redox-active media are described and evaluated in terms of their long-term effectiveness in treating TCE-contaminated groundwater in permeable reactive zones. Zero-valent iron, in the form of recycled cast iron filings, the first class, has received considerable attention as a reactive media and has been used in about a dozen pilot- and full-scale subsurface wall installations. Criteria used in selecting commercial sources of granular iron, will be discussed. Two other classes of redox-active media that have not yet seen wide use in pilot- or full-scale installations will also be described: Fe(II) minerals and bimetallic systems. Fe(II) minerals, including magnetite (Fe 3 O 4 ), and ferrous sulfide (troilite, FeS), are redox-active and afford TCE reduction rates and product distributions that suggest that they react via a reductive mechanism similar to that which operates in the FeO system. Fe(II) species within the passive oxide layer coating the iron metal may act as electron transfer mediators, with FeO serving as the bulk reductant. Bimetallic systems, the third class of redox-active media, are commonly prepared by plating a second metal onto zero-valent iron (e.g., Ni/Fe and Pd/Fe) and have been shown to accelerate solvent degradation rates relative to untreated iron metal. The long-term effectiveness of this approach, however, has not yet been determined in groundwater treatability tests. The results of a Ni-plated iron column study using site groundwater indicate that a change in reduction mechanism (to catalytic dehydrohalogenation/hydrogenation) accounts for the observed rate enhancement. A significant loss in media reactivity was observed over time, attributable to Ni catalyst deactivation or poisoning. Zero-valent iron systems have not shown similar losses in reactivity in long-term laboratory, pilot or field investigations

  13. Redox ratio and optical absorption of polyvalent ions in industrial ...

    Indian Academy of Sciences (India)

    The changes in glass structure and redox ratio, (reduced ion to oxidized ion) of Mn2+–Mn3+, Cu+–Cu2+, Cr3+–Cr6+, Ni2+–Ni3+ and Co2+–Co3+ couples and optical absorption due to Mn3+, Cu2+, Cr3+, Ni2+ and Co2+ ions in industrial soda–lime–silica glass were investigated as a function of Na2O concentration in the ...

  14. Organic chemical degradation by remote study of the redox conditions

    Science.gov (United States)

    Fernandez, P. M.; Revil, A.; Binley, A. M.; Bloem, E.; French, H. K.

    2014-12-01

    Monitoring the natural (and enhanced) degradation of organic contaminants is essential for managing groundwater quality in many parts of the world. Contaminated sites often have limited access, hence non-intrusive methods for studying redox processes, which drive the degradation of organic compounds, are required. One example is the degradation of de-icing chemicals (glycols and organic salts) released to the soil near airport runways during winter. This issue has been broadly studied at Oslo airport, Gardermoen, Norway using intrusive and non-intrusive methods. Here, we report on laboratory experiments that aim to study the potential of using a self-potential, DCresistivity, and time-domain induced polarization for geochemical characterization of the degradation of Propylene Glycol (PG). PG is completely miscible in water, does not adsorb to soil particles and does not contribute to the electrical conductivity of the soil water. When the contaminant is in the unsaturated zone near the water table, the oxygen is quickly consumed and the gas exchange with the surface is insufficient to ensure aerobic degradation, which is faster than anaerobic degradation. Since biodegradation of PG is highly oxygen demanding, anaerobic pockets can exist causing iron and manganese reduction. It is hypothesised that nitrate would boost the degradation rate under such conditions. In our experiment, we study PG degradation in a sand tank. We provide the system with an electron highway to bridge zones with different redox potential. This geo-battery system is characterized by self-potential, resistivity and induced polarization anomalies. An example of preliminary results with self-potential at two different times of the experiment can be seen in the illustration. These will be supplemented with more direct information on the redox chemistry: in-situ water sampling, pH, redox potential and electrical conductivity measurements. In parallel, a series of batch experiments have been

  15. Speciation of selenium in groundwater: Seasonal variations and redox transformations

    International Nuclear Information System (INIS)

    Kumar, A. Ramesh; Riyazuddin, P.

    2011-01-01

    Highlights: → Selenium(VI) was the predominant species of Se present in groundwater. → Groundwater recharge increased Se mobilization. → Dissolved oxygen and redox potential control the mobilization of soil selenium. → Shallow groundwater is susceptible for more selenium enrichment than deeper ones. - Abstract: Speciation of selenium in groundwater is essential from the viewpoint of toxicity to organisms and biogeochemical cycling. Selenium speciation in groundwater is controlled by aquifer redox conditions, microbial transformations, dissolved oxygen (DO) and other redox couples. A suburban area of Chennai city in India, where improper waste disposal measures have been practiced is selected for this study. Se(IV), Se(VI) and other hydrochemical parameters were monitored in shallow ground water during pre- and post-monsoon seasons for a period of three years. The objective of the study was to investigate the effect of groundwater recharge on selenium speciation. The concentration of Se(IV), and Se(VI) ranged between 0.15-0.43 μg L -1 and 0.16-4.73 μg L -1 , respectively. During post-monsoon period the concentration of Se(IV), and Se(VI) ranged between 0.15-1.25 μg L -1 and 0.58-10.37 μg L -1 , respectively. Se(VI) was the dominant species of selenium during the pre- and post-monsoon periods. During the post-monsoon periods, leaching of selenium from soil was more effective due to the increased oxidizing nature of the groundwater as indicated by the DO and redox potential (Eh) measurements. This finding has important implications on the behavior of selenium in groundwater, and also on the health of people consuming groundwater from seleniferous areas.

  16. Tracing iron-carbon redox from surface to core

    Science.gov (United States)

    McCammon, C. A.; Cerantola, V.; Bykova, E.; Kupenko, I.; Bykov, M.; Chumakov, A. I.; Rüffer, R.; Dubrovinsky, L. S.

    2017-12-01

    Numerous redox reactions separate the Earth's oxidised surface from its reduced core. Many involve iron, the Earth's most abundant element and the mantle's most abundant transition element. Most iron redox reactions (although not all) also involve other elements, including carbon, where iron-carbon interactions drive a number of important processes within the Earth, for example diamond formation. Many of the Earth's redox boundaries are sharp, much like the seismic properties that define them, for example between the lower mantle and the core. Other regions that appear seismically homogeneous, for example the lower mantle, harbour a wealth of reactions between oxidised and reduced phases of iron and carbon. We have undertaken many experiments at high pressure and high temperature on phases containing iron and carbon using synchrotron-based X-rays to probe structures and iron oxidation states. Results demonstrate the dominant role that crystal structures play in determining the stable oxidation states of iron and carbon, even when oxygen fugacity (and common sense) would suggest otherwise. Iron in bridgmanite, for example, occurs predominantly in its oxidised form (ferric iron) throughout the lower mantle, despite the inferred reducing conditions. Newly discovered structures of iron carbonate also stabilise ferric iron, while simultaneously reducing some carbon to diamond to balance charge. Other high-pressure iron carbonates appear to be associated with the emerging zoo of iron oxide phases, involving transitions between ferrous and ferric iron through the exchange of oxygen. The presentation will trace redox relations between iron and carbon from the Earth's surface to its core, with an emphasis on recent experimental results.

  17. Redox Biology Course Registration Form | Center for Cancer Research

    Science.gov (United States)

    The Redox Biology class is open to all NIH/NCI fellows and staff and will be held Septhember 27 - November 8, 2016. The last day to register is: September 21, 2016. The first 100 registrants will be accepted for the class. Those who plan to participate by Video TeleConference should also register so that you can receive the speaker handouts in advance.

  18. Biodegradation of NSO-compounds under different redox-conditions

    DEFF Research Database (Denmark)

    Dyreborg, S.; Arvin, E.; Broholm, K.

    1997-01-01

    Laboratory experiments were carried out to investigate the potential of groundwater microorganisms to degrade selected heterocyclic aromatic compounds containing nitrogen, sulphur, or oxygen (NSO-compounds) under four redox-conditions over a period of 846 days. Eight compounds (pyrrole, 1-methylp...... together with the long lag periods and the low degradation rates under aerobic conditions suggest that NSO-compounds might persist in groundwater at creosote-contaminated sites. (C) 1997 Elsevier Science B.V....

  19. Cysteine-based redox regulation and signalling in plants

    Directory of Open Access Journals (Sweden)

    Jérémy eCouturier

    2013-04-01

    Full Text Available Living organisms are subjected to oxidative stress conditions which are characterized by the production of reactive oxygen (ROS, nitrogen (RNS and sulfur (RSS species. In plants as in other organisms, many of these compounds have a dual function as they damage different types of macromolecules but they also likely fulfil an important role as secondary messengers. Owing to the reactivity of their thiol groups, some protein cysteine residues are particularly prone to oxidation by these molecules. In the past years, besides their recognized catalytic and regulatory functions, the modification of cysteine thiol group was increasingly viewed as either protective or redox signalling mechanisms. The most physiologically relevant reversible redox post-translational modifications (PTMs are disulfide bonds, sulfenic acids, S-glutathionylated adducts, S-nitrosothiols and to a lesser extent S-sulfenylamides, thiosulfinates and S-persulfides. These redox PTMs are mostly controlled by two oxidoreductase families, thioredoxins and glutaredoxins. This review focuses on recent advances highlighting the variety and physiological roles of these PTMs and the proteomic strategies used for their detection.

  20. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  1. Are free radicals involved in thiol-based redox signaling?

    Science.gov (United States)

    Winterbourn, Christine C

    2015-03-01

    Cells respond to many stimuli by transmitting signals through redox-regulated pathways. It is generally accepted that in many instances signal transduction is via reversible oxidation of thiol proteins, although there is uncertainty about the specific redox transformations involved. The prevailing view is that thiol oxidation occurs by a two electron mechanism, most commonly involving hydrogen peroxide. Free radicals, on the other hand, are considered as damaging species and not generally regarded as important in cell signaling. This paper examines whether it is justified to dismiss radicals or whether they could have a signaling role. Although there is no direct evidence that radicals are involved in transmitting thiol-based redox signals, evidence is presented that they are generated in cells when these signaling pathways are activated. Radicals produce the same thiol oxidation products as two electron oxidants, although by a different mechanism, and at this point radical-mediated pathways should not be dismissed. There are unresolved issues about how radical mechanisms could achieve sufficient selectivity, but this could be possible through colocalization of radical-generating and signal-transducing proteins. Colocalization is also likely to be important for nonradical signaling mechanisms and identification of such associations should be a priority for advancing the field. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Online monitoring of Mezcal fermentation based on redox potential measurements.

    Science.gov (United States)

    Escalante-Minakata, P; Ibarra-Junquera, V; Rosu, H C; De León-Rodríguez, A; González-García, R

    2009-01-01

    We describe an algorithm for the continuous monitoring of the biomass and ethanol concentrations as well as the growth rate in the Mezcal fermentation process. The algorithm performs its task having available only the online measurements of the redox potential. The procedure combines an artificial neural network (ANN) that relates the redox potential to the ethanol and biomass concentrations with a nonlinear observer-based algorithm that uses the ANN biomass estimations to infer the growth rate of this fermentation process. The results show that the redox potential is a valuable indicator of the metabolic activity of the microorganisms during Mezcal fermentation. In addition, the estimated growth rate can be considered as a direct evidence of the presence of mixed culture growth in the process. Usually, mixtures of microorganisms could be intuitively clear in this kind of processes; however, the total biomass data do not provide definite evidence by themselves. In this paper, the detailed design of the software sensor as well as its experimental application is presented at the laboratory level.

  3. Redox signaling in skeletal muscle: role of aging and exercise.

    Science.gov (United States)

    Ji, Li Li

    2015-12-01

    Skeletal muscle contraction is associated with the production of ROS due to altered O2 distribution and flux in the cell. Despite a highly efficient antioxidant defense, a small surplus of ROS, such as hydrogen peroxide and nitric oxide, may serve as signaling molecules to stimulate cellular adaptation to reach new homeostasis largely due to the activation of redox-sensitive signaling pathways. Recent research has highlighted the important role of NF-κB, MAPK, and peroxisome proliferator-activated receptor-γ coactivator-1α, along with other newly discovered signaling pathways, in some of the most vital biological functions, such as mitochondrial biogenesis, antioxidant defense, inflammation, protein turnover, apoptosis, and autophagy. There is evidence that the inability of the cell to maintain proper redox signaling underlies some basic mechanisms of biological aging, during which inflammatory and catabolic pathways eventually predominate. Physical exercise has been shown to activate various redox signaling pathways that control the adaptation and remodeling process. Although this stimulatory effect of exercise declines with aging, it is not completed abolished. Thus, aged people can still benefit from regular physical activity in the appropriate forms and at proper intensity to preserve muscle function. Copyright © 2015 The American Physiological Society.

  4. Literature survey of redox reactions in the near field

    International Nuclear Information System (INIS)

    Miki, Takahito; Chiba, Tamotsu; Inagaki, Manabu; Sasamoto, Hiroshi; Yui, Mikazu

    2000-01-01

    This report presents a summary of literature survey about geochemical reactions which are important to evaluate the redox conditions in the near field rock mass and buffer. The results of literature survey are summarized as follows; Minerals including ferrous iron and organic materials in the rock mass are important reductants. Initial stage after closure of repository, oxygen will be consumed by pyrite, because the reaction rate between pyrite and oxygen is relatively fast. It is possible to estimate the redox capacity for reductants by rock (mineral)-water interaction experiment in a laboratory. And it is expected that the ferrous iron-rich rock and higher porosity rock may have bigger redox capacity. It is impossible to estimate the oxygen consumption rate by reductants such as minerals including ferrous iron. The rate law and rate constant for the oxidation reaction of ferrous iron in the solution are also determined. As a conclusion, it seems that we can evaluate kinetically the evolution of geochemical conditions in the near field rock mass and buffer by excavation of drifts, based on data derived from these existing literatures. (author)

  5. Numerical modeling of an all vanadium redox flow battery.

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.

    2014-01-01

    We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.

  6. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    Directory of Open Access Journals (Sweden)

    Prabhakar Singh

    2016-01-01

    Full Text Available Plasma membrane redox system (PMRS is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD. Effects of curcumin were also evaluated on level of glutathione (GSH and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP. Results show that curcumin significantly (p<0.01 downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects.

  7. Redox Signaling Regulated by Cysteine Persulfide and Protein Polysulfidation.

    Science.gov (United States)

    Kasamatsu, Shingo; Nishimura, Akira; Morita, Masanobu; Matsunaga, Tetsuro; Abdul Hamid, Hisyam; Akaike, Takaaki

    2016-12-15

    For decades, reactive persulfide species including cysteine persulfide (CysSSH) have been known to exist endogenously in organisms. However, the physiological significance of endogenous persulfides remains poorly understood. That cystathionine β-synthase and cystathionine γ-lyase produced CysSSH from cystine was recently demonstrated. An endogenous sulfur transfer system involving CysSSH evidently generates glutathione persulfide (GSSH) that exists at concentrations greater than 100 μM in vivo. Because reactive persulfide species such as CysSSH and GSSH have higher nucleophilicity than parental cysteine (Cys) and glutathione do, these reactive species exhibit strong scavenging activities against oxidants, e.g., hydrogen peroxide, and electrophiles, which contributes to redox signaling regulation. Also, several papers indicated that various proteins and enzymes have Cys polysulfides including CysSSH at their specific Cys residues, which is called protein polysulfidation. Apart from the redox signaling regulatory mechanism, another plausible function of protein polysulfidation is providing protection for protein thiol residues against irreversible chemical modification caused by oxidants and electrophiles. Elucidation of the redox signaling regulatory mechanism of reactive persulfide species including small thiol molecules and thiol-containing proteins should lead to the development of new therapeutic strategies and drug discoveries for oxidative and electrophilic stress-related diseases.

  8. Glutathione Redox System in β-Thalassemia/Hb E Patients

    Directory of Open Access Journals (Sweden)

    Ruchaneekorn W. Kalpravidh

    2013-01-01

    Full Text Available β-thalassemia/Hb E is known to cause oxidative stress induced by iron overload. The glutathione system is the major endogenous antioxidant that protects animal cells from oxidative damage. This study aimed to determine the effect of disease state and splenectomy on redox status expressed by whole blood glutathione (GSH/glutathione disulfide (GSSG and also to evaluate glutathione-related responses to oxidation in β-thalassemia/Hb E patients. Twenty-seven normal subjects and 25 β-thalassemia/Hb E patients were recruited and blood was collected. The GSH/GSSG ratio, activities of glutathione-related enzymes, hematological parameters, and serum ferritin levels were determined in individuals. Patients had high iron-induced oxidative stress, shown as significantly increased serum ferritin, a decreased GSH/GSSG ratio, and increased activities of glutathione-related enzymes. Splenectomy increased serum ferritin levels and decreased GSH levels concomitant with unchanged glutathione-related enzyme activities. The redox ratio had a positive correlation with hemoglobin levels and negative correlation with levels of serum ferritin. The glutathione system may be the body’s first-line defense used against oxidative stress and to maintain redox homeostasis in thalassemic patients based on the significant correlations between the GSH/GSSH ratio and degree of anemia or body iron stores.

  9. Investigation of a redox-sensitive predictive model of mouse embryonic stem cells differentiation using quantitative nuclease protection assays and glutathione redox status

    Science.gov (United States)

    Investigation of a redox-sensitive predictive model of mouse embryonic stem cell differentiation via quantitative nuclease protection assays and glutathione redox status Chandler KJ,Hansen JM, Knudsen T,and Hunter ES 1. U.S. Environmental Protection Agency, Research Triangl...

  10. Studying the relationship between redox and cell growth using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Sridharan, Shamira; Leslie, Matthew T.; Bapst, Natalya; Smith, John; Gaskins, H. Rex; Popescu, Gabriel

    2016-03-01

    Quantitative phase imaging has been used in the past to study the dry mass of cells and study cell growth under various treatment conditions. However, the relationship between cellular redox and growth rates has not yet been studied in this context. This study employed the recombinant Glrx-roGFP2 redox biosensor targeted to the mitochondrial matrix or cytosolic compartments of A549 lung epithelial carcinoma cells. The Glrx-roGFP2s biosensor consists of a modified GFP protein containing internal cysteine residues sensitive to the local redox environment. The formation/dissolution of sulfide bridges contorts the internal chromophore, dictating corresponding changes in florescence emission that provide direct measures of the local redox potential. Combining 2-channel florescent imaging of the redox sensor with quantitative phase imaging allowed observation of redox homeostasis alongside measurements of cellular mass during full cycles of cellular division. The results indicate that mitochondrial redox showed a stronger inverse correlation with cell growth than cytoplasmic redox states; although redox changes are restricted to a 5% range. We are now studying the relationship between mitochondrial redox and cell growth in an isogenic series of breast cell lines built upon the MCF-10A genetic background that vary both in malignancy and metastatic potential.

  11. Metabolic and redox barriers in the skin exposed to drugs and xenobiotics.

    Science.gov (United States)

    Korkina, Liudmila

    2016-01-01

    Growing exposure of human skin to environmental and occupational hazards, to numerous skin care/beauty products, and to topical drugs led to a biomedical concern regarding sustainability of cutaneous chemical defence that is essential for protection against intoxication. Since skin is the largest extra-hepatic drug/xenobiotic metabolising organ where redox-dependent metabolic pathways prevail, in this review, publications on metabolic processes leading to redox imbalance (oxidative stress) and its autocrine/endocrine impact to cutaneous drug/xenobiotic metabolism were scrutinised. Chemical and photo-chemical skin barriers contain metabolic and redox compartments: their protective and homeostatic functions. The review will examine the striking similarity of adaptive responses to exogenous chemical/photo-chemical stressors and endogenous toxins in cutaneous metabolic and redox system; the role(s) of xenobiotics/drugs and phase II enzymes in the endogenous antioxidant defence and maintenance of redox balance; redox regulation of interactions between metabolic and inflammatory responses in skin cells; skin diseases sharing metabolic and redox problems (contact dermatitis, lupus erythematosus, and vitiligo) Due to exceptional the redox dependence of cutaneous metabolic pathways and interaction of redox active metabolites/exogenous antioxidants with drug/xenobiotic metabolism, metabolic tests of topical xenobiotics/drugs should be combined with appropriate redox analyses and performed on 3D human skin models.

  12. Quantitative analysis of solid oxide fuel cell anode microstructure change during redox cycles

    Science.gov (United States)

    Shimura, Takaaki; Jiao, Zhenjun; Hara, Shotaro; Shikazono, Naoki

    2014-12-01

    In the present study, correlation between solid oxide fuel cell anode microstructure and electrochemical performance during redox cycles was investigated. Electrolyte-support cell with nickel/yttria stabilized zirconia composite anode was prepared and tested under discharge process with redox cycles. Redox treatment was basically conducted every 20 h during discharge process. Polarization resistance decreased just after redox treatment and increased during discharge process. Enhancement of cell performance after every redox cycles and faster degradation in the following discharge process were observed. Polarization resistance gradually increased as redox cycles were repeated. Focused ion beam-scanning electron microscopy (FIB-SEM) observation was conducted for reconstructing the three dimensional microstructures of the tested samples. From the three dimensional microstructure reconstruction, it is found that the shape of nickel particle got thinner and complicated after redox cycles. Triple phase boundary (TPB) length increased after redox treatment and decreased after discharge process. This TPB change was highly associated with Ni connectivity and Ni specific surface area. These microstructure changes are consistent with the change of cell performance enhancement after redox treatment and degradation after discharge process. However, TPB length density kept on increasing as redox cycles are repeated, which is inconsistent with the gradual degradation of anode performance.

  13. The Analgesic Acetaminophen and the Antipsychotic Clozapine Can Each Redox-Cycle with Melanin.

    Science.gov (United States)

    Temoçin, Zülfikar; Kim, Eunkyoung; Li, Jinyang; Panzella, Lucia; Alfieri, Maria Laura; Napolitano, Alessandra; Kelly, Deanna L; Bentley, William E; Payne, Gregory F

    2017-12-20

    Melanins are ubiquitous but their complexity and insolubility has hindered characterization of their structures and functions. We are developing electrochemical reverse engineering methodologies that focus on properties and especially on redox properties. Previous studies have shown that melanins (i) are redox-active and can rapidly and repeatedly exchange electrons with diffusible oxidants and reductants, and (ii) have redox potentials in midregion of the physiological range. These properties suggest the functional activities of melanins will depend on their redox context. The brain has a complex redox context with steep local gradients in O 2 that can promote redox-cycling between melanin and diffusible redox-active chemical species. Here, we performed in vitro reverse engineering studies and report that melanins can redox-cycle with two common redox-active drugs. Experimentally, we used two melanin models: a convenient natural melanin derived from cuttlefish (Sepia melanin) and a synthetic cysteinyldopamine-dopamine core-shell model of neuromelanin. One drug, acetaminophen (APAP), has been used clinically for over a century, and recent studies suggest that low doses of APAP can protect the brain from oxidative-stress-induced toxicity and neurodegeneration, while higher doses can have toxic effects in the brain. The second drug, clozapine (CLZ), is a second generation antipsychotic with polypharmacological activities that remain incompletely understood. These in vitro observations suggest that the redox activities of drugs may be relevant to their modes-of-action, and that melanins may interact with drugs in ways that affect their activities, metabolism, and toxicities.

  14. New lab scale approaches for quantification of redox conditions

    Science.gov (United States)

    Fernandez, P. M.; Dathe, A.; Nadeem, S.; Bakken, L. R.; Bloem, E.; French, H. K.; Binley, A. M.

    2013-12-01

    Degradation of organic chemicals in the unsaturated zone is a process highly relevant for developing remediation techniques for protecting groundwater. Degradation causes changes in chemical composition of the water phase and gas releases. These changes can potentially be mapped with electrical resistivity measurements in the bulk soil and gas measurements at the soil surface. The redox potential combined with the local geological conditions determines the composition of available electron acceptors as well as microbial degradation pathways and how the soil system is affected in the long term. After oxygen and nitrate are depleted, manganese and iron should be reduced. However, in experiments conducted in the unsaturated zone at Gardermoen airport, Norway, it was found that for the degradation of the de-icing agent propylene glycol (PG), manganese and iron were preferred over nitrate as electron acceptor. A key hypothesis for the work presented is that for a designated soil, the redox potential affects gas releases and soil solution composition profoundly. As the redox potential decreases, the reactants of the degradation change and therefore the composition of the soil-water system changes. These changes can be quantified dynamically by gas measurements and changes in electrical conductivity of the pore water and electrical resistivity of the bulk soil. Batch experiments were conducted to examine whether nitrate is a preferred electron acceptor over iron and manganese oxides as described in classical redox reaction theory. Gas releases during PG and glutamate degradation were measured in a sandy pristine soil with and without nitrate under anaerobic condition during two weeks of incubation. Chemical reactions were quantified with the modelling tool ORCHESTRA. We are currently investigating whether dynamical measurements of electrical conductivity and bulk resistivity are suited to trace which electron acceptors (nitrate, manganese or iron) are being reduced. First

  15. Redox Cycling Realized in Paper-Based Biochemical Sensor for Selective Detection of Reversible Redox Molecules Without Micro/Nano Fabrication Process.

    Science.gov (United States)

    Yamamoto, So; Uno, Shigeyasu

    2018-02-28

    This paper describes a paper-based biochemical sensor that realizes redox cycling with close interelectrode distance. Two electrodes, the generator and collector electrodes, can detect steady-state oxidation and reduction currents when suitable potential is held at each electrode. The sensor has two gold plates on both sides of a piece of chromatography paper and defines the interelectrode distance by the thickness of the paper (180 μm) without any micro-fabrication processes. Our proposed sensor geometry has successfully exhibited signatures of redox cycling. As a result, the concentration of ferrocyanide as reversible redox molecules was successfully quantified under the interference by ascorbic acid as a strong irreversible reducing agent. This was possible because the ascorbic acids are completely consumed by the irreversible reaction, while maintaining redox cycling of reversible ferrocyanide. This suggests that a sensor based on the redox cycling method will be suitable for detecting target molecules at low concentration.

  16. Potential redox behaviour on industrial wastes treatment; Evolucion del potencial redox en tratamiento y depuracion industrial de aguas

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.; rodriguez Mellado, J. M.; Ruiz Montoya, M.; Jimenez Gamero, C. [Departamento Quimica Fisica y Termodinamica aplicada, Facultad de ciencias, Universidad de Cordoba (Spain)

    1995-12-31

    A study over the behaviour of redox potential in waters and wastewaters under industrial treatment processes has been carried out. In both cases, the potential-time curves obtained were in a logarithmical shape being more strongly distorted when the waters contained more dissolved and suspended compounds. Oxygen fundamentally leads the redox state in wastewaters, although ozone and chlorine almost oxygen lead the redox potential in raw waters intended to drinking water production. In this way, by increasing 210 m V the E{sub H} value of water or maintaining the rH>21.8 it can be industrially sterilized the drinking water. On the other hand, increases of 350 mV in the EH values from wastewaters influent to plant to the treated waters, allowed discarding 450 mg/l of DQO and 9 mg/l of NH{sub 3} from the former. Finally, the exploitation of the Wastewaters Treatment Plant by regulation of the E{sub H} values can suppose a good practice. (Author) 14 refs.

  17. A study of the Fe(III)/Fe(II)-triethanolamine complex redox couple for redox flow battery application

    International Nuclear Information System (INIS)

    Wen, Y.H.; Zhang, H.M.; Qian, P.; Zhou, H.T.; Zhao, P.; Yi, B.L.; Yang, Y.S.

    2006-01-01

    The electrochemical behavior of the Fe(III)/Fe(II)-triethanolamine(TEA) complex redox couple in alkaline medium and influence of the concentration of TEA were investigated. A change of the concentration of TEA mainly produces the following two results. (1) With an increase of the concentration of TEA, the solubility of the Fe(III)-TEA can be increased to 0.6 M, and the solubility of the Fe(II)-TEA is up to 0.4 M. (2) In high concentration of TEA with the ratio of TEA to NaOH ranging from 1 to 6, side reaction peaks on the cathodic main reaction of the Fe(III)-TEA complex at low scan rate can be minimized. The electrode process of Fe(III)-TEA/Fe(II)-TEA is electrochemically reversible with higher reaction rate constant than the uncomplexed species. Constant current charge-discharge shows that applying anodic active materials of relatively high concentrations facilitates the improvement of cell performance. The open-circuit voltage of the Fe-TEA/Br 2 cell with the Fe(III)-TEA of 0.4 M, after full charging, is nearly 2.0 V and is about 32% higher than that of the all-vanadium batteries, together with the energy efficiency of approximately 70%. The preliminary exploration shows that the Fe(III)-TEA/Fe(II)-TEA couple is electrochemically promising as negative redox couple for redox flow battery (RFB) application

  18. A novel iron-lead redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Ren, Y. X.

    2017-04-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies for the massive utilization of intermittent renewables especially wind and solar energy. This work presents a novel redox flow battery that utilizes inexpensive and abundant Fe(II)/Fe(III) and Pb/Pb(II) redox couples as redox materials. Experimental results show that both the Fe(II)/Fe(III) and Pb/Pb(II) redox couples have fast electrochemical kinetics in methanesulfonic acid, and that the coulombic efficiency and energy efficiency of the battery are, respectively, as high as 96.2% and 86.2% at 40 mA cm-2. Furthermore, the battery exhibits stable performance in terms of efficiencies and discharge capacities during the cycle test. The inexpensive redox materials, fast electrochemical kinetics and stable cycle performance make the present battery a promising candidate for large-scale energy storage applications.

  19. Ferro lábil redox-ativo em farinhas fortificadas do mercado brasileiro

    OpenAIRE

    Espósito, Breno Pannia

    2007-01-01

    OBJECTIVE: To quantify the fraction of redox-active labile iron in iron-fortified flours acquired on the Brazilian market. METHODS: Samples of wheat flour, maize flour and breadcrumbs were extracted with buffers that mimic gastric juice, saliva and intestinal juice. Redox-active labile iron levels were assessed through the reaction of autoxidation of ascorbic acid catalyzed by iron in the presence of a fluorescence probe. RESULTS: Redox-active labile iron represents 1% to 9% of the total iron...

  20. Novel Molecular Non-Volatile Memory: Application of Redox-Active Molecules

    OpenAIRE

    Hao Zhu; Qiliang Li

    2015-01-01

    This review briefly describes the development of molecular electronics in the application of non-volatile memory. Molecules, especially redox-active molecules, have become interesting due to their intrinsic redox behavior, which provides an excellent basis for low-power, high-density and high-reliability non-volatile memory applications. Recently, solid-state non-volatile memory devices based on redox-active molecules have been reported, exhibiting fast speed, low operation voltage, excellent...

  1. The Effects of Metamorphism on Iron Mineralogy and the Iron Speciation Redox Proxy

    OpenAIRE

    Slotznick, Sarah P.; Eiler, John M.; Fischer, Woodward W.

    2018-01-01

    As the most abundant transition metal in the Earth’s crust, iron is a key player in the planetary redox budget. Observations of iron minerals in the sedimentary record have been used to describe atmospheric and aqueous redox environments over the evolution of our planet; the most common method applied is iron speciation, a geochemical sequential extraction method in which proportions of different iron minerals are compared to calibrations from modern sediments to determine water-column redox ...

  2. Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte

    KAUST Repository

    Chen, Wei

    2013-01-01

    We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles). This journal is © The Royal Society of Chemistry.

  3. Redox control of iron biomineralization in Magnetospirillum magneticum AMB-1

    Science.gov (United States)

    Jones, Stephanie Rhianon

    Magnetotactic bacteria have evolved complex subcellular machinery to construct linear chains of magnetite nanocrystals that allow the host cell to sense direction. Each mixed-valent iron nanoparticle is mineralized from soluble iron within a membrane-encapsulated vesicle termed the magnetosome, which serves as a specialized compartment that regulates the iron, redox, and pH environment of the growing mineral. In order to dissect the biological components that control this process, we have carried out genetic and biochemical studies of proteins proposed to function in iron mineralization in Magnetospirillum magneticum AMB-1. As iron biomineralization by magnetotactic bacteria represents a particularly interesting case for understanding how the production of nanomaterials can be programmed at the genetic level, we also apply synthetic biology techniques towards the production of new cellular materials and new cellular functions. As the production of magnetite requires both the formation of Fe(II) and Fe(III), the redox components of the magnetosome play an essential role in this process. Using genetic complementation studies, we show that the redox cofactors or heme sites of the two putative redox partners, MamP and MamT, are required for magnetite biomineralization in vivo and that removal of one or both sites leads to defects in mineralization. We develop and optimize a heterologous expression method in the E. coli periplasm to cleanly isolate fully heme-loaded MamP for biochemical studies. Spectrochemical redox titrations show that the reduction potential of MamP lies in a different range than other c-type cytochrome involved in either Fe(III) reduction or Fe(II) oxidation. Nonetheless, in vitro mineralization studies with MamP and Fe(II) show that it is able to catalyze the formation of mixed-valent Fe(II)/Fe(III) oxides such as green rust. Biomineralization also requires lattice-templating proteins that guide the growth of the functional crystalline material. We

  4. Pattern-­oriented Agent-­based Monte Carlo simulation of Cellular Redox Environment

    DEFF Research Database (Denmark)

    Tang, Jiaowei

    Research suggests that cellular redox environment could affect the phenotype and function of cells through a complex reaction network[1]. In cells, redox status is mainly regulated by several redox couples, such as Glutathione/glutathione disulfide (GSH/GSSG), Cysteine/ Cystine (CYS/CYSS) and mit......Research suggests that cellular redox environment could affect the phenotype and function of cells through a complex reaction network[1]. In cells, redox status is mainly regulated by several redox couples, such as Glutathione/glutathione disulfide (GSH/GSSG), Cysteine/ Cystine (CYS......, that there is a connection between extracellular and intracellular redox [2], whereas others oppose this view [3]. In general however, these experiments lack insight into the dynamics, complex network of reactions and transportation through cell membrane of redox. Therefore, current experimental results reveal......' that can be run in parallel with MPI on computer cluster, will be used to implement modeling [9]. In the future, studies will be performed simulating how cellular redox state could affect phenotype of a population of cells, and hereby the tissue and organ if dynamics between intracellular and extracellular...

  5. Characterization of plasma thiol redox potential in a common marmoset model of aging

    Directory of Open Access Journals (Sweden)

    James R. Roede

    2013-01-01

    Full Text Available Due to its short lifespan, ease of use and age-related pathologies that mirror those observed in humans, the common marmoset (Callithrix jacchus is poised to become a standard nonhuman primate model of aging. Blood and extracellular fluid possess two major thiol-dependent redox nodes involving cysteine (Cys, cystine (CySS, glutathione (GSH and glutathione disulfide (GSSG. Alteration in these plasma redox nodes significantly affects cellular physiology, and oxidation of the plasma Cys/CySS redox potential (EhCySS is associated with aging and disease risk in humans. The purpose of this study was to determine age-related changes in plasma redox metabolites and corresponding redox potentials (Eh to further validate the marmoset as a nonhuman primate model of aging. We measured plasma thiol redox states in marmosets and used existing human data with multivariate adaptive regression splines (MARS to model the relationships between age and redox metabolites. A classification accuracy of 70.2% and an AUC of 0.703 were achieved using the MARS model built from the marmoset redox data to classify the human samples as young or old. These results show that common marmosets provide a useful model for thiol redox biology of aging.

  6. Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence.

    Science.gov (United States)

    Groten, Karin; Dutilleul, Christelle; van Heerden, Philippus D R; Vanacker, Hélène; Bernard, Stéphanie; Finkemeier, Iris; Dietz, Karl-Josef; Foyer, Christine H

    2006-02-20

    Redox factors contributing to nodule senescence were studied in pea. The abundance of the nodule cytosolic peroxiredoxin but not the mitochondrial peroxiredoxin protein was modulated by ascorbate. In contrast to redox-active antioxidants such as ascorbate and cytosolic peroxiredoxin that decreased during nodule development, maximal extractable nodule proteinase activity increased progressively as the nodules aged. Cathepsin-like activities were constant throughout development but serine and cysteine proteinase activities increased during senescence. Senescence-induced cysteine proteinase activity was inhibited by cysteine, dithiotreitol, or E-64. Senescence-dependent decreases in redox-active factors, particularly ascorbate and peroxiredoxin favour decreased redox-mediated inactivation of cysteine proteinases.

  7. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Jicheng; Gaffrey, Matthew J.; Qian, Wei-Jun

    2017-01-01

    Protein cysteine thiols play a crucial role in redox signaling, regulation of enzymatic activity and protein function, and maintaining redox homeostasis in living systems. The unique chemical reactivity of thiol groups makes cysteine susceptible to oxidative modifications by reactive oxygen and nitrogen species to form a broad array of reversible and irreversible protein post-translational modifications (PTMs). The reversible modifications in particular are one of the major components of redox signaling and are involved in regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in health and diseases has been increasingly recognized. Herein, we review the recent advances of quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including the general considerations of sample processing, various chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for addressing specific biological questions. Although some technological limitations remain, redox proteomics is paving the way towards a better understanding of redox signaling and regulation in human health and diseases.

  8. Redox and acid-base coupling in ultrathin polyelectrolyte films.

    Science.gov (United States)

    Tagliazucchi, Mario; Calvo, Ernesto J; Szleifer, Igal

    2008-03-18

    A single layer of poly(allylamine) with a covalently attached osmium pyridine-bipyridine complex adsorbed onto a Au surface modified by mercaptopropanesulfonate has been studied theoretically with a molecular approach and experimentally by cyclic voltammetry. These investigations have been carried out at different pHs and ionic strengths of the electrolyte solution in contact with the redox polyelectrolyte modified electrode. The theory predicts strong coupling between the acid-base and redox equilibria, particularly for low ionic strength, pH close to the pKa, and high concentration of redox sites. The coupling leads to a decrease in the peak potential at pH values above the apparent pKa of the weak polyelectrolyte, in good agreement with the experimental pH dependence at 4 mM NaNO3. Theoretical calculations suggest that the inflection point in the peak position versus pH curves can be used to estimate the apparent pKa of the amino groups in the polymer. Comparison of the apparent pKa for PAH-Os in the film with that of poly(allylamine) reported in the literature shows that the underlying charged thiol strongly influences charge regulation in the film. A systematic study of the film thickness and the degree of protonation in sulfonate and amino groups for solutions of different pH and ionic strength shows the coupling between the different interactions. It is found that the variation of the film properties has a non-monotonic dependence on bulk pH and salt concentration. For example, the film thickness shows a maximum with electrolyte ionic strength, whose origin is attributed to the balance between electrostatic amino-amino repulsions and amino-sulfonate attractions.

  9. The redox biology network in cancer pathophysiology and therapeutics

    Directory of Open Access Journals (Sweden)

    Gina Manda

    2015-08-01

    Full Text Available The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1 and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic, greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular

  10. Iron metallodrugs: stability, redox activity and toxicity against Artemia salina.

    Directory of Open Access Journals (Sweden)

    Hector Aguilar Vitorino

    Full Text Available Iron metallodrugs comprise mineral supplements, anti-hypertensive agents and, more recently, magnetic nanomaterials, with both therapeutic and diagnostic roles. As biologically-active metal compounds, concern has been raised regarding the impact of these compounds when emitted to the environment and associated ecotoxicological effects for the fauna. In this work we assessed the relative stability of several iron compounds (supplements based on glucoheptonate, dextran or glycinate, as well as 3,5,5-trimethylhexanoyl (TMH derivatives of ferrocene against high affinity models of biological binding, calcein and aprotransferrin, via a fluorimetric method. Also, the redox-activity of each compound was determined in a physiologically relevant medium. Toxicity toward Artemia salina at different developmental stages was measured, as well as the amount of lipid peroxidation. Our results show that polymer-coated iron metallodrugs are stable, non-redox-active and non-toxic at the concentrations studied (up to 300 µM. However, TMH derivatives of ferrocene were less stable and more redox-active than the parent compound, and TMH-ferrocene displayed toxicity and lipid peroxidation to A. salina, unlike the other compounds. Our results indicate that iron metallodrugs based on polymer coating do not present direct toxicity at low levels of emission; however other iron species (eg. metallocenes, may be deleterious for aquatic organisms. We suggest that ecotoxicity depends more on metal speciation than on the total amount of metal present in the metallodrugs. Future studies with discarded metallodrugs should consider the chemical speciation of the metal present in the composition of the drug.

