Viscoelastic behavior of rubbery materials
Roland, C M
2011-01-01
The gigantic size of polymer molecules makes them viscoelastic - their behavior changes depending on how fast and for how long the material is used. This book looks at the latest discoveries in the field from a fundamental molecular perspective, in order to guide the development of better and new applications for soft materials.
SYNTHESIS OF VISCOELASTIC MATERIAL MODELS (SCHEMES
Directory of Open Access Journals (Sweden)
V. Bogomolov
2014-10-01
Full Text Available The principles of structural viscoelastic schemes construction for materials with linear viscoelastic properties in accordance with the given experimental data on creep tests are analyzed. It is shown that there can be only four types of materials with linear visco-elastic properties.
SU-E-T-424: Feasibility of 3D Printed Radiological Equivalent Customizable Tissue Like Materials
Energy Technology Data Exchange (ETDEWEB)
Johnson, D; Ferreira, C; Ahmad, S [University of Oklahoma Health Science Center, Oklahoma City, OK (United States)
2015-06-15
Purpose: To investigate the feasibility of 3D printing CT# specific radiological equivalent tissue like materials. Methods: A desktop 3D printer was utilized to create a series of 3 cm x 3 cm x 2 cm PLA plastic blocks of varying fill densities. The fill pattern was selected to be hexagonal (Figure 1). A series of blocks was filled with paraffin and compared to a series filled with air. The blocks were evaluated with a “GE Lightspeed” 16 slice CT scanner and average CT# of the centers of the materials was determined. The attenuation properties of the subsequent blocks were also evaluated through their isocentric irradiation via “TrueBeam” accelerator under six beam energies. Blocks were placed upon plastic-water slabs of 4 cm in thickness assuring electronic equilibrium and data was collected via Sun Nuclear “Edge” diode detector. Relative changes in dose were compared with those predicted by Varian “Eclipse” TPS. Results: The CT# of 3D printed blocks was found to be a controllable variable. The fill material was able to narrow the range of variability in each sample. The attenuation of the block tracked with the density of the total fill structure. Assigned CT values in the TPS were seen to fall within an expected range predicted by the CT scans of the 3D printed blocks. Conclusion: We have demonstrated that it is possible to 3D print materials of varying tissue equivalencies, and that these materials have radiological properties that are customizable and predictable.
SU-E-T-424: Feasibility of 3D Printed Radiological Equivalent Customizable Tissue Like Materials
International Nuclear Information System (INIS)
Johnson, D; Ferreira, C; Ahmad, S
2015-01-01
Purpose: To investigate the feasibility of 3D printing CT# specific radiological equivalent tissue like materials. Methods: A desktop 3D printer was utilized to create a series of 3 cm x 3 cm x 2 cm PLA plastic blocks of varying fill densities. The fill pattern was selected to be hexagonal (Figure 1). A series of blocks was filled with paraffin and compared to a series filled with air. The blocks were evaluated with a “GE Lightspeed” 16 slice CT scanner and average CT# of the centers of the materials was determined. The attenuation properties of the subsequent blocks were also evaluated through their isocentric irradiation via “TrueBeam” accelerator under six beam energies. Blocks were placed upon plastic-water slabs of 4 cm in thickness assuring electronic equilibrium and data was collected via Sun Nuclear “Edge” diode detector. Relative changes in dose were compared with those predicted by Varian “Eclipse” TPS. Results: The CT# of 3D printed blocks was found to be a controllable variable. The fill material was able to narrow the range of variability in each sample. The attenuation of the block tracked with the density of the total fill structure. Assigned CT values in the TPS were seen to fall within an expected range predicted by the CT scans of the 3D printed blocks. Conclusion: We have demonstrated that it is possible to 3D print materials of varying tissue equivalencies, and that these materials have radiological properties that are customizable and predictable
Viscoelastic response of hydrogel materials at finite strains
Skovly, Martin Johannessen
2015-01-01
Hydrogel materials are very soft materials consisting of polymer networks and solvent molecules. The materials may exhibit large volume changes depending on its external chemical and mechanical environment and have viscoelastic properties which is common for many polymeric materials. In order to model the material response with the finite element method, a hydrogel constitutive model have been combined with finite viscoelastic theory and the resulting viscoelastic hydrogel constitutive model ...
Modelling radiation fields of ion beams in tissue-like materials
International Nuclear Information System (INIS)
Burigo, Lucas Norberto
2014-01-01
Fast nuclei are ionizing radiation which can cause deleterious effects to irradiated cells. The modelling of the interactions of such ions with matter and the related effects are very important to physics, radiobiology, medicine and space science and technology. A powerful method to study the interactions of ionizing radiation with biological systems was developed in the field of microdosimetry. Microdosimetry spectra characterize the energy deposition to objects of cellular size, i.e., a few micrometers. In the present thesis the interaction of ions with tissue-like media was investigated using the Monte Carlo model for Heavy-Ion Therapy (MCHIT) developed at the Frankfurt Institute for Advanced Studies. MCHIT is a Geant4-based application intended to benchmark the physical models of Geant4 and investigate the physical properties of therapeutic ion beams. We have implemented new features in MCHIT in order to calculate microdosimetric quantities characterizing the radiation fields of accelerated nucleons and nuclei. The results of our Monte Carlo simulations were compared with recent experimental microdosimetry data. In addition to microdosimetry calculations with MCHIT, we also investigated the biological properties of ion beams, e.g. their relative biological effectiveness (RBE), by means of the modified Microdosimetric-Kinetic model (MKM). The MKM uses microdosimetry spectra in describing cell response to radiation. MCHIT+MKM allowed us to study the physical and biological properties of ion beams. The main results of the thesis are as follows: MCHIT is able to describe the spatial distribution of the physical dose in tissue-like media and microdosimetry spectra for ions with energies relevant to space research and ion-beam cancer therapy; MCHIT+MKM predicts a reduction of the biological effectiveness of ions propagating in extended medium due to nuclear fragmentation reactions; We predicted favourable biological dose-depth profiles for monoenergetic helium and
Viscoelastic characterization of soft biological materials
Nayar, Vinod Timothy
Progressive and irreversible retinal diseases are among the primary causes of blindness in the United States, attacking the cells in the eye that transform environmental light into neural signals for the optic pathway. Medical implants designed to restore visual function to afflicted patients can cause mechanical stress and ultimately damage to the host tissues. Research shows that an accurate understanding of the mechanical properties of the biological tissues can reduce damage and lead to designs with improved safety and efficacy. Prior studies on the mechanical properties of biological tissues show characterization of these materials can be affected by environmental, length-scale, time, mounting, stiffness, size, viscoelastic, and methodological conditions. Using porcine sclera tissue, the effects of environmental, time, and mounting conditions are evaluated when using nanoindentation. Quasi-static tests are used to measure reduced modulus during extended exposure to phosphate-buffered saline (PBS), as well as the chemical and mechanical analysis of mounting the sample to a solid substrate using cyanoacrylate. The less destructive nature of nanoindentation tests allows for variance of tests within a single sample to be compared to the variance between samples. The results indicate that the environmental, time, and mounting conditions can be controlled for using modified nanoindentation procedures for biological samples and are in line with averages modulus values from previous studies but with increased precision. By using the quasi-static and dynamic characterization capabilities of the nanoindentation setup, the additional stiffness and viscoelastic variables are measured. Different quasi-static control methods were evaluated along with maximum load parameters and produced no significant difference in reported reduced modulus values. Dynamic characterization tests varied frequency and quasi-static load, showing that the agar could be modeled as a linearly
Viscoelastic material inversion using Sierra-SD and ROL
Energy Technology Data Exchange (ETDEWEB)
Walsh, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aquino, Wilkins [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ridzal, Denis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kouri, Drew Philip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Urbina, Angel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-11-01
In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.
Viscoelastic stress modeling in cementitious materials using constant viscoelastic hydration modulus
Hansen, W.; Liu, Z.; Koenders, E.A.B.
2014-01-01
Viscoelastic stress modeling in ageing cementitious materials is of major importance in high performance concrete of low water cement ratio (e.g. w/c ~0.35) where crack resistance due to deformation restraint needs to be determined. Total stress analysis is complicated by the occurrence of internal
Instrument for determining the complex shear modulus of soft-tissue-like materials from 10 to 300 Hz
Energy Technology Data Exchange (ETDEWEB)
Madsen, E L; Frank, G R; Hobson, M A; Hall, T J; Jiang, J; Stiles, T A [Medical Physics Department, 1005 Wisconsin, Institute for Medical Research, Madison, WI 53705 (United States); Lin-Gibson, S [Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)], E-mail: elmadsen@wisc.edu
2008-10-07
Accurate determination of the complex shear modulus of soft tissues and soft-tissue-like materials in the 10-300 Hz frequency range is very important to researchers in MR elastography and acoustic radiation force impulse (ARFI) imaging. A variety of instruments for making such measurements has been reported, but none of them is easily reproduced, and none have been tested to conform to causality via the Kramers-Kronig (K-K) relations. A promising linear oscillation instrument described in a previous brief report operates between 20 and 160 Hz, but results were not tested for conformity to the K-K relations. We have produced a similar instrument with our own version of the electronic components and have also accounted for instrumental effects on the data reduction, which is not addressed in the previous report. The improved instrument has been shown to conform to an accurate approximation of the K-K relations over the 10-300 Hz range. The K-K approximation is based on the Weichert mechanical circuit model. We also found that the sample thickness must be small enough to obtain agreement with a calibrated commercial rheometer. A complete description of the improved instrument is given, facilitating replication in other labs.
Viscoelastic materials with anisotropic rigid particles: stress-deformation behavior
Sagis, L.M.C.; Linden, van der E.
2001-01-01
In this paper we have derived constitutive equations for the stress tensor of a viscoelastic material with anisotropic rigid particles. We have assumed that the material has fading memory. The expressions are valid for slow and small deformations from equilibrium, and for systems that are nearly
A Continuum Diffusion Model for Viscoelastic Materials
1988-11-01
ZIP Code) 7b. ADDRESS (CJI. Slow, and ZIP Code) Mechanics Div isi on Office of Naval Research; Code 432 Collge Satio, T as 7843800 Quincy Ave. Collge ...these studies, which involved experimental, analytical, and materials science aspects, were conducted by researchers in the fields of physical and...thermodynamics, with irreversibility stemming from the foregoing variables yr through "growth laws" that correspond to viscous resistance. The physical ageing of
Numerical simulations of rough contacts between viscoelastic materials
Spinu, S.; Cerlinca, D.
2017-08-01
The durability of the mechanical contact is often plagued by surface-related phenomena like rolling contact fatigue, wear or crack propagation, which are linked to the important gradients of stress arising in the contacting bodies due to interaction at the asperity level. The semi-analytical computational approach adopted in this paper is based on a previously reported algorithm capable of simulating the contact between bodies with arbitrary limiting surfaces and viscoelastic behaviour, which is enhanced and adapted for the contact of real surfaces with microtopography. As steep slopes at the asperity level inevitably lead to localized plastic deformation at the tip of the asperities that are first brought into contact, the viscoelastic behaviour is amended by limiting the maximum value of the pressure on the contact area to that of the material hardness, according to the Tabor equation. In this manner, plasticity is considered in a simplified manner that assures the knowledge of the contact area and of the pressure distribution without estimation of the residual state. The main advantage of this approach is the preservation of the algorithmic complexity, allowing the simulation of very fine meshes capable of capturing particular features of the investigated contacting surface. The newly advanced model is expected to predict the contact specifics of rough surfaces as resulting from various manufacturing processes, thus assisting the design of durable machine elements using elastomers or rubbers.
Shear test on viscoelastic granular material using Contact Dynamics simulations
Quezada, Juan Carlos; Sagnol, Loba; Chazallon, Cyrille
2017-06-01
By means of 3D contact dynamic simulations, the behavior of a viscoelastic granular material under shear loading is investigated. A viscoelastic fluid phase surrounding the solid particles is simulated by a contact model acting between them. This contact law was implemented in the LMGC90 software, based on the Burgers model. This model is able to simulate also the effect of creep relaxation. To validate the proposed contact model, several direct shear tests were performed, experimentally and numerically using the Leutner device. The numerical samples were created using spheres with two particle size distribution, each one identified for two layers from a road structure. Our results show a reasonable agreement between experimental and numerical data regarding the strain-stress evolution curves and the stress levels measured at failure. The proposed model can be used to simulate the mechanical behavior of multi-layer road structure and to study the influence of traffic on road deformation, cracking and particles pull-out induced by traffic loading.
Crack Tip Parameters for Growing Cracks in Linear Viscoelastic Materials
DEFF Research Database (Denmark)
Brincker, Rune
In this paper the problem of describing the asymptotic fields around a slowly growing crack in a linearly viscoelastic material is considered. It is shown that for plane mixed mode problems the asymptotic fields must be described by 6 parameters: 2 stress intensity factors and 4 deformation...... intensity factors. In the special case of a constant Poisson ratio only 2 deformation intensity factors are needed. Closed form solutions are given both for a slowly growing crack and for a crack that is suddenly arrested at a point at the crack extension path. Two examples are studied; a stress boundary...... value problem, and a displacement boundary value problem. The results show that the stress intensity factors and the displacement intensity factors do not depend explicitly upon the velocity of the crack tip....
Behavior of fragmentation front in a porous viscoelastic material
Ichihara, M.; Takayama, K.
2002-12-01
We are developing laboratory experiments to investigate dynamics of magma fragmentation during explosive volcanic eruptions. Fragmentation of such a mixture as magma consisting of viscoelastic melt, bubbles and solid particles, is not known yet, and experiments are necessary to establish a mathematical model. It has been shown that viscoelastic silicone compound (Dow Corning 3179) is a useful analogous material to simulate magma fragmentation. In the previous work, a porous specimen made of the compound was rapidly decompressed and development of brittle fragmentation was observed. However, there were arguments that the experiment was different from actual processes which produce fragments as small as volcanic ash, because in the experiment the specimen was broken into only several pieces. This time, results of the improved experiments are presented. The experimental apparatus is a kind of a vertical shock tube, which mainly consists of a high pressure test section and low pressure chambers. The test section is made of acrylic tube of which inner diameter is 25 mm. The internal phenomenon is recorded by a high-speed video camera. Pressure is measured in the gas above and beneath the specimen by piezoelectric transducers. The specimen is prepared in the following way. First, an acrylic tube filled with the compound is put in a nitrogen tank and kept at 45 bar for more than 8 hours. The compound absorbs the gas and equilibrates with the nitrogen. Next, the tank is decompressed back to the atmospheric pressure slowly. Nitrogen exsolves and bubbles are formed in the compound quite uniformly. Finally, the expanded compound sticking out of both ends of the tube is cut down, and the tube containing the specimen is attached to the shock tube. The specimen is rapidly decompressed by 24, 16, and 8 bars. The high-speed video images demonstrate a sequence of the fragmentation process. We observe propagation of a clear fracture front at 50 m/s for 24 bar of decompression and at
Non-contact tensile viscoelastic characterization of microscale biological materials
Li, Yuhui; Hong, Yuan; Xu, Guang-Kui; Liu, Shaobao; Shi, Qiang; Tang, Deding; Yang, Hui; Genin, Guy M.; Lu, Tian Jian; Xu, Feng
2018-06-01
Many structures and materials in nature and physiology have important "meso-scale" structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.
International Nuclear Information System (INIS)
Wong, P.K.
1989-01-01
This paper reports on a study to obtain the creep compliance, the relaxation modulus and the complex compliance derived from the concept of mechanical resistance for the constitutive equation of a class of linear viscoelastic, homogeneous, isotropic materials
Ganser, Christian; Czibula, Caterina; Tscharnuter, Daniel; Schöberl, Thomas; Teichert, Christian; Hirn, Ulrich
2017-12-20
Viscoelastic properties are often measured using probe based techniques such as nanoindentation (NI) and atomic force microscopy (AFM). Rarely, however, are these methods verified. In this article, we present a method that combines contact mechanics with a viscoelastic model (VEM) composed of springs and dashpots. We further show how to use this model to determine viscoelastic properties from creep curves recorded by a probe based technique. We focus on using the standard linear solid model and the generalized Maxwell model of order 2. The method operates in the range of 0.01 Hz to 1 Hz. Our approach is suitable for rough surfaces by providing a defined contact area using plastic pre-deformation of the material. The very same procedure is used to evaluate AFM based measurements as well as NI measurements performed on polymer samples made from poly(methyl methacrylate) and polycarbonate. The results of these measurements are then compared to those obtained by tensile creep tests also performed on the same samples. It is found that the tensile test results differ considerably from the results obtained by AFM and NI methods. The similarity between the AFM results and NI results suggests that the proposed method is capable of yielding results comparable to NI but with the advantage of the imaging possibilities of AFM. Furthermore, all three methods allowed a clear distinction between PC and PMMA by means of their respective viscoelastic properties.
LAVERGNE, Francis; SAB, Karam; SANAHUJA, Julien; BORNERT, Michel; TOULEMONDE, Charles
2016-01-01
A multi-scale homogenization scheme is proposed to estimate the time-dependent strains of fiber-reinforced concrete. This material is modeled as an aging linear viscoelastic composite material featuring ellipsoidal inclusions embedded in a viscoelastic cementitious matrix characterized by a time-dependent Poisson's ratio. To this end, the homogenization scheme proposed in Lavergne et al. [1] is adapted to the case of a time-dependent Poisson's ratio and it is successfully validated on a non-a...
Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials
Directory of Open Access Journals (Sweden)
Liu Lang
2016-05-01
Full Text Available Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials.
Directory of Open Access Journals (Sweden)
Ana Paula Delowski Ciniello
Full Text Available Abstract The present paper aims at presenting a methodology for characterizing viscoelastic materials in time domain, taking into account the fractional Zener constitutive model and the influence of temperature through Williams, Landel, and Ferry’s model. To that effect, a set of points obtained experimentally through uniaxial tensile tests with different constant strain rates is considered. The approach is based on the minimization of the quadratic relative distance between the experimental stress-strain curves and the corresponding ones given by the theoretical model. In order to avoid the local minima in the process of optimization, a hybrid technique based on genetic algorithms and non-linear programming techniques is used. The methodology is applied in the characterization of two different commercial viscoelastic materials. The results indicate that the proposed methodology is effective in identifying thermorheologically simple viscoelastic materials.
The viscoelastic characterization of polymer materials exposed to the low-Earth orbit environment
International Nuclear Information System (INIS)
Strganac, T.; Letton, A.
1992-01-01
Recent accomplishments in our research efforts have included the successful measurement of the thermal mechanical properties of polymer materials exposed to the low-earth orbit environment. In particular, viscoelastic properties were recorded using the Rheometrics Solids Analyzer (RSA 2). Dynamic moduli (E', the storage component of the elastic modulus, and E'', the loss component of the elastic modulus) were recorded over three decades of frequency (0.1 to 100 rad/sec) for temperatures ranging from -150 to 150 C. Although this temperature range extends beyond the typical use range of the materials, measurements in this region are necessary in the development of complete viscoelastic constitutive models. The experimental results were used to provide the stress relaxation and creep compliance performance characteristics through viscoelastic correspondence principles. Our results quantify the differences between exposed and control polymer specimens. The characterization is specifically designed to elucidate a constitutive model that accurately predicts the change in behavior of these materials due to exposure. The constitutive model for viscoelastic behavior reflects the level of strain, the rate of strain, and the history of strain as well as the thermal history of the material
Gutierrez-Lemini, Danton
2014-01-01
Engineering Viscoelasticity covers all aspects of the thermo- mechanical response of viscoelastic substances that a practitioner in the field of viscoelasticity would need to design experiments, interpret test data, develop stress-strain models, perform stress analyses, design structural components, and carry out research work. The material in each chapter is developed from the elementary to the advanced, providing the background in mathematics and mechanics that are central to understanding the subject matter being presented. The book examines how viscoelastic materials respond to the application of loads, and provides practical guidelines to use them in the design of commercial, military and industrial applications. This book also: · Facilitates conceptual understanding by progressing in each chapter from elementary to challenging material · Examines in detail both differential and integral constitutive equations, devoting full chapters to each type and using both forms in ...
3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.
Bootsma, Katherine; Fitzgerald, Martha M; Free, Brandon; Dimbath, Elizabeth; Conjerti, Joe; Reese, Greg; Konkolewicz, Dominik; Berberich, Jason A; Sparks, Jessica L
2017-06-01
Interpenetrating network (IPN) hydrogel materials are recognized for their unique mechanical properties. While IPN elasticity and toughness properties have been explored in previous studies, the factors that impact the time-dependent stress relaxation behavior of IPN materials are not well understood. Time-dependent (i.e. viscoelastic) mechanical behavior is a critical design parameter in the development of materials for a variety of applications, such as medical simulation devices, flexible substrate materials, cellular mechanobiology substrates, or regenerative medicine applications. This study reports a novel technique for 3D printing alginate-polyacrylamide IPN gels with tunable elastic and viscoelastic properties. The viscoelastic stress relaxation behavior of the 3D printed alginate-polyacrylamide IPN hydrogels was influenced most strongly by varying the concentration of the acrylamide cross-linker (MBAA), while the elastic modulus was affected most by varying the concentration of total monomer material. The material properties of our 3D printed IPN constructs were consistent with those reported in the biomechanics literature for soft tissues such as skeletal muscle, cardiac muscle, skin and subcutaneous tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.
Contact mechanics and friction for transversely isotropic viscoelastic materials
Mokhtari, Milad; Schipper, Dirk J.; Vleugels, N.; Noordermeer, Jacobus W.M.; Yoshimoto, S.; Hashimoto, H.
2015-01-01
Transversely isotropic materials are an unique group of materials whose properties are the same along two of the principal axes of a Cartesian coordinate system. Various natural and artificial materials behave effectively as transversely isotropic elastic solids. Several materials can be classified
A finite element modeling of a multifunctional hybrid composite beam with viscoelastic materials
Wang, Ya; Inman, Daniel J.
2013-04-01
The multifunctional hybrid composite structure studied here consists of a ceramic outer layer capable of withstanding high temperatures, a functionally graded ceramic layer combining shape memory alloy (SMA) properties of NiTi together with Ti2AlC (called Graded Ceramic/Metal Composite, or GCMeC), and a high temperature sensor patch, followed by a polymer matrix composite laced with vascular cooling channels all held together with various epoxies. Due to the recoverable nature of SMA and adhesive properties of Ti2AlC, the damping behavior of the GCMeC is largely viscoelastic. This paper presents a finite element formulation for this multifunctional hybrid structure with embedded viscoelastic material. In order to implement the viscoelastic model into the finite element formulation, a second order three parameter Golla-Hughes-McTavish (GHM) method is used to describe the viscoelastic behavior. Considering the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. The curve-fitting aspects of both GHM and ADF show good agreement with experimental data obtained from dynamic mechanics analysis. The performance of the finite element of the layered multifunctional beam is verified through experimental model analysis.
Characterization of viscoelastic materials for low-magnitude blast mitigation
Bartyczak, S.; Mock, W.
2014-05-01
Recent research indicates that exposure to low amplitude blast waves, such as IED detonation or multiple firings of a weapon, causes damage to brain tissue resulting in Traumatic Brain Injury (TBI) and Post Traumatic Stress Disorder (PTSD). Current combat helmets are not sufficiently protecting warfighters from this danger and the effects are debilitating, costly, and long-lasting. The objective of the present work is to evaluate the blast mitigating behavior of current helmet materials and new materials designed for blast mitigation using a test fixture recently developed at the Naval Surface Warfare Center Dahlgren Division for use with an existing gas gun. The 40-mm-bore gas gun was used as a shock tube to generate blast waves (ranging from 0.5 to 2 bar) in the test fixture mounted on the gun muzzle. A fast opening valve was used to release helium gas from the breech which formed into a blast wave and impacted instrumented targets in the test fixture. Blast attenuation of selected materials was determined through the measurement of stress data in front of and behind the target. Materials evaluated in this research include polyurethane foam from currently fielded US Army and Marine Corps helmets, polyurea 1000, and three hardnesses of Sorbothane (48, 58, and 70 durometer, Shore 00). Polyurea 1000 and 6061-T6 aluminum were used to calibrate the stress gauges.
Brittle fracture in viscoelastic materials as a pattern-formation process
Fleck, M.; Pilipenko, D.; Spatschek, R.; Brener, E. A.
2011-04-01
A continuum model of crack propagation in brittle viscoelastic materials is presented and discussed. Thereby, the phenomenon of fracture is understood as an elastically induced nonequilibrium interfacial pattern formation process. In this spirit, a full description of a propagating crack provides the determination of the entire time dependent shape of the crack surface, which is assumed to be extended over a finite and self-consistently selected length scale. The mechanism of crack propagation, that is, the motion of the crack surface, is then determined through linear nonequilibrium transport equations. Here we consider two different mechanisms, a first-order phase transformation and surface diffusion. We give scaling arguments showing that steady-state solutions with a self-consistently selected propagation velocity and crack shape can exist provided that elastodynamic or viscoelastic effects are taken into account, whereas static elasticity alone is not sufficient. In this respect, inertial effects as well as viscous damping are identified to be sufficient crack tip selection mechanisms. Exploring the arising description of brittle fracture numerically, we study steady-state crack propagation in the viscoelastic and inertia limit as well as in an intermediate regime, where both effects are important. The arising free boundary problems are solved by phase field methods and a sharp interface approach using a multipole expansion technique. Different types of loading, mode I, mode III fracture, as well as mixtures of them, are discussed.
VISCO-ELASTIC PROPERTIES OF SOFT RELINING MATERIALS – REVIEW
Directory of Open Access Journals (Sweden)
Ilian Hristov
2017-05-01
Full Text Available Despite the achievements of modern dentistry in fields of implantology and CAD-CAM technologies, the challenges associated with edentulous patients, treatment are still remaining. Difficulties are getting even greater, when it is a matter of highly atrophied alveolar ridges, covered with very thin mucosa, people suffering from xerostomia, exostosis, very well developed torus palatinus or tuberae maxillae. Problems of the patients with removable dentures usually are poor adhesion and stability, pain, wounds, difficult adaptation with the new dentures, etc. At this moment there are only two possibilities to help these people. The first one is the use of implants; the second one is to use soft relining materials. There are some obstacles that reduce the use of implants in all patients, because of medical, anatomical, psychological and financial concerns. While in the second option the contraindications are quite less.
La Tessa, Chiara; Zeitlin, Cary; Rusek, Adam; Durante, Marco; Schuy, Christoph; Sivertz, Michael
2012-07-01
The permanence of human in space has increased in the last decades with the establishment of space stations orbiting permanently around the Earth; furthermore, future plans are likely to include extended human missions in deep space outside the geomagnetosphere and settlements on other planets. The extensive exposure to the radiation environment represents one of the major limitations to space exploration due to its relation with severe health risks. The unfeasibility to stop the external radiation entirely motivates the investigation of shields able to minimize the total absorbed and equivalent dose to which the astronauts are exposed. The process of nuclear fragmentation plays a key role in this topic being the major responsible for modifying the radiation field that enters the spacecraft. Theoretical predictions on the dose received in a given scenario rely heavily on the accuracy of fragmentation cross sections and their uncertainties can be a central factor in limiting mission feasibility and duration. The interaction of 160 MeV/u Helium and 360 MeV/u Oxygen beams with water has been investigated in this work. The total charge-changing cross section has been estimated from the measurement of the attenuation of the primary ions in the target. For different target thicknesses, the yield and energy spectrum of charged and unchanged particles has been measured at several angles with respect to the primary beam direction. At the same position, microdosimetric spectra have been collected to characterize the quality of the radiation field and estimate the absorbed dose. Furthermore, total and partial-change-changing cross sections in candidate shielding materials are presented and compared with the results for water.
Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation
Energy Technology Data Exchange (ETDEWEB)
Hamaguchi, Fumiya; Ando, Keita, E-mail: kando@mech.keio.ac.jp [Department of Mechanical Engineering, Keio University, Yokohama 223-8522 (Japan)
2015-11-15
Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh–Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh–Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.
Viscoelastic Materials Study for the Mitigation of Blast-Related Brain Injury
Bartyczak, Susan; Mock, Willis, Jr.
2011-06-01
Recent preliminary research into the causes of blast-related brain injury indicates that exposure to blast pressures, such as from IED detonation or multiple firings of a weapon, causes damage to brain tissue resulting in Traumatic Brain Injury (TBI) and Post Traumatic Stress Disorder (PTSD). Current combat helmets are not sufficient to protect the warfighter from this danger and the effects are debilitating, costly, and long-lasting. Commercially available viscoelastic materials, designed to dampen vibration caused by shock waves, might be useful as helmet liners to dampen blast waves. The objective of this research is to develop an experimental technique to test these commercially available materials when subject to blast waves and evaluate their blast mitigating behavior. A 40-mm-bore gas gun is being used as a shock tube to generate blast waves (ranging from 1 to 500 psi) in a test fixture at the gun muzzle. A fast opening valve is used to release nitrogen gas from the breech to impact instrumented targets. The targets consist of aluminum/ viscoelastic polymer/ aluminum materials. Blast attenuation is determined through the measurement of pressure and accelerometer data in front of and behind the target. The experimental technique, calibration and checkout procedures, and results will be presented.
Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping
International Nuclear Information System (INIS)
Castellanos-Gomez, Andres; Buscema, Michele; Molenaar, Rianda; Singh, Vibhor; Janssen, Laurens; Van der Zant, Herre S J; Steele, Gary A
2014-01-01
The deterministic transfer of two-dimensional crystals constitutes a crucial step towards the fabrication of heterostructures based on the artificial stacking of two-dimensional materials. Moreover, controlling the positioning of two-dimensional crystals facilitates their integration in complex devices, which enables the exploration of novel applications and the discovery of new phenomena in these materials. To date, deterministic transfer methods rely on the use of sacrificial polymer layers and wet chemistry to some extent. Here, we develop an all-dry transfer method that relies on viscoelastic stamps and does not employ any wet chemistry step. This is found to be very advantageous to freely suspend these materials as there are no capillary forces involved in the process. Moreover, the whole fabrication process is quick, efficient, clean and it can be performed with high yield. (letter)
Generating Bulk-Scale Ordered Optical Materials Using Shear-Assembly in Viscoelastic Media
Directory of Open Access Journals (Sweden)
Chris E. Finlayson
2017-06-01
Full Text Available We review recent advances in the generation of photonics materials over large areas and volumes, using the paradigm of shear-induced ordering of composite polymer nanoparticles. The hard-core/soft-shell design of these particles produces quasi-solid “gum-like” media, with a viscoelastic ensemble response to applied shear, in marked contrast to the behavior seen in colloidal and granular systems. Applying an oscillatory shearing method to sub-micron spherical nanoparticles gives elastomeric photonic crystals (or “polymer opals” with intense tunable structural color. The further engineering of this shear-ordering using a controllable “roll-to-roll” process known as Bending Induced Oscillatory Shear (BIOS, together with the interchangeable nature of the base composite particles, opens potentially transformative possibilities for mass manufacture of nano-ordered materials, including advances in optical materials, photonics, and metamaterials/plasmonics.
DEFF Research Database (Denmark)
Feng, Huan; Pettinari, Matteo; Stang, Henrik
2015-01-01
In this paper, the viscoelastic behavior of asphalt mixture was studied by using discrete element method. The dynamic properties of asphalt mixture were captured by implementing Burger’s contact model. Different ways of taking into account of the normal and shear material properties of asphalt mi...
Topology optimization of viscoelastic rectifiers
DEFF Research Database (Denmark)
Jensen, Kristian Ejlebjærg; Szabo, Peter; Okkels, Fridolin
2012-01-01
An approach for the design of microfluidic viscoelastic rectifiers is presented based on a combination of a viscoelastic model and the method of topology optimization. This presumption free approach yields a material layout topologically different from experimentally realized rectifiers...
Kroon, M.
2011-11-01
Rubbers and soft biological tissues may undergo large deformations and are also viscoelastic. The formulation of constitutive models for these materials poses special challenges. In several applications, especially in biomechanics, these materials are also relatively thin, implying that in-plane stresses dominate and that plane stress may therefore be assumed. In the present paper, a constitutive model for viscoelastic materials in the finite strain regime and under the assumption of plane stress is proposed. It is assumed that the relaxation behaviour in the direction of plane stress can be treated separately, which makes it possible to formulate evolution laws for the plastic strains on explicit form at the same time as incompressibility is fulfilled. Experimental results from biomechanics (dynamic inflation of dog aorta) and rubber mechanics (biaxial stretching of rubber sheets) were used to assess the proposed model. The assessment clearly indicates that the model is fully able to predict the experimental outcome for these types of material.
Narooei, K; Arman, M
2018-03-01
In this research, the exponential stretched based hyperelastic strain energy was generalized to the hyper-viscoelastic model using the heredity integral of deformation history to take into account the strain rate effects on the mechanical behavior of materials. The heredity integral was approximated by the approach of Goh et al. to determine the model parameters and the same estimation was used for constitutive modeling. To present the ability of the proposed hyper-viscoelastic model, the stress-strain response of the thermoplastic elastomer gel tissue at different strain rates from 0.001 to 100/s was studied. In addition to better agreement between the current model and experimental data in comparison to the extended Mooney-Rivlin hyper-viscoelastic model, a stable material behavior was predicted for pure shear and balance biaxial deformation modes. To present the engineering application of current model, the Kolsky bars impact test of gel tissue was simulated and the effects of specimen size and inertia on the uniform deformation were investigated. As the mechanical response of polyurea was provided over wide strain rates of 0.0016-6500/s, the current model was applied to fit the experimental data. The results were shown more accuracy could be expected from the current research than the extended Ogden hyper-viscoelastic model. In the final verification example, the pig skin experimental data was used to determine parameters of the hyper-viscoelastic model. Subsequently, a specimen of pig skin at different strain rates was loaded to a fixed strain and the change of stress with time (stress relaxation) was obtained. The stress relaxation results were revealed the peak stress increases by applied strain rate until the saturated loading rate and the equilibrium stress with magnitude of 0.281MPa could be reached. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Esfandiar, H.
2013-05-01
Full Text Available In this paper, based on the VoigtKelvin constitutive model, nonlinear dynamic modelling and state space representation of a viscoelastic beam acting as a flexible robotic manipulator is investigated. Complete nonlinear dynamic modelling of a viscoelastic beam without premature linearisation of dynamic equations is developed. The adopted method is capable of reproducing nonlinear dynamic effects, such as beam stiffening due to centrifugal and Coriolis forces induced by rotation of the joints. Structural damping effects on the models dynamic behaviour are also shown. A reliable model for a viscoelastic beam is subsequently presented. The governing equations of motion are derived using Hamiltons principle, and using the finite difference method, nonlinear partial differential equations are reduced to ordinary differential equations. For the purpose of flexible manipulator control, the standard form of state space equations for the viscoelastic link and the actuator is obtained. Simulation results indicate substantial improvements in dynamic behaviour, and a parameter sensitivity study is carried out to investigate the effect of structural damping on the vibration amplitude.
Directory of Open Access Journals (Sweden)
Tedjani Hadj Ammar
2014-10-01
Full Text Available We consider a quasistatic contact problem between two electro-viscoelastic bodies with long-term memory and damage. The contact is frictional and is modelled with a version of normal compliance condition and the associated Coulomb's law of friction in which the adhesion of contact surfaces is taken into account. We derive a variational formulation for the model and prove an existence and uniqueness result of the weak solution. The proof is based on arguments of evolutionary variational inequalities, a classical existence and uniqueness result on parabolic inequalities, and Banach fixed point theorem.
Indei, Tsutomu; Schieber, Jay D; Córdoba, Andrés
2012-04-01
We analyze the appropriate form for the generalized Stokes-Einstein relation (GSER) for viscoelastic solids and fluids when bead inertia and medium inertia are taken into account, which we call the inertial GSER. It was previously shown for Maxwell fluids that the Basset (or Boussinesq) force arising from medium inertia can act purely dissipatively at high frequencies, where elasticity of the medium is dominant. In order to elucidate the cause of this counterintuitive result, we consider Brownian motion in a purely elastic solid where ordinary Stokes-type dissipation is not possible. The fluctuation-dissipation theorem requires the presence of a dissipative mechanism for the particle to experience fluctuating Brownian forces in a purely elastic solid. We show that the mechanism for such dissipation arises from the radiation of elastic waves toward the system boundaries. The frictional force associated with this mechanism is the Basset force, and it exists only when medium inertia is taken into consideration in the analysis of such a system. We consider first a one-dimensional harmonic lattice where all terms in the generalized Langevin equation--i.e., the elastic term, the memory kernel, and Brownian forces-can be found analytically from projection-operator methods. We show that the dissipation is purely from radiation of elastic waves. A similar analysis is made on a particle in a continuum, three-dimensional purely elastic solid, where the memory kernel is determined from continuum mechanics. Again, dissipation arises only from radiation of elastic shear waves toward infinite boundaries when medium inertia is taken into account. If the medium is a viscoelastic solid, Stokes-type dissipation is possible in addition to radiational dissipation so that the wave decays at the penetration depth. Inertial motion of the bead couples with the elasticity of the viscoelastic material, resulting in a possible resonant oscillation of the mean-square displacement (MSD) of the
International Nuclear Information System (INIS)
Sim, Jae Ki; Cho, Kyu Jac
1988-01-01
In this paper We derived simple formulas for the dynamic strain intensity factor by means of the Timoshenko's beam theory including the influence of rotary inertia and shear deformation on the three-point viscoelastic bend specimen. Also the contact force between the specimen and the impactor is estimated by appling the nonlinear integral equation and the Hertz's theory to the local deformation near the contact point. The results obtained from this study are as follow : 1. Analysis results of this paper, base on Timoshenko's beam theory, were more accuracy than that of Euler-Bernouli beam theory and it can be confirmed by comparsion the results with experimental results. 2. Hertz's contact thepry is static one, but it is proved that by the solution of dynamic strain intensity factor it can be applied for the case of dynamic one. 3. It is founded that the fracture mechanics paraments are overestimatimated if the effects of rotary inertia and transverse shear deformation of specimen are negleted. (Author)
Marques, Severino P C
2012-01-01
This text is a guide how to solve problems in which viscoelasticity is present using existing commercial computational codes. The book gives information on codes’ structure and use, data preparation and output interpretation and verification. The first part of the book introduces the reader to the subject, and to provide the models, equations and notation to be used in the computational applications. The second part shows the most important Computational techniques: Finite elements formulation, Boundary elements formulation, and presents the solutions of Viscoelastic problems with Abaqus.
Borcherdt, R. D.
2007-12-01
General theoretical solutions for Rayleigh- and Love-Type surface waves in viscoelastic media describe physical characteristics of the surface waves in elastic as well as anelastic media with arbitrary amounts of intrinsic absorption. In contrast to corresponding physical characteristics for Rayleigh waves in elastic media, Rayleigh- Type surface waves in anelastic media demonstrate; 1) tilt of the particle motion orbit that varies with depth, and 2) amplitude and volumetric strain distributions with superimposed sinusoidal variations that decay exponentially with depth. Each characteristic is dependent on the amount of intrinsic absorption and the chosen model of viscoelasticity. Distinguishing characteristics of anelastic Love-Type surface waves include: 1) dependencies of the wave speed and absorption coefficient on the chosen model and amount of intrinsic absorption and frequency, and 2) superimposed sinusoidal amplitude variations with an exponential decay with depth. Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physical characteristics of both types of viscoelastic surface waves appropriate for interpretations pertinent to models of earth materials ranging from low-loss in the crust to moderate- and high-loss in water-saturated soils.
International Nuclear Information System (INIS)
Paglietti, A.
1978-01-01
This paper is concerned with the thermodynamical theory of materials with fading memory exhibiting the creep and relaxation properties. It is shown that, once the current thermodynamical approach is followed, the second principle of thermodynamics implies for these materials further restrictions on the free-energy functional in addition to the well-known ones deduced in the general theory of materials with fading memory. The possibility of an experimental check of the current approach and the possibility of an alternative and more general approach are briefly discussed. (author)
Theory of viscoelasticity an introduction
Christensen, R
1982-01-01
Theory of Viscoelasticity: An Introduction, Second Edition discusses the integral form of stress strain constitutive relations. The book presents the formulation of the boundary value problem and demonstrates the separation of variables condition.The text describes the mathematical framework to predict material behavior. It discusses the problems to which integral transform methods do not apply. Another topic of interest is the thermoviscoelastic stress analysis. The section that follows describes the heat conduction, glass transition criterion, viscoelastic Rayleigh waves, optimal str
Welch, K.; Mousavi, S.; Lundberg, B.; Strømme, M.
2005-09-01
A newly developed method for determining the frequency-dependent complex Young's modulus was employed to analyze the mechanical response of compacted microcrystalline cellulose, sorbitol, ethyl cellulose and starch for frequencies up to 20 kHz. A Debye-like relaxation was observed in all the studied pharmaceutical excipient materials and a comparison with corresponding dielectric spectroscopy data was made. The location in frequency of the relaxation peak was shown to correlate to the measured tensile strength of the tablets, and the relaxation was interpreted as the vibrational response of the interparticle hydrogen and van der Waals bindings in the tablets. Further, the measured relaxation strength, holding information about the energy loss involved in the relaxation processes, showed that the weakest material in terms of tensile strength, starch, is the material among the four tested ones that is able to absorb the most energy within its structure when exposed to external perturbations inducing vibrations in the studied frequency range. The results indicate that mechanical relaxation analysis performed over relatively broad frequency ranges should be useful for predicting material properties of importance for the functionality of a material in applications such as, e.g., drug delivery, drug storage and handling, and also for clarifying the origin of hitherto unexplained molecular processes.
DEFF Research Database (Denmark)
Andreassen, Erik; Jensen, Jakob Søndergaard
2014-01-01
We present a topology optimization method for the design of periodic composites with dissipative materials for maximizing the loss/attenuation of propagating waves. The computational model is based on a finite element discretization of the periodic unit cell and a complex eigenvalue problem...... with a prescribed wave frequency. The attenuation in the material is described by its complex wavenumber, and we demonstrate in several examples optimized distributions of a stiff low loss and a soft lossy material in order to maximize the attenuation. In the examples we cover different frequency ranges and relate...... the results to previous studies on composites with high damping and stiffness based on quasi-static conditions for low frequencies and the bandgap phenomenon for high frequencies. Additionally, we consider the issues of stiffness and connectivity constraints and finally present optimized composites...
Intermediate configurations and the description of viscoelastic-plastic material behaviors
International Nuclear Information System (INIS)
Haupt, P.
1984-01-01
The concept of an intermediate configuration is based on the idea of local unloading: A given strain process is continued under the condition of vanishing stress; its asymptotic limit is introduced as the unrecoverable part of the total strain. By assumption, the present value of the unrecoverable strain depends on the history of the total strain. The corresponding decomposition of the deformation gradient implies the definition of two different recoverable strain tensors. As a general consequence, the general constitutive equation of a simple material can be represented as the compostition of two functionals. These functionals incorporate the fading and permanent memory properties of the material. The main ideas of the paper are motivated for the uniaxial case; the general discussion refers to three-dimensional finite deformations. (orig.)
Giraudeau, A.; Pierron, F.
2010-06-01
The paper presents an experimental application of a method leading to the identification of the elastic and damping material properties of isotropic vibrating plates. The theory assumes that the searched parameters can be extracted from curvature and deflection fields measured on the whole surface of the plate at two particular instants of the vibrating motion. The experimental application consists in an original excitation fixture, a particular adaptation of an optical full-field measurement technique, a data preprocessing giving the curvature and deflection fields and finally in the identification process using the Virtual Fields Method (VFM). The principle of the deflectometry technique used for the measurements is presented. First results of identification on an acrylic plate are presented and compared to reference values. Details about a new experimental arrangement, currently in progress, is presented. It uses a high speed digital camera to over sample the full-field measurements.
Viscoelasticity of biomaterials
International Nuclear Information System (INIS)
Glasser, W.G.; Hatakeyama, H.
1992-01-01
Viscoelasticity of Biomaterials is divided into three sections. The first offers a materials design lesson on the architectural arrangement of biopolymers in collagen. Included also are reviews on solution properties of polysacchardies, chiral and liquid crystalline solution characteristics of cellulose derivatives, and viscoelastic properties of wood and wood fiber reinforced thermoplastics. The second section, Biogels and Gelation, discusses the molecular arrangements of highly hydrated biomaterials such as mucus, gums, skinlike tissue, and silk fibroin. The physical effects that result from the transition from a liquid to a solid state are the subject of the third section, which focuses on relaxation phenomena. Gel formation, the conformation of domain structures, and motional aspects of complex biomaterials are described in terms of recent experimental advances in various fields. A relevant chapter on the effects of ionizing radiation on connective tissue is abstracted separately
Engineered human broncho-epithelial tissue-like assemblies
Goodwin, Thomas J. (Inventor)
2012-01-01
Three-dimensional human broncho-epithelial tissue-like assemblies (TLAs) are produced in a rotating wall vessel (RWV) with microcarriers by coculturing mesenchymal bronchial-tracheal cells (BTC) and bronchial epithelium cells (BEC). These TLAs display structural characteristics and express markers of in vivo respiratory epithelia. TLAs are useful for screening compounds active in lung tissues such as antiviral compounds, cystic fibrosis treatments, allergens, and cytotoxic compounds.
Relativistic viscoelastic fluid mechanics
International Nuclear Information System (INIS)
Fukuma, Masafumi; Sakatani, Yuho
2011-01-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Directory of Open Access Journals (Sweden)
V. M. Ovsianko
2012-01-01
Full Text Available The paper reveals a brand-new direction in simulation of frame and continual structures while calculating static and dynamic loads and stability. An electronic model has been synthesized for an investigated object and then it has been analyzed not with the help of specialized analog computing techniques but by means of high-performance software package for electronic circuit calculation using a personal computer.The given paper contains exact algebraic equations corresponding to differential equations for lateral bending calculation of frame structures without and with due account of viscoelastic material properties in compliance with the Kelvin model.The exact algebraic equation for a beam on elastic supports (or elastic Winkler foundation has been derived for quartic differential equation.The paper presents a number of exact algebraic equations which are equivalent to differential equations for transverse-longitudinal bending calculation of frame structures without and with due account of viscoelastic material properties when lateral and longitudinal loads are applied in the form of impulses with any periods of their duration and any interchangeability.
Dynamical problem of micropolar viscoelasticity
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging Solutions)
gen (1964) and Tomar and Kumar (1999) discussed different types of problems in micropolar elastic medium. Eringen (1967) extended the theory of micropolar elasticity to obtain linear constitutive theory for micropolar material possessing inter- nal friction. A problem on micropolar viscoelastic waves has been discussed by ...
Shil'ko, S. V.; Gavrilenko, S. L.; Panin, S. V.; Alexenko, V. O.
2017-12-01
A method for determining rheological parameters of the Prony model describing the process of viscoelastic deformation of a material was developed based on the results of dynamic mechanical analysis. For the approbation of the method, static (uniaxial tension) and dynamic (three-point bending) mechanical tests of polymer composites were carried out. Based on the analytical dependence of the storage modulus on the parameters of the Prony model, the parameters of the shear function are determined. The results of the static and dynamic analysis are in good agreement. The proposed technique allows us to accelerate the determination of rheological parameters of polymer materials and recommend it to the calculation of the stress-strain state of structural elements and friction joints during their long operation at elevated temperature.
3D Viscoelastic Traction Force Microscopy
Toyjanova, Jennet; Hannen, Erin; Bar-Kochba, Eyal; Darling, Eric M.; Henann, David L.; Franck, Christian
2014-01-01
Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in-vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, which could play an important role in how cells sense and transduce tractions. To expand the realm of cell traction measurements and to encompass all materials from elastic to viscoelastic, this paper presents a general, and comprehensive approach for quantifying 3D cell tractions in viscoelastic materials. This methodology includes the experimental characterization of the time-dependent material properties for any viscoelastic material with the subsequent mathematical implementation of the determined material model into a 3D traction force microscopy (3D TFM) framework. Utilizing this new 3D viscoelastic TFM (3D VTFM) approach, we quantify the influence of viscosity on the overall material traction calculations and quantify the error associated with omitting time-dependent material effects, as is the case for all other TFM formulations. We anticipate that the 3D VTFM technique will open up new avenues of cell-material investigations on even more physiologically relevant time-dependent materials including collagen and fibrin gels. PMID:25170569
Implementation of viscoelastic Hopkinson bars
Directory of Open Access Journals (Sweden)
Govender R.
2012-08-01
Full Text Available Knowledge of the properties of soft, viscoelastic materials at high strain rates are important in furthering our understanding of their role during blast or impact events. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. Implementing polymeric Hopkinson bars requires characterization of the viscoelastic properties of the material used. In this paper, 30 mm diameter Polymethyl Methacrylate bars are used as Hopkinson pressure bars. This testing technique is applied to polymeric foam called Divinycell H80 and H200. Although there is a large body of of literature containing compressive data, this rarely deals with strain rates above 250s−1 which becomes increasingly important when looking at the design of composite structures where energy absorption during impact events is high on the list of priorities. Testing of polymeric foams at high strain rates allows for the development of better constitutive models.
A Thermodynamic Theory Of Solid Viscoelasticity. Part 1: Linear Viscoelasticity.
Freed, Alan D.; Leonov, Arkady I.
2002-01-01
The present series of three consecutive papers develops a general theory for linear and finite solid viscoelasticity. Because the most important object for nonlinear studies are rubber-like materials, the general approach is specified in a form convenient for solving problems important for many industries that involve rubber-like materials. General linear and nonlinear theories for non-isothermal deformations of viscoelastic solids are developed based on the quasi-linear approach of non-equilibrium thermodynamics. In this, the first paper of the series, we analyze non-isothermal linear viscoelasticity, which is applicable in a range of small strains not only to all synthetic polymers and bio-polymers but also to some non-polymeric materials. Although the linear case seems to be well developed, there still are some reasons to implement a thermodynamic derivation of constitutive equations for solid-like, non-isothermal, linear viscoelasticity. The most important is the thermodynamic modeling of thermo-rheological complexity , i.e. different temperature dependences of relaxation parameters in various parts of relaxation spectrum. A special structure of interaction matrices is established for different physical mechanisms contributed to the normal relaxation modes. This structure seems to be in accord with observations, and creates a simple mathematical framework for both continuum and molecular theories of the thermo-rheological complex relaxation phenomena. Finally, a unified approach is briefly discussed that, in principle, allows combining both the long time (discrete) and short time (continuous) descriptions of relaxation behaviors for polymers in the rubbery and glassy regions.
Understanding viscoelasticity an introduction to rheology
Phan-Thien, Nhan
2017-01-01
This book presents an introduction to viscoelasticity, in particular, to the theories of dilute polymer solutions and dilute suspensions of rigid particles in viscous and incompressible fluids. These theories are important, not just because they apply to practical problems of industrial interest, but because they form a solid theoretical base upon which mathematical techniques can be built, from which more complex theories can be constructed, to better mimic material behaviour. The emphasis of this book is not on the voluminous current topical research, but on the necessary tools to understand viscoelasticity. This is a compact book for a first year graduate course in viscoelasticity and modelling of viscoelastic multiphase fluids. The Dissipative Particle Dynamics (DPD) is introduced as a particle-based method, relevant in modelling of complex-structured fluids. All the basic ideas in DPD are reviewed. The third edition has been updated and expanded with new results in the meso-scale modelling, links between...
Linear viscoelastic characterization from filament stretching rheometry
DEFF Research Database (Denmark)
Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole
to measure both linear and nonlinear dynamics on a single apparatus. With a software modification to the FSR motor control, we show that linear viscoelasticity can be measured via small amplitude squeeze flow (SASF). Squeeze flow is a combination of both shear and extensional flow applied by axially......Traditionally, linear viscoelasticity is measured using small amplitude oscillatory shear flow. Due to experimental difficulties, shear flows are predominately confined to the linear and mildly nonlinear regime. On the other hand, extensional flows have proven more practical in measuring...... viscoelasticity well into the nonlinear regime. Therefore at present, complete rheological characterization of a material requires two apparatuses: a shear and an extensional rheometer. This work is focused on developing a linear viscoelastic protocol for the filament stretching rheometer (FSR) in order...
Understanding Viscoelasticity An Introduction to Rheology
Phan-Thien, Nhan
2013-01-01
This book presents an introduction to viscoelasticity; in particular, to the theories of dilute polymer solutions and dilute suspensions of rigid particles in viscous and incompressible fluids. These theories are important, not just because they apply to practical problems of industrial interest, but because they form a solid theoretical base upon which mathematical techniques can be built, from which more complex theories can be constructed, to better mimic material behaviour. The emphasis is not on the voluminous current topical research, but on the necessary tools to understand viscoelasticity at a first year graduate level. The main aim is to provide a still compact book, sufficient at the level of first year graduate course for those who wish to understand viscoelasticity and to embark in modeling of viscoelastic multiphase fluids. To this end, a new chapter on Dissipative Particle Dynamics (DPD) was introduced which is relevant to model complex-structured fluids. All the basic ideas in DPD are reviewed,...
Sensitivity Analysis of Viscoelastic Structures
Directory of Open Access Journals (Sweden)
A.M.G. de Lima
2006-01-01
Full Text Available In the context of control of sound and vibration of mechanical systems, the use of viscoelastic materials has been regarded as a convenient strategy in many types of industrial applications. Numerical models based on finite element discretization have been frequently used in the analysis and design of complex structural systems incorporating viscoelastic materials. Such models must account for the typical dependence of the viscoelastic characteristics on operational and environmental parameters, such as frequency and temperature. In many applications, including optimal design and model updating, sensitivity analysis based on numerical models is a very usefull tool. In this paper, the formulation of first-order sensitivity analysis of complex frequency response functions is developed for plates treated with passive constraining damping layers, considering geometrical characteristics, such as the thicknesses of the multi-layer components, as design variables. Also, the sensitivity of the frequency response functions with respect to temperature is introduced. As an example, response derivatives are calculated for a three-layer sandwich plate and the results obtained are compared with first-order finite-difference approximations.
Rough viscoelastic sliding contact: Theory and experiments
Carbone, G.; Putignano, C.
2014-03-01
In this paper, we show how the numerical theory introduced by the authors [Carbone and Putignano, J. Mech. Phys. Solids 61, 1822 (2013), 10.1016/j.jmps.2013.03.005] can be effectively employed to study the contact between viscoelastic rough solids. The huge numerical complexity is successfully faced up by employing the adaptive nonuniform mesh developed by the authors in Putignano et al. [J. Mech. Phys. Solids 60, 973 (2012), 10.1016/j.jmps.2012.01.006]. Results mark the importance of accounting for viscoelastic effects to correctly simulate the sliding rough contact. In detail, attention is, first, paid to evaluate the viscoelastic dissipation, i.e., the viscoelastic friction. Fixed the sliding speed and the normal load, friction is completely determined. Furthermore, since the methodology employed in the work allows to study contact between real materials, a comparison between experimental outcomes and numerical prediction in terms of viscoelastic friction is shown. The good agreement seems to validate—at least partially—the presented methodology. Finally, it is shown that viscoelasticity entails not only the dissipative effects previously outlined, but is also strictly related to the anisotropy of the contact solution. Indeed, a marked anisotropy is present in the contact region, which results stretched in the direction perpendicular to the sliding speed. In the paper, the anisotropy of the deformed surface and of the contact area is investigated and quantified.
Miyake, Y.; Noda, H.
2017-12-01
Earthquake sequences involve many processes in a wide range of time scales, from quasistatic loading to dynamic rupture. At a depth of brittle-plastic transitional and deeper, rock behaves as a viscous fluid in a long timescale, but as an elastic material in a short timescale. Viscoelastic stress relaxation may be important in the interseismic periods at the depth, near the deeper limit of the seismogenic layer or the region of slow slip events (SSEs) [Namiki et al., 2014 and references therein]. In the present study, we implemented the viscoelastic effect (Maxwell material) in fully-dynamic earthquake sequence simulations using a spectral boundary integral equation method (SBIEM) [e.g., Lapusta et al., 2000]. SBIEM is efficient in calculation of convolutional terms for dynamic stress transfer, and the problem size is limited by the amount of memory available. Linear viscoelasticity could be implemented by convolution of slip rate history and Green's function, but this method requires additional memory and thus not suitable for the implementation to the present code. Instead, we integrated the evolution of "effective slip" distribution, which gives static stress distribution when convolved with static elastic Green's function. This method works only for simple viscoelastic property distributions, but such models are suitable for numerical experiments aiming basic understanding of the system behavior because of the virtue of SBIEM, the ability of fine on-fault spatial resolution and efficient computation utilizing the fast Fourier transformation. In the present study, we examined the effect of viscoelasticity on earthquake sequences of a fault with a rate-weakening patch. A series of simulations with various relaxation time tc revealed that as decreasing tc, recurrence intervals of earthquakes increases and seismicity ultimately disappears. As long as studied, this transition to aseismic behavior is NOT associated with SSEs. In a case where the rate-weakening patch
Rigidity percolation in dispersions with a structured viscoelastic matrix
Wilbrink, M.W.L.; Michels, M.A.J.; Vellinga, W.P.; Meijer, H.E.H.
2005-01-01
This paper deals with rigidity percolation in composite materials consisting of a dispersion of mineral particles in a microstructured viscoelastic matrix. The viscoelastic matrix in this specific case is a hydrocarbon refinery residue. In a set of model random composites the mean interparticle
Numerical simulations of viscoelastic flows with free surfaces
DEFF Research Database (Denmark)
Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri
2013-01-01
We present a new methodology to simulate viscoelastic flows with free-surfaces. These simulations are motivated by the modelling of polymers manufacturing techniques, such as extrusion and injection moulding. One of the consequences of viscoelasticity is that polymeric materials have a “memory...
Directory of Open Access Journals (Sweden)
Pierron F.
2010-06-01
Full Text Available The paper presents an experimental application of a method leading to the identiﬁcation of the elastic and damping material properties of isotropic vibrating plates. The theory assumes that the searched parameters can be extracted from curvature and deﬂection ﬁelds measured on the whole surface of the plate at two particular instants of the vibrating motion. The experimental application consists in an original excitation ﬁxture, a particular adaptation of an optical full-ﬁeld measurement technique, a data preprocessing giving the curvature and deﬂection ﬁelds and ﬁnally in the identiﬁcation process using the Virtual Fields Method (VFM. The principle of the deﬂectometry technique used for the measurements is presented. First results of identiﬁcation on an acrylic plate are presented and compared to reference values. Details about a new experimental arrangement, currently in progress, is presented. It uses a high speed digital camera to over sample the full-ﬁeld measurements.
Estimation of piezoelastic and viscoelastic properties in laminated structures
DEFF Research Database (Denmark)
Araujo, A. L.; Soares, C. M. Mota; Herskovits, J.
2009-01-01
An inverse method for material parameter estimation of elastic, piezoelectric and viscoelastic laminated plate structures is presented. The method uses a gradient based optimization technique in order to solve the inverse problem, through minimization of an error functional which expresses...... the difference between experimental free vibration data and corresponding numerical data produced by a finite element model. The complex modulus approach is used to model the viscoelastic material behavior, assuming hysteretic type damping. Applications that illustrate the influence of adhesive material...
Viscoelastic love-type surface waves
Borcherdt, Roger D.
2008-01-01
The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.
Viscoelasticity of metallic, polymeric and oxide glasses
Energy Technology Data Exchange (ETDEWEB)
Pelletier, J.M. [GEMPPM, INSA Lyon, Bat. B. Pascal, 69621 Villeurbanne (France)]. E-mail: Jean-marc.Pelletier@insa-lyon.fr; Gauthier, C. [GEMPPM, INSA Lyon, Bat. B. Pascal, 69621 Villeurbanne (France); Munch, E. [GEMPPM, INSA Lyon, Bat. B. Pascal, 69621 Villeurbanne (France)
2006-12-20
Present work addresses on mechanical spectroscopy experiments performed on bulk metallic glasses (Zr-Ti-Cu-Ni-Be alloys, Mg-Y-Cu alloys), on oxide glasses (SiO{sub 2}-Na{sub 2}O-CaO) and on amorphous polymers (polyethylene terephtalate (PET), nitrile butadiene rubber (NBR), etc.). It appears that whatever the nature of the chemical bonding involved in the material, we observe strong relaxation effects in an intermediate temperature range, near the glass transition temperature. In addition, when crystallization occurs in the initially amorphous material, similar evolution is observed in all the materials. A method is proposed to properly separate elastic, viscoelastic and viscoplastic contributions to the deformation. Finally a physical model is given to describe these viscoelastic phenomena.
Impact load time histories for viscoelastic missiles
International Nuclear Information System (INIS)
Stoykovich, M.
1977-01-01
Generation of the impact load time history at the contact point between a viscoelastic missile and its targets is presented. In the past, in the case of aircraft striking containment shell structure, the impact load history was determined on the basis of actual measurements by subjecting a rigid wall to aircraft crash. The effects of elastic deformation of the target upon the impact load time history is formulated in this paper. The missile is idealized by a linear mass-spring-dashpot combination using viscoelastic models. These models can readily be processed taking into account the elastic as well as inelastic deformations of the missiles. The target is assumed to be either linearly elastic or rigid. In the case of the linearly elastic target, the normal mode theory is used to express the time-dependent displacements of the target which is simulated by lumped masses, elastic properties and dashpots in discrete parts. In the case of Maxwell viscoelastic model, the time-dependent displacements of the missile and the target are given in terms of the unknown impact load time history. This leads to an integral equation which may be solved by Laplace transformation. The normal mode theory is provided. Examples are given for bricks with viscoelastic materials as missiles against a rigid target. (Auth.)
Seismic Analysis of a Viscoelastic Damping Isolator
Directory of Open Access Journals (Sweden)
Bo-Wun Huang
2015-01-01
Full Text Available Seismic prevention issues are discussed much more seriously around the world after Fukushima earthquake, Japan, April 2011, especially for those countries which are near the earthquake zone. Approximately 1.8×1012 kilograms of explosive energy will be released from a magnitude 9 earthquake. It destroys most of the unprotected infrastructure within several tens of miles in diameter from the epicenter. People can feel the earthquake even if living hundreds of miles away. This study is a seismic simulation analysis for an innovated and improved design of viscoelastic damping isolator, which can be more effectively applied to earthquake prevention and damage reduction of high-rise buildings, roads, bridges, power generation facilities, and so forth, from earthquake disaster. Solidworks graphic software is used to draw the 3D geometric model of the viscoelastic isolator. The dynamic behavior of the viscoelastic isolator through shock impact of specific earthquake loading, recorded by a seismometer, is obtained via ANSYS finite element package. The amplitude of the isolator is quickly reduced by the viscoelastic material in the device and is shown in a time response diagram. The result of this analysis can be a crucial reference when improving the design of a seismic isolator.
Non linear viscoelastic models
DEFF Research Database (Denmark)
Agerkvist, Finn T.
2011-01-01
Viscoelastic eects are often present in loudspeaker suspensions, this can be seen in the displacement transfer function which often shows a frequency dependent value below the resonance frequency. In this paper nonlinear versions of the standard linear solid model (SLS) are investigated....... The simulations show that the nonlinear version of the Maxwell SLS model can result in a time dependent small signal stiness while the Kelvin Voight version does not....
Viscoelasticity evaluation of rubber by surface reflection of supersonic wave.
Omata, Nobuaki; Suga, Takahiro; Furusawa, Hirokazu; Urabe, Shinichi; Kondo, Takeru; Ni, Qing-Qing
2006-12-22
The main characteristic of rubber is a viscoelasticity. So it is important to research the characteristic of the viscoelasticity of the high frequency band for the friction between a rubber material and the hard one with roughness, for instance, the tire and the road. As for the measurement of the viscoelasticity of rubber, DMA (dynamic mechanical analysis) is general. However, some problems are pointed out to the measurement of the high frequency band by DMA. Then, we evaluated the viscoelasticity characteristic by the supersonic wave measurement. However, attenuation of rubber is large, and when the viscoelasticity is measured by the supersonic wave therefore, it is inconvenient and limited in a past method by means of bottom reflection. In this report, we tried the viscoelasticity evaluation by the method of using complex surface reflection coefficient and we compared with the friction coefficient under wide-range friction velocity. As a result, some relationships had been found for two properties. We report the result that character of viscoelasticity of rubber was comparable to friction coefficient.
Modelling water hammer in viscoelastic pipelines: short brief
Urbanowicz, K.; Firkowski, M.; Zarzycki, Z.
2016-10-01
The model of water hammer in viscoelastic pipelines is analyzed. An appropriate mathematical model of water hammer in polymer pipelines is presented. An additional term has been added to continuity equation to describe the retarded deformation of the pipe wall. The mechanical behavior of viscoelastic material is described by generalized Kelvin-Voigt model. The comparison of numerical simulation and experimental data from well known papers is presented. Short discussion about obtained results are given.
Viscoelastic property identification from waveform reconstruction
Leymarie, N.; Aristégui, C.; Audoin, B.; Baste, S.
2002-05-01
An inverse method is proposed for the determination of the viscoelastic properties of material plates from the plane-wave transmitted acoustic field. Innovations lie in a two-step inversion scheme based on the well-known maximum-likelihood principle with an analytic signal formulation. In addition, establishing the analytical formulations of the plate transmission coefficient we implement an efficient and slightly noise-sensitive process suited to both very thin plates and strongly dispersive media.
Modeling electrically active viscoelastic membranes.
Directory of Open Access Journals (Sweden)
Sitikantha Roy
Full Text Available The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell that have also been useful in understanding the process. Here we propose a model describing the major electromechanical features of such active membranes. The model derived from thermodynamic principles is in the form of integral relationships between the history of voltage and membrane resultants as independent variables and the charge density and strains as dependent variables. The proposed model is applied to the analysis of an active force produced by the outer hair cell in response to a harmonic electric field. Our analysis reveals the mechanism of the outer hair cell active (isometric force having an almost constant amplitude and phase up to 80 kHz. We found that the frequency-invariance of the force is a result of interplay between the electrical filtering associated with prestin and power law viscoelasticity of the surrounding membrane. Paradoxically, the membrane viscoelasticity boosts the force balancing the electrical filtering effect. We also consider various modes of electromechanical coupling in membrane with prestin associated with mechanical perturbations in the cell. We consider pressure or strains applied step-wise or at a constant rate and compute the time course of the resulting electric charge. The results obtained here are important for the analysis of electromechanical properties of membranes, cells, and biological materials as well as for a better understanding of the mechanism of hearing and the role of the protein prestin in this mechanism.
Proton energy determinations in water and in tissue-like material
Energy Technology Data Exchange (ETDEWEB)
Laitano, R F [Ist. Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA, Roma (Italy); Rosetti, M [Div. di Fisica Applicata, ENEA, Bologna (Italy)
1997-09-01
The mean energy of proton beams in water and in a tissue substitute, respectively, were determined as a function of SOBP width, beam size and initial energy spread. Then an analytical expression to obtain the proton mean energy as a function of phantom depth and initial energy was established. This expression differs from the analogous ones reported in some current dosimetry protocols in that it accounts for the nuclear interaction effects in determining the mean energy. The preliminary results of the calculations referred to above are reported together with some comments on the specification of the proton beam quality for clinical dosimetry. (orig.)
Viscoelastic behaviour of cold recycled asphalt mixes
Cizkova, Zuzana; Suda, Jan
2017-09-01
Behaviour of cold recycled mixes depends strongly on both the bituminous binder content (bituminous emulsion or foamed bitumen) and the hydraulic binder content (usually cement). In the case of cold recycled mixes rich in bitumen and with low hydraulic binder content, behaviour is close to the viscoelastic behaviour of traditional hot mix asphalt. With decreasing bituminous binder content together with increasing hydraulic binder content, mixes are characteristic with brittle behaviour, typical for concrete pavements or hydraulically bound layers. The behaviour of cold recycled mixes with low content of both types of binders is similar to behaviour of unbound materials. This paper is dedicated to analysing of the viscoelastic behaviour of the cold recycled mixes. Therefore, the tested mixes contained higher amount of the bituminous binder (both foamed bitumen and bituminous emulsion). The best way to characterize any viscoelastic material in a wide range of temperatures and frequencies is through the master curves. This paper includes interesting findings concerning the dependency of both parts of the complex modulus (elastic and viscous) on the testing frequency (which simulates the speed of heavy traffic passing) and on the testing temperature (which simulates the changing climate conditions a real pavement is subjected to).
Investigation of transient cavitating flow in viscoelastic pipes
International Nuclear Information System (INIS)
Keramat, A; Tijsseling, A S; Ahmadi, A
2010-01-01
A study on water hammer in viscoelastic pipes when the fluid pressure drops to liquid vapour pressure is performed. Two important concepts including column separation and the effects of retarded strains in the pipe wall on the fluid response have been investigated separately in recent works, but there is some curiosity as to how the results for pressure and discharge are when column separation occurs in a viscoelastic pipe. For pipes made of plastic such as polyethylene (PE) and polyvinyl chloride (PVC), viscoelasticity is a crucial mechanical property which changes the hydraulic and structural transient responses. Based on previous developments in the analysis of water hammer, a model which is capable of analysing column separation in viscoelastic pipes is presented and used for solving the selected case studies. For the column-separation modelling the Discrete Vapour Cavity Model (DVCM) is utilised and the viscoelasticity property of the pipe wall is modelled by Kelvin-Voigt elements. The effects of viscoelasticity play an important role in the column separation phenomenon because it changes the water hammer fundamental frequency and so affects the time of opening or collapse of the cavities. Verification of the implemented computer code is performed for the effects of viscoelasticity and column separation - separately and simultaneously - using experimental results from the literature. In the provided examples the focus is placed on the simultaneous effect of viscoelasticity and column separation on the hydraulic transient response. The final conclusions drawn are that if rectangular grids are utilised the DVCM gives acceptable predictions of the phenomenon and that the pipe wall material's retarded behaviour strongly dampens the pressure spikes caused by column separation.
Investigation of transient cavitating flow in viscoelastic pipes
Keramat, A.; Tijsseling, A. S.; Ahmadi, A.
2010-08-01
A study on water hammer in viscoelastic pipes when the fluid pressure drops to liquid vapour pressure is performed. Two important concepts including column separation and the effects of retarded strains in the pipe wall on the fluid response have been investigated separately in recent works, but there is some curiosity as to how the results for pressure and discharge are when column separation occurs in a viscoelastic pipe. For pipes made of plastic such as polyethylene (PE) and polyvinyl chloride (PVC), viscoelasticity is a crucial mechanical property which changes the hydraulic and structural transient responses. Based on previous developments in the analysis of water hammer, a model which is capable of analysing column separation in viscoelastic pipes is presented and used for solving the selected case studies. For the column-separation modelling the Discrete Vapour Cavity Model (DVCM) is utilised and the viscoelasticity property of the pipe wall is modelled by Kelvin-Voigt elements. The effects of viscoelasticity play an important role in the column separation phenomenon because it changes the water hammer fundamental frequency and so affects the time of opening or collapse of the cavities. Verification of the implemented computer code is performed for the effects of viscoelasticity and column separation - separately and simultaneously - using experimental results from the literature. In the provided examples the focus is placed on the simultaneous effect of viscoelasticity and column separation on the hydraulic transient response. The final conclusions drawn are that if rectangular grids are utilised the DVCM gives acceptable predictions of the phenomenon and that the pipe wall material's retarded behaviour strongly dampens the pressure spikes caused by column separation.
Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound
Energy Technology Data Exchange (ETDEWEB)
Moros, Eduardo G [Department of Radiation Oncology, Washington University, St Louis, MO 63108 (United States); Novak, Petr [Department of Radiation Oncology, Washington University, St Louis, MO 63108 (United States); Straube, William L [Department of Radiation Oncology, Washington University, St Louis, MO 63108 (United States); Kolluri, Prashant [Department of Radiation Oncology, Washington University, St Louis, MO 63108 (United States); Yablonskiy, Dmitriy A [Department of Radiology, Washington University, St Louis, MO 63108 (United States); Myerson, Robert J [Department of Radiation Oncology, Washington University, St Louis, MO 63108 (United States)
2004-03-21
than fourfold) were induced in soft tissue-like phantom materials adjacent (within {approx}5 mm) to a bovine bone as compared to similar experiments without bone inclusions. For low-power long-exposure experiments, where thermal conduction effects are significant, the thermal impact of bone reached at distances >10 mm from the bone surface (upstream of the bone). Therefore, we hypothesize that underlying bone exposed to planar ultrasound hyperthermia creates a high-temperature thermal boundary at depth that compensates for beam attenuation, thus producing more uniform temperature distribution in the intervening tissue layers. With appropriate technology, this finding may lead to improved thermal doses in superficial treatment sites such as the chest wall and the head/neck.
VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS
Energy Technology Data Exchange (ETDEWEB)
Dobos, Vera [Konkoly Thege Miklos Astronomical Institute, Research Centre of Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Konkoly Thege Miklós út 15-17, Budapest (Hungary); Turner, Edwin L., E-mail: dobos@konkoly.hu [Department of Astrophysical Sciences, Princeton University, 08544, 4 Ivy Lane, Peyton Hall, Princeton, NJ (United States)
2015-05-01
Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.
VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS
International Nuclear Information System (INIS)
Dobos, Vera; Turner, Edwin L.
2015-01-01
Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat
Static viscoelasticity of biomass polyethylene composites
Directory of Open Access Journals (Sweden)
Keyan Yang
Full Text Available The biomass polyethylene composites filled with poplar wood flour, rice husk, cotton stalk or corn stalk were prepared by extrusion molding. The static viscoelasticity of composites was investigated by the dynamic thermal mechanical analyzer (DMA. Through the stress-strain scanning, it is found that the linear viscoelasticity interval of composites gradually decreases as the temperature rises, and the critical stress and strain values are 0.8 MPa and 0.03% respectively. The experiment shows that as the temperature rises, the creep compliance of biomass polyethylene composites is increased; under the constant temperature, the creep compliance decreases with the increase of content of biomass and calcium carbonate. The biomass and calcium carbonate used to prepare composites as filler can improve damping vibration attenuation and reduce stress deformation of composites. The stress relaxation modulus of composites is reduced and the relaxation rate increases at the higher temperature. The biomass and calcium carbonate used to prepare composites as filler not only can reduce costs, but also can increase stress relaxation modulus and improve the size thermostability of composites. The corn stalk is a good kind of biomass raw material for composites since it can improve the creep resistance property and the stress relaxation resistance property of composites more effectively than other three kinds of biomass (poplar wood flour, rice husk and cotton stalk. Keywords: Biomass, Composites, Calcium carbonate, Static viscoelasticity, Creep, Stress relaxation
Direct and inverse scattering for viscoelastic media
International Nuclear Information System (INIS)
Ammicht, E.; Corones, J.P.; Krueger, R.J.
1987-01-01
A time domain approach to direct and inverse scattering problems for one-dimensional viscoelastic media is presented. Such media can be characterized as having a constitutive relation between stress and strain which involves the past history of the strain through a memory function, the relaxation modulus. In the approach in this article, the relaxation modulus of a material is shown to be related to the reflection properties of the material. This relation provides a constructive algorithm for direct and inverse scattering problems. A numerical implementation of this algorithm is tested on several problems involving realistic relaxation moduli
Fully coupled heat conduction and deformation analyses of visco-elastic solids
Khan, Kamran; Muliana, Anastasia Hanifah
2012-01-01
the temperature in a viscoelastic body. The rate of stress relaxation (or the rate of creep) and the mechanical and physical properties of visco-elastic materials, such as polymers, vary with temperature. This study aims at understanding the effect of coupling
Directory of Open Access Journals (Sweden)
M.R. Mofakhami
2008-01-01
Full Text Available In this paper sound transmission through the multilayered viscoelastic air filled cylinders subjected to the incident acoustic wave is studied using the technique of separation of variables on the basis of linear three dimensional theory of elasticity. The effect of interior acoustic medium on the mode maps (frequency vs geometry and noise reduction is investigated. The effects of internal absorption and external moving medium on noise reduction are also evaluated. The dynamic viscoelastic properties of the structure are rigorously taken into account with a power law technique that models the viscoelastic damping of the cylinder. A parametric study is also performed for the two layered infinite cylinders to obtain the effect of viscoelastic layer characteristics such as thickness, material type and frequency dependency of viscoelastic properties on the noise reduction. It is shown that using constant and frequency dependent viscoelastic material with high loss factor leads to the uniform noise reduction in the frequency domain. It is also shown that the noise reduction obtained for constant viscoelastic material property is subjected to some errors in the low frequency range with respect to those obtained for the frequency dependent viscoelastic material.
Experimental Characterization of Innovative Viscoelastic Foams
Directory of Open Access Journals (Sweden)
Massimo Viscardi
2016-05-01
Full Text Available The evolutionary trend in the automotive industry has produced over time numerous performance and aesthetic innovations, however, the exponential development related to transportation technologies also introduced new requirements concerning the environmental impact [1]. The awareness of ecological issues has led to a reorganization of the evaluations and the vehicle design, currently aimed at reducing the problems that have emerged in empirical investigations and the parallel increase in environmental solutions. The vehicle renewal process involves targeted technical mutations both to observance of ecology as to the safety and comfort of the driver. New recyclable materials and more resistant have been developed in order to minimize the environmental impact of the vehicle even at the end of the operating life of its components, as well as solutions relating to the reduction of noise pollution generated as a response to the requirements of comfort. Modern research programs on a global scale have set themselves the objective of exploiting the potentiality of innovative technologies in the optimization of vehicles efficiency, the noise reduction and in the consequent reduction of fuel burn. One of the crucial topics in the greening of the new generation automotive sector is therefore the use and development of high vibro-acoustic performance materials. The goal of this research is properly focused on the analysis of viscoelastic materials appointed to increase the damping of the vibrations generated in a vehicle. The use of a viscoelastic material in this context is due to its high property to convert vibrational energy into heat, providing a significant dissipation of the vibrations. Trade-off analyses are performed in order define the stiffness and damping capacity of several viscoelastic foams with different thickness and density.
Xu, Yangguang
2018-05-03
Describing nonlinear viscoelastic properties of polymeric composites when subjected to dynamic loading is essential for development of practical applications of such materials. An efficient and easy method to analyze nonlinear viscoelasticity remains elusive because the dynamic moduli (storage modulus and loss modulus) are not very convenient when the material falls into nonlinear viscoelastic range. In this study, we utilize two methods, Fourier transform and geometrical nonlinear analysis, to quantitatively characterize the nonlinear viscoelasticity of a pre-compressed layered polymeric composite under oscillatory compression. We discuss the influences of pre-compression, dynamic loading, and the inner structure of polymeric composite on the nonlinear viscoelasticity. Furthermore, we reveal the nonlinear viscoelastic mechanism by combining with other experimental results from quasi-static compressive tests and microstructural analysis. From a methodology standpoint, it is proved that both Fourier transform and geometrical nonlinear analysis are efficient tools for analyzing the nonlinear viscoelasticity of a layered polymeric composite. From a material standpoint, we consequently posit that the dynamic nonlinear viscoelasticity of polymeric composites with complicated inner structures can also be well characterized using these methods.