  11. Mechanisms of neptunium redox reactions in nitric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sayandev; Bryan, Samuel A.; Casella, Amanda J.; Peterson, James M.; Levitskaia, Tatiana G.

    2017-01-01

    First transuranium element neptunium (Np) exhibits complicated behavior in acidic solutions because it can adopt wide range of oxidation states typically from +3 to +6 and coordinate large variety of ligands. In particular, accurate determination of Np redox potentials in nitric acid solutions is challenging due to overlapping chemical and electrochemical reactions leading to significant experimental uncertainties. Furthermore, over past decades spectrophotometry has been extensively applied to identify and characterize Np solution species in different oxidation states. However, relevant spectral database of Np in nitric acid solutions that can serve for the reference purposes has yet to be established due to the experimental difficulty to isolate and stabilize Np species in pure oxidation states without compromising solution optical properties. This work demonstrates that combination of voltammetry and controlled-potential in situ thin-layer spectropotentiometry overcomes these challenges so that Np species in pure +3, +4, +5, or +6 oxidation states were electrochemically generated in the systematically varied 0.1 – 5 M nitric acid solutions, and corresponding vis-NIR spectral signatures were obtained. In situ optical monitoring of the interconversion between adjacent Np oxidation states resulted in elucidation of the mechanisms of the involved redox reactions, in-depth understanding of the relative stability of the Np oxidation states, and allowed benchmarking of the redox potentials of the NpO22+/NpO2+, NpO2+/Np4+ and Np4+/Np3+ couples. Notably, the NpO2+/Np4+ couple was distinguished from the proximal Np4+/Np3+ process overcoming previous concerns and challenges encountered in accurate determination of the respective potentials.

  12. Priming plant resistance by activation of redox-sensitive genes.

    Science.gov (United States)

    González-Bosch, Carmen

    2017-12-24

    Priming by natural compounds is an interesting alternative for sustainable agriculture, which also contributes to explore the molecular mechanisms associated with stress tolerance. Although hosts and stress types eventually determine the mode of action of plant-priming agents, it highlights that many of them act on redox signalling. These include vitamins thiamine, riboflavin and quercetin; organic acids like pipecolic, azelaic and hexanoic; volatile organic compounds such as methyl jasmonate; cell wall components like chitosans and oligogalacturonides; H 2 O 2 , etc. This review provides data on how priming inducers promote stronger and faster responses to stress by modulating the oxidative environment, and interacting with signalling pathways mediated by salycilic acid, jasmonic acid and ethylene. The histone modifications involved in priming that affect the transcription of defence-related genes are also discussed. Despite the evolutionary distance between plants and animals, and the fact that the plant innate immunity takes place in each plant cell, they show many similarities in the molecular mechanisms that underlie pathogen perception and further signalling to activate defence responses. This review highlights the similarities between priming through redox signalling in plants and in mammalian cells. The strategies used by pathogens to manipulate the host´s recognition and the further activation of defences also show similarities in both kingdoms. Moreover, phytochemicals like sulforaphane and 12-oxo-phytodienoic acid prime both plant and mammalian responses by activating redox-sensitive genes. Hence research data into the priming of plant defences can provide additional information and a new viewpoint for priming mammalian defence, and vice versa. Copyright © 2017. Published by Elsevier Inc.

  13. Glutathione: new roles in redox signalling for an old antioxidant

    Directory of Open Access Journals (Sweden)

    KATIA eAQUILANO

    2014-08-01

    Full Text Available The physiological roles played by the tripeptide glutathione have greatly advanced over the past decades superimposing the research on free radicals, oxidative stress and, more recently, redox signalling. In particular, GSH is involved in nutrient metabolism, antioxidant defence and regulation of cellular metabolic functions ranging from gene expression, DNA and protein synthesis to signal transduction, cell proliferation and apoptosis. This review will be focused on the role of GSH in cell signalling by analysing the more recent advancements about its capability to modulate nitroxidative stress, autophagy and viral infection.

  14. Nucleobase modification as redox DNA labelling for electrochemical detection

    Czech Academy of Sciences Publication Activity Database

    Hocek, Michal; Fojta, Miroslav

    2011-01-01

    Roč. 40, č. 12 (2011), s. 5802-5814 ISSN 0306-0012 R&D Projects: GA MŠk(CZ) LC06035; GA MŠk LC512; GA AV ČR(CZ) IAA400040901; GA ČR GA203/09/0317 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : nucleotides * oligonucleotides * DNA * electrochemistry * redox labeling Subject RIV: CC - Organic Chemistry Impact factor: 28.760, year: 2011

  15. Synthesis of redox polymer nanobeads and nanocomposites for glucose biosensors.

    Science.gov (United States)

    Wang, Jen-Yuan; Chen, Lin-Chi; Ho, Kuo-Chuan

    2013-08-28

    Redox polymer nanobeads of branched polyethylenimine binding with ferrocene (BPEI-Fc) were synthesized using a simple chemical process. The functionality and morphology of the redox polymer nanobeads were investigated by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). This hydrophilic redox nanomaterial could be mixed with glucose oxidase (GOx) for drop-coating on a screen-printed carbon electrode (SPCE) for glucose sensing application. Electrochemical properties of the BPEI-Fc/GOx/SPCE prepared under different conditions were studied by cyclic voltammetry (CV). On the basis of these CV results, the synthetic condition of the BPEI-Fc/GOx/SPCE could be optimized. By incorporating conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), the performance of a redox polymer nanobead–based enzyme electrode could be further improved. The influence of PEDOT:PSS on the nanocomposite enzyme electrode was discussed from the aspects of the apparent electron diffusion coefficient (D(app)) and the charge transfer resistance (R(ct)). The glucose-sensing sensitivity of the BPEI-Fc/PEDOT:PSS/GOx/SPCE is calculated to be 66 μA mM(–1) cm(–2), which is 2.5 times higher than that without PEDOT:PSS. The apparent Michaelis constant (K(M)(app)) of the BPEI-Fc/PEDOT:PSS/GOx/SPCE estimated by the Lineweaver–Burk plot is 2.4 mM, which is much lower than that of BPEI-Fc/GOx/SPCE (11.2 mM). This implies that the BPEI-Fc/PEDOT:PSS/GOx/SPCE can catalytically oxidize glucose in a more efficient way. The interference test was carried out by injection of glucose and three common interferences: ascorbic acid (AA), dopamine (DA), and uric acid (UA) at physiological levels. The interferences of DA (4.2%) and AA (7.8%) are acceptable and the current response to UA (1.6%) is negligible, compared to the current response to glucose.

  16. Redox protective potential of fruits and vegetables: A review

    Directory of Open Access Journals (Sweden)

    Zainab Tahir

    2015-08-01

    Full Text Available Although oxidation reactions are crucial for life, they can also be damaging to cells and tissues, causing variety of chronic ailments like, aging, cancer, autoimmune problems, cardiovascular and neurodegenerative disorders etc. Redox protective systems are present in body for general immunization against free radicals, which can be supported by antioxidants that we take in our daily diet. Natural antioxidants such as flavonoids, hydrolysable tannins, coumarins, xanthones, phenolics, terpenoids, ascorbic acid, carotenoids and proanthocyanins are found in various plant products, including fruits, leaves, seeds oils, and juices. This review gives a brief account of research reports on fruits and vegetables which provide free radical scavenging compounds to the body.

  17. Ocean redox change at the Permian-Triassic mass extinction

    DEFF Research Database (Denmark)

    Ruhl, Micha; Bjerrum, Christian J.; Canfield, Donald Eugene

    2013-01-01

    and marine (mass) ex¬tinction. The geographic and temporal extend and the intensity (ferruginous vs. euxinic) of anoxic con¬ditions is, however, strongly debated and not well constraint. This complicates understanding of close coupling between Earth’s physical, chemical and bi¬ological processes. We studied...... outgassing from the Siberian Traps. We measured redox-sensitive trace element concentrations (e.g. Mo, Cu, U) and the speciation of iron [Fe-HR/Fe-T and Fe-PY/ Fe- HR] in marine sediments from Svalbard (Festningen). We compare these data to additional, new, high-lati-tude data from eastern Greenland...

  18. Pulsating electrolyte flow in a full vanadium redox battery

    Science.gov (United States)

    Ling, C. Y.; Cao, H.; Chng, M. L.; Han, M.; Birgersson, E.

    2015-10-01

    Proper management of electrolyte flow in a vanadium redox battery (VRB) is crucial to achieve high overall system efficiency. On one hand, constant flow reduces concentration polarization and by extension, energy efficiency; on the other hand, it results in higher auxiliary pumping costs, which can consume around 10% of the discharge power. This work seeks to reduce the pumping cost by adopting a novel pulsing electrolyte flow strategy while retaining high energy efficiency. The results indicate that adopting a short flow period, followed by a long flow termination period, results in high energy efficiencies of 80.5% with a pumping cost reduction of over 50%.

  19. The redox behavior of potassium doped C60 peapods

    Science.gov (United States)

    Kalbáč, Martin; Kavan, Ladislav; Kataura, Hiromichi; Zukalová, Markéta; Dunsch, Lothar

    2004-09-01

    The redox behavior of fullerene peapods C60@SWCNT was studied by spectroelectrochemistry at samples chemically n-doped by K vapor. Strong chemical doping was proven by vanishing of the RBM mode and the downshift of TG mode in Raman spectroelectrochemistry. The K-doped peapods were subsequently studied electrochemically and thus n- and p-doped, respectively. The Ag(2) mode of intratubular fullerene in K-doped peapods contacting air was still red-shifted as referred to its position in a pristine peapod. An air-insensitive residual doping was found to be resistant also to cathodic charging. An explanation is given for this behavior.

  20. Redox and thermodynamic properties of Cm and transcurium elements

    International Nuclear Information System (INIS)

    David, F.

    1984-01-01

    The investigation of the main properties of heavy actinides shows, in each case (i.e. metal, entropies of aqueous ions, hydration, redox properties) that such basic properties are related to the characteristic parameters as radius, the number of f electrons, charge, electronic transitions. Therefore, expressions are obtained which make possible calculation of unknown data and predictions of properties. More work has to be done to get more reliable calculations fitting closely to experimental data: entropies, structures of many aqueous ions, ionization potentials and even existence or stability of some oxidation states need more imaginative works applying original radiochemical methods and correlations through heavy elements. 9 tables, 13 figs

  1. Controlled Chemical Doping of Semiconductor Nanocrystals Using Redox Buffers

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Jesse H. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Surendranath, Yogesh [Univ. of California, Berkeley, CA (United States); Alivisatos, Paul [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-07-20

    Semiconductor nanocrystal solids are attractive materials for active layers in next-generation optoelectronic devices; however, their efficient implementation has been impeded by the lack of precise control over dopant concentrations. Herein we demonstrate a chemical strategy for the controlled doping of nanocrystal solids under equilibrium conditions. Exposing lead selenide nanocrystal thin films to solutions containing varying proportions of decamethylferrocene and decamethylferrocenium incrementally and reversibly increased the carrier concentration in the solid by 2 orders of magnitude from their native values. This application of redox buffers for controlled doping provides a new method for the precise control of the majority carrier concentration in porous semiconductor thin films.

  2. Redox behaviour of molybdenum in aqueous medium : a potentiometric study

    International Nuclear Information System (INIS)

    Sagi, S.R.; Mohan Rao, P.R.

    1975-01-01

    The nature of the two forms; of Mo(III) cationic-aquomolybdenum(III) (green) and anionic-chloromolybdate(III) (orange-red) has been investigated using various oxidants in hydrochloric acid mdeium, the oxidation steps being detected using a potentiometric method. The two species behave differently towards the various oxidants. The green form is a better reducing agent giving large breaks in potentials during redox titrations. The existence of the intermediate oxidation states Mosup(3.5) and Mosup(4.5) reported earlier has also been confirmed. (author)

  3. Redox metabolism abnormalities in autistic children associated with mitochondrial disease.

    Science.gov (United States)

    Frye, R E; Delatorre, R; Taylor, H; Slattery, J; Melnyk, S; Chowdhury, N; James, S J

    2013-06-18

    Research studies have uncovered several metabolic abnormalities associated with autism spectrum disorder (ASD), including mitochondrial disease (MD) and abnormal redox metabolism. Despite the close connection between mitochondrial dysfunction and oxidative stress, the relation between MD and oxidative stress in children with ASD has not been studied. Plasma markers of oxidative stress and measures of cognitive and language development and ASD behavior were obtained from 18 children diagnosed with ASD who met criteria for probable or definite MD per the Morava et al. criteria (ASD/MD) and 18 age and gender-matched ASD children without any biological markers or symptoms of MD (ASD/NoMD). Plasma measures of redox metabolism included reduced free glutathione (fGSH), oxidized glutathione (GSSG), the fGSH/GSSG ratio and 3-nitrotyrosine (3NT). In addition, a plasma measure of chronic immune activation, 3-chlorotyrosine (3CT), was also measured. Language was measured using the preschool language scale or the expressive one-word vocabulary test (depending on the age), adaptive behaviour was measured using the Vineland Adaptive Behavior Scale (VABS) and core autism symptoms were measured using the Autism Symptoms Questionnaire and the Social Responsiveness Scale. Children with ASD/MD were found to have lower scores on the communication and daily living skill subscales of the VABS despite having similar language and ASD symptoms. Children with ASD/MD demonstrated significantly higher levels of fGSH/GSSG and lower levels of GSSG as compared with children with ASD/NoMD, suggesting an overall more favourable glutathione redox status in the ASD/MD group. However, compare with controls, both ASD groups demonstrated lower fGSH and fGSH/GSSG, demonstrating that both groups suffer from redox abnormalities. Younger ASD/MD children had higher levels of 3CT than younger ASD/NoMD children because of an age-related effect in the ASD/MD group. Both ASD groups demonstrated significantly

  4. Bioenergetics and redox adaptations of astrocytes to neuronal activity.

    Science.gov (United States)

    Bolaños, Juan P

    2016-10-01

    Neuronal activity is a high-energy demanding process recruiting all neural cells that adapt their metabolism to sustain the energy and redox balance of neurons. During neurotransmission, synaptic cleft glutamate activates its receptors in neurons and in astrocytes, before being taken up by astrocytes through energy costly transporters. In astrocytes, the energy requirement for glutamate influx is likely to be met by glycolysis. To enable this, astrocytes are constitutively glycolytic, robustly expressing 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), an enzyme that is negligibly present in neurons by continuous degradation because of the ubiquitin-proteasome pathway via anaphase-promoting complex/cyclosome (APC)-Cdh1. Additional factors contributing to the glycolytic frame of astrocytes may include 5'-AMP-activated protein kinase (AMPK), hypoxia-inducible factor-1 (HIF-1), pyruvate kinase muscle isoform-2 (PKM2), pyruvate dehydrogenase kinase-4 (PDK4), lactate dehydrogenase-B, or monocarboxylate transporter-4 (MCT4). Neurotransmission-associated messengers, such as nitric oxide or ammonium, stimulate lactate release from astrocytes. Astrocyte-derived glycolytic lactate thus sustains the energy needs of neurons, which in contrast to astrocytes mainly rely on oxidative phosphorylation. Neuronal activity unavoidably triggers reactive oxygen species, but the antioxidant defense of neurons is weak; hence, they use glucose for oxidation through the pentose-phosphate pathway to preserve the redox status. Furthermore, neural activity is coupled with erythroid-derived erythroid-derived 2-like 2 (Nrf2) mediated transcriptional activation of antioxidant genes in astrocytes, which boost the de novo glutathione biosynthesis in neighbor neurons. Thus, the bioenergetics and redox programs of astrocytes are adapted to sustain neuronal activity and survival. Developing therapeutic strategies to interfere with these pathways may be useful to combat neurological

  5. Bioelectrochemical probing of intracellular redox processes in living yeast cells—application of redox polymer wiring in a microfluidic environment

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Coman, Vasile; Kostesha, Natalie

    2013-01-01

    a significant improvement of bioelectrochemical monitoring in a microfluidic environment and functions as an effective immobilization matrix for cells that are not strongly adherent. The function of the developed microfluidic platform is demonstrated using two strains of S. cerevisiae, ENY.WA and its deletion...... that microfluidic bioelectrochemical assays employing the menadione–PVI-Os double mediator system provides an effective means to conduct automated microbial assays. FigureMicrofluidic platform for bioelectrochemical assays using osmium redox polymer “wired” living yeast cells...

  6. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

    Science.gov (United States)

    Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph

    2018-01-20

    The nicotinamide adenine dinucleotide (NAD + )/reduced NAD + (NADH) and NADP + /reduced NADP + (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD + -consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD + precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.

  7. Redox regulation of insulin degradation by insulin-degrading enzyme.

    Directory of Open Access Journals (Sweden)

    Crystal M Cordes

    Full Text Available Insulin-degrading enzyme (IDE is a thiol sensitive peptidase that degrades insulin and amyloid β, and has been linked to type 2 diabetes mellitus and Alzheimer's disease. We examined the thiol sensitivity of IDE using S-nitrosoglutathione, reduced glutathione, and oxidized glutathione to distinguish the effects of nitric oxide from that of the redox state. The in vitro activity of IDE was studied using either partially purified cytosolic enzyme from male Sprague-Dawley rats, or purified rat recombinant enzyme. We confirm that nitric oxide inhibits the degrading activity of IDE, and that it affects proteasome activity through this interaction with IDE, but does not affect the proteasome directly. Oxidized glutathione inhibits IDE through glutathionylation, which was reversible by dithiothreitol but not by ascorbic acid. Reduced glutathione had no effect on IDE, but reacted with partially degraded insulin to disrupt its disulfide bonds and accelerate its breakdown to trichloroacetic acid soluble fragments. Our results demonstrate the sensitivity of insulin degradation by IDE to the redox environment and suggest another mechanism by which the cell's oxidation state may contribute to the development of, and the link between, type 2 diabetes and Alzheimer's disease.

  8. Redox regulation of circadian molecular clock in chronic airway diseases.

    Science.gov (United States)

    Sundar, Isaac K; Sellix, Michael T; Rahman, Irfan

    2017-10-31

    At the cellular level, circadian timing is maintained by the molecular clock, a family of interacting clock gene transcription factors, nuclear receptors and kinases called clock genes. Daily rhythms in pulmonary function are dictated by the circadian timing system, including rhythmic susceptibility to the harmful effects of airborne pollutants, exacerbations in patients with chronic airway disease and the immune-inflammatory response to infection. Further, evidence strongly suggests that the circadian molecular clock has a robust reciprocal interaction with redox signaling and plays a considerable role in the response to oxidative/carbonyl stress. Disruption of the circadian timing system, particularly in airway cells, impairs pulmonary rhythms and lung function, enhances oxidative stress due to airway inhaled pollutants like cigarette smoke and airborne particulate matter and leads to enhanced inflammosenescence, inflammasome activation, DNA damage and fibrosis. Herein, we briefly review recent evidence supporting the role of the lung molecular clock and redox signaling in regulating inflammation, oxidative stress, and DNA damage responses in lung diseases and their exacerbations. We further describe the potential for clock genes as novel biomarkers and therapeutic targets for the treatment of chronic lung diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Metformin selectively targets redox control of complex I energy transduction

    Directory of Open Access Journals (Sweden)

    Amy R. Cameron

    2018-04-01

    Full Text Available Many guanide-containing drugs are antihyperglycaemic but most exhibit toxicity, to the extent that only the biguanide metformin has enjoyed sustained clinical use. Here, we have isolated unique mitochondrial redox control properties of metformin that are likely to account for this difference. In primary hepatocytes and H4IIE hepatoma cells we found that antihyperglycaemic diguanides DG5-DG10 and the biguanide phenformin were up to 1000-fold more potent than metformin on cell signalling responses, gluconeogenic promoter expression and hepatocyte glucose production. Each drug inhibited cellular oxygen consumption similarly but there were marked differences in other respects. All diguanides and phenformin but not metformin inhibited NADH oxidation in submitochondrial particles, indicative of complex I inhibition, which also corresponded closely with dehydrogenase activity in living cells measured by WST-1. Consistent with these findings, in isolated mitochondria, DG8 but not metformin caused the NADH/NAD+ couple to become more reduced over time and mitochondrial deterioration ensued, suggesting direct inhibition of complex I and mitochondrial toxicity of DG8. In contrast, metformin exerted a selective oxidation of the mitochondrial NADH/NAD+ couple, without triggering mitochondrial deterioration. Together, our results suggest that metformin suppresses energy transduction by selectively inducing a state in complex I where redox and proton transfer domains are no longer efficiently coupled. Keywords: Diabetes, Metformin, Mitochondria, NADH, NAD+

  10. Rebalancing Redox to Improve Biobutanol Production by Clostridium tyrobutyricum

    Directory of Open Access Journals (Sweden)

    Chao Ma

    2015-12-01

    Full Text Available Biobutanol is a sustainable green biofuel that can substitute for gasoline. Carbon flux has been redistributed in Clostridium tyrobutyricum via metabolic cell engineering to produce biobutanol. However, the lack of reducing power hampered the further improvement of butanol production. The objective of this study was to improve butanol production by rebalancing redox. Firstly, a metabolically-engineered mutant CTC-fdh-adhE2 was constructed by introducing heterologous formate dehydrogenase (fdh and bifunctional aldehyde/alcohol dehydrogenase (adhE2 simultaneously into wild-type C. tyrobutyricum. The mutant evaluation indicated that the fdh-catalyzed NADH-producing pathway improved butanol titer by 2.15-fold in the serum bottle and 2.72-fold in the bioreactor. Secondly, the medium supplements that could shift metabolic flux to improve the production of butyrate or butanol were identified, including vanadate, acetamide, sodium formate, vitamin B12 and methyl viologen hydrate. Finally, the free-cell fermentation produced 12.34 g/L of butanol from glucose using the mutant CTC-fdh-adhE2, which was 3.88-fold higher than that produced by the control mutant CTC-adhE2. This study demonstrated that the redox engineering in C. tyrobutyricum could greatly increase butanol production.

  11. The impact of metagenomic interplay on the mosquito redox homeostasis.

    Science.gov (United States)

    Champion, Cody J; Xu, Jiannong

    2017-04-01

    Mosquitoes are exposed to oxidative challenges throughout their life cycle. The primary challenge comes from a blood meal. The blood digestion turns the midgut into an oxidative environment, which imposes pressure not only on mosquito fecundity and other physiological traits but also on the microbiota in the midgut. During evolution, mosquitoes have developed numerous oxidative defense mechanisms to maintain redox homeostasis in the midgut. In addition to antioxidants, SOD, catalase, and glutathione system, sufficient supply of the reducing agent, NADPH, is vital for a successful defense against oxidative stress. Increasing evidence indicates that in response to oxidative stress, cells reconfigure metabolic pathways to increase the generation of NADPH through NADP-reducing networks including the pentose phosphate pathway and others. The microbial homeostasis is critical for the functional contributions to various host phenotypes. The symbiotic microbiota is regulated largely by the Duox-ROS pathway in Drosophila. In mosquitoes, Duox-ROS pathway, heme-mediated signaling, antimicrobial peptide production and C-type lectins work in concert to maintain the dynamic microbial community in the midgut. Microbial mechanisms against oxidative stress in this context are not well understood. Emerging evidence that microbial metabolites trigger host oxidative response warrants further study on the metagenomic interplay in an oxidative environment like mosquito gut ecosystem. Besides the classical Drosophila model, hematophagous insects like mosquitoes provide an alternative model system to study redox homeostasis in a symbiotic metagenomic context. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. ROS-related redox regulation and signaling in plants.

    Science.gov (United States)

    Noctor, Graham; Reichheld, Jean-Philippe; Foyer, Christine H

    2017-07-18

    As sessile oxygenic organisms with a plastic developmental programme, plants are uniquely positioned to exploit reactive oxygen species (ROS) as powerful signals. Plants harbor numerous ROS-generating pathways, and these oxidants and related redox-active compounds have become tightly embedded into plant function and development during the course of evolution. One dominant view of ROS-removing systems sees them as beneficial antioxidants battling to keep damaging ROS below dangerous levels. However, it is now established that ROS are a necessary part of subcellular and intercellular communication in plants and that some of their signaling functions require ROS-metabolizing systems. For these reasons, it is suggested that "ROS processing systems" would be a more accurate term than "antioxidative systems" to describe cellular components that are most likely to interact with ROS and, in doing so, transmit oxidative signals. Within this framework, our update provides an overview of the complexity and compartmentation of ROS production and removal. We place particular emphasis on the importance of ROS-interacting systems such as the complex cellular thiol network in the redox regulation of phytohormone signaling pathways that are crucial for plant development and defense against external threats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Targeting the Redox Balance in Inflammatory Skin Conditions

    Directory of Open Access Journals (Sweden)

    Ditte M. S. Lundvig

    2013-04-01

    Full Text Available Reactive oxygen species (ROS can be both beneficial and deleterious. Under normal physiological conditions, ROS production is tightly regulated, and ROS participate in both pathogen defense and cellular signaling. However, insufficient ROS detoxification or ROS overproduction generates oxidative stress, resulting in cellular damage. Oxidative stress has been linked to various inflammatory diseases. Inflammation is an essential response in the protection against injurious insults and thus important at the onset of wound healing. However, hampered resolution of inflammation can result in a chronic, exaggerated response with additional tissue damage. In the pathogenesis of several inflammatory skin conditions, e.g., sunburn and psoriasis, inflammatory-mediated tissue damage is central. The prolonged release of excess ROS in the skin can aggravate inflammatory injury and promote chronic inflammation. The cellular redox balance is therefore tightly regulated by several (enzymatic antioxidants and pro-oxidants; however, in case of chronic inflammation, the antioxidant system may be depleted, and prolonged oxidative stress occurs. Due to the central role of ROS in inflammatory pathologies, restoring the redox balance forms an innovative therapeutic target in the development of new strategies for treating inflammatory skin conditions. Nevertheless, the clinical use of antioxidant-related therapies is still in its infancy.

  14. Rewiring hydrogenase-dependent redox circuits in cyanobacteria

    Science.gov (United States)

    Ducat, Daniel C.; Sachdeva, Gairik; Silver, Pamela A.

    2011-01-01

    Hydrogenases catalyze the reversible reaction 2H+ + 2e-↔H2 with an equilibrium constant that is dependent on the reducing potential of electrons carried by their redox partner. To examine the possibility of increasing the photobiological production of hydrogen within cyanobacterial cultures, we expressed the [FeFe] hydrogenase, HydA, from Clostridium acetobutylicum in the non-nitrogen-fixing cyanobacterium Synechococcus elongatus sp. 7942. We demonstrate that the heterologously expressed hydrogenase is functional in vitro and in vivo, and that the in vivo hydrogenase activity is connected to the light-dependent reactions of the electron transport chain. Under anoxic conditions, HydA activity is capable of supporting light-dependent hydrogen evolution at a rate > 500-fold greater than that supported by the endogenous [NiFe] hydrogenase. Furthermore, HydA can support limited growth solely using H2 and light as the source of reducing equivalents under conditions where Photosystem II is inactivated. Finally, we demonstrate that the addition of exogenous ferredoxins can modulate redox flux in the hydrogenase-expressing strain, allowing for greater hydrogen yields and for dark fermentation of internal energy stores into hydrogen gas. PMID:21368150

  15. Nucleation of metals by redox processes in glass molten media

    International Nuclear Information System (INIS)

    Laurent, Y.; Turmel, J.M.; Verdier, P.

    1997-01-01

    Nitrogen incorporation into an aluminosilicate glass network changes greatly its physico-chemical properties. M-Si-Al-O-N (M = Li, Mg, Ca, Ln) oxynitride glasses are chemically inert. However, the presence of N 3- ions in molten glass gives to the glass medium a reducing character. This work concerns the study of redox reactions in molten glass between nitrogen and oxides of the first transition series of the periodic table, cadmium and lead. In situ precipitation of metallic particles from the corresponding oxides is demonstrated by X-ray diffraction and EDS data. However, the reduction of pure TiO 2 and V 2 O 5 gives rise to the corresponding nitrides, i.e. TiN and VN. The redox reaction occurs with nitrogen release. The low solubility of metals in the molten glass media forces metal migration out off the glass and consequently favors metal recovery. This oxidation-reduction process in molten media can be envisaged as industrially useful for recovering metals in industrial wastes. (authors)

  16. Transient light-induced intracellular oxidation revealed by redox biosensor

    International Nuclear Information System (INIS)

    Kolossov, Vladimir L.; Beaudoin, Jessica N.; Hanafin, William P.; DiLiberto, Stephen J.; Kenis, Paul J.A.; Rex Gaskins, H.

    2013-01-01

    Highlights: •Time-resolved live cell imaging revealed light-induced oxidation. •Only the roGFP probe fused with glutaredoxin reveals photooxidation. •The transient oxidation is rapidly reduced by the cytosolic antioxidant system. •Intracellular photooxidation is media-dependent. •Oxidation is triggered exclusively by exposure to short wavelength excitation. -- Abstract: We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30 s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition

  17. Transient light-induced intracellular oxidation revealed by redox biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Kolossov, Vladimir L., E-mail: viadimer@illinois.edu [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Beaudoin, Jessica N. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Hanafin, William P. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); DiLiberto, Stephen J. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Kenis, Paul J.A. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801 (United States); Rex Gaskins, H. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL 61801 (United States); Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States)

    2013-10-04

    Highlights: •Time-resolved live cell imaging revealed light-induced oxidation. •Only the roGFP probe fused with glutaredoxin reveals photooxidation. •The transient oxidation is rapidly reduced by the cytosolic antioxidant system. •Intracellular photooxidation is media-dependent. •Oxidation is triggered exclusively by exposure to short wavelength excitation. -- Abstract: We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30 s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.

  18. Design Flexibility of Redox Flow Systems. [for energy storage applications

    Science.gov (United States)

    Hagedorn, N. H.; Thaller, L. H.

    1982-01-01

    The characteristics inherent in Redox flow systems permit considerable latitude in designing systems for specific storage applications. The first of these characteristics is the absence of plating/deplating reactions with their attendant morphology changes at the electrodes. This permits a given Redox system to operate over a wide range of depths of discharge and charge/discharge rates. The second characteristic is the separation of power generating components (stacks) from the energy storage components (tanks). This results in cost effective system design, ease of system growth via modularization, and freedom from sizing restraints so that the whole spectrum of applications, from utilities down to single residence can be considered. The final characteristic is the commonality of the reactant fluids which assures that all cells at all times are receiving reactants at the same state of charge. Since no cell can be out of balance with respect to any other cell, it is possible for some cells to be charged while others are discharging, in effect creating a DC to DC transformer. It is also possible for various groups of cells to be connected to separate loads, thus supplying a range of output voltages. Also, trim cells can be used to maintain constant bus voltage as the load is changed or as the depth of discharge increases. The commonality of reactant fluids also permits any corrective measures such as rebalancing to occur at the system level instead of at the single cell level.

  19. Conformational Control of Electron Tunneling in Redox Proteins: Sulfite Oxidase

    Science.gov (United States)

    Balabin, Ilya; Kawatsu, Tsutomu; Beratan, David

    2004-03-01

    Many redox proteins mediate electron transfer over large (10-25A) distances, with the reaction rate being, in some cases, remarkably sensitive to the protein structure and dynamics (e.g., Science 290, 114-117 (2000)). These properties make redox proteins excellent candidates for molecular electronics applications. Sulfite oxidase (SO) is a molybdenum-containing electron-transfer enzyme that catalyzes the conversion of sulfite to sulfate. The enzyme consists of two domains, one hosting a molybdopterin moiety, which receives an electron from sulfite, and the other hosting a heme, from which electrons travels to cytochrome c. The domains are connected together by a flexible link, which allows for the domains to move relative to each other. This motion is believed to control electron transfer from the molybdopterin to the heme, which is only possible when the enzyme assumes a closed conformation (the two domains are in contact with each other). The only available crystallographic structure of SO (PDB code 1SOX) characterizes an open conformation, when the two domains are separated. Classical molecular dynamics (MD) simulations of the enzyme in solvent, combined with semi-empirical quantum chemistry calculations, were performed to identify possible closed conformations of SO and to investigate the electron transfer rate in these conformations. Steered MD simulations supplemented by analytical modeling were used to characterize kinetics of conformational transitions, particularly opening and closing of the enzyme, which controls the electron tunneling rate.

  20. Real-Time Imaging of the Bacillithiol Redox Potential in the Human Pathogen Staphylococcus aureus Using a Genetically Encoded Bacilliredoxin-Fused Redox Biosensor.

    Science.gov (United States)

    Loi, Vu Van; Harms, Manuela; Müller, Marret; Huyen, Nguyen Thi Thu; Hamilton, Chris J; Hochgräfe, Falko; Pané-Farré, Jan; Antelmann, Haike

    2017-05-20

    Bacillithiol (BSH) is utilized as a major thiol-redox buffer in the human pathogen Staphylococcus aureus. Under oxidative stress, BSH forms mixed disulfides with proteins, termed as S-bacillithiolation, which can be reversed by bacilliredoxins (Brx). In eukaryotes, glutaredoxin-fused roGFP2 biosensors have been applied for dynamic live imaging of the glutathione redox potential. Here, we have constructed a genetically encoded bacilliredoxin-fused redox biosensor (Brx-roGFP2) to monitor dynamic changes in the BSH redox potential in S. aureus. The Brx-roGFP2 biosensor showed a specific and rapid response to low levels of bacillithiol disulfide (BSSB) in vitro that required the active-site Cys of Brx. Dynamic live imaging in two methicillin-resistant S. aureus (MRSA) USA300 and COL strains revealed fast and dynamic responses of the Brx-roGFP2 biosensor under hypochlorite and hydrogen peroxide (H 2 O 2 ) stress and constitutive oxidation of the probe in different BSH-deficient mutants. Furthermore, we found that the Brx-roGFP2 expression level and the dynamic range are higher in S. aureus COL compared with the USA300 strain. In phagocytosis assays with THP-1 macrophages, the biosensor was 87% oxidized in S. aureus COL. However, no changes in the BSH redox potential were measured after treatment with different antibiotics classes, indicating that antibiotics do not cause oxidative stress in S. aureus. Conclusion and Innovation: This Brx-roGFP2 biosensor catalyzes specific equilibration between the BSH and roGFP2 redox couples and can be applied for dynamic live imaging of redox changes in S. aureus and other BSH-producing Firmicutes. Antioxid. Redox Signal. 26, 835-848.

  1. Redox tuning of cytochrome b562 through facile metal porphyrin substitution

    DEFF Research Database (Denmark)

    Della Pia, Eduardo Antonio; Chi, Qijin; Elliott, Martin

    2012-01-01

    The biologically and nanotechnologically important heme protein cytochrome b562 was reconstructed with zinc and copper porphyrins, leading to significant changes in the spectral, redox and electron transfer properties. The Cu form shifts the redox potential by +300 mV and exhibits high electron...

  2. Physical and functional sensitivity of zinc finger transcription factors to redox change.

    Science.gov (United States)

    Wu, X; Bishopric, N H; Discher, D J; Murphy, B J; Webster, K A

    1996-01-01

    Redox regulation of DNA-binding proteins through the reversible oxidation of key cysteine sulfhydryl groups has been demonstrated to occur in vitro for a range of transcription factors. The direct redox regulation of DNA binding has not been described in vivo, possibly because most protein thiol groups are strongly buffered against oxidation by the highly reduced intracellular environment mediated by glutathione, thioredoxin, and associated pathways. For this reason, only accessible protein thiol groups with high thiol-disulfide oxidation potentials are likely to be responsive to intracellular redox changes. In this article, we demonstrate that zinc finger DNA-binding proteins, in particular members of the Sp-1 family, appear to contain such redox-sensitive -SH groups. These proteins displayed a higher sensitivity to redox regulation than other redox-responsive factors both in vitro and in vivo. This effect was reflected in the hyperoxidative repression of transcription from promoters with essential Sp-1 binding sites, including the simian virus 40 early region, glycolytic enzyme, and dihydrofolate reductase genes. Promoter analyses implicated the Sp-1 sites in this repression. Non-Sp-1-dependent redox-regulated genes including metallothionein and heme oxygenase were induced by the same hyperoxic stress. The studies demonstrate that cellular redox changes can directly regulate gene expression in vivo by determining the level of occupancy of strategically positioned GC-binding sites. PMID:8622648

  3. Field scale heterogeneity of redox conditions in till-upscaling to a catchment nitrate model

    DEFF Research Database (Denmark)

    Hansen, J.R.; Erntsen, V.; Refsgaard, J.C.

    2008-01-01

    Point scale studies in different settings of glacial geology show a large local variation of redox conditions. There is a need to develop an upscaling methodology for catchment scale models. This paper describes a study of field-scale heterogeneity of redox-interfaces in a till aquitard within an...

  4. Activated Carbon as an Electron Acceptor and Redox Mediator during the Anaerobic Biotransformation of Azo Dyes

    NARCIS (Netherlands)

    Zee, van der F.P.; Bisschops, I.A.E.; Lettinga, G.; Field, J.A.

    2003-01-01

    The role of AC as redox mediator in accelerating the reductive transformation of pollutants as well as a terminal electron acceptor in the biological oxidation of an organic substrate is described. This study explores the use of AC as an immobilized redox mediator for the reduction of a recalcitrant

  5. Reducing capacities and redox potentials of humic substances extracted from sewage sludge.

    Science.gov (United States)

    Yang, Zhen; Du, Mengchan; Jiang, Jie

    2016-02-01

    Humic substances (HS) are redox active organic materials that can be extracted from sewage sludge generated in wastewater treatment processes. Due to the poor understanding of reducing capacity, redox potentials and redox active functional groups of HS in sewage sludge, the potential contribution of sludge HS in transformation of wastewater contaminants is unclear. In the present study, the number of electrons donated or accepted by sewage sludge HS were quantified before and after reduction by iron compounds that possess different redox potentials and defined as the reducing capacity of the sewage sludge. In contrast to previous studies of soil and commercial humic acids (HA), reduced sludge HA showed a lower reducing capacity than that of native HA, which implies formation of semiquinone radicals since the semiquinone radical/hydroquinone pair has a much higher redox potential than the quinone/hydroquinone pair. It is novel that reducing capacities of sludge HA were determined in the redox potential range from -314 to 430 mV. The formation of semiquinone radicals formed during the reduction of quinone moieties in sludge HA is shown by three-dimensional excitation/emission matrix fluorescence spectroscopies information, increasing fluorescence intensities and blue-shifting of the excitation/emission peak of reduced sludge HA. Knowledge of sludge HS redox potentials and corresponding reducing capacities makes it possible to predict the transformation of redox active pollutants and facilitate manipulation and optimization of sludge loading wastewater treatment processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Monitoring intra- and extracellular redox capacity of intact barley aleurone layers responding to phytohormones

    DEFF Research Database (Denmark)

    Mark, Christina; Zor, Kinga; Heiskanen, Arto

    2016-01-01

    into the intact in vivo environment. An electrochemical redox assay that applies the menadione-ferricyanide double mediator is used to assess changes in the intracellular and extracellular redox environment in living aleurone layers of barley (Hordeum vulgare cv. Himalaya) grains, which respond...

  7. Anthraquinone with Tailored Structure for Nonaqueous Metal-Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

    2012-06-08

    A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of {approx}82% and a specific discharge energy density similar to aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

  8. Chromium stable isotope systematic – implications for the redox evolution of the earth

    DEFF Research Database (Denmark)

    Døssing, Lasse Nørbye

    and thus indicate the presence of oxidizing redox species. To track paleo-redox processes deep in the Earth’s history, a number of ancient soil horizons (e.g. the Drakenstein and Nsuze paleosols) formed ~2.2 and ~3.0 billion years ago have been analyzed. These horizons document similar behavior of Cr...

  9. Redox reactions in flooded uranium mines caused by natural wood degradation

    International Nuclear Information System (INIS)

    Abraham, A.; Baraniak, L.; Bernhard, G.

    2002-01-01

    Answering the question whether U(VI) and As(V) will be reduced and precipitated as U(OH) 4 and As 2 S 3 in mine water as a result of natural wood degradation. Redox equilibria were calculated, depending on the decreasing redox potential. (orig.)

  10. A fibre optic fluorescence sensor to measure redox level in tissues

    Science.gov (United States)

    Zhang, Wen Qi; Morrison, Janna L.; Darby, Jack R. T.; Plush, Sally; Sorvina, Alexandra; Brooks, Doug; Monro, Tanya M.; Afshar Vahid, Shahraam

    2018-01-01

    We report the design of a fibre optic-based redox detection system for investigating differences in metabolic activities of tissues. Our system shows qualitative agreement with the results collected from a commercial two- photon microscope system. Thus, demonstrating the feasibility of building an ex vivo and in vivo redox detection system that is low cost and portable.

  11. Site-specific incorporation of redox active amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2017-10-10

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  12. Site-specific incorporation of redox active amino acids into proteins

    Science.gov (United States)

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  13. Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology.

    Science.gov (United States)

    Baier, Margarete; Dietz, Karl-Josef

    2005-06-01

    During the evolution of plants, chloroplasts have lost the exclusive genetic control over redox regulation and antioxidant gene expression. Together with many other genes, all genes encoding antioxidant enzymes and enzymes involved in the biosynthesis of low molecular weight antioxidants were transferred to the nucleus. On the other hand, photosynthesis bears a high risk for photo-oxidative damage. Concomitantly, an intricate network for mutual regulation by anthero- and retrograde signals has emerged to co-ordinate the activities of the different genetic and metabolic compartments. A major focus of recent research in chloroplast regulation addressed the mechanisms of redox sensing and signal transmission, the identification of regulatory targets, and the understanding of adaptation mechanisms. In addition to redox signals communicated through signalling cascades also used in pathogen and wounding responses, specific chloroplast signals control nuclear gene expression. Signalling pathways are triggered by the redox state of the plastoquinone pool, the thioredoxin system, and the acceptor availability at photosystem I, in addition to control by oxolipins, tetrapyrroles, carbohydrates, and abscisic acid. The signalling function is discussed in the context of regulatory circuitries that control the expression of antioxidant enzymes and redox modulators, demonstrating the principal role of chloroplasts as the source and target of redox regulation.

  14. Dependence of receptor potential and redox state of mitochondrial cytochromes on oxygen fraction measured in the blowfly eye in vivo

    NARCIS (Netherlands)

    Smits, R.P.; Jansonius, N.M.; Stavenga, D.G.

    1. The dependence of dark-adapted fly (Calliphora vicina) photoreceptors on oxygen was investigated by measuring the electroretinogram (ERG), the receptor potential, and the redox states of the mitochondrial cytochromes. The redox states were determined via reflection microspectrophotometry on

  15. Mechanisms of redox metabolism and cancer cell survival during extracellular matrix detachment.

    Science.gov (United States)

    Hawk, Mark A; Schafer, Zachary T

    2018-01-16

    Non-transformed cells that become detached from the extracellular matrix (ECM) undergo dysregulation of redox homeostasis and cell death. In contrast, cancer cells often acquire the ability to mitigate programmed cell death pathways and recalibrate the redox balance to survive after ECM detachment, facilitating metastatic dissemination. Accordingly, recent studies of the mechanisms by which cancer cells overcome ECM detachment-induced metabolic alterations have focused on mechanisms in redox homeostasis. The insights into these mechanisms may inform the development of therapeutics that manipulate redox homeostasis to eliminate ECM-detached cancer cells. Here, we review how ECM-detached cancer cells balance redox metabolism for survival. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Testing and improving the redox stability of Ni-based solid oxide fuel cells

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Ramos, Tania; Kaiser, Andreas

    2009-01-01

    cells. When the symmetric cells are reduced and redox cycled isothermally at 850 °C, no major change in the serial or polarisation resistance of the cell and electrodes was measured. When the cells are, after the similar initial reduction treatment, redox cycled at 650 °C, the serial resistance remains......Despite active development, solid oxide fuel cells (SOFCs) based on Ni-YSZ anodes still suffer from thermomechanical instability under conditions where the anode side is exposed to oxidising conditions at high temperature. In the first part of the paper, structures and solutions, which could...... improve the redox stability of Ni-YSZ anode supported SOFC's in terms of dimensional and mechanical stability are reported. Porosity is identified as a major microstructural parameter linked to the dimensional and structural stability during redox cycling. The cumulative redox strain (CRS) after three...

  17. Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Vikram Saini

    2016-01-01

    Full Text Available The mechanisms by which Mycobacterium tuberculosis (Mtb maintains metabolic equilibrium to survive during infection and upon exposure to antimycobacterial drugs are poorly characterized. Ergothioneine (EGT and mycothiol (MSH are the major redox buffers present in Mtb, but the contribution of EGT to Mtb redox homeostasis and virulence remains unknown. We report that Mtb WhiB3, a 4Fe-4S redox sensor protein, regulates EGT production and maintains bioenergetic homeostasis. We show that central carbon metabolism and lipid precursors regulate EGT production and that EGT modulates drug sensitivity. Notably, EGT and MSH are both essential for redox and bioenergetic homeostasis. Transcriptomic analyses of EGT and MSH mutants indicate overlapping but distinct functions of EGT and MSH. Last, we show that EGT is critical for Mtb survival in both macrophages and mice. This study has uncovered a dynamic balance between Mtb redox and bioenergetic homeostasis, which critically influences Mtb drug susceptibility and pathogenicity.

  18. Ergothioneine maintains redox and bioenergetic homeostasis essential for drug susceptibility and virulence of Mycobacterium tuberculosis

    Science.gov (United States)

    Saini, Vikram; Cumming, Bridgette M.; Guidry, Loni; Lamprecht, Dirk; Adamson, John H.; Reddy, Vineel P.; Chinta, Krishna C.; Mazorodzo, James; Glasgow, Joel N.; Richard-Greenblatt, Melissa; Gomez-Velasco, Anaximandro; Bach, Horacio; Av-Gay, Yossef; Eoh, Hyungjin; Rhee, Kyu; Steyn, Adrie J.C.

    2016-01-01

    SUMMARY The mechanisms by which Mycobacterium tuberculosis (Mtb) maintains metabolic equilibrium to survive during infection and upon exposure to antimycobacterial drugs are poorly characterized. Ergothioneine (EGT) and mycothiol (MSH) are the major redox buffers present in Mtb, but the contribution of EGT to Mtb redox homeostasis and virulence remains unknown. We report that Mtb WhiB3, a 4Fe-4S redox sensor protein, regulates EGT production and maintains bioenergetic homeostasis. We show that central carbon metabolism and lipid precursors regulate EGT production and that EGT modulates drug sensitivity. Notably, EGT and MSH are both essential for redox and bioenergetic homeostasis. Transcriptomic analyses of EGT and MSH mutants indicate overlapping, but distinct functions of EGT and MSH. Lastly, we show that EGT is critical for Mtb survival in both macrophages and mice. This study has uncovered a dynamic balance between Mtb redox and bioenergetic homeostasis, which critically influences Mtb drug susceptibility and pathogenicity. PMID:26774486

  19. Evaluation of in situ sulfate reduction as redox buffer capacity in groundwater flow path

    International Nuclear Information System (INIS)

    Ioka, Seiichiro; Iwatsuki, Teruki; Amano, Yuki; Furue, Ryoji

    2007-01-01

    For safety assessment of geological isolation, it is important to evaluate in situ redox buffer capacity in high-permeability zone as groundwater flow path. The study evaluated in situ sulfate reduction as redox buffer capacity in the conglomerate bedding in Toki Lignite-bearing Formation, which occurs at the lowest part of sedimentary rocks overlying basement granite. The bedding plays an important role as the main groundwater flow path. The result showed that in situ redox buffer capacity in the conglomerate bedding has been identified on first nine months, whereas in the following period the redox buffer capacity has not been identified for about fifteen months. This will be caused by the bedding became inappropriate for microbial survival as the organic matter which is needfuel for microbial activity was consumed. Thus, there will be limited redox buffer capacity in groundwater flow path even in formation including organic matter-bearing layer. (author)

  20. Rab7-a novel redox target that modulates inflammatory pain processing.

    Science.gov (United States)

    Kallenborn-Gerhardt, Wiebke; Möser, Christine V; Lorenz, Jana E; Steger, Mirco; Heidler, Juliana; Scheving, Reynir; Petersen, Jonas; Kennel, Lea; Flauaus, Cathrin; Lu, Ruirui; Edinger, Aimee L; Tegeder, Irmgard; Geisslinger, Gerd; Heide, Heinrich; Wittig, Ilka; Schmidtko, Achim

    2017-07-01

    Chronic pain is accompanied by production of reactive oxygen species (ROS) in various cells that are important for nociceptive processing. Recent data indicate that ROS can trigger specific redox-dependent signaling processes, but the molecular targets of ROS signaling in the nociceptive system remain largely elusive. Here, we performed a proteome screen for pain-dependent redox regulation using an OxICAT approach, thereby identifying the small GTPase Rab7 as a redox-modified target during inflammatory pain in mice. Prevention of Rab7 oxidation by replacement of the redox-sensing thiols modulates its GTPase activity. Immunofluorescence studies revealed Rab7 expression to be enriched in central terminals of sensory neurons. Knockout mice lacking Rab7 in sensory neurons showed normal responses to noxious thermal and mechanical stimuli; however, their pain behavior during inflammatory pain and in response to ROS donors was reduced. The data suggest that redox-dependent changes in Rab7 activity modulate inflammatory pain sensitivity.

  1. Practical and theoretical basis for performing redox-measurements in compacted bentonite. A literature survey

    International Nuclear Information System (INIS)

    Carlsson, T.; Muurinen, A.

    2008-12-01

    This report reviews the state-of-the-art with regard to redox measurements, especially in compacted water saturated bentonite, but also in natural systems like sediments and ground waters. Both theoretical and practical aspects of redox measurements are discussed, as well as some basic concepts like terminal electron-accepting processes (TEAPs) and oxidative capacity (OXC). The problems associated with the interpretation of measured electrode potentials are treated. Despite many practical and theoretical difficulties, redox measurements continue to be carried out by researchers all over the world. The over-all conclusion from the literature survey is that fruitful redox-measurements can be performed in compacted bentonite. Irrespective of whether the measured redox potentials are absolute or not, the use of electrodes provide a valuable tool for studying, e.g., long-term changes in the pore water of compacted bentonite and/or the diffusion of oxygen into a bentonite. (orig.)

  2. A catalytic approach to estimate the redox potential of heme-peroxidases

    International Nuclear Information System (INIS)

    Ayala, Marcela; Roman, Rosa; Vazquez-Duhalt, Rafael

    2007-01-01

    The redox potential of heme-peroxidases varies according to a combination of structural components within the active site and its vicinities. For each peroxidase, this redox potential imposes a thermodynamic threshold to the range of oxidizable substrates. However, the instability of enzymatic intermediates during the catalytic cycle precludes the use of direct voltammetry to measure the redox potential of most peroxidases. Here we describe a novel approach to estimate the redox potential of peroxidases, which directly depends on the catalytic performance of the activated enzyme. Selected p-substituted phenols are used as substrates for the estimations. The results obtained with this catalytic approach correlate well with the oxidative capacity predicted by the redox potential of the Fe(III)/Fe(II) couple

  3. Aluminum complexes of the redox-active [ONO] pincer ligand.

    Science.gov (United States)

    Szigethy, Géza; Heyduk, Alan F

    2012-07-14

    A series of aluminum complexes containing the tridentate, redox-active ligand bis(3,5-di-tert-butyl-2-phenol)amine ([ONO]H(3)) in three different oxidation states were synthesized. The aluminum halide salts AlCl(3) and AlBr(3) were reacted with the doubly deprotonated form of the ligand to afford five-coordinate [ONHO(cat)]AlX(solv) complexes (1a, X = Cl, solv = OEt(2); 1b, X = Br, solv = THF), each having a trigonal bipyramidal coordination geometry at the aluminum and containing the [ONHO(cat)](2-) ligand with a protonated, sp(3)-hybridized nitrogen donor. The [ONO] ligand platform may also be added to aluminum through the use of the oxidized ligand salt [ONO(q)]K, which was reacted with AlCl(3) in the presence of either diphenylacetylacetonate (acacPh(2)(-)) or 8-oxyquinoline (quinO(-)) to afford [ONO(q)]Al(acacPh(2))Cl (2) or [ONO(q)]Al(quinO)Cl (3), respectively, with well-defined [ONO(q)](-) ligands. Quinonate complexes 2 and 3 were reduced by one electron to afford the corresponding complexes K{[ONO(sq)]Al(acacPh(2))(py)} (4) and K{[ONO(sq)]Al(quinO)(py)} (5), respectively, containing well-defined [ONO(sq)](2-) ligands. The addition of tetrachloro-1,2-quinone to 1a in the presence of pyridine resulted in the expulsion of HCl and the formation of an aluminum complex with two different redox active ligands, [ONO]Al(o-O(2)C(6)Cl(4))(py) (6). Similar results were obtained when 1a was reacted with 9,10-phenanthrenequinone to afford [ONO]Al(o-O(2)C(14)H(8))(py) (7) or with pyrene-4,5-dione to afford [ONO]Al(o-O(2)C(16)H(8))(py) (8). Structural, spectroscopic and preliminary magnetic measurements on 6-8 suggest ligand non-innocent redox behavior in these complexes.

  4. Redox regulation of Rac1 by thiol oxidation

    Science.gov (United States)

    Hobbs, G. Aaron; Mitchell, Lauren E.; Arrington, Megan E.; Gunawardena, Harsha P.; DeCristo, Molly J.; Loeser, Richard F.; Chen, Xian; Cox, Adrienne D.; Campbell, Sharon L.

    2016-01-01

    The Rac1 GTPase is an essential and ubiquitous protein that signals through numerous pathways to control critical cellular processes, including cell growth, morphology, and motility. Rac1 deletion is embryonic lethal, and its dysregulation or mutation can promote cancer, arthritis, cardiovascular disease, and neurological disorders. Rac1 activity is highly regulated by modulatory proteins and posttranslational modifications. Whereas much attention has been devoted to guanine nucleotide exchange factors that act on Rac1 to promote GTP loading and Rac1 activation, cellular oxidants may also regulate Rac1 activation by promoting guanine nucleotide exchange. Herein, we show that Rac1 contains a redox-sensitive cysteine (Cys18) that can be selectively oxidized at physiological pH because of its lowered pKa. Consistent with these observations, we show that Rac1 is glutathiolated in primary chondrocytes. Oxidation of Cys18 by glutathione greatly perturbs Rac1 guanine nucleotide binding and promotes nucleotide exchange. As aspartate substitutions have been previously used to mimic cysteine oxidation, we characterized the biochemical properties of Rac1C18D. We also evaluated Rac1C18S as a redox-insensitive variant and found that it retains structural and biochemical properties similar to those of Rac1WT but is resistant to thiol oxidation. In addition, Rac1C18D, but not Rac1C18S, shows greatly enhanced nucleotide exchange, similar to that observed for Rac1 oxidation by glutathione. We employed Rac1C18D in cell-based studies to assess whether this fast-cycling variant, which mimics Rac1 oxidation by glutathione, affects Rac1 activity and function. Expression of Rac1C18D in Swiss 3T3 cells showed greatly enhanced GTP-bound Rac1 relative to Rac1WT and the redox-insensitive Rac1C18S variant. Moreover, expression of Rac1C18D in HEK-293T cells greatly promoted lamellipodia formation. Our results suggest that Rac1 oxidation at Cys18 is a novel posttranslational modification that

  5. Evolution of Redox State of Shallow and Deep Seawater

    Science.gov (United States)

    Komiya, T.

    2004-12-01

    Redox state of seawater and atmosphere of early Earth is still controversial. Generally speaking, many previous works indicated that oxygen was free even in the shallow seawater before 2.7 Ga, and gradually increased because of emergence of oxygen-producing lives since then. However, it is still poorly known the detailed secular change of redox state of shallow and deeper part of the seawater, respectively. It is well known that carbonates are deposited equilibrated with ambient seawater in microbial or abiotic environment. Therefore, the distribution, composition, and mineralogy of the carbonate rocks and minerals give constraints on physical and chemical properties of paleoseawater. This work presents in-situ analyses of major, trace and rare earth elements of well-preserved carbonate minerals in shallow and deep-sea deposits with EPMA and LA-ICP-MS. We focus on carbonates with original depositional textures because of elimination of post-depositional alteration. The shallow marine deposits include sedimentary carbonates in 3.0 Ga Pongola, 2.7 Ga Tumbiana, 2.5 Ga Wittenoom and Campbellrand, 2.4 Ga Mooidraai, 2.3 Ga Kazput, 2.2 Ga Duck Creek, 1.9 Ga Slave, 1.0 Nepal, 0.58 Ga Altai and modern Solomon Islands, and amygdaloidal carbonates within hot-sport basalts in 3.5 Ga North Pole, 2.7 Ga Belingwe, Mount Roe and Maddina, 2.5 Ga Hamersley, and modern OIB. The deep-sea carbonates include amygdaloidal carbonates within mid-oceanic and mature rift-type basalts in 3.5 Ga North Pole, 2.7 Ga Belingwe, 2.5 Ga Hamersley, 1.9 Ga Glengarry and modern MORB. Deep-sea carbonates have LREE-enriched pattern with faint Ce and Eu anomalies between 3.5 and 1.9 Ga, but modern equivalents have significant negative Ce anomaly. In contrast, negative Ce anomalies in shallow carbonates were frequently deviated from those in deep-sea carbonate with the equivalent ages. The negative Ce anomalies increase since 2.78 Ga Mount Roe Basalt, but they decreased until 2.72 Ga, again. They

  6. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide.

    Science.gov (United States)

    Tyagi, Priyanka; Dharmaraja, Allimuthu T; Bhaskar, Ashima; Chakrapani, Harinath; Singh, Amit

    2015-07-01

    Mycobacterium tuberculosis (Mtb) has evolved protective and detoxification mechanisms to maintain cytoplasmic redox balance in response to exogenous oxidative stress encountered inside host phagocytes. In contrast, little is known about the dynamic response of this pathogen to endogenous oxidative stress generated within Mtb. Using a noninvasive and specific biosensor of cytoplasmic redox state of Mtb, we for first time discovered a surprisingly high sensitivity of this pathogen to perturbation in redox homeostasis induced by elevated endogenous reactive oxygen species (ROS). We synthesized a series of hydroquinone-based small molecule ROS generators and found that ATD-3169 permeated mycobacteria to reliably enhance endogenous ROS including superoxide radicals. When Mtb strains including multidrug-resistant (MDR) and extensively drug-resistant (XDR) patient isolates were exposed to this compound, a dose-dependent, long-lasting, and irreversible oxidative shift in intramycobacterial redox potential was detected. Dynamic redox potential measurements revealed that Mtb had diminished capacity to restore cytoplasmic redox balance in comparison with Mycobacterium smegmatis (Msm), a fast growing nonpathogenic mycobacterial species. Accordingly, Mtb strains were extremely susceptible to inhibition by ATD-3169 but not Msm, suggesting a functional linkage between dynamic redox changes and survival. Microarray analysis showed major realignment of pathways involved in redox homeostasis, central metabolism, DNA repair, and cell wall lipid biosynthesis in response to ATD-3169, all consistent with enhanced endogenous ROS contributing to lethality induced by this compound. This work provides empirical evidence that the cytoplasmic redox poise of Mtb is uniquely sensitive to manipulation in steady-state endogenous ROS levels, thus revealing the importance of targeting intramycobacterial redox metabolism for controlling TB infection. Copyright © 2015 The Authors. Published by

  7. Redox cycling-based immunoassay for detection of carcinogenic embryonic antigen.

    Science.gov (United States)

    Lee, Ga-Yeon; Park, Jun-Hee; Chang, Young Wook; Cho, Sungbo; Kang, Min-Jung; Pyun, Jae-Chul

    2017-06-08

    Redox cycling based on an interdigitated electrode (IDE) was used as a highly sensitive immunoassay for carcinogenic embryonic antigen (CEA) through the quantification of 3,3',5,5'-tetramethylbenzidine (TMB). For the redox cycling process, one pair of interdigitated finger electrodes was used as the first working electrode (generator) for cyclic voltammetry of TMB, and another pair of interdigitated finger electrodes was used as the second working electrode (collector) for sequential application of potentials for reduction and oxidation of TMB. The reduction (and oxidation) products of TMB at the collector were supplied to the generator, and following sequential oxidization (and reduction) at the generator, again supplied to the collector. Such redox recycling processes between the generator and collector allowed signal amplification. In this work, the influences of the following factors on the redox cycling of TMB were analyzed: (1) the redox potential at the collector, (2) the gap between the interdigitated finger electrodes, and (3) the scan rate of the generator. The redox potential and electrode gap influences were simulated with COMSOL software and compared with empirical results. At the optimum redox potentials and electrode gap, redox cycling was estimated to be five-fold more sensitive for the quantification of TMB than conventional cyclic voltammetry using one pair of interdigitated finger electrodes as the working electrode. Finally, redox cycling was applied to a commercial immunoassay for CEA, and the sensitivity of redox cycling was three-fold higher than that of conventional cyclic voltammetry using a single set of interdigitated finger electrodes as the working electrode. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Redox balance and blood elemental levels in atherosclerosis

    International Nuclear Information System (INIS)

    Napoleao, P.; Lopes, P.A.; Santos, M.; Steghens, J.-P.; Viegas-Crespo, A.M.; Pinheiro, T.

    2006-01-01

    Oxidation of lipids and proteins represents a causative event for atherogenesis, which can be opposed by antioxidant activity. Elements, such as, Fe, Cu, Zn and Se can be involved in both mechanisms. Thus, evaluation of blood elemental levels, easily detected by PIXE, and of redox parameters may be useful in assessing the risk of atherosclerosis. A group of stable patients suffering from atherosclerosis, was matched with a cohort of normo-tensive and -lipidemic volunteers. Although no major discrepancies were observed for trace elemental levels in blood, increased concentrations of K and Ca were found in atherosclerotic group. Patients presented enhance levels of antioxidant (α-tocopherol) and decreased of protein oxidation (protein carbonyls), while for the lipid oxidation marker (malondialdehyde) no variation was observed. This study contributes to a better understanding of atherosclerosis development and its relationship with blood elemental levels, and set basis for further clinical trials with pathological groups in acute phase

  9. Bio-functionalization of conductive textile materials with redox enzymes

    Science.gov (United States)

    Kahoush, M.; Behary, N.; Cayla, A.; Nierstrasz, V.

    2017-10-01

    In recent years, immobilization of oxidoreductase enzymes on electrically conductive materials has played an important role in the development of sustainable bio-technologies. Immobilization process allows the re-use of these bio-catalysts in their final applications. In this study, different methods of immobilizing redox enzymes on conductive textile materials were used to produce bio-functionalized electrodes. These electrodes can be used for bio-processes and bio-sensing in eco-designed applications in domains such as medicine and pollution control. However, the main challenge facing the stability and durability of these electrodes is the maintenance of the enzymatic activity after the immobilization. Hence, preventing the enzyme’s denaturation and leaching is a critical factor for the success of the immobilization processes.

  10. Mitochondria targeting by environmental stressors: Implications for redox cellular signaling.

    Science.gov (United States)

    Blajszczak, Chuck; Bonini, Marcelo G

    2017-11-01

    Mitochondria are cellular powerhouses as well as metabolic and signaling hubs regulating diverse cellular functions, from basic physiology to phenotypic fate determination. It is widely accepted that reactive oxygen species (ROS) generated in mitochondria participate in the regulation of cellular signaling, and that some mitochondria chronically operate at a high ROS baseline. However, it is not completely understood how mitochondria adapt to persistently high ROS states and to environmental stressors that disturb the redox balance. Here we will review some of the current concepts regarding how mitochondria resist oxidative damage, how they are replaced when excessive oxidative damage compromises function, and the effect of environmental toxicants (i.e. heavy metals) on the regulation of mitochondrial ROS (mtROS) production and subsequent impact. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Redox stratification of an ancient lake in Gale crater, Mars.

    Science.gov (United States)

    Hurowitz, J A; Grotzinger, J P; Fischer, W W; McLennan, S M; Milliken, R E; Stein, N; Vasavada, A R; Blake, D F; Dehouck, E; Eigenbrode, J L; Fairén, A G; Frydenvang, J; Gellert, R; Grant, J A; Gupta, S; Herkenhoff, K E; Ming, D W; Rampe, E B; Schmidt, M E; Siebach, K L; Stack-Morgan, K; Sumner, D Y; Wiens, R C

    2017-06-02

    In 2012, NASA's Curiosity rover landed on Mars to assess its potential as a habitat for past life and investigate the paleoclimate record preserved by sedimentary rocks inside the ~150-kilometer-diameter Gale impact crater. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment fed by rivers draining into the crater. We synthesize geochemical and mineralogical data from lake-bed mudstones collected during the first 1300 martian solar days of rover operations in Gale. We present evidence for lake redox stratification, established by depth-dependent variations in atmospheric oxidant and dissolved-solute concentrations. Paleoclimate proxy data indicate that a transition from colder to warmer climate conditions is preserved in the stratigraphy. Finally, a late phase of geochemical modification by saline fluids is recognized. Copyright © 2017, American Association for the Advancement of Science.

  12. Dissipation of oxytetracycline in soils under different redox conditions

    International Nuclear Information System (INIS)

    Yang Jigeng; Ying Guangguo; Zhou Lijun; Liu Shan; Zhao Jianliang

    2009-01-01

    This study investigated the dissipation kinetics of oxytetracycline in soils under aerobic and anoxic conditions. Laboratory experiments showed that the dissipation of oxytetracycline in soil followed first-order reaction kinetics and its dissipation rates decreased with increasing concentration. Oxytetracycline dissipated faster in soil under aerobic conditions than under anoxic conditions. The half-lives for oxytetracycline in soil under aerobic conditions ranged between 29 and 56 days for non-sterile treatments and 99-120 days for sterile treatments, while under anoxic conditions the half-lives of oxytetracycline ranged between 43 and 62 days in the non-sterile soil and between 69 and 104 days in the sterile soil. This suggests microbes can degrade oxytetracycline in agricultural soil. Abiotic factors such as strong sorption onto soil components also played a role in the dissipation of oxytetracycline in soil. - Oxytetracycline dissipation in soils is influenced by redox conditions and soil properties.

  13. Redox balance and blood elemental levels in atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Napoleao, P. [Centro de Biologia Ambiental and Departamento de Biologia Animal, Faculdade de Ciencias de Lisboa, C2, Campo Grande, 1749-016 Lisbon (Portugal) and Laboratorio de Feixes de Ioes, Instituto Tecnologico e Nuclear, E.N. no 10, 2685-953 Sacavem (Portugal)]. E-mail: pnapoleao@itn.pt; Lopes, P.A. [Centro de Biologia Ambiental and Departamento de Biologia Animal, Faculdade de Ciencias de Lisboa, C2, Campo Grande, 1749-016 Lisbon (Portugal); Santos, M. [Centro de Quimica e Bioquimica and Departamento de Quimica e Bioquimica, Faculdade de Ciencias de Lisboa, 1749-016 Lisbon (Portugal); Steghens, J.-P. [Federation de Biochimie, Hopital Edouard Herriot, 3 Place d' Arsonval, 69437 03 Lyon (France); Viegas-Crespo, A.M. [Centro de Biologia Ambiental and Departamento de Biologia Animal, Faculdade de Ciencias de Lisboa, C2, Campo Grande, 1749-016 Lisbon (Portugal); Pinheiro, T. [Laboratorio de Feixes de Ioes, Instituto Tecnologico e Nuclear, E.N. no 10, 2685-953 Sacavem (Portugal); Centro de Fisica Nuclear, Universidade de Lisboa, Av. Prof. Egas Moniz, 1700 Lisbon (Portugal)

    2006-08-15

    Oxidation of lipids and proteins represents a causative event for atherogenesis, which can be opposed by antioxidant activity. Elements, such as, Fe, Cu, Zn and Se can be involved in both mechanisms. Thus, evaluation of blood elemental levels, easily detected by PIXE, and of redox parameters may be useful in assessing the risk of atherosclerosis. A group of stable patients suffering from atherosclerosis, was matched with a cohort of normo-tensive and -lipidemic volunteers. Although no major discrepancies were observed for trace elemental levels in blood, increased concentrations of K and Ca were found in atherosclerotic group. Patients presented enhance levels of antioxidant ({alpha}-tocopherol) and decreased of protein oxidation (protein carbonyls), while for the lipid oxidation marker (malondialdehyde) no variation was observed. This study contributes to a better understanding of atherosclerosis development and its relationship with blood elemental levels, and set basis for further clinical trials with pathological groups in acute phase.

  14. Redox stratification of an ancient lake in Gale crater, Mars

    Science.gov (United States)

    Hurowitz, J. A.; Grotzinger, J. P.; Fischer, W. W.; McLennan, S. M.; Milliken, R. E.; Stein, N.; Vasavada, A. R.; Blake, D. F.; Dehouck, E.; Eigenbrode, J. L.; Fairén, A. G.; Frydenvang, J.; Gellert, R.; Grant, J. A.; Gupta, S.; Herkenhoff, K. E.; Ming, D. W.; Rampe, E. B.; Schmidt, M. E.; Siebach, K. L.; Stack-Morgan, K.; Sumner, D. Y.; Wiens, R. C.

    2017-06-01

    In 2012, NASA's Curiosity rover landed on Mars to assess its potential as a habitat for past life and investigate the paleoclimate record preserved by sedimentary rocks inside the ~150-kilometer-diameter Gale impact crater. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment fed by rivers draining into the crater. We synthesize geochemical and mineralogical data from lake-bed mudstones collected during the first 1300 martian solar days of rover operations in Gale. We present evidence for lake redox stratification, established by depth-dependent variations in atmospheric oxidant and dissolved-solute concentrations. Paleoclimate proxy data indicate that a transition from colder to warmer climate conditions is preserved in the stratigraphy. Finally, a late phase of geochemical modification by saline fluids is recognized.

  15. Use and improvement of microbial redox enzymes for environmental purposes

    Directory of Open Access Journals (Sweden)

    Ballesteros Antonio

    2004-08-01

    Full Text Available Abstract Industrial development may result in the increase of environmental risks. The enzymatic transformation of polluting compounds to less toxic or even innocuous products is an alternative to their complete removal. In this regard, a number of different redox enzymes are able to transform a wide variety of toxic pollutants, such as polynuclear aromatic hydrocarbons, phenols, azo dyes, heavy metals, etc. Here, novel information on chromate reductases, enzymes that carry out the reduction of highly toxic Cr(VI to the less toxic insoluble Cr(III, is discussed. In addition, the properties and application of bacterial and eukaryotic proteins (lignin-modifying enzymes, peroxidases and cytochromes useful in environmental enzymology is also discussed.

  16. A redox-assisted supramolecular assembly of manganese oxide nanotube

    International Nuclear Information System (INIS)

    Tao Li; Sun Chenggao; Fan Meilian; Huang Caijuan; Wu Hailong; Chao Zisheng; Zhai Hesheng

    2006-01-01

    In this paper, we report the hydrothermal synthesis of manganese oxide nanotube from an aqueous medium of pH 7, using KMnO 4 and MnCl 2 as inorganic precursors, polyoxyethylene (10) nonyl phenyl ether (TX-10) a surfactant and acetaldehyde an additive. The characterization of X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and N 2 adsorption at 77 K (BET) reveals that the synthesized manganese oxide nanotube has a mesopore size of ca. 3.65 nm and a wall thickness of ca. 12 nm, with the wall being composed of microporous crystals of monoclinic manganite. The X-ray photoelectron spectroscopy (XPS) result demonstrates a decrease of the binding energy of the Mn 3+ in the manganese oxide nanotube, which may be related to both the nanotubular morphology and the crystalline pore wall. A mechanism of a redox-assisted supramolecular assembly, regulated by acetaldehyde, is postulated

  17. [Determination of the redox potential of water saturated with hydrogen].

    Science.gov (United States)

    Piskarev, I M; Ushkanov, V A; Aristova, N A; Likhachev, P P; Myslivets, T C

    2010-01-01

    It has been shown that the redox potential of water saturated with hydrogen is -500--700 mV. The time of the establishment of the potential is 24 h. The potential somewhat increases with increasing volume of hydrogen introduced to a reservoir with water and practically does not depend on the presence of additions in water, provided these additions are not reduced by hydrogen. The pH value of water does not change after the addition of water. In a glass vessel with a metallic cover resting on the side, no decrease in potential during the 2.5-month storage was observed. In plastic bottles, the content of hydrogen decreased; on storage for more than two weeks, it disappeared almost completely, and as a result, the potential increased after storage for three to four weeks to a level near zero. In an open vessel, the potential remained negative for two days.

  18. Redox mechanism of reactive oxygen species in exercise

    Directory of Open Access Journals (Sweden)

    Feng He

    2016-11-01

    Full Text Available It is well known that regular exercise benefits health. However, unaccustomed and/or exhaustive exercise can generate excessive reactive oxygen species (ROS, leading to oxidative stress-related tissue damage and impaired muscle contractility. ROS are produced in both aerobic and anaerobic exercise. Although mitochondria, NADPH oxidases and xanthine oxidase have all been identified as contributors to ROS production, the exact redox mechanisms underlying exercise-induced oxidative stress remain elusive. Interestingly, moderate exposure to ROS is necessary to induce the body’s adaptive responses such as the activation of antioxidant defense mechanisms. Dietary antioxidant manipulation can also reduce ROS levels and muscle fatigue, as well as enhance exercise recovery. To elucidate the complex role of ROS in exercise, this article updates on new findings of ROS origins within skeletal muscles associated with various types of exercises such as endurance, sprint and mountain climbing, corresponding antioxidant defense systems as well as dietary manipulation against damage caused by ROS.

  19. A software nitrate sensor based on ammonium and redox signals.

    Science.gov (United States)

    Cecil, D

    2003-01-01

    We have computed the nitrate concentration in the activated sludge in real-time using a model, which is a subset of ASM1. The model is in operation at two WWTPs where oxygen, ammonium and redox are measured online in the aeration tanks. The model uses these measurements to continuously adjust its values for the influent ammonium concentration, the nitrification rate, the denitrification rate and the net hydrolysis. Then it computes the nitrate concentration. This value is updated every 10 s. The model results have been compared with the output from a Dr Lange in-situ nitrate sensor at one of these WWTPs. The systematic difference between these two measurements is less than 0.2 mgN L(-1) and 90% of the differences are between -1.1 and 1.1 mgN L(-1).

  20. Redox conditions and protein oxidation in plant mitochondria

    DEFF Research Database (Denmark)

    Møller, Ian Max; Kasimova, Marina R.; Krab, Klaas

    2005-01-01

    Redox conditions and protein oxidation in plant mitochondria NAD(P)H has a central position in respiratory metabolism. It is produced by a large number of enzymes, e.g. the Krebs cycle dehydrogenases, in the mitochondrial matrix and is oxidised by, amongst others, the respiratory chain. Most...... of this NAD(P)H appears to be bound to proteins, in fact free NAD(P)H – an important parameter in metabolic regulation - has never been observed in mitochondria. We have estimated free and bound NAD(P)H in isolated plant mitochondria under different metabolic conditions. The fluorescence spectra of free...... and bound NADH was determined and used to deconvolute fluorescence spectra of actively respiring mitochondria. Most of the mitochondrial NADH is bound in states 2 and 4. The amount of free NADH is lower but relatively constant even increasing a little in state 3 where it is about equal to bound NADH...

  1. Determining the Limiting Current Density of Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Jen-Yu Chen

    2014-09-01

    Full Text Available All-vanadium redox flow batteries (VRFBs are used as energy storage systems for intermittent renewable power sources. The performance of VRFBs depends on materials of key components and operating conditions, such as current density, electrolyte flow rate and electrolyte composition. Mass transfer overpotential is affected by the electrolyte flow rate and electrolyte composition, which is related to the limiting current density. In order to investigate the effect of operating conditions on mass transport overpotential, this study established a relationship between the limiting current density and operating conditions. First, electrolyte solutions with different states of charge were prepared and used for a single cell to obtain discharging polarization curves under various operating conditions. The experimental results were then analyzed and are discussed in this paper. Finally, this paper proposes a limiting current density as a function of operating conditions. The result helps predict the effect of operating condition on the cell performance in a mathematical model.

  2. Composite separators and redox flow batteries based on porous separators

    Science.gov (United States)

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  3. Redox reactions in rare earth chloride molten electrolytes

    International Nuclear Information System (INIS)

    Khokhlov, V.A.; Novoselova, A.V.; Nikolaeva, E.V.; Tkacheva, O.Yu.; Salyulev, A.B.