Jordan, Jacqueline A.; Fraga, Denise N.; Gonda, Steve R.
2002-01-01
A three-dimensional (3-D), tissue-like model was developed for the genotoxic assessment of space environment. In previous experiments, we found that culturing mammalian cells in a NASA-designed bioreactor, using Cytodex-3 beads as a scaffold, generated 3-D multicellular spheroids. In an effort to generate scaffold-free spheroids, we developed a new 3-D tissue-like model by coculturing fibroblast and epithelial cell in a NASA bioreactor using macroporous Cultispher-S(TradeMark) microcarriers. Big Blue(Registered Trademark) Rat 2(Lambda) fibroblasts, genetically engineered to contain multiple copies (>60 copies/cell) of the Lac I target gene, were cocultured with radio-sensitive human epithelial cells, H184F5. Over an 8-day period, samples were periodically examined by microscopy and histology to confirm cell attachment, growth, and viability. Immunohistochemistry and western analysis were used to evaluate the expression of specific cytoskeletal and adhesion proteins. Key cell culture parameters (glucose, pH, and lactate concentrations) were monitored daily. Controls were two-dimensional mono layers of fibroblast or epithelial cells cultured in T-flasks. Analysis of 3-D spheroids from the bioreactor suggests fibroblast cells attached to and completely covered the bead surface and inner channels by day 3 in the bioreactor. Treatment of the 3-day spheroids with dispase II dissolved the Cultisphers(TradeMark) and produced multicellular, bead-less constructs. Immunohistochemistry confirmed the presence of vi.mentin, cytokeratin and E-cadherin in treated spheroids. Examination of the dispase II treated spheroids with transmission electron microscopy (TEM) also showed the presence of desmosomes. These results suggest that the controlled enzymatic degradation of an artificial matrix in the low shear environment of the NASA-designed bioreactor can produce 3-D tissue-like spheroids. 2
Polymer engineering science and viscoelasticity an introduction
Brinson, Hal F
2015-01-01
This book provides a unified mechanics and materials perspective on polymers: both the mathematics of viscoelasticity theory as well as the physical mechanisms behind polymer deformation processes. Introductory material on fundamental mechanics is included to provide a continuous baseline for readers from all disciplines. Introductory material on the chemical and molecular basis of polymers is also included, which is essential to the understanding of the thermomechanical response. This self-contained text covers the viscoelastic characterization of polymers including constitutive modeling, experimental methods, thermal response, and stress and failure analysis. Example problems are provided within the text as well as at the end of each chapter. New to this edition: · One new chapter on the use of nano-material inclusions for structural polymer applications and applications such as fiber-reinforced polymers and adhesively bonded structures · Brings up-to-date polymer pro...
Viscoelastic Analysis of Thermally Stiffening Polymer Nanocomposites
Ehlers, Andrew; Rende, Deniz; Senses, Erkan; Akcora, Pinar; Ozisik, Rahmi
Poly(ethylene oxide), PEO, filled with silica nanoparticles coated with poly(methyl methacrylate), PMMA, was shown to present thermally stiffening behavior above the glass transition temperature of both PEO and PMMA. In the current study, the viscoelastic beahvior of this nanocomposite system is investigated via nanoindenation experiments to complement on going rheological studies. Results were compared to neat polymers, PEO and PMMA, to understand the effect of coated nanoparticles. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.
Bifurcation and chaos of an axially accelerating viscoelastic beam
International Nuclear Information System (INIS)
Yang Xiaodong; Chen Liqun
2005-01-01
This paper investigates bifurcation and chaos of an axially accelerating viscoelastic beam. The Kelvin-Voigt model is adopted to constitute the material of the beam. Lagrangian strain is used to account for the beam's geometric nonlinearity. The nonlinear partial-differential equation governing transverse motion of the beam is derived from the Newton second law. The Galerkin method is applied to truncate the governing equation into a set of ordinary differential equations. By use of the Poincare map, the dynamical behavior is identified based on the numerical solutions of the ordinary differential equations. The bifurcation diagrams are presented in the case that the mean axial speed, the amplitude of speed fluctuation and the dynamic viscoelasticity is respectively varied while other parameters are fixed. The Lyapunov exponent is calculated to identify chaos. From numerical simulations, it is indicated that the periodic, quasi-periodic and chaotic motions occur in the transverse vibrations of the axially accelerating viscoelastic beam
Uniform Decay for Solutions of an Axially Moving Viscoelastic Beam
Energy Technology Data Exchange (ETDEWEB)
Kelleche, Abdelkarim, E-mail: kellecheabdelkarim@gmail.com [Université des Sciences et de la Technologie Houari Boumediene, Faculté des Mathématiques (Algeria); Tatar, Nasser-eddine, E-mail: tatarn@Kfupm.edu.sa [King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics (Saudi Arabia)
2017-06-15
The paper deals with an axially moving viscoelastic structure modeled as an Euler–Bernoulli beam. The aim is to suppress the transversal displacement (transversal vibrations) that occur during the axial motion of the beam. It is assumed that the beam is moving with a constant axial speed and it is subject to a nonlinear force at the right boundary. We prove that when the axial speed of the beam is smaller than a critical value, the dissipation produced by the viscoelastic material is sufficient to suppress the transversal vibrations. It is shown that the rate of decay of the energy depends on the kernel which arise in the viscoelastic term. We consider a general kernel and notice that solutions cannot decay faster than the kernel.
Extensional rheometer based on viscoelastic catastrophes outline
DEFF Research Database (Denmark)
2014-01-01
The present invention relates to a method and a device for determining viscoelastic properties of a fluid. The invention resides inter alia in the generation of viscoelastic catastrophes in confined systems for use in the context of extensional rheology. The viscoelastic catastrophe is according ...... to the invention generated in a bistable fluid system, and the flow conditions for which the catastrophe occurs can be used as a fingerprint of the fluid's viscoelastic properties in extensional flow....
Brands, D.W.A.; Peters, G.W.M.; Bovendeerd, P.H.M.
2004-01-01
Finite Element (FE) head models are often used to understand mechanical response of the head and its contents during impact loading in the head. CurrentFE models do not account for non-linear viscoelastic material behavior of brain tissue. We developed a new non-linear viscoelastic material model
Quantitative frequency-domain fluorescence spectroscopy in tissues and tissue-like media
Cerussi, Albert Edward
1999-09-01
In the never-ending quest for improved medical technology at lower cost, modern near-infrared optical spectroscopy offers the possibility of inexpensive technology for quantitative and non-invasive diagnoses. Hemoglobin is the dominant chromophore in the 700-900 nm spectral region and as such it allows for the optical assessment of hemoglobin concentration and tissue oxygenation by absorption spectroscopy. However, there are many other important physiologically relevant compounds or physiological states that cannot be effectively sensed via optical methods because of poor optical contrast. In such cases, contrast enhancements are required. Fluorescence spectroscopy is an attractive component of optical tissue spectroscopy. Exogenous fluorophores, as well as some endogenous ones, may furnish the desperately needed sensitivity and specificity that is lacking in near-infrared optical tissue spectroscopy. The main focus of this thesis was to investigate the generation and propagation of fluorescence photons inside tissues and tissue-like media (i.e., scattering dominated media). The standard concepts of fluorescence spectroscopy have been incorporated into a diffusion-based picture that is sometimes referred to as photon migration. The novelty of this work lies in the successful quantitative recovery of fluorescence lifetimes, absolute fluorescence quantum yields, fluorophore concentrations, emission spectra, and both scattering and absorption coefficients at the emission wavelength from a tissue-like medium. All of these parameters are sensitive to the fluorophore local environment and hence are indicators of the tissue's physiological state. One application demonstrating the capabilities of frequency-domain lifetime spectroscopy in tissue-like media is a study of the binding of ethidium bromide to bovine leukocytes in fresh milk. Ethidium bromide is a fluorescent dye that is commonly used to label DNA, and hence visualize chromosomes in cells. The lifetime of
Interrogating the viscoelastic properties of tissue using viscoelastic response (VISR) ultrasound
Selzo, Mallory Renee
Affecting approximately 1 in 3,500 newborn males, Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic disorders in humans. Boys with DMD suffer progressive loss of muscle strength and function, leading to wheelchair dependence, cardiac and respiratory compromise, and death during young adulthood. There are currently no treatments that can halt or reverse the disease progression, and translating prospective treatments into clinical trials has been delayed by inadequate outcome measures. Current outcome measures, such as functional and muscle strength assessments, lack sensitivity to individual muscles, require subjective effort of the child, and are impacted by normal childhood growth and development. The goal of this research is to develop Viscoelastic Response (VisR) ultrasound which can be used to delineate compositional changes in muscle associated with DMD. In VisR, acoustic radiation force (ARF) is used to produce small, localized displacements within the muscle. Using conventional ultrasound to track the motion, the displacement response of the tissue can be evaluated against a mechanical model. In order to develop signal processing techniques and assess mechanical models, finite element method simulations are used to model the response of a viscoelastic material to ARF excitations. Results are then presented demonstrating VisR differentiation of viscoelastic changes with progressive dystrophic degeneration in a dog model of DMD. Finally, clinical feasibility of VisR imaging is demonstrated in two boys with DMD.
Impact load time histories for viscoelastic missiles
International Nuclear Information System (INIS)
Stoykovich, M.
1977-01-01
Generation of the impact load time history at the contact point between a viscoelastic missile and its targets is presented. In the past, in the case of aircraft striking containment shell structure, the impact load time history was determined on the basis of actual measurements by subjecting a rigid wall to aircraft crash. The effects of elastic deformation of the target upon the impact load time history is formulated in this paper. The missile is idealized by a linear mass-spring-dashpot combination using viscoelastic models. These models can readily be processed taking into account the elastic as well as inelastic deformations of the missiles. The target is assumed to be either linearly elastic or rigid. In the case of the linearly elastic target, the normal mode theory is used to express the time-dependent displacements of the target which is simulated by lumped masses, elastic properties and dashpots in discrete parts. In the case of Maxwell viscoelastic model, the time-dependent displacements of the missile and the target are given in terms of the unknown impact load time history. This leads to an integral equation which may be solved by Laplace transformation. The normal mode theory is provided. The target structure may be composed of different materials with different components. Concrete and steel structural components have inherently different viscous friction damping properties. Hence, the equivalent modal damping depends on the degree of participation of these components in the modal response. An approximate rule for determining damping in any vibration mode by weighting the damping of each component according to the modal energy stored in each component is considered
Seismic Wave Propagation in Layered Viscoelastic Media
Borcherdt, R. D.
2008-12-01
Advances in the general theory of wave propagation in layered viscoelastic media reveal new insights regarding seismic waves in the Earth. For example, the theory predicts: 1) P and S waves are predominantly inhomogeneous in a layered anelastic Earth with seismic travel times, particle-motion orbits, energy speeds, Q, and amplitude characteristics that vary with angle of incidence and hence, travel path through the layers, 2) two types of shear waves exist, one with linear and the other with elliptical particle motions each with different absorption coefficients, and 3) surface waves with amplitude and particle motion characteristics not predicted by elasticity, such as Rayleigh-Type waves with tilted elliptical particle motion orbits and Love-Type waves with superimposed sinusoidal amplitude dependencies that decay exponentially with depth. The general theory provides closed-form analytic solutions for body waves, reflection-refraction problems, response of multiple layers, and surface wave problems valid for any material with a viscoelastic response, including the infinite number of models, derivable from various configurations of springs and dashpots, such as elastic, Voight, Maxwell, and Standard Linear. The theory provides solutions independent of the amount of intrinsic absorption and explicit analytic expressions for physical characteristics of body waves in low-loss media such as the deep Earth. The results explain laboratory and seismic observations, such as travel-time and wide-angle reflection amplitude anomalies, not explained by elasticity or one dimensional Q models. They have important implications for some forward modeling and inverse problems. Theoretical advances and corresponding numerical results as recently compiled (Borcherdt, 2008, Viscoelastic Waves in Layered Media, Cambridge University Press) will be reviewed.
Xu, Yangguang; Tao, Ran; Lubineau, Gilles
2018-01-01
remains elusive because the dynamic moduli (storage modulus and loss modulus) are not very convenient when the material falls into nonlinear viscoelastic range. In this study, we utilize two methods, Fourier transform and geometrical nonlinear analysis
Viscoelastic behaviour of pumpkin balloons
Gerngross, T.; Xu, Y.; Pellegrino, S.
2008-11-01
The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.
Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.
Demirci, Nagehan; Tönük, Ergin
2014-01-01
During the last decades, derivatives and integrals of non-integer orders are being more commonly used for the description of constitutive behavior of various viscoelastic materials including soft biological tissues. Compared to integer order constitutive relations, non-integer order viscoelastic material models of soft biological tissues are capable of capturing a wider range of viscoelastic behavior obtained from experiments. Although integer order models may yield comparably accurate results, non-integer order material models have less number of parameters to be identified in addition to description of an intermediate material that can monotonically and continuously be adjusted in between an ideal elastic solid and an ideal viscous fluid. In this work, starting with some preliminaries on non-integer (fractional) calculus, the "spring-pot", (intermediate mechanical element between a solid and a fluid), non-integer order three element (Zener) solid model, finally a user-defined large strain non-integer order viscoelastic constitutive model was constructed to be used in finite element simulations. Using the constitutive equation developed, by utilizing inverse finite element method and in vivo indentation experiments, soft tissue material identification was performed. The results indicate that material coefficients obtained from relaxation experiments, when optimized with creep experimental data could simulate relaxation, creep and cyclic loading and unloading experiments accurately. Non-integer calculus viscoelastic constitutive models, having physical interpretation and modeling experimental data accurately is a good alternative to classical phenomenological viscoelastic constitutive equations.
Viscoelasticity of Edam cheese during its ripening
Directory of Open Access Journals (Sweden)
Šárka Nedomová
2010-01-01
Full Text Available Series of the indentation of the ball (10 mm in diameter by the constant speed into blocks of Edam cheese has been conducted. The indentation tests were performed at different speeds (1, 5, 10, 20 and 100 mm/min, and the corresponding force–displacement responses were fitted with an analytical solution to obtain the time-dependent constants and the instantaneous force–displacement response. The measurement has been performed for the cheeses of different stages of their maturity. The dependence of the indentation force on the penetration depth has been evaluated. This dependence can be fitted by a polynom. The indentation force decreases with cheese fat content. It increases with the loading rate. Its value also decreases with the time of the cheese ripening. The recently proposed method for the indenation of the ball into viscoelastic solids has been used for our data analysis. This procedure, which needs the use of the numeric methods, enables to obtain stress relaxation moduli, which describe the viscoelasticity of the tested materials. The obtained moduli describe the stage of the cheese maturity.
Generalized Fractional Derivative Anisotropic Viscoelastic Characterization
Directory of Open Access Journals (Sweden)
Harry H. Hilton
2012-01-01
Full Text Available Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.
Hassanpour, Saeid; Saboonchi, Ahmad
2016-12-01
This paper aims to evaluate the role of small vessels in heat transfer mechanisms of a tissue-like medium during local intensive heating processes, for example, an interstitial hyperthermia treatment. To this purpose, a cylindrical tissue with two co- and counter-current vascular networks and a central heat source is introduced. Next, the energy equations of tissue, supply fluid (arterial blood), and return fluid (venous blood) are derived using porous media approach. Then, a 2D computer code is developed to predict the temperature of blood (fluid phase) and tissue (solid phase) by conventional volume averaging method and a more realistic solution method. In latter method, despite the volume averaging the blood of interconnect capillaries is separated from the arterial and venous blood phases. It is found that in addition to blood perfusion rate, the arrangement of vascular network has considerable effects on the pattern and amount of the achieved temperature. In contrast to counter-current network, the co-current network of vessels leads to considerable asymmetric pattern of temperature contours and relocation of heat affected zone along the blood flow direction. However this relocation can be prevented by changing the site of hyperthermia heat source. The results show that the cooling effect of co-current blood vessels during of interstitial heating is more efficient. Despite much anatomical dissimilarities, these findings can be useful in designing of protocols for hyperthermia cancer treatment of living tissue. Copyright Â© 2016 Elsevier Ltd. All rights reserved.
MECHANICAL BEHAVIOR OF PRESTRESSED VISCOELASTIC ADHESIVE AREAS UNDER COMBINING LOADINGS
Directory of Open Access Journals (Sweden)
Halil Murat Enginsoy
2017-12-01
Full Text Available In this article, mechanical behaviors of adhesive tape VHB 4950 elastomeric material, which is an element of acrylic polymer group and which is in viscoelastic behavior, under different pre-stress conditions and complex forces of different geometric parameters created by combining loadings have been experimentally and numerically investigated. In experimental studies, loading-unloading cyclic tests, one of the different standardized tests for the mechanical characterization of viscoelastic material, have been applied which give the most suitable convergent optimization parameters for the finite element model. Different material models were also investigated by using the data obtained from loading-unloading test results in all numerical models. According to the experimental results, the most suitable material parameters were determined with the Abaqus Parallel Rheological Framework Model (PRF for 4 Yeoh Networks with Bergstrom-Boyce Flow model created in the Mcalibration software for finite element analysis. Subsequently, using these material parameters, finite element analysis was performed as three dimension non-linear viscoelastic with a commercial finite element software Abaqus. The finite element analysis results showed good correlation to the Force (N-Displacement (mm experimental data for maximum load-carrying capacity of structural specimens.
Viscoelastic effect on acoustic band gaps in polymer-fluid composites
International Nuclear Information System (INIS)
Merheb, B; Deymier, P A; Muralidharan, K; Bucay, J; Jain, M; Aloshyna-Lesuffleur, M; Mohanty, S; Berker, A; Greger, R W
2009-01-01
In this paper, we present a theoretical analysis of the propagation of acoustic waves through elastic and viscoelastic two-dimensional phononic crystal structures. Numerical calculations of transmission spectra are conducted by extending the finite-difference-time-domain method to account for linear viscoelastic materials with time-dependent moduli. We study a phononic crystal constituted of a square array of cylindrical air inclusions in a solid viscoelastic matrix. The elastic properties of the solid are those of a silicone rubber. This system exhibits very wide band gaps in its transmission spectrum that extend to frequencies in the audible range of the spectrum. These gaps are characteristic of fluid matrix/air inclusion systems and result from the very large contrast between the longitudinal and transverse speeds of sound in rubber. By treating the matrix as a viscoelastic medium within the standard linear solid (SLS) model, we demonstrate that viscoelasticity impacts the transmission properties of the rubber/air phononic crystal not only by attenuating the transmitted acoustic waves but also by shifting the passing bands frequencies toward lower values. The ranges of frequencies exhibiting attenuation or frequency shift are determined by the value of the relaxation time in the SLS model. We show that viscoelasticity can be used to decrease the frequency of pass bands (and consequently stop bands) in viscoelastic/air phononic crystals
Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges
Peterson, Brandon W.; He, Yan; Ren, Yijin; Zerdoum, Aidan; Libera, Matthew R.; Sharma, Prashant K.; van Winkelhoff, Arie-Jan; Neut, Danielle; Stoodley, Paul; van der Mei, Henny C.; Busscher, Henk J.
2015-01-01
We summarize different studies describing mechanisms through which bacteria in a biofilm mode of growth resist mechanical and chemical challenges. Acknowledging previous microscopic work describing voids and channels in biofilms that govern a biofilms response to such challenges, we advocate a more quantitative approach that builds on the relation between structure and composition of materials with their viscoelastic properties. Biofilms possess features of both viscoelastic solids and liquids, like skin or blood, and stress relaxation of biofilms has been found to be a corollary of their structure and composition, including the EPS matrix and bacterial interactions. Review of the literature on viscoelastic properties of biofilms in ancient and modern environments as well as of infectious biofilms reveals that the viscoelastic properties of a biofilm relate with antimicrobial penetration in a biofilm. In addition, also the removal of biofilm from surfaces appears governed by the viscoelasticity of a biofilm. Herewith, it is established that the viscoelasticity of biofilms, as a corollary of structure and composition, performs a role in their protection against mechanical and chemical challenges. Pathways are discussed to make biofilms more susceptible to antimicrobials by intervening with their viscoelasticity, as a quantifiable expression of their structure and composition. PMID:25725015
Sales, T. P.; Marques, Flávio D.; Pereira, Daniel A.; Rade, Domingos A.
2018-06-01
Nonlinear aeroelastic systems are prone to the appearance of limit cycle oscillations, bifurcations, and chaos. Such problems are of increasing concern in aircraft design since there is the need to control nonlinear instabilities and improve safety margins, at the same time as aircraft are subjected to increasingly critical operational conditions. On the other hand, in spite of the fact that viscoelastic materials have already been successfully used for the attenuation of undesired vibrations in several types of mechanical systems, a small number of research works have addressed the feasibility of exploring the viscoelastic effect to improve the behavior of nonlinear aeroelastic systems. In this context, the objective of this work is to assess the influence of viscoelastic materials on the aeroelastic features of a three-degrees-of-freedom typical section with hardening structural nonlinearities. The equations of motion are derived accounting for the presence of viscoelastic materials introduced in the resilient elements associated to each degree-of-freedom. A constitutive law based on fractional derivatives is adopted, which allows the modeling of temperature-dependent viscoelastic behavior in time and frequency domains. The unsteady aerodynamic loading is calculated based on the classical linear potential theory for arbitrary airfoil motion. The aeroelastic behavior is investigated through time domain simulations, and subsequent frequency transformations, from which bifurcations are identified from diagrams of limit cycle oscillations amplitudes versus airspeed. The influence of the viscoelastic effect on the aeroelastic behavior, for different values of temperature, is also investigated. The numerical simulations show that viscoelastic damping can increase the flutter speed and reduce the amplitudes of limit cycle oscillations. These results prove the potential that viscoelastic materials have to increase aircraft components safety margins regarding aeroelastic
Thin viscoelastic disc subjected to radial non-stationary loading
Directory of Open Access Journals (Sweden)
Adámek V.
2010-07-01
Full Text Available The investigation of non-stationary wave phenomena in isotropic viscoelastic solids using analytical approaches is the aim of this paper. Concretely, the problem of a thin homogeneous disc subjected to radial pressure load nonzero on the part of its rim is solved. The external excitation is described by the Heaviside function in time, so the nonstationary state of stress is induced in the disc. Dissipative material behaviour of solid studied is represented by the discrete material model of standard linear viscoelastic solid in the Zener configuration. After the derivation of motion equations final form, the method of integral transforms in combination with the Fourier method is used for finding the problem solution. The solving process results in the derivation of integral transforms of radial and circumferential displacement components. Finally, the type of derived functions singularities and possible methods for their inverse Laplace transform are mentioned.
Tensor Fields for Use in Fractional-Order Viscoelasticity
Freed, Alan D.; Diethelm, Kai
2003-01-01
To be able to construct viscoelastic material models from fractional0order differentegral equations that are applicable for 3D finite-strain analysis requires definitions for fractional derivatives and integrals for symmetric tensor fields, like stress and strain. We define these fields in the body manifold. We then map them ito spatial fields expressed in terms of an Eulerian or Lagrangian reference frame where most analysts prefer to solve boundary problems.
Honorio, Tulio
2017-11-01
Transformation fields, in an affine formulation characterizing mechanical behavior, describe a variety of physical phenomena regardless their origin. Different composites, notably geomaterials, present a viscoelastic behavior, which is, in some cases of industrial interest, ageing, i.e. it evolves independently with respect to time and loading time. Here, a general formulation of the micromechanics of prestressed or prestrained composites in Ageing Linear Viscoelasticity (ALV) is presented. Emphasis is put on the estimation of effective transformation fields in ALV. The result generalizes Ageing Linear Thermo- and Poro-Viscoelasticity and it can be used in approaches coping with a phase transformation. Additionally, the results are extended to the case of locally transforming materials due to non-coupled dissolution and/or precipitation of a given (elastic or viscoelastic) phase. The estimations of locally transforming composites can be made with respect to different morphologies. As an application, estimations of the coefficient of thermal expansion of a hydrating alite paste are presented.
Process-induced viscoelastic stress in composite laminates
International Nuclear Information System (INIS)
Stango, R.J.
1985-01-01
In recent years, considerable interest has developed in evaluating the stress response of composite laminates which is associated with cooling the material system from the cure temperature to room temperature. This research examines the fundamental nature of time-dependent residual-thermal stresses in composite laminates which are caused by the extreme temperature reduction encountered during the fabrication process. Viscoelastic stress in finite-width, symmetric composite laminates is examined on the basis of a formulation that employs an incremental hereditary integral approach in conjunction with a quasi-three dimensional finite element analysis. A consistent methodology is developed and employed for the characterization of lamina material properties. Special attention is given to the time-dependent stress response at ply-interface locations near the free-edge. In addition, the influence of cooling path on stress history is examined. Recently published material property data for graphite-epoxy lamina is employed in the analysis. Results of the investigation generally indicate that nominal differences between the thermoelastic and viscoelastic solutions are obtained. Slight changes of the final stress state are observed to result when different cooling paths are selected for the temperature history. The methodology employed is demonstrated to result in an accurate, efficient, and consistent approach for the viscoelastic analysis of advanced composite laminates
Viscoelastic modes in chiral liquid crystals
Indian Academy of Sciences (India)
amit@fs.rri.local.net (Amit Kumar Agarwal)
our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic ... In the vicinity of the direct beam for a sample aligned in the Bragg mode and. 297 ... experimental investigations on these modes. Duke and Du ..... scattering volume is not true in practice. In an actual ...
The visco-elastic multilayer program VEROAD
Hopman, P.C.
1996-01-01
The mathematical principles and derivation of a linear visco-elastic multilayer computer program are described. The mathematical derivation is based on Fourier Transformation. The program is called VEROAD, which is an acronym for Visco-Elastic ROad Analysis Delft. The program allows calculation of
A time-domain finite element model reduction method for viscoelastic linear and nonlinear systems
Directory of Open Access Journals (Sweden)
Antônio Marcos Gonçalves de Lima
Full Text Available AbstractMany authors have shown that the effective design of viscoelastic systems can be conveniently carried out by using modern mathematical models to represent the frequency- and temperature-dependent behavior of viscoelastic materials. However, in the quest for design procedures of real-word engineering structures, the large number of exact evaluations of the dynamic responses during iterative procedures, combined with the typically high dimensions of large finite element models, makes the numerical analysis very costly, sometimes unfeasible. It is especially true when the viscoelastic materials are used to reduce vibrations of nonlinear systems. As a matter of fact, which the resolution of the resulting nonlinear equations of motion with frequency- and temperature-dependent viscoelastic damping forces is an interesting, but hard-to-solve problem. Those difficulties motivate the present study, in which a time-domain condensation strategy of viscoelastic systems is addressed, where the viscoelastic behavior is modeled by using a four parameter fractional derivative model. After the discussion of various theoretical aspects, the exact and reduced time responses are calculated for a three-layer sandwich plate by considering nonlinear boundary conditions.
Stick-slip behaviour of a viscoelastic flat sliding along a rigid indenter
Budi Setiyana, Budi; Ismail, Rifky; Jamari, J.; Schipper, Dirk Jan
2016-01-01
The sliding contact of soft material surface due to a rigid indenter is different from metal and some other polymers. A stick-slip motion is more frequently obtained than a smooth motion. By modeling the soft material as low damping viscoelastic material, this study proposes an analytical model to
Finite element reduction strategy for composite sandwich plates with viscoelastic layers
Directory of Open Access Journals (Sweden)
Adriana Amaro Diacenco
2013-04-01
Full Text Available Composite materials have been regarded as a convenient strategy in various types of engineering systems such as aeronautical and space structures, as well as architecture and light industry products due to their advantages over the traditional engineering materials, such as their high strength/stiffness relation characteristics and their anti-corrosion properties. This paper is devoted to the finite element modeling of composite laminated structures incorporating viscoelastic materials to the problem of vibration attenuation. However, the typically high dimension of large finite element models of composite structures incorporating viscoelastic materials makes the numerical processes sometimes unfeasible. Within this context, emphasis is placed on a general condensation strategy specially adapted for the case of viscoelastically damped structures, in which a constant (frequency- and temperature-independent reduction basis to be enriched by static residues associated to the applied loads and the viscoelastic forces is used. After presenting the theoretical foundations, the numerical applications of composite plates treated by viscoelastic materials are addressed, and the main features of the methodology are discussed.
Finite element reduction strategy for composite sandwich plates with viscoelastic layers
Directory of Open Access Journals (Sweden)
Adriana Amaro Diacenco
2012-01-01
Full Text Available Composite materials have been regarded as a convenient strategy in various types of engineering systems such as aeronautical and space structures, as well as architecture and light industry products due to their advantages over the traditional engineering materials, such as their high strength/stiffness relation characteristics and their anti-corrosion properties. This paper is devoted to the finite element modeling of composite laminated structures incorporating viscoelastic materials to the problem of vibration attenuation. However, the typically high dimension of large finite element models of composite structures incorporating viscoelastic materials makes the numerical processes sometimes unfeasible. Within this context, emphasis is placed on a general condensation strategy specially adapted for the case of viscoelastically damped structures, in which a constant (frequency- and temperature-independent reduction basis to be enriched by static residues associated to the applied loads and the viscoelastic forces is used. After presenting the theoretical foundations, the numerical applications of composite plates treated by viscoelastic materials are addressed, and the main features of the methodology are discussed.
Enhancing the Damping Properties of Viscoelastic Composites by Topology Optimization
DEFF Research Database (Denmark)
Andreasen, Casper Schousboe; Andreassen, Erik; Sigmund, Ole
Vibrations, if undamped, might be annoying or even dangerous. Most often some kind of damping mechanism is applied in order to limit the vibration level. Vibration insulators, for instance of rubber material, have favorable damping characteristics but lack the structural stiffness often needed...... in engineering structures. Thus, materials or composites with high stiffness and high damping are of great interest to the industry. The inherent compromise between high stiffness and high damping in viscoelastic materials has been treated theoretically [2, 3] and experimentally [1]. It has been shown that high...
Viscoelastic behavior of multiwalled carbon nanotubes into phenolic resin
Energy Technology Data Exchange (ETDEWEB)
Botelho, Edson Cocchieri; Costa, Michelle Leali; Braga, Carlos Isidoro, E-mail: ebotelho@feg.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil). Dept. de Materiais e Tecnologia; Burkhart, Thomas [Institut fuer Verbundwerkstoffe GmbH, Kaiserslautern, (Germany); Lauke, Bernd [Leibniz-Institut fuer Polymerforschung, Dresden (Germany)
2013-11-01
Nanostructured polymer composites have opened up new perspectives for multi-functional materials. In particular, carbon nanotubes (CNTs) have the potential applications in order to improve mechanical and electrical performance in composites with aerospace application. This study focuses on the viscoelastic evaluation of phenolic resin reinforced carbon nanotubes, processed by using two techniques: aqueous-surfactant solution and three roll calender (TRC) process. According to our results a relative small amount of CNTs in a phenolic resin matrix is capable of enhancing the viscoelastic properties significantly and to modify the thermal stability. Also has been observed that when is used TRC process, the incorporation and distribution of CNT into phenolic resin is more effective when compared with aqueous solution dispersion process. (author)
On Lamb and Rayleigh wave convergence in viscoelastic tissues
Energy Technology Data Exchange (ETDEWEB)
Nenadic, Ivan Z; Urban, Matthew W; Aristizabal, Sara; Mitchell, Scott A; Humphrey, Tye C; Greenleaf, James F, E-mail: Nenadic.Ivan@mayo.edu [Department of Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905 (United States)
2011-10-21
Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40-500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.
International Nuclear Information System (INIS)
Zhang, Da Peng; Lei, Yong Jun; Shen, Zhi Bin; Wang, Cheng Yuan
2017-01-01
Vibration responses were investigated for a viscoelastic Single-walled carbon nanotube (visco-SWCNT) resting on a viscoelastic foundation. Based on the nonlocal Euler-Bernoulli beam model, velocity-dependent external damping and Kelvin viscoelastic foundation model, the governing equations were derived. The Transfer function method (TFM) was then used to compute the natural frequencies for general boundary conditions and foundations. In particular, the exact analytical expressions of both complex natural frequencies and critical viscoelastic parameters were obtained for the Kelvin-Voigt visco-SWCNTs with full foundations and certain boundary conditions, and several physically intuitive special cases were discussed. Substantial nonlocal effects, the influence of geometric and physical parameters of the SWCNT and the viscoelastic foundation were observed for the natural frequencies of the supported SWCNTs. The study demonstrates the efficiency and robustness of the developed model for the vibration of the visco-SWCNT-viscoelastic foundation coupling system
Transient waves in visco-elastic media
Ricker, Norman
1977-01-01
Developments in Solid Earth Geophysics 10: Transient Waves in Visco-Elastic Media deals with the propagation of transient elastic disturbances in visco-elastic media. More specifically, it explores the visco-elastic behavior of a medium, whether gaseous, liquid, or solid, for very-small-amplitude disturbances. This volume provides a historical overview of the theory of the propagation of elastic waves in solid bodies, along with seismic prospecting and the nature of seismograms. It also discusses the seismic experiments, the behavior of waves propagated in accordance with the Stokes wave
Li, Chenlin; Guo, Huili; Tian, Xiaogeng
2018-04-01
This paper is devoted to the thermal shock analysis for viscoelastic materials under transient heating loads. The governing coupled equations with time-delay parameter and nonlocal scale parameter are derived based on the generalized thermo-viscoelasticity theory. The problem of a thin plate composed of viscoelastic material, subjected to a sudden temperature rise at the boundary plane, is solved by employing Laplace transformation techniques. The transient responses, i.e. temperature, displacement, stresses, heat flux as well as strain, are obtained and discussed. The effects of time-delay and nonlocal scale parameter on the transient responses are analyzed and discussed. It can be observed that: the propagation of thermal wave is dynamically smoothed and changed with the variation of time-delay; while the displacement, strain, and stress can be rapidly reduced by nonlocal scale parameter, which can be viewed as an important indicator for predicting the stiffness softening behavior for viscoelastic materials.
Effects of viscoelastic ophthalmic solutions on cell cultures
Directory of Open Access Journals (Sweden)
Madhavan Hajib
1998-01-01
Full Text Available The development of mild but significant inflammation probably attributable to viscoelastic ophthalmic solutions in cataract surgery was recently brought to the notice of the authors, and hence a study of the effects of these solutions available in India, on cell cultures was undertaken. We studied the effects of 6 viscoelastic ophthalmic solutions (2 sodium hyaluronate designated as A and B, and 4 hydroxypropylmethylcellulose designated as C, D, E and F on HeLa, Vero and BHK-21 cell lines in tissue culture microtitre plates using undiluted, 1:10 and 1:100 dilutions of the solutions, and in cover slip cultures using undiluted solutions. Phase contrast microscopic examination of the solutions was also done to determine the presence of floating particles. The products D and F produced cytotoxic changes in HeLa cell line and these products also showed the presence of floating particles under phase contrast microscopy. Other products did not have any adverse effects on the cell lines nor did they show floating particles. The viscoelastic ophthalmic pharmaceutical products designated D and F have cytotoxic effects on HeLa cell line which appears to be a useful cell line for testing these products for their toxicity. The presence of particulate materials in products D and F indicates that the methods used for purification of the solution are not effective.
Numerical modeling of bubble dynamics in viscoelastic media with relaxation
Warnez, M. T.; Johnsen, E.
2015-06-01
Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.
Anisotropy in the viscoelastic response of knee meniscus cartilage.
Coluccino, Luca; Peres, Chiara; Gottardi, Riccardo; Bianchini, Paolo; Diaspro, Alberto; Ceseracciu, Luca
2017-01-26
The knee meniscus is instrumental to stability, shock absorption, load transmission and stress distribution within the knee joint. Such functions are mechanically demanding, and replacement constructs used in meniscus repair often fail because of a poor match with the surrounding tissue. This study focused on the native structure-mechanics relationships and on their anisotropic behavior in meniscus, to define the target biomechanical viscoelastic properties required by scaffolds upon loading. To show regional orientation of the collagen fibers and their viscoelastic behavior, bovine lateral menisci were characterized by second harmonic generation microscopy and through time-dependent mechanical tests. Furthermore, their dynamic viscoelastic response was analyzed over a wide range of frequencies. Multilevel characterization aims to expand the biomimetic approach from the structure itself, to include the mechanical characteristics that give the meniscus its peculiar properties, thus providing tools for the design of novel, effective scaffolds. An example of modeling of anisotropic open-cell porous material tailored to fulfill the measured requirements is presented, leading to a definition of additional parameters for a better understanding of the load transmission mechanism and for better scaffold functionality.
An Image-Based Finite Element Approach for Simulating Viscoelastic Response of Asphalt Mixture
Directory of Open Access Journals (Sweden)
Wenke Huang
2016-01-01
Full Text Available This paper presents an image-based micromechanical modeling approach to predict the viscoelastic behavior of asphalt mixture. An improved image analysis technique based on the OTSU thresholding operation was employed to reduce the beam hardening effect in X-ray CT images. We developed a voxel-based 3D digital reconstruction model of asphalt mixture with the CT images after being processed. In this 3D model, the aggregate phase and air void were considered as elastic materials while the asphalt mastic phase was considered as linear viscoelastic material. The viscoelastic constitutive model of asphalt mastic was implemented in a finite element code using the ABAQUS user material subroutine (UMAT. An experimental procedure for determining the parameters of the viscoelastic constitutive model at a given temperature was proposed. To examine the capability of the model and the accuracy of the parameter, comparisons between the numerical predictions and the observed laboratory results of bending and compression tests were conducted. Finally, the verified digital sample of asphalt mixture was used to predict the asphalt mixture viscoelastic behavior under dynamic loading and creep-recovery loading. Simulation results showed that the presented image-based digital sample may be appropriate for predicting the mechanical behavior of asphalt mixture when all the mechanical properties for different phases became available.
Fully coupled heat conduction and deformation analyses of visco-elastic solids
Khan, Kamran
2012-04-21
Visco-elastic materials are known for their capability of dissipating energy. This energy is converted into heat and thus changes the temperature of the materials. In addition to the dissipation effect, an external thermal stimulus can also alter the temperature in a viscoelastic body. The rate of stress relaxation (or the rate of creep) and the mechanical and physical properties of visco-elastic materials, such as polymers, vary with temperature. This study aims at understanding the effect of coupling between the thermal and mechanical response that is attributed to the dissipation of energy, heat conduction, and temperature-dependent material parameters on the overall response of visco-elastic solids. The non-linearly viscoelastic constitutive model proposed by Schapery (Further development of a thermodynamic constitutive theory: stress formulation, 1969,Mech. Time-Depend. Mater. 1:209-240, 1997) is used and modified to incorporate temperature- and stress-dependent material properties. This study also formulates a non-linear energy equation along with a dissipation function based on the Gibbs potential of Schapery (Mech. Time-Depend. Mater. 1:209-240, 1997). A numerical algorithm is formulated for analyzing a fully coupled thermo-visco-elastic response and implemented it in a general finite-element (FE) code. The non-linear stress- and temperature-dependent material parameters are found to have significant effects on the coupled thermo-visco-elastic response of polymers considered in this study. In order to obtain a realistic temperature field within the polymer visco-elastic bodies undergoing a non-uniform heat generation, the role of heat conduction cannot be ignored. © Springer Science+Business Media, B. V. 2012.
Viscoelastic model of tungsten 'fuzz' growth
International Nuclear Information System (INIS)
Krasheninnikov, S I
2011-01-01
A viscoelastic model of fuzz growth is presented. The model describes the main features of tungsten fuzz observed in experiments. It gives estimates of fuzz growth rate and temperature range close to experimental ones.