    2007-01-01

    Rare earth (REM, Ln) solutions in chloride melts including MCI+LnCl 3 mixtures, where M - alkali metals, were investigated by potentiometry, voltammetry, conductometry in wide concentration and temperature intervals. Findings present complete and trusty information on the valent state of rare earths, structure and composition of complex ions affecting essentially on properties of electrolytes. It is demonstrated that the coexistence of rare earth ions with different oxidation level formed as a result of possible redox reactions: 2Ln 3+ + Ln ↔3Ln 2+ , Ln 2+ + Ln↔2Ln + and nM + + Ln↔nM + Ln n+ appears sharply in thermodynamic and transport properties of molten Ln-LnCl 3 and Ln-LnCl 3 -MCl systems [ru

  4. Electrochemical Polymerization of Iron(III) Polypyridyl Complexes through C-C Coupling of Redox Non-innocent Phenolato Ligands

    NARCIS (Netherlands)

    Unjaroen, Duenpen; Swart, Marcel; Browne, Wesley R

    2017-01-01

    Phenolato moieties impart redox flexibility to metal complexes due their accessible (oxidative) redox chemistry and have been proposed as functional ligand moieties in redox non-innocent ligand based transition metal catalysis. Here, the electro-and spectroelectrochemistry of phenolato based

  5. Microbial Mineral Colonization Across a Subsurface Redox Transition Zone

    Directory of Open Access Journals (Sweden)

    Brandon eConverse

    2015-08-01

    Full Text Available This study employed 16S rRNA gene amplicon pyrosequencing to examine the hypothesis that chemolithotrophic Fe(II-oxidizing bacteria (FeOB would preferentially colonize the Fe(II-bearing mineral biotite compared to quartz sand when the minerals were incubated in situ within a subsurface redox transition zone (RTZ at the Hanford 300 Area site in Richland, WA, USA. The work was motivated by the recently documented presence of neutral-pH chemolithotrophic FeOB capable of oxidizing structural Fe(II in primary silicate and secondary phyllosilicate minerals in 300 Area sediments and groundwater (Benzine et al., 2013. Sterilized portions of sand+biotite or sand alone were incubated in situ for five months within a multilevel sampling (MLS apparatus that spanned a ca. 2-m interval across the RTZ in two separate groundwater wells. Parallel MLS measurements of aqueous geochemical species were performed prior to deployment of the minerals. Contrary to expectations, the 16S rRNA gene libraries showed no significant difference in microbial communities that colonized the sand+biotite versus sand-only deployments. Both mineral-associated and groundwater communities were dominated by heterotrophic taxa, with organisms from the Pseudomonaceae accounting for up to 70% of all reads from the colonized minerals. These results are consistent with previous results indicating the capacity for heterotrophic metabolism (including anaerobic metabolism below the RTZ as well as the predominance of heterotrophic taxa within 300 Area sediments and groundwater. Although heterotrophic organisms clearly dominated the colonized minerals, several putative lithotrophic (NH4+, H2, Fe(II, and HS- oxidizing taxa were detected in significant abundance above and within the RTZ. Such organisms may play a role in the coupling of anaerobic microbial metabolism to oxidative pathways with attendant impacts on elemental cycling and redox-sensitive contaminant behavior in the vicinity of the

  6. Insights into the redox cycle of human quinone reductase 2.

    Science.gov (United States)

    Reybier, Karine; Perio, Pierre; Ferry, Gilles; Bouajila, Jalloul; Delagrange, Philippe; Boutin, Jean A; Nepveu, Françoise

    2011-10-01

    NRH:quinone oxidoreductase 2 (QR2) is a cytosolic enzyme that catalyzes the reduction of quinones, such as menadione and co-enzymes Q. With the aim of understanding better the mechanisms of action of QR2, we approached this enzyme catalysis via electron paramagnetic resonance (EPR) measurements of the by-products of the QR2 redox cycle. The variation in the production of oxidative species such as H(2)O(2), and subsequent hydroxyl radical generation, was measured during the course of QR2 activity under aerobic conditions and using pure human enzyme. The effects on the activity of the following were compared: (i) synthetic (N-benzyldihydronicotinamide, BNAH) or natural (nicotinamide riboside, NRH) co-substrates; (ii) synthetic (menadione) or natural (co-enzyme Q0, Q2) substrates; (iii) QR2 modulators and inhibitors (melatonin, resveratrol and S29434); (iv) a pro-drug activated via a redox cycle [CB1954, 5-(aziridin-1-yl)-2,4-dinitrobenzamide]. The results were also compared with those obtained with human QR1. The production of hydroxyl radicals is: (i) observed whatever the substrate/co-substrate used; ii) quenched by adding catalase; (iii) not observed with the specific QR2 inhibitor S29434; (iv) observed with the pro-drug CB1954. While QR2 produced free radicals with this pro-drug, QR1 gave no EPR signal showing the strong reducing capacity of QR2. In conclusion, EPR analysis of QR2 enzyme activity through free radical production enables modulators and effective inhibitors to be distinguished. © 2011 Informa UK, Ltd.

  7. Sorption of redox-sensitive elements: critical analysis

    International Nuclear Information System (INIS)

    Strickert, R.G.

    1980-12-01

    The redox-sensitive elements (Tc, U, Np, Pu) discussed in this report are of interest to nuclear waste management due to their long-lived isotopes which have a potential radiotoxic effect on man. In their lower oxidation states these elements have been shown to be highly adsorbed by geologic materials occurring under reducing conditions. Experimental research conducted in recent years, especially through the Waste Isolation Safety Assessment Program (WISAP) and Waste/Rock Interaction Technology (WRIT) program, has provided extensive information on the mechanisms of retardation. In general, ion-exchange probably plays a minor role in the sorption behavior of cations of the above three actinide elements. Formation of anionic complexes of the oxidized states with common ligands (OH - , CO -- 3 ) is expected to reduce adsorption by ion exchange further. Pertechnetate also exhibits little ion-exchange sorption by geologic media. In the reduced (IV) state, all of the elements are highly charged and it appears that they form a very insoluble compound (oxide, hydroxide, etc.) or undergo coprecipitation or are incorporated into minerals. The exact nature of the insoluble compounds and the effect of temperature, pH, pe, other chemical species, and other parameters are currently being investigated. Oxidation states other than Tc (IV,VII), U(IV,VI), Np(IV,V), and Pu(IV,V) are probably not important for the geologic repository environment expected, but should be considered especially when extreme conditions exist (radiation, temperature, etc.). Various experimental techniques such as oxidation-state analysis of tracer-level isotopes, redox potential measurement and control, pH measurement, and solid phase identification have been used to categorize the behavior of the various valence states

  8. Redox-control of the alarmin, Interleukin-1α

    Directory of Open Access Journals (Sweden)

    Donald A. McCarthy

    2013-01-01

    Full Text Available The pro-inflammatory cytokine Interleukin-1α (IL-1α has recently emerged as a susceptibility marker for a wide array of inflammatory diseases associated with oxidative stress including Alzheimer's, arthritis, atherosclerosis, diabetes and cancer. In the present study, we establish that expression and nuclear localization of IL-1α are redox-dependent. Shifts in steady-state H2O2 concentrations (SS-[H2O2] resulting from enforced expression of manganese superoxide dismutase (SOD2 drive IL-1α mRNA and protein expression. The redox-dependent expression of IL-1α is accompanied by its increased nuclear localization. Both IL-1α expression and its nuclear residency are abrogated by catalase co-expression. Sub-lethal doses of H2O2 also cause IL-1α nuclear localization. Mutagenesis revealed IL-1α nuclear localization does not involve oxidation of cysteines within its N terminal domain. Inhibition of the processing enzyme calpain prevents IL-1α nuclear localization even in the presence of H2O2. H2O2 treatment caused extracellular Ca2+ influx suggesting oxidants may influence calpain activity indirectly through extracellular Ca2+ mobilization. Functionally, as a result of its nuclear activity, IL-1α overexpression promotes NF-kB activity, but also interacts with the histone acetyl transferase (HAT p300. Together, these findings demonstrate a mechanism by which oxidants impact inflammation through IL-1α and suggest that antioxidant-based therapies may prove useful in limiting inflammatory disease progression.

  9. Chemistry of the redox sensitive elements. Literature review

    International Nuclear Information System (INIS)

    Suter, D.

    1991-10-01

    As a part of the safety assessment for a nuclear waste repository, the migration of the radioactive elements from the waste matrix to the biosphere has to be modelled. The geosphere is an important barrier and a consideration of the retention of the radioactive isotopes needs knowledge of sorption coefficients and solubilities. Important long-lived isotopes in the high level radioactive waste are the fission products selenium, technetium, palladium and tin, and the actinide neptunium, which are all redox sensitive elements. A transport model using conservative sorption values predicts mainly doses from these five elements. Since the individual oxidation states of the redox sensitive elements have different and largely unknown sorption properties and solubilities, the realistic doses might be far less. The relevant literature about the chemistry of the five elements is summarized and is planned to serve as the basis for an experimental programme. For every element, the literature about the general chemistry, selected sorption studies, geochemistry, and analytical methods is reviewed. It was found that the knowledge about some of these points is very limited. Even the general chemistry of some of the elements in not well known, because they have only limited applications and research concentrates only on certain aspects. Most of the sorption studies in the context of nuclear waste concentrate on a few of the relevant elements and others have been neglected up to now. The simulation of a realistic system in the laboratory poses some problems, which have to be solved as well. The literature about this subject is also critically reviewed. The elements which are most mobile under realistic far-field conditions are identified and it is recommended to concentrate research on these at the beginning. (author) 9 figs., 192 refs

  10. Redox-active labile iron in fortified flours from the Brazilian market Ferro lábil redox-ativo em farinhas fortificadas do mercado brasileiro

    Directory of Open Access Journals (Sweden)

    Breno Pannia Espósito

    2007-08-01

    Full Text Available OBJECTIVE: To quantify the fraction of redox-active labile iron in iron-fortified flours acquired on the Brazilian market. METHODS: Samples of wheat flour, maize flour and breadcrumbs were extracted with buffers that mimic gastric juice, saliva and intestinal juice. Redox-active labile iron levels were assessed through the reaction of autoxidation of ascorbic acid catalyzed by iron in the presence of a fluorescence probe. RESULTS: Redox-active labile iron represents 1% to 9% of the total iron in the flour and breadcrumb samples, with the lowest values found under gastric juice conditions and the highest in the more alkaline media. Redox-active labile iron possibly arises from the decomposition of an iron-phytic acid complex. A positive correlation between redox-active labile iron and total iron was found in saline biomimetic fluids. CONCLUSION: Redox-active labile iron may be a risk factor for people with impaired antioxidant defenses, such as those who are atransferrinemic or iron overloaded (e.g. thalassemic. Total iron can be used to predict redox-active labile iron absorption at each stage of the gastrointestinal tract after ingestion of iron-fortified flours.OBJETIVO: Quantificar a porcentagem de ferro lábil redox ativo em farinhas fortificadas adquiridas no comércio popular. MÉTODOS: Amostras de farinha de trigo, fubá e rosca foram extraídas com tampões miméticos de suco gástrico, saliva e suco intestinal. Os níveis de ferro lábil redox ativo foram determinados por meio da reação de auto-oxidação do ácido ascórbico catalisada pelo ferro, em presença de uma sonda fluorimétrica. RESULTADOS: A fração de ferro lábil redox ativo representa entre 1% e 9% do ferro total nas farinhas estudadas, sendo os menores valores encontrados em condições miméticas do suco gástrico e os maiores nos meios mais alcalinos. Há indícios de que o ferro lábil redox ativo origina-se da decomposição de um complexo entre ferro e ácido f

  11. Arctic Gakkel Ridge hydrothermal plume study by in-situ redox and particle size measurements.

    Science.gov (United States)

    Nakamura, K.; Edmonds, H. N.; Winsor, P.; Liljebladh, B.; Stranne, C.; Upchurch, L.; Singh, H.; Jakuba, M.; Willis, C.; Shank, T.; Humphris, S. E.; Reves-Sohn, R.

    2007-12-01

    Throughout the Arctic Gakkel Vents Expediton (AGAVE cruise), Eh electrodes (redox sensor) were mounted on all vehicles, i.e., CTD/rosette, PUMA and JAGUAR AUVs and mini-ROV CAMPER. The electrodes voltages were logged through either SBE 9+ auxiliary channel (CTD) or RS-232C ports (PUMA and CAMPER) or self-recorded by an independent logger (JAGUAR). The LISST (Laser In-Situ Scattering and Transimssiometry)-Deep particle size analyzer was attached on the CTD/rosette with an independent data logger and a battery pack. Redox sensor has been used widely over different tectonic and oceanographic settings to detect hydrothermal emission. Negative shifts of redox voltage in the course of vehicle track lines as well as CTD casts provide an indication of "close range" from the source. None of CTD cast in the peridotite site (~85 deg N, 7.5 deg E) showed any redox negative shift. There were various magnitude of redox negative shift in different height from the bottom recorded in CTD casts and AUV and CAMPER track lines in the volcano site near the eastern end of bared central high (~85.5 deg N, 85 deg E). Although the redox negative shifts varied from almost a mV to almost a hundred mV, the redox data collected during the cruise could not confirm the existence of high temperature vents in the volcano site.

  12. Redox and Reactive Oxygen Species Regulation of Mitochondrial Cytochrome c Oxidase Biogenesis

    Science.gov (United States)

    Bourens, Myriam; Fontanesi, Flavia; Soto, Iliana C.; Liu, Jingjing

    2013-01-01

    Abstract Significance: Cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is the major oxygen consumer enzyme in the cell. COX biogenesis involves several redox-regulated steps. The process is highly regulated to prevent the formation of pro-oxidant intermediates. Recent Advances: Regulation of COX assembly involves several reactive oxygen species and redox-regulated steps. These include: (i) Intricate redox-controlled machineries coordinate the expression of COX isoenzymes depending on the environmental oxygen concentration. (ii) COX is a heme A-copper metalloenzyme. COX copper metallation involves the copper chaperone Cox17 and several other recently described cysteine-rich proteins, which are oxidatively folded in the mitochondrial intermembrane space. Copper transfer to COX subunits 1 and 2 requires concomitant transfer of redox power. (iii) To avoid the accumulation of reactive assembly intermediates, COX is regulated at the translational level to minimize synthesis of the heme A-containing Cox1 subunit when assembly is impaired. Critical Issues: An increasing number of regulatory pathways converge to facilitate efficient COX assembly, thus preventing oxidative stress. Future Directions: Here we will review on the redox-regulated COX biogenesis steps and will discuss their physiological relevance. Forthcoming insights into the precise regulation of mitochondrial COX biogenesis in normal and stress conditions will likely open future perspectives for understanding mitochondrial redox regulation and prevention of oxidative stress. Antioxid. Redox Signal. 19, 1940–1952. PMID:22937827

  13. Redox Changes During the Cell Cycle in the Embryonic Root Meristem of Arabidopsis thaliana.

    Science.gov (United States)

    de Simone, Ambra; Hubbard, Rachel; de la Torre, Natanael Viñegra; Velappan, Yazhini; Wilson, Michael; Considine, Michael J; Soppe, Wim J J; Foyer, Christine H

    2017-12-20

    The aim of this study was to characterize redox changes in the nuclei and cytosol occurring during the mitotic cell cycle in the embryonic roots of germinating Arabidopsis seedlings, and to determine how redox cycling was modified in mutants with a decreased capacity for ascorbate synthesis. Using an in vivo reduction-oxidation (redox) reporter (roGFP2), we show that transient oxidation of the cytosol and the nuclei occurred at G1 in the synchronized dividing cells of the Arabidopsis root apical meristem, with reduction at G2 and mitosis. This redox cycle was absent from low ascorbate mutants in which nuclei were significantly more oxidized than controls. The cell cycle-dependent increase in nuclear size was impaired in the ascorbate-deficient mutants, which had fewer cells per unit area in the root proliferation zone. The transcript profile of the dry seeds and size of the imbibed seeds was strongly influenced by low ascorbate but germination, dormancy release and seed aging characteristics were unaffected. These data demonstrate the presence of a redox cycle within the plant cell cycle and that the redox state of the nuclei is an important factor in cell cycle progression. Controlled oxidation is a key feature of the early stages of the plant cell cycle. However, sustained mild oxidation restricts nuclear functions and impairs progression through the cell cycle leading to fewer cells in the root apical meristem. Antioxid. Redox Signal. 27, 1505-1519.

  14. Activator Protein-1: redox switch controlling structure and DNA-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J.; Rudenko, Gabby (Texas-MED); (Icahn)

    2017-09-07

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.

  15. Activator Protein-1: redox switch controlling structure and DNA-binding.

    Science.gov (United States)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby

    2017-11-02

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Barriere, Frederic [Universite de Rennes I, Institut de Chimie, UMR CNRS 6510, 35042 Rennes (France); Ferry, Yvonne; Leech, Donal [Department of Chemistry, National University of Ireland, Galway (Ireland); Rochefort, Dominic [Departement de Chimie, Universite de Montreal, C.P. 6128, Succursale Centre-ville, Montreal, Que. (Canada)

    2004-03-01

    Electrodes modified with co-immobilized redox enzymes and redox polymers can be used to form membrane-less biofuel cells. In this communication, we report on our initial studies of a membrane-less biofuel cell concept using an osmium-based redox polymer for laccase-mediated reduction of oxygen coupled to glucose oxidase-mediated oxidation of glucose. We then present a thermodynamic examination of mediators of laccase oxygen reduction, and stemming from this, target two redox polymers of potential use, an osmium-based redox polymer (E{sup 0'}+0.40 V vs. Ag/AgCl) and a ruthenium-based redox polymer (E{sup 0'}+0.63 V vs. Ag/AgCl). The former shows promise for use in membrane-less biofuel cell cathodes, whilst the latter's redox potential is too high to be an effective mediator of oxygen reduction by the Trametes versicolor laccase used in this study.

  17. Potential Role of Amino Acid/Protein Nutrition and Exercise in Serum Albumin Redox State

    Directory of Open Access Journals (Sweden)

    Yasuaki Wada

    2017-12-01

    Full Text Available Albumin is the major protein in the serum of mammals. It is synthesized exclusively in the liver, before being secreted into the circulation. Similar to skeletal muscle protein, albumin synthesis is stimulated by dietary amino acids and proteins as well as exercise. Albumin has three isoforms based on the redox states of the free cysteine residue at position 34. The redox state of serum albumin has long been extensively investigated in terms of oxidative stress-related chronic diseases, with the redox state of serum albumin having been regarded as a marker of systemic oxidative stress. However, according to recent animal studies, the redox state of serum albumin is modulated by albumin turnover and may also reflect amino acid/protein nutritional status. Furthermore, as the redox state of serum albumin is modulated by exercise training, measuring the pre- and post-exercise redox states of serum albumin in athletes may be useful in assessing amino acid/protein nutritional status and exercise-induced oxidative stress, which are closely associated with skeletal muscle adaptive responses. This article extensively reviews serum albumin and the redox state of albumin in the context of amino acid/protein nutritional status and exercise training.

  18. Direct determination of the redox status of cysteine residues in proteins in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Satoshi [Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503 (Japan); Tatenaka, Yuki; Ohuchi, Yuya [Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202 (Japan); Hisabori, Toru, E-mail: thisabor@res.titech.ac.jp [Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503 (Japan); Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan)

    2015-01-02

    Highlights: • A new DNA-maleimide which is cleaved by UV irradiation, DNA-PCMal, was developed. • DNA-PCMal can be used like DNA-Mal to analyze the redox state of cysteine residues. • It is useful for detecting the thiol redox status of a protein in vivo by Western blotting method. • Thus, DNA-PCMal can be a powerful tool for redox proteomics analysis. - Abstract: The redox states of proteins in cells are key factors in many cellular processes. To determine the redox status of cysteinyl thiol groups in proteins in vivo, we developed a new maleimide reagent, a photocleavable maleimide-conjugated single stranded DNA (DNA-PCMal). The DNA moiety of DNA-PCMal is easily removed by UV-irradiation, allowing DNA-PCMal to be used in Western blotting applications. Thereby the state of thiol groups in intracellular proteins can be directly evaluated. This new maleimide compound can provide information concerning redox proteins in vivo, which is important for our understanding of redox networks in the cell.

  19. [Effect of the medium redox potential on the growth and metabolism of anaerobic bacteria].

    Science.gov (United States)

    Vasilian, A; Trchunian, A

    2008-01-01

    Based on the available literature data on a decrease in the redox potential of medium to low negative values and a decrease in pH during the growth of sugar-fermenting anaerobic bacteria, it was concluded that these processes cannot be described by the theory of redox potential. A theory was developed according to which the regulation of bacterial metabolism is accomplished through changes in the redox potential. The theory considers the redox potential as a factor determining the growth of anaerobic bacteria, which is regulated by oxidizers and reducers. The assumption is put forward that, under anaerobic conditions, bacteria are sensitive to changes in the redox potential and have a redox taxis. The effect of the redox potential on the transport of protons and other substances through membranes and the activity of membrane-bound enzymes, including the proton F1-F0-ATPase, whose mechanisms of action involve changes in the proton conductance of the membrane, the generation of proton-driving force, and dithiol-disulfide transitions in proteins was studied.

  20. Cost-driven materials selection criteria for redox flow battery electrolytes

    Science.gov (United States)

    Dmello, Rylan; Milshtein, Jarrod D.; Brushett, Fikile R.; Smith, Kyle C.

    2016-10-01

    Redox flow batteries show promise for grid-scale energy storage applications but are presently too expensive for widespread adoption. Electrolyte material costs constitute a sizeable fraction of the redox flow battery price. As such, this work develops a techno-economic model for redox flow batteries that accounts for redox-active material, salt, and solvent contributions to the electrolyte cost. Benchmark values for electrolyte constituent costs guide identification of design constraints. Nonaqueous battery design is sensitive to all electrolyte component costs, cell voltage, and area-specific resistance. Design challenges for nonaqueous batteries include minimizing salt content and dropping redox-active species concentration requirements. Aqueous battery design is sensitive to only redox-active material cost and cell voltage, due to low area-specific resistance and supporting electrolyte costs. Increasing cell voltage and decreasing redox-active material cost present major materials selection challenges for aqueous batteries. This work minimizes cost-constraining variables by mapping the battery design space with the techno-economic model, through which we highlight pathways towards low price and moderate concentration. Furthermore, the techno-economic model calculates quantitative iterations of battery designs to achieve the Department of Energy battery price target of 100 per kWh and highlights cost cutting strategies to drive battery prices down further.

  1. Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator

    International Nuclear Information System (INIS)

    Emilia Rios-Del Toro, E.; Celis, Lourdes B.; Cervantes, Francisco J.; Rangel-Mendez, J. Rene

    2013-01-01

    Highlights: • Activated carbon fibers (ACFs) act as redox mediator. • Electron accepting capacity increased with oxidation time of ACF. •ACFs increased 8-fold the reduction of methyl red in biological assays. •Biofilm formed on the ACFs partly blocked their redox mediator capacity. -- Abstract: The anaerobic degradation of azo dyes under anaerobic conditions is possible but at a slow rate. Redox mediators (quinones, activated carbon) are used to improve the reduction rate. The aim of this work was to use activated carbon fiber (ACF) as a redox mediator for the anaerobic reduction of the azo dye methyl red. ACF was chemically modified with 8 M HNO 3 to increase its redox-mediating capacity and used in chemical and anaerobic biological batch assays for the reduction of methyl red. ACF increased its redox-mediating capacity up to 3-fold in chemical assays; in biological assays ACF increased the reduction rate up to 8-fold compared to controls without ACF. However, since the ACF served as support for biomass, a biofilm formed on the fiber significantly reduced its redox-mediating capacity; substrate consumption suggested that the electron transport from ACF to methyl red was the rate-limiting step in the process. These results are the first evidence of the role of ACF as a redox mediator in the reductive decolorization of methyl red, in addition to the effect of biofilm attached to ACF on methyl red reduction. Due to the versatile characteristics of ACF and its redox-mediating capacity, carbon fibers could be used in biological wastewater treatment systems to accelerate the reductive transformation of pollutants commonly found in industrial effluents

  2. Maximizing flow velocities in redox-magnetohydrodynamic microfluidics using the transient faradaic current.

    Science.gov (United States)

    Weston, Melissa C; Nash, Christena K; Homesley, Jerry J; Fritsch, Ingrid

    2012-11-06

    There is a need for a microfluidic pumping technique that is simple to fabricate, yet robust, compatible with a variety of solvents, and which has easily controlled fluid flow. Redox-magnetohydrodynamics (MHD) offers these advantages. However, the presence of high concentrations of redox species, important for inducing sufficient convection at low magnetic fields for hand-held devices, can limit the use of redox-MHD pumping for analytical applications. A new method for redox-MHD pumping is investigated that takes advantage of the large amplitude of the transient portion of the faradaic current response that occurs upon stepping the potential sufficiently past the standard electrode potential, E°, of the pumping redox species at an electrode. This approach increases the velocity of the fluid for a given redox concentration. An electronic switch was implemented between the potentiostat and electrochemical cell to alternately turn on and off different electrodes along the length of the flow path to maximize this transient electronic current and, as a result, the flow speed. Velocities were determined by tracking microbeads in a solution containing electroactive potassium ferrocyanide and potassium ferricyanide, and supporting electrolyte, potassium chloride, in the presence of a magnetic field. Fluid velocities with slight pulsation were obtained with the switch that were 70% faster than the smooth velocities without the switch. This indicates that redox species concentrations can be lowered by a similar amount to achieve a given speed, thereby diminishing interference of the redox species with detection of the analyte in applications of redox-MHD microfluidics for chemical analysis.

  3. Redox properties of iron-bearing clays and MX-80 bentonite – Electrochemical and spectroscopic characterization

    International Nuclear Information System (INIS)

    Hofstetter, Th. B.; Sosedova, Y.; Gorski, C.; Voegelin, A.; Sander, M.

    2014-03-01

    The characterization of the redox properties of Fe-bearing minerals in the presence and absence of dissolved Fe 2+ is of major relevance for the assessment of redox reactions in natural and engineered environments such as radioactive waste repositories. In this study, we developed an electrochemical approach based on the use of soluble organic electron transfer mediators, which enabled us to quantify the redox properties of Fe-bearing clay minerals, MX- 80 bentonite and combinations of clay minerals, Fe oxides and dissolved Fe 2+ . Using mediated electrochemical oxidation and reduction, we quantified the electron accepting and donating capacities of ferrous smectite SWa-1, Wyoming montmorillonite SWy-2 and MX-80 bentonite at pH 7.5. All structural Fe in clay minerals was redox-active in contrast to that present in other, not further defined phases of MX-80. The materials investigated were redoxactive over a very wide range of Eh-values, that is the Fe 2+ /Fe total ratio of the minerals changed from 0 to 100 % between +600 and -600 mV (vs. SHE). Redox properties were highly path-dependent due to structural changes of the minerals as revealed from the study of native and redox-cycled clay minerals after repeated reduction and re-oxidation cycles. Irreversible alteration of the mineral structure, however, was less obvious for materials with lower total Fe content such as MX-80 bentonite and SWy-2. Systems containing native montmorillonites (SWy-2 or MX-80), goethite and dissolved Fe 2+ were also able to buffer the reduction potential E H between 0 and -300 mV. Regardless of their Fe oxidation state, Fe-bearing minerals are redox-active over a wide potential range and therefore very relevant as redox buffers determining the fate of redox-active radionuclides and metals in waste repositories. (authors)

  4. Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator

    Energy Technology Data Exchange (ETDEWEB)

    Emilia Rios-Del Toro, E. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Celis, Lourdes B. [División de Geociencias Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Rangel-Mendez, J. Rene, E-mail: rene@ipicyt.edu.mx [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico)

    2013-09-15

    Highlights: • Activated carbon fibers (ACFs) act as redox mediator. • Electron accepting capacity increased with oxidation time of ACF. •ACFs increased 8-fold the reduction of methyl red in biological assays. •Biofilm formed on the ACFs partly blocked their redox mediator capacity. -- Abstract: The anaerobic degradation of azo dyes under anaerobic conditions is possible but at a slow rate. Redox mediators (quinones, activated carbon) are used to improve the reduction rate. The aim of this work was to use activated carbon fiber (ACF) as a redox mediator for the anaerobic reduction of the azo dye methyl red. ACF was chemically modified with 8 M HNO{sub 3} to increase its redox-mediating capacity and used in chemical and anaerobic biological batch assays for the reduction of methyl red. ACF increased its redox-mediating capacity up to 3-fold in chemical assays; in biological assays ACF increased the reduction rate up to 8-fold compared to controls without ACF. However, since the ACF served as support for biomass, a biofilm formed on the fiber significantly reduced its redox-mediating capacity; substrate consumption suggested that the electron transport from ACF to methyl red was the rate-limiting step in the process. These results are the first evidence of the role of ACF as a redox mediator in the reductive decolorization of methyl red, in addition to the effect of biofilm attached to ACF on methyl red reduction. Due to the versatile characteristics of ACF and its redox-mediating capacity, carbon fibers could be used in biological wastewater treatment systems to accelerate the reductive transformation of pollutants commonly found in industrial effluents.

  5. Aging is not a barrier to muscle and redox adaptations: applying the repeated eccentric exercise model.

    Science.gov (United States)

    Nikolaidis, Michalis G; Kyparos, Antonios; Spanou, Chrysa; Paschalis, Vassilis; Theodorou, Anastasios A; Panayiotou, George; Grivas, Gerasimos V; Zafeiridis, Andreas; Dipla, Konstantina; Vrabas, Ioannis S

    2013-08-01

    Despite the progress of analytic techniques and the refinement of study designs, striking disagreement exists among studies regarding the influence of exercise on muscle function and redox homeostasis in the elderly. The repeated eccentric exercise model was applied to produce long-lasting and extensive changes in redox biomarkers and to reveal more effectively the potential effects of aging on redox homeostasis. Ten young (20.6±0.5 years) and ten elderly men (64.6±1.1 years) underwent an isokinetic eccentric exercise session, which was repeated after three weeks. Muscle function/damage indices (torque, range of movement, muscle soreness and creatine kinase) and redox biomarkers (F2-isoprostanes, protein carbonyls, glutathione, catalase, superoxide dismutase, glutathione peroxidase, glucose-6-phosphate dehydrogenase, uric acid, bilirubin and albumin) were assessed in plasma, erythrocytes or urine pre-exercise, immediately post-exercise and at 2 and 4 days post-exercise. As expected, the elderly group exhibited oxidative stress in baseline compared to the young group. Extensive muscle damage and extensive alterations in redox homeostasis appeared after the first bout of eccentric exercise. Noteworthy, the redox responses were similar between the age groups despite their differences in baseline values. Likewise, both age groups demonstrated blunted alterations in muscle damage and redox homeostasis after the second bout of eccentric exercise indicating adaptations from the first bout of exercise. Elderly individuals seem to be well fitted to participate in demanding physical activities without suffering detrimental effects on skeletal muscle and/or disturbances on redox homeostasis. The repeated eccentric exercise model may be a useful and practical physiological tool to study redox biology in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. High-resolution imaging of redox signaling in live cells through an oxidation-sensitive yellow fluorescent protein

    DEFF Research Database (Denmark)

    Maulucci, Giuseppe; Labate, Valentina; Mele, Marina

    2008-01-01

    We present the application of a redox-sensitive mutant of the yellow fluorescent protein (rxYFP) to image, with elevated sensitivity and high temporal and spatial resolution, oxidative responses of eukaryotic cells to pathophysiological stimuli. The method presented, based on the ratiometric...... quantitation of the distribution of fluorescence by confocal microscopy, allows us to draw real-time "redox maps" of adherent cells and to score subtle changes in the intracellular redox state, such as those induced by overexpression of redox-active proteins. This strategy for in vivo imaging of redox...

  7. The mechanism behind redox instability of anodes in high-temperature SOFCs

    DEFF Research Database (Denmark)

    Klemensø, Trine; Chung, Charissa; Larsen, Peter Halvor

    2005-01-01

    Bulk expansion of the anode upon oxidation is considered to be responsible for the lack of redox stability in high-temperature solid oxide fuel cells (SOFCs). The bulk expansion of nickel-yttria stabilized zirconia (YSZ) anode materials was measured by dilatometry as a function of sample geometry......, ceramic component, temperature, and temperature cycling. The strength of the ceramic network and the degree of Ni redistribution appeared to be key parameters of the redox behavior. A model of the redox mechanism in nickel-YSZ anodes was developed based on the dilatometry data and macro...

  8. Geomicrobial and Geochemical Redox Processes in a Landfill-Polluted Aquifer

    DEFF Research Database (Denmark)

    Ludvigsen, Liselotte; Heron, Gorm; Albrechtsen, Hans-Jørgen

    1995-01-01

    The distribution of different dominant microbial-mediated redox processes in a landfill leachate-polluted aquifer (Grindsted, Denmark) was investigated. The most probable number method was utilized for detecting bacteria able to use each of the electron acceptors, and unamended incubations were...... utilized to detect the activity of the redox processes using the investigated electron acceptors. The redox processes investigated were methane production and reduction of sulfate, Fe(III), Mn(IV), and nitrate. The presence of methanogenic bacteria and methanogenic activity were observed close...

  9. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes.

    Science.gov (United States)

    Doyle, Richard L; Godwin, Ian J; Brandon, Michael P; Lyons, Michael E G

    2013-09-07

    This paper presents a review of the redox and electrocatalytic properties of transition metal oxide electrodes, paying particular attention to the oxygen evolution reaction. Metal oxide materials may be prepared using a variety of methods, resulting in a diverse range of redox and electrocatalytic properties. Here we describe the most common synthetic routes and the important factors relevant to their preparation. The redox and electrocatalytic properties of the resulting oxide layers are ascribed to the presence of extended networks of hydrated surface bound oxymetal complexes termed surfaquo groups. This interpretation presents a possible unifying concept in water oxidation catalysis - bridging the fields of heterogeneous electrocatalysis and homogeneous molecular catalysis.

  10. Single-molecule electron tunnelling through multiple redox levels with environmental relaxation

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    We present an analytical theory for electron flow through a molecule with several redox levels, enclosed between a pair of metallic electrodes. The levels can be electronic or electronic-vibrational levels. Vibrational energy spacing characterises the latter sets. The levels are further coupled...... can be only achieved when the latter are located between the Fermi levels of the substrate and tip or source and drain electrodes. The redox levels can be brought into this "energy window", either by the overpotential or bias and gate voltages, or by vibrational relaxation of (a) given (set of) redox...

  11. Redox-Mediated Stabilization in Zinc Molybdenum Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Arca, Elisabetta [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lany, Stephan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Perkins, John D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holder, Aaron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Teeter, Glenn R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tumas, William [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zakutayev, Andriy A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bartel, Christopher [University of Colorado; Mangum, John [Colorado School of Mines; Sun, Wenhao [Lawrence Berkeley National Laboratory; Ceder, Gerbrand [Lawrence Berkeley National Laboratory; University of California, Berkeley; Gorman, Brian [Colorado School of Mines

    2018-03-01

    We report on the theoretical prediction and experimental realization of new ternary zinc molybdenum nitride compounds. We used theory to identify previously unknown ternary compounds in the Zn-Mo-N systems, Zn3MoN4 and ZnMoN2, and to analyze their bonding environment. Experiments show that Zn-Mo-N alloys can form in broad composition range from Zn3MoN4 to ZnMoN2 in the wurtzite-derived structure, accommodating very large off-stoichiometry. Interestingly, the measured wurtzite-derived structure of the alloys is metastable for the ZnMoN2 stoichiometry, in contrast to the Zn3MoN4 stoichiometry, where ordered wurtzite is predicted to be the ground state. The formation of Zn3MoN4-ZnMoN2 alloy with wurtzite-derived crystal structure is enabled by the concomitant ability of Mo to change oxidation state from +VI in Zn3MoN4 to +IV in ZnMoN2, and the capability of Zn to contribute to the bonding states of both compounds, an effect that we define as 'redox-mediated stabilization.' The stabilization of Mo in both the +VI and +IV oxidation states is due to the intermediate electronegativity of Zn, which enables significant polar covalent bonding in both Zn3MoN4 and ZnMoN2 compounds. The smooth change in the Mo oxidation state between Zn3MoN4 and ZnMoN2 stoichiometries leads to a continuous change in optoelectronic properties - from resistive and semitransparent Zn3MoN4 to conductive and absorptive ZnMoN2. The reported redox-mediated stabilization in zinc molybdenum nitrides suggests there might be many undiscovered ternary compounds with one metal having an intermediate electronegativity, enabling significant covalent bonding, and another metal capable of accommodating multiple oxidation states, enabling stoichiometric flexibility.

  12. Auto-protective redox buffering systems in stimulated macrophages

    Directory of Open Access Journals (Sweden)

    Negre Olivier

    2002-03-01

    Full Text Available Abstract Background Macrophages, upon encounter with micro-organisms or stimulated by cytokines, produce various effector molecules aimed at destroying the foreign agents and protecting the organism. Reactive oxygen species (ROS and reactive nitrogen species (RNS are front line molecules exerting strong cytotoxic activities against micro-organisms and many cells, including macrophages themselves. Using cells of the murine macrophage cell line (RAW 264.7 stimulated in vitro with lipopolysaccharide (LPS and/or interferon (IFN-γ, which induce strong endogenous NO production, we examined by which mechanisms a fraction of activated macrophages protect themselves from nitrosative stress and manage to escape destruction? Results We observed that survivors (10–50% depending on the experiments had acquired a resistant phenotype being capable to survive when further exposed in vitro to an apoptosis inducing dose of the NO donor compound DETA-NO. These cells expressed an increased steady-state levels of Mn SOD, CuZn SOD and catalase mRNA (130–200%, together with an increased activity of the corresponding enzymes. Intracellular concentration of glutathione was also increased (× 3.5 fold at 6 hours, still maintained × 5.2 fold at 48 hours. Neither mRNA for glutathione peroxydase, γ-glutamylcysteine synthase and glutathione reductase, nor thioredoxine and thioredoxine reductase, were significantly modified. Additional experiments in which RAW 264.7 cells were stimulated with LPS and/or IFN-γ in the presence of relatively specific inhibitors of both Mn and Cu/Zn SOD, aminotriazol (ATZ catalase inhibitor and buthionine sulfoximine (BSO glutathione inhibitor, showed that inhibiting LPS-induced up-regulation of intracellular redox buffering systems also prevented acquisition of the resistant phenotype. Conclusions Our data suggest a direct causal relationship between survival of a fraction of macrophages and a up-regulation of key sets of auto

  13. Biogeochemical constraints on uranium cycling in redox active floodplain sediments

    Science.gov (United States)

    Noel, V.; Boye, K.; Bargar, J.; Maher, K.; Bone, S. E.; Cardarelli, E.; Dam, W. L.; Johnson, R. H.

    2016-12-01

    Long-term persistence of uranium (U) in groundwater at legacy ore-processing sites in the upper Colorado River Basin (CRB) is a major concern for DOE, stakeholders, and local property owners [1]. The first investigations of U distribution in contaminated floodplains at Grand Junction, Naturita, and Rifle (CO) show that U is retained in organic-rich sulfidic sediments referred to as naturally reduced zones (NRZs) [2]. The retention mechanisms (e.g., complexation, precipitation or adsorption) and the processes responsible for U accumulation in NRZs will directly determine the capacity of the sediments to prevent U mobilization. However, these processes remain poorly understood at local and regional scales yet they are critical to management and remediation of these sites. To investigate the regional role and functionality of NRZs to U mobility, we collected NRZ sediment cores from five sites across the upper CRB and examined them on the millimeter scale to determine the Fe, S and U molecular speciation. This work shows that organic-rich NRZs regionally accumulate U mainly as non-crystalline U(IV), but also as U(VI)-sorbed. Once accumulated, U(IV) is oxidized to U(VI) during low water table stage and is trapped by sorption. Thus seasonally redox-variable NRZs can accumulate significant inventories of U(VI). The ability of NRZs to control U mobility is directly related to the time- and space dependence of reducing conditions, which is controlled by hydrologic conditions, organic composition and sediment texture. Two functional types of NRZs were thus distinguished. (1) Highly reduced fine-grained NRZs characterized by occurrence of monosulfides and disulfides of iron (S2- and S-), where reducing conditions and U accumulation are more intense. And (2) weakly reduced coarse-grained NRZs only characterized by occurrence of iron disulfides, where the reactive U-compounds can rapidly oxidize due to oxidants from groundwater. These results show that NRZs are regionally

  14. Determining redox properties of clay-rich sedimentary deposits in the context of performance assessment of radioactive waste repositories : Conceptual and practical aspects

    NARCIS (Netherlands)

    Behrends, T.; Bruggeman, Christophe

    Redox reactions play a key factor controlling the mobility of redox sensitive radionuclides in clay-rich sediments which might serve as host formations for radioactive waste repositories. Assessing the redox speciation of radionuclides requires information about the redox conditions in the formation

  15. Proton transfer versus redox modulation in thiourea-phenanthrenequinone molecular and polymeric complexes.

    Science.gov (United States)

    Carroll, Joseph B; Gray, Mark; Cooke, Graeme; Rotello, Vincent M

    2004-02-21

    Phenanthrenequinone undergoes highly efficient proton transfer processes in the presence of a thiourea-functionalised polystyrene copolymer whereas interactions with a similar benzyl-thiourea monomer show strong redox modulation of the quinone without proton transfer.

  16. Screening of dietary antioxidants against mitochondria-mediated oxidative stress by visualization of intracellular redox state.

    Science.gov (United States)

    Maharjan, Sunita; Sakai, Yasuyoshi; Hoseki, Jun

    2016-01-01

    Mitochondrial impairment and the resulting generation of reactive oxygen species (ROS) have been associated with aging and its related pathological conditions. Recently, dietary antioxidants have gained significant attention as potential preventive and therapeutic agents against ROS-generated aging and pathological conditions. We previously demonstrated that food-derived antioxidants prevented intracellular oxidative stress under proteasome inhibition conditions, which was attributed to mitochondrial dysfunction and ROS generation, followed by cell death. Here, we further screened dietary antioxidants for their activity as redox modulators by visualization of the redox state using Redoxfluor, a fluorescent protein redox probe. Direct alleviation of ROS by antioxidants, but not induction of antioxidative enzymes, prevented mitochondria-mediated intracellular oxidation. The effective antioxidants scavenged mitochondrial ROS and suppressed cell death. Our study indicates that redox visualization under mitochondria-mediated oxidative stress is useful for screening potential antioxidants to counteract mitochondrial dysfunction, which has been implicated in aging and the pathogenesis of aging-related diseases.

  17. A Review of RedOx Cycling of Solid Oxide Fuel Cells Anode

    Science.gov (United States)

    Faes, Antonin; Hessler-Wyser, Aïcha; Zryd, Amédée; Van Herle, Jan

    2012-01-01

    Solid oxide fuel cells are able to convert fuels, including hydrocarbons, to electricity with an unbeatable efficiency even for small systems. One of the main limitations for long-term utilization is the reduction-oxidation cycling (RedOx cycles) of the nickel-based anodes. This paper will review the effects and parameters influencing RedOx cycles of the Ni-ceramic anode. Second, solutions for RedOx instability are reviewed in the patent and open scientific literature. The solutions are described from the point of view of the system, stack design, cell design, new materials and microstructure optimization. Finally, a brief synthesis on RedOx cycling of Ni-based anode supports for standard and optimized microstructures is depicted. PMID:24958298

  18. The SAMHD1 dNTP Triphosphohydrolase Is Controlled by a Redox Switch.

    Science.gov (United States)

    Mauney, Christopher H; Rogers, LeAnn C; Harris, Reuben S; Daniel, Larry W; Devarie-Baez, Nelmi O; Wu, Hanzhi; Furdui, Cristina M; Poole, Leslie B; Perrino, Fred W; Hollis, Thomas

    2017-12-01

    Proliferative signaling involves reversible posttranslational oxidation of proteins. However, relatively few molecular targets of these modifications have been identified. We investigate the role of protein oxidation in regulation of SAMHD1 catalysis. Here we report that SAMHD1 is a major target for redox regulation of nucleotide metabolism and cell cycle control. SAMHD1 is a triphosphate hydrolase, whose function involves regulation of deoxynucleotide triphosphate pools. We demonstrate that the redox state of SAMHD1 regulates its catalytic activity. We have identified three cysteine residues that constitute an intrachain disulfide bond "redox switch" that reversibly inhibits protein tetramerization and catalysis. We show that proliferative signals lead to SAMHD1 oxidation in cells and oxidized SAMHD1 is localized outside of the nucleus. Innovation and Conclusions: SAMHD1 catalytic activity is reversibly regulated by protein oxidation. These data identify a previously unknown mechanism for regulation of nucleotide metabolism by SAMHD1. Antioxid. Redox Signal. 27, 1317-1331.

  19. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    KAUST Repository

    Chen, Wei

    2014-12-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). As compared to conventional electrolytes, the redox-active electrolytes, prepared by simply adding a redox mediator to the conventional electrolyte, can significantly improve the energy storage capacity of pseudocapacitors with different conducting polymers. The results show that the specific capacitance of conducting polymer based pseudocapacitors can be increased by a factor of two by utilization of the redox-active electrolytes. In fact, this approach gives some of the highest reported specific capacitance values for electroactive conducting polymers. Moreover, our findings present a general and effective approach for the enhancement of energy storage performance of pseudocapacitors using a variety of polymeric electrode materials. © 2014 Elsevier B.V. All rights reserved.

  20. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging

    DEFF Research Database (Denmark)

    Liao, Shichao; Zong, Xu; Seger, Brian

    2016-01-01

    Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelect......Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient...... photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge...

  1. The ABA-INSENSITIVE-4 (ABI4) transcription factor links redox, hormone and sugar signaling pathways.

    Science.gov (United States)

    Foyer, Christine H; Kerchev, Pavel I; Hancock, Robert D

    2012-02-01

    The cellular reduction-oxidation (redox) hub processes information from metabolism and the environment and so regulates plant growth and defense through integration with the hormone signaling network. One key pathway of redox control involves interactions with ABSCISIC ACID (ABA). Accumulating evidence suggests that the ABA-INSENSITIVE-4 (ABI4) transcription factor plays a key role in transmitting information concerning the abundance of ascorbate and hence the ability of cells to buffer oxidative challenges. ABI4 is required for the ascorbate-dependent control of growth, a process that involves enhancement of salicylic acid (SA) signaling and inhibition of jasmonic acid (JA) signaling pathways. Low redox buffering capacity reinforces SA- JA- interactions through the mediation of ABA and ABI4 to fine-tune plant growth and defense in relation to metabolic cues and environmental challenges. Moreover, ABI4-mediated pathways of sugar sensitivity are also responsive to the abundance of ascorbate, providing evidence of overlap between redox and sugar signaling pathways.

  2. The Reactive Species Interactome : Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine

    NARCIS (Netherlands)

    Cortese-Krott, Miriam M.; Koning, Anne; Kuhnle, Gunter G. C.; Nagy, Peter; Bianco, Christopher L.; Pasch, Andreas; Wink, David A.; Fukuto, Jon M.; Jackson, Alan A.; van Goor, Harry; Olson, Kenneth R.; Feelisch, Martin

    2017-01-01

    Significance: Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent

  3. Specific Interaction between Redox Phospholipid Polymers and Plastoquinone in Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Tanaka, Kenya; Kaneko, Masahiro; Ishikawa, Masahito; Kato, Souichiro; Ito, Hidehiro; Kamachi, Toshiaki; Kamiya, Kazuhide; Nakanishi, Shuji

    2017-04-19

    Redox phospholipid polymers added in culture media are known to be capable of extracting electrons from living photosynthetic cells across bacterial cell membranes with high cytocompatibility. In the present study, we identify the intracellular redox species that transfers electrons to the polymers. The open-circuit electrochemical potential of an electrolyte containing the redox polymer and extracted thylakoid membranes shift to positive (or negative) under light irradiation, when an electron transport inhibitor specific to plastoquinone is added upstream (or downstream) in the photosynthetic electron transport chain. The same trend is also observed for a medium containing living photosynthetic cells of Synechococcus elongatus PCC7942. These results clearly indicate that the phospholipid redox polymers extract photosynthetic electrons mainly from plastoquinone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein

    DEFF Research Database (Denmark)

    Østergaard, H.; Henriksen, A.; Hansen, Flemming G.

    2001-01-01

    To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease...... in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivoby non- invasive fluorimetric measurements. The 1.5 Angstrom crystal structure of the oxidized protein revealed a disulfide bond- induced distortion of the beta -barrel, as well...... as a structural reorganization of residues in the immediate chromophore environment. By combining this information with spectroscopic data, we propose a detailed mechanism accounting for the observed redox state-dependent fluorescence. The redox potential of the cysteine couple was found to be within...

  5. A soluble-lead redox flow battery with corrugated graphite sheet and ...

    Indian Academy of Sciences (India)

    lead redox flow battery with corrugated graphite sheet and reticulated vitreous carbon as positive and negative current collectors. A Banerjee D Saha T N Guru Row A K Shukla. Volume 36 Issue 1 February 2013 pp 163-170 ...

  6. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1

    Directory of Open Access Journals (Sweden)

    Koji Aoyama

    2015-05-01

    Full Text Available Reactive oxygen species (ROS are by-products of the cellular metabolism of oxygen consumption, produced mainly in the mitochondria. ROS are known to be highly reactive ions or free radicals containing oxygen that impair redox homeostasis and cellular functions, leading to cell death. Under physiological conditions, a variety of antioxidant systems scavenge ROS to maintain the intracellular redox homeostasis and normal cellular functions. This review focuses on the antioxidant system’s roles in maintaining redox homeostasis. Especially, glutathione (GSH is the most important thiol-containing molecule, as it functions as a redox buffer, antioxidant, and enzyme cofactor against oxidative stress. In the brain, dysfunction of GSH synthesis leading to GSH depletion exacerbates oxidative stress, which is linked to a pathogenesis of aging-related neurodegenerative diseases. Excitatory amino acid carrier 1 (EAAC1 plays a pivotal role in neuronal GSH synthesis. The regulatory mechanism of EAAC1 is also discussed.

  7. A Multistep Equilibria-Redox-Complexation Demonstration to Illustrate Le Chatelier's Principle.

    Science.gov (United States)

    Berger, Tomas G.; Mellon, Edward K.

    1996-01-01

    Describes a process that can be used to illustrate a number of chemical principles including Le Chatelier's principle, redox chemistry, equilibria versus steady state situations, and solubility of species. (JRH)

  8. Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive charge storage

    Science.gov (United States)

    Yun, Y. S.; Kim, D.-H.; Hong, S. J.; Park, M. H.; Park, Y. W.; Kim, B. H.; Jin, H.-J.; Kang, K.

    2015-09-01

    We report microporous carbon nanosheets containing numerous redox active heteroatoms fabricated from exfoliated waste coffee grounds by simple heating with KOH for pseudocapacitive charge storage. We found that various heteroatom combinations in carbonaceous materials can be a redox host for lithium ion storage. The bio-inspired nanomaterials had unique characteristics, showing superior electrochemical performances as cathode for asymmetric pseudocapacitors.We report microporous carbon nanosheets containing numerous redox active heteroatoms fabricated from exfoliated waste coffee grounds by simple heating with KOH for pseudocapacitive charge storage. We found that various heteroatom combinations in carbonaceous materials can be a redox host for lithium ion storage. The bio-inspired nanomaterials had unique characteristics, showing superior electrochemical performances as cathode for asymmetric pseudocapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04231c

  9. Detection of Cysteine Redox States in Mitochondrial Proteins in Intact Mammalian Cells.

    Science.gov (United States)

    Habich, Markus; Riemer, Jan

    2017-01-01

    Import, folding, and activity regulation of mitochondrial proteins are important for mitochondrial function. Cysteine residues play crucial roles in these processes as their thiol groups can undergo (reversible) oxidation reactions. For example, during import of many intermembrane space (IMS) proteins, cysteine oxidation drives protein folding and translocation over the outer membrane. Mature mitochondrial proteins can undergo changes in the redox state of specific cysteine residues, for example, as part of their enzymatic reaction cycle or as adaptations to changes of the local redox environment which might influence their activity. Here we describe methods to study changes in cysteine residue redox states in intact cells. These approaches allow to monitor oxidation-driven protein import as well as changes of cysteine redox states in mature proteins during oxidative stress or during the reaction cycle of thiol-dependent enzymes like oxidoreductases.

  10. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein

    DEFF Research Database (Denmark)

    Østergaard, H.; Henriksen, A.; Hansen, Flemming G.

    2001-01-01

    To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease...... the physiological range for redox-active cysteines. In the cytoplasm of Escherichia coli, the protein was a sensitive probe for the redox changes that occur upon disruption of the thioredoxin reductive pathway....... in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivoby non- invasive fluorimetric measurements. The 1.5 Angstrom crystal structure of the oxidized protein revealed a disulfide bond- induced distortion of the beta -barrel, as well...

  11. Writing nanopatterns with electrochemical oxidation on redox responsive organometallic multilayers by AFM

    NARCIS (Netherlands)

    Song, Jing; Hempenius, Mark A.; Chung, H.J.; Vancso, Gyula J.

    2015-01-01

    Nanoelectrochemical patterning of redox responsive organometallic poly(ferrocenylsilane) (PFS) multilayers is demonstrated by electrochemical dip pen lithography (EDPN). Local electrochemical oxidation and Joule heating of PFS multilayers from the tip are considered as relevant mechanisms related to

  12. Determination of iron redox ratio in borosilicate glasses and melts from Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Cochain, B. [SCDV-Laboratoire d' Etudes de Base sur les Verres, CEA Valrho, Centre de Marcoule, 30207 Bagnols-sur-ceze (France); Physique des Mineraux et des Magmas, CNRS-IPGP, 4 place Jussieu, 75252 Paris Cedex05 (France); Neuville, D.R.; Richet, P. [Physique des Mineraux et des Magmas, CNRS-IPGP, 4 place Jussieu, 75252 Paris Cedex05 (France); Henderson, G.S. [Dept of Geology, University of Toronto, 22 Russell Street, Toronto (Canada); Pinet, O. [SCDV-Laboratoire d' Etudes de Base sur les Verres, CEA Valrho, Centre de Marcoule, 30207 Bagnols-sur-ceze (France)

    2008-07-01

    A method is presented to determine the redox ratio of iron in borosilicate glasses and melts relevant to nuclear waste storage from an analysis of Raman spectra recorded at room or high temperature. The basis of this method is the strong variation of the spectral feature observed between 800 and 1200 cm{sup -1}, in which it is possible to assign a band to vibrational modes involving ferric iron in tetrahedral coordination whose intensity increases with iron content and iron oxidation. After baseline correction and normalization, fits to the Raman spectra made with Gaussian bands enable us to determine the proportion of ferric iron provided the redox ratio is known independently for at least two redox states for a given glass composition. This method is particularly useful for in situ determinations of the kinetics and mechanisms of redox reactions. (authors)

  13. A Review of RedOx Cycling of Solid Oxide Fuel Cells Anode

    Directory of Open Access Journals (Sweden)

    Jan Van herle

    2012-08-01

    Full Text Available Solid oxide fuel cells are able to convert fuels, including hydrocarbons, to electricity with an unbeatable efficiency even for small systems. One of the main limitations for long-term utilization is the reduction-oxidation cycling (RedOx cycles of the nickel-based anodes. This paper will review the effects and parameters influencing RedOx cycles of the Ni-ceramic anode. Second, solutions for RedOx instability are reviewed in the patent and open scientific literature. The solutions are described from the point of view of the system, stack design, cell design, new materials and microstructure optimization. Finally, a brief synthesis on RedOx cycling of Ni-based anode supports for standard and optimized microstructures is depicted.

  14. Single-molecule conductivity of non-redox and redox molecules at pure and gold-mined Au(111)-electrode surfaces

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Ulstrup, Jens

    media supported by comprehensive theoretical frames, have emerged as core approaches in these exciting areas. Single-molecule redox electrochemistry is rooted in two major areas. One is the preparation of well-defined (atomically planar) electrode surfaces modified by molecular monolayers (SAMs). High...... to surface-mined Au-atoms. In addition the SAMs ensure protein/enzyme immobilization gentle enough that the proteins retain electron transfer or enzyme activity in a variety of local environments. The second area is the mapping and control of the immobilized redox molecules and metalloproteins themselves...

  15. Peroxiredoxin post-translational modifications by redox messengers

    Directory of Open Access Journals (Sweden)

    Sylvie Riquier

    2014-01-01

    Full Text Available Peroxiredoxins (Prxs are a family of thiol peroxidases that participate in hydroperoxide detoxification and regulates H2O2 signaling. In mammals, the four typical 2-Cys Prxs (Prxs 1, 2, 3 and 4 are known to regulate H2O2-mediated intracellular signaling. The 2 catalytic cysteines of 2-Cys Prxs, the so-called peroxidatic and resolving cysteines, are regulatory switches that are prone to react with redox signaling molecules. We investigated the respective modifications induced by H2O2, NO and H2S in the murine macrophage cell line RAW264.7 by mass spectrometry and immunoblotting after separating 2-Cys Prxs by one-dimensional or two-dimensional PAGE. We found that H2S, unlike NO, does not prevent H2O2-mediated sulfinylation of 2-Cys Prxs and that Prx2 is more sensitive to NO-mediated protection against sulfinylation by peroxides. We also observed that cells exposed to exogenous NO, released by Cys-SNO or DETA-NO, or producing NO upon stimulation by IFN-γ and LPS, present an acidic form of Prx1 whose modification is consistent with S-homocysteinylation of its peroxidatic cysteine.

  16. Electrical/optical dual-function redox potential transistor

    Science.gov (United States)

    Li, Shunpu; Wang, Wensi; Xu, Ju; Chu, Daping; Shen, Z. John; Roy, Saibal

    2013-01-01

    We demonstrate a new type of transistors, the electrical/optical “dual-function redox-potential transistors”, which is solution processable and environmentally stable. This device consists of vertically staked electrodes that act as gate, emitter and collector. It can perform as a normal transistor, whilst one electrode which is sensitised by dye enables to generate photocurrent when illuminated. Solution processable oxide-nanoparticles were used to form various functional layers, which allow an electrolyte to penetrate through and, consequently, the current between emitter and collector can be controlled by the gate potential modulated distribution of ions. The result here shows that the device performs with high ON-current under low driving voltage (transistor performance can readily be controlled by photo-illumination. Such device with combined optical and electrical functionalities allows single device to perform the tasks that are usually done by a circuit/system with multiple optical and electrical components, and it is promising for various applications. PMID:24310311

  17. Redox-influenced seismic properties of upper-mantle olivine

    Science.gov (United States)

    Cline, C. J., II; Faul, U. H.; David, E. C.; Berry, A. J.; Jackson, I.

    2018-03-01

    Lateral variations of seismic wave speeds and attenuation (dissipation of strain energy) in the Earth’s upper mantle have the potential to map key characteristics such as temperature, major-element composition, melt fraction and water content. The inversion of these data into meaningful representations of physical properties requires a robust understanding of the micromechanical processes that affect the propagation of seismic waves. Structurally bound water (hydroxyl) is believed to affect seismic properties but this has yet to be experimentally quantified. Here we present a comprehensive low-frequency forced-oscillation assessment of the seismic properties of olivine as a function of water content within the under-saturated regime that is relevant to the Earth’s interior. Our results demonstrate that wave speeds and attenuation are in fact strikingly insensitive to water content. Rather, the redox conditions imposed by the choice of metal sleeving, and the associated defect chemistry, appear to have a substantial influence on the seismic properties. These findings suggest that elevated water contents are not responsible for low-velocity or high-attenuation structures in the upper mantle. Instead, the high attenuation observed in hydrous and oxidized regions of the upper mantle (such as above subduction zones) may reflect the prevailing oxygen fugacity. In addition, these data provide no support for the hypothesis whereby a sharp lithosphere–asthenosphere boundary is explained by enhanced grain boundary sliding in the presence of water.

  18. Redox-influenced seismic properties of upper-mantle olivine.

    Science.gov (United States)

    Cline Ii, C J; Faul, U H; David, E C; Berry, A J; Jackson, I

    2018-03-14

    Lateral variations of seismic wave speeds and attenuation (dissipation of strain energy) in the Earth's upper mantle have the potential to map key characteristics such as temperature, major-element composition, melt fraction and water content. The inversion of these data into meaningful representations of physical properties requires a robust understanding of the micromechanical processes that affect the propagation of seismic waves. Structurally bound water (hydroxyl) is believed to affect seismic properties but this has yet to be experimentally quantified. Here we present a comprehensive low-frequency forced-oscillation assessment of the seismic properties of olivine as a function of water content within the under-saturated regime that is relevant to the Earth's interior. Our results demonstrate that wave speeds and attenuation are in fact strikingly insensitive to water content. Rather, the redox conditions imposed by the choice of metal sleeving, and the associated defect chemistry, appear to have a substantial influence on the seismic properties. These findings suggest that elevated water contents are not responsible for low-velocity or high-attenuation structures in the upper mantle. Instead, the high attenuation observed in hydrous and oxidized regions of the upper mantle (such as above subduction zones) may reflect the prevailing oxygen fugacity. In addition, these data provide no support for the hypothesis whereby a sharp lithosphere-asthenosphere boundary is explained by enhanced grain boundary sliding in the presence of water.

  19. Redox reaction and foaming in nuclear waste glass melting

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J.L.

    1995-08-01

    This document was prepared by Pacific Northwest Laboratory (PNL) and is an attempt to analyze and estimate the effects of feed composition variables and reducing agent variables on the expected chemistry of reactions occurring in the cold cap and in the glass melt in the nuclear waste glass Slurry-fed, joule-heated melters as they might affect foaming during the glass-making process. Numerous redox reactions of waste glass components and potential feed additives, and the effects of other feed variables on these reactions are reviewed with regard to their potential effect on glass foaming. A major emphasis of this report is to examine the potential positive or negative aspects of adjusting feed with formic acid as opposed to other feed modification techniques including but not limited to use of other reducing agents. Feed modification techniques other than the use of reductants that should influence foaming behavior include control of glass melter feed pH through use of nitric acid. They also include partial replacement of sodium salts by lithium salts. This latter action (b) apparently lowers glass viscosity and raises surface tension. This replacement should decrease foaming by decreasing foam stability.

  20. Engineering an NADPH/NADP+ Redox Biosensor in Yeast

    DEFF Research Database (Denmark)

    Zhang, Jie; Sonnenschein, Nikolaus; Pihl, Thomas Peter Boye

    2016-01-01

    Genetically encoded biosensors have emerged as powerful tools for timely and precise in vivo evaluation of cellular metabolism. In particular, biosensors that can couple intercellular cues with downstream signaling responses are currently attracting major attention within health science and biote......Genetically encoded biosensors have emerged as powerful tools for timely and precise in vivo evaluation of cellular metabolism. In particular, biosensors that can couple intercellular cues with downstream signaling responses are currently attracting major attention within health science...... and biotechnology. Still, there is a need for bioprospecting and engineering of more biosensors to enable real-time monitoring of specific cellular states and controlling downstream actuation. In this study, we report the engineering and application of a transcription factor-based NADPH/NADP+ redox biosensor...... in the budding yeast Saccharomyces cerevisiae. Using the biosensor, we are able to monitor the cause of oxidative stress by chemical induction, and changes in NADPH/NADP+ ratios caused by genetic manipulations. Because of the regulatory potential of the biosensor, we also show that the biosensor can actuate upon...

  1. Stress-triggered redox signalling: what's in pROSpect?

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2016-05-01

    Reactive oxygen species (ROS) have a profound influence on almost every aspect of plant biology. Here, we emphasize the fundamental, intimate relationships between light-driven reductant formation, ROS, and oxidative stress, together with compartment-specific differences in redox buffering and the perspectives for their analysis. Calculations of approximate H2 O2 concentrations in the peroxisomes are provided, and based on the likely values in other locations such as chloroplasts, we conclude that much of the H2 O2 detected in conventional in vitro assays is likely to be extracellular. Within the context of scant information on ROS perception mechanisms, we consider current knowledge, including possible parallels with emerging information on oxygen sensing. Although ROS can sometimes be signals for cell death, we consider that an equally important role is to transmit information from metabolism to allow appropriate cellular responses to developmental and environmental changes. Our discussion speculates on novel sensing mechanisms by which this could happen and how ROS could be counted by the cell, possibly as a means of monitoring metabolic flux. Throughout, we place emphasis on the positive effects of ROS, predicting that in the coming decades they will increasingly be defined as hallmarks of viability within a changing and challenging environment. © 2015 John Wiley & Sons Ltd.

  2. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling.

    Science.gov (United States)

    Foyer, Christine H; Bloom, Arnold J; Queval, Guillaume; Noctor, Graham

    2009-01-01

    Photorespiration is a high-flux pathway that operates alongside carbon assimilation in C(3) plants. Because most higher plant species photosynthesize using only the C(3) pathway, photorespiration has a major impact on cellular metabolism, particularly under high light, high temperatures, and CO(2) or water deficits. Although the functions of photorespiration remain controversial, it is widely accepted that this pathway influences a wide range of processes from bioenergetics, photosystem II function, and carbon metabolism to nitrogen assimilation and respiration. Crucially, the photorespiratory pathway is a major source of H(2)O(2) in photosynthetic cells. Through H(2)O(2) production and pyridine nucleotide interactions, photorespiration makes a key contribution to cellular redox homeostasis. In so doing, it influences multiple signaling pathways, particularly those that govern plant hormonal responses controlling growth, environmental and defense responses, and programmed cell death. The potential influence of photorespiration on cell physiology and fate is thus complex and wide ranging. The genes, pathways, and signaling functions of photorespiration are considered here in the context of whole plant biology, with reference to future challenges and human interventions to diminish photorespiratory flux.

  3. Mouse models for preeclampsia: disruption of redox-regulated signaling

    Directory of Open Access Journals (Sweden)

    Chambers Anne E

    2009-01-01

    Full Text Available Abstract The concept that oxidative stress contributes to the development of human preeclampsia has never been tested in genetically-defined animal models. Homozygous deletion of catechol-O-methyl transferase (Comt-/- in pregnant mice leads to human preeclampsia-like symptoms (high blood pressure, albuminurea and preterm birth resulting from extensive vasculo-endothelial pathology, primarily at the utero-fetal interface where maternal cardiac output is dramatically increased during pregnancy. Comt converts estradiol to 2-methoxyestradiol 2 (2ME2 which counters angiogenesis by depleting hypoxia inducible factor-1 alpha (HIF-1 alpha at late pregnancy. We propose that in wild type (Comt++ pregnant mice, 2ME2 destabilizes HIF-1 alpha by inhibiting mitochondrial superoxide dismutase (MnSOD. Thus, 2ME2 acts as a pro-oxidant, disrupting redox-regulated signaling which blocks angiogenesis in wild type (WT animals in physiological pregnancy. Further, we suggest that a lack of this inhibition under normoxic conditions in mutant animals (Comt-/- stabilises HIF-1 alpha by inactivating prolyl hydroxlases (PHD. We predict that a lack of inhibition of MnSOD, leading to persistent accumulation of HIF-1 alpha, would trigger inflammatory infiltration and endothelial damage in mutant animals. Critical tests of this hypothesis would be to recreate preeclampsia symptoms by inducing oxidative stress in WT animals or to ameliorate by treating mutant mice with Mn-SOD-catalase mimetics or activators of PHD.

  4. Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction

    Directory of Open Access Journals (Sweden)

    Víctor M. Castaño

    2013-03-01

    Full Text Available Carbon nanostructures have played an important role in creating a new field of materials based on carbon. Chemical modification of carbon nanostructures through grafting has been a successful step to improve dispersion and compatibility in solvents, with biomolecules and polymers to form nanocomposites. In this sense carbohydrates such as chitosan are extremely valuable because their functional groups play an important role in diversifying the applications of carbon nanomaterials. This paper reports the covalent attachment of chitosan onto graphene oxide, taking advantage of this carbohydrate at the nanometric level. Grafting is an innovative route to modify properties of graphene, a two-dimensional nanometric arrangement, which is one of the most novel and promising nanostructures. Chitosan grafting was achieved by redox reaction using different temperature conditions that impact on the morphology and features of graphene oxide sheets. Transmission Electron Microscopy, Fourier Transform Infrared, Raman and Energy Dispersive spectroscopies were used to study the surface of chitosan-grafted-graphene oxide. Results show a successful modification indicated by the functional groups found in the grafted material. Dispersions of chitosan-grafted-graphene oxide samples in water and hexane revealed different behavior due to the chemical groups attached to the graphene oxide sheet.

  5. Activity of Redox Enzymes in the Thallus of Anthoceros natalensis.

    Science.gov (United States)

    Chasov, A V; Beckett, R P; Minibayeva, F V

    2015-09-01

    Anthocerotophyta (hornworts) belong to a group of ancient nonvascular plants and originate from a common ancestor with contemporary vascular plants. Hornworts represent a unique model for investigating mechanisms of formation of stress resistance in higher plants due to their high tolerance to the action of adverse environmental factors. In this work, we demonstrate that the thallus of Anthoceros natalensis exhibits high redox activity changing under stress. Dehydration of the thallus is accompanied by the decrease in activities of intracellular peroxidases, DOPA-peroxidases, and tyrosinases, while catalase activity increases. Subsequent rehydration results in the increase in peroxidase and catalase activities. Kinetic features of peroxidases and tyrosinases were characterized as well as the peroxidase isoenzyme composition of different fractions of the hornwort cell wall proteins. It was shown that the hornwort peroxidases are functionally similar to peroxidases of higher vascular plants including their ability to form superoxide anion-radical. The biochemical mechanism was elucidated, supporting the possible participation of peroxidases in the formation of reactive oxygen species (ROS) via substrate-substrate interactions in the hornwort thallus. It has been suggested that the ROS formation by peroxidases is an evolutionarily ancient process that emerged as a protective mechanism for enhancing adaptive responses of higher land plants and their adaptation to changing environmental conditions and successful colonization of various ecological niches.

  6. Gold Nanofilm Redox Catalysis for Oxygen Reduction at Soft Interfaces

    International Nuclear Information System (INIS)

    Smirnov, Evgeny; Peljo, Pekka; Scanlon, Micheál D.; Girault, Hubert H.

    2016-01-01

    ABSTRACT: Functionalization of a soft or liquid-liquid interface by a one gold nanoparticle thick “nanofilm” provides a conductive pathway to facilitate interfacial electron transfer from a lipophilic electron donor to a hydrophilic electron acceptor in a process known as interfacial redox catalysis. The gold nanoparticles in the nanofilm are charged by Fermi level equilibration with the lipophilic electron donor and act as an interfacial reservoir of electrons. Additional thermodynamic driving force can be provided by electrochemically polarising the interface. Using these principles, the biphasic reduction of oxygen by a lipophilic electron donor, decamethylferrocene, dissolved in α,α,α-trifluorotoluene was catalysed at a gold nanoparticle nanofilm modified water-oil interface. A recently developed microinjection technique was utilised to modify the interface reproducibly with the mirror-like gold nanoparticle nanofilm, while the oxidised electron donor species and the reduction product, hydrogen peroxide, were detected by ion transfer voltammetry and UV/vis spectroscopy, respectively. Metallization of the soft interface allowed the biphasic oxygen reduction reaction to proceed via an alternative mechanism with enhanced kinetics and at a significantly lower overpotential in comparison to a bare soft interface. Weaker lipophilic reductants, such as ferrocene, were capable of charging the interfacial gold nanoparticle nanofilm but did not have sufficient thermodynamic driving force to significantly elicit biphasic oxygen reduction.

  7. Redox-sensing iron-sulfur cluster regulators.

    Science.gov (United States)

    Crack, Jason C; Le Brun, Nick E

    2017-12-07

    Iron-sulfur cluster proteins carry out a wide range of functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters towards small/redox active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial re-programming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances. Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high resolution structural data. Though this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.

  8. Sb(V) reactivity with human blood components: redox effects.

    Science.gov (United States)

    López, Silvana; Aguilar, Luis; Mercado, Luis; Bravo, Manuel; Quiroz, Waldo

    2015-01-01

    We assessed the reactivity of Sb(V) in human blood. Sb(V) reactivity was determined using an HPLC-HG-AFS hyphenated system. Sb(V) was partially reduced to Sb(III) in blood incubation experiments; however, Sb(III) was a highly unstable species. The addition of 0.1 mol L(-1) EDTA prevented Sb(III) oxidation, thus enabling the detection of the reduction of Sb(V) to Sb(III). The transformation of Sb(V) to Sb(III) in human whole blood was assessed because the reduction of Sb(V) in human blood may likely generate redox side effects. Our results indicate that glutathione was the reducing agent in this reaction and that Sb(V) significantly decreased the GSH/GSSG ratio from 0.32 ± 0.09 to 0.07 ± 0.03. Moreover, the presence of 200 ng mL(-1) of Sb(V) increased the activity of superoxide dismutase from 4.4 ± 0.1 to 7.0 ± 0.4 U mL(-1) and decreased the activity of glutathione peroxidase from 62 ± 1 to 34 ± 2 nmol min(-1) mL(-1).

  9. Sb(V reactivity with human blood components: redox effects.

    Directory of Open Access Journals (Sweden)

    Silvana López

    Full Text Available We assessed the reactivity of Sb(V in human blood. Sb(V reactivity was determined using an HPLC-HG-AFS hyphenated system. Sb(V was partially reduced to Sb(III in blood incubation experiments; however, Sb(III was a highly unstable species. The addition of 0.1 mol L(-1 EDTA prevented Sb(III oxidation, thus enabling the detection of the reduction of Sb(V to Sb(III. The transformation of Sb(V to Sb(III in human whole blood was assessed because the reduction of Sb(V in human blood may likely generate redox side effects. Our results indicate that glutathione was the reducing agent in this reaction and that Sb(V significantly decreased the GSH/GSSG ratio from 0.32 ± 0.09 to 0.07 ± 0.03. Moreover, the presence of 200 ng mL(-1 of Sb(V increased the activity of superoxide dismutase from 4.4 ± 0.1 to 7.0 ± 0.4 U mL(-1 and decreased the activity of glutathione peroxidase from 62 ± 1 to 34 ± 2 nmol min(-1 mL(-1.

  10. Redox-controlled proton gating in bovine cytochrome c oxidase.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Egawa

    Full Text Available Cytochrome c oxidase is the terminal enzyme in the electron transfer chain of essentially all organisms that utilize oxygen to generate energy. It reduces oxygen to water and harnesses the energy to pump protons across the mitochondrial membrane in eukaryotes and the plasma membrane in prokaryotes. The mechanism by which proton pumping is coupled to the oxygen reduction reaction remains unresolved, owing to the difficulty of visualizing proton movement within the massive membrane-associated protein matrix. Here, with a novel hydrogen/deuterium exchange resonance Raman spectroscopy method, we have identified two critical elements of the proton pump: a proton loading site near the propionate groups of heme a, which is capable of transiently storing protons uploaded from the negative-side of the membrane prior to their release into the positive side of the membrane and a conformational gate that controls proton translocation in response to the change in the redox state of heme a. These findings form the basis for a postulated molecular model describing a detailed mechanism by which unidirectional proton translocation is coupled to electron transfer from heme a to heme a 3, associated with the oxygen chemistry occurring in the heme a 3 site, during enzymatic turnover.

  11. Biomimetic Membranes for Multi-Redox Center Proteins

    Directory of Open Access Journals (Sweden)

    Renate L. C. Naumann

    2016-03-01

    Full Text Available His-tag technology was applied for biosensing purposes involving multi-redox center proteins (MRPs. An overview is presented on various surfaces ranging from flat to spherical and modified with linker molecules with nitrile-tri-acetic acid (NTA terminal groups to bind his-tagged proteins in a strict orientation. The bound proteins are submitted to in situ dialysis in the presence of lipid micelles to form a so-called protein-tethered bilayer lipid membrane (ptBLM. MRPs, such as the cytochrome c oxidase (CcO from R. sphaeroides and P. denitrificans, as well as photosynthetic reactions centers (RCs from R. sphaeroides, were thus investigated. Electrochemical and surface-sensitive optical techniques, such as surface plasmon resonance, surface plasmon-enhanced fluorescence, surface-enhanced infrared absorption spectroscopy (SEIRAS and surface-enhanced resonance Raman spectroscopy (SERRS, were employed in the case of the ptBLM structure on flat surfaces. Spherical particles ranging from µm size agarose gel beads to nm size nanoparticles modified in a similar fashion were called proteo-lipobeads (PLBs. The particles were investigated by laser-scanning confocal fluorescence microscopy (LSM and UV/Vis spectroscopy. Electron and proton transfer through the proteins were demonstrated to take place, which was strongly affected by the membrane potential. MRPs can thus be used for biosensing purposes under quasi-physiological conditions.

  12. Ediacaran Marine Redox Heterogeneity and Early Animal Ecosystems

    Science.gov (United States)

    Li, Chao; Planavsky, Noah J.; Shi, Wei; Zhang, Zihu; Zhou, Chuanming; Cheng, Meng; Tarhan, Lidya G.; Luo, Genming; Xie, Shucheng

    2015-11-01

    Oxygenation has widely been viewed as a major factor driving the emergence and diversification of animals. However, links between early animal evolution and shifts in surface oxygen levels have largely been limited to extrapolation of paleoredox conditions reconstructed from unfossiliferous strata to settings in which contemporaneous fossils were preserved. Herein, we present a multi-proxy paleoredox study of late Ediacaran (ca. 560-551 Ma) shales hosting the Miaohe Konservat-Lagerstätte of South China and, for comparison, equivalent non-fossil-bearing shales at adjacent sections. For the fossiliferous strata at Miaohe there is geochemical evidence for anoxic conditions, but paleontological evidence for at least episodically oxic conditions. An oxygen-stressed environment is consistent with the low diversity and simple morphology of Miaohe Biota macrofossils. However, there is no evidence for euxinic (anoxic and sulphidic) conditions for the fossiliferous strata at Miaohe, in contrast to adjacent unfossiliferous sections. Our results indicate that Ediacaran marine redox chemistry was highly heterogeneous, even at the kilometre-scale. Therefore, our study provides direct—rather than inferred—evidence that anoxia played a role in shaping a landmark Ediacaran ecosystem. If the anoxic conditions characteristic of the studied sections were widespread in the late Neoproterozoic, environmental stress would have hindered the development of complex ecosystems.

  13. Molecular chaperones and proteostasis regulation during redox imbalance☆

    Science.gov (United States)

    Niforou, Katerina; Cheimonidou, Christina; Trougakos, Ioannis P.

    2014-01-01

    Free radicals originate from both exogenous environmental sources and as by-products of the respiratory chain and cellular oxygen metabolism. Sustained accumulation of free radicals, beyond a physiological level, induces oxidative stress that is harmful for the cellular homeodynamics as it promotes the oxidative damage and stochastic modification of all cellular biomolecules including proteins. In relation to proteome stability and maintenance, the increased concentration of oxidants disrupts the functionality of cellular protein machines resulting eventually in proteotoxic stress and the deregulation of the proteostasis (homeostasis of the proteome) network (PN). PN curates the proteome in the various cellular compartments and the extracellular milieu by modulating protein synthesis and protein machines assembly, protein recycling and stress responses, as well as refolding or degradation of damaged proteins. Molecular chaperones are key players of the PN since they facilitate folding of nascent polypeptides, as well as holding, folding, and/or degradation of unfolded, misfolded, or non-native proteins. Therefore, the expression and the activity of the molecular chaperones are tightly regulated at both the transcriptional and post-translational level at organismal states of increased oxidative and, consequently, proteotoxic stress, including ageing and various age-related diseases (e.g. degenerative diseases and cancer). In the current review we present a synopsis of the various classes of intra- and extracellular chaperones, the effects of oxidants on cellular homeodynamics and diseases and the redox regulation of chaperones. PMID:24563850

  14. Molecular chaperones and proteostasis regulation during redox imbalance.

    Science.gov (United States)

    Niforou, Katerina; Cheimonidou, Christina; Trougakos, Ioannis P

    2014-01-01

    Free radicals originate from both exogenous environmental sources and as by-products of the respiratory chain and cellular oxygen metabolism. Sustained accumulation of free radicals, beyond a physiological level, induces oxidative stress that is harmful for the cellular homeodynamics as it promotes the oxidative damage and stochastic modification of all cellular biomolecules including proteins. In relation to proteome stability and maintenance, the increased concentration of oxidants disrupts the functionality of cellular protein machines resulting eventually in proteotoxic stress and the deregulation of the proteostasis (homeostasis of the proteome) network (PN). PN curates the proteome in the various cellular compartments and the extracellular milieu by modulating protein synthesis and protein machines assembly, protein recycling and stress responses, as well as refolding or degradation of damaged proteins. Molecular chaperones are key players of the PN since they facilitate folding of nascent polypeptides, as well as holding, folding, and/or degradation of unfolded, misfolded, or non-native proteins. Therefore, the expression and the activity of the molecular chaperones are tightly regulated at both the transcriptional and post-translational level at organismal states of increased oxidative and, consequently, proteotoxic stress, including ageing and various age-related diseases (e.g. degenerative diseases and cancer). In the current review we present a synopsis of the various classes of intra- and extracellular chaperones, the effects of oxidants on cellular homeodynamics and diseases and the redox regulation of chaperones.