Dynamics and Stability of Rolling Viscoelastic Tires
Energy Technology Data Exchange (ETDEWEB)
Potter, Trevor [Univ. of California, Berkeley, CA (United States)
2013-04-30
Current steady state rolling tire calculations often do not include treads because treads destroy the rotational symmetry of the tire. We describe two methodologies to compute time periodic solutions of a two-dimensional viscoelastic tire with treads: solving a minimization problem and solving a system of equations. We also expand on work by Oden and Lin on free spinning rolling elastic tires in which they disovered a hierachy of N-peak steady state standing wave solutions. In addition to discovering a two-dimensional hierarchy of standing wave solutions that includes their N-peak hiearchy, we consider the eects of viscoelasticity on the standing wave solutions. Finally, a commonplace model of viscoelasticity used in our numerical experiments led to non-physical elastic energy growth for large tire speeds. We show that a viscoelastic model of Govindjee and Reese remedies the problem.
Gravitational Instability of Cylindrical Viscoelastic Medium ...
Indian Academy of Sciences (India)
similar to that of viscoelastic fluid where both properties work together. They also ... cylindrical gravitational waves provides a strong motivation in this regard. .... which represents the solenoidal character of the magnetic field and the total stress.
VISCOELASTIC STRUCTURAL MODEL OF ASPHALT CONCRETE
Directory of Open Access Journals (Sweden)
V. Bogomolov
2016-06-01
Full Text Available The viscoelastic rheological model of asphalt concrete based on the generalized Kelvin model is offered. The mathematical model of asphalt concrete viscoelastic behavior that can be used for calculation of asphalt concrete upper layers of non-rigid pavements for strength and rutting has been developed. It has been proved that the structural model of Burgers does not fully meet all the requirements of the asphalt-concrete.
Recent advances in elasticity, viscoelasticity and inelasticity
Rajagopal, KR
1995-01-01
This is a collection of papers dedicated to Prof T C Woo to mark his 70th birthday. The papers focus on recent advances in elasticity, viscoelasticity and inelasticity, which are related to Prof Woo's work. Prof Woo's recent work concentrates on the viscoelastic and viscoplastic response of metals and plastics when thermal effects are significant, and the papers here address open questions in these and related areas.
Viscoelastic Properties of Human Tracheal Tissues.
Safshekan, Farzaneh; Tafazzoli-Shadpour, Mohammad; Abdouss, Majid; Shadmehr, Mohammad B
2017-01-01
The physiological performance of trachea is highly dependent on its mechanical behavior, and therefore, the mechanical properties of its components. Mechanical characterization of trachea is key to succeed in new treatments such as tissue engineering, which requires the utilization of scaffolds which are mechanically compatible with the native human trachea. In this study, after isolating human trachea samples from brain-dead cases and proper storage, we assessed the viscoelastic properties of tracheal cartilage, smooth muscle, and connective tissue based on stress relaxation tests (at 5% and 10% strains for cartilage and 20%, 30%, and 40% for smooth muscle and connective tissue). After investigation of viscoelastic linearity, constitutive models including Prony series for linear viscoelasticity and quasi-linear viscoelastic, modified superposition, and Schapery models for nonlinear viscoelasticity were fitted to the experimental data to find the best model for each tissue. We also investigated the effect of age on the viscoelastic behavior of tracheal tissues. Based on the results, all three tissues exhibited a (nonsignificant) decrease in relaxation rate with increasing the strain, indicating viscoelastic nonlinearity which was most evident for cartilage and with the least effect for connective tissue. The three-term Prony model was selected for describing the linear viscoelasticity. Among different models, the modified superposition model was best able to capture the relaxation behavior of the three tracheal components. We observed a general (but not significant) stiffening of tracheal cartilage and connective tissue with aging. No change in the stress relaxation percentage with aging was observed. The results of this study may be useful in the design and fabrication of tracheal tissue engineering scaffolds.
Deng, Bin; Shen, ZhiBin; Duan, JingBo; Tang, GuoJin
2014-05-01
This paper studies the damage-viscoelastic behavior of composite solid propellants of solid rocket motors (SRM). Based on viscoelastic theories and strain equivalent hypothesis in damage mechanics, a three-dimensional (3-D) nonlinear viscoelastic constitutive model incorporating with damage is developed. The resulting viscoelastic constitutive equations are numerically discretized by integration algorithm, and a stress-updating method is presented by solving nonlinear equations according to the Newton-Raphson method. A material subroutine of stress-updating is made up and embedded into commercial code of Abaqus. The material subroutine is validated through typical examples. Our results indicate that the finite element results are in good agreement with the analytical ones and have high accuracy, and the suggested method and designed subroutine are efficient and can be further applied to damage-coupling structural analysis of practical SRM grain.
Radwan, Ahmed F.; Sobhy, Mohammed
2018-06-01
This work presents a nonlocal strain gradient theory for the dynamic deformation response of a single-layered graphene sheet (SLGS) on a viscoelastic foundation and subjected to a time harmonic thermal load for various boundary conditions. Material of graphene sheets is presumed to be orthotropic and viscoelastic. The viscoelastic foundation is modeled as Kelvin-Voigt's pattern. Based on the two-unknown plate theory, the motion equations are obtained from the dynamic version of the virtual work principle. The nonlocal strain gradient theory is established from Eringen nonlocal and strain gradient theories, therefore, it contains two material scale parameters, which are nonlocal parameter and gradient coefficient. These scale parameters have two different effects on the graphene sheets. The obtained deflection is compared with that predicted in the literature. Additional numerical examples are introduced to illustrate the influences of the two length scale coefficients and other parameters on the dynamic deformation of the viscoelastic graphene sheets.
Framework for analyzing hyper-viscoelastic polymers
Trivedi, Akash; Siviour, Clive
2017-06-01
Hyper-viscoelastic polymers have multiple areas of application including aerospace, biomedicine, and automotive. Their mechanical responses are therefore extremely important to understand, particularly because they exhibit strong rate and temperature dependence, including a low temperature brittle transition. Relationships between the response at various strain rates and temperatures are investigated and a framework developed to predict response at rates where experiments are unfeasible. A master curve of the storage modulus's rate dependence at a reference temperature is constructed using a DMA test of the polymer. A frequency sweep spanning two decades and a temperature range from pre-glass transition to pre-melt is used. A fractional derivative model is fitted to the experimental data, and this model's parameters are used to derive stress-strain relationships at a desired strain rate. Finite element simulations with this constitutive model are used for verification with experimental data. This material is based upon work supported by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF under Award No. FA9550-15-1-0448.
Deformation of extreme viscoelastic metals and composites
International Nuclear Information System (INIS)
Wang, Y.C.; Ludwigson, M.; Lakes, R.S.
2004-01-01
The figure of merit for structural damping and damping layer applications is the product of stiffness E and damping tan δ. For most materials, even practical polymer damping layers, E tan δ is less than 0.6 GPa. We consider several methods to achieve high values of this figure of merit: high damping metals, metal matrix composites and composites containing constituents of negative stiffness. As for high damping metals, damping of polycrystalline zinc was determined and compared with InSn studied earlier. Damping of Zn is less dependent on frequency than that of InSn, so Zn is superior at high frequency. High damping and large stiffness anomalies are possible in viscoelastic composites with inclusions of negative stiffness. Negative stiffness entails a reversal of the usual directional relationship between force and displacement in deformed objects. An isolated object with negative stiffness is unstable, but an inclusion embedded in a composite matrix can be stabilized under some circumstances. Ferroelastic domains in the vicinity of a phase transition can exhibit a region of negative stiffness. Metal matrix composites containing vanadium dioxide were prepared and studied. The concentration of embedded particles was sensitive to the processing method
Viscoelastic property tuning for reducing noise radiated by switched-reluctance machines
Millithaler, Pierre; Dupont, Jean-Baptiste; Ouisse, Morvan; Sadoulet-Reboul, Émeline; Bouhaddi, Noureddine
2017-10-01
Switched-reluctance motors (SRM) present major acoustic drawbacks that hinder their use for electric vehicles in spite of widely-acknowledged robustness and low manufacturing costs. Unlike other types of electric machines, a SRM stator is completely encapsulated/potted with a viscoelastic resin. By taking advantage of the high damping capacity that a viscoelastic material has in certain temperature and frequency ranges, this article proposes a tuning methodology for reducing the noise emitted by a SRM in operation. After introducing the aspects the tuning process will focus on, the article details a concrete application consisting in computing representative electromagnetic excitations and then the structural response of the stator including equivalent radiated power levels. An optimised viscoelastic material is determined, with which the peak radiated levels are reduced up to 10 dB in comparison to the initial state. This methodology is implementable for concrete industrial applications as it only relies on common commercial finite-element solvers.
International Nuclear Information System (INIS)
Liu Yaozong; Yu Dianlong; Zhao Honggang; Wen Jihong; Wen Xisen
2008-01-01
Wave propagation in two-dimensional phononic crystals (PCs) with viscoelasticity is investigated using a finite-difference-time-domain (FDTD) method. The viscoelasticity is evaluated using the Kelvin-Voigt model with fractional derivatives (FDs) so that both the dispersion and dissipation are considered. Numerical approximation of FDs is integrated into the FDTD scheme to simulate wave propagation in such PCs. All the constituent materials are treated as isotropic and homogeneous. The gaps are substantially displaced and widened and the attenuation is noticeably enhanced due to the dispersion and dissipation of host material and the complicated multiple scattering between scatterers. These results indicate that the viscoelasticity of the damping host has significant influence on wave propagation in PCs and should be considered
Effect of a viscoelastic target on the impact response of a flat-nosed projectile
Liu, Hu; Yang, Jialing; Liu, Hua
2018-02-01
Taylor impact is a widely used strategy in which a flat-nosed projectile is fired onto a rigid anvil directly to determine the dynamic strength of rod specimens. Nowadays, the rigid anvil is often replaced by an output target bar to ensure the accuracy of measurement via recording strain signals in the output bar. For testing the dynamic strength of low-density materials, a low-impedance target bar, which exhibits viscoelastic characteristics is often employed. In this paper, an extended Taylor model is proposed to improve the idealization of treating the target bar as perfectly rigid material in the classic Taylor model, and the viscoelastic effect of the target bar is incorporated. The viscoelastic target bar is depicted by two elastic springs and one dashpot. Based on the plastic shock wave theory in the flat-nosed projectile associated with the viscoelastic wave analysis in the target bar, the viscoelastic effect of the target bar on the impact response of the flat-nosed projectile is investigated. The finite element simulation is also carried out to verify the theoretical model, and good agreement is found. The present theoretical model is also called the Taylor-cylinder Hopkinson impact, which provides a more accurate way to identify the dynamic material parameters. The dynamic responses of the present model are further compared with previous elastic and rigid target bar models. It is found that the viscoelastic effect of the target bar should be taken into consideration in the Taylor-cylinder Hopkinson impact test for low-impedance materials.
Zhou, Jianyou; Jiang, Liying; Khayat, Roger E.
2018-01-01
Elastomers are known to exhibit viscoelastic behavior under deformation, which is linked to the diffusion processes of the highly mobile and flexible polymer chains. Inspired by the theories of polymer dynamics, a micro-macro constitutive model is developed to study the viscoelastic behaviors and the relaxation process of elastomeric materials under large deformation, in which the material parameters all have a microscopic foundation or a microstructural justification. The proposed model incorporates the nonlinear material viscosity into the continuum finite-deformation viscoelasticity theories which represent the polymer networks of elastomers with an elastic ground network and a few viscous subnetworks. The developed modeling framework is capable of adopting most of strain energy density functions for hyperelastic materials and thermodynamics evolution laws of viscoelastic solids. The modeling capacity of the framework is outlined by comparing the simulation results with the experimental data of three commonly used elastomeric materials, namely, VHB4910, HNBR50 and carbon black (CB) filled elastomers. The comparison shows that the stress responses and some typical behaviors of filled and unfilled elastomers can be quantitatively predicted by the model with suitable strain energy density functions. Particularly, the strain-softening effect of elastomers could be explained by the deformation-dependent (nonlinear) viscosity of the polymer chains. The presented modeling framework is expected to be useful as a modeling platform for further study on the performance of different type of elastomeric materials.
Goodwin, T. J.; McCarthy, M.; Lin, Y-H
2006-01-01
In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.
Directory of Open Access Journals (Sweden)
Feng Chung Wu
2004-12-01
Full Text Available Objetivo: Apresentação do teste biomecânico Energia Total de Ruptura para o estudo da resistência intrínseca de material biológico com propriedade viscoelástica não-linear representado neste trabalho por segmento íntegro de cólon descendente de rato. Métodos: Implementação do teste biomecânico Energia Total de Ruptura e do Sistema de Aquisição e Análise de dados Biomecânicos - SABI 2.0. Para esse fim, foram utilizados conceitos físico-mecânicos, computacionais e biomecânicos e como corpos de teste, 15 espécimes de cólon descendente de ratos. Resultados: O teste biomecânico Energia Total de Ruptura permitiu o cálculo da energia total acumulada necessária para promover a ruptura dos corpos de prova durante os ensaios mecânicos. Por meio da automatização e gerenciamento da aquisição e análise dos dados capturados foi possível a geração de gráficos e relatórios descritivos e estatísticos. Conclusão: Fundamentado em conceitos físico-mecânicos, computacionais e biomecânicos, o teste Energia Total de Ruptura pôde proporcionar análise matemática do comportamento dos segmentos de cólon descendente de ratos durante os ensaios, demonstrando ser um possível método de medição da resistência intrínseca desse material biológico com propriedade viscoelástica não-linear.Purpose: Presentation of the Total Energy of Rupture biomechanical test to evaluate the intrinsic resistance of the rat’s left colon which presents a non-linear viscoelastic property. Methods: Implementation of Total Energy of Rupture test (ETR and the Biomechanical Data Acquisition and Analysis System (SABI 2.0 based on physic-mechanical, computational and biomechanical concepts. Fifteen specimens of Wistar adults rat’s left colon where considered for experiments. Results: Using the TER biomechanical test it was possible calculate the accumulated total energy necessary to promote the specimens rupture during the mechanical trial. It was
Approximation of Viscoelastic Stresses from Newtonian Turbulent Kinematics
1988-09-01
birefringence of polyethylene oxide solutions in a four roll mill. J.Poly.Sci.:Poly.Phys.Ed. 14, 1111-1119. Dandridge, A., Meeten , G.H., Layec-Raphalen, M.N...flows. Poly. Comm. 25, 144-146. Metzner, A.B., & Astarita, G . 1967 External flow of viscoelastic materials: fluid property restrictions on the use of...dumbbell model for dilute solutions. Rheol.Acta 23, 151-162. Philippoff, W. 1956 Flow-birefringence and stress. Nature 178 , 811-812. Ryskin, G . 1987a
Calculation of dynamic stresses in viscoelastic sandwich beams using oma
DEFF Research Database (Denmark)
Pelayo, F.; Aenlle, M. L.; Ismael, G.
2017-01-01
The mechanical response of sandwich elements with viscoelastic core is time and temperature dependent. Laminated glass is a sandwich element where the mechanical behavior of the glass layers is usually considered linear-elastic material whereas the core is made of an amorphous thermoplastic which...... data. In simple structures, analytical mode shapes can be used alternatively to the numerical ones. In this paper, the dynamic stresses on the glass layers of a laminated glass beam have estimated using the experimental acceleration responses measured at 7 points of the beam, and the experimental mode...
Mechanics of the Delayed Fracture of Viscoelastic Bodies with Cracks: Theory and Experiment (Review)
Kaminsky, A. A.
2014-09-01
Theoretical and experimental studies on the deformation and delayed fracture of viscoelastic bodies due to slow subcritical crack growth are reviewed. The focus of this review is on studies of subcritical growth of cracks with well-developed fracture process zones, the conditions that lead to their critical development, and all stages of slow crack growth from initiation to the onset of catastrophic growth. Models, criteria, and methods used to study the delayed fracture of viscoelastic bodies with through and internal cracks are analyzed. Experimental studies of the fracture process zones in polymers using physical and mechanical methods as well as theoretical studies of these zones using fracture mesomechanics models that take into account the structural and rheological features of polymers are reviewed. Particular attention is given to crack growth in anisotropic media, the effect of the aging of viscoelastic materials on their delayed fracture, safe external loads that do not cause cracks to propagate, the mechanism of multiple-flaw fracture of viscoelastic bodies with several cracks and, especially, processes causing cracks to coalesce into a main crack, which may result in a break of the body. Methods and results of solving two- and three-dimensional problems of the mechanics of delayed fracture of aging and non-aging viscoelastic bodies with cracks under constant and variable external loads, wedging, and biaxial loads are given
An Indentation Technique for Nanoscale Dynamic Viscoelastic Measurements at Elevated Temperature
Ye, Jiping
2012-08-01
Determination of nano/micro-scale viscoelasticity is very important to understand the local rheological behavior and degradation phenomena of multifunctional polymer blend materials. This article reviews research results concerning the development of indentation techniques for making nanoscale dynamic viscoelastic measurements at elevated temperature. In the last decade, we have achieved breakthroughs in noise floor reduction in air and thermal load drift/noise reduction at high temperature before taking on the challenge of nanoscale viscoelastic measurements. A high-temperature indentation technique has been developed that facilitates viscoelastic measurements up to 200 °C in air and 500 °C in a vacuum. During the last year, two viscoelastic measurement methods have been developed by making a breakthrough in suppressing the contact area change at high temperature. One is a sharp-pointed time-dependent nanoindentation technique for microscale application and the other is a spherical time-dependent nanoindentation technique for nanoscale application. In the near future, we expect to lower the thermal load drift and load noise floor even more substantially.
Ramo, Nicole L.; Puttlitz, Christian M.
2018-01-01
Compelling evidence that many biological soft tissues display both strain- and time-dependent behavior has led to the development of fully non-linear viscoelastic modeling techniques to represent the tissue’s mechanical response under dynamic conditions. Since the current stress state of a viscoelastic material is dependent on all previous loading events, numerical analyses are complicated by the requirement of computing and storing the stress at each step throughout the load history. This requirement quickly becomes computationally expensive, and in some cases intractable, for finite element models. Therefore, we have developed a strain-dependent numerical integration approach for capturing non-linear viscoelasticity that enables calculation of the current stress from a strain-dependent history state variable stored from the preceding time step only, which improves both fitting efficiency and computational tractability. This methodology was validated based on its ability to recover non-linear viscoelastic coefficients from simulated stress-relaxation (six strain levels) and dynamic cyclic (three frequencies) experimental stress-strain data. The model successfully fit each data set with average errors in recovered coefficients of 0.3% for stress-relaxation fits and 0.1% for cyclic. The results support the use of the presented methodology to develop linear or non-linear viscoelastic models from stress-relaxation or cyclic experimental data of biological soft tissues. PMID:29293558
Three-sphere swimmer in a nonlinear viscoelastic medium
Curtis, Mark P.; Gaffney, Eamonn A.
2013-01-01
are determined analytically in both a Newtonian Stokes fluid and a zero Reynolds number, nonlinear, Oldroyd-B viscoelastic fluid with Deborah numbers of order one (or less), highlighting the effects of viscoelasticity on the net displacement of swimmer
Parametric imaging of viscoelasticity using optical coherence elastography
Wijesinghe, Philip; McLaughlin, Robert A.; Sampson, David D.; Kennedy, Brendan F.
2015-03-01
We demonstrate imaging of soft tissue viscoelasticity using optical coherence elastography. Viscoelastic creep deformation is induced in tissue using step-like compressive loading and the resulting time-varying deformation is measured using phase-sensitive optical coherence tomography. From a series of co-located B-scans, we estimate the local strain rate as a function of time, and parameterize it using a four-parameter Kelvin-Voigt model of viscoelastic creep. The estimated viscoelastic strain and time constant are used to visualize viscoelastic creep in 2D, dual-parameter viscoelastograms. We demonstrate our technique on six silicone tissue-simulating phantoms spanning a range of viscoelastic parameters. As an example in soft tissue, we report viscoelastic contrast between muscle and connective tissue in fresh, ex vivo rat gastrocnemius muscle and mouse abdominal transection. Imaging viscoelastic creep deformation has the potential to provide complementary contrast to existing imaging modalities, and may provide greater insight into disease pathology.
The dynamic deformation of a layered viscoelastic medium under surface excitation
International Nuclear Information System (INIS)
Aglyamov, Salavat R; Karpiouk, Andrei B; Emelianov, Stanislav Y; Wang, Shang; Li, Jiasong; Larin, Kirill V; Twa, Michael
2015-01-01
In this study the dynamic behavior of a layered viscoelastic medium in response to the harmonic and impulsive acoustic radiation force applied to its surface was investigated both theoretically and experimentally. An analytical solution for a layered viscoelastic compressible medium in frequency and time domains was obtained using the Hankel transform. A special incompressible case was considered to model soft biological tissues. To verify our theoretical model, experiments were performed using tissue-like gel-based phantoms with varying mechanical properties. A 3.5 MHz single-element focused ultrasound transducer was used to apply the radiation force at the surface of the phantoms. A phase-sensitive optical coherence tomography system was used to track the displacements of the phantom surface. Theoretically predicted displacements were compared with experimental measurements. The role of the depth dependence of the elastic properties of a medium in its response to an acoustic pulse at the surface was studied. It was shown that the low-frequency vibrations at the surface are more sensitive to the deep layers than high-frequency ones. Therefore, the proposed model in combination with spectral analysis can be used to evaluate depth-dependent distribution of the mechanical properties based on the measurements of the surface deformation. (paper)
Dabiri, Arman; Butcher, Eric A.; Nazari, Morad
2017-02-01
Compliant impacts can be modeled using linear viscoelastic constitutive models. While such impact models for realistic viscoelastic materials using integer order derivatives of force and displacement usually require a large number of parameters, compliant impact models obtained using fractional calculus, however, can be advantageous since such models use fewer parameters and successfully capture the hereditary property. In this paper, we introduce the fractional Chebyshev collocation (FCC) method as an approximation tool for numerical simulation of several linear fractional viscoelastic compliant impact models in which the overall coefficient of restitution for the impact is studied as a function of the fractional model parameters for the first time. Other relevant impact characteristics such as hysteresis curves, impact force gradient, penetration and separation depths are also studied.
International Nuclear Information System (INIS)
Sun Hongxiang; Zhang Shuyi; Xu Baiqiang
2011-01-01
Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coating on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.
Stress-based viscoelastic master curve construction of model tire tread compounds
Maghami, S.; Dierkes, W.; Noordermeer, J.W.M.; Tolpekina, T.; Schultz, S.; Gögelein, C.; Wrana, C.; Gil-Negrete, Nere; Asier, Alonso
2013-01-01
One of the important aspects in the development of new tire compounds is the correlation between the dynamic mechanical properties of the rubber, measured on laboratory scale, and the actual tire performance. In order to predict wet traction, the viscoelastic behavior of the rubber materials at high
Hong, Xiaowei; Stegemann, Jan P; Deng, Cheri X
2016-05-01
Characterization of the microscale mechanical properties of biomaterials is a key challenge in the field of mechanobiology. Dual-mode ultrasound elastography (DUE) uses high frequency focused ultrasound to induce compression in a sample, combined with interleaved ultrasound imaging to measure the resulting deformation. This technique can be used to non-invasively perform creep testing on hydrogel biomaterials to characterize their viscoelastic properties. DUE was applied to a range of hydrogel constructs consisting of either hydroxyapatite (HA)-doped agarose, HA-collagen, HA-fibrin, or preosteoblast-seeded collagen constructs. DUE provided spatial and temporal mapping of local and bulk displacements and strains at high resolution. Hydrogel materials exhibited characteristic creep behavior, and the maximum strain and residual strain were both material- and concentration-dependent. Burger's viscoelastic model was used to extract characteristic parameters describing material behavior. Increased protein concentration resulted in greater stiffness and viscosity, but did not affect the viscoelastic time constant of acellular constructs. Collagen constructs exhibited significantly higher modulus and viscosity than fibrin constructs. Cell-seeded collagen constructs became stiffer with altered mechanical behavior as they developed over time. Importantly, DUE also provides insight into the spatial variation of viscoelastic properties at sub-millimeter resolution, allowing interrogation of the interior of constructs. DUE presents a novel technique for non-invasively characterizing hydrogel materials at the microscale, and therefore may have unique utility in the study of mechanobiology and the characterization of hydrogel biomaterials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nonlinear Viscoelastic Mechanism for Aftershock Triggering and Decay
Shcherbakov, R.; Zhang, X.
2016-12-01
Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. They also occur in other natural or experimental systems, for example, in solar flares, in fracture experiments on porous materials and acoustic emissions, after stock market crashes, in the volatility of stock prices returns, in internet traffic variability and e-mail spamming, to mention a few. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle control the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and
Viscosity bound violation in holographic solids and the viscoelastic response
Energy Technology Data Exchange (ETDEWEB)
Alberte, Lasma [Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, 34151, Trieste (Italy); Baggioli, Matteo [Institut de Física d’Altes Energies (IFAE),The Barcelona Institute of Science and Technology (BIST),Campus UAB, 08193 Bellaterra, Barcelona (Spain); Department of Physics, Institute for Condensed Matter Theory, University of Illinois,1110 W. Green Street, Urbana, IL 61801 (United States); Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE),The Barcelona Institute of Science and Technology (BIST),Campus UAB, 08193 Bellaterra, Barcelona (Spain)
2016-07-14
We argue that the Kovtun-Son-Starinets (KSS) lower bound on the viscosity to entropy density ratio holds in fluid systems but is violated in solid materials with a non-zero shear elastic modulus. We construct explicit examples of this by applying the standard gauge/gravity duality methods to massive gravity and show that the KSS bound is clearly violated in black brane solutions whenever the massive gravity theories are of solid type. We argue that the physical reason for the bound violation relies on the viscoelastic nature of the mechanical response in these materials. We speculate on whether any real-world materials can violate the bound and discuss a possible generalization of the bound that involves the ratio of the shear elastic modulus to the pressure.
Viscosity bound violation in holographic solids and the viscoelastic response
International Nuclear Information System (INIS)
Alberte, Lasma; Baggioli, Matteo; Pujolàs, Oriol
2016-01-01
We argue that the Kovtun-Son-Starinets (KSS) lower bound on the viscosity to entropy density ratio holds in fluid systems but is violated in solid materials with a non-zero shear elastic modulus. We construct explicit examples of this by applying the standard gauge/gravity duality methods to massive gravity and show that the KSS bound is clearly violated in black brane solutions whenever the massive gravity theories are of solid type. We argue that the physical reason for the bound violation relies on the viscoelastic nature of the mechanical response in these materials. We speculate on whether any real-world materials can violate the bound and discuss a possible generalization of the bound that involves the ratio of the shear elastic modulus to the pressure.
Khan, Kamran
2012-11-09
We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.
Energy Technology Data Exchange (ETDEWEB)
Cochrane, Alexander P. [Aerospace Engineering Department, University of Glasgow, University Avenue, Glasgow, Lanarkshire (United Kingdom); Merrett, Craig G. [Mechanical and Aerospace Engineering Department, Carleton Univ., 1125 Col. By Dr., Ottawa, ON (Canada); Hilton, Harry H. [Aerospace Engineering Department in the College of Engineering and Private Sector Program Division at the National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 104 South Wright Street, Urbana, IL 61801 (United States)
2014-12-10
The advent of new structural concepts employing composites in primary load carrying aerospace structures in UAVs, MAVs, Boeing 787s, Airbus A380s, etc., necessitates the inclusion of flexibility as well as viscoelasticity in static structural and aero-viscoelastic analyses. Differences and similarities between aeroelasticity and aero-viscoelasticity have been investigated in [2]. An investigation is undertaken as to the dependence and sensitivity of aerodynamic and stability derivatives to elastic and viscoelastic structural flexibility and as to time dependent flight and maneuver velocities. Longitudinal, lateral and directional stabilities are investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings one of the critical static parameters is the velocity at which control reversal takes place (V{sub REV}{sup E}). Since elastic formulations constitute viscoelastic initial conditions, viscoelastic reversal may occur at speeds V{sub REV<}{sup ≧}V{sub REV}{sup E}, but furthermore does so in time at 0 < t{sub REV} ≤ ∞. The influence of the twin effects of viscoelastic and elastic materials and of variable flight velocities on longitudinal, lateral, directional and spin stabilities are also investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are here extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings the critical parameter is the velocity at
International Nuclear Information System (INIS)
Cochrane, Alexander P.; Merrett, Craig G.; Hilton, Harry H.
2014-01-01
The advent of new structural concepts employing composites in primary load carrying aerospace structures in UAVs, MAVs, Boeing 787s, Airbus A380s, etc., necessitates the inclusion of flexibility as well as viscoelasticity in static structural and aero-viscoelastic analyses. Differences and similarities between aeroelasticity and aero-viscoelasticity have been investigated in [2]. An investigation is undertaken as to the dependence and sensitivity of aerodynamic and stability derivatives to elastic and viscoelastic structural flexibility and as to time dependent flight and maneuver velocities. Longitudinal, lateral and directional stabilities are investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings one of the critical static parameters is the velocity at which control reversal takes place (V REV E ). Since elastic formulations constitute viscoelastic initial conditions, viscoelastic reversal may occur at speeds V REV< ≧ V REV E , but furthermore does so in time at 0 < t REV ≤ ∞. The influence of the twin effects of viscoelastic and elastic materials and of variable flight velocities on longitudinal, lateral, directional and spin stabilities are also investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are here extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings the critical parameter is the velocity at which control reversal takes place
Linear viscoelastic properties of aging suspensions
Purnomo, E.H.; Purnomo, E.H; van den Ende, Henricus T.M.; Mellema, J.; Mugele, Friedrich Gunther
2006-01-01
We have examined the linear viscoelastic behavior of poly-N-isopropylacrylamide (PNIPAM) microgel suspensions in order to obtain insight in the aging processes in these densely packed suspensions at various temperatures below the volume transition temperature. The system is found to display a strong
Viscoelastic Pavement Modeling with a Spreadsheet
DEFF Research Database (Denmark)
Levenberg, Eyal
2016-01-01
The aim herein was to equip civil engineers and students with an advanced pavement modeling tool that is both easy to use and highly adaptive. To achieve this, a mathematical solution for a layered viscoelastic half-space subjected to a moving load was developed and subsequently implemented...
experimental viscoelastic characterization of corn cob composites ...
African Journals Online (AJOL)
Dr Obe
sufficient to represent the viscoelastic behavior of the corn cob. The effect of moisture content and rates of loading on the mechanical model determined were investigated. 1. ..... F = applied force or residual force σ. = contact stress .... J. Agric. Engineering. Res. 7(4):. 300-315. Journal of the British Society for. Research in ...
Viscoelastic behavior of discrete human collagen fibrils
DEFF Research Database (Denmark)
Svensson, Rene; Hassenkam, Tue; P, Hansen
2010-01-01
Whole tendon and fibril bundles display viscoelastic behavior, but to the best of our knowledge this property has not been directly measured in single human tendon fibrils. In the present work an atomic force microscopy (AFM) approach was used for tensile testing of two human patellar tendon fibr...
Viscoelastic fingering with a pulsed pressure signal
International Nuclear Information System (INIS)
Corvera Poire, E; Rio, J A del
2004-01-01
We derive a generalized Darcy's law in the frequency domain for a linear viscoelastic fluid flowing in a Hele-Shaw cell. This leads to an analytic expression for the dynamic permeability that has maxima which are several orders of magnitude larger than the static permeability. We then follow an argument of de Gennes (1987 Europhys. Lett. 2 195) to obtain the smallest possible finger width when viscoelasticity is important. Using this and a conservation law, we obtain the lowest bound for the width of a single finger displacing a viscoelastic fluid. When the driving force consists of a constant pressure gradient plus an oscillatory signal, our results indicate that the finger width varies in time following the frequency of the incident signal. Also, the amplitude of the finger width in time depends on the value of the dynamic permeability at the imposed frequency. When the finger is driven with a frequency that maximizes the permeability, variations in the amplitude are also maximized. This gives results that are very different for Newtonian and viscoelastic fluids. For the former ones the amplitude of the oscillation decays with frequency. For the latter ones on the other hand, the amplitude has maxima at the same frequencies that maximize the dynamic permeability
On viscoelastic instability in polymeric filaments
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Hassager, Ole
1999-01-01
The 3D Lagrangian Integral Method is used to simulate the effects of surface tension on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates. It is shovn that the surface tension delays the onset of the instability. Furthermore...
Isolation of nanoscale exosomes using viscoelastic effect
Hu, Guoqing; Liu, Chao
2017-11-01
Exosomes, molecular cargos secreted by almost all mammalian cells, are considered as promising biomarkers to identify many diseases including cancers. However, the small size of exosomes (30-200 nm) poses serious challenges on their isolation from the complex media containing a variety of extracellular vesicles (EVs) of different sizes, especially in small sample volumes. Here we develop a viscoelasticity-based microfluidic system to directly separate exosomes from cell culture media or serum in a continuous, size-dependent, and label-free manner. Using a small amount of biocompatible polymer as the additive into the media to control the viscoelastic forces exerted on EVs, we are able to achieve a high separation purity (>90%) and recovery (>80%) of exosomes. The size cutoff in viscoelasticity-based microfluidics can be easily controlled using different PEO concentrations. Based on this size-dependent viscoelastic separation strategy, we envision the handling of diverse nanoscale objects, such as gold nanoparticles, DNA origami structures, and quantum dots. This work was supported financially by National Natural Science Foundation of China (11572334, 91543125).
Viscoelasticity promotes collective swimming of sperm
Tung, Chih-Kuan; Harvey, Benedict B.; Fiore, Alyssa G.; Ardon, Florencia; Suarez, Susan S.; Wu, Mingming
From flocking birds to swarming insects, interactions of organisms large and small lead to the emergence of collective dynamics. Here, we report striking collective swimming of bovine sperm, with sperm orienting in the same direction within each cluster, enabled by the viscoelasticity of the fluid. A long-chain polyacrylamide solution was used as a model viscoelastic fluid such that its rheology can be fine-tuned to mimic that of bovine cervical mucus. In viscoelastic fluid, sperm formed dynamic clusters, and the cluster size increased with elasticity of the polyacrylamide solution. In contrast, sperm swam randomly and individually in Newtonian fluids of similar viscosity. Analysis of the fluid motion surrounding individual swimming sperm indicated that sperm-fluid interaction is facilitated by the elastic component of the fluid. We note that almost all biological fluids (e.g. mucus and blood) are viscoelastic in nature, this finding highlights the importance of fluid elasticity in biological function. We will discuss what the orientation fluctuation within a cluster reveals about the interaction strength. Supported by NIH Grant 1R01HD070038.
Changes in protein solubility, fermentative capacity, viscoelasticity ...
African Journals Online (AJOL)
Frozen dough should be stored for fewer than 21 days; time in which the loaf volume of bread made from frozen dough was approximately 40.84% smaller than that of fresh bread dough formulation. Keywords: French type bread, frozen dough, protein solubility, baking quality, viscoelasticity. African Journal of Biotechnology ...
DYNAMIC DEFORMATION THE VISCOELASTIC TWOCOMPONENT MEDIUM
Directory of Open Access Journals (Sweden)
V. S. Polenov
2015-01-01
Full Text Available Summary. In the article are scope harmonious warping of the two-component medium, one component which are represent viscoelastic medium, hereditary properties which are described by the kernel aftereffect Abel integral-differential ratio BoltzmannVolterr, while second – compressible liquid. Do a study one-dimensional case. Use motion equation of two-component medium at movement. Look determination system these equalization in the form of damped wave. Introduce dimensionless coefficient. Combined equations happen to homogeneous system with complex factor relatively waves amplitude in viscoelastic component and in fluid. As a result opening system determinant receive biquadratic equation. Elastic operator express through kernel aftereffect Abel for space Fourier. With the help transformation and symbol series biquadratic equation reduce to quadratic equation. Come to the conclusion that in two-component viscoelastic medium exist two mode sonic waves. As a result solution of quadratic equation be found description advance of waves sonic in viscoelastic two-component medium, which physical-mechanical properties represent complex parameter. Velocity determination advance of sonic waves, attenuation coefficient, mechanical loss tangent, depending on characteristic porous medium and circular frequency formulas receive. Graph dependences of description advance of waves sonic from the temperature logarithm and with the fractional parameter γ are constructed.
Viscoelastic properties of cellular polypropylene ferroelectrets
Czech Academy of Sciences Publication Activity Database
Gaal, M.; Bovtun, Viktor; Stark, W.; Erhard, A.; Yakymenko, Y.; Kreutzbruck, M.
2016-01-01
Roč. 119, č. 12 (2016), s. 1-12, č. článku 125101. ISSN 0021-8979 R&D Projects: GA ČR GA15-08389S Institutional support: RVO:68378271 Keywords : ferroelectrets * viscoelastic properties * ultrasonic Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.068, year: 2016
Experimental Viscoelastic Characterization of Corn Cob Composited ...
African Journals Online (AJOL)
The nature of viscoelasticity in biomateria1s and the techniques for characterizing their rheological properties were reviewed. Relaxation tests were performed with cylindrical samples of corn cob composites which were initially subjected to radial compression. It was found that a Maxwell model composed of two simple ...
DEFF Research Database (Denmark)
Ojanen, X.; Tanska, P.; Malo, M. K.H.
2017-01-01
Trabecular bone is viscoelastic under dynamic loading. However, it is unclear how tissue viscoelasticity controls viscoelasticity at the apparent-level. In this study, viscoelasticity of cylindrical human trabecular bone samples (n = 11, male, age 18–78 years) from 11 proximal femurs were charact......). These findings indicate that bone tissue viscoelasticity is affected by tissue composition but may not fully predict the macroscale viscoelasticity in human trabecular bone....
Viscoelastic gravel-pack carrier fluid
International Nuclear Information System (INIS)
Nehmer, W.L.
1988-01-01
The ability of a fluid to flow adequately into the formation during gravel-pack treatments is critical to achieving a good pack. Recent studies have indicated ''fish-eyes'' and/or ''microgels'' present in many polymer gelled carrier fluids will plug pore throats, leading to impaired leakoff and causing formation damage. Intensive manipulation of the polymer gelled fluid using shear and filter devices will help remove the particles, but it adds to the cost of the treatment in terms of equipment and manpower. Excessive shear will degrade the polymer leading to poor gravel suspension, while too little shear will cause filtration problems. A gelled carried fluid using a viscoelastic surfactant system has been found to leak off very efficiently to the formation, and cause no formation damage, without the use of shear/filter devices. Viscoelastic surfactant-base gelled fluids develop viscosity because of the association of surfactant moloecules into large rod-shaped aggregates. There is no hydration of polymer involved, so fish-eyes and microgels will not be formed in the viscoelastic fluid. A surfactant-base system having a yield point allows the gravel carrying properties to be much better than fluids gelled with conventional polymer systems (hydroxyethylcellulose [HEC]). For example, a gravel carried fluid gelled with 80 lb HEC/1,000 gal has a viscosity of about 400 cp at 170 sec/sup -1/; a viscoelastic surfactant-base system having only one-half the viscosity still flows into cores about four times more efficiently than the HEC-base fluid. The rheology, leakoff, formation damage and mixing properties of a viscoelastic, surfactant-base, gravel-pack carrier fluid are discussed
Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam
2017-08-01
Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.
Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids
Alonso, Sergio; Radszuweit, Markus; Engel, Harald; Bär, Markus
2017-11-01
The cytoskeleton of the organism Physarum polycephalum is a prominent example of a complex active viscoelastic material wherein stresses induce flows along the organism as a result of the action of molecular motors and their regulation by calcium ions. Experiments in Physarum polycephalum have revealed a rich variety of mechanochemical patterns including standing, traveling and rotating waves that arise from instabilities of spatially homogeneous states without gradients in stresses and resulting flows. Herein, we investigate simple models where an active stress induced by molecular motors is coupled to a model describing the passive viscoelastic properties of the cellular material. Specifically, two models for viscoelastic fluids (Maxwell and Jeffrey model) and two models for viscoelastic solids (Kelvin-Voigt and Standard model) are investigated. Our focus is on the analysis of the conditions that cause destabilization of spatially homogeneous states and the related onset of mechano-chemical waves and patterns. We carry out linear stability analyses and numerical simulations in one spatial dimension for different models. In general, sufficiently strong activity leads to waves and patterns. The primary instability is stationary for all active fluids considered, whereas all active solids have an oscillatory primary instability. All instabilities found are of long-wavelength nature reflecting the conservation of the total calcium concentration in the models studied.
Propagation of cracks and damage in non aging linear viscoelastic media
International Nuclear Information System (INIS)
Nguyen, S.T.
2010-01-01
Most of France's energy is nuclear. The reactor building comprises a internal and external containment. The internal containment is prestressed to limit the flow of leakage in the internal-external space. The prestress decreases during time by the creep of concrete. It may propagate the cracks by the accidental internal pressure. So we define two research problems: propagation of macro-cracks in viscoelastic structure; effective behavior of micro-cracked viscoelastic material. Firstly, we develop a Burger viscoelastic model of concrete with two approaches: numerical and analytical. Then we solve the problem of single cracks in developing thermodynamically the concept of energy release rate. In the third part we develop a viscoelastic model to study the effective behavior of micro-cracked materials in the case without propagation. The problem of propagation of microcracks is then studied by a numerical approach based on the 'representative pattern morphology'. These studies are finally applied to solve the problems of crack propagation and damage of containment under accidental internal pressure. (authors)
On the viscoelastic characterization of the Jeffreys-Lomnitz law of creep
Mainardi, Francesco; Spada, Giorgio
2011-01-01
In 1958 Jeffreys proposed a power law of creep, generalizing the logarithmic law earlier introduced by Lomnitz, to broaden the geophysical applications to fluid-like materials including igneous rocks. This generalized law, however, can be applied also to solid-like viscoelastic materials. We revisit the Jeffreys-Lomnitz law of creep by allowing its power law exponent $\\alpha$, usually limited to the range [0,1] to all negative values. This is consistent with the linear theory of viscoelastici...
Continuum mechanics elasticity, plasticity, viscoelasticity
Dill, Ellis H
2006-01-01
FUNDAMENTALS OF CONTINUUM MECHANICSMaterial ModelsClassical Space-TimeMaterial BodiesStrainRate of StrainCurvilinear Coordinate SystemsConservation of MassBalance of MomentumBalance of EnergyConstitutive EquationsThermodynamic DissipationObjectivity: Invariance for Rigid MotionsColeman-Mizel ModelFluid MechanicsProblems for Chapter 1BibliographyNONLINEAR ELASTICITYThermoelasticityMaterial SymmetriesIsotropic MaterialsIncompressible MaterialsConjugate Measures of Stress and StrainSome Symmetry GroupsRate Formulations for Elastic MaterialsEnergy PrinciplesGeometry of Small DeformationsLinear ElasticitySpecial Constitutive Models for Isotropic MaterialsMechanical Restrictions on the Constitutive RelationsProblems for Chapter 2BibliographyLINEAR ELASTICITYBasic EquationsPlane StrainPlane StressProperties of SolutionsPotential EnergySpecial Matrix NotationThe Finite Element Method of SolutionGeneral Equations for an Assembly of ElementsFinite Element Analysis for Large DeformationsProblems for Chapter 3Bibliograph...
Stress wave propagation in linear viscoelasticity
International Nuclear Information System (INIS)
Asada, Kazuo; Fukuoka, Hidekazu.
1992-01-01
Decreasing characteristics of both stress and stress gradient with propagation distance at a 2-dimensional linear viscoelasticity wavefront are derived by using our 3-dimensional theoretical equation for particle velocity discontinuities. By finite-element method code DYNA3D, stress at a noncurvature dilatation wavefront of linear viscoelasticity is shown to decrease exponentially. This result is in good accordance with our theory. By dynamic photoelasticity experiment, stress gradients of urethane rubber plates at 3 types of wavefronts are shown to decrease exponentially at a noncurvature wavefront and are shown to be a decreasing function of (1/√R) exp (α 1 2 /(2α 0 3 ξ)) at a curvature wavefront. These experiment results are in good accordance with our theory. (author)
Effect of long-time immersion of soft denture liners in water on viscoelastic properties.
Iwasaki, Naohiko; Yamaki, Chisato; Takahashi, Hidekazu; Oki, Meiko; Suzuki, Tetsuya
2017-09-26
Aim of this study was to investigate the effect of long-time immersion of soft denture liners in 37°C water on viscoelastic properties. Six silicone-based and two acrylic resin-based soft denture liners were selected. Cylindrical specimens were stored in distilled water at 37°C for 6 months. Viscoelastic properties, which were instantaneous and delayed elastic displacements, viscous flow, and residual displacement, were determined using a creep meter, and analyzed with 2-way analysis of variance and Tukey's comparison (α=0.05). Viscoelastic properties and their time-dependent changes were varied among materials examined. The observed viscoelastic properties of three from six silicone-based liners did not significantly change after 6-month immersion, but those of two acrylic resin-based liners significantly changed with the increase of immersion time. However, the sum of initial instantaneous elastic displacement and delayed elastic displacement of two acrylic resin-based liners during 6-month immersion changed less than 10%, which might indicate clinically sufficient elastic performance.
Finite element formulation of viscoelastic sandwich beams using fractional derivative operators
Galucio, A. C.; Deü, J.-F.; Ohayon, R.
This paper presents a finite element formulation for transient dynamic analysis of sandwich beams with embedded viscoelastic material using fractional derivative constitutive equations. The sandwich configuration is composed of a viscoelastic core (based on Timoshenko theory) sandwiched between elastic faces (based on Euler-Bernoulli assumptions). The viscoelastic model used to describe the behavior of the core is a four-parameter fractional derivative model. Concerning the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. Curve-fitting aspects are focused, showing a good agreement with experimental data. In order to implement the viscoelastic model into the finite element formulation, the Grünwald definition of the fractional operator is employed. To solve the equation of motion, a direct time integration method based on the implicit Newmark scheme is used. One of the particularities of the proposed algorithm lies in the storage of displacement history only, reducing considerably the numerical efforts related to the non-locality of fractional operators. After validations, numerical applications are presented in order to analyze truncation effects (fading memory phenomena) and solution convergence aspects.
Properties of Love waves in a piezoelectric layered structure with a viscoelastic guiding layer
International Nuclear Information System (INIS)
Liu, Jiansheng; Wang, Lijun; Lu, Yanyan; He, Shitang
2013-01-01
A theoretical method is developed for analyzing Love waves in a structure with a viscoelastic guiding layer bounded on a piezoelectric substrate. The dispersion equation previously derived for piezoelectric Love waves propagating in the layered structure with an elastic layer is adopted for analyzing a structure with a viscoelastic layer. A Maxwell–Weichert model is introduced to describe the shear stiffness of a polymeric material. Newton’s method is employed for the numerical calculation. The dispersion equation for piezoelectric–elastic Love waves is proved suitable for solving a structure with a viscoelastic layer on a piezoelectric substrate. The theoretical results indicate that the propagation velocity of the Love wave is mainly decided by the shear stiffness of the guiding layer, whereas the propagation loss is approximately proportional to its viscosity. A detailed experimental study was conducted on a Love wave delay line fabricated on an ST-90° X quartz substrate and overlaid with various thicknesses of SU-8 guiding layers. A tail-raising caused by the viscosity of the guiding layer existed in both the calculated and the measured propagation velocities. The calculated insertion loss of the Love wave delay lines was in good agreement with the measured results. The method and the results presented in this paper are beneficial to the design of Love wave sensors with a viscoelastic guiding layer. (paper)
Quasistatic nonlinear viscoelasticity and gradient flows
Ball, John M.; Şengül, Yasemin
2014-01-01
We consider the equation of motion for one-dimensional nonlinear viscoelasticity of strain-rate type under the assumption that the stored-energy function is λ-convex, which allows for solid phase transformations. We formulate this problem as a gradient flow, leading to existence and uniqueness of solutions. By approximating general initial data by those in which the deformation gradient takes only finitely many values, we show that under suitable hypotheses on the stored-energy function the d...
Viscoelastic creep of high-temperature concrete
International Nuclear Information System (INIS)
Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.
1985-01-01
Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme
DEFF Research Database (Denmark)
Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard
2014-01-01
-placements, internal diameter and thickness of the rings are measured during the tests. Viscoelastic andstructural relaxation behaviour of the glass are implemented into the ABAQUS FEM software through aFORTRAN material subroutine (UMAT) and the FE model is validated with a sandwich seal test. Then, byFE simulation...... of the ring compression test and comparison of the experimental creep with the simulatedone in an iterative procedure, viscoelastic parameters of the glass material are characterized. Finally,interfacial glass/mould friction coefficients at different temperatures are determined through FEM basedfriction...... curves combined with experimental data points. The obtained viscoelastic parameters and inter-facial friction coefficients can later be employed for prediction of the final shape/size as well as the stressdistribution in the glass wafer during a real wafer based precision glass moulding process. © 2014...
Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions
Turkoz, Emre; Perazzo, Antonio; Arnold, Craig B.; Stone, Howard A.
2018-05-01
The addition of small amounts of xanthan gum to water yields viscoelastic solutions. In this letter, we show that the viscoelasticity of aqueous xanthan gum solutions can be tuned by different types of salts. In particular, we find that the decrease in viscoelasticity not only depends, as is known, on the salt concentration, but also is affected by the counterion ionic radius and the valence of the salt.
A frictional contact problem for an electro-viscoelastic body
Directory of Open Access Journals (Sweden)
Mircea Sofonea
2007-12-01
Full Text Available A mathematical model which describes the quasistatic frictional contact between a piezoelectric body and a deformable conductive foundation is studied. A nonlinear electro-viscoelastic constitutive law is used to model the piezoelectric material. Contact is described with the normal compliance condition, a version of Coulomb's law of dry friction, and a regularized electrical conductivity condition. A variational formulation of the model, in the form of a coupled system for the displacements and the electric potential, is derived. The existence of a unique weak solution of the model is established under a smallness assumption on the surface conductance. The proof is based on arguments of evolutionary variational inequalities and fixed points of operators.
Creep test observation of viscoelastic failure of edible fats
Energy Technology Data Exchange (ETDEWEB)
Vithanage, C R; Grimson, M J; Wills, P R [Department of Physics, University of Auckland, Private Bag 92019 (New Zealand); Smith, B G, E-mail: cvit002@aucklanduni.ac.nz [Food Science Programmes, Department of Chemistry, University of Auckland, Private Bag 92019 (New Zealand)
2011-03-01
A rheological creep test was used to investigate the viscoelastic failure of five edible fats. Butter, spreadable blend and spread were selected as edible fats because they belong to three different groups according to the Codex Alimentarius. Creep curves were analysed according to the Burger model. Results were fitted to a Weibull distribution representing the strain-dependent lifetime of putative fibres in the material. The Weibull shape and scale (lifetime) parameters were estimated for each substance. A comparison of the rheometric measurements of edible fats demonstrated a clear difference between the three different groups. Taken together the results indicate that butter has a lower threshold for mechanical failure than spreadable blend and spread. The observed behaviour of edible fats can be interpreted using a model in which there are two types of bonds between fat crystals; primary bonds that are strong and break irreversibly, and secondary bonds, which are weaker but break and reform reversibly.
Interaction and deformation of viscoelastic particles: Nonadhesive particles
International Nuclear Information System (INIS)
Attard, Phil
2001-01-01
A viscoelastic theory is formulated for the deformation of particles that interact with finite-ranged surface forces. The theory generalizes the static approach based upon classic continuum elasticity theory to account for time-dependent effects, and goes beyond contact theories such as Hertz and that given by Johnson, Kendall, and Roberts by including realistic surface interactions. Common devices used to measure load and deformation are modeled and the theory takes into account the driving velocity of the apparatus and the relaxation time of the material. Nonadhesive particles are modeled by an electric double layer repulsion. Triangular, step, and sinusoidal trajectories are analyzed in a unified treatment of loading and unloading. The load-deformation and the load-contact area curves are shown to be velocity dependent and hysteretic
The viscoelastic properties of the cervical mucus plug
DEFF Research Database (Denmark)
Kjær Bastholm, Sara; Becher, Naja; Stubbe, Peter Reimer
2013-01-01
The objective of this study was to characterize the viscoelastic properties of cervical mucus plugs (CMPs) shed during labor at term. Spontaneously shed cervical mucus plugs from healthy women in active labor, were tested. The viscoelastic properties of cervical mucus plugs were investigated...... with using frequency and stress sweep experiments within the linear viscoelastic region. Random-effects regression was used for statistical analysis. The CMPs are solid-like viscoelastic structures and the elastic modulus dominated the viscous modulus at all frequencies. These rheological characteristics...
Merrett, Craig G.
Modern flight vehicles are fabricated from composite materials resulting in flexible structures that behave differently from the more traditional elastic metal structures. Composite materials offer a number of advantages compared to metals, such as improved strength to mass ratio, and intentional material property anisotropy. Flexible aircraft structures date from the Wright brothers' first aircraft with fabric covered wooden frames. The flexibility of the structure was used to warp the lifting surface for flight control, a concept that has reappeared as aircraft morphing. These early structures occasionally exhibited undesirable characteristics during flight such as interactions between the empennage and the aft fuselage, or control problems with the elevators. The research to discover the cause and correction of these undesirable characteristics formed the first foray into the field of aeroelasticity. Aeroelasticity is the intersection and interaction between aerodynamics, elasticity, and inertia or dynamics. Aeroelasticity is well suited for metal aircraft, but requires expansion to improve its applicability to composite vehicles. The first is a change from elasticity to viscoelasticity to more accurately capture the solid mechanics of the composite material. The second change is to include control systems. While the inclusion of control systems in aeroelasticity lead to aero-servo-elasticity, more control possibilities exist for a viscoelastic composite material. As an example, during the lay-up of carbon-epoxy plies, piezoelectric control patches are inserted between different plies to give a variety of control options. The expanded field is called aero-servo-viscoelasticity. The phenomena of interest in aero-servo-viscoelasticity are best classified according to the type of structure considered, either a lifting surface or a panel, and the type of dynamic stability present. For both types of structures, the governing equations are integral
Nonlinear viscoelastic behavior of shells of revolution under arbitrary loading
International Nuclear Information System (INIS)
Leonard, J.W.; Arbaki-Kanjoori, F.
1975-01-01
The requirement of some structural components such as propulsion systems and gas turbines to operate at high temperatures and pressures make the accurate evaluation of the creep phenomenon exigent (in fast breeder reactor for example). For the expected increases in operating temperatures and pressures, it becomes necessary to perform a thorough analysis of integral structural components of nuclear power plants throughout their life span. Since a large class of structures operating at elevated temperatures are composed of rotationally symmetric shells, a solution technique can be developed which involves the numerical integration of the governing shell equations. This method has been successfully applied to the static and dynamic analysis of thin elastic shells of revolution and for some cases of inelastic material behavior. It has been shown to render solutions efficiently and accurately, usually with only a fraction of computer time and storage requirements and data manipulation that is required for other numerical schemes such as the finite element method. Furthermore, the numerical integration method allows more flexibility for varying the integration step lengths than does the finite difference method and can provide uniform accuracy throughout the analysis. For nonlinear viscoelastic behavior the numerical integration technique is expected to provide similar efficiency to that obtained for the elastic problems. The computer program developed can accept time variation of material properties. Since a single form for the material constitutive law cannot encompass all materials, provisions are made so that the analysis of a very large class of material behavior can be accomplished
Li, Jing; Zhu, Zhiren; Fang, Lichen; Guo, Shu; Erturun, Ugur; Zhu, Zeyu; West, James E; Ghosh, Somnath; Kang, Sung Hoon
2017-09-28
Piezoelectric composite (p-NC) made of a polymeric matrix and piezoelectric nanoparticles with conductive additives is an attractive material for many applications. As the matrix of p-NC is made of viscoelastic materials, both elastic and viscous characteristics of the matrix are expected to contribute to the piezoelectric response of p-NC. However, there is limited understanding of how viscoelasticity influences the piezoelectric performance of p-NC. Here we combined analytical and numerical analyses with experimental studies to investigate effects of viscoelasticity on piezoelectric performance of p-NC. The viscoelastic properties of synthesized p-NCs were controlled by changing the ratio between monomer and cross-linker of the polymer matrix. We found good agreement between our analytical models and experimental results for both quasi-static and dynamic loadings. It is found that, under quasi-static loading conditions, the piezoelectric coefficients (d 33 ) of the specimen with the lowest Young's modulus (∼0.45 MPa at 5% strain) were ∼120 pC N -1 , while the one with the highest Young's modulus (∼1.3 MPa at 5% strain) were ∼62 pC N -1 . The results suggest that softer matrices enhance the energy harvesting performance because they can result in larger deformation for a given load. Moreover, from our theoretical analysis and experiments under dynamic loading conditions, we found the viscous modulus of a matrix is also important for piezoelectric performance. For instance, at 40 Hz and 50 Hz the storage moduli of the softest specimen were ∼0.625 MPa and ∼0.485 MPa, while the loss moduli were ∼0.108 MPa and ∼0.151 MPa, respectively. As piezocomposites with less viscous loss can transfer mechanical energy to piezoelectric particles more efficiently, the dynamic piezoelectric coefficient (d' 33 ) measured at 40 Hz (∼53 pC N -1 ) was larger than that at 50 Hz (∼47 pC N -1 ) though it has a larger storage modulus. As an application of our findings
Viscoelastic characterization of carbon fiber-epoxy composites by creep and creep rupture tests
International Nuclear Information System (INIS)
Farina, Luis Claudio
2009-01-01
One of the main requirements for the use of fiber-reinforced polymer matrix composites in structural applications is the evaluation of their behavior during service life. The warranties of the integrity of these structural components demand a study of the time dependent behavior of these materials due to viscoelastic response of the polymeric matrix and of the countless possibilities of design configurations. In the present study, creep and creep rupture test in stress were performed in specimens of unidirectional carbon fiber-reinforced epoxy composites with fibers orientations of 60 degree and 90 degree, at temperatures of 25 and 70 degree C. The aim is the viscoelastic characterization of the material through the creep curves to some levels of constant tension during periods of 1000 h, the attainment of the creep rupture envelope by the creep rupture curves and the determination of the transition of the linear for non-linear behavior through isochronous curves. In addition, comparisons of creep compliance curves with a viscoelastic behavior prediction model based on Schapery equation were also performed. For the test, a modification was verified in the behavior of the material, regarding the resistance, stiffness and deformation, demonstrating that these properties were affected for the time and tension level, especially in work temperature above the ambient. The prediction model was capable to represent the creep behavior, however the determination of the equations terms should be considered, besides the variation of these with the applied tension and the elapsed time of test. (author)
On the Abaqus FEA model of finite viscoelasticity
Ciambella, Jacopo; Destrade, Michel; Ogden, Ray W.
2013-01-01
Predictions of the QLV (Quasi-Linear Viscoelastic) constitutive law are compared with those of the ABAQUS viscoelastic model for two simple motions in order to highlight, in particular, their very different dissipation rates and certain shortcomings of the ABAQUS model.
Noise reduction of rotating machinery by viscoelastic bearing supports
Tillema, H.G.
2003-01-01
The demand for silent rolling bearing applications, such as electric motors and gearboxes, has resulted in an investigation of viscoelastic bearing supports. By placing a thin viscoelastic layer between the bearing outer ring and the surrounding structure, vibrations of the shaft-bearing arrangement
Transient vibration of thin viscoelastic orthotropic plates
Czech Academy of Sciences Publication Activity Database
Soukup, J.; Valeš, František; Volek, J.; Skočilas, J.
2011-01-01
Roč. 27, č. 1 (2011), s. 98-107 ISSN 0567-7718. [International Conference on Dynamical Systems - Theory and Applications /10./. Lodz, 07.12.2009-10.12.2009] R&D Projects: GA ČR GA101/07/0946 Institutional research plan: CEZ:AV0Z20760514 Keywords : transient vibration thin plate * orthotropic * general viscoelastic standard solid Subject RIV: BI - Acoustics Impact factor: 0.860, year: 2011 http://www.springerlink.com/content/hn67324178846n4r/
Pearling Instabilities of a Viscoelastic Thread
Deblais, A.; Velikov, K. P.; Bonn, D.
2018-05-01
Pearling instabilities of slender viscoelastic threads have received much attention, but remain incompletely understood. We study the instabilities in polymer solutions subject to uniaxial elongational flow. Two distinctly different instabilites are observed: beads on a string and blistering. The beads-on-a-string structure arises from a capillary instability whereas the blistering instability has a different origin: it is due to a coupling between stress and polymer concentration. By varying the temperature to change the solution properties we elucidate the interplay between flow and phase separation.
Viscoelastic behavior of discrete human collagen fibrils
DEFF Research Database (Denmark)
Svensson, René; Hassenkam, Tue; Hansen, Philip
2010-01-01
Whole tendon and fibril bundles display viscoelastic behavior, but to the best of our knowledge this property has not been directly measured in single human tendon fibrils. In the present work an atomic force microscopy (AFM) approach was used for tensile testing of two human patellar tendon...... saline, cyclic testing was performed in the pre-yield region at different strain rates, and the elastic response was determined by a stepwise stress relaxation test. The elastic stress-strain response corresponded to a second-order polynomial fit, while the viscous response showed a linear dependence...
Effects of viscoelasticity in the high Reynolds number cylinder wake
Richter, David
2012-01-16
At Re = 3900, Newtonian flow past a circular cylinder exhibits a wake and detached shear layers which have transitioned to turbulence. It is the goal of the present study to investigate the effects which viscoelasticity has on this state and to identify the mechanisms responsible for wake stabilization. It is found through numerical simulations (employing the FENE-P rheological model) that viscoelasticity greatly reduces the amount of turbulence in the wake, reverting it back to a state which qualitatively appears similar to the Newtonian mode B instability which occurs at lower Re. By focusing on the separated shear layers, it is found that viscoelasticity suppresses the formation of the Kelvin-Helmholtz instability which dominates for Newtonian flows, consistent with previous studies of viscoelastic free shear layers. Through this shear layer stabilization, the viscoelastic far wake is then subject to the same instability mechanisms which dominate for Newtonian flows, but at far lower Reynolds numbers. © Copyright Cambridge University Press 2012.
Effects of viscoelasticity in the high Reynolds number cylinder wake
Richter, David; Iaccarino, Gianluca; Shaqfeh, Eric S. G.
2012-01-01
At Re = 3900, Newtonian flow past a circular cylinder exhibits a wake and detached shear layers which have transitioned to turbulence. It is the goal of the present study to investigate the effects which viscoelasticity has on this state and to identify the mechanisms responsible for wake stabilization. It is found through numerical simulations (employing the FENE-P rheological model) that viscoelasticity greatly reduces the amount of turbulence in the wake, reverting it back to a state which qualitatively appears similar to the Newtonian mode B instability which occurs at lower Re. By focusing on the separated shear layers, it is found that viscoelasticity suppresses the formation of the Kelvin-Helmholtz instability which dominates for Newtonian flows, consistent with previous studies of viscoelastic free shear layers. Through this shear layer stabilization, the viscoelastic far wake is then subject to the same instability mechanisms which dominate for Newtonian flows, but at far lower Reynolds numbers. © Copyright Cambridge University Press 2012.
Measurement of tissue viscoelasticity with ultrasound
Greenleaf, J. F.; Alizad, A.
2017-02-01
Tissue properties such as elasticity and viscosity have been shown to be related to such tissue conditions as contraction, edema, fibrosis, and fat content among others. Magnetic Resonance Elastography has shown outstanding ability to measure the elasticity and in some cases the viscosity of tissues, especially in the liver, providing the ability to stage fibrotic liver disease similarly to biopsy. We discuss ultrasound methods of measuring elasticity and viscosity in tissues. Many of these methods are becoming widely available in the extant ultrasound machines distributed throughout the world. Some of the methods to be discussed are in the developmental stage. The advantages of the ultrasound methods are that the imaging instruments are widely available and that many of the viscoelastic measurements can be made during a short addition to the normal ultrasound examination time. In addition, the measurements can be made by ultrasound repetitively and quickly allowing evaluation of dynamic physiologic function in circumstances such as muscle contraction or artery relaxation. Measurement of viscoelastic tissue mechanical properties will become a consistent part of clinical ultrasound examinations in our opinion.
Dynamics of magnetic nanoparticles in viscoelastic media
Energy Technology Data Exchange (ETDEWEB)
Remmer, Hilke, E-mail: h.remmer@tu-bs.de [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, Braunschweig (Germany); Roeben, Eric; Schmidt, Annette M. [Institute of Physical Chemistry, Universität zu Köln, Köln (Germany); Schilling, Meinhard; Ludwig, Frank [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, Braunschweig (Germany)
2017-04-01
We compare different models for the description of the complex susceptibility of magnetic nanoparticles in an aqueous gelatin solution representing a model system for a Voigt-Kelvin scheme. The analysis of susceptibility spectra with the numerical model by Raikher et al. is compared with the analysis applying a phenomenological, modified Debye model. The fit of the models to the measured data allows one to extract the viscoelastic parameter dynamic viscosity η and shear modulus G. The experimental data were recorded on single-core thermally blocked CoFe{sub 2}O{sub 4} nanoparticles in an aqueous solution with 2.5 wt% gelatin. Whereas the dynamic viscosities obtained by fitting the model – extended by distributions of hydrodynamic diameters and viscosities – agree very well, the derived values for the shear modulus show the same temporal behavior during the gelation process, but vary approximately by a factor of two. To verify the values for viscosity and shear modulus obtained from nanorheology, macrorheological measurements are in progress. - Highlights: • Ac susceptibility spectra of CoFe2O4 nanoparticles in aqueous gelatin solution. • Analysis of spectra with different approaches of Voigt-Kelvin model. • Comparison of modified Debye model with numerical model. • Both models provide similar values for viscoelastic parameters.
TIDALLY HEATED TERRESTRIAL EXOPLANETS: VISCOELASTIC RESPONSE MODELS
International Nuclear Information System (INIS)
Henning, Wade G.; O'Connell, Richard J.; Sasselov, Dimitar D.
2009-01-01
Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a hot Earth and hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid (SAS), and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale partial melting, and an analysis of tidal limiting mechanisms such as advective cooling for earthlike planets is discussed. To explore long-term behaviors, we map equilibria points between convective heat loss and tidal heat input as functions of eccentricity. For the periods and magnitudes discussed, we show that tidal heating, if significant, is generally detrimental to the width of habitable zones.
Viscoelastic deformation of lipid bilayer vesicles†
Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L.
2015-01-01
Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic. PMID:26268612
Viscoelastic deformation of lipid bilayer vesicles.
Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L; Malmstadt, Noah
2015-10-07
Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic.
Flashing subdiffusive ratchets in viscoelastic media
International Nuclear Information System (INIS)
Kharchenko, Vasyl; Goychuk, Igor
2012-01-01
We study subdiffusive ratchet transport in periodically and randomly flashing potentials. A central Brownian particle is elastically coupled to the surrounding auxiliary Brownian quasi-particles, which account for the influence of the viscoelastic environment. Similar to standard dynamical modeling of Brownian motion, the external force influences only the motion of the central particle, not affecting directly the environmental degrees of freedom. Just a handful of auxiliary Brownian particles suffices to model subdiffusion over many temporal decades. Time modulation of the potential violates the symmetry of thermal detailed balance and induces an anomalous subdiffusive current which exhibits a remarkably small dispersion at low temperatures, as well as a number of other surprising features such as saturation at low temperatures, and multiple inversions of the transport direction upon a change of the driving frequency in the non-adiabatic regime. It is shown that the subdiffusive current is finite at zero temperature for random flashing and can be finite for periodic flashing for a certain frequency window. Our study generalizes classical Brownian motors towards operating in sticky viscoelastic environments such as the cytosol of biological cells or dense polymer solutions. (paper)
Viscoelastic Flow Modelling for Polymer Flooding
de, Shauvik; Padding, Johan; Peters, Frank; Kuipers, Hans; Multi-scale Modelling of Multi-phase Flows Team
2015-11-01
Polymer liquids are used in the oil industry to improve the volumetric sweep and displacement efficiency of oil from a reservoir. Surprisingly, it is not only the viscosity but also the elasticity of the displacing fluid that determine the displacement efficiency. The main aim of our work is to obtain a fundamental understanding of the effect of fluid elasticity, by developing an advanced computer simulation methodology for the flow of non-Newtonian fluids through porous media. We simulate a 3D unsteady viscoelastic flow through a converging diverging geometry of realistic pore dimension using computational fluid dynamics (CFD).The primitive variables velocity, pressure and extra stresses are used in the formulation of models. The viscoelastic stress part is formulated using a FENE-P type of constitutive equation, which can predict both shear and elongational stress properties during this flow. A Direct Numerical Simulation (DNS) approach using Finite volume method (FVM) with staggered grid has been applied. A novel second order Immersed boundary method (IBM) has been incorporated to mimic porous media. The effect of rheological parameters on flow characteristics has also been studied. The simulations provide an insight into 3D flow asymmetry at higher Deborah numbers. Micro-Particle Image Velocimetry experiments are carried out to obtain further insights. These simulations present, for the first time, a detailed computational study of the effects of fluid elasticity on the imbibition of an oil phase.
Local linear viscoelasticity of confined fluids.
Hansen, J S; Daivis, P J; Todd, B D
2007-04-14
In this paper the authors propose a novel method to study the local linear viscoelasticity of fluids confined between two walls. The method is based on the linear constitutive equation and provides details about the real and imaginary parts of the local complex viscosity. They apply the method to a simple atomic fluid undergoing zero mean oscillatory flow using nonequilibrium molecular dynamics simulations. The method shows that the viscoelastic properties of the fluid exhibit dramatic spatial changes near the wall-fluid boundary due to the high density in this region. It is also shown that the real part of the viscosity converges to the frequency dependent local shear viscosity sufficiently far away from the wall. This also provides valuable information about the transport properties in the fluid, in general. The viscosity is compared with predictions from the local average density model. The two methods disagree in that the local average density model predicts larger viscosity variations near the wall-fluid boundary than what is observed through the method presented here.
Behaviour of Viscoelastic - Viscoplastic Spheres and Cylinders - Partly Plastic Vessel Walls
DEFF Research Database (Denmark)
Ottosen, N. Saabye
1985-01-01
The material model consists of a viscoelastic Burgers element and an additional viscoplastic Bingham element when the effective stress exceeds the yield stress. For partly plastic vessel walls, expressions are derived for the stress and strain state in pressurised or relaxation loaded thick......-walled cylinders in plane strain and spheres. For the spherical problem, the material compressibility is accounted for. The influence of the different material parameters on the behaviour of the vessels is evaluated. It is shown that the magnitude of the Maxwell viscosity is of major importance for the long......-term behaviour of thick-walled partly plastic vessels....
Behaviour of Viscoelastic - Viscoplastic Spheres and Cylinders - Fully Plastic Vessel Walls
DEFF Research Database (Denmark)
Ottosen, N. Saabye
1985-01-01
The material model consists of a viscoelastic Burgers element and an additional viscoplastic Bingham element when the effective stress exceeds the yield stress. For fully plastic vessel walls, exact closed-form expressions arc derived for the stress and strain state in pressurised or relaxation...... loaded thick-walled cylinders in plane strain and spheres. For the spherical problem, the material compressibility is accounted for. The influence of the different material parameters on the behaviour of the vessels is evaluated. It is shown that the magnitude of the Maxwell viscosity is of major...... importance for the long-term behaviour of thick-walled fully plastic vessels....
THE INFLUENCE OF VISCOELASTICITY ON VELOCITY-DEPENDENT RESTITUTIONS IN THE OBLIQUE IMPACT OF SPHERES
Directory of Open Access Journals (Sweden)
Emanuel Willert
2017-08-01
Full Text Available We analyse the oblique impact of linear-viscoelastic spheres by numerical models based on the Method of Dimensionality Reduction and the Boundary Element Method. Thereby we assume quasi-stationarity, the validity of the half-space hypothesis, short impact times and Amontons-Coulomb friction with a constant coefficient for both static and kinetic friction. As under these assumptions both methods are equivalent, their results differ only within the margin of a numerical error. The solution of the impact problem written in proper dimensionless variables will only depend on the two parameters necessary to describe the elastic problem and a sufficient set of variables to describe the influence of viscoelastic material behaviour; in the case of a standard solid this corresponds to two additional variables. The full solution of the impact problem is finally determined by comprehensive parameter studies and partly approximated by simple analytic expressions.
Numerical design and test on an assembled structure of a bolted joint with viscoelastic damping
Hammami, Chaima; Balmes, Etienne; Guskov, Mikhail
2016-03-01
Mechanical assemblies are subjected to many dynamic loads and modifications are often needed to achieve acceptable vibration levels. While modifications on mass and stiffness are well mastered, damping modifications are still considered difficult to design. The paper presents a case study on the design of a bolted connection containing a viscoelastic damping layer. The notion of junction coupling level is introduced to ensure that sufficient energy is present in the joints to allow damping. Static performance is then addressed and it is shown that localization of metallic contact can be used to meet objectives, while allowing the presence of viscoelastic materials. Numerical prediction of damping then illustrates difficulties in optimizing for robustness. Modal test results of three configurations of an assembled structure, inspired by aeronautic fuselages, are then compared to analyze the performance of the design. While validity of the approach is confirmed, the effect of geometric imperfections is shown and stresses the need for robust design.
Directory of Open Access Journals (Sweden)
Jin JIANG
2016-04-01
Full Text Available Warp-knitted spacer fabric which is commonly used in impact protection is selected as test materials to study the relationship between viscoelasticity and the performance of shock isolation. A damping test platform is built to test different specifications of warp-knitted spacer fabric including compression elastic modulus, damping ratio and the residual impact load under different impact speed. Experimental results show that there is no clear correlation between the shock isolation performance and the viscidity or the elasticity. Accordingly, viscosity-to-elasticity ratio is proposed to characterize the relationship between viscoelasticity and shock isolation performance, and it is found that appropriate viscosity-to-elasticity ratio within a certain range can help to achieve better shock isolation performance.
On the modelling of electro-viscoelastic response of electrostrictive polyurethane elastomers
International Nuclear Information System (INIS)
Ask, A; Menzel, A; Ristinmaa, M
2010-01-01
Electroactive polymers (EAP) deform under electric fields. This effect in fact generates various new fields of engineering applications of high technological interest. As an advantage, EAP may undergo deformations much larger than those capable by electroactive ceramics-however, to the price of acting at comparatively low forces. As common for polymers, EAP exhibit time-dependent material behaviour. The model proposed in this contribution, on the one hand, captures these electro-viscoelastic effects and, on the other hand, also nicely fits into iterative finite element formulations in order to simulate general boundary value problems. While the deformation itself as well as the electric potential are introduced as global degrees of freedom, the internal variables accounting for the viscous response are incorporated at the so-called local integration point level. Apart form calibrating the model against experimental data, a simple coupled finite element example is studied to show the applicability of the finite deformation electro-viscoelastic formulation proposed.
International Nuclear Information System (INIS)
Chateauminois, Antoine
1991-01-01
As ageing strength of composites appears to be one of the main criteria of their durability, this research thesis addresses the hydrothermal ageing of unidirectional glass/epoxy composites used for load-bearing structures. After having presented the used materials (epoxy matrix, reinforcement, composite elaboration), the author present the experimental techniques: viscoelastic analysis, three-point bend static fatigue test, coupled gravimetry and calorimetry, and thermogravimetry. In the next parts, the author reports the study of water sorption processes (bibliographical study, experimental study of water sorption kinetics, experimental study of interfacial diffusion within the composite), the study of plasticizing phenomena (methodology of study of plasticizing phenomena, study of the modifications of the linear viscoelastic behaviour in the glass transition region and at room temperature, relationship between plasticizing and fatigue mechanical properties by fracture studies), and the study of irreversible degradation and damage mechanisms
Khan, Kamran
2012-11-10
We formulate a variational constitutive framework that accounts for nonlinear viscous behavior of electrically sensitive polymers, specifically Dielectric Elastomers (DEs), under large deformation. DEs are highly viscoelastic and their actuation response is greatly affected in dynamic applications. We used the generalized Maxwell model to represent the viscoelastic response of DE allowing the material to relax with multiple mechanisms. The constitutive updates at each load increment are obtained by minimizing an objective function formulated using the free energy and electrostatic energy of the elastomer, in addition to the viscous dissipation potential of the dashpots in each Maxwell branch. The model is then used to predict the electromechanical instability (EMI) of DE. The electro-elastic response of the DE is verified with available analytical solutions in the literature and then the material parameters are calibrated using experimental data. The model is integrated with finite element software to perform a variety of simulations on different types of electrically driven actuators under various electromechanical loadings. The electromechanical response of the DE and the critical conditions at which EMI occurs were found to be greatly affected by the viscoelasticity. Our model predicts that under a dead load EMI can be avoided if the DE operates at a high voltage rate. Subjected to constant, ramp and cyclic voltage, our model qualitatively predicts responses similar to the ones obtained from the analytical solutions and experimental data available in the literature. © 2012 Springer-Verlag Berlin Heidelberg.
Directory of Open Access Journals (Sweden)
Mikhail Popov
2016-12-01
Full Text Available Sliding friction can be reduced substantially by applying ultrasonic vibration in the sliding plane or in the normal direction. This effect is well known and used in many applications ranging from press forming to ultrasonic actuators. One of the characteristics of the phenomenon is that, at a given frequency and amplitude of oscillation, the observed friction reduction diminishes with increasing sliding velocity. Beyond a certain critical sliding velocity, there is no longer any difference between the coefficients of friction with or without vibration. This critical velocity depends on material and kinematic parameters and is a key characteristic that must be accounted for by any theory of influence of vibration on friction. Recently, the critical sliding velocity has been interpreted as the transition point from periodic stick-slip to pure sliding and was calculated for purely elastic contacts under uniform sliding with periodic normal loading. Here we perform a similar analysis of the critical velocity in viscoelastic contacts using a Kelvin material to describe viscoelasticity. A closed-form solution is presented, which contains previously reported results as special cases. This paves the way for more detailed studies of active control of friction in viscoelastic systems, a previously neglected topic with possible applications in elastomer technology and in medicine.
A Linear Viscoelastic Model Calibration of Sylgard 184.
Energy Technology Data Exchange (ETDEWEB)
Long, Kevin Nicholas; Brown, Judith Alice
2017-04-01
We calibrate a linear thermoviscoelastic model for solid Sylgard 184 (90-10 formulation), a lightly cross-linked, highly flexible isotropic elastomer for use both in Sierra / Solid Mechanics via the Universal Polymer Model as well as in Sierra / Structural Dynamics (Salinas) for use as an isotropic viscoelastic material. Material inputs for the calibration in both codes are provided. The frequency domain master curve of oscillatory shear was obtained from a report from Los Alamos National Laboratory (LANL). However, because the form of that data is different from the constitutive models in Sierra, we also present the mapping of the LANL data onto Sandia’s constitutive models. Finally, blind predictions of cyclic tension and compression out to moderate strains of 40 and 20% respectively are compared with Sandia’s legacy cure schedule material. Although the strain rate of the data is unknown, the linear thermoviscoelastic model accurately predicts the experiments out to moderate strains for the slower strain rates, which is consistent with the expectation that quasistatic test procedures were likely followed. This good agreement comes despite the different cure schedules between the Sandia and LANL data.