  15. Molecular chaperones and proteostasis regulation during redox imbalance

    Directory of Open Access Journals (Sweden)

    Katerina Niforou

    2014-01-01

    Full Text Available Free radicals originate from both exogenous environmental sources and as by-products of the respiratory chain and cellular oxygen metabolism. Sustained accumulation of free radicals, beyond a physiological level, induces oxidative stress that is harmful for the cellular homeodynamics as it promotes the oxidative damage and stochastic modification of all cellular biomolecules including proteins. In relation to proteome stability and maintenance, the increased concentration of oxidants disrupts the functionality of cellular protein machines resulting eventually in proteotoxic stress and the deregulation of the proteostasis (homeostasis of the proteome network (PN. PN curates the proteome in the various cellular compartments and the extracellular milieu by modulating protein synthesis and protein machines assembly, protein recycling and stress responses, as well as refolding or degradation of damaged proteins. Molecular chaperones are key players of the PN since they facilitate folding of nascent polypeptides, as well as holding, folding, and/or degradation of unfolded, misfolded, or non-native proteins. Therefore, the expression and the activity of the molecular chaperones are tightly regulated at both the transcriptional and post-translational level at organismal states of increased oxidative and, consequently, proteotoxic stress, including ageing and various age-related diseases (e.g. degenerative diseases and cancer. In the current review we present a synopsis of the various classes of intra- and extracellular chaperones, the effects of oxidants on cellular homeodynamics and diseases and the redox regulation of chaperones.

  16. Sulfa Drugs Inhibit Sepiapterin Reduction and Chemical Redox Cycling by Sepiapterin Reductase

    Science.gov (United States)

    Yang, Shaojun; Jan, Yi-Hua; Mishin, Vladimir; Richardson, Jason R.; Hossain, Muhammad M.; Heindel, Ned D.; Heck, Diane E.; Laskin, Debra L.

    2015-01-01

    Sepiapterin reductase (SPR) catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4), a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism. SPR also mediates chemical redox cycling, catalyzing one-electron reduction of redox-active chemicals, including quinones and bipyridinium herbicides (e.g., menadione, 9,10-phenanthrenequinone, and diquat); rapid reaction of the reduced radicals with molecular oxygen generates reactive oxygen species (ROS). Using recombinant human SPR, sulfonamide- and sulfonylurea-based sulfa drugs were found to be potent noncompetitive inhibitors of both sepiapterin reduction and redox cycling. The most potent inhibitors of sepiapterin reduction (IC50s = 31–180 nM) were sulfasalazine, sulfathiazole, sulfapyridine, sulfamethoxazole, and chlorpropamide. Higher concentrations of the sulfa drugs (IC50s = 0.37–19.4 μM) were required to inhibit redox cycling, presumably because of distinct mechanisms of sepiapterin reduction and redox cycling. In PC12 cells, which generate catecholamine and monoamine neurotransmitters via BH4-dependent amino acid hydroxylases, sulfa drugs inhibited both BH2/BH4 biosynthesis and redox cycling mediated by SPR. Inhibition of BH2/BH4 resulted in decreased production of dopamine and dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 5-hydroxytryptamine. Sulfathiazole (200 μM) markedly suppressed neurotransmitter production, an effect reversed by BH4. These data suggest that SPR and BH4-dependent enzymes, are “off-targets” of sulfa drugs, which may underlie their untoward effects. The ability of the sulfa drugs to inhibit redox cycling may ameliorate ROS-mediated toxicity generated by redox active drugs and chemicals, contributing to their anti-inflammatory activity. PMID:25550200

  17. Methods of simulating low redox potential (Eh) for a basalt repository

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1983-01-01

    Basalt groundwaters have inherently low redox potentials, approximately -0.4V, which can be measured with platinum electrodes, but are difficult to reproduce during leaching experiments. In the presence of deionized water, crushed basalt reaches the measured Eh-pH values of a basalt repository. Other waste package components, such as iron, will interact with groundwater in different ways under oxic or anoxic conditions since the presence of any redox active solid will affect the groundwater Eh. 26 references, 4 figures

  18. Selenium redox biochemistry of zinc–sulfur coordination sites in proteins and enzymes

    OpenAIRE

    Jacob, Claus; Maret, Wolfgang; Vallee, Bert L.

    1999-01-01

    Selenium has been increasingly recognized as an essential element in biology and medicine. Its biochemistry resembles that of sulfur, yet differs from it by virtue of both redox potentials and stabilities of its oxidation states. Selenium can substitute for the more ubiquitous sulfur of cysteine and as such plays an important role in more than a dozen selenoproteins. We have chosen to examine zinc–sulfur centers as possible targets of selenium redox biochemistry. Selenium compounds release zi...

  19. Redox state and energy metabolism during liver regeneration: alterations produced by acute ethanol administration.

    Science.gov (United States)

    Gutiérrez-Salinas, J; Miranda-Garduño, L; Trejo-Izquierdo, E; Díaz-Muñoz, M; Vidrio, S; Morales-González, J A; Hernández-Muñoz, R

    1999-12-01

    Ethanol metabolism can induce modifications in liver metabolic pathways that are tightly regulated through the availability of cellular energy and through the redox state. Since partial hepatectomy (PH)-induced liver proliferation requires an oversupply of energy for enhanced syntheses of DNA and proteins, the present study was aimed at evaluating the effect of acute ethanol administration on the PH-induced changes in cellular redox and energy potentials. Ethanol (5 g/kg body weight) was administered to control rats and to two-thirds hepatectomized rats. Quantitation of the liver content of lactate, pyruvate, beta-hydroxybutyrate, acetoacetate, and adenine nucleotides led us to estimate the cytosolic and mitochondrial redox potentials and energy parameters. Specific activities in the liver of alcohol-metabolizing enzymes also were measured in these animals. Liver regeneration had no effect on cellular energy availability, but induced a more reduced cytosolic redox state accompanied by an oxidized mitochondrial redox state during the first 48 hr of treatment; the redox state normalized thereafter. Administration of ethanol did not modify energy parameters in PH rats, but this hepatotoxin readily blocked the PH-induced changes in the cellular redox state. In addition, proliferating liver promoted decreases in the activity of alcohol dehydrogenase (ADH) and of cytochrome P4502E1 (CYP2E1); ethanol treatment prevented the PH-induced diminution of ADH activity. In summary, our data suggest that ethanol could minimize the PH-promoted metabolic adjustments mediated by redox reactions, probably leading to an ineffective preparatory event that culminates in compensatory liver growth after PH in the rat.

  20. The met axial ligand determines the redox potential in Cu-A sites

    DEFF Research Database (Denmark)

    Ledesma, G.N.; Murgida, D.H.; Ly, H.K.

    2007-01-01

    The replacement of the axial methionine ligand in a native Cu-A protein rendered a series of stable mutants with spectroscopic features of a mixed valence center. The mutations resulted in minor perturbations of the electronic structure of this site but led to significant changes in the redox...... potential. This suggests that the axial ligand plays a role in tuning the redox potential Of Cu-A, resembling the behavior observed in blue copper sites....

  1. Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Parhamifar, Ladan; Lange, Marina Krarup

    2015-01-01

    demonstrate that the central mechanisms of PEI architecture- and size-dependent perturbations of integrated cellular metabolomics involve destabilization of plasma membrane and mitochondrial membranes with consequences on mitochondrial oxidative phosphorylation (OXPHOS), glycolytic flux and redox homeostasis...... architectures caused a greater lactate dehydrogenase (LDH) and ATP depletion, activated AMP kinase (AMPK) and disturbed redox homeostasis through diminished availability of nicotinamide adenine dinucleotide phosphate (NADPH), reduced antioxidant capacity of glutathione (GSH) and increased burden of reactive...

  2. Green fluorescent protein based indicators of dynamic redox changes and reactive oxygen species

    OpenAIRE

    Dooley, Colette

    2006-01-01

    Alterations in the redox equilibrium are precipitated by changing either the glutathione/glutathione-disulfide ratio (GSH/GSSG) and/or the reduced/oxidized thioredoxin ratio. Redox-sensitive green fluorescent proteins (GFP) allow real time visualization of the oxidation state of the indicator while canceling out the amount of indicator and the absolute optical sensitivity. Because the indicator is genetically encoded, it can be targeted to specific proteins or organelles of interest and expre...

  3. Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations

    Directory of Open Access Journals (Sweden)

    V. Naudet

    2004-01-01

    Full Text Available Accurate mapping of the electrical conductivity and of the redox potential of the groundwater is important in delineating the shape of a contaminant plume. A map of redox potential in an aquifer is indicative of biodegradation of organic matter and of concentrations of redox-active components; a map of electrical conductivity provides information on the mineralisation of the groundwater. Both maps can be used to optimise the position of pumping wells for remediation. The self-potential method (SP and electrical resistivity tomography (ERT have been applied to the contaminant plume associated with the Entressen landfill in south-east France. The self-potential depends on groundwater flow (electrokinetic contribution and redox conditions ('electro-redox' contribution. Using the variation of the piezometric head in the aquifer, the electrokinetic contribution is removed from the SP signals. A good linear correlation (R2=0.85 is obtained between the residual SP data and the redox potential values measured in monitoring wells. This relationship is used to draw a redox potential map of the overall contaminated site. The electrical conductivity of the subsoil is obtained from 3D-ERT analysis. A good linear correlation (R2=0.91 is observed between the electrical conductivity of the aquifer determined from the 3D-ERT image and the conductivity of the groundwater measured in boreholes. This indicates that the formation factor is nearly homogeneous in the shallow aquifer at the scale of the ERT. From this correlation, a map of the pore water conductivity of the aquifer is obtained. Keywords: self-potential, redox potential, electrical resistivity tomography, fluid conductivity, contaminant plume

  4. Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status.

    Science.gov (United States)

    Ostrander, Julie Hanson; McMahon, Christine M; Lem, Siya; Millon, Stacy R; Brown, J Quincy; Seewaldt, Victoria L; Ramanujam, Nimmi

    2010-06-01

    Autofluorescence spectroscopy is a powerful imaging technique that exploits endogenous fluorophores. The endogenous fluorophores NADH and flavin adenine dinucleotide (FAD) are two of the principal electron donors and acceptors in cellular metabolism, respectively. The optical oxidation-reduction (redox) ratio is a measure of cellular metabolism and can be determined by the ratio of NADH/FAD. We hypothesized that there would be a significant difference in the optical redox ratio of normal mammary epithelial cells compared with breast tumor cell lines and that estrogen receptor (ER)-positive cells would have a higher redox ratio than ER-negative cells. To test our hypothesis, the optical redox ratio was determined by collecting the fluorescence emission for NADH and FAD via confocal microscopy. We observed a statistically significant increase in the optical redox ratio of cancer compared with normal cell lines (P < 0.05). Additionally, we observed a statistically significant increase in the optical redox ratio of ER(+) breast cancer cell lines. The level of ESR1 expression, determined by real-time PCR, directly correlated with the optical redox ratio (Pearson's correlation coefficient = 0.8122, P = 0.0024). Furthermore, treatment with tamoxifen and ICI 182,870 statistically decreased the optical redox ratio of only ER(+) breast cancer cell lines. The results of this study raise the important possibility that fluorescence spectroscopy can be used to identify subtypes of breast cancer based on receptor status, monitor response to therapy, or potentially predict response to therapy. This source of optical contrast could be a potentially useful tool for drug screening in preclinical models. Copyright 2010 AACR.

  5. Theoretical and experimental prediction of the redox potentials of metallocene compounds

    Science.gov (United States)

    Li, Ya-Ping; Liu, Hai-Bo; Liu, Tao; Yu, Zhang-Yu

    2017-11-01

    The standard redox electrode potential ( E°) values of metallocene compounds are obtained theoretically with density functional theory (DFT) method at B3LYP/6-311++G( d, p) level and experimentally with cyclic voltammetry (CV). The theoretical E° values of metallocene compounds are in good agreement with experimental ones. We investigate the substituent effects on the redox properties of metallocene compounds. Among the four metallocene compounds, the E° values is largest for titanocene dichloride and smallest for ferrocene.

  6. Redox cycling performance of inert-substrate-supported tubular single cells with nickel anode current collector

    Science.gov (United States)

    Zhao, Kai; Kim, Bok-Hee; Xu, Qing; Du, Yanhai; Ahn, Byung-Guk

    2015-10-01

    An inert-substrate-supported tubular single cell, with a configuration of porous yttria-stabilized zirconia (YSZ) supporter/Ni anode current collector/Ni-Ce0.8Sm0.2O1.9 anode/YSZ/Ce0.8Sm0.2O1.9 bi-layer electrolyte/La0.6Sr0.4Co0.2Fe0.8O3-δ cathode, has been fabricated by extrusion and dip-coating techniques. Thickness of the Ni layer is modified by controlling the number of dip-coatings from one to four. Electrochemical performance and redox cycling stability of the single cell are investigated with respect to the microstructure of the Ni layer. Increasing the thickness of the Ni layer enhances the maximum power density of the cell, while it is unfavorable for the redox cycling stability. Considering the trade-off between these two aspects, an optimum dip-coating time is determined to be two. The cell shows a reasonable maximum power density of 453 mW cm-2 at 800 °C, as well as good redox cycling stability within eight redox cycles. Additionally, 10 vol.% Ce0.8Sm0.2O1.9 ceramic particle is incorporated into the Ni layer to further improve the redox cycling stability. The cell exhibits enhanced redox cycling performance after the Ce0.8Sm0.2O1.9 incorporation. Within seven redox cycles, the cell voltage loss is less than 1% at a current density of 400 mA cm-2, and it maintains 93% of its initial performance after 11 redox cycles.

  7. Redox Nano-Architectures: Perspectives and Implications in Diagnosis and Treatment of Human Diseases.

    Science.gov (United States)

    Sufi, Shamim Akhtar; Pajaniradje, Sankar; Mukherjee, Victor; Rajagopalan, Rukkumani

    2018-03-02

    Efficient targeted therapy with minimal side-effects is the need of the hour. Locally altered redox state is observed in several human ailments, such as inflammation, sepsis, and cancer. This has been taken advantage of in designing redox-responsive nanodrug carriers. Redox-responsive nanosystems open a door to a multitude of possibilities for the control of diseases over other drug delivery systems. Recent Advances: The first-generation nanotherapy relies on novel properties of nanomaterials to shield the drug and deliver it to the diseased tissue or organ. The second generation is based on targeting the drug or diagnostic material to the diseased cell-specific receptors, or to a particular organ to improve the efficacy of the drug. The third and the latest generation of nanocarriers, the stimuli-responsive nanocarriers exploit the disease condition or environment to specifically deliver the drug or diagnostic probe for the best diagnosis and treatment. Several different kinds of stimuli such as temperature, magnetic field, pH, and altered redox state-responsive nanosystems have educed immense promise in the field of nanomedicine and therapy. We describe the evolution of nanomaterial since its inception with an emphasis on stimuli-responsive nanocarriers, especially redox-sensitive nanocarriers. Importantly, we discuss the future perspectives of redox-responsive nanocarriers and their implications. Redox-responsive nanocarriers achieve a near-to-zero premature release of the drug, thus avoiding off-site toxicity associated with the free drug. This bears great potential for the development of more effective drug delivery with better pharmacokinetics and pharmacodynamics. Antioxid. Redox Signal. 00, 000-000.

  8. Automated electrodeposition of bimetallic noble-metal nanoclusters via redox-replacement reactions for electrocatalysis

    CSIR Research Space (South Africa)

    Mkwizu, TS

    2009-01-01

    Full Text Available of Bimetallic Noble-Metal Nanoclusters via Redox- Replacement Reactions for Electrocatalysis T. S. Mkwizua,b, M. K. Matheb, and I. Cukrowskia aDepartment of Chemistry, University of Pretoria, NW-1 Building, Pretoria, 0002, South Africa b... strategies have utilized surface-limited redox-replacement reactions involving spontaneous replacement of less noble, sacrificial elements, such as Cu or Pb, used as templating layers in controlled synthesis of multilayers composed of noble metals...

  9. Lipid Rafts and Redox Regulation of Cellular Signaling in Cholesterol Induced Atherosclerosis

    OpenAIRE

    Catalgol, Betul; Kartal Ozer, Nesrin

    2010-01-01

    Redox mediated signaling mechanisms play crucial roles in the pathogenesis of several cardiovascular diseases. Atherosclerosis is one of the most important disorders induced mainly by hypercholesterolemia. Oxidation products and related signaling mechanisms are found within the characteristic biomarkers of atherosclerosis. Several studies have shown that redox signaling via lipid rafts play a significant role in the regulation of pathogenesis of many diseases including atherosclerosis. This r...

  10. Enhancement of Selectivity of an Organometallic Anticancer Agent by Redox Modulation.

    Science.gov (United States)

    Romero-Canelón, Isolda; Mos, Magdalena; Sadler, Peter J

    2015-10-08

    Combination with redox modulators can potentiate the anticancer activity and maximize the selectivity of organometallic complexes with redox-based mechanisms of action. We show that nontoxic doses of l-buthionine sulfoximine increase the selectivity of organo-Os complex FY26 for human ovarian cancer cells versus normal lung fibroblasts to 63-fold. This increase is not due to changes in the mechanism of action of FY26 but to the decreased response of cancer cells to oxidative stress.

  11. Redox-induced reversible luminescence switching of cerium-doped upconversion nanoparticles

    International Nuclear Information System (INIS)

    Huang, Yanan; Xiao, Qingbo; Wang, Jian; Xi, Yonglan; Li, Fujin; Feng, Yamin; Shi, Liyi; Lin, Hongzhen

    2016-01-01

    Smart upconversion nanophosphors (UCNPs) that can be reversibly switched between two or more luminescent states by certain external stimuli have attracted considerable attention due to their great potential in biological applications. Here we report for the first time a type of redox-switchable UCNPs by codoping NaGdF 4 :Yb/Er nanorods with the redox-active Ce 3+ /Ce 4+ ion pairs. A reversible switching of their UC luminescence intensity was observed upon the variation of the surrounding redox environments. We show solid proof that the luminescence switching is caused by the tailoring of the NaGdF 4 host crystal structure in response to changing redox state of the codoped cerium ions. A proof-of-concept example is further demonstrated by using these UCNPs for probing the dynamical variation of redox environments in biological tissues. - Highlights: • Synthesis of upconversion nanoparticles doped with Ce 3+ /Ce 4+ ions. • The precise and reversible modification of crystal structure by redox reactions. • Tuning the upconversion luminescence by tailoring the crystal structure.

  12. The Electrochemical Properties of Biochars and How They Affect Soil Redox Properties and Processes

    Directory of Open Access Journals (Sweden)

    Stephen Joseph

    2015-07-01

    Full Text Available Biochars are complex heterogeneous materials that consist of mineral phases, amorphous C, graphitic C, and labile organic molecules, many of which can be either electron donors or acceptors when placed in soil. Biochar is a reductant, but its electrical and electrochemical properties are a function of both the temperature of production and the concentration and composition of the various redox active mineral and organic phases present. When biochars are added to soils, they interact with plant roots and root hairs, micro-organisms, soil organic matter, proteins and the nutrient-rich water to form complex organo-mineral-biochar complexes Redox reactions can play an important role in the development of these complexes, and can also result in significant changes in the original C matrix. This paper reviews the redox processes that take place in soil and how they may be affected by the addition of biochar. It reviews the available literature on the redox properties of different biochars. It also reviews how biochar redox properties have been measured and presents new methods and data for determining redox properties of fresh biochars and for biochar/soil systems.

  13. Adaptations to endurance training depend on exercise-induced oxidative stress: exploiting redox interindividual variability.

    Science.gov (United States)

    Margaritelis, N V; Theodorou, A A; Paschalis, V; Veskoukis, A S; Dipla, K; Zafeiridis, A; Panayiotou, G; Vrabas, I S; Kyparos, A; Nikolaidis, M G

    2018-02-01

    The aim of this study was to reveal the role of reactive oxygen and nitrogen species (RONS) in exercise adaptations under physiological in vivo conditions and without the interference from other exogenous redox agents (e.g. a pro-oxidant or antioxidant). We invented a novel methodological set-up that exploited the large redox interindividual variability in exercise responses. More specifically, we used exercise-induced oxidative stress as the 'classifier' measure (i.e. low, moderate and high) and investigated the physiological and redox adaptations after a 6-week endurance training protocol. We demonstrated that the group with the low exercise-induced oxidative stress exhibited the lowest improvements in a battery of classic adaptations to endurance training (VO 2 max, time trial and Wingate test) as well as in a set of redox biomarkers (oxidative stress biomarkers and antioxidants), compared to the high and moderate oxidative stress groups. The findings of this study substantiate, for the first time in a human in vivo physiological context, and in the absence of any exogenous redox manipulation, the vital role of RONS produced during exercise in adaptations. The stratification approach, based on a redox phenotype, implemented in this study could be a useful experimental strategy to reveal the role of RONS and antioxidants in other biological manifestations as well. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  14. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state.

    Science.gov (United States)

    Chausse, Bruno; Vieira-Lara, Marcel A; Sanchez, Angélica B; Medeiros, Marisa H G; Kowaltowski, Alicia J

    2015-01-01

    Intermittent fasting (IF) is a dietary intervention often used as an alternative to caloric restriction (CR) and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart.

  15. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state.

    Directory of Open Access Journals (Sweden)

    Bruno Chausse

    Full Text Available Intermittent fasting (IF is a dietary intervention often used as an alternative to caloric restriction (CR and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart.

  16. Effect of redox conditions on pharmaceutical loss during biological wastewater treatment using sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Lauren B., E-mail: lstadler@umich.edu [Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109 (United States); Su, Lijuan, E-mail: lijuansu@buffalo.edu [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Moline, Christopher J., E-mail: christopher.moline@hdrinc.com [Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109 (United States); Ernstoff, Alexi S., E-mail: alexer@dtu.dk [Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109 (United States); Aga, Diana S., E-mail: dianaaga@buffalo.edu [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Love, Nancy G., E-mail: nglove@umich.edu [Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109 (United States)

    2015-01-23

    Highlights: • Pharmaceutical fate was studied in SBRs operated at different redox conditions. • Stable carbon oxidation and nitrification occurred under microaerobic conditions. • Losses of atenolol and trimethoprim were highest under fully aerobic conditions. • Loss of sulfamethoxazole was highest under microaerobic conditions. • Deconjugation occurred during treatment to form sulfamethoxazole and desvenlafaxine. - Abstract: We lack a clear understanding of how wastewater treatment plant (WWTP) process parameters, such as redox environment, impact pharmaceutical fate. WWTPs increasingly install more advanced aeration control systems to save energy and achieve better nutrient removal performance. The impact of redox condition, and specifically the use of microaerobic (low dissolved oxygen) treatment, is poorly understood. In this study, the fate of a mixture of pharmaceuticals and several of their transformation products present in the primary effluent of a local WWTP was assessed in sequencing batch reactors operated under different redox conditions: fully aerobic, anoxic/aerobic, and microaerobic (DO concentration ≈0.3 mg/L). Among the pharmaceuticals that were tracked during this study (atenolol, trimethoprim, sulfamethoxazole, desvenlafaxine, venlafaxine, and phenytoin), overall loss varied between them and between redox environments. Losses of atenolol and trimethoprim were highest in the aerobic reactor; sulfamethoxazole loss was highest in the microaerobic reactors; and phenytoin was recalcitrant in all reactors. Transformation products of sulfamethoxazole and desvenlafaxine resulted in the reformation of their parent compounds during treatment. The results suggest that transformation products must be accounted for when assessing removal efficiencies and that redox environment influences the degree of pharmaceutical loss.

  17. Resolving the Iron Phthalocyanine Redox Transitions for ORR Catalysis in Aqueous Media

    Energy Technology Data Exchange (ETDEWEB)

    Alsudairi, Amell [Department; Chemistry; Li, Jingkun [Department; Ramaswamy, Nagappan [Department; Mukerjee, Sanjeev [Department; Abraham, K. M. [Department; Jia, Qingying [Department

    2017-06-14

    Metal macrocycles are among the most important catalytic systems in electrocatalysis and biocatalysis owing to their rich redox chemistry. Precise understanding of the redox behavior of metal macrocycles in operando is essential for fundamental studies and practical applications of this catalytic system. Here we present electrochemical data for the representative iron phthalocyanine (FePc) in both aqueous and nonaqueous media coupled with in situ Raman and X-ray absorption analyses to challenge the traditional notion of the redox transition of FePc at the low potential end in aqueous media by showing that it arises from the redox transition of the ring. Our data unequivocally demonstrate that the electron is shuttled to the Pc ring via the Fe(II)/Fe(I) redox center. The Fe(II)/Fe(I) redox transition of FePc in aqueous media is indiscernible by normal spectroscopic methods owing to the lack of a suitable axial ligand to stabilize the Fe(I) state.

  18. The effect of different chemical treatments, pyrolysis conditions and feedstocks on the redox properties of biochar.

    Science.gov (United States)

    Chacón, Francisco Javier; Cayuela, María Luz; Roig, Asunción; Ángel Sánchez-Monedero, Miguel

    2017-04-01

    Pyrogenic carbonaceous materials can have a role in several biogeochemical redox reactions as electron transfer catalysts. Low N2O emissions in biochar amended soils can be related to its ability to act as an "electron shuttle", facilitating the transport of electrons to soil denitrifying microorganisms. Modifying biochar redox properties could be an interesting approach to regulate this effect. In this work we propose several methods for the development of biochars from slow pyrolysis with altered electrochemical properties. To improve its electron exchange capacity we aimed to: 1) Increase the number of redox active functional groups in biochar. Several pyrolysis conditions and chemical treatments (KOH, H3PO4 and H2O2) were tested. 2) Raise the fraction of redox active mineral in biochar. The presence of Fe and Mn-based minerals in biochar could also catalyze redox reactions in soil associated with the nitrogen cycle. Different additives (FeCl3, KMnO4 and clay) were combined with the feedstock before the pyrolysis process. Results of their ability to modify biochar redox properties, measured by mediated electrochemical analysis, are presented. Additionally, we characterized biochars produced from different feedstocks to assess how their lignin, holocellulose and ash composition affects these properties. Analytical issues arising from the difficulty of measuring the electron exchange capacity of biochar will also be discussed.

  19. The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Ashima; Yang, Haojun; Duffy, Megan; Robinson, Emily; Conrad-Antoville, Arianrhod; Lu, Ya-Wen; Capps, Tony; Braiterman, Lelita; Wolfgang, Michael; Murphy, Michael P.; Yi, Ling; Kaler, Stephen G.; Lutsenko, Svetlana; Ralle, Martina

    2016-05-16

    Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia).

  20. Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators.

    Science.gov (United States)

    Dooley, Colette T; Dore, Timothy M; Hanson, George T; Jackson, W Coyt; Remington, S James; Tsien, Roger Y

    2004-05-21

    Changes in the redox equilibrium of cells influence a host of cell functions. Alterations in the redox equilibrium are precipitated by changing either the glutathione/glutathione-disulfide ratio (GSH/GSSG) and/or the reduced/oxidized thioredoxin ratio. Redox-sensitive green fluorescent proteins (GFP) allow real time visualization of the oxidation state of the indicator. Ratios of fluorescence from excitation at 400 and 490 nm indicate the extent of oxidation and thus the redox potential while canceling out the amount of indicator and the absolute optical sensitivity. Because the indicator is genetically encoded, it can be targeted to specific proteins or organelles of interest and expressed in a wide variety of cells and organisms. We evaluated roGFP1 (GFP with mutations C48S, S147C, and Q204C) and roGFP2 (the same plus S65T) with physiologically or toxicologically relevant oxidants both in vitro and in living mammalian cells. Furthermore, we investigated the response of the redox probes under physiological redox changes during superoxide bursts in macrophage cells, hyperoxic and hypoxic conditions, and in responses to H(2)O(2)-stimulating agents, e.g. epidermal growth factor and lysophosphatidic acid.

  1. Effect of organic additives on positive electrolyte for vanadium redox battery

    Energy Technology Data Exchange (ETDEWEB)

    Li Sha [Department of Functional Materials and Chemistry, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Huang Kelong, E-mail: lisha_csu@163.com [Department of Functional Materials and Chemistry, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Liu Suqin; Fang Dong; Wu Xiongwei; Lu Dan; Wu Tao [Department of Functional Materials and Chemistry, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2011-06-30

    Highlights: > Four organics as electrolyte additives of vanadium redox battery. > Changes are examined in the electrochemical properties of vanadium redox battery. > D-sorbitol is a suitable additive to the electrolyte for the vanadium redox battery. > The mechanism of improvement is discussed in detail. - Abstract: Fructose, mannitol, glucose, D-sorbitol are explored as additives in electrolyte for vanadium redox battery (VRB), respectively. The effects of additives on electrolyte are studied by cyclic voltammetry (CV), charge-discharge technique, electrochemical impedance spectroscopy (EIS) and Raman spectroscopy. The results indicate that the vanadium redox cell using the electrolyte with the additive of D-sorbitol exhibits the best electrochemical performance (the energy efficiency 81.8%). The EIS results indicate that the electrochemical activity of the electrolyte is improved by adding D-sorbitol, which can be interpreted as the increase of available (-OH) groups providing active sites for electron transfer. The Raman spectra show that VO{sup 2+} ions take part in forming a complex with the D-sorbitol, which not only improve solubility of V(V) electrolyte, but also provide more activity sites for the V(IV)/V(V) redox reaction.

  2. Mitochondrial Thioredoxin System as a Modulator of Cyclophilin D Redox State

    Science.gov (United States)

    Folda, Alessandra; Citta, Anna; Scalcon, Valeria; Calì, Tito; Zonta, Francesco; Scutari, Guido; Bindoli, Alberto; Rigobello, Maria Pia

    2016-03-01

    The mitochondrial thioredoxin system (NADPH, thioredoxin reductase, thioredoxin) is a major redox regulator. Here we have investigated the redox correlation between this system and the mitochondrial enzyme cyclophilin D. The peptidyl prolyl cis-trans isomerase activity of cyclophilin D was stimulated by the thioredoxin system, while it was decreased by cyclosporin A and the thioredoxin reductase inhibitor auranofin. The redox state of cyclophilin D, thioredoxin 1 and 2 and peroxiredoxin 3 was measured in isolated rat heart mitochondria and in tumor cell lines (CEM-R and HeLa) by redox Western blot analysis upon inhibition of thioredoxin reductase with auranofin, arsenic trioxide, 1-chloro-2,4-dinitrobenzene or after treatment with hydrogen peroxide. A concomitant oxidation of thioredoxin, peroxiredoxin and cyclophilin D was observed, suggesting a redox communication between the thioredoxin system and cyclophilin. This correlation was further confirmed by i) co-immunoprecipitation assay of cyclophilin D with thioredoxin 2 and peroxiredoxin 3, ii) molecular modeling and iii) depleting thioredoxin reductase by siRNA. We conclude that the mitochondrial thioredoxin system controls the redox state of cyclophilin D which, in turn, may act as a regulator of several processes including ROS production and pro-apoptotic factors release.

  3. Microbial Response to Experimentally Controlled Redox Transitions at the Sediment Water Interface

    Science.gov (United States)

    Frindte, Katharina; Allgaier, Martin; Grossart, Hans-Peter; Eckert, Werner

    2015-01-01

    The sediment–water interface of freshwater lakes is characterized by sharp chemical gradients, shaped by the interplay between physical, chemical and microbial processes. As dissolved oxygen is depleted in the uppermost sediment, the availability of alternative electron acceptors, e.g. nitrate and sulfate, becomes the limiting factor. We performed a time series experiment in a mesocosm to simulate the transition from aerobic to anaerobic conditions at the sediment–water interface. Our goal was to identify changes in the microbial activity due to redox transitions induced by successive depletion of available electron acceptors. Monitoring critical hydrochemical parameters in the overlying water in conjunction with a new sampling strategy for sediment bacteria enabled us to correlate redox changes in the water to shifts in the active microbial community and the expression of functional genes representing specific redox-dependent microbial processes. Our results show that during several transitions from oxic-heterotrophic condition to sulfate-reducing condition, nitrate-availability and the on-set of sulfate reduction strongly affected the corresponding functional gene expression. There was evidence of anaerobic methane oxidation with NOx. DGGE analysis revealed redox-related changes in microbial activity and expression of functional genes involved in sulfate and nitrite reduction, whereas methanogenesis and methanotrophy showed only minor changes during redox transitions. The combination of high-frequency chemical measurements and molecular methods provide new insights into the temporal dynamics of the interplay between microbial activity and specific redox transitions at the sediment–water interface. PMID:26599000

  4. Integration of the thiol redox status with cytokine response to physical training in professional basketball players.

    Science.gov (United States)

    Zembron-Lacny, A; Slowinska-Lisowska, M; Ziemba, A

    2010-01-01

    The present study was designed to evaluate the plasma markers of reactive oxygen species (ROS) activity and cytokines, and their relationship with thiol redox status of basketball players during training. Sixteen professional players of the Polish Basketball Extraleague participated in the study. The study was performed during the preparatory period and the play-off round. Markers of ROS activity (lipid peroxidation TBARS, protein carbonylation PC) and reduced glutathione (GSH) demonstrated regularity over time, i.e. TBARS, PC and GSH were elevated at the beginning and decreased at the end of training periods. Oxidized glutathione (GSSG) was not affected by exercise training. Thiol redox status (GSH(total)-2GSSG/GSSG) correlated with TBARS and PC in both training periods. The level of interleukin-6 (IL-6) was increased and positively correlated with thiol redox (r=0.423) in the preparatory period, whereas tumor necrosis factor alpha (TNFalpha) was increased and inversely correlated with thiol redox (r= 0.509) in the play-off round. The present study showed significant shifts in markers of ROS activity, thiol redox status and inflammatory mediators (IL-6, TNFalpha) following professional sport training as well as correlation between changes in thiol redox and cytokine response.

  5. Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Anita Ayer

    Full Text Available Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E GSH was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. E GSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (-340 to -350 mV were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H(+/2GSH and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H(+/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions.

  6. Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ayer, Anita; Sanwald, Julia; Pillay, Bethany A; Meyer, Andreas J; Perrone, Gabriel G; Dawes, Ian W

    2013-01-01

    Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E GSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. E GSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (-340 to -350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H(+)/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H(+)/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions.

  7. Novel roles of folic acid as redox regulator: Modulation of reactive oxygen species sinker protein expression and maintenance of mitochondrial redox homeostasis on hepatocellular carcinoma.

    Science.gov (United States)

    Lai, Kun-Goung; Chen, Chi-Fen; Ho, Chun-Te; Liu, Jun-Jen; Liu, Tsan-Zon; Chern, Chi-Liang

    2017-06-01

    We provide herein several lines of evidence to substantiate that folic acid (or folate) is a micronutrient capable of functioning as a novel redox regulator on hepatocellular carcinoma. First, we uncovered that folate deficiency could profoundly downregulate two prominent anti-apoptotic effectors including survivin and glucose-regulated protein-78. Silencing of either survivin or glucose-regulated protein-78 via small interfering RNA interfering technique established that both effectors could serve as reactive oxygen species sinker proteins. Second, folate deficiency-triggered oxidative-nitrosative stress could strongly induce endoplasmic reticulum stress that in turn could provoke cellular glutathione depletion through the modulation of the following two crucial events: (1) folate deficiency could strongly inhibit Bcl-2 expression leading to severe suppression of the mitochondrial glutathione pool and (2) folate deficiency could also profoundly inhibit two key enzymes that governing cellular glutathione redox regulation including γ-glutamylcysteinyl synthetase heavy chain, a catalytic enzyme for glutathione biosynthesis, and mitochondrial isocitrate dehydrogenase 2, an enzyme responsible for providing nicotinamide adenine dinucleotide phosphate necessary for regenerating oxidized glutathione disulfide back to glutathione via mitochondrial glutathione reductase. Collectively, we add to the literature new data to strengthen the notion that folate is an essential micronutrient that confers a novel role to combat reactive oxygen species insults and thus serves as a redox regulator via upregulating reactive oxygen species sinker proteins and averting mitochondrial glutathione depletion through proper maintenance of redox homeostasis via positively regulating glutathione biosynthesis, glutathione transporting system, and mitochondrial glutathione recycling process.

  8. One-step electrochemically co-assembled redox-active [Ru(bpy)2(tatp)]2+-BSA-SWCNTs hybrid film for non-redox protein biosensors.

    Science.gov (United States)

    Ji, Shi-Bo; Yan, Zhi-Hong; Wu, Jun-Wen; Chen, Lin-Lin; Li, Hong

    2013-01-15

    A redox-active [Ru(bpy)(2)(tatp)](2+)-BSA-SWCNTs (bpy=2,2'-bipyridine, tatp=1,4,8,9-tetra-aza-triphenylene, BSA=bovine serum albumin, SWCNTs=single-walled carbon nanotubes) hybrid film is fabricated on an indium-tin oxide (ITO) electrode via one-step electrochemical co-assembly approach. BSA is inherently dispersive and therefore served as the linking mediator of SWCNTs, which facilitate the redox reactions of [Ru(bpy)(2)(tatp)](2+) employed as a reporter of BSA. The evidences from differential pulse voltammetry, cyclic voltammetry, scanning electron microscope, emission spectroscopy and fluorescence microscope reveal that the [Ru(bpy)(2)(tatp)](2+)-BSA-SWCNTs hybrid can be electrochemically co-assembled on the ITO electrode, showing two pairs of well-defined Ru(II)-based redox waves. Furthermore, the electrochemical co-assembly of the [Ru(bpy)(2)(tatp)](2+)-BSA-SWCNTs hybrid is found to be strongly dependent on the simultaneous presence of BSA and SWCNTs, indicating a good linear response to BSA in the range from 6 to 50mgL(-1). The results from this study provide an electrochemical co-assembly method for the development of non-redox protein biosensors. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Redox regulation of the AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Yingying Han

    2010-11-01

    Full Text Available Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death.The aim of this study is to determine if AMP-activated protein kinase (AMPK, a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC.Bovine aortic endothelial cells (BAEC were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation.In BAEC, Berberine caused a dose- and time-dependent increase in the phosphorylation of AMPK at Thr172 and acetyl CoA carboxylase (ACC at Ser79, a well characterized downstream target of AMPK. Concomitantly, Berberine increased peroxynitrite, a potent oxidant formed by simultaneous generation of superoxide and nitric oxide. Pre-incubation of BAEC with anti-oxidants markedly attenuated Berberine-enhanced phosphorylation of both AMPK and ACC. Consistently, adenoviral expression of superoxide dismutase and pretreatment of L-N(G-Nitroarginine methyl ester (L-NAME; a non-selective NOS inhibitor blunted Berberine-induced phosphorylation of AMPK. Furthermore, mitochondria-targeted tempol (mito-tempol pretreatment or expression of uncoupling protein attenuated AMPK activation caused by Berberine. Depletion of mitochondria abolished the effects of Berberine on AMPK in EC. Finally, Berberine significantly increased the phosphorylation of LKB1 at Ser307 and gene silencing of LKB1 attenuated Berberine-enhanced AMPK Thr172 phosphorylation in BAEC.Our results suggest that mitochondria-derived superoxide anions and peroxynitrite are required for Berberine-induced AMPK activation in endothelial cells.

  10. Peroxynitrite efficiently mediates the interconversion of redox intermediates of myeloperoxidase

    International Nuclear Information System (INIS)

    Nitric oxide-derived oxidants (e.g., peroxynitrite) are believed to participate in antimicrobial activities as part of normal host defenses but also in oxidative tissue injury in inflammatory disorders. A similar role is ascribed to the heme enzyme myeloperoxidase (MPO), the most abundant protein of polymorphonuclear leukocytes, which are the terminal phagocytosing effector cells of the innate immune system. Concomitant production of peroxynitrite and release of millimolar MPO are characteristic events during phagocytosis. In order to understand the mode of interaction between MPO and peroxynitrite, we have performed a comprehensive stopped-flow investigation of the reaction between all physiological relevant redox intermediates of MPO and peroxynitrite. Both iron(III) MPO and iron(II) MPO are rapidly converted to compound II by peroxynitrite in monophasic reactions with calculated rate constants of (6.8 ± 0.1) x 10 6 M -1 s -1 and (1.3 ± 0.2) x 10 6 M -1 s -1 , respectively (pH 7.0 and 25 deg C). Besides these one- and two-electron reduction reactions of peroxynitrite, which produce nitrogen dioxide and nitrite, a one-electron oxidation to the oxoperoxonitrogen radical must occur in the fast monophasic transition of compound I to compound II mediated by peroxynitrite at pH 7.0 [(7.6 ± 0.1) x 10 6 M -1 s -1 ]. In addition, peroxynitrite induced a steady-state transition from compound III to compound II with a rate of (1.0 ± 0.3) x 10 4 M -1 s -1 . Thus, the interconversion among the various oxidation states of MPO that is prompted by peroxynitrite is remarkable. Reaction mechanisms are proposed and the physiological relevance is discussed

  11. Redox regulation in skeletal muscle during contractile activity and aging.

    Science.gov (United States)

    Palomero, J; Jackson, M J

    2010-04-01

    Skeletal muscle has the ability to adapt and remodel after functional, mechanical, and metabolic stresses by activation of different adaptation mechanisms that induce gene expression, biochemical changes, and structural remodeling. Skeletal muscle cells continuously generate reactive oxygen and nitrogen species (RONS), which can act as mediators in cellular signaling pathways that regulate the adaptation mechanisms. There is strong evidence that indicates that RONS are generated in skeletal muscle cells during contractile activity and this induces the activation of transcription factors which modulate gene expression of antioxidant and protective proteins. Thus, it has been proposed that RONS act as signals that modulate the adaptation mechanisms in skeletal muscle and other cells. Structural and functional changes occur in skeletal muscle during aging and are characterized by a reduction of muscle mass and force (sarcopenia). The causes are known, however, there is considerable support for an involvement of RONS in the process of aging and sarcopenia. Several studies indicate that adaptive responses of skeletal muscle that are activated and regulated by RONS are disrupted during aging. This reduction of skeletal muscle adaptation to contractile activity during aging might be responsible for the loss of muscle mass and function and the progressive deterioration of this organ. In summary, there is sufficient evidence that indicates that cellular redox regulation in skeletal muscle is crucial in the physiology and pathology of skeletal muscle. However, new methodologies and experimental models are required for understanding the complex biology of RONS in the cell. This will provide future interventions that mitigate pathologies and aging of skeletal muscle.

  12. A redox-switchable Au8-cluster sensor.

    Science.gov (United States)

    Wu, Te-Haw; Hsu, Yu-Yen; Lin, Shu-Yi

    2012-07-09

    The proof of concept of a simple sensing platform based on the fluorescence of a gold cluster consisting of eight atoms, which is easily manipulated by reduction and oxidation of a specific molecule in the absence of chemical linkers, is demonstrated. Without using any coupling reagents to arrange the distance of the donor-acceptor pair, the fluorescence of the Au(8) -cluster is immediately switched off in the presence of 2-pyridinethiol (2-PyT) quencher. Through an upward-curving Stern-Volmer plot, the system shows complex fluorescence quenching with a combination of static and dynamic quenching processes. To analyze the static quenching constant (V) by a "sphere of action" model, the collisional encounter between the Au(8) -cluster and 2-PyT presents a quenching radius (r) ≈5.8 nm, which is larger than the sum of the radii of the Au(8) -cluster and 2-PyT. This implies that fluorescence quenching can occur even though the Au(8) -cluster and 2-PyT are not very close to each other. The quenching pathway may be derived from a photoinduced electron-transfer process of the encounter pair between the Au(8) -cluster (as an electron donor) and 2-PyT (as an electron acceptor) to allow efficient fluorescence quenching in the absence of coupling reagents. Interestingly, the fluorescence is restored by oxidation of 2-PyT to form the corresponding disulfide compound and then quenched again after the reduction of the disulfide. This redox-switchable fluorescent Au(8) -cluster platform is a novel discovery, and its utility as a promising sensor for detecting H(2) O(2) -generating enzymatic transformations is demonstrated. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Redox properties of a mononuclear copper(II)-superoxide complex.

    Science.gov (United States)

    Tano, Tetsuro; Okubo, Yuri; Kunishita, Atsushi; Kubo, Minoru; Sugimoto, Hideki; Fujieda, Nobutaka; Ogura, Takashi; Itoh, Shinobu

    2013-09-16

    Redox properties of a mononuclear copper(II) superoxide complex, (L)Cu(II)-OO(•), supported by a tridentate ligand (L = 1-(2-phenethyl)-5-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane) have been examined as a model compound of the putative reactive intermediate of peptidylglycine α-hydroxylating monooxygenase (PHM) and dopamine β-monooxygenase (DβM) (Kunishita et al. J. Am. Chem. Soc. 2009, 131, 2788-2789; Inorg. Chem. 2012, 51, 9465-9480). On the basis of the reactivity toward a series of one-electron reductants, the reduction potential of (L)Cu(II)-OO(•) was estimated to be 0.19 ± 0.07 V vs SCE in acetone at 298 K (cf. Tahsini et al. Chem.-Eur. J. 2012, 18, 1084-1093). In the reaction of TEMPO-H (2,2,6,6-tetramethylpiperidine-N-hydroxide), a simple HAT (hydrogen atom transfer) reaction took place to give the corresponding hydroperoxide complex LCu(II)-OOH, whereas the reaction with phenol derivatives ((X)ArOH) gave the corresponding phenolate adducts, LCu(II)-O(X)Ar, presumably via an acid-base reaction between the superoxide ligand and the phenols. The reaction of (L)Cu(II)-OO(•) with a series of triphenylphosphine derivatives gave the corresponding triphenylphosphine oxides via an electrophilic ionic substitution mechanism with a Hammett ρ value as -4.3, whereas the reaction with thioanisole (sulfide) only gave a copper(I) complex. These reactivities of (L)Cu(II)-OO(•) are different from those of a similar end-on superoxide copper(II) complex supported by a tetradentate TMG3tren ligand (1,1,1-Tris{2-[N(2)-(1,1,3,3-tetramethylguanidino)]ethyl}amine (Maiti et al. Angew. Chem., Int. Ed. 2008, 47, 82-85).

  14. Bayesian Regression of Thermodynamic Models of Redox Active Materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Katherine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Finding a suitable functional redox material is a critical challenge to achieving scalable, economically viable technologies for storing concentrated solar energy in the form of a defected oxide. Demonstrating e ectiveness for thermal storage or solar fuel is largely accomplished by using a thermodynamic model derived from experimental data. The purpose of this project is to test the accuracy of our regression model on representative data sets. Determining the accuracy of the model includes parameter tting the model to the data, comparing the model using di erent numbers of param- eters, and analyzing the entropy and enthalpy calculated from the model. Three data sets were considered in this project: two demonstrating materials for solar fuels by wa- ter splitting and the other of a material for thermal storage. Using Bayesian Inference and Markov Chain Monte Carlo (MCMC), parameter estimation was preformed on the three data sets. Good results were achieved, except some there was some deviations on the edges of the data input ranges. The evidence values were then calculated in a variety of ways and used to compare models with di erent number of parameters. It was believed that at least one of the parameters was unnecessary and comparing evidence values demonstrated that the parameter was need on one data set and not signi cantly helpful on another. The entropy was calculated by taking the derivative in one variable and integrating over another. and its uncertainty was also calculated by evaluating the entropy over multiple MCMC samples. Afterwards, all the parts were written up as a tutorial for the Uncertainty Quanti cation Toolkit (UQTk).

  15. Red wine activates plasma membrane redox system in human erythrocytes.

    Science.gov (United States)

    Tedesco, Idolo; Moccia, Stefania; Volpe, Silvestro; Alfieri, Giovanna; Strollo, Daniela; Bilotto, Stefania; Spagnuolo, Carmela; Di Renzo, Massimo; Aquino, Rita P; Russo, Gian Luigi

    2016-01-01

    In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity.

  16. Redox-controlled proton gating in bovine cytochrome c oxidase

    Science.gov (United States)

    Rousseau, Denis

    2015-03-01

    Cytochrome c oxidase is the terminal enzyme in the electron transfer chain of essentially all organisms that utilize oxygen to generate energy. It reduces oxygen to water and harnesses the energy to pump protons across the mitochondrial membrane in eukaryotes and the plasma membrane in prokaryotes. The mechanism by which proton pumping is coupled to the oxygen reduction reaction remains unresolved, owing to the difficulty of visualizing proton movement within the massive membrane-associated protein matrix. Here, with a novel hydrogen/deuterium exchange resonance Raman spectroscopy method, we have identified two critical elements of the proton pump: a proton loading site near the propionate groups of heme a, which is capable of transiently storing protons uploaded from the negative-side of the membrane prior to their release into the positive-side of the membrane and a conformational gate that controls proton translocation in response to the change in the redox state of heme a. These findings form the basis for a postulated molecular model describing a detailed mechanism by which unidirectional proton translocation is coupled to electron transfer from heme a to heme a3, associated with oxygen chemistry occurring in the heme a3 site, during enzymatic turnover. Each time heme a undergoes an oxidation-reduction transition a proton is translocated across the membrane accounting for the observation that two protons are translocated during the oxidative phase of the enzymatic cycle and two more are translocated during the reductive phase. This work was done in collaboration with Drs. Tsuyoshi Egawa and Syun-Ru Yeh. This work was supported the National Institutes of Health Grant GM098799 to D.L.R and National Science Foundation Grant NSF 0956358 to S.-R.Y.

  17. I. Redox chemistry of bimetallic fulvalene complexes II. Oligocyclopentadienyl complexes

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David Stephen [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley Lab., CA (United States). Chemical Sciences Div.

    1993-11-01

    The electrochemistry of the heterobimetallic complexes (fulvalene)WFe(CO)5 (30) and (fulvalene)WRu(CO)5 (31) has been investigated. Compound 30 is reduced in two one-electron processes, and this behavior was exploited synthetically to prepare a tetranuclear dimer by selective metal reduction. Complex 31 displayed a distinction between the metals upon reoxidation of the dianion, allowing the formation of a dimer by selective metal anion oxidation. The redox behavior of 30 led to an investigation of the use of electrocatalysis to effect metal-specific ligand substitution. It was found that reduction of 30 with a catalytic amount of CpFe(C6Me6) (97) in the presence of excess P(OMe)3 or PMe5 led to the formation of the zwitterions (fulvalene)[W(CO)3-][Fe(CO)PR3+] (107, R = P(OMe)3; 108, R = PMe3). Compound 31 also displayed unique behavior with different reducing agents, as the monosubstituted zwitterion (fulvalene)[W(CO)3-][Ru(CO)2(PMe3+] was obtained when 97 was used while the disubstituted complex (fulvalene) [W(CO)3-] [Ru(CO)(PMe3)2+] was produced when Cp*Fe(C6Me6) was the catalyst. Potential synthetic routes to quatercyclopentadienyl complexes were also explored. Various attempts to couple heterobimetallic fulvalene compounds proved to be unsuccessful. 138 refs.

  18. ROSics: chemistry and proteomics of cysteine modifications in redox biology.

    Science.gov (United States)

    Kim, Hee-Jung; Ha, Sura; Lee, Hee Yoon; Lee, Kong-Joo

    2015-01-01

    Post-translational modifications (PTMs) occurring in proteins determine their functions and regulations. Proteomic tools are available to identify PTMs and have proved invaluable to expanding the inventory of these tools of nature that hold the keys to biological processes. Cysteine (Cys), the least abundant (1-2%) of amino acid residues, are unique in that they play key roles in maintaining stability of protein structure, participating in active sites of enzymes, regulating protein function and binding to metals, among others. Cys residues are major targets of reactive oxygen species (ROS), which are important mediators and modulators of various biological processes. It is therefore necessary to identify the Cys-containing ROS target proteins, as well as the sites and species of their PTMs. Cutting edge proteomic tools which have helped identify the PTMs at reactive Cys residues, have also revealed that Cys residues are modified in numerous ways. These modifications include formation of disulfide, thiosulfinate and thiosulfonate, oxidation to sulfenic, sulfinic, sulfonic acids and thiosulfonic acid, transformation to dehydroalanine (DHA) and serine, palmitoylation and farnesylation, formation of chemical adducts with glutathione, 4-hydroxynonenal and 15-deoxy PGJ2, and various other chemicals. We present here, a review of relevant ROS biology, possible chemical reactions of Cys residues and details of the proteomic strategies employed for rapid, efficient and sensitive identification of diverse and novel PTMs involving reactive Cys residues of redox-sensitive proteins. We propose a new name, "ROSics," for the science which describes the principles of mode of action of ROS at molecular levels. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

  19. Application of genetically encoded redox biosensors to measure dynamic changes in the glutathione, bacillithiol and mycothiol redox potentials in pathogenic bacteria.

    Science.gov (United States)

    Tung, Quach Ngoc; Linzner, Nico; Loi, Vu Van; Antelmann, Haike

    2018-02-15

    Gram-negative bacteria utilize glutathione (GSH) as their major LMW thiol. However, most Gram-positive bacteria do not encode enzymes for GSH biosynthesis and produce instead alternative LMW thiols, such as bacillithiol (BSH) and mycothiol (MSH). BSH is utilized by Firmicutes and MSH is the major LMW thiol of Actinomycetes. LMW thiols are required to maintain the reduced state of the cytoplasm, but are also involved in virulence mechanisms in human pathogens, such as Staphylococcus aureus, Mycobacterium tuberculosis, Streptococcus pneumoniae, Salmonella enterica subsp. Typhimurium and Listeria monocytogenes. Infection conditions often cause perturbations of the intrabacterial redox balance in pathogens, which is further affected under antibiotics treatments. During the last years, novel glutaredoxin-fused roGFP2 biosensors have been engineered in many eukaryotic organisms, including parasites, yeast, plants and human cells for dynamic live-imaging of the GSH redox potential in different compartments. Likewise bacterial roGFP2-based biosensors are now available to measure the dynamic changes in the GSH, BSH and MSH redox potentials in model and pathogenic Gram-negative and Gram-positive bacteria. In this review, we present an overview of novel functions of the bacterial LMW thiols GSH, MSH and BSH in pathogenic bacteria in virulence regulation. Moreover, recent results about the application of genetically encoded redox biosensors are summarized to study the mechanisms of host-pathogen interactions, persistence and antibiotics resistance. In particularly, we highlight recent biosensor results on the redox changes in the intracellular food-borne pathogen Salmonella Typhimurium as well as in the Gram-positive pathogens S. aureus and M. tuberculosis during infection conditions and under antibiotics treatments. These studies established a link between ROS and antibiotics resistance with the intracellular LMW thiol-redox potential. Future applications should be directed

  20. Electronic Connection Between the Quinone and Cytochrome c Redox Pools and Its Role in Regulation of Mitochondrial Electron Transport and Redox Signaling

    Science.gov (United States)

    Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. PMID:25540143

  1. In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans

    Science.gov (United States)

    Smolders, Arne; Back, Patricia; De Henau, Sasha

    2016-01-01

    Abstract Significance: Due to its large families of redox-active enzymes, genetic amenability, and complete transparency, the nematode Caenorhabditis elegans has the potential to become an important model for the in vivo study of redox biology. Recent Advances: The recent development of several genetically encoded ratiometric reactive oxygen species (ROS) and redox sensors has revolutionized the quantification and precise localization of ROS and redox signals in living organisms. Only few exploratory studies have applied these sensors in C. elegans and undoubtedly much remains to be discovered in this model. As a follow-up to our recent findings that the C. elegans somatic gonad uses superoxide and hydrogen peroxide (H2O2) signals to communicate with the germline, we here analyze the patterns of H2O2 inside the C. elegans germline. Critical Issues: Despite the advantages of genetically encoded ROS and redox sensors over classic chemical sensors, still several general as well as C. elegans-specific issues need to be addressed. The major concerns for the application of these sensors in C. elegans are (i) decreased vitality of some reporter strains, (ii) interference of autofluorescent compartments with the sensor signal, and (iii) the use of immobilization methods that do not influence the worm's redox physiology. Future Directions: We propose that several of the current issues may be solved by designing reporter strains carrying single copies of codon-optimized sensors. Preferably, these sensors should have their emission wavelengths in the red region, where autofluorescence is absent. Worm analysis could be optimized using four-dimensional ratiometric fluorescence microscopy of worms immobilized in microfluidic chips. Antioxid. Redox Signal. 25, 577–592. PMID:27306519

  2. Controls on the evolution of Ediacaran metazoan ecosystems: A redox perspective.

    Science.gov (United States)

    Bowyer, F; Wood, R A; Poulton, S W

    2017-07-01

    A growing number of detailed geochemical studies of Ediacaran (635-541 Ma) marine successions have provided snapshots into the redox environments that played host to the earliest known metazoans. Whilst previous compilations have focused on the global evolution of Ediacaran water column redox chemistry, the inherent heterogeneity evident in palaeogeographically distinct environments demands a more dissected approach to better understand the nature, interactions and evolution of extrinsic controls on the development of early macrobenthic ecosystems. Here, we review available data of local-scale redox conditions within a palaeogeographic and sequence stratigraphic framework, to explore the mechanisms controlling water column redox conditions and their potential impact on the record of metazoans. The openly connected Laurentian margin, North America (632-540 Ma) and Nama basin, Namibia (550-538 Ma), and the variably restricted Yangtze Block, South China (635-520 Ma), show continued redox instability after the first fossil evidence for metazoans. This may support opportunistic benthic colonisation during periods of transient oxygenation amidst episodic upwelling of anoxic waters beneath a very shallow, fluctuating chemocline. The first skeletal metazoans appeared under conditions of continued redox stratification, such as those which characterise the Dengying Formation of the Yangtze Block and the Kuibis Subgroup of the Nama basin. Current data, however, suggests that successful metazoan reef-building demanded more persistent oxia. We propose that cratonic positioning and migration throughout the Ediacaran Period, in combination with gradually increasing dissolved oxygen loading, may have provided a first-order control on redox evolution through regulating circulation mechanisms in the Mirovian Ocean. Some unrestricted lower slope environments from mid-high latitudes benefited from sustained oxygenation via downwelling, whilst transit of isolated cratons towards

  3. The effects of chromium(VI) on the thioredoxin system: Implications for redox regulation

    Science.gov (United States)

    Myers, Charles R.

    2014-01-01

    Hexavalent chromium [Cr(VI)] compounds are highly redox active and have long been recognized as potent cytotoxins and carcinogens. The intracellular reduction of Cr(VI) generates reactive Cr intermediates, which are themselves strong oxidants, as well as superoxide, hydrogen peroxide, and hydroxyl radical. These probably contribute to the oxidative damage and effects on redox-sensitive transcription factors that have been reported. However, the identification of events that initiate these signaling changes has been elusive. More recent studies show that Cr(VI) causes irreversible inhibition of thioredoxin reductase (TrxR) and oxidation of thioredoxin (Trx) and peroxiredoxin (Prx). Mitochondrial Trx2/Prx3 are more sensitive to Cr(VI) treatment than cytosolic Trx1/Prx1, although both compartments show thiol oxidation with higher doses or longer treatments. Thiol redox proteomics demonstrate that Trx2, Prx3, and Trx1 are among the most sensitive proteins in cells to Cr(VI) treatment. Their oxidation could therefore represent initiating events that have widespread implications for protein thiol redox control and for multiple aspects of redox signaling. This review summarizes the effects of Cr(VI) on the TrxR/Trx system and how these events could influence a number of downstream redox signaling systems that are influenced by Cr(VI) exposure. Some of the signaling events discussed include the activation of apoptosis signal regulating kinase and MAP kinases (p38 and JNK) and the modulation of a number of redox-sensitive transcription factors including AP-1, NF-κB, p53, and Nrf2. PMID:22542445

  4. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.

    Science.gov (United States)

    Nietzel, Thomas; Mostertz, Jörg; Hochgräfe, Falko; Schwarzländer, Markus

    2017-03-01

    Mitochondria are hotspots of cellular redox biochemistry. Respiration as a defining mitochondrial function is made up of a series of electron transfers that are ultimately coupled to maintaining the proton motive force, ATP production and cellular energy supply. The individual reaction steps involved require tight control and flexible regulation to maintain energy and redox balance in the cell under fluctuating demands. Redox regulation by thiol switching has been a long-standing candidate mechanism to support rapid adjustment of mitochondrial protein function at the posttranslational level. Here we review recent advances in our understanding of cysteine thiol switches in the mitochondrial proteome with a focus on their operation in vivo. We assess the conceptual basis for thiol switching in mitochondria and discuss to what extent insights gained from in vitro studies may be valid in vivo, considering thermodynamic, kinetic and structural constraints. We compare functional proteomic approaches that have been used to assess mitochondrial protein thiol switches, including thioredoxin trapping, redox difference gel electrophoresis (redoxDIGE), isotope-coded affinity tag (OxICAT) and iodoacetyl tandem mass tag (iodoTMT) labelling strategies. We discuss conditions that may favour active thiol switching in mitochondrial proteomes in vivo, and appraise recent advances in dissecting their impact using combinations of in vivo redox sensing and quantitative redox proteomics. Finally we focus on four central facets of mitochondrial biology, aging, carbon metabolism, energy coupling and electron transport, exemplifying the current emergence of a mechanistic understanding of mitochondrial regulation by thiol switching in living plants and animals. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  5. Redox effects on the microbial degradation of refractory organic matter in marine sediments

    Science.gov (United States)

    Reimers, Clare E.; Alleau, Yvan; Bauer, James E.; Delaney, Jennifer; Girguis, Peter R.; Schrader, Paul S.; Stecher, Hilmar A.

    2013-11-01

    Microbially mediated reduction-oxidation (redox) reactions are often invoked as being the mechanisms by which redox state influences the degradation of sedimentary organic matter (OM) in the marine environment. To evaluate the effects of elevated, oscillating and reduced redox potentials on the fate of primarily aged, mineral-adsorbed OM contained in continental shelf sediments, we used microbial fuel cells to control redox state within and around marine sediments, without amending the sediments with reducing or oxidizing substances. We subsequently followed electron fluxes in the redox elevated and redox oscillating treatments, and related sediment chemical, isotopic and bacterial community changes to redox conditions over a 748-day experimental period. The electron fluxes of the elevated and oscillating redox cells were consistent with models of organic carbon (OC) oxidation with time-dependent first-order rate constants declining from 0.023 to 0.005 y-1, in agreement with rate constants derived from typical OC profiles and down core ages of offshore sediments, or from sulfate reduction rate measurements in similar sediments. Moreover, although cumulative electron fluxes were higher in the continuously elevated redox treatment, incremental rates of electron harvesting in the two treatments converged over the 2 year experiment. These similar rates were reflected in chemical indicators of OM metabolism such as dissolved OC and ammonia, and particulate OC concentrations, which were not significantly different among all treatments and controls over the experimental time-scale. In contrast, products of carbonate and opal dissolution and metal mobilization showed greater enrichments in sediments with elevated and oscillating redox states. Microbial community composition in anode biofilms and surrounding sediments was assessed via high-throughput 16S rRNA gene sequencing, and these analyses revealed that the elevated and oscillatory redox treatments led to the

  6. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Beyenal, Haluk [WSU; McLEan, Jeff [JCVI; Majors, Paul [PNNL; Fredrickson, Jim [PNNL

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in the subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.

  7. Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics.

    Science.gov (United States)

    Hosseinzadeh, Parisa; Lu, Yi

    2016-05-01

    Redox potentials are a major contributor in controlling the electron transfer (ET) rates and thus regulating the ET processes in the bioenergetics. To maximize the efficiency of the ET process, one needs to master the art of tuning the redox potential, especially in metalloproteins, as they represent major classes of ET proteins. In this review, we first describe the importance of tuning the redox potential of ET centers and its role in regulating the ET in bioenergetic processes including photosynthesis and respiration. The main focus of this review is to summarize recent work in designing the ET centers, namely cupredoxins, cytochromes, and iron-sulfur proteins, and examples in design of protein networks involved these ET centers. We then discuss the factors that affect redox potentials of these ET centers including metal ion, the ligands to metal center and interactions beyond the primary ligand, especially non-covalent secondary coordination sphere interactions. We provide examples of strategies to fine-tune the redox potential using both natural and unnatural amino acids and native and nonnative cofactors. Several case studies are used to illustrate recent successes in this area. Outlooks for future endeavors are also provided. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    Science.gov (United States)

    Liu, Pei; Zhang, Huoming; Yu, Boying; Xiong, Liming; Xia, Yiji

    2015-01-01

    Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response. PMID:25720653

  9. Relationships Between Redox Potential and Sediment Organic Matter Characteristics and Consequences for Restoration of Aquatic Vegetation

    Science.gov (United States)

    Laing, J.

    2015-12-01

    Eutrophication in rivers is often characterized by sharp increases in filamentous algae and sediment organic matter and decreases in populations of native submerged aquatic vegetation (SAV). Because established SAV oxygenate the rhizosphere of underlying sediments, declines in SAV and increases in sediment organic matter may result in highly reduced conditions in river bottom sediments. These reduced sediments may contain phytotoxic compounds which inhibit the establishment and early growth of SAV. In this study we measured sediment redox potential in three subtropical spring-fed rivers. For each river we compared redox potential in sediments high in organic matter with redox potential in mineral sediments and in sediments underlying SAV beds (n=9). Additionally, we collected plant biomass and sediment samples to investigate relationships between sediment redox potential and its potential drivers. Preliminary results show that sediments underlying SAV beds high in belowground biomass had higher relative redox potential than unvegetated organic and mineral sediments. These results have strong implications for SAV restoration plantings. Reducing conditions in unvegetated sites dominated by filamentous algae may cause widespread plant senescence when sediments are not properly prepared for planting.

  10. Antioxidants as therapeutics in the intensive care unit: Have we ticked the redox boxes?

    Science.gov (United States)

    Margaritelis, Nikos V

    2016-09-01

    Critically ill patients are under oxidative stress and antioxidant administration reasonably emerged as a promising approach to combat the aberrant redox homeostasis in this patient cohort. However, the results of the antioxidant treatments in the intensive care unit are conflicting and inconclusive. The main objective of the present review is to highlight some inherent, yet widely overlooked redox-related issues about the equivocal effectiveness of antioxidants in the intensive care unit, beyond methodological considerations. In particular, the discrepancy in the literature partially stems from: (1) the largely unspecified role of reactive species in disease onset and progression, (2) our fragmentary understanding on the interplay between inflammation and oxidative stress, (3) the complex spatiotemporal specificity of in vivo redox biology, (4) the pleiotropic effects of antioxidants and (5) the divergent effects of antioxidants according to the temporal administration pattern. In addition, two novel and sophisticated practices with promising pre-clinical results are presented: (1) the selective neutralization of reactive species in key organelles after they are formed (i.e., in mitochondria) and (2) the targeted complete inhibition of dominant reactive species sources (i.e., NADPH oxidases). Finally, the reductive potential of NADPH as a key pharmacological target for redox therapies is rationalized. In light of the above, the recontextualization of knowledge from basic redox biology to translational medicine seems imperative to perform more realistic in vivo studies in the fast-growing field of critical care pharmacology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A glutathione redox effect on photosynthetic membrane expression in Rhodospirillum rubrum.

    Science.gov (United States)

    Carius, Anke Berit; Henkel, Marius; Grammel, Hartmut

    2011-04-01

    The formation of intracytoplasmic photosynthetic membranes by facultative anoxygenic photosynthetic bacteria has become a prime example for exploring redox control of gene expression in response to oxygen and light. Although a number of redox-responsive sensor proteins and transcription factors have been characterized in several species during the last several years in some detail, the overall understanding of the metabolic events that determine the cellular redox environment and initiate redox signaling is still poor. In the present study we demonstrate that in Rhodospirillum rubrum, the amount of photosynthetic membranes can be drastically elevated by external supplementation of the growth medium with the low-molecular-weight thiol glutathione. Neither the widely used reductant dithiothreitol nor oxidized glutathione caused the same response, suggesting that the effect was specific for reduced glutathione. By determination of the extracellular and intracellular glutathione levels, we correlate the GSH/GSSG redox potential to the expression level of photosynthetic membranes. Possible regulatory interactions with periplasmic, membrane, and cytosolic proteins are discussed. Furthermore, we found that R. rubrum cultures excrete substantial amounts of glutathione to the environment.

  12. A Glutathione Redox Effect on Photosynthetic Membrane Expression in Rhodospirillum rubrum▿†

    Science.gov (United States)

    Carius, Anke Berit; Henkel, Marius; Grammel, Hartmut

    2011-01-01

    The formation of intracytoplasmic photosynthetic membranes by facultative anoxygenic photosynthetic bacteria has become a prime example for exploring redox control of gene expression in response to oxygen and light. Although a number of redox-responsive sensor proteins and transcription factors have been characterized in several species during the last several years in some detail, the overall understanding of the metabolic events that determine the cellular redox environment and initiate redox signaling is still poor. In the present study we demonstrate that in Rhodospirillum rubrum, the amount of photosynthetic membranes can be drastically elevated by external supplementation of the growth medium with the low-molecular-weight thiol glutathione. Neither the widely used reductant dithiothreitol nor oxidized glutathione caused the same response, suggesting that the effect was specific for reduced glutathione. By determination of the extracellular and intracellular glutathione levels, we correlate the GSH/GSSG redox potential to the expression level of photosynthetic membranes. Possible regulatory interactions with periplasmic, membrane, and cytosolic proteins are discussed. Furthermore, we found that R. rubrum cultures excrete substantial amounts of glutathione to the environment. PMID:21317329

  13. Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling.

    Science.gov (United States)

    Noctor, Graham; Foyer, Christine H

    2016-07-01

    Recent years have witnessed enormous progress in understanding redox signaling related to reactive oxygen species (ROS) in plants. The consensus view is that such signaling is intrinsic to many developmental processes and responses to the environment. ROS-related redox signaling is tightly wedded to compartmentation. Because membranes function as barriers, highly redox-active powerhouses such as chloroplasts, peroxisomes, and mitochondria may elicit specific signaling responses. However, transporter functions allow membranes also to act as bridges between compartments, and so regulated capacity to transmit redox changes across membranes influences the outcome of triggers produced at different locations. As well as ROS and other oxidizing species, antioxidants are key players that determine the extent of ROS accumulation at different sites and that may themselves act as signal transmitters. Like ROS, antioxidants can be transported across membranes. In addition, the intracellular distribution of antioxidative enzymes may be modulated to regulate or facilitate redox signaling appropriate to the conditions. Finally, there is substantial plasticity in organellar shape, with extensions such as stromules, peroxules, and matrixules playing potentially crucial roles in organelle-organelle communication. We provide an overview of the advances in subcellular compartmentation, identifying the gaps in our knowledge and discussing future developments in the area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. Redox-Mediated and Ionizing-Radiation-Induced Inflammatory Mediators in Prostate Cancer Development and Treatment

    Science.gov (United States)

    Miao, Lu; Holley, Aaron K.; Zhao, Yanming; St. Clair, William H.

    2014-01-01

    Abstract Significance: Radiation therapy is widely used for treatment of prostate cancer. Radiation can directly damage biologically important molecules; however, most effects of radiation-mediated cell killing are derived from the generated free radicals that alter cellular redox status. Multiple proinflammatory mediators can also influence redox status in irradiated cells and the surrounding microenvironment, thereby affecting prostate cancer progression and radiotherapy efficiency. Recent Advances: Ionizing radiation (IR)–generated oxidative stress can regulate and be regulated by the production of proinflammatory mediators. Depending on the type and stage of the prostate cancer cells, these proinflammatory mediators may lead to different biological consequences ranging from cell death to development of radioresistance. Critical Issues: Tumors are heterogeneous and dynamic communication occurs between stromal and prostate cancer cells, and complicated redox-regulated mechanisms exist in the tumor microenvironment. Thus, antioxidant and anti-inflammatory strategies should be carefully evaluated for each patient at different stages of the disease to maximize therapeutic benefits while minimizing unintended side effects. Future Directions: Compared with normal cells, tumor cells are usually under higher oxidative stress and secrete more proinflammatory mediators. Thus, redox status is often less adaptive in tumor cells than in their normal counterparts. This difference can be exploited in a search for new cancer therapeutics and treatment regimes that selectively activate cell death pathways in tumor cells with minimal unintended consequences in terms of chemo- and radio-resistance in tumor cells and toxicity in normal tissues. Antioxid. Redox Signal. 20, 1481–1500. PMID:24093432

  15. Review on anionic redox for high-capacity lithium- and sodium-ion batteries

    International Nuclear Information System (INIS)

    Zhao, Chenglong; Lu, Yaxiang; Hu, Yong-Sheng; Chen, Liquan; Wang, Qidi; Li, Baohua

    2017-01-01

    Rechargeable batteries, especially lithium-ion batteries, are now widely used as power sources for portable electronics and electric vehicles, but material innovations are still needed to satisfy the increasing demand for larger energy density. Recently, lithium- and sodium-rich electrode materials, including the A 2 MO 3 -family layered compounds (A  =  Li, Na; M  =  Mn 4+ , Ru 4+ , etc), have been extensively studied as potential high-capacity electrode materials for a cumulative cationic and anionic redox activity. Negatively charged oxide ions can potentially donate electrons to compensate for the absence of oxidable transition metals as a redox center to further increase the reversible capacity. Understanding and controlling the state-of-the-art anionic redox processes is pivotal for the design of advanced energy materials, highlighted in rechargeable batteries. Hence, experimental and theoretical approaches have been developed to consecutively study the diverting processes, states, and structures involved. In this review, we attempt to present a literature overview and provide insight into the reaction mechanism with respect to the anionic redox processes, proposing some opinions as target oriented. It is hoped that, through this discussion, the search for anionic redox electrode materials with high-capacity rechargeable batteries can be advanced, and practical applications realized as soon as possible. (topical review)

  16. Response of humic-reducing microorganisms to the redox properties of humic substance during composting.

    Science.gov (United States)

    Zhao, Xinyu; He, Xiaosong; Xi, Beidou; Gao, Rutai; Tan, Wenbing; Zhang, Hui; Huang, Caihong; Li, Dan; Li, Meng

    2017-12-01

    Humic substance (HS) could be utilized by humus-reducing microorganisms (HRMs) as the terminal acceptors. Meanwhile, the reduction of HS can support the microbial growth. This process would greatly affect the redox conversion of inorganic and organic pollutants. However, whether the redox properties of HS lined with HRMs community during composting still remain unclear. This study aimed to assess the relationships between the redox capability of HS [i.e. humic acids (HA) and fulvic acids (FA)] and HRMs during composting. The results showed that the changing patterns of electron accepting capacity and electron donating capacity of HS were diverse during seven composting. Electron transfer capacities (ETC) of HA was significantly correlated with the functional groups (i.e. alkyl C, O-alkyl C, aryl C, carboxylic C, aromatic C), aromaticity and molecular weight of HA. Aromatic C, phenols, aryl C, carboxylic C, aromaticity and molecular weight of HS were the main structuralfeatures associated with the ETC of FA. Ten key genera of HRMs were found significantly determine these redox-active functional groups of HS during composting, thus influencing the ETC of HS in composts. In addition, a regulating method was suggested to enhance the ETC of HS during composting based on the relationships between the key HRMs and redox-active functional groups as well as environmental variables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    KAUST Repository

    Liu, Peng

    2015-02-27

    Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response.

  18. Visualization of Nicotine Adenine Dinucleotide Redox Homeostasis with Genetically Encoded Fluorescent Sensors.

    Science.gov (United States)

    Zhao, Yuzheng; Zhang, Zhuo; Zou, Yejun; Yang, Yi

    2018-01-20

    Beyond their roles as redox currency in living organisms, pyridine dinucleotides (NAD + /NADH and NADP + /NADPH) are also precursors or cosubstrates of great significance in various physiologic and pathologic processes. Recent Advances: For many years, it was challenging to develop methodologies for monitoring pyridine dinucleotides in situ or in vivo. Recent advances in fluorescent protein-based sensors provide a rapid, sensitive, specific, and real-time readout of pyridine dinucleotide dynamics in single cells or in vivo, thereby opening a new era of pyridine dinucleotide bioimaging. In this article, we summarize the developments in genetically encoded fluorescent sensors for NAD + /NADH and NADP + /NADPH redox states, as well as their applications in life sciences and drug discovery. The strengths and weaknesses of individual sensors are also discussed. These sensors have the advantages of being specific and organelle targetable, enabling real-time monitoring and subcellular-level quantification of targeted molecules in living cells and in vivo. NAD + /NADH and NADP + /NADPH have distinct functions in metabolic and redox regulation, and thus, a comprehensive evaluation of metabolic and redox states must be multiplexed with a combination of various metabolite sensors in a single cell. Antioxid. Redox Signal. 28, 213-229.

  19. A redox-flow battery with an alloxazine-based organic electrolyte

    Science.gov (United States)

    Lin, Kaixiang; Gómez-Bombarelli, Rafael; Beh, Eugene S.; Tong, Liuchuan; Chen, Qing; Valle, Alvaro; Aspuru-Guzik, Alán; Aziz, Michael J.; Gordon, Roy G.

    2016-09-01

    Redox-flow batteries (RFBs) can store large amounts of electrical energy from variable sources, such as solar and wind. Recently, redox-active organic molecules in aqueous RFBs have drawn substantial attention due to their rapid kinetics and low membrane crossover rates. Drawing inspiration from nature, here we report a high-performance aqueous RFB utilizing an organic redox compound, alloxazine, which is a tautomer of the isoalloxazine backbone of vitamin B2. It can be synthesized in high yield at room temperature by single-step coupling of inexpensive o-phenylenediamine derivatives and alloxan. The highly alkaline-soluble alloxazine 7/8-carboxylic acid produces a RFB exhibiting open-circuit voltage approaching 1.2 V and current efficiency and capacity retention exceeding 99.7% and 99.98% per cycle, respectively. Theoretical studies indicate that structural modification of alloxazine with electron-donating groups should allow further increases in battery voltage. As an aza-aromatic molecule that undergoes reversible redox cycling in aqueous electrolyte, alloxazine represents a class of radical-free redox-active organics for use in large-scale energy storage.

  20. CHOP THERAPY INDUCED MITOCHONDRIAL REDOX STATE ALTERATION IN NON-HODGKIN'S LYMPHOMA XENOGRAFTS

    Directory of Open Access Journals (Sweden)

    H. N. XU

    2013-04-01

    Full Text Available We are interested in investigating whether cancer therapy may alter the mitochondrial redox state in cancer cells to inhibit their growth and survival. The redox state can be imaged by the redox scanner that collects the fluorescence signals from both the oxidized-flavoproteins (Fp and the reduced form of nicotinamide adenine dinucleotide (NADH in snap-frozen tissues and has been previously employed to study tumor aggressiveness and treatment responses. Here, with the redox scanner we investigated the effects of chemotherapy on mouse xenografts of a human diffuse large B-cell lymphoma cell line (DLCL2. The mice were treated with CHOP therapy, i.e., cyclophosphamide (C + hydroxydoxorubicin (H + Oncovin (O + prednisone (P with CHO administration on day 1 and prednisone administration on days 1–5. The Fp content of the treated group was significantly decreased (p = 0.033 on day 5, and the mitochondrial redox state of the treated group was slightly more reduced than that of the control group (p = 0.048. The decrease of the Fp heterogeneity (measured by the mean standard deviation had a border-line statistical significance (p = 0.071. The result suggests that the mitochondrial metabolism of lymphoma cells was slightly suppressed and the lymphomas became less aggressive after the CHOP therapy.