Deatly, Anne M.; Lin, Yen-Huei; McCarthy, Maureen; Chen, Wei; Miller, Lynn Z.; Quiroz, Jorge; Nowak, Becky M.; Lerch, Robert A.; Udem, Stephen A.; Goodwin, Thomas J.
2012-01-01
Respiratory syncytial virus and parainfluenza virus cause severe respiratory disease, especially in infants, children and the elderly. An in vitro model that accurately mimics infection of the human respiratory epithelium (HRE) would facilitate vaccine development greatly. Monolayer cultures traditionally used to study these viruses do not accurately and precisely differentiate the replication efficiencies of wild type and attenuated viruses. Therefore, we engineered novel three-dimensional (3D) tissue-like assemblies (TLAs) of human broncho-epithelial (HBE) cells to produce a more physiologically relevant in vitro model of the HRE. TLAs resemble HRE structurally and by expression of differentiated epithelial cell markers. Most significantly, wild type viruses exhibited a clear growth advantage over attenuated strains in TLAs unlike monolayer cultures. In addition, the TLAs responded to virus infection by secreting pro-inflammatory mediators similar to the respiratory epithelia of infected children. These characteristics make the TLA model a valuable platform technology to develop and evaluate live, attenuated respiratory virus vaccine candidates for human use. Respiratory virus diseases, the most frequent and least preventable of all infectious diseases, range in severity from the common cold to severe bronchiolitis and pneumonia . Two paramyxoviruses, respiratory syncytial virus (RSV) and parainfluenza virus type 3 (PIV3), are responsible for a majority of the most severe respiratory diseases of infants and young children. RSV causes 70% of all bronchiolitis cases and is a major cause of morbidity and mortality worldwide, especially in infants. PIV3 causes 10-15% of bronchiolitis and pneumonia during infancy, second only to RSV, and 40% of croup in infants To date, licensed vaccines are not available to prevent these respiratory diseases. At present, traditional monkey kidney (Vero and LLC-MK2) and human (HEp-2) tissue culture cells and small animal models (mouse
The viscoelastic properties of the cervical mucus plug
DEFF Research Database (Denmark)
Bastholm, Sara K.; Becher, Naja; Stubbe, Peter Reimer
2014-01-01
labor. MethodsViscoelastic properties of CMPs were investigated with a dynamic oscillatory rheometer using frequency and stress sweep experiments within the linear viscoelastic region. Main outcome measuresThe rheological variables obtained were as follows: elastic modulus (G), viscous modulus (G......ObjectiveTo characterize the viscoelastic properties of cervical mucus plugs (CMPs) shed during labor at term. DesignExperimental research. SettingDepartment of Obstetrics and Gynecology, Aarhus University Hospital, Denmark. Population/SampleSpontaneously shed CMPs from 18 healthy women in active...
Thermal convection of viscoelastic shear-thinning fluids
International Nuclear Information System (INIS)
Albaalbaki, Bashar; Khayat, Roger E; Ahmed, Zahir U
2016-01-01
The Rayleigh–Bénard convection for non-Newtonian fluids possessing both viscoelastic and shear-thinning behaviours is examined. The Phan-Thien–Tanner (PTT) constitutive equation is implemented to model the non-Newtonian character of the fluid. It is found that while the shear-thinning and viscoelastic effects could annihilate one another for the steady roll flow, presence of both behaviours restricts the roll stability limit significantly compared to the cases when the fluid is either inelastic shear-thinning or purely viscoelastic with constant viscosity. (paper)
Mattei, G.; Ahluwalia, A.
2018-04-01
We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.
Comparative study of viscoelastic properties using virgin yogurt
International Nuclear Information System (INIS)
Dimonte, G.; Nelson, D.; Weaver, S.; Schneider, M.; Flower-Maudlin, E.; Gore, R.; Baumgardner, J.R.; Sahota, M.S.
1998-01-01
We describe six different tests used to obtain a consistent set of viscoelastic properties for yogurt. Prior to yield, the shear modulus μ and viscosity η are measured nondestructively using the speed and damping of elastic waves. Although new to foodstuffs, this technique has been applied to diverse materials from metals to the earth's crust. The resultant shear modulus agrees with μ∼E/3 for incompressible materials, where the Young's modulus E is obtained from a stress - strain curve in compression. The tensile yield stress τ o is measured in compression and tension, with good agreement. The conventional vane and cone/plate rheometers measured a shear stress yield τ os ∼τ o /√ (3) , as expected theoretically, but the inferred 'apparent' viscosity from the cone/plate rheometer is much larger than the wave measurement due to the finite yield (τ os ≠0). Finally, we inverted an open container of yogurt for 10 6 s>η/μ and observed no motion. This demonstrates unequivocally that yogurt possesses a finite yield stress rather than a large viscosity. We present a constitutive model with a pre-yield viscosity to describe the damping of the elastic waves and use a simulation code to describe yielding in complex geometry. copyright 1998 Society of Rheology
Nonlinear viscoelastic properties of tissue assessed by ultrasound.
Sinkus, Ralph; Bercoff, Jeremy; Tanter, Mickaël; Gennisson, Jean-Luc; El-Khoury, Carl; Servois, Vincent; Tardivon, Anne; Fink, Mathias
2006-11-01
A technique to assess qualitatively the presence of higher-order viscoelastic parameters is presented. Low-frequency, monochromatic elastic waves are emitted into the material via an external vibrator. The resulting steady-state motion is detected in real time via an ultra fast ultrasound system using classical, one-dimensional (1-D) ultrasound speckle correlation for motion estimation. Total data acquisition lasts only for about 250 ms. The spectrum of the temporal displacement data at each image point is used for analysis. The presence of nonlinear effects is detected by inspection of the ratio of the second harmonics amplitude with respect to the total amplitude summed up to the second harmonic. Results from a polyacrylamide-based phantom indicate a linear response (i.e., the absence of higher harmonics) for this type of material at 65 Hz mechanical vibration frequency and about 100 microm amplitude. A lesion, artificially created by injection of glutaraldehyde into a beef specimen, shows the development of higher harmonics at the location of injection as a function of time. The presence of upper harmonics is clearly evident at the location of a malignant lesion within a mastectomy.
Water evaporation on highly viscoelastic polymer surfaces.
Pu, Gang; Severtson, Steven J
2012-07-03
Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.
Pettermann, Heinz E.; DeSimone, Antonio
2017-09-01
A constitutive material law for linear thermo-viscoelasticity in the time domain is presented. The time-dependent relaxation formulation is given for full anisotropy, i.e., both the elastic and the viscous properties are anisotropic. Thereby, each element of the relaxation tensor is described by its own and independent Prony series expansion. Exceeding common viscoelasticity, time-dependent thermal expansion relaxation/creep is treated as inherent material behavior. The pertinent equations are derived and an incremental, implicit time integration scheme is presented. The developments are implemented into an implicit FEM software for orthotropic material symmetry under plane stress assumption. Even if this is a reduced problem, all essential features are present and allow for the entire verification and validation of the approach. Various simulations on isotropic and orthotropic problems are carried out to demonstrate the material behavior under investigation.
International Nuclear Information System (INIS)
Diani, J.; Bedoui, F.; Regnier, G.
2008-01-01
The relevance of micromechanics modeling to the linear viscoelastic behavior of semi-crystalline polymers is studied. For this purpose, the linear viscoelastic behaviors of amorphous and semi-crystalline PETs are characterized. Then, two micromechanics modeling methods, which have been proven in a previous work to apply to the PET elastic behavior, are used to predict the viscoelastic behavior of three semi-crystalline PETs. The microstructures of the crystalline PETs are clearly defined using WAXS techniques. Since microstructures and mechanical properties of both constitutive phases (the crystalline and the amorphous) are defined, the simulations are run without adjustable parameters. Results show that the models are unable to reproduce the substantial decrease of viscosity induced by the increase of crystallinity. Unlike the real materials, for moderate crystallinity, both models show materials of viscosity nearly identical to the amorphous material
Algebraic Theory of Linear Viscoelastic Nematodynamics
International Nuclear Information System (INIS)
Leonov, Arkady I.
2008-01-01
This paper consists of two parts. The first one develops algebraic theory of linear anisotropic nematic 'N-operators' build up on the additive group of traceless second rank 3D tensors. These operators have been implicitly used in continual theories of nematic liquid crystals and weakly elastic nematic elastomers. It is shown that there exists a non-commutative, multiplicative group N 6 of N-operators build up on a manifold in 6D space of parameters. Positive N-operators, which in physical applications hold thermodynamic stability constraints, do not generally form a subgroup of group N 6 . A three-parametric, commutative transversal-isotropic subgroup S 3 subset of N 6 of positive symmetric nematic operators is also briefly discussed. The special case of singular, non-negative symmetric N-operators reveals the algebraic structure of nematic soft deformation modes. The second part of the paper develops a theory of linear viscoelastic nematodynamics applicable to liquid crystalline polymer. The viscous and elastic nematic components in theory are described by using the Leslie-Ericksen-Parodi (LEP) approach for viscous nematics and de Gennes free energy for weakly elastic nematic elastomers. The case of applied external magnetic field exemplifies the occurrence of non-symmetric stresses. In spite of multi-(10) parametric character of the theory, the use of nematic operators presents it in a transparent form. When the magnetic field is absent, the theory is simplified for symmetric case with six parameters, and takes an extremely simple, two-parametric form for viscoelastic nematodynamics with possible soft deformation modes. It is shown that the linear nematodynamics is always reducible to the LEP-like equations where the coefficients are changed for linear memory functionals whose parameters are calculated from original viscosities and moduli
Interfacial aspects in the production of advanced viscoelastic composites
International Nuclear Information System (INIS)
Khan, M.B.
1997-01-01
The integrity and morphology of the interfacial junction often dictate the mechanical and thermal response of multiphase engineering materials. The production of materials with synergistic properties requires the effective generation and consolidation of material interfaces. The paper examines this theme in viscoelastic systems, comprising polymer alloys, reactive composites, electrical insulation and reinforced commodity polymers. Processing protocol is identified through TEM/SEM for the nylon/ABS composite material that alloys optimum utilization of reactive comptabilizers. Comparative results show that both reactive and miscibility are crucial for a compatibilizer to provide sufficient dispersion and adequate interfacial adhesion between the two phases. In discrete system, interfacial coupling is normally accomplished by bonding agents which form chemical bridges across the particle-matrix interface. A recent technique, however, utilizer a lateral modulus gradient across the material interface to increase fracture energy (Mechanical approach), Micro morphology of a convectional composite sans bonding agent is compared with the latter modified via the mechanical approach, Cryo-fracture surfaces of these composites reveal good particle-matrix adhesion in the modified composite, as opposed to visible particle pull-out observed in the other composite. A third approach toward interfacial coupling relies on the suitable modification of the particle surface to promote interaction between the particle and the polymer chains. This strategy is examined with particular reference to electoral cable sheathing and synthetic window profile, by using composite particles produced in the author's processing facility. ESCA spectrum of these particles is discussed, along with impact and TGA/DTA data for the modified PVC/EPDM composites. The impact strength of rigid PVC improved over a range of temperature, including the important region of zero degree centigrade and below. TGGA
Viscoelastic optical nonlocality of doped cadmium oxide epsilon-near-zero thin films
Energy Technology Data Exchange (ETDEWEB)
Luk, Ting S.; De Ceglia, Domenico; Scalora, Michael; Vincenti, Maria A.; Campione, Salvatore; Kelley, Kyle; Maria, Jon-Paul; Keeler, Gordon A.
2017-08-01
Optical nonlocalities are elusive and hardly observable in traditional plasmonic materials like noble and alkali metals. Here we experimentally observe and theoretically model viscoelastic nonlocalities in the infrared optical response of a doped, cadmium oxide epsilon-near-zero thin film. The nonlocality is clearly detectable thanks to the low damping rate of conduction electrons and the virtual absence of interband transitions at infrared wavelengths. We describe the motion of conduction electrons using a hydrodynamic model for a viscoelastic fluid, and find excellent agreement with experimental results. The electrons’ elasticity blue-shifts the infrared plasmonic resonance associated with the main epsilon-near-zero mode, and triggers the onset of higher-order resonances due to the excitation of electron-pressure modes above the bulk plasma frequency. We also provide evidence of the existence of nonlocal damping, i.e., viscosity, in the motion of optically-excited conduction electrons using a combination of spectroscopic ellipsometry data and predictions based on the viscoelastic hydrodynamic model.
Influence of storage in the texture and viscoelasticity of buns of corn variety white Cariaco
Directory of Open Access Journals (Sweden)
José David Torres-González
2016-09-01
Full Text Available The objective was to determine the influence of storage time on the variation of texture and visco-elasticity of buns of corn of the white Cariaco variety. The samples were stored refrigerated at 15 °C during 15 days. Textural parameters were determined every two days, using a texture analyzer; viscoelastic properties were set by a test of relaxation and com-pression effort, adjusting the experimental data to the generalized Maxwell model. Also, to determine the model parameters described, an iterative process was performed by non-linear regression using least squares techniques damped by the Solver add-on in Excel 2013. The storage time influenced the texture profile of buns, and the increase of hardness from the eleventh day, which was attributed to moisture loss of the product during cooling. Chewiness was higher for longer storage time. Cohesiveness, adhesiveness and elasticity reported no significant differences with respect to storage time. Statistical differences were presented at initial and final relaxation speeds expressed in the Maxwell model. The experimental data were successfully fitted to the model (R2 > 0.95 which was statistically significant (p < 0.05 and the performance of the elastic module indicated that buns from the white Cariaco variety showed a characteristic behavior of a viscoelastic material, increasing its hardness during the days of storage.
Development and validation of a viscoelastic and nonlinear liver model for needle insertion
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, Yo [Waseda University, Consolidated Research Institute for Advanced Science and Medical Care, Shinjuku, Tokyo (Japan); Onishi, Akinori; Hoshi, Takeharu; Kawamura, Kazuya [Waseda University, Graduate School of Science and Engineering, Shinjuku (Japan); Hashizume, Makoto [Kyushu University Hospital, Center for the Integration of Advanced Medicine and Innovative Technology, Fukuoka (Japan); Fujie, Masakatsu G. [Waseda University, Graduate School of Science and Engineering, Faculty of Science and Engineering, Shinjuku (Japan)
2009-01-15
The objective of our work is to develop and validate a viscoelastic and nonlinear physical liver model for organ model-based needle insertion, in which the deformation of an organ is estimated and predicted, and the needle path is determined with organ deformation taken into consideration. First, an overview is given of the development of the physical liver model. The material properties of the liver considering viscoelasticity and nonlinearity are modeled based on the measured data collected from a pig's liver. The method to develop the liver model using FEM is also shown. Second, the experimental method to validate the model is explained. Both in vitro and in vivo experiments that made use of a pig's liver were conducted for comparison with the simulation using the model. Results of the in vitro experiment showed that the model reproduces nonlinear and viscoelastic response of displacement at an internally located point with high accuracy. For a force up to 0.45 N, the maximum error is below 1 mm. Results of the in vivo experiment showed that the model reproduces the nonlinear increase of load upon the needle during insertion. Based on these results, the liver model developed and validated in this work reproduces the physical response of a liver in both in vitro and in vivo situations. (orig.)
Directory of Open Access Journals (Sweden)
Jia-li Gao
2014-01-01
Full Text Available Flight feather shaft of long-eared owl is characterized by a three-parameter model for linear viscoelastic solids to reveal its damping ability. Uniaxial tensile tests of the long-eared owl, pigeon, and golden eagle flight feather shaft specimens were carried out based on Instron 3345 single column material testing system, respectively, and viscoelastic response of their stress and strain was described by the standard linear solid model. Parameter fitting result obtained from the tensile tests shows that there is no significant difference in instantaneous elastic modulus for the three birds’ feather shafts, but the owl shaft has the highest viscosity, implying more obvious viscoelastic performance. Dynamic mechanical property was characterized based on the tensile testing results. Loss factor (tanδ of the owl flight feather shaft was calculated to be 1.609 ± 0.238, far greater than those of the pigeon (0.896 ± 0.082 and golden eagle (1.087 ± 0.074. It is concluded that the long-eared owl flight feather has more outstanding damping ability compared to the pigeon and golden eagle flight feather shaft. Consequently, the long-eared owl flight feathers can dissipate the vibration energy more effectively during the flying process based on the principle of damping mechanism, for the purpose of vibration attenuation and structure radiated noise reduction.
Numerical simulation of viscoelastic layer rearrangement in polymer melts using OpenFOAM®
Energy Technology Data Exchange (ETDEWEB)
Köpplmayr, Thomas, E-mail: tkoepplmayr@gmail.com; Mayrhofer, Elias [Institute of Polymer Extrusion and Compounding, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz (Austria)
2015-05-22
In addition to their shear-thinning behavior, polymer melts are characterized by first and second normal stress differences, which cause secondary motions. Polymer coextrusion processes involve viscoelastic two-phase flows that influence layer formation. Using polymer melts with different pigmentation makes visible the layers deformed by second normal stress differences. We used a new solver for the OpenFOAM CFD toolbox which handles viscoelastic two-phase flows. A derivative of the volume-of-fluid (VoF) methodology was employed to describe the interface. Different types of polymer melt, such as polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) were investigated. In a coextrusion process, the less viscous phase usually tends to encapsulate the more viscous one. However, the different viscoelastic properties of the melts also influence interface deformation. The materials were characterized by small-amplitude oscillatory-shear rheometry, and a multimode Giesekus model was used to fit shear viscosity, storage and loss modulus. Our simulations also took interfacial tension into account. Experimental observations and corresponding numerical simulations were found to be in good accordance.
Numerical simulation of viscoelastic layer rearrangement in polymer melts using OpenFOAM®
International Nuclear Information System (INIS)
Köpplmayr, Thomas; Mayrhofer, Elias
2015-01-01
In addition to their shear-thinning behavior, polymer melts are characterized by first and second normal stress differences, which cause secondary motions. Polymer coextrusion processes involve viscoelastic two-phase flows that influence layer formation. Using polymer melts with different pigmentation makes visible the layers deformed by second normal stress differences. We used a new solver for the OpenFOAM CFD toolbox which handles viscoelastic two-phase flows. A derivative of the volume-of-fluid (VoF) methodology was employed to describe the interface. Different types of polymer melt, such as polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) were investigated. In a coextrusion process, the less viscous phase usually tends to encapsulate the more viscous one. However, the different viscoelastic properties of the melts also influence interface deformation. The materials were characterized by small-amplitude oscillatory-shear rheometry, and a multimode Giesekus model was used to fit shear viscosity, storage and loss modulus. Our simulations also took interfacial tension into account. Experimental observations and corresponding numerical simulations were found to be in good accordance
Directory of Open Access Journals (Sweden)
Tai-Hong Cheng
2015-01-01
Full Text Available Composite materials are increasingly used in wind blade because of their superior mechanical properties such as high strength-to-weight and stiffness-to-weight ratio. This paper presents vibration and damping analysis of fiberreinforced composite wind turbine blade with viscoelastic damping treatment. The finite element method based on full layerwise displacement theory was employed to analyze the damping, natural frequency, and modal loss factor of composite shell structure. The lamination angle was considered in mathematical modeling. The curved geometry, transverse shear, and normal strains were exactly considered in present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The frequency response functions of curved composite shell structure and wind blade were calculated. The results show that the damping ratio of viscoelastic layer is found to be very sensitive to determination of magnitude of composite structures. The frequency response functions with variety of thickness of damping layer were investigated. Moreover, the natural frequency, modal loss factor, and mode shapes of composite fiber reinforced wind blade with viscoelastic damping control were calculated.
Atomic theory of viscoelastic response and memory effects in metallic glasses
Cui, Bingyu; Yang, Jie; Qiao, Jichao; Jiang, Minqiang; Dai, Lanhong; Wang, Yun-Jiang; Zaccone, Alessio
2017-09-01
An atomic-scale theory of the viscoelastic response of metallic glasses is derived from first principles, using a Zwanzig-Caldeira-Leggett system-bath Hamiltonian as a starting point within the framework of nonaffine linear response to mechanical deformation. This approach provides a generalized Langevin equation (GLE) as the average equation of motion for an atom or ion in the material, from which non-Markovian nonaffine viscoelastic moduli are extracted. These can be evaluated using the vibrational density of states (DOS) as input, where the boson peak plays a prominent role in the mechanics. To compare with experimental data for binary ZrCu alloys, a numerical DOS was obtained from simulations of this system, which also take electronic degrees of freedom into account via the embedded-atom method for the interatomic potential. It is shown that the viscoelastic α -relaxation, including the α -wing asymmetry in the loss modulus, can be very well described by the theory if the memory kernel (the non-Markovian friction) in the GLE is taken to be a stretched-exponential decaying function of time. This finding directly implies strong memory effects in the atomic-scale dynamics and suggests that the α -relaxation time is related to the characteristic time scale over which atoms retain memory of their previous collision history. This memory time grows dramatically below the glass transition.
Freed, Alan; Diethelm, Kai; Luchko, Yury
2002-01-01
This is the first annual report to the U.S. Army Medical Research and Material Command for the three year project "Advanced Soft Tissue Modeling for Telemedicine and Surgical Simulation" supported by grant No. DAMD17-01-1-0673 to The Cleveland Clinic Foundation, to which the NASA Glenn Research Center is a subcontractor through Space Act Agreement SAA 3-445. The objective of this report is to extend popular one-dimensional (1D) fractional-order viscoelastic (FOV) materials models into their three-dimensional (3D) equivalents for finitely deforming continua, and to provide numerical algorithms for their solution.
On the propagation of transient waves in a viscoelastic Bessel medium
Colombaro, Ivano; Giusti, Andrea; Mainardi, Francesco
2017-06-01
In this paper, we discuss the uniaxial propagation of transient waves within a semi-infinite viscoelastic Bessel medium. First, we provide the analytic expression for the response function of the material as we approach the wave front. To do so, we take profit of a revisited version of the so called Buchen-Mainardi algorithm. Secondly, we provide an analytic expression for the long-time behavior of the response function of the material. This result is obtained by means of the Tauberian theorems for the Laplace transform. Finally, we relate the obtained results to a peculiar model for fluid-filled elastic tubes.
A discrete-element model for viscoelastic deformation and fracture of glacial ice
Riikilä, T. I.; Tallinen, T.; Åström, J.; Timonen, J.
2015-10-01
A discrete-element model was developed to study the behavior of viscoelastic materials that are allowed to fracture. Applicable to many materials, the main objective of this analysis was to develop a model specifically for ice dynamics. A realistic model of glacial ice must include elasticity, brittle fracture and slow viscous deformations. Here the model is described in detail and tested with several benchmark simulations. The model was used to simulate various ice-specific applications with resulting flow rates that were compatible with Glen's law, and produced under fragmentation fragment-size distributions that agreed with the known analytical and experimental results.
Hama, Brian; Mahajan, Gautam; Kothapalli, Chandrasekhar
2017-08-01
Exogenous delivery of cartilage extract is being explored as a promising candidate for knee arthritis treatment as it biomimics native cartilage tissue characteristics. In this study, we report on the rheological characterization of aqueous suspensions constituted from a powdered form of unhydrolyzed chicken sternum extract. The effect of particle size (as-received vs. milled), suspension fluid (water vs. PBS), and temperature (37°C vs. 4°C), on the viscoelastic properties of the sternum extract based particulate suspensions were evaluated. Results showed that these suspensions exhibit shear-thinning characteristics as shear rate (γ̇) increases, while viscosity (η), storage (G'), and loss (G″) moduli of the suspensions increased with increasing particulate loading (ϕ: 2.5-10wt%). Reducing the as-received particle size by milling decreased G', G, and η of the suspensions and increased the influence of ϕ on these properties, possibly due to improved particle packing. Replacing water with PBS had no significant effect on the rheological properties, but temperature reduction from 37°C to 4°C increased G', G", and η of the suspensions and lowered the impact of powder loading on viscoelastic properties. The suspension's time-dependent response was typical of viscoelastic materials, characterized by an asymptotical approach to a final stress (stress relaxation) or strain (creep). Results were fit to a power-law model for creep, a general relaxation model for exponential decay in stress, Carreau-Yasuda models for flow curves, and a two-parameter Liu model to identify the maximum powder loading (ϕ m ). Among the various forces involved in particle-particle interactions within these suspensions, electrostatic forces appeared to dominate the most. Such characterization of the viscoelastic nature of these suspensions would help in formulating stable injectable cartilage extract based therapeutics for in vivo applications. Copyright © 2017 Elsevier Ltd. All
2.5-D frequency-domain viscoelastic wave modelling using finite-element method
Zhao, Jian-guo; Huang, Xing-xing; Liu, Wei-fang; Zhao, Wei-jun; Song, Jian-yong; Xiong, Bin; Wang, Shang-xu
2017-10-01
2-D seismic modelling has notable dynamic information discrepancies with field data because of the implicit line-source assumption, whereas 3-D modelling suffers from a huge computational burden. The 2.5-D approach is able to overcome both of the aforementioned limitations. In general, the earth model is treated as an elastic material, but the real media is viscous. In this study, we develop an accurate and efficient frequency-domain finite-element method (FEM) for modelling 2.5-D viscoelastic wave propagation. To perform the 2.5-D approach, we assume that the 2-D viscoelastic media are based on the Kelvin-Voigt rheological model and a 3-D point source. The viscoelastic wave equation is temporally and spatially Fourier transformed into the frequency-wavenumber domain. Then, we systematically derive the weak form and its spatial discretization of 2.5-D viscoelastic wave equations in the frequency-wavenumber domain through the Galerkin weighted residual method for FEM. Fixing a frequency, the 2-D problem for each wavenumber is solved by FEM. Subsequently, a composite Simpson formula is adopted to estimate the inverse Fourier integration to obtain the 3-D wavefield. We implement the stiffness reduction method (SRM) to suppress artificial boundary reflections. The results show that this absorbing boundary condition is valid and efficient in the frequency-wavenumber domain. Finally, three numerical models, an unbounded homogeneous medium, a half-space layered medium and an undulating topography medium, are established. Numerical results validate the accuracy and stability of 2.5-D solutions and present the adaptability of finite-element method to complicated geographic conditions. The proposed 2.5-D modelling strategy has the potential to address modelling studies on wave propagation in real earth media in an accurate and efficient way.
Korayem, M. H.; Habibi Sooha, Y.; Rastegar, Z.
2018-05-01
Manipulation of the biological particles by atomic force microscopy is used to transfer these particles inside body's cells, diagnosis and destruction of the cancer cells and drug delivery to damaged cells. According to the impossibility of simultaneous observation of this process, the importance of modeling and simulation can be realized. The contact of the tip with biological particle is important during manipulation, therefore, the first step of the modeling is choosing appropriate contact model. Most of the studies about contact between atomic force microscopy and biological particles, consider the biological particle as an elastic material. This is not an appropriate assumption because biological cells are basically soft and this assumption ignores loading history. In this paper, elastic and viscoelastic JKR theories were used in modeling and simulation of the 3D manipulation for three modes of tip-particle sliding, particle-substrate sliding and particle-substrate rolling. Results showed that critical force and time in motion modes (sliding and rolling) for two elastic and viscoelastic states are very close but these magnitudes were lower in the viscoelastic state. Then, three friction models, Coulomb, LuGre and HK, were used for tip-particle sliding mode in the first phase of manipulation to make results closer to reality. In both Coulomb and LuGre models, critical force and time are very close for elastic and viscoelastic states but in general critical force and time prediction of HK model was higher than LuGre and the LuGre model itself had higher prediction than Coulomb.
Viscoelasticity in Polymers: Phenomenological to Molecular Mathematical Modelling
National Research Council Canada - National Science Library
Banks, H. T; Luke, N. S
2006-01-01
We report on two recent advances in the modelling of viscoelastic polymers: (i) a new constitutive model which combines the virtual stick-slip continuum "molecular-based" ideas of Johnson and Stacer with the Rouse bead chain ideas; (ii...
Linear Viscoelasticity, Reptation, Chain Stretching and Constraint Release
DEFF Research Database (Denmark)
Neergaard, Jesper; Schieber, Jay D.; Venerus, David C.
2000-01-01
A recently proposed self-consistent reptation model - alreadysuccessful at describing highly nonlinear shearing flows of manytypes using no adjustable parameters - is used here to interpretthe linear viscoelasticity of the same entangled polystyrenesolution. Using standard techniques, a relaxatio...
Experimental characterisation of a novel viscoelastic rectifier design
DEFF Research Database (Denmark)
Jensen, Kristian Ejlebjærg; Okkels, Fridolin; Szabo, Peter
2012-01-01
A planar microfluidic system with contractions and obstacles is characterized in terms of anisotropic flow resistance due to viscoelastic effects. The working mechanism is illustrated using streak photography, while the diodicity performance is quantified by pressure drop measurements. The point ...
Stagnation point flow and heat transfer for a viscoelastic fluid ...
Indian Academy of Sciences (India)
M REZA
2017-11-09
Nov 9, 2017 ... MS received 15 August 2016; revised 26 February 2017; accepted 15 March 2017; published online 9 ... surface has several engineering applications within, for ... viscoelastic fluids in several industrial manufacturing pro-.
Large deflection of viscoelastic beams using fractional derivative model
International Nuclear Information System (INIS)
Bahranini, Seyed Masoud Sotoodeh; Eghtesad, Mohammad; Ghavanloo, Esmaeal; Farid, Mehrdad
2013-01-01
This paper deals with large deflection of viscoelastic beams using a fractional derivative model. For this purpose, a nonlinear finite element formulation of viscoelastic beams in conjunction with the fractional derivative constitutive equations has been developed. The four-parameter fractional derivative model has been used to describe the constitutive equations. The deflected configuration for a uniform beam with different boundary conditions and loads is presented. The effect of the order of fractional derivative on the large deflection of the cantilever viscoelastic beam, is investigated after 10, 100, and 1000 hours. The main contribution of this paper is finite element implementation for nonlinear analysis of viscoelastic fractional model using the storage of both strain and stress histories. The validity of the present analysis is confirmed by comparing the results with those found in the literature.
Stability of non-linear constitutive formulations for viscoelastic fluids
Siginer, Dennis A
2014-01-01
Stability of Non-linear Constitutive Formulations for Viscoelastic Fluids provides a complete and up-to-date view of the field of constitutive equations for flowing viscoelastic fluids, in particular on their non-linear behavior, the stability of these constitutive equations that is their predictive power, and the impact of these constitutive equations on the dynamics of viscoelastic fluid flow in tubes. This book gives an overall view of the theories and attendant methodologies developed independently of thermodynamic considerations as well as those set within a thermodynamic framework to derive non-linear rheological constitutive equations for viscoelastic fluids. Developments in formulating Maxwell-like constitutive differential equations as well as single integral constitutive formulations are discussed in the light of Hadamard and dissipative type of instabilities.
On the stabilization of viscoelastic laminated beams with interfacial slip
Mustafa, Muhammad I.
2018-04-01
In this paper, we consider a viscoelastic laminated beam model. This structure is given by two identical uniform layers on top of each other, taking into account that an adhesive of small thickness is bonding the two surfaces and produces an interfacial slip. We use viscoelastic damping with general assumptions on the relaxation function and establish explicit energy decay result from which we can recover the optimal exponential and polynomial rates. Our result generalizes the earlier related results in the literature.
Modelling Viscoelasticity of Loudspeaker Suspensions using Retardation Spectra
DEFF Research Database (Denmark)
Ritter, Tobias; Agerkvist, Finn T.
2010-01-01
, the viscoelastic retardation spectrum, which provides a more fundamental description of the suspension viscoelasticity, is rst used to explain the accuracy of the empirical LOG creep model (Knudsen et al.). Then, two extensions to the LOG model are proposed which include the low and high frequency limit...... of the compliance, not accounted for in the original LOG model. The new creep models are veried by measurements on two 5.5 loudspeakers with different surrounds....
Hirano, Taichi; Sakai, Keiji
2017-07-01
Viscoelasticity is a unique characteristic of soft materials and describes its dynamic response to mechanical stimulations. A creep test is an experimental method for measuring the strain ratio/rate against an applied stress, thereby assessing the viscoelasticity of the materials. We propose two advanced experimental systems suitable for the creep test, adopting our original electromagnetically spinning (EMS) technique. This technique can apply a constant torque by a noncontact mechanism, thereby allowing more sensitive and rapid measurements. The viscosity and elasticity of a semidilute wormlike micellar solution were determined using two setups, and the consistency between the results was assessed.
Directory of Open Access Journals (Sweden)
Allam M. N. M.
2017-12-01
Full Text Available Analytical and numerical nonlinear solutions for rotating variable-thickness functionally graded solid and annular disks with viscoelastic orthotropic material properties are presented by using the method of successive approximations.Variable material properties such as Young’s moduli, density and thickness of the disk, are first introduced to obtain the governing equation. As a second step, the method of successive approximations is proposed to get the nonlinear solution of the problem. In the third step, the method of effective moduli is deduced to reduce the problem to the corresponding one of a homogeneous but anisotropic material. The results of viscoelastic stresses and radial displacement are obtained for annular and solid disks of different profiles and graphically illustrated. The calculated results are compared and the effects due to many parameters are discussed.
Directory of Open Access Journals (Sweden)
Bingyan Jiang
2016-05-01
Full Text Available Ultrasonic plasticizing of polymers for micro-injection molding has been proposed and studied for its unique potential in materials and energy-saving. In our previous work, we have demonstrated the characteristics of the interfacial friction heating mechanism in ultrasonic plasticizing of polymer granulates. In this paper, the other important heating mechanism in ultrasonic plasticizing, i.e., viscoelastic heating for amorphous polymer, was studied by both theoretical modeling and experimentation. The influence mechanism of several parameters, such as the initial temperature of the polymer, the ultrasonic frequency, and the ultrasonic amplitude, was investigated. The results from both numerical simulation and experimentation indicate that the heat generation rate of viscoelastic heating can be significantly influenced by the initial temperature of polymer. The glass transition temperature was found to be a significant shifting point in viscoelastic heating. The heat generation rate is relatively low at the beginning and can have a steep increase after reaching glass transition temperature. In comparison with the ultrasonic frequency, the ultrasonic amplitude has much greater influence on the heat generation rate. In light of the quantitative difference in the viscoelastic heating rate, the limitation of the numerical simulation was discussed in the aspect of the assumptions and the applied mathematical models.
International Nuclear Information System (INIS)
Liu, Jiansheng
2014-01-01
A theoretical method is used to analyze the performance of Love wave sensors with multiple viscoelastic guiding layers on a piezoelectric substrate. The method is based upon the theoretical model for multi-elastic-layer piezoelectric Love waves and the Maxwell–Weichert model for viscoelastic materials. The relationship between sensor performance and the characteristics of Love waves is discussed. Numerical calculation is completed for a Love wave delay line consisting of a viscoelastic SU-8 layer, an elastic SiO 2 layer, an ST-90°X quartz substrate and two interdigital transducers (IDTs) with a period of 40 μm deposited on the substrate surface. The calculated results prove that a Love wave sensor with such a two-layer structure can achieve better performance than a Love wave sensor with only one (visco)elastic or elastic guiding layer. Some interesting abnormal phenomena, such as an oscillation in mass velocity sensitivity (S mv ), are predicted at the area where tail-raising occurs in the propagation velocity. The method and the numerical results presented in this work may help in the development of a high-performing Love wave sensor with multiple layers. (papers)
Influence of gas injection on viscous and viscoelastic properties of Xanthan gum.
Bobade, Veena; Cheetham, Madalyn; Hashim, Jamal; Eshtiaghi, Nicky
2018-05-01
Xanthan gum is widely used as a model fluid for sludge to mimic the rheological behaviour under various conditions including impact of gas injection in sludge. However, there is no study to show the influence of gas injection on rheological properties of xanthan gum specifically at the concentrations at which it is used as a model fluid for sludge with solids concentration above 2%. In this paper, the rheological properties of aqueous xanthan gum solutions at different concentrations were measured over a range of gas injection flow rates. The effect of gas injection on both the flow and viscoelastic behaviour of Xanthan gum (using two different methods - a creep test and a time sweep test) was evaluated. The viscosity curve of different solid concentrations of digested sludge and waste activated sludge were compared with different solid concentrations of Xanthan gum and the results showed that Xanthan gum can mimic the flow behaviour of sludge in flow regime. The results in linear viscoelastic regime showed that increasing gas flow rate increases storage modulus (G'), indicating an increase in the intermolecular associations within the material structure leading to an increase in material strength and solid behaviour. Similarly, in creep test an increase in the gas flow rate decreased strain%, signifying that the material has become more resistant to flow. Both observed behaviour is opposite to what occurs in sludge under similar conditions. The results of both the creep test and the time sweep test indicated that choosing Xanthan gum aqueous solution as a transparent model fluid for sludge in viscoelastic regime under similar conditions involving gas injection in a concentration range studied is not feasible. However Xanthan gum can be used as a model material for sludge in flow regime; because it shows a similar behaviour to sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.
Visco-Elastic Properties of Sodium Hyaluronate Solutions
Kulicke, Werner-Michael; Meyer, Fabian; Bingöl, Ali Ö.; Lohmann, Derek
2008-07-01
Sodium Hyaluronate (NaHA) is a member of the glycosaminoglycans and is present in the human organism as part of the synovial fluid and the vitreous body. HA is mainly commercialized as sodium or potassium salt. It can be extracted from cockscombs or can be produced by bacterial fermentation ensuring a low protein content. Because of its natural origin and toxicological harmlessness, NaHA is used to a great extent for pharmaceutical and cosmetic products. In medical applications, NaHA is already being used as a component of flushing and stabilizing fluids in the treatment of eye cataract and as a surrogate for natural synovial fluid. Another growing domain in the commercial utilization of NaHA is the field of skin care products like dermal fillers or moisturizers. In this spectrum, NaHA is used in dilute over semidilute up to concentrated (0
Structural characterization and viscoelastic constitutive modeling of skin.
Sherman, Vincent R; Tang, Yizhe; Zhao, Shiteng; Yang, Wen; Meyers, Marc A
2017-04-15
A fascinating material, skin has a tensile response which exhibits an extended toe region of minimal stress up to nominal strains that, in some species, exceed 1, followed by significant stiffening until a roughly linear region. The large toe region has been attributed to its unique structure, consisting of a network of curved collagen fibers. Investigation of the structure of rabbit skin reveals that it consists of layers of wavy fibers, each one with a characteristic orientation. Additionally, the existence of two preferred layer orientations is suggested based on the results of small angle X-ray scattering. These observations are used to construct a viscoelastic model consisting of collagen in two orientations, which leads to an in-plane anisotropic response. The structure-based model presented incorporates the elastic straightening and stretching of fibrils, their rotation towards the tensile axis, and the viscous effects which occur in the matrix of the skin due to interfibrillar and interlamellar sliding. The model is shown to effectively capture key features which dictate the mechanical response of skin. Examination by transmission and scanning electron microscopy of rabbit dermis enabled the identification of the key elements in its structure. The organization of collagen fibrils into flat fibers was identified and incorporated into a constitutive model that reproduces the mechanical response of skin. This enhanced quantitative predictive capability can be used in the design of synthetic skin and skin-like structures. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Erisken, Cevat; Kalyon, Dilhan M; Zhou, Jian; Kim, Sahng G; Mao, Jeremy J
2015-10-01
A critical step in biomaterial selection effort is the determination of material as well as the biological properties of the target tissue. Previously, the selection of biomaterials and carriers for dental pulp regeneration has been solely based on empirical experience. In this study, first, the linear viscoelastic material functions and compressive properties of miniature pig dental pulp were characterized using small-amplitude oscillatory shear and uniaxial compression at a constant rate. They were then compared with the properties of hydrogels (ie, agarose, alginate, and collagen) that are widely used in tissue regeneration. The comparisons of the linear viscoelastic material functions of the native pulp tissue with those of the 3 hydrogels revealed the gel-like behavior of the pulp tissue over a relatively large range of time scales (ie, over the frequency range of 0.1-100 rps). At the constant gelation agent concentration of 2%, the dynamic properties (ie, storage and loss moduli and the tanδ) of the collagen-based gel approached those of the native tissue. Under uniaxial compression, the peak normal stresses and compressive moduli of the agarose gel were similar to those of the native tissue, whereas alginate and collagen exhibited significantly lower compressive properties. The linear viscoelastic and uniaxial compressive properties of the dental pulp tissue reported here should enable the more appropriate selection of biogels for dental pulp regeneration via the better tailoring of gelation agents and their concentrations to better mimic the dynamic and compressive properties of native pulp tissue. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Viscoelastic response of a model endothelial glycocalyx
International Nuclear Information System (INIS)
Nijenhuis, Nadja; Spaan, Jos A E; Mizuno, Daisuke; Schmidt, Christoph F
2009-01-01
Many cells cover themselves with a multifunctional polymer coat, the pericellular matrix (PCM), to mediate mechanical interactions with the environment. A particular PCM, the endothelial glycocalyx (EG), is formed by vascular endothelial cells at their luminal side, forming a mechanical interface between the flowing blood and the endothelial cell layer. The glycosaminoglycan (GAG) hyaluronan (HA) is involved in the main functions of the EG, mechanotransduction of fluid shear stress and molecular sieving. HA, due to its length, is the only GAG in the EG or any other PCM able to form an entangled network. The mechanical functions of the EG are, however, impaired when any one of its components is removed. We here used microrheology to measure the effect of the EG constituents heparan sulfate, chondroitin sulfate, whole blood plasma and albumin on the high-bandwidth mechanical properties of a HA solution. Furthermore, we probed the effect of the hyaldherin aggrecan, a constituent of the PCM of chondrocytes, and very similar to versican (present in the PCM of various cells, and possibly in the EG). We show that components directly interacting with HA (chondroitin sulfate and aggrecan) can increase the viscoelastic shear modulus of the polymer composite
Viscoelastic characterization and self-heating behavior of laminated fiber composite driveshafts
International Nuclear Information System (INIS)
Henry, Todd C.; Bakis, Charles E.; Smith, Edward C.
2015-01-01
Highlights: • Carbon fiber composites with different matrix moduli were manufactured. • The composites are of interest for flexible driveshaft applications. • The composites are viscoelastically characterized using dynamic mechanical analysis. • The viscoelastic properties are used to predict self-heating in spinning shafts. • Measured and predicted temperatures of shafts agreed within 0.7 °C. - Abstract: The high cyclic strain capacity of fiber reinforced polymeric composites presents an opportunity to design driveshafts that can transmit high power under imperfect alignment conditions without the use of flexible couplers. In weight sensitive applications such as rotorcraft, the design of highly optimized driveshafts requires a general modeling capability that can predict a number of shaft performance characteristics—one of which is self-heating due to dynamic loading conditions. The current investigation developed three new flexible matrix composite materials of intermediate matrix modulus that, together with previously developed composites, cover the full range of material properties that are of potential interest in driveshaft design. An analytical model for the self-heating of spinning, misaligned, laminated composite shafts was refined to suit the full range of materials. Inputs to the model include ply-level dynamic material properties of the composite, cyclic strain amplitude and frequency, and various heat transfer constants related to conduction, radiation, and convection. Predictions of the surface temperature of spinning shafts correspond well with experimental measurements for bending strains of up to 2000 με, which encompasses the range of strains expected in rotorcraft driveshaft applications
Directory of Open Access Journals (Sweden)
Daisuke Nishiura
2017-06-01
Full Text Available Simulation of a large number of deformable bodies is often difficult because complex high-level modeling is required to address both multi-body contact and viscoelastic deformation. This necessitates the combined use of a discrete element method (DEM and a finite element method (FEM. In this study, a quadruple discrete element method (QDEM was developed for dynamic analysis of viscoelastic materials using a simpler algorithm compared to the standard FEM. QDEM easily incorporates the contact algorithm used in DEM. As the first step toward multi-body simulation, the fundamental performance of QDEM was investigated for viscoelastic analysis. The amplitude and frequency of cantilever elastic vibration were nearly equal to those obtained by the standard FEM. A comparison of creep recovery tests with an analytical solution showed good agreement between them. In addition, good correlation between the attenuation degree and the real physical viscosity was confirmed for viscoelastic vibration analysis. Therefore, the high accuracy of QDEM in the fundamental analysis of infinitesimal viscoelastic deformations was verified. Finally, the impact response of a ballast and sleeper under cyclic loading on a railway track was analyzed using QDEM as an application of deformable multi-body dynamics. The results showed that the vibration of the ballasted track was qualitatively in good agreement with the actual measurements. Moreover, the ballast layer with high friction reduced the ballasted track deterioration. This study suggests that QDEM, as an alternative to DEM and FEM, can provide deeper insights into the contact dynamics of a large number of deformable bodies.
Energy Technology Data Exchange (ETDEWEB)
Liu, J.C. [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Zhang, Y.Q., E-mail: cyqzhang@zju.edu.cn [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Mechanical Structural Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Fan, L.F. [College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100084 (China)
2017-04-11
The general equation for transverse vibration of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between and each nanoplate subjected to in-plane edge loads is formulated on the basis of the Eringen's nonlocal elastic theory and the Kelvin model. The factors of the structural damping, medium damping, small size effect, loading ratio, and Winkler modulus and shear modulus of the medium are incorporated in the formulation. Based on the Navier's method, the analytical solutions for vibrational frequency and buckling load of the system with simply supported boundary conditions are obtained. The influences of these factors on vibrational frequency and buckling load of the system are discussed. It is demonstrated that the vibrational frequency of the system for the out-of-phase vibration is dependent upon the structural damping, small size effect and viscoelastic Pasternak medium, whereas the vibrational frequency for the in-phase vibration is independent of the viscoelastic Pasternak medium. While the buckling load of the system for the in-phase buckling case has nothing to do with the viscoelastic Pasternak medium, the buckling load for the out-of-phase case is related to the small size effect, loading ratio and Pasternak medium. - Highlights: • Vibration of double-viscoelastic-FGM-nanoplate system under in-plane edge loads is investigated. • Biaxial buckling of the system with simply supported boundary conditions is analyzed. • Explicit expression for the vibrational frequency and buckling load is obtained. • Impacts of viscoelastic Pasternak medium on vibrational frequency and buckling load are discussed. • Influences of structural damping, small size effect and loading ratio are also considered.
The rheological properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover were investigated. The corn stover MFC gels exhibited concentration-dependent viscoelastic properties. Higher corn stover MFC concentrations resulted in stronger viscoelastic properties. Th...
Viscoelastic properties of doped-ceria under reduced oxygen partial pressure
DEFF Research Database (Denmark)
Teocoli, Francesca; Esposito, Vincenzo
2014-01-01
The viscoelastic properties of gadolinium-doped ceria (CGO) powder compacts are characterized during sintering and cooling under reduced oxygen partial pressure and compared with conventional sintering in air. Highly defective doped ceria in reducing conditions shows peculiar viscoelastic...
Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study
International Nuclear Information System (INIS)
Passeri, D.; Bettucci, A.; Biagioni, A.; Rossi, M.; Alippi, A.; Tamburri, E.; Lucci, M.; Davoli, I.; Berezina, S.
2009-01-01
We propose a nanoindentation technique based on atomic force microscopy (AFM) that allows one to deduce both indentation modulus and hardness of viscoelastic materials from the force versus penetration depth dependence, obtained by recording the AFM cantilever deflection as a function of the sample vertical displacement when the tip is pressed against (loading phase) and then removed from (unloading phase) the surface of the sample. Reliable quantitative measurements of both indentation modulus and hardness of the investigated sample are obtained by calibrating the technique through a set of different polymeric samples, used as reference materials, whose mechanical properties have been previously determined by standard indentation tests. By analyzing the dependence of the cantilever deflection versus time, the proposed technique allows one to evaluate and correct the effect of viscoelastic properties of the investigated materials, by adapting a post-experiment data processing procedure well-established for standard depth sensing indentation tests. The technique is described in the case of the measurement of indentation modulus and hardness of a thin film of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate), deposited by chronoamperometry on an indium tin oxide (ITO) substrate.
Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study
Energy Technology Data Exchange (ETDEWEB)
Passeri, D., E-mail: daniele.passeri@uniroma1.it [Dipartimento di Energetica, Universita di Roma ' La Sapienza' , Via A. Scarpa 16, 00161 Roma (Italy); Bettucci, A.; Biagioni, A.; Rossi, M.; Alippi, A. [Dipartimento di Energetica, Universita di Roma ' La Sapienza' , Via A. Scarpa 16, 00161 Roma (Italy); Tamburri, E. [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); Lucci, M.; Davoli, I. [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); Berezina, S. [Department of Physics, University of Zilina, 01026, Univerzitna 1 Zilina (Slovakia)
2009-11-15
We propose a nanoindentation technique based on atomic force microscopy (AFM) that allows one to deduce both indentation modulus and hardness of viscoelastic materials from the force versus penetration depth dependence, obtained by recording the AFM cantilever deflection as a function of the sample vertical displacement when the tip is pressed against (loading phase) and then removed from (unloading phase) the surface of the sample. Reliable quantitative measurements of both indentation modulus and hardness of the investigated sample are obtained by calibrating the technique through a set of different polymeric samples, used as reference materials, whose mechanical properties have been previously determined by standard indentation tests. By analyzing the dependence of the cantilever deflection versus time, the proposed technique allows one to evaluate and correct the effect of viscoelastic properties of the investigated materials, by adapting a post-experiment data processing procedure well-established for standard depth sensing indentation tests. The technique is described in the case of the measurement of indentation modulus and hardness of a thin film of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate), deposited by chronoamperometry on an indium tin oxide (ITO) substrate.
Fully coupled heat conduction and deformation analyses of nonlinear viscoelastic composites
Khan, Kamran
2012-05-01
This study presents an integrated micromechanical model-finite element framework for analyzing coupled heat conduction and deformations of particle-reinforced composite structures. A simplified micromechanical model consisting of four sub-cells, i.e., one particle and three matrix sub-cells is formulated to obtain the effective thermomechanical properties and micro-macro field variables due to coupled heat conduction and nonlinear thermoviscoelastic deformation of a particulate composite that takes into account the dissipation of energy from the viscoelastic constituents. A time integration algorithm for simultaneously solving the equations that govern heat conduction and thermoviscoelastic deformations of isotropic homogeneous materials is developed. The algorithm is then integrated to the proposed micromechanical model. A significant temperature generation due to the dissipation effect in the viscoelastic matrix was observed when the composite body is subjected to cyclic mechanical loadings. Heat conduction due to the dissipation of the energy cannot be ignored in predicting the factual temperature and deformation fields within the composite structure, subjected to cyclic loading for a long period. A higher creep resistant matrix material or adding elastic particles can lower the temperature generation. Our analyses suggest that using particulate composites and functionally graded materials can reduce the heat generation due to energy dissipation. © 2012 Elsevier Ltd.
Hamzaoui, Rabah
2013-06-23
In this article, we present an identification procedure that allows the determination of the viscoelasticity behavior of different grades of pure bitumen (bitumen 35/50 and bitumen 10/20). The procedure required in the first stage a mechanical response based on macroindentation experiments with a cylindrical indenter. A finite element simulation was performed in the second stage to compute the mechanical response corresponding to a viscoelasticity model described by three mechanical parameters. The comparison between the experimental and numerical responses showed a perfect matching. In addition, the identification procedure helped to discriminate between different bitumens characterized by different asphaltene and maltene contents. Finally, the developed procedure could be used as an efficient tool to characterize the mechanical behavior of the viscoelastic materials, thanks to the quantified relationship between the viscoleastic parameters and the force-penetration response. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3440-3450, 2013 Copyright © 2013 Wiley Periodicals, Inc.
Lattice Boltzmann model for three-phase viscoelastic fluid flow
Xie, Chiyu; Lei, Wenhai; Wang, Moran
2018-02-01
A lattice Boltzmann (LB) framework is developed for simulation of three-phase viscoelastic fluid flows in complex geometries. This model is based on a Rothman-Keller type model for immiscible multiphase flows which ensures mass conservation of each component in porous media even for a high density ratio. To account for the viscoelastic effects, the Maxwell constitutive relation is correctly introduced into the momentum equation, which leads to a modified lattice Boltzmann evolution equation for Maxwell fluids by removing the normal but excess viscous term. Our simulation tests indicate that this excess viscous term may induce significant errors. After three benchmark cases, the displacement processes of oil by dispersed polymer are studied as a typical example of three-phase viscoelastic fluid flow. The results show that increasing either the polymer intrinsic viscosity or the elastic modulus will enhance the oil recovery.
Surface loading of a viscoelastic earth-I. General theory
Tromp, Jeroen; Mitrovica, Jerry X.
1999-06-01
We present a new normal-mode formalism for computing the response of an aspherical, self-gravitating, linear viscoelastic earth model to an arbitrary surface load. The formalism makes use of recent advances in the theory of the Earth's free oscillations, and is based upon an eigenfunction expansion methodology, rather than the tradi-tional Love-number approach to surface-loading problems. We introduce a surface-load representation theorem analogous to Betti's reciprocity relation in seismology. Taking advantage of this theorem and the biorthogonality of the viscoelastic modes, we determine the complete response to a surface load in the form of a Green's function. We also demonstrate that each viscoelastic mode has its own unique energy partitioning, which can be used to characterize it. In subsequent papers, we apply the theory to spherically symmetric and aspherical earth models.
Viscoelastic Plate Analysis Based on Gâteaux Differential
Directory of Open Access Journals (Sweden)
Kadıoğlu Fethi
2016-01-01
Full Text Available In this study, it is aimed to analyze the quasi-static response of viscoelastic Kirchhoff plates with mixed finite element formulation based on the Gâteaux differential. Although the static response of elastic plate, beam and shell structures is a widely studied topic, there are few studies that exist in the literature pertaining to the analysis of the viscoelastic structural elements especially with complex geometries, loading conditions and constitutive relations. The developed mixed finite element model in transformed Laplace-Carson space has four unknowns as displacement, bending and twisting moments in addition to the dynamic and geometric boundary condition terms. Four-parameter solid model is employed for modelling the viscoelastic behaviour. For transformation of the solutions obtained in the Laplace-Carson domain to the time domain, different numerical inverse transform techniques are employed. The developed solution technique is applied to several quasi-static example problems for the verification of the suggested numerical procedure.
Analysis of viscoelastic flow in tin phosphate glass
International Nuclear Information System (INIS)
Cha, Jaemin; Asida, Yuto; Takebe, Hiromichi
2011-01-01
The change of the viscoelastic flow near the imprinting temperature was analyzed by a penetration method with a commercial TMA and the result was compared with thermally-imprinted SnO-P 2 O 5 (SP) and SnO-B 2 O 3 -P 2 O 5 (SBP) glass samples by an imprint apparatus. The viscosity of SP glass increases monotonically with increasing SnO content and the specific movement is shown in viscoelastic flow under the optimized thermal imprinting temperature for SP glasses.
A generalization of the bond fluctuation model to viscoelastic environments
International Nuclear Information System (INIS)
Fritsch, Christian C
2014-01-01
A lattice-based simulation method for polymer diffusion in a viscoelastic medium is presented. This method combines the eight-site bond fluctuation model with an algorithm for the simulation of fractional Brownian motion on the lattice. The method applies to unentangled self-avoiding chains and is probed for anomalous diffusion exponents α between 0.7 and 1.0. The simulation results are in very good agreement with the predictions of the generalized Rouse model of a self-avoiding chain polymer in a viscoelastic medium. (paper)
Modelling nonlinear viscoelastic behaviours of loudspeaker suspensions-like structures
Maillou, Balbine; Lotton, Pierrick; Novak, Antonin; Simon, Laurent
2018-03-01
Mechanical properties of an electrodynamic loudspeaker are mainly determined by its suspensions (surround and spider) that behave nonlinearly and typically exhibit frequency dependent viscoelastic properties such as creep effect. The paper aims at characterizing the mechanical behaviour of electrodynamic loudspeaker suspensions at low frequencies using nonlinear identification techniques developed in recent years. A Generalized Hammerstein based model can take into account both frequency dependency and nonlinear properties. As shown in the paper, the model generalizes existing nonlinear or viscoelastic models commonly used for loudspeaker modelling. It is further experimentally shown that a possible input-dependent law may play a key role in suspension characterization.
Neutron and gamma radiation effects on the viscoelastic behaviour of poly (aryl ether ether ketone)
International Nuclear Information System (INIS)
Page, J.Y.S.; Bonon, H.W.; Bui, V.T.
1997-01-01
The effects of combined neutron and gamma radiation on the viscoelastic behaviour of two industrial semi-crystalline PEEK grades (VICTREX 150P and 450P) were investigated. Tensile test samples were processed on an ENGEL55 injection moulder, then irradiated in a reactor pool environment, against the reactor vessel wall of the SLOWPOKE-2 facility at the Royal Military College of Canada (RMC), for exposures resulting in dosages ranging from 10 kGy to 320 kGy. First, the morphology of the irradiated resins was characterized by differential scanning calorimetry (DSC), X-ray diffraction and density measurements. Secondly, the viscoelastic behaviour of the material was studied at three thermodynamic states, in order to define the nature of the structural damage suffered by PEEK, by comparing its degrees of molecular motion with the dose received. Therefore, standard mechanical testing was performed at room temperature, stress relaxation near the glass transition temperature (T g ), at 140 degrees C, and melt viscosity above the melting point (T m ), at 350 degrees C. Results confirmed that PEEK is highly resistant to radiation, but also suggested that PEEK degrades faster under a combined neutron and gamma flux, in a reactor pool environment, than observed in previous work under electron beam or gamma alone. The density increased slightly over the range of irradiation (150P: 1300 to 1303 kg/m 3 ; 450P: 1296 to 1299 kg/m 3 ), while the crystallinity (150P: 27 %, 450P: 24 %), and the thermal properties, like T g and T m , remained unaffected. Therefore, the increases in density were attributed to transformations occurring mostly in the amorphous phase, which is also consistent with previous work. The viscoelastic behaviour analysis provided the following damage assessment for PEEK: the amorphous phase is subject to both crosslinking and chain scission; the effects of chain scission, on the viscoelastic behaviour of PEEK, are predominant for doses high than 100 kGy; tie
Directory of Open Access Journals (Sweden)
Wei Cao
2016-04-01
Full Text Available For this study, the Binzhou perpetual pavement test sections constructed in Shandong Province, China, were simulated for long-term fatigue performance using the layered viscoelastic pavement analysis for critical distresses (LVECD finite element software package. In this framework, asphalt concrete was treated in the context of linear viscoelastic continuum damage theory. A recently developed unified fatigue failure criterion that defined the boundaries of the applicable region of the theory was also incorporated. The mechanistic modeling of the fatigue mechanisms was able to accommodate the complex temperature variations and loading conditions of the field pavements in a rigorous manner. All of the material models were conveniently characterized by dynamic modulus tests and direct tension cyclic fatigue tests in the laboratory using cylindrical specimens. By comparing the obtained damage characteristic curves and failure criteria, it is found that mixtures with small aggregate particle sizes, a dense gradation, and modified asphalt binder tended to exhibit the best fatigue resistance at the material level. The 15-year finite element structural simulation results for all the test sections indicate that fatigue performance has a strong dependence on the thickness of the asphalt pavements. Based on the predicted location and severity of the fatigue damage, it is recommended that Sections 1 and 3 of the Binzhou test sections be employed for perpetual pavement design.
Mesgouez, A.
2018-05-01
The determination of equivalent viscoelastic properties of heterogeneous objects remains challenging in various scientific fields such as (geo)mechanics, geophysics or biomechanics. The present investigation addresses the issue of the identification of effective constitutive properties of a binary object by using a nonlinear and full waveform inversion scheme. The inversion process, without any regularization technique or a priori information, aims at minimizing directly the discrepancy between the full waveform responses of a bi-material viscoelastic cylindrical object and its corresponding effective homogeneous object. It involves the retrieval of five constitutive equivalent parameters. Numerical simulations are performed in a laboratory-scale two-dimensional configuration: a transient acoustic plane wave impacts the object and the diffracted fluid pressure, solid stress or velocity component fields are determined using a semi-analytical approach. Results show that the retrieval of the density and of the real parts of both the compressional and the shear wave velocities have been carried out successfully regarding the number and location of sensors, the type of sensors, the size of the searching space, the frequency range of the incident plane pressure wave, and the change in the geometric or mechanical constitution of the bi-material object. The retrieval of the imaginary parts of the wave velocities can reveal in some cases the limitations of the proposed approach.
Numerical and Experimental Low-Velocity Impact Behaivor of Sandwich Plates with Viscoelastic Core
Directory of Open Access Journals (Sweden)
Soroush Sadeghnejad
2016-03-01
Full Text Available A numerical and experimental low-velocity impact behavior of sandwich plates have been presently studied with regard to the compressibility and viscoelasticity features of their cores. Face sheets were assumed to be anisotropic composites or isotropic aluminum materials and a viscoelastic behavior has been considered for core. The boundary conditions are assumed to be simply supported or rigid. Abaqus, as FEM software, and its python script programming feature, have been used to model the specimens. To model hyper-viscoelastic nonlinear behavior of the core, Ogden hyper-foam elasticity and Prony series approach are manipulated. To solve the numerical problem, dynamic explicit solver option with sufficient solving amplitude has been used. Prony series have been used to model the core time-dependent behavior. In conjunction with a simple indentation experiment, FEM used to formulate a novel method for finding the Prony series coefficients. By performing some low-velocity impact experiments, the impact force and displacement of the composite sandwich plates have been investigated. The results indicate that increasing the structural damping increases the contact time and missing energy and decreases the stored energy of the system. The structures with composite face sheets have a minimum ratio of upper face sheet displacement to lower face sheet displacement in comparison to those with the isotropic face sheets. Impact behavior of isotropic face sheet specimens are more flattened than that of the composite face sheets. In addition, the specific energy stored in the sandwich plates with composite face sheets, on different supports, is greater than that stored in the aluminum face sheets.
Parshin, D. A.; Manzhirov, A. V.
2018-04-01
Quasistatic mechanical problems on additive manufacturing aging viscoelastic solids are investigated. The processes of piecewise-continuous accretion of such solids are considered. The consideration is carried out in the framework of linear mechanics of growing solids. A theorem about commutativity of the integration over an arbitrary surface increasing in the solid growing process and the time-derived integral operator of viscoelasticity with a limit depending on the solid point is proved. This theorem provides an efficient way to construct on the basis of Saint-Venant principle solutions of nonclassical boundary-value problems for describing the mechanical behaviour of additively formed solids with integral satisfaction of boundary conditions on the surfaces expanding due to the additional material influx to the formed solid. The constructed solutions will retrace the evolution of the stress-strain state of the solids under consideration during and after the processes of their additive formation. An example of applying the proved theorem is given.
Directory of Open Access Journals (Sweden)
Ying Li
2017-01-01
Full Text Available The nonlinear parametric vibration of an axially moving string made by rubber-like materials is studied in the paper. The fractional viscoelastic model is used to describe the damping of the string. Then, a new nonlinear fractional mathematical model governing transverse motion of the string is derived based on Newton’s second law, the Euler beam theory, and the Lagrangian strain. Taking into consideration the fractional calculus law of Riemann-Liouville form, the principal parametric resonance is analytically investigated via applying the direct multiscale method. Numerical results are presented to show the influences of the fractional order, the stiffness constant, the viscosity coefficient, and the axial-speed fluctuation amplitude on steady-state responses. It is noticeable that the amplitudes and existing intervals of steady-state responses predicted by Kirchhoff’s fractional material model are much larger than those predicted by Mote’s fractional material model.
International Nuclear Information System (INIS)
Ghayesh, Mergen H.; Amabili, Marco; Farokhi, Hamed
2013-01-01
In the present study, the coupled nonlinear dynamics of an axially moving viscoelastic beam with time-dependent axial speed is investigated employing a numerical technique. The equations of motion for both the transverse and longitudinal motions are obtained using Newton’s second law of motion and the constitutive relations. A two-parameter rheological model of the Kelvin–Voigt energy dissipation mechanism is employed in the modelling of the viscoelastic beam material, in which the material time derivative is used in the viscoelastic constitutive relation. The Galerkin method is then applied to the coupled nonlinear equations, which are in the form of partial differential equations, resulting in a set of nonlinear ordinary differential equations (ODEs) with time-dependent coefficients due to the axial acceleration. A change of variables is then introduced to this set of ODEs to transform them into a set of first-order ordinary differential equations. A variable step-size modified Rosenbrock method is used to conduct direct time integration upon this new set of first-order nonlinear ODEs. The mean axial speed and the amplitude of the speed variations, which are taken as bifurcation parameters, are varied, resulting in the bifurcation diagrams of Poincaré maps of the system. The dynamical characteristics of the system are examined more precisely via plotting time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms (FFTs)
Directory of Open Access Journals (Sweden)
Adailton S. Borges
Full Text Available Abstract A broad class of engineering systems can be satisfactory modeled under the assumptions of small deformations and linear material properties. However, many mechanical systems used in modern applications, like structural elements typical of aerospace and petroleum industries, have been characterized by increased slenderness and high static and dynamic loads. In such situations, it becomes indispensable to consider the nonlinear geometric effects and/or material nonlinear behavior. At the same time, in many cases involving dynamic loads, there comes the need for attenuation of vibration levels. In this context, this paper describes the development and validation of numerical models of viscoelastic slender beam-like structures undergoing large displacements. The numerical approach is based on the combination of the nonlinear Cosserat beam theory and a viscoelastic model based on Fractional Derivatives. Such combination enables to derive nonlinear equations of motion that, upon finite element discretization, can be used for predicting the dynamic behavior of the structure in the time domain, accounting for geometric nonlinearity and viscoelastic damping. The modeling methodology is illustrated and validated by numerical simulations, the results of which are compared to others available in the literature.
Xu, Jinsheng; Han, Long; Zheng, Jian; Chen, Xiong; Zhou, Changsheng
2017-11-01
A thermo-damage-viscoelastic model for hydroxyl-terminated polybutadiene (HTPB) composite propellant with consideration for the effect of temperature was implemented in ABAQUS. The damage evolution law of the model has the same form as the crack growth equation for viscoelastic materials, and only a single damage variable S is considered. The HTPB propellant was considered as an isotropic material, and the deviatoric and volumetric strain-stress relations are decoupled and described by the bulk and shear relaxation moduli, respectively. The stress update equations were expressed by the principal stresses σ_{ii}R and the rotation tensor M, the Jacobian matrix in the global coordinate system J_{ijkl} was obtained according to the fourth-order tensor transformation rules. Two models having complex stress states were used to verify the accuracy of the constitutive model. The test results showed good agreement with the strain responses of characteristic points measured by a contactless optical deformation test system, which illustrates that the thermo-damage-viscoelastic model perform well at describing the mechanical properties of an HTPB propellant.
Viscoelastic-Viscoplastic Modelling of the Scratch Response of PMMA
Directory of Open Access Journals (Sweden)
G. Kermouche
2013-01-01
Full Text Available This paper aims at understanding how to model the time-dependent behavior of PMMA during a scratch loading at a constant speed and at middle strain levels. A brief experimental study is first presented, consisting of the analysis of microscratches carried out at various scratching velocities and normal loads. The loading conditions have been chosen in such a way that neither (viscoelasticity nor (viscoplasticity of the PMMA may be neglected a priori. The main analyzed parameter is the tip penetration depth measured during the steady state. Then, a finite element model is used to investigate the potential of classical elastic-viscoplastic constitutive models to reproduce these experimental results. It is mainly shown that these models lead to unsatisfying results. More specifically, it is pointed out here that the time-independent Young modulus used in such models is not suitable. To take into account this feature, a viscoelastic-viscoplastic model based on the connection in series of a viscoelastic part with a viscoplastic part is proposed. It is shown that it leads to more acceptable results, which points out the importance of viscoelasticity in the scratch behavior of solid polymers.
Viscoelastic shock wave in ballistic gelatin behind soft body armor.
Liu, Li; Fan, Yurun; Li, Wei
2014-06-01
Ballistic gelatins are widely used as a surrogate of biological tissue in blunt trauma tests. Non-penetration impact tests of handgun bullets on the 10wt% ballistic gelatin block behind soft armor were carried out in which a high-speed camera recorded the crater׳s movement and pressure sensors imbedded in the gelatin block recorded the pressure waves at different locations. The observed shock wave attenuation indicates the necessity of considering the gelatin׳s viscoelasticity. A three-element viscoelastic constitutive model was adopted, in which the relevant parameters were obtained via fitting the damping free oscillations at the beginning of the creep-mode of rheological measurement, and by examining the data of published split Hopkinson pressure bar (SHPB) experiments. The viscoelastic model is determined by a retardation time of 5.5×10(-5)s for high oscillation frequencies and a stress relaxation time of 2.0-4.5×10(-7)s for shock wave attenuation. Using the characteristic-line method and the spherical wave assumption, the propagation of impact pressure wave front and the subsequent unloading profile can be simulated using the experimental velocity boundary condition. The established viscoelastic model considerably improves the prediction of shock wave attenuation in the ballistic gelatin. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dilational viscoelastic properties of fluid interfaces - III mixed surfactant systems
Energy Technology Data Exchange (ETDEWEB)
Djabbarah, N.F.; Wasan, D.T.
1982-01-01
The surface viscosity and elasticity of solutions of mixed surfactants were determined using the longitudinal wave technique combined with tracer particle measurements. The recent analysis of Maru et al., which was restricted to insoluble monolayers and to monolayers adsorbed from a single surfactant solution, has now been extended to multicomponent solutions. This analysis can be used not only to estimate the ''net'' viscoelastic properties at gas-liquid interfaces but also to estimate the composition as well as the intrinsic viscoelastic properties. Furthermore, when accompanied by separate measurements of shear viscoelastic properties, the above analysis can be used for the determination of dilational viscosity and elasticity. Surface viscoelasticity measurements were conducted on aqueous solutions of sodium lauryl sulfate and sodium lauryl sulfate-lauryl alcohol. Net surface viscosity and elasticity of sodium lauryl sulfate solutions increased with bulk concentration and reached a maximum at a concentration in the neighborhood of the critical micelle concentration. The presence of small amount of lauryl alcohol caused almost an order of magnitude increase in intrinsic surface viscosity and a similar increase in compositional surface elasticity. A comparison between the values of intrinsic surface viscosity and those of surface shear viscosity indicated that surface dilational viscosity exceeds surface shear viscosity by at least two orders of magnitude. These appear to be the first set of data presented hitherto for the surface dilational properties in addition to surface shear properties for the same mixed surfactant systems.
Axial Dynamic Stiffness of Tubular Piles in Viscoelastic Soil
DEFF Research Database (Denmark)
Bayat, Mehdi; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo
2016-01-01
Large offshore wind turbines are f0W1ded on jacket structures. In this study, an elastic full-space jacket structure foundation in an elastic and viscoelastic medium is investigated by using boundary integral equations. The jacket structure foundation is modeled as a hollow, long circular cylinde...
Understanding the viscoelastic behavior of silica filled rubber
de Castro, J.G.
2014-01-01
This thesis focuses on the understanding the viscoelastic behavior of silica filled Nitrile Butadiene Rubber (NBR) using different sizes/surface areas in three different regions of deformation that will be developed in 3 chapters. The characterization of the samples used in this work is described in
Viscoelastic nature of Au nanoparticle–PDMS nanocomposite gels
Indian Academy of Sciences (India)
A stable gel of Au nanoparticles in polydimethylsiloxane (PDMS) nanocomposite is prepared by employing the curing agent of PDMS elastomer as a reducing agent for the formation of Au nanoparticles by an in-situ process. The viscoelastic nature of these gels is very sensitive to the Au nanoparticle loading and the ...
Asymptotic Green's function in homogeneous anisotropic viscoelastic media
Czech Academy of Sciences Publication Activity Database
Vavryčuk, Václav
2007-01-01
Roč. 463, č. 2086 (2007), s. 2689-2707 ISSN 1364-5021 Institutional research plan: CEZ:AV0Z30120515 Keywords : anisotropy * attenuation * Green's function * viscoelasticity Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.523, year: 2007
Cyclic viscoelasticity and viscoplasticity of polypropylene/clay nanocomposites
DEFF Research Database (Denmark)
Drozdov, Aleksey; Christiansen, Jesper de Claville; Hog Lejre, Anne-Lise
2012-01-01
Observations are reported in tensile relaxation tests under stretching and retraction on poly-propylene/clay nanocomposites with various contents of filler. A two-phase constitutive model is developed in cyclic viscoelasticity and viscoplasticity of hybrid nanocomposites. Adjustable parameters in...
Cutting edge science: Laser surgery illuminates viscoelasticity of merotelic kinetochores.
Cabello, Simon; Gachet, Yannick; Tournier, Sylvie
2016-03-28
Increasing evidence in eukaryotic cells suggests that mechanical forces are essential for building a robust mitotic apparatus and correcting inappropriate chromosome attachments. In this issue, Cojoc et al. (2016. J. Cell Biol., http://dx.doi.org/10.1083/jcb.201506011) use laser microsurgery in vivo to measure and study the viscoelastic properties of kinetochores. © 2016 Cabello.
Simulations of flow induced ordering in viscoelastic fluids
Santos de Oliveira, I.S.
2012-01-01
In this thesis we report on simulations of colloidal ordering phenomena in shearthinning viscoelastic fluids under shear flow. Depending on the characteristics of the fluid, the colloids are observed to align in the direction of the flow. These string-like structures remain stable as long as the
Post-seismic relaxation theory on laterally heterogeneous viscoelastic model
Pollitz, F.F.
2003-01-01
Investigation was carried out into the problem of relaxation of a laterally heterogeneous viscoelastic Earth following an impulsive moment release event. The formal solution utilizes a semi-analytic solution for post-seismic deformation on a laterally homogeneous Earth constructed from viscoelastic normal modes, followed by application of mode coupling theory to derive the response on the aspherical Earth. The solution is constructed in the Laplace transform domain using the correspondence principle and is valid for any linear constitutive relationship between stress and strain. The specific implementation described in this paper is a semi-analytic discretization method which assumes isotropic elastic structure and a Maxwell constitutive relation. It accounts for viscoelastic-gravitational coupling under lateral variations in elastic parameters and viscosity. For a given viscoelastic structure and minimum wavelength scale, the computational effort involved with the numerical algorithm is proportional to the volume of the laterally heterogeneous region. Examples are presented of the calculation of post-seismic relaxation with a shallow, laterally heterogeneous volume following synthetic impulsive seismic events, and they illustrate the potentially large effect of regional 3-D heterogeneities on regional deformation patterns.
Viscoelastic Earthquake Cycle Simulation with Memory Variable Method
Hirahara, K.; Ohtani, M.
2017-12-01
There have so far been no EQ (earthquake) cycle simulations, based on RSF (rate and state friction) laws, in viscoelastic media, except for Kato (2002), who simulated cycles on a 2-D vertical strike-slip fault, and showed nearly the same cycles as those in elastic cases. The viscoelasticity could, however, give more effects on large dip-slip EQ cycles. In a boundary element approach, stress is calculated using a hereditary integral of stress relaxation function and slip deficit rate, where we need the past slip rates, leading to huge computational costs. This is a cause for almost no simulations in viscoelastic media. We have investigated the memory variable method utilized in numerical computation of wave propagation in dissipative media (e.g., Moczo and Kristek, 2005). In this method, introducing memory variables satisfying 1st order differential equations, we need no hereditary integrals in stress calculation and the computational costs are the same order of those in elastic cases. Further, Hirahara et al. (2012) developed the iterative memory variable method, referring to Taylor et al. (1970), in EQ cycle simulations in linear viscoelastic media. In this presentation, first, we introduce our method in EQ cycle simulations and show the effect of the linear viscoelasticity on stick-slip cycles in a 1-DOF block-SLS (standard linear solid) model, where the elastic spring of the traditional block-spring model is replaced by SLS element and we pull, in a constant rate, the block obeying RSF law. In this model, the memory variable stands for the displacement of the dash-pot in SLS element. The use of smaller viscosity reduces the recurrence time to a minimum value. The smaller viscosity means the smaller relaxation time, which makes the stress recovery quicker, leading to the smaller recurrence time. Second, we show EQ cycles on a 2-D dip-slip fault with the dip angel of 20 degrees in an elastic layer with thickness of 40 km overriding a Maxwell viscoelastic half
On the skin friction coefficient in viscoelastic wall-bounded flows
International Nuclear Information System (INIS)
Housiadas, Kostas D.; Beris, Antony N.
2013-01-01
Highlights: ► We decompose the skin friction coefficient to its individual contributions. ► The contributions are evaluated using simulation results in turbulent channel flow. ► We present a fitting curve for the drag reduction. ► A new formula for the skin friction coefficient is also developed. ► The results agree well with experimental data from the literature. -- Abstract: Analysis of the skin friction coefficient for wall bounded viscoelastic flows is performed by utilizing available direct numerical simulation (DNS) results for viscoelastic turbulent channel flow. The Oldroyd-B, FENE-P and Giesekus constitutive models are used. First, we analyze the friction coefficient in viscous, viscoelastic and inertial stress contributions, as these arise from suitable momentum balances, for the flow in channels and pipes. Following Fukagata et al. (Phys. Fluids, 14, p. L73, 2002) and Yu et al. (Int. J. Heat. Fluid Flow, 25, p. 961, 2004) these three contributions are evaluated averaging available numerical results, and presented for selected values of flow and rheological parameters. Second, based on DNS results, we develop a universal function for the relative drag reduction as a function of the friction Weissenberg number. This leads to a closed-form approximate expression for the inverse of the square root of the skin friction coefficient for viscoelastic turbulent pipe flow as a function of the friction Reynolds number involving two primary material parameters, and a secondary one which also depends on the flow. The primary parameters are the zero shear-rate elasticity number, El 0 , and the limiting value for the drag reduction at high Weissenberg number, LDR, while the secondary one is the relative wall viscosity, μ w . The predictions reproduce both types A and B of drag reduction, as first introduced by Virk (Nature, 253, p. 109, 1975), corresponding to partially and fully extended polymer molecules, respectively. Comparison of the results for the
Directory of Open Access Journals (Sweden)
Götz Pilarczyk
2016-01-01
Full Text Available The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds.
Suderman, M. T.; McCarthy, M.; Mossell, E.; Watts, D. M.; Peters, C. J.; Shope, R.; Goodwin, T. J.
2006-01-01
A three-dimensional (3-D) tissue-like assembly (TLA) of human bronchial-tracheal mesenchymal (HBTC) cells with an overlay of human bronchial epithelial (BEAS-2B) cells was constructed using a NASA Bioreactor to survey the infectivity of SARS-CoV. This TLA was inoculated with a low passage number Urbani strain of SARS-CoV. At selected intervals over a 10-day period, media and cell aliquots of the 3-D TLA were harvested for viral titer assay and for light and electron microscopy examination. All viral titer assays were negative in both BEAS-2B two-dimensional monolayer and TLA. Light microscopy immunohistochemistry demonstrated antigen-antibody reactivity with anti-SARS-CoV polyclonal antibody to spike and nuclear proteins on cell membranes and cytoplasm. Coronavirus Group 2 cross-reactivity was demonstrated by positive reaction to anti-FIPV 1 and anti-FIPV 1 and 2 antibodies. TLA examination by transmission electron microscopy indicated increasing cytoplasmic vacuolation with numerous electron-dense bodies measuring 45 to 270 nm from days 4 through 10. There was no evidence of membrane blebbing, membrane duplication, or fragmentation of organelles in the TLAs. However, progressive disruption of endoplasmic reticulum was observed throughout the cells. Antibody response to SARS-CoV specific spike and nucleocapsid glycoproteins, cross-reactivity with FIPV antibodies, and the cytoplasmic pathology suggests this HBTE TLA model is permissive to SARS-CoV infection.
Polymeric Materials - introduction and degradation
DEFF Research Database (Denmark)
Kontogeorgis, Georgios
1999-01-01
These notes support the polymer part of the courses 91742 and 91762 (Materials and Corrosion/degradation of materials) taught in IFAKthey contain a short introduction on group contribution methods for estimating properties of polymers, polymer thermodynamics, viscoelasticity models as well...
Directory of Open Access Journals (Sweden)
Nciri M.
2015-01-01
Full Text Available This paper presents an innovative approach for the modelling of viscous behaviour of short-fibre reinforced composites (SFRC with complex distributions of fibre orientations and for a wide range of strain rates. As an alternative to more complex homogenisation methods, the model is based on an additive decomposition of the state potential for the computation of composite’s macroscopic behaviour. Thus, the composite material is seen as the assembly of a matrix medium and several linear elastic fibre media. The division of short fibres into several families means that complex distributions of orientation or random orientation can be easily modelled. The matrix behaviour is strain-rate sensitive, i.e. viscoelastic and/or viscoplastic. Viscoelastic constitutive laws are based on a generalised linear Maxwell model and the modelling of the viscoplasticity is based on an overstress approach. The model is tested for the case of a polypropylene reinforced with short-glass fibres with distributed orientations and subjected to uniaxial tensile tests, in different loading directions and under different strain rates. Results demonstrate the efficiency of the model over a wide range of strain rates.
Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load.
Kocen, Rok; Gasik, Michael; Gantar, Ana; Novak, Saša
2017-03-06
Along with biocompatibility, bioinductivity and appropriate biodegradation, mechanical properties are also of crucial importance for tissue engineering scaffolds. Hydrogels, such as gellan gum (GG), are usually soft materials, which may benefit from the incorporation of inorganic particles, e.g. bioactive glass, not only due to the acquired bioactivity, but also due to improved mechanical properties. They exhibit complex viscoelastic properties, which can be evaluated in various ways. In this work, to reliably evaluate the effect of the bioactive glass (BAG) addition on viscoelastic properties of the composite hydrogel, we employed and compared the three most commonly used techniques, analyzing their advantages and limitations: monotonic uniaxial unconfined compression, small amplitude oscillatory shear (SAOS) rheology and dynamic mechanical analysis (DMA). Creep and small amplitude dynamic strain-controlled tests in DMA are suggested as the best ways for the characterization of mechanical properties of hydrogel composites, whereas the SAOS rheology is more useful for studying the hydrogel's processing kinetics, as it does not induce volumetric changes even at very high strains. Overall, the results confirmed a beneficial effect of BAG (nano)particles on the elastic modulus of the GG-BAG composite hydrogel. The Young's modulus of 6.6 ± 0.8 kPa for the GG hydrogel increased by two orders of magnitude after the addition of 2 wt.% BAG particles (500-800 kPa).
Directory of Open Access Journals (Sweden)
Mei Chan Sin
2014-01-01
Full Text Available Plasticized poly(vinyl chloride (PVC is one of the most widely consumed commodity plastics. Nevertheless, the commonly used plasticizers, particularly phthalates, are found to be detrimental to the environment and human health. This study aimed to investigate the ability of an alternative greener material, medium-chain-length polyhydroxyalkanoates (mcl-PHA, a kind of biopolyester and its thermally degraded oligoesters, to act as a compatible bioplasticizer for PVC. In this study, mcl-PHA were synthesized by Pseudomonas putida PGA1 in shake flask fermentation using saponified palm kernel oil (SPKO and subsequently moderately thermodegraded to low molecular weight oligoesters (degPHA. SEM, ATR-FTIR, 1H-NMR, and DMA were conducted to study the film morphology, microstructure, miscibility, and viscoelastic properties of the PVC-PHA and PVC/degPHA binary blends. Increased height and sharpness of tan δmax peak for all binary blends reveal an increase in chain mobility in the PVC matrix and high miscibility within the system. The PVC-PHA miscibility is possibly due to the presence of specific interactions between chlorines of PVC with the C=O group of PHA as evidenced by spectroscopic analyses. Dynamic viscoelastic measurements also showed that mcl-PHA and their oligoesters could reduce the Tg of PVC, imparting elasticity to the PVC compounds and decreasing the stiffness of PVC.
van Kempen, Thomas H S; Donders, Wouter P; van de Vosse, Frans N; Peters, Gerrit W M
2016-04-01
The mechanical properties determine to a large extent the functioning of a blood clot. These properties depend on the composition of the clot and have been related to many diseases. However, the various involved components and their complex interactions make it difficult at this stage to fully understand and predict properties as a function of the components. Therefore, in this study, a constitutive model is developed that describes the viscoelastic behavior of blood clots with various compositions. Hereto, clots are formed from whole blood, platelet-rich plasma and platelet-poor plasma to study the influence of red blood cells, platelets and fibrin, respectively. Rheological experiments are performed to probe the mechanical behavior of the clots during their formation. The nonlinear viscoelastic behavior of the mature clots is characterized using a large amplitude oscillatory shear deformation. The model is based on a generalized Maxwell model that accurately describes the results for the different rheological experiments by making the moduli and viscosities a function of time and the past and current deformation. Using the same model with different parameter values enables a description of clots with different compositions. A sensitivity analysis is applied to study the influence of parameter variations on the model output. The relative simplicity and flexibility make the model suitable for numerical simulations of blood clots and other materials showing similar behavior.
Yuk, Hyunwoo; Zhao, Xuanhe
2018-02-01
Direct ink writing (DIW) has demonstrated great potential as a multimaterial multifunctional fabrication method in areas as diverse as electronics, structural materials, tissue engineering, and soft robotics. During DIW, viscoelastic inks are extruded out of a 3D printer's nozzle as printed fibers, which are deposited into patterns when the nozzle moves. Hence, the resolution of printed fibers is commonly limited by the nozzle's diameter, and the printed pattern is limited by the motion paths. These limits have severely hampered innovations and applications of DIW 3D printing. Here, a new strategy to exceed the limits of DIW 3D printing by harnessing deformation, instability, and fracture of viscoelastic inks is reported. It is shown that a single nozzle can print fibers with resolution much finer than the nozzle diameter by stretching the extruded ink, and print various thickened or curved patterns with straight nozzle motions by accumulating the ink. A quantitative phase diagram is constructed to rationally select parameters for the new strategy. Further, applications including structures with tunable stiffening, 3D structures with gradient and programmable swelling properties, all printed with a single nozzle are demonstrated. The current work demonstrates that the mechanics of inks plays a critical role in developing 3D printing technology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kant, Ravi; Rayaprolu, Vamseedhar; McDonald, Kaitlyn; Bothner, Brian
2018-06-01
The beauty, symmetry, and functionality of icosahedral virus capsids has attracted the attention of biologists, physicists, and mathematicians ever since they were first observed. Viruses and protein cages assemble into functional architectures in a range of sizes, shapes, and symmetries. To fulfill their biological roles, these structures must self-assemble, resist stress, and are often dynamic. The increasing use of icosahedral capsids and cages in materials science has driven the need to quantify them in terms of structural properties such as rigidity, stiffness, and viscoelasticity. In this study, we employed Quartz Crystal Microbalance with Dissipation technology (QCM-D) to characterize and compare the mechanical rigidity of different protein cages and viruses. We attempted to unveil the relationships between rigidity, radius, shell thickness, and triangulation number. We show that the rigidity and triangulation numbers are inversely related to each other and the comparison of rigidity and radius also follows the same trend. Our results suggest that subunit orientation, protein-protein interactions, and protein-nucleic acid interactions are important for the resistance to deformation of these complexes, however, the relationships are complex and need to be explored further. The QCM-D based viscoelastic measurements presented here help us elucidate these relationships and show the future prospect of this technique in the field of physical virology and nano-biotechnology.
Directory of Open Access Journals (Sweden)
M. Mortezaei
2008-12-01
Full Text Available The preparation and characterization of the vinyltriethoxysilane-modified silica nanoparticles were investigated. Also the surface tension of polystyrene, native (hydrophilic silica and silane-modified (hydrophobic silica were determined. Two kinds of polystyrene/silica (treated and non-treated nanocomposites were prepared with different filler loadings by solution method. Their viscoelastic properties were studied by dynamic stress controlled rotary shear rheometer. Solid-like response of polystyrene/native silica nanocomposites were observed in the terminal zone. Solid inclusionsincrease the storage modulus more than the loss modulus, hence decrease the material damping. By increasing filler volume fraction, the particles tend to agglomerate and build clusters. The presence of clusters increases the viscosity, the moduli and the viscoelastic non-linearity of the composites.Treating the filler surface reduces its tendency to agglomerate as well as the adhesion between the particles and the polystyrene, leading to lower viscosity and interfacial slippage. Also the loss modulus peak is affected significantly by the particle surface area and its surface property in silica-filled polystyrene, which corresponds to its glass transition.
Assessment of the viscoelastic mechanical properties of polycarbonate urethane for medical devices.
Beckmann, Agnes; Heider, Yousef; Stoffel, Marcus; Markert, Bernd
2018-06-01
The underlying research work introduces a study of the mechanical properties of polycarbonate urethane (PCU), used in the construction of various medical devices. This comprises the discussion of a suitable material model, the application of elemental experiments to identify the related parameters and the numerical simulation of the applied experiments in order to calibrate and validate the mathematical model. In particular, the model of choice for the simulation of PCU response is the non-linear viscoelastic Bergström-Boyce material model, applied in the finite-element (FE) package Abaqus®. For the parameter identification, uniaxial tension and unconfined compression tests under in-laboratory physiological conditions were carried out. The geometry of the samples together with the applied loadings were simulated in Abaqus®, to insure the suitability of the modelling approach. The obtained parameters show a very good agreement between the numerical and the experimental results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Pengfei Liu
2018-01-01
Full Text Available Traditionally, asphalt pavements are considered as linear elastic materials in finite element (FE method to save computational time for engineering design. However, asphalt mixture exhibits linear viscoelasticity at small strain and low temperature. Therefore, the results derived from the elastic analysis will inevitably lead to discrepancies from reality. Currently, several FE programs have already adopted viscoelasticity, but the high hardware demands and long execution times render them suitable primarily for research purposes. Semianalytical finite element method (SAFEM was proposed to solve the abovementioned problem. The SAFEM is a three-dimensional FE algorithm that only requires a two-dimensional mesh by incorporating the Fourier series in the third dimension, which can significantly reduce the computational time. This paper describes the development of SAFEM to capture the viscoelastic property of asphalt pavements by using a recursive formulation. The formulation is verified by comparison with the commercial FE software ABAQUS. An application example is presented for simulations of creep deformation of the asphalt pavement. The investigation shows that the SAFEM is an efficient tool for pavement engineers to fast and reliably predict asphalt pavement responses; furthermore, the SAFEM provides a flexible, robust platform for the future development in the numerical simulation of asphalt pavements.
International Nuclear Information System (INIS)
Jena, R K; Chen, X; Yue, C Y; Lam, Y C
2011-01-01
Transparent, amorphous cyclic olefin copolymers (COCs) have been frequently used for the fabrication of microfluidic devices using a hot embossing technique for numerous applications. In hot embossing, the polymer is deformed near its glass transition temperature (Tg), i.e. between Tg and Tg + 60 °C where the viscoelastic properties of the material are dominant. The proper characterization of the viscoelastic properties is of interest as this can lead to a better understanding of polymer flow behaviour during microfabrication. Furthermore, the ability to model its rheological behaviour will enable the prediction of the optimal hot embossing processing parameters. We performed small amplitude oscillatory shear experiments on four grades of COCs, TOPAS-8007, TOPAS-5013, TOPAS-6015 and TOPAS-6017, in order to characterize their flow behaviour. The experiments were conducted within the frequency range from 0.01 to 500 Hz at between Tg + 20 and Tg + 60 °C. The flow properties could be represented using a generalized Maxwell viscoelastic constitutive model with Williams–Landel–Ferry-type temperature dependence. Good fit of the experimental data was obtained over a wide range of temperatures. The model could be coupled with ABAQUS finite element software to predict the optimal conditions for fabricating a capillary electrophoresis micro-chip on a TOPAS-5013 substrate by hot embossing
Directory of Open Access Journals (Sweden)
Fernando Cortés
2015-01-01
Full Text Available This paper presents an analysis of the dynamic behaviour of constrained layer damping (CLD beams with thick viscoelastic layer. A homogenised model for the flexural stiffness is formulated using Reddy-Bickford’s quadratic shear in each layer, and it is compared with Ross-Kerwin-Ungar (RKU classical model, which considers a uniform shear deformation for the viscoelastic core. In order to analyse the efficiency of both models, a numerical application is accomplished and the provided results are compared with those of a 2D model using finite elements, which considers extensional and shear stress and longitudinal, transverse, and rotational inertias. The intermediate viscoelastic material is characterised by a fractional derivative model, with a frequency dependent complex modulus. Eigenvalues and eigenvectors are obtained from an iterative method avoiding the computational problems derived from the frequency dependence of the stiffness matrices. Also, frequency response functions are calculated. The results show that the new model provides better accuracy than the RKU one as the thickness of the core layer increases. In conclusion, a new model has been developed, being able to reproduce the mechanical behaviour of thick CLD beams, reducing storage needs and computational time compared with a 2D model, and improving the results from the RKU model.
Stepanov, F. I.
2018-04-01
The mechanical properties of a material which is modeled by an exponential creep kernel characterized by a spectrum of relaxation and retardation times are studied. The research is carried out considering a contact problem for a solid indenter sliding over a viscoelastic half-space. The contact pressure, indentation depth of the indenter, and the deformation component of the friction coefficient are analyzed with respect to the case of half-space material modeled by single relaxation and retardation times.
Geometric decomposition of the conformation tensor in viscoelastic turbulence
Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer A.; Gayme, Dennice F.
2018-05-01
This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive-definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive-definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive-definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.
Viscoelasticity and diffusional properties of colloidal model dispersions
Naegele, G
2003-01-01
We examine linear viscoelastic, and translational and rotational diffusion properties of colloidal model dispersions. Theoretical results are discussed, in comparison with experiments, for monodisperse suspensions of charged and neutral colloidal spheres, and for binary dispersions of differently sized tracer and host particles. The theoretical methods employed comprise a mode-coupling scheme for Brownian particles, and a rooted cluster expansion scheme of tracer diffusion with two- and three-body hydrodynamic interactions included. We analyse in particular the validity of various empirical generalized Stokes-Einstein-Debye (SED) relations between the (dynamic) shear viscosity and translational/rotational diffusion coefficients. Some of these generalized SED relations are basic to microrheological measurements aimed at characterizing the viscoelasticity of complex fluids on the basis of the diffusional properties of immersed tracer particles.
Viscoelastic analysis of a dental metal-ceramic system
Özüpek, Şebnem; Ünlü, Utku Cemal
2012-11-01
Porcelain-fused-to-metal (PFM) restorations used in prosthetic dentistry contain thermal stresses which develop during the cooling phase after firing. These thermal stresses coupled with the stresses produced by mechanical loads may be the dominant reasons for failures in clinical situations. For an accurate calculation of these stresses, viscoelastic behavior of ceramics at high temperatures should not be ignored. In this study, the finite element technique is used to evaluate the effect of viscoelasticity on stress distributions of a three-point flexure test specimen, which is the current international standard, ISO 9693, to characterize the interfacial bond strength of metal-ceramic restorative systems. Results indicate that the probability of interfacial debonding due to normal tensile stress is higher than that due to shear stress. This conclusion suggests modification of ISO 9693 bond strength definition from one in terms of the shear stress only to that accounting for both normal and shear stresses.
A Galerkin least squares approach to viscoelastic flow.
Energy Technology Data Exchange (ETDEWEB)
Rao, Rekha R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schunk, Peter Randall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-10-01
A Galerkin/least-squares stabilization technique is applied to a discrete Elastic Viscous Stress Splitting formulation of for viscoelastic flow. From this, a possible viscoelastic stabilization method is proposed. This method is tested with the flow of an Oldroyd-B fluid past a rigid cylinder, where it is found to produce inaccurate drag coefficients. Furthermore, it fails for relatively low Weissenberg number indicating it is not suited for use as a general algorithm. In addition, a decoupled approach is used as a way separating the constitutive equation from the rest of the system. A Pressure Poisson equation is used when the velocity and pressure are sought to be decoupled, but this fails to produce a solution when inflow/outflow boundaries are considered. However, a coupled pressure-velocity equation with a decoupled constitutive equation is successful for the flow past a rigid cylinder and seems to be suitable as a general-use algorithm.
Viscoelasticity and diffusional properties of colloidal model dispersions
International Nuclear Information System (INIS)
Naegele, Gerhard
2003-01-01
We examine linear viscoelastic, and translational and rotational diffusion properties of colloidal model dispersions. Theoretical results are discussed, in comparison with experiments, for monodisperse suspensions of charged and neutral colloidal spheres, and for binary dispersions of differently sized tracer and host particles. The theoretical methods employed comprise a mode-coupling scheme for Brownian particles, and a rooted cluster expansion scheme of tracer diffusion with two- and three-body hydrodynamic interactions included. We analyse in particular the validity of various empirical generalized Stokes-Einstein-Debye (SED) relations between the (dynamic) shear viscosity and translational/rotational diffusion coefficients. Some of these generalized SED relations are basic to microrheological measurements aimed at characterizing the viscoelasticity of complex fluids on the basis of the diffusional properties of immersed tracer particles
Spatio-temporal dynamics of an active, polar, viscoelastic ring.
Marcq, Philippe
2014-04-01
Constitutive equations for a one-dimensional, active, polar, viscoelastic liquid are derived by treating the strain field as a slow hydrodynamic variable. Taking into account the couplings between strain and polarity allowed by symmetry, the hydrodynamics of an active, polar, viscoelastic body include an evolution equation for the polarity field that generalizes the damped Kuramoto-Sivashinsky equation. Beyond thresholds of the active coupling coefficients between the polarity and the stress or the strain rate, bifurcations of the homogeneous state lead first to stationary waves, then to propagating waves of the strain, stress and polarity fields. I argue that these results are relevant to living matter, and may explain rotating actomyosin rings in cells and mechanical waves in epithelial cell monolayers.
Nonlinear wave breaking in self-gravitating viscoelastic quantum fluid
Energy Technology Data Exchange (ETDEWEB)
Mitra, Aniruddha, E-mail: anibabun@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Roychoudhury, Rajkumar, E-mail: rajdaju@rediffmail.com [Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700075 (India); Department of Mathematics, Bethune College, Kolkata 700006 (India); Bhar, Radhaballav [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Khan, Manoranjan, E-mail: mkhan.ju@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India)
2017-02-12
The stability of a viscoelastic self-gravitating quantum fluid has been studied. Symmetry breaking instability of solitary wave has been observed through ‘viscosity modified Ostrovsky equation’ in weak gravity limit. In presence of strong gravitational field, the solitary wave breaks into shock waves. Response to a Gaussian perturbation, the system produces quasi-periodic short waves, which in terns predicts the existence of gravito-acoustic quasi-periodic short waves in lower solar corona region. Stability analysis of this dynamical system predicts gravity has the most prominent effect on the phase portraits, therefore, on the stability of the system. The non-existence of chaotic solution has also been observed at long wavelength perturbation through index value theorem. - Highlights: • In weak gravitational field, viscoelastic quantum fluid exhibits symmetry breaking instability. • Gaussian perturbation produces quasi-periodic gravito-acoustic waves into the system. • There exists no chaotic state of the system against long wavelength perturbations.
McConney, Michael E; Schaber, Clemens F; Julian, Michael D; Barth, Friedrich G; Tsukruk, Vladimir V
2007-12-22
Atomic force microscopy (AFM) and surface force spectroscopy were applied in live spiders to their joint pad material located distal of the metatarsal lyriform organs, which are highly sensitive vibration sensors. The surface topography of the material is sufficiently smooth to probe the local nanomechanical properties with nanometre elastic deflections. Nanoscale loads were applied in the proximad direction on the distal joint region simulating the natural stimulus situation. The force curves obtained indicate the presence of a soft, liquid-like epicuticular layer (20-40 nm thick) above the pad material, which has much higher stiffness. The Young modulus of the pad material is close to 15 MPa at low frequencies, but increases rapidly with increasing frequencies approximately above 30 Hz to approximately 70 MPa at 112 Hz. The adhesive forces drop sharply by about 40% in the same frequency range. The strong frequency dependence of the elastic modulus indicates the viscoelastic nature of the pad material, its glass transition temperature being close to room temperature (25 +/- 2 degrees C) and, therefore, to its maximized energy absorption from low-frequency mechanical stimuli. These viscoelastic properties of the cuticular pad are suggested to be at least partly responsible for the high-pass characteristics of the vibration sensor's physiological properties demonstrated earlier.
Helicobacter pylori moves through mucus by reducing mucin viscoelasticity
Celli, Jonathan P.; Turner, Bradley S.; Afdhal, Nezam H.; Keates, Sarah; Ghiran, Ionita; Kelly, Ciaran P.; Ewoldt, Randy H.; McKinley, Gareth H.; So, Peter; Erramilli, Shyamsunder; Bansil, Rama
2009-01-01
The ulcer-causing gastric pathogen Helicobacter pylori is the only bacterium known to colonize the harsh acidic environment of the human stomach. H. pylori survives in acidic conditions by producing urease, which catalyzes hydrolysis of urea to yield ammonia thus elevating the pH of its environment. However, the manner in which H. pylori is able to swim through the viscoelastic mucus gel that coats the stomach wall remains poorly understood. Previous rheology studies on gastric mucin, the key...
pH-induced contrast in viscoelasticity imaging of biopolymers
International Nuclear Information System (INIS)
Yapp, R D; Insana, M F
2009-01-01
Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.
Global existence result for the generalized Peterlin viscoelastic model
Czech Academy of Sciences Publication Activity Database
Lukáčová-Medviďová, M.; Mizerová, H.; Nečasová, Šárka; Renardy, M.
2017-01-01
Roč. 49, č. 4 (2017), s. 2950-2964 ISSN 0036-1410 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Peterlin viscoelastic equations * global existence * weak solutions Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.648, year: 2016 http://epubs.siam.org/doi/abs/10.1137/16M1068505
Dynamics of beam pair coupled by visco-elastic interlayer
Czech Academy of Sciences Publication Activity Database
Náprstek, Jiří; Hračov, Stanislav
2015-01-01
Roč. 9, č. 2 (2015), s. 127-140 ISSN 1802-680X R&D Projects: GA ČR(CZ) GP13-41574P; GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : double-beam dynamics * visco-elastic interlayer * kinematic damping Subject RIV: JM - Building Engineering http://www.kme.zcu.cz/acm/acm/article/view/292
Viscoelasticity of Brownian Carbon Nanotubes in PDMS Semidilute Regime
MARCEAU, Sandrine; DUBOIS, Philippe; FULCHIRON, René; CASSAGNAU, Philippe
2009-01-01
The objective of the present paper is to investigate the linear viscoelasticity of diluted suspension of MWNT spread in PDMS. Specifically, we focus our attention on both the CNT relaxation in semidilute conditions and the concept of percolation threshold for such system. Finally, the results, and mainly the concentration dependence of the zero-shear viscosity and mean relaxation time, will be discussed within the Doi−Edwards theory framework on molecular dynamic of rigid rods in a semi...
Exact asymptotic relations for the effective response of linear viscoelastic heterogeneous media
Gallican, Valentin; Brenner, Renald; Suquet, Pierre
2017-11-01
This article addresses the asymptotic response of viscoelastic heterogeneous media in the frequency domain, at high and low frequencies, for different types of elementary linear viscoelastic constituents. By resorting to stationary principles for complex viscoelasticity and adopting a classification of the viscoelastic behaviours based on the nature of their asymptotic regimes, either elastic or viscous, four exact relations are obtained on the overall viscoelastic complex moduli in each case. Two relations are related to the asymptotic uncoupled heterogeneous problems, while the two remaining ones result from the viscoelastic coupling that manifests itself in the transient regime. These results also provide exact conditions on certain integrals in time of the effective relaxation spectrum. This general setting encompasses the results obtained in preceding studies on mixtures of Maxwell constituents [1,2]. xml:lang="fr"
Earthquake response of adjacent structures with viscoelastic and friction dampers
Directory of Open Access Journals (Sweden)
Žigić Miodrag
2015-01-01
Full Text Available We study the seismic response of two adjacent structures connected with a dry friction damper. Each of them consists of a viscoelastic rod and a rigid block, which can slide without friction along the moving base. A simplified earthquake model is used for modeling the horizontal ground motion. Energy dissipation is taken by the presence of the friction damper, which is modeled by the set-valued Coulomb friction law. Deformation of viscoelastic rods during the relative motion of the blocks represents another way of energy dissipation. The constitutive equation of a viscoelastic body is described by the fractional Zener model, which includes fractional derivatives of stress and strain. The problem merges fractional derivatives as non-local operators and theory of set-valued functions as the non-smooth ones. Dynamical behaviour of the problem is governed by a pair of coupled multi-valued differential equations. The posed Cauchy problem is solved by use of the Grünwald-Letnikov numerical scheme. The behaviour of the system is analyzed for different values of system parameters.
Three-sphere swimmer in a nonlinear viscoelastic medium
Curtis, Mark P.
2013-04-10
A simple model for a swimmer consisting of three colinearly linked spheres attached by rods and oscillating out of phase to break reciprocal motion is analyzed. With a prescribed forcing of the rods acting on the three spheres, the swimming dynamics are determined analytically in both a Newtonian Stokes fluid and a zero Reynolds number, nonlinear, Oldroyd-B viscoelastic fluid with Deborah numbers of order one (or less), highlighting the effects of viscoelasticity on the net displacement of swimmer. For instance, the model predicts that the three-sphere swimmer with a sinusoidal, but nonreciprocal, forcing cycle within an Oldroyd-B representation of a polymeric Boger fluid moves a greater distance with enhanced efficiency in comparison with its motility in a Newtonian fluid of the same viscosity. Furthermore, the nonlinear contributions to the viscoelastic constitutive relation, while dynamically nontrivial, are predicted a posteriori to have no effect on swimmer motility at leading order, given a prescribed forcing between spheres. © 2013 American Physical Society.
Damping Analysis of Cylindrical Composite Structures with Enhanced Viscoelastic Properties
Kliem, Mathias; Høgsberg, Jan; Vanwalleghem, Joachim; Filippatos, Angelos; Hoschützky, Stefan; Fotsing, Edith-Roland; Berggreen, Christian
2018-04-01
Constrained layer damping treatments are widely used in mechanical structures to damp acoustic noise and mechanical vibrations. A viscoelastic layer is thereby applied to a structure and covered by a stiff constraining layer. When the structure vibrates in a bending mode, the viscoelastic layer is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate the location-dependent efficiency of constrained layer damping treatments. The results of the study provide a thorough understanding of constrained layer damping treatments and an improved damping design of the cylindrical composite structure. The highest damping is achieved when placing the damping layer in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure.
Floquet stability analysis of viscoelastic flow over a cylinder
Richter, David
2011-06-01
A Floquet linear stability analysis has been performed on a viscoelastic cylinder wake. The FENE-P model is used to represent the non-Newtonian fluid, and the analysis is done using a modified version of an existing nonlinear code to compute the linearized initial value problem governing the growth of small perturbations in the wake. By measuring instability growth rates over a wide range of disturbance spanwise wavenumbers α, the effects of viscoelasticity were identified and compared directly to Newtonian results.At a Reynolds number of 300, two unstable bands exist over the range 0. ≤ α≤ 10 for Newtonian flow. For the low α band, associated with the "mode A" wake instability, a monotonic reduction in growth rates is found for increasing polymer extensibility L. For the high α band, associated with the "mode B" instability, first a rise, then a significant decrease to a stable state is found for the instability growth rates as L is increased from L= 10 to L= 30. The mechanism behind this stabilization of both mode A and mode B instabilities is due to the change of the base flow, rather than a direct effect of viscoelasticity on the perturbation. © 2011 Elsevier B.V.
Magnetic and viscoelastic response of elastomers with hard magnetic filler
International Nuclear Information System (INIS)
Kramarenko, E Yu; Chertovich, A V; Semisalova, A S; Makarova, L A; Perov, N S; Khokhlov, A R; Stepanov, G V
2015-01-01
Magnetic elastomers (MEs) based on a silicone matrix and magnetically hard NdFeB particles have been synthesized and their magnetic and viscoelastic properties have been studied depending on the size and concentration of magnetic particles and the magnetizing field. It has been shown that magnetic particles can rotate in soft polymer matrix under applied magnetic field, this fact leading to some features in both magnetic and viscoelastic properties. In the maximum magnetic field used magnetization of MEs with smaller particles is larger while the coercivity is smaller due to higher mobility of the particles within the polymer matrix. Viscoelastic behavior is characterized by long relaxation times due to restructuring of the magnetic filler under the influence of an applied mechanical force and magnetic interactions. The storage and loss moduli of magnetically hard elastomers grow significantly with magnetizing field. The magnetic response of the magnetized samples depends on the mutual orientation of the external magnetic field and the internal sample magnetization. Due to the particle rotation within the polymer matrix, the loss factor increases abruptly when the magnetic field is turned on in the opposite direction to the sample magnetization, further decreasing with time. Moduli versus field dependences have minimum at non-zero field and are characterized by a high asymmetry with respect to the field direction. (paper)
Floquet stability analysis of viscoelastic flow over a cylinder
Richter, David; Shaqfeh, Eric S.G.; Iaccarino, Gianluca
2011-01-01
A Floquet linear stability analysis has been performed on a viscoelastic cylinder wake. The FENE-P model is used to represent the non-Newtonian fluid, and the analysis is done using a modified version of an existing nonlinear code to compute the linearized initial value problem governing the growth of small perturbations in the wake. By measuring instability growth rates over a wide range of disturbance spanwise wavenumbers α, the effects of viscoelasticity were identified and compared directly to Newtonian results.At a Reynolds number of 300, two unstable bands exist over the range 0. ≤ α≤ 10 for Newtonian flow. For the low α band, associated with the "mode A" wake instability, a monotonic reduction in growth rates is found for increasing polymer extensibility L. For the high α band, associated with the "mode B" instability, first a rise, then a significant decrease to a stable state is found for the instability growth rates as L is increased from L= 10 to L= 30. The mechanism behind this stabilization of both mode A and mode B instabilities is due to the change of the base flow, rather than a direct effect of viscoelasticity on the perturbation. © 2011 Elsevier B.V.
DEFF Research Database (Denmark)
Nielsen, Lauge Fuglsang
This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry......, viscoelastic behavior, and internal stress states. Other physical properties considered are thermal and electrical conductivities, diffusion coefficients, dielectric constants and magnetic permeability. Special attention is given to the effect of pore shape on the mechanical and physical behavior of porous....... The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior...
Explicit solution for the natural frequency of structures with partial viscoelastic treatment
Høgsberg, Jan Becker
2016-01-01
The free vibration characteristics of structures with viscoelastic treatment are represented by the complex-valued natural frequencies. The assumed single mode representation associated with the low-frequency stiffness of the viscoelastic treatment is modified by a correction term representing the influence from residual vibration modes. The correction term is eliminated in terms of the corresponding natural frequency associated with the high-frequency stiffness of the viscoelastic treatment,...
Goodwin, T. J.; McCarthy, M.; Albrecht, T.; Cohrs, R.
2009-01-01
The old adage we are our own worst enemies may perhaps be the most profound statement ever made when applied to man s desire for extraterrestrial exploration and habitation of Space. Consider the immune system protects the integrity of the entire human physiology and is comprised of two basic elements the adaptive or circulating and the innate immune system. Failure of the components of the adaptive system leads to venerability of the innate system from opportunistic microbes; viral, bacteria, and fungal, which surround us, are transported on our skin, and commonly inhabit the human physiology as normal and imunosuppressed parasites. The fine balance which is maintained for the preponderance of our normal lives, save immune disorders and disease, is deregulated in microgravity. Thus analogue systems to study these potential Risks are essential for our progress in conquering Space exploration and habitation. In this study we employed two known physiological target tissues in which the reactivation of hCMV and VZV occurs, human neural and lung systems created for the study and interaction of these herpes viruses independently and simultaneously on the innate immune system. Normal human neural and lung tissue analogues called tissue like assemblies (TLAs) were infected with low MOIs of approximately 2 x 10(exp -5) pfu hCMV or VZV and established active but prolonged low grade infections which spanned .7-1.5 months in length. These infections were characterized by the ability to continuously produce each of the viruses without expiration of the host cultures. Verification and quantification of viral replication was confirmed via RT_PCR, IHC, and confocal spectral analyses of the respective essential viral genomes. All host TLAs maintained the ability to actively proliferate throughout the entire duration of the experiments as is analogous to normal in vivo physiological conditions. These data represent a significant advance in the ability to study the triggering
Melnyk, Andrew
2012-05-01
Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.
Duy Hien, Ta; Lam, Nguyen Ngoc
2018-04-01
The dynamics of plates subjected to a moving load must be considered by engineering mechanics and design structures. This paper deals with the dynamic responses of functionally graded (FG) rectangular plates resting on a viscoelastic foundation under moving loads. It is assumed that material properties of the plate vary continuously in the thickness direction according to the power-law. The governing equations are derived by using Hamilton’s principle, which considers the effect of the higher-order shear deformation in the plate. Transient responses of simply supported FG rectangular plates are employed by using state-space methods. Several examples are given for displacement and stresses in the plates with various structural parameters, and the effects of these parameters are discussed.
Nguyen, Vu-Hieu; Naili, Salah
2013-01-01
This work deals with the ultrasonic wave propagation in the cortical layer of long bones which is known as being a functionally graded anisotropic material coupled with fluids. The viscous effects are taken into account. The geometrical configuration mimics the one of axial transmission technique used for evaluating the bone quality. We present a numerical procedure adapted for this purpose which is based on the spectral finite element method (FEM). By using a combined Laplace-Fourier transform, the vibroacoustic problem may be transformed into the frequency-wavenumber domain in which, as radiation conditions may be exactly introduced in the infinite fluid halfspaces, only the heterogeneous solid layer needs to be analysed using FEM. Several numerical tests are presented showing very good performance of the proposed approach. We present some results to study the influence of the frequency on the first arriving signal velocity in (visco)elastic bone plate.
Ropers, Steffen
2017-01-01
Within the scope of this work, Steffen Ropers evaluates the viscoelastic and temperature-dependent nature of the bending behavior of thermoplastic composite sheets in order to further enhance the predictability of the draping simulation. This simulation is a useful tool for the development of robust large scale processes for continuously fiber-reinforced polymers (CFRP). The bending behavior thereby largely influences the size and position of wrinkles, which are one of the most common processing defects for continuously fiber-reinforced parts. Thus, a better understanding of the bending behavior of thermoplastic composite sheets as well as an appropriate testing method along with corresponding material models contribute to a wide-spread application of CFRPs in large scale production. Contents Thermoplastic Prepregs Draping Simulation of Thermoplastic Prepregs Bending Characterization of Textile Composites Modeling of Bending Behavior Target Groups Researchers and students in the field of polymer, lightweight,...
O'Toole, Ronald Patrick
1994-01-01
In the recent advancement of piezoelectric resonator technology, there has been a large growth in the application of these devices for chemical sensing. These sensors operate by detecting changes in their environment which perturb the electrical - acoustic operation and in turn can be harnessed by means of supporting electronics and signal processing to monitor various processes. Examples include remote environmental monitoring, chemical process control, and commercial gas phase detectors. In this dissertation, the chemical sensing theory and properties of piezoelectric resonators such as the bulk-acoustic wave thin-film resonator (TFR) and the quartz crystal microbalance (QCM) are developed. This analysis concentrates on characterizing the resonance behavior of thickness mode resonators based upon the physical properties at the electrode interface which include interfacial mass density, elasticity, viscosity, and thickness of the composite device consisting of the piezoelectric material, the electrodes, and any deposited layer on the electrode surface in contact with the surrounding medium. In this work, no approximation is made as to the stress or particle displacement variation across the visco-elastic film which allows a complete study of the perturbational mechanical variations on the electrical and resonance properties of the composite resonator. The derivation and verification of equivalent circuit models based on the physical properties of the piezoelectric resonator and visco-elastic sensing film are presented. The results and models from this research will be beneficial to surface chemistry studies and also have application to fabrication techniques and electrical modeling. The use of this theory is employed in a study of a QCM coated with a commercially developed negative resist. Photo-polymerization of the resist results in induced visco-elastic structural changes which can be monitored and characterized using the full admittance theory of the composite
Erickson, D.P.; Renzetti, S.; Jurgens, A.; Campanella, O.H.; Hamaker, B.R.
2014-01-01
Viscoelastic properties have been observed in maize zein above its glass transition temperature; however, current understanding of how these viscoelastic polymers can be further manipulated for optimal performance is limited. Using resins formed via precipitation from aqueous ethanolic environments,
CSIR Research Space (South Africa)
Van Wyk, Llewellyn V
2009-02-01
Full Text Available . It is generally included as part of a structurally insulated panel (SIP) where the foam is sandwiched between external skins of steel, wood or cement. Cement composites Cement bonded composites are an important class of building materials. These products... for their stone buildings, including the Egyptians, Aztecs and Inca’s. As stone is a very dense material it requires intensive heating to become warm. Rocks were generally stacked dry but mud, and later cement, can be used as a mortar to hold the rocks...
A viscoelastic deadly fluid in carnivorous pitcher plants.
Gaume, Laurence; Forterre, Yoel
2007-11-21
The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera) flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control.
A viscoelastic deadly fluid in carnivorous pitcher plants.
Directory of Open Access Journals (Sweden)
Laurence Gaume
Full Text Available BACKGROUND: The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. CONCLUSIONS/SIGNIFICANCE: This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control.
Brain viscoelasticity alteration in chronic-progressive multiple sclerosis.
Directory of Open Access Journals (Sweden)
Kaspar-Josche Streitberger
Full Text Available INTRODUCTION: Viscoelastic properties indicate structural alterations in biological tissues at multiple scales with high sensitivity. Magnetic Resonance Elastography (MRE is a novel technique that directly visualizes and quantitatively measures biomechanical tissue properties in vivo. MRE recently revealed that early relapsing-remitting multiple sclerosis (MS is associated with a global decrease of the cerebral mechanical integrity. This study addresses MRE and MR volumetry in chronic-progressive disease courses of MS. METHODS: We determined viscoelastic parameters of the brain parenchyma in 23 MS patients with primary or secondary chronic progressive disease course in comparison to 38 age- and gender-matched healthy individuals by multifrequency MRE, and correlated the results with clinical data, T2 lesion load and brain volume. Two viscoelastic parameters, the shear elasticity μ and the powerlaw exponent α, were deduced according to the springpot model and compared to literature values of relapsing-remitting MS. RESULTS: In chronic-progressive MS patients, μ and α were reduced by 20.5% and 6.1%, respectively, compared to healthy controls. MR volumetry yielded a weaker correlation: Total brain