  1. Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy

    Science.gov (United States)

    Lee, Jangwoen; Kim, Jae G.; Mahon, Sari B.; Mukai, David; Yoon, David; Boss, Gerry R.; Patterson, Steven E.; Rockwood, Gary; Isom, Gary; Brenner, Matthew

    2014-05-01

    A major need exists for methods to assess organ oxidative metabolic states in vivo. By contrasting the responses to cyanide (CN) poisoning versus hemorrhage in animal models, we demonstrate that diffuse optical spectroscopy (DOS) can detect cytochrome c oxidase (CcO) redox states. Intermittent decreases in inspired O2 from 100% to 21% were applied before, during, and after CN poisoning, hemorrhage, and resuscitation in rabbits. Continuous DOS measurements of total hemoglobin, oxyhemoglobin, deoxyhemoglobin, and oxidized and reduced CcO from muscle were obtained. Rabbit hemorrhage was accomplished with stepwise removal of blood, followed by blood resuscitation. CN treated rabbits received 0.166 mg/min NaCN infusion. During hemorrhage, CcO redox state became reduced concurrently with decreases in oxyhemoglobin, resulting from reduced tissue oxygen delivery and hypoxia. In contrast, during CN infusion, CcO redox state decreased while oxyhemoglobin concentration increased due to CN binding and reduction of CcO with resultant inhibition of the electron transport chain. Spectral absorption similarities between hemoglobin and CcO make noninvasive spectroscopic distinction of CcO redox states difficult. By contrasting physiological perturbations of CN poisoning versus hemorrhage, we demonstrate that DOS measured CcO redox state changes are decoupled from hemoglobin concentration measurement changes.

  2. Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes

    Science.gov (United States)

    Robinson, Georgina; Caldwell, Gary S.; Wade, Matthew J.; Free, Andrew; Jones, Clifford L. W.; Stead, Selina M.

    2016-12-01

    Deposit-feeding invertebrates are proposed bioremediators in microbial-driven sediment-based aquaculture effluent treatment systems. We elucidate the role of the sediment reduction-oxidation (redox) regime in structuring benthic bacterial communities, having direct implications for bioremediation potential and deposit-feeder nutrition. The sea cucumber Holothuria scabra was cultured on sediments under contrasting redox regimes; fully oxygenated (oxic) and redox stratified (oxic-anoxic). Taxonomically, metabolically and functionally distinct bacterial communities developed between the redox treatments with the oxic treatment supporting the greater diversity; redox regime and dissolved oxygen levels were the main environmental drivers. Oxic sediments were colonised by nitrifying bacteria with the potential to remediate nitrogenous wastes. Percolation of oxygenated water prevented the proliferation of anaerobic sulphate-reducing bacteria, which were prevalent in the oxic-anoxic sediments. At the predictive functional level, bacteria within the oxic treatment were enriched with genes associated with xenobiotics metabolism. Oxic sediments showed the greater bioremediation potential; however, the oxic-anoxic sediments supported a greater sea cucumber biomass. Overall, the results indicate that bacterial communities present in fully oxic sediments may enhance the metabolic capacity and bioremediation potential of deposit-feeder microbial systems. This study highlights the benefits of incorporating deposit-feeding invertebrates into effluent treatment systems, particularly when the sediment is oxygenated.

  3. Redox States of Plastids and Mitochondria Differentially Regulate Intercellular Transport via Plasmodesmata1[OA

    Science.gov (United States)

    Stonebloom, Solomon; Brunkard, Jacob O.; Cheung, Alexander C.; Jiang, Keni; Feldman, Lewis; Zambryski, Patricia

    2012-01-01

    Recent studies suggest that intercellular transport via plasmodesmata (PD) is regulated by cellular redox state. Until now, this relationship has been unclear, as increased production of reactive oxygen species (ROS) has been associated with both increased and decreased intercellular transport via PD. Here, we show that silencing two genes that both increase transport via PD, INCREASED SIZE EXCLUSION LIMIT1 (ISE1) and ISE2, alters organelle redox state. Using redox-sensitive green fluorescent proteins targeted to the mitochondria or plastids, we show that, relative to wild-type leaves, plastids are more reduced in both ISE1- and ISE2-silenced leaves, whereas mitochondria are more oxidized in ISE1-silenced leaves. We further show that PD transport is positively regulated by ROS production in mitochondria following treatment with salicylhydroxamic acid but negatively regulated by an oxidative shift in both chloroplasts and mitochondria following treatment with paraquat. Thus, oxidative shifts in the mitochondrial redox state positively regulate intercellular transport in leaves, but oxidative shifts in the plastid redox state counteract this effect and negatively regulate intercellular transport. This proposed model reconciles previous contradictory evidence relating ROS production to PD transport and supports accumulating evidence that mitochondria and plastids are crucial regulators of PD function. PMID:22074709

  4. Protein Redox Modification as a Cellular Defense Mechanism against Tissue Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Liang-Jun Yan

    2014-01-01

    Full Text Available Protein oxidative or redox modifications induced by reactive oxygen species (ROS or reactive nitrogen species (RNS not only can impair protein function, but also can regulate and expand protein function under a variety of stressful conditions. Protein oxidative modifications can generally be classified into two categories: irreversible oxidation and reversible oxidation. While irreversible oxidation usually leads to protein aggregation and degradation, reversible oxidation that usually occurs on protein cysteine residues can often serve as an “on and off” switch that regulates protein function and redox signaling pathways upon stress challenges. In the context of ischemic tolerance, including preconditioning and postconditioning, increasing evidence has indicated that reversible cysteine redox modifications such as S-sulfonation, S-nitrosylation, S-glutathionylation, and disulfide bond formation can serve as a cellular defense mechanism against tissue ischemic injury. In this review, I highlight evidence of cysteine redox modifications as protective measures in ischemic injury, demonstrating that protein redox modifications can serve as a therapeutic target for attenuating tissue ischemic injury. Prospectively, more oxidatively modified proteins will need to be identified that can play protective roles in tissue ischemic injury, in particular, when the oxidative modifications of such identified proteins can be enhanced by pharmacological agents or drugs that are available or to be developed.

  5. Subseafloor nitrogen redox processes at Loihi Seamount, Hawai

    Science.gov (United States)

    Wankel, S. D.; Sylvan, J. B.; LaRowe, D.; Huber, J. A.; Moyer, C. L.; Edwards, K. J.

    2014-12-01

    archaeal methanogens in the genera Methanococcus and Methanothermococcus. Members of the NO2- oxidizing phylum Nitrispirae are present in all four samples, and are very abundant in two of them. All this data together reveals that N redox processes are significant sources of energy in subsurface Loihi fluids, and possibly at diffuse flow hydrothermal sites elsewhere

  6. Systematic investigation of a family of gradient-dependent functionals for solids

    Science.gov (United States)

    Haas, Philipp; Tran, Fabien; Blaha, Peter; Pedroza, Luana S.; da Silva, Antonio J. R.; Odashima, Mariana M.; Capelle, Klaus

    2010-03-01

    Eleven density functionals are compared with regard to their performance for the lattice constants of solids. We consider standard functionals, such as the local-density approximation and the Perdew-Burke-Ernzerhof (PBE) generalized-gradient approximation (GGA), as well as variations of PBE GGA, such as PBEsol and similar functionals, PBE-type functionals employing a tighter Lieb-Oxford bound, and combinations thereof. On a test set of 60 solids, we perform a system-by-system analysis for selected functionals and a full statistical analysis for all of them. The impact of restoring the gradient expansion and of tightening the Lieb-Oxford bound is discussed, and confronted with previous results obtained from other codes, functionals or test sets. No functional is uniformly good for all investigated systems, but surprisingly, and pleasingly, the simplest possible modifications to PBE turn out to have the most beneficial effect on its performance. The atomization energy of molecules was also considered and on a testing set of six molecules, we found that the PBE functional is clearly the best, the others leading to strong overbinding.

  7. A redox signalling globin is essential for reproduction in Caenorhabditis elegans

    Science.gov (United States)

    de Henau, Sasha; Tilleman, Lesley; Vangheel, Matthew; Luyckx, Evi; Trashin, Stanislav; Pauwels, Martje; Germani, Francesca; Vlaeminck, Caroline; Vanfleteren, Jacques R.; Bert, Wim; Pesce, Alessandra; Nardini, Marco; Bolognesi, Martino; de Wael, Karolien; Moens, Luc; Dewilde, Sylvia; Braeckman, Bart P.

    2015-12-01

    Moderate levels of reactive oxygen species (ROS) are now recognized as redox signalling molecules. However, thus far, only mitochondria and NADPH oxidases have been identified as cellular sources of ROS in signalling. Here we identify a globin (GLB-12) that produces superoxide, a type of ROS, which serves as an essential signal for reproduction in C. elegans. We find that GLB-12 has an important role in the regulation of multiple aspects in germline development, including germ cell apoptosis. We further describe how GLB-12 displays specific molecular, biochemical and structural properties that allow this globin to act as a superoxide generator. In addition, both an intra- and extracellular superoxide dismutase act as key partners of GLB-12 to create a transmembrane redox signal. Our results show that a globin can function as a driving factor in redox signalling, and how this signal is regulated at the subcellular level by multiple control layers.

  8. Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche.

    Science.gov (United States)

    Wang, Su; Gao, Yuan; Song, Xiaoqing; Ma, Xing; Zhu, Xiujuan; Mao, Ying; Yang, Zhihao; Ni, Jianquan; Li, Hua; Malanowski, Kathryn E; Anoja, Perera; Park, Jungeun; Haug, Jeff; Xie, Ting

    2015-10-09

    Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche.

  9. Elucidating effects of cell architecture, electrode material, and solution composition on overpotentials in redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pezeshki, Alan M. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sacci, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delnick, Frank M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aaron, Douglas S. [Univ. of Tennessee, Knoxville, TN (United States); Mench, Matthew M. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-16

    Here, an improved method for quantitative measurement of the charge transfer, finite diffusion, and ohmic overpotentials in redox flow batteries using electrochemical impedance spectroscopy is presented. The use of a pulse dampener in the hydraulic circuit enables the collection of impedance spectra at low frequencies with a peristaltic pump, allowing the measurement of finite diffusion resistances at operationally relevant flow rates. This method is used to resolve the rate-limiting processes for the V2+/V3+ redox couple on carbon felt and carbon paper electrodes in the vanadium redox flow battery. Carbon felt was limited by both charge transfer and ohmic resistance, while carbon paper was limited by charge transfer, finite diffusion, and ohmic resistances. The influences of vanadium concentration and flow field design also are quantified.

  10. Direct voltammetric determination of redox-active iron in carbon nanotubes.

    Science.gov (United States)

    Teo, Wei Zhe; Pumera, Martin

    2014-12-01

    With the advances in nanotechnology over the past decade, consumer products are increasingly being incorporated with carbon nanotubes (CNTs). As the harmful effects of CNTs are suggested to be primarily due to the bioavailable amounts of metallic impurities, it is vital to detect and quantify these species using sensitive and facile methods. Therefore, in this study, we investigated the possibility of quantifying the amount of redox-available iron-containing impurities in CNTs with voltammetric techniques such as cyclic voltammetry. We examined the electrochemistry of Fe3 O4 nanoparticles in phosphate buffer solution and discovered that its electrochemical behavior could be affected by pH of the electrolyte. By utilizing the unique redox reaction between the iron and phosphate species, the redox available iron content in CNTs was determined successfully using voltammetry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. THE COUPLED REDOX POTENTIAL OF THE LACTATE-ENZYME-PYRUVATE SYSTEM

    Science.gov (United States)

    Baumberger, J. Percy; Jürgensen, J. J.; Bardwell, Kathleen

    1933-01-01

    1. The term "coupled redox potential" is defined. 2. The system lactic ion See PDF for Equation pyruvic ion + 2H+ + 2e is shown to be reversible (when the enzyme is lactic acid dehydrogenase) and its coupled redox potential between pH 5.2 and 7.2 at 32°C. is: See PDF for Equation 3. The free energy of the reaction: lactic ion (1m) → pyruvic ion (1m) = -ΔF = –14,572. 4. The standard free energy of formation (ΔF 298) of pyruvic acid (l) is estimated at –108,127. This is merely an approximation as some necessary data are lacking. 5. The importance of coupled redox potentials as a factor in the regulation of the equilibrium of metabolites is indicated. PMID:19872753

  12. Mechanistic insight provided by glutaredoxin within a fusion to redox-sensitive yellow fluorescent protein

    DEFF Research Database (Denmark)

    Björnberg, Olof; Østergaard, Henrik; Winther, Jakob R

    2006-01-01

    have generated a fusion of the two proteins, rxYFP-Grx1p. In comparison to isolated subunits, intramolecular transfer of reducing equivalents made the fusion protein kinetically superior in reactions with glutathione. The rate of GSSG oxidation was thus improved by a factor of 3300. The reaction......Redox-sensitive yellow fluorescent protein (rxYFP) contains a dithiol disulfide pair that is thermodynamically suitable for monitoring intracellular glutathione redox potential. Glutaredoxin 1 (Grx1p) from yeast is known to catalyze the redox equilibrium between rxYFP and glutathione, and here, we...... separately and in the fusion. This could not be ascribed to the lack of an unproductive side reaction to glutaredoxin disulfide. Instead, slower alkylation kinetics with iodoacetamide indicates a better leaving-group capability of the remaining cysteine residue, which can explain the increased activity....

  13. Novel Molecular Non-Volatile Memory: Application of Redox-Active Molecules

    Directory of Open Access Journals (Sweden)

    Hao Zhu

    2015-12-01

    Full Text Available This review briefly describes the development of molecular electronics in the application of non-volatile memory. Molecules, especially redox-active molecules, have become interesting due to their intrinsic redox behavior, which provides an excellent basis for low-power, high-density and high-reliability non-volatile memory applications. Recently, solid-state non-volatile memory devices based on redox-active molecules have been reported, exhibiting fast speed, low operation voltage, excellent endurance and multi-bit storage, outperforming the conventional floating-gate flash memory. Such high performance molecular memory will lead to promising on-chip memory and future portable/wearable electronics applications.

  14. Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel

    International Nuclear Information System (INIS)

    Mitala, J.J.; Michael, A.C.

    2006-01-01

    Microsensors based on carbon fiber microelectrodes coated with enzyme-entrapping redox hydrogels facilitate the in vivo detection of substances of interest within the central nervous system, including hydrogen peroxide, glucose, choline and glutamate. The hydrogel, formed by cross-linking a redox polymer, entraps the enzymes and mediates electron transfer between the enzymes and the electrode. It is important that the enzymes are entrapped in their enzymatically active state. Should entrapment cause enzyme denaturation, the sensitivity and the selectivity of the sensor may be compromised. Synthesis of the redox polymer according to published procedures may yield a product that precipitates when added to aqueous enzyme solutions. Casting hydrogels from solutions that contain the precipitate produces microsensors with low sensitivity and selectivity, suggesting that the precipitation disrupts the structure of the enzymes. Herein, we show that a surfactant, sodium dodecyl sulfate (SDS), can prevent the precipitation and improve the sensitivity and selectivity of the sensors

  15. Modification of the redox state of cytochrome c oxidase of rice due to certain stress treatments.

    Science.gov (United States)

    Dhage, A R; Desai, B B; Naik, R M; Munjal, S V; Naik, M S

    1992-10-01

    The redox state of cytochrome alpha 3 during in situ respiration of leaves of 20-day-old rice seedlings was assessed by in vivo aerobic assay of nitrate reductase, after 1 min exposure to carbon monoxide. Different stress treatments like water and salt stresses, disintegration of leaf tissues and darkness modified the redox state of cytochrome c oxidase. The dark treatment altered the redox state of cytochrome oxidase from reduced to the oxidized state, as judged by its reaction with CO in CO-sensitive rice cultivar. The water and salt stresses as well as the disintegration of leaf tissue on the contrary altered cytochrome oxidase from the oxidized to its reduced state in CO-insensitive cultivars; probably by changing the cellular integrity, turgidity and structure of mitochondrial membrane, and also due to decreased mitochondrial energization.

  16. Effect of redox conditions on pharmaceutical loss during biological wastewater treatment using sequencing batch reactors

    DEFF Research Database (Denmark)

    Stadler, Lauren B.; Su, Lijuan; Moline, Christopher J.

    2015-01-01

    condition, and specifically the use of microaerobic (low dissolved oxygen) treatment, is poorly understood. In this study, the fate of a mixture of pharmaceuticals and several of their transformation products present in the primary effluent of a local WWTP was assessed in sequencing batch reactors operated......We lack a clear understanding of how wastewater treatment plant (WWTP) process parameters, such as redox environment, impact pharmaceutical fate. WWTPs increasingly install more advanced aeration control systems to save energy and achieve better nutrient removal performance. The impact of redox...... of their parent compounds during treatment. The results suggest that transformation products must be accounted for when assessing removal efficiencies and that redox environment influences the degree of pharmaceutical loss....

  17. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Catherine R. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Hernández-Burgos, Kenneth [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Silberstein, Katharine E. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Rodríguez-Calero, Gabriel G. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Bisbey, Ryan P. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Abruña, Héctor D. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Dichtel, William R. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States

    2015-02-17

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COF films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.

  18. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Catherine R.; Hernández-Burgos, Kenneth; Silberstein, Katharine E.; Rodríguez-Calero, Gabriel G.; Bisbey, Ryan P.; Abruña, Héctor D.; Dichtel, William R.

    2015-03-24

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COF films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.

  19. Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte.

    Science.gov (United States)

    Zhao, Yu; Ding, Yu; Song, Jie; Li, Gang; Dong, Guangbin; Goodenough, John B; Yu, Guihua

    2014-10-06

    The large-scale, cost-effective storage of electrical energy obtained from the growing deployment of wind and solar power is critically needed for the integration into the grid of these renewable energy sources. Rechargeable batteries having a redox-flow cathode represent a viable solution for either a Li-ion or a Na-ion battery provided a suitable low-cost redox molecule soluble in an aprotic electrolyte can be identified that is stable for repeated cycling and does not cross the separator membrane to the anode. Here we demonstrate an environmentally friendly, low-cost ferrocene/ferrocenium molecular redox couple that shows about 95% energy efficiency and about 90% capacity retention after 250 full charge/discharge cycles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chemical synthesis, redox transformation, and identification of sonnerphenolic C, an antioxidant in Acer nikoense.

    Science.gov (United States)

    Iwadate, Takehiro; Nihei, Ken-Ichi

    2017-04-15

    Sonnerphenolic C (3), which was predicted in a redox product of epirhododendrin (1) isolated from Acer nikoense, was synthesized for the first time via the epimeric separation of benzylidene acetal intermediates as a key step. From a similar synthetic route, 1 was obtained concisely. As a result of their antioxidative evaluation, only 3 revealed potent activity. The redox transformation of 1 into 3 was achieved in the presence of tyrosinase and vitamin C. Moreover, 3 was identified in the decoction of A. nikoense by HPLC analysis with the effective use of synthesized 3. Thus, a novel naturally occurring antioxidant 3 was developed through the sequential flow including redox prediction, chemical synthesis, evaluation of the activity, and identification as the natural product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Enhancing the Electronic Conductivity of Vanadium-tellurite Glasses by Tuning the Redox State

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Yue, Yuanzheng

    . In this work we vary the redox state of a given vanadium tellurite system by performing post heat-treatment in controlled atmosphere. This process is in theory not limited only to varying electronic conductivity, but also varying the glass structure, and hence, changing properties of the glasses, e.g, thermal......Transition metal oxides are used in a variety of electronic purposes, e.g., vanadium tellurite as cathode material in high-power demanding batteries. By tuning the redox state of vanadium, it is possible to achieve a lower internal resistance within the entire battery unit, thus a higher capacity...... and mechanical properties. Finally we give insight into the relation between the redox state and electronic conductivity....

  2. Redox-stimulated motion and bistability in metal complexes and organometallic compounds.

    Science.gov (United States)

    Lomoth, Reiner

    2013-11-20

    Control over reversible changes to molecular structure forms the basis for artificial molecular machines that could eventually lead to the development of molecule-based nanotechnology. Particular applications in information storage and processing could emerge where the structural rearrangements give rise to bistability and molecular hysteresis effects. Oxidation-state-dependent coordination and bonding preferences in transition metal complexes and organometallic compounds provide a versatile approach to the control of molecular motions by redox input, but so far, few structural motifs have been applied in redox-actuated molecular machines. Further progress toward molecule-based nanoscale devices might be accomplished with molecular components derived from a wider range of structural themes and forms of molecular motion. Examples of redox-stimulated rearrangements in metal complexes and organometallic compounds are described that have been employed in molecular machines or could be considered for the design of new functional molecules.

  3. Computational Redox Potential Predictions: Applications to Inorganic and Organic Aqueous Complexes, and Complexes Adsorbed to Mineral Surfaces

    Directory of Open Access Journals (Sweden)

    Krishnamoorthy Arumugam

    2014-04-01

    Full Text Available Applications of redox processes range over a number of scientific fields. This review article summarizes the theory behind the calculation of redox potentials in solution for species such as organic compounds, inorganic complexes, actinides, battery materials, and mineral surface-bound-species. Different computational approaches to predict and determine redox potentials of electron transitions are discussed along with their respective pros and cons for the prediction of redox potentials. Subsequently, recommendations are made for certain necessary computational settings required for accurate calculation of redox potentials. This article reviews the importance of computational parameters, such as basis sets, density functional theory (DFT functionals, and relativistic approaches and the role that physicochemical processes play on the shift of redox potentials, such as hydration or spin orbit coupling, and will aid in finding suitable combinations of approaches for different chemical and geochemical applications. Identifying cost-effective and credible computational approaches is essential to benchmark redox potential calculations against experiments. Once a good theoretical approach is found to model the chemistry and thermodynamics of the redox and electron transfer process, this knowledge can be incorporated into models of more complex reaction mechanisms that include diffusion in the solute, surface diffusion, and dehydration, to name a few. This knowledge is important to fully understand the nature of redox processes be it a geochemical process that dictates natural redox reactions or one that is being used for the optimization of a chemical process in industry. In addition, it will help identify materials that will be useful to design catalytic redox agents, to come up with materials to be used for batteries and photovoltaic processes, and to identify new and improved remediation strategies in environmental engineering, for example the

  4. Physicochemical and redox characteristics of particulate matter (PM) emitted from gasoline and diesel passenger cars

    Science.gov (United States)

    Geller, Michael D.; Ntziachristos, Leonidas; Mamakos, Athanasios; Samaras, Zissis; Schmitz, Debra A.; Froines, John R.; Sioutas, Constantinos

    Particulate matter (PM) originating from mobile sources has been linked to a myriad of adverse health outcomes, ranging from cancer to cardiopulmonary disease, and an array of environmental problems, including global warming and acid rain. Till date, however, it is not clear which physical characteristics or chemical constituents of PM are significant contributors to the magnitude of the health risk. This study sought to determine the relationship between physical and chemical characteristics of PM while quantitatively measuring samples for redox activity of diesel and gasoline particulate emissions from passenger vehicles typically in use in Europe. The main objective was to relate PM chemistry to the redox activity in relation to vehicle type and driving cycle. Our results showed a high degree of correlation between several PM species, including elemental and organic carbon, low molecular weight polycyclic aromatic hydrocarbons, and trace metals such as lithium, beryllium, nickel and zinc, and the redox activity of PM, as measured by a quantitative chemical assay, the dithiothreitol (DTT) assay. The reduction in PM mass or number emission factors resulting from the various engine configurations, fuel types and/or after-treatment technologies, however, was non-linearly related to the decrease in overall PM redox activity. While the PM mass emission rate from the diesel particle filter (DPF)-equipped vehicle was on average approximately 25 times lower than that of the conventional diesel, the redox potential was only eight times lower, which makes the per mass PM redox potential of the DPF vehicle about three times higher. Thus, a strategy aimed at protecting public health and welfare by reducing total vehicle mass and number emissions may not fully achieve the desired goal of preventing the health consequences of PM exposure. Further, study of the chemical composition and interactions between various chemical species may yield greater insights into the toxicity of

  5. The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria.

    Science.gov (United States)

    Bhattacharjee, Ashima; Yang, Haojun; Duffy, Megan; Robinson, Emily; Conrad-Antoville, Arianrhod; Lu, Ya-Wen; Capps, Tony; Braiterman, Lelita; Wolfgang, Michael; Murphy, Michael P; Yi, Ling; Kaler, Stephen G; Lutsenko, Svetlana; Ralle, Martina

    2016-08-05

    Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Differential roles for Fos and Jun in DNA-binding: redox-dependent and independent functions.

    Science.gov (United States)

    Ng, L; Forrest, D; Curran, T

    1993-01-01

    The Fos and Jun family of transcription factors contain an invariant sequence motif lysine-cysteine-arginine (KCR) in the highly conserved DNA-binding region. Reduction of the cysteine residue is necessary to facilitate DNA-binding. Here, we examined the potential dual roles of the flanking lysine and arginine residues in influencing the redox reactivity of the cysteine and the DNA-binding activity of Fos and Jun. Two sets of Fos and Jun mutants were generated: the KCR and KSR series representing proteins capable of redox-dependent and redox-independent DNA-binding activity, respectively. Mutation of the lysine in Fos-Jun heterodimers had no obvious effect on the redox reactivity of the cysteine, suggesting that lysine is not essential in this respect. However, mutation of the arginine but not lysine, in both the KCR and the KSR series abolished DNA-binding activity. Thus, the arginine but not the lysine residue in the KCR motif is critical for both redox-dependent and redox-independent functions in DNA-binding. Surprisingly, the triple substitution, ISI, exhibited high levels of DNA-binding activity. This demonstrates that the effects of amino acid substitutions can be highly dependent on context and that non-basic amino acids can function efficiently in DNA-binding. Analysis of combinations of wild-type and mutant Fos and Jun proteins indicated that Fos was dominant in dictating the DNA-binding ability of Fos-Jun heterodimers. This suggests that the lysine and arginine residues in the KCR region of Fos are not equivalent to those in Jun and that they interact with DNA differently. Images PMID:8290340

  7. Effects of non-dissolved redox mediators on a hexavalent chromium bioreduction process

    Directory of Open Access Journals (Sweden)

    Jing Lian

    2016-03-01

    Full Text Available The effects of six non-dissolved redox mediators (RM immobilized in cellulose acetate beads on enhancing Cr(VI reduction by Mangrovibacter plantisponsor CR1 were investigated. In addition, the voltammetric behaviours and electron transfer capacities of the redox mediators were examined using electrochemical methods. Compared to the control beads, the Cr(VI bioreduction rate with 1-chloroanthraquinone cellulose acetate beads (1-CAQ/CA beads was increased up to 4.5-fold, which was mainly attributed to enhanced electron transfer by 1-CAQ. The redox mediators also improved the oxidation–reduction potential values of the Cr(VI bioreduction processes, which might assist in Cr(VI bioreduction. The role of the redox mediators was discussed based on the cyclic voltammetric characteristics (E0' of the redox mediators and the electrochemical impedance spectroscopy characteristics (Rct of the RM/CA beads. A linear correlation was found for the reaction constant k and the 1-CAQ concentration (C1-CAQ, which was k = 1.5674 C1-CAQ + 4.8506 (R2 = 0.9683. The Cr(VI bioreduction was affected by temperature, and the optimum pH for the Cr(VI bioreduction was 6.5. The results of repeated-batch operations showed that 1-CAQ/CA beads exhibited good stability and persistence. This study contributes to a better understanding of the effects of the redox mediator on Cr(VI bioreduction process and demonstrates its promising potential for environmental bioremediation applications.

  8. Redox regulation and pro-oxidant reactions in the physiology of circadian systems.

    Science.gov (United States)

    Méndez, Isabel; Vázquez-Martínez, Olivia; Hernández-Muñoz, Rolando; Valente-Godínez, Héctor; Díaz-Muñoz, Mauricio

    2016-05-01

    Rhythms of approximately 24 h are pervasive in most organisms and are known as circadian. There is a molecular circadian clock in each cell sustained by a feedback system of interconnected "clock" genes and transcription factors. In mammals, the timing system is formed by a central pacemaker, the suprachiasmatic nucleus, in coordination with a collection of peripheral oscillators. Recently, an extensive interconnection has been recognized between the molecular circadian clock and the set of biochemical pathways that underlie the bioenergetics of the cell. A principle regulator of metabolic networks is the flow of electrons between electron donors and acceptors. The concomitant reduction and oxidation (redox) reactions directly influence the balance between anabolic and catabolic processes. This review summarizes and discusses recent findings concerning the mutual and dynamic interactions between the molecular circadian clock, redox reactions, and redox signaling. The scope includes the regulatory role played by redox coenzymes (NAD(P)+/NAD(P)H, GSH/GSSG), reactive oxygen species (superoxide anion, hydrogen peroxide), antioxidants (melatonin), and physiological events that modulate the redox state (feeding condition, circadian rhythms) in determining the timing capacity of the molecular circadian clock. In addition, we discuss a purely metabolic circadian clock, which is based on the redox enzymes known as peroxiredoxins and is present in mammalian red blood cells and in other biological systems. Both the timing system and the metabolic network are key to a better understanding of widespread pathological conditions such as the metabolic syndrome, obesity, and diabetes. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. Copper dynamics under alternating redox conditions is influenced by soil properties and contamination source.

    Science.gov (United States)

    Balint, Ramona; Said-Pullicino, Daniel; Ajmone-Marsan, Franco

    2015-02-01

    Understanding the effect of soil redox conditions on contaminant dynamics is of significant importance for evaluating their lability, mobility and potential transfer to other environmental compartments. Under changing redox conditions, soil properties and constituents such as Fe and Mn (hydr)oxides and organic matter (OM) may influence the behavior of associated metallic elements (MEs). In this work, the redox-driven release and redistribution of Cu between different soil pools was studied in three soils having different contamination sources. This was achieved by subjecting soil columns to a series of alternating reducing and oxidizing cycles under non-limiting C conditions, and assessing their influence on soil pore water, leachate and solid phase composition. Results showed that, in all soils, alternating redox conditions led to an increase in the distribution of Cu in the more labile fractions, consequently enhancing its susceptibility to loss. This was generally linked to the redox-driven cycling of Fe, Mn and dissolved organic matter (DOM). In fact, results suggested that the reductive dissolution of Fe and Mn (hydr)oxides and subsequent reprecipitation as poorly-ordered phases under oxic conditions contributed to the release and mobilization of Cu and/or Cu-containing organometallic complexes. However, the behavior of Cu, as well as the mechanisms controlling Cu release and loss with redox cycling, was influenced by both soil properties (e.g. pH, contents of easily reducible Fe and Mn (hydr)oxides) and source of Cu contamination. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria

    Science.gov (United States)

    Blankenship, R. E.; Cheng, P.; Causgrove, T. P.; Brune, D. C.; Wang, J.

    1993-01-01

    The efficiency of energy transfer from the peripheral chlorosome antenna structure to the membrane-bound antenna in green sulfur bacteria depends strongly on the redox potential of the medium. The fluorescence spectra and lifetimes indicate that efficient quenching pathways are induced in the chlorosome at high redox potential. The midpoint redox potential for the induction of this effect in isolated chlorosomes from Chlorobium vibrioforme is -146 mV at pH 7 (vs the normal hydrogen electrode), and the observed midpoint potential (n = 1) decreases by 60 mV per pH unit over the pH range 7-10. Extraction of isolated chlorosomes with hexane has little effect on the redox-induced quenching, indicating that the component(s) responsible for this effect are bound and not readily extractable. We have purified and partially characterized the trimeric water-soluble bacteriochlorophyll a-containing protein from the thermophilic green sulfur bacterium Chlorobium tepidum. This protein is located between the chlorosome and the membrane. Fluorescence spectra of the purified protein indicate that it also contains groups that quench excitations at high redox potential. The results indicate that the energy transfer pathway in green sulfur bacteria is regulated by redox potential. This regulation appears to operate in at least two distinct places in the energy transfer pathway, the oligomeric pigments in the interior of the chlorosome and in the bacteriochlorophyll a protein. The regulatory effect may serve to protect the cell against superoxide-induced damage when oxygen is present. By quenching excitations before they reach the reaction center, reduction and subsequent autooxidation of the low potential electron acceptors found in these organisms is avoided.

  11. Differential regulation of tissue thiol-disulfide redox status in a murine model of peritonitis

    Directory of Open Access Journals (Sweden)

    Benton Shana M

    2012-10-01

    Full Text Available Abstract Background Glutathione (GSH/glutathione disulfide (GSSG and cysteine (Cys/cystine (CySS are major redox pools with important roles in cytoprotection. We determined the impact of septic peritonitis on thiol-disulfide redox status in mice. Methods FVB/N mice (6–12 week old; 8/group underwent laparotomy with cecal ligation and puncture (CLP or laparotomy alone (control. Sections of ileum, colon, lung and liver were obtained and GSH, GSSG, Cys and CySS concentrations determined by HPLC 24 h after laparotomy. Redox potential [Eh in millivolts (mV] of the GSH/GSSG and Cys/CySS pools was calculated using the Nernst equation. Data were analyzed by ANOVA (mean ± SE. Results GSH/GSSG Eh in ileum, colon, and liver was significantly oxidized in septic mice versus control mice (ileum: septic −202±4 versus control −228±2 mV; colon: -195±8 versus −214±1 mV; and liver: -194±3 vs. -210±1 mV, all Ph was unchanged with CLP, while liver and lung Cys/CySS Eh became significantly more reducing (liver: septic = −103±3 versus control −90±2 mV; lung: -101±5 versus −81±1 mV, each P Conclusions Septic peritonitis induced by CLP oxidizes ileal and colonic GSH/GSSG redox but Cys/CySS Eh remains unchanged in these intestinal tissues. In liver, CLP oxidizes the GSH/GSSG redox pool and CyS/CySS Eh becomes more reducing; in lung, CLP does not alter GSH/GSSG Eh, and Cys/CySS Eh is less oxidized. CLP-induced infection/inflammation differentially regulates major thiol-disulfide redox pools in this murine model.

  12. Development of a mathematical-statistical model for the analysis of sediments redox potential: An environmental pollution index; Sviluppo di un modello matematico-statistico per l`analisi del potenziale redox dei sedimenti

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, G.; Rizzo, V. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente; Bella, A.; Picci, M. [Rome Univ. La Sapienza (Italy). Dip. di Statistica e Probabilita` Applicata

    1996-07-01

    This work refers different depth redox potential measurement as well as a statistical analysis in Venice lagoon sediments. A mathematical model that links redox potential and detection depth has been carried out. From this model an inversion gradient has been determined. This parameter may been considered as different lagoon areas pollution index.

  13. Ni-YSZ solid oxide fuel cell anode behavior upon redox cycling based on electrical characterization

    DEFF Research Database (Denmark)

    Klemensø, Trine; Mogensen, Mogens Bjerg

    2006-01-01

    Ni-YSZ cermets are a prevalent material used for solid oxide fuel cells. However, the cermet degrades upon redox cycling. The degradation is related to microstructural changes, but knowledge of the mechanisms has been limited. DC conductivity measurements were performed on cermets and cermets......, where the Ni component was removed, before, during and after redox cycling the cermet. The cermet conductivity degraded over time due to sintering of the nickel phase. Following oxidizing events, the conductivity of the cermets improved, whereas the conductivity of the YSZ phase decreased. A model...

  14. Ni-YSZ solid oxide fuel cell anode behavior upon redox cycling based on electrical characterization

    DEFF Research Database (Denmark)

    Klemensø, Trine; Mogensen, Mogens Bjerg

    2007-01-01

    Nickel (Ni)—yttria-stabilized zirconia (YSZ) cermets are a prevalent material used for solid oxide fuel cells. The cermet degrades upon redox cycling. The degradation is related to microstructural changes, but knowledge of the mechanisms has been limited. Direct current conductivity measurements...... were performed on cermets and cermets where the Ni component was removed. Measurements were carried out before, during, and after redox cycling the cermet. The cermet conductivity degraded over time due to sintering of the nickel phase. Following oxidizing events, the conductivity of the cermets...

  15. Verified reduction of dimensionality for an all-vanadium redox flow battery model

    Science.gov (United States)

    Sharma, A. K.; Ling, C. Y.; Birgersson, E.; Vynnycky, M.; Han, M.

    2015-04-01

    The computational cost for all-vanadium redox flow batteries (VRFB) models that seek to capture the transport phenomena usually increases with the number of spatial dimensions considered. In this context, we carry out scale analysis to derive a reduced zero-dimensional model. Two nondimensional numbers and their limits to support the model reduction are identified. We verify the reduced model by comparing its charge-discharge curve predictions with that of a full two-dimensional model. The proposed analysis leading to reduction in dimensionality is generic and can be employed for other types of redox flow batteries.

  16. The role of intracellular redox imbalance in nanomaterial induced cellular damage and genotoxicity

    DEFF Research Database (Denmark)

    Kermanizadeh, Ali; Chauché, Caroline; Brown, David M

    2015-01-01

    The terms oxidative stress, free radical generation, and intracellular antioxidant protection have become part of everyday nanotoxicology terminology. In recent years, an ever increasing number of in vitro and in vivo studies have implicated disruptions to the redox balance and oxidative stress....... Furthermore, we identify data gaps, and highlight a number of issues that exist with the methodologies that are routinely utilized to investigate intracellular ROS production or anti-oxidant depletion. We conclude that for a large number of engineered NM types changes in the redox balance toward oxidative...... stress are normally associated with DNA damage....

  17. Redox enzymes in the plant plasma membrane and their possible roles

    DEFF Research Database (Denmark)

    Berczi, A.; Møller, I.M.

    2000-01-01

    Purified plasma membrane (PM) vesicles from higher plants contain redox proteins with low-molecular-mass prosthetic groups such as flavins (both FMN and FAD), hemes, metals (Cu, Fe and Mn), thiol groups and possibly naphthoquinone (vitamin K-1), all of which are likely to participate in redox...... protein which has been partially purified from plant PM so far is a high-potential and ascorbate-reducible b-type cytochrome. In co-operation with vitamin K-1 and an NAD(P)H-quinone oxidoreductase, it may participate in trans-PM electron transport....

  18. In Situ Redox Manipulation Field Injection Test Report - Hanford 100-H Area

    Energy Technology Data Exchange (ETDEWEB)

    Fruchter, J.S.; Amonette, J.E.; Cole, C.R. [and others

    1996-11-01

    This report presents results of an In Situ Redox Manipulation (ISRM) Field Injection Withdrawal Test performed at the 100-H Area of the US. Department of Energy`s (DOE`s) Hanford Site in Washington State in Fiscal Year 1996 by researchers at Pacific Northwest National Laboratory (PNNL). The test is part of the overall ISRM project, the purpose of which is to determine the potential for remediating contaminated groundwater with a technology based on in situ manipulation of subsurface reduction-oxidation (redox) conditions. The ISRM technology would be used to treat subsurface contaminants in groundwater zones at DOE sites.

  19. Neuromorphic transistor achieved by redox reaction of WO3 thin film

    Science.gov (United States)

    Tsuchiya, Takashi; Jayabalan, Manikandan; Kawamura, Kinya; Takayanagi, Makoto; Higuchi, Tohru; Jayavel, Ramasamy; Terabe, Kazuya

    2018-04-01

    An all-solid-state neuromorphic transistor composed of a WO3 thin film and a proton-conducting electrolyte was fabricated for application to next-generation information and communication technology including artificial neural networks. The drain current exhibited a 4-order-of-magnitude increment by redox reaction of the WO3 thin film owing to proton migration. Learning and forgetting characteristics were well tuned by the gate control of WO3 redox reactions owing to the separation of the current reading path and pulse application path in the transistor structure. This technique should lead to the development of versatile and low-power-consumption neuromorphic devices.

  20. Erv2p: characterization of the redox behavior of a yeast sulfhydryl oxidase

    DEFF Research Database (Denmark)

    Wang, Wenzhong; Winther, Jakob R; Thorpe, Colin

    2007-01-01

    centers that facilitate the transfer of reducing equivalents from the dithiol substrates of these oxidases to the isoalloxazine ring where the reaction with molecular oxygen occurs. The present study examines yeast Erv2p and compares the redox behavior of this ER luminal protein with the augmenter...... with a midpoint potential of -200 mV at pH 7.5. A charge-transfer complex between a proximal thiolate and the oxidized flavin is not observed in Erv2p consistent with a distribution of reducing equivalents over the flavin and distal disulfide redox centers. Upon coordination with Zn2+, full reduction of Erv2p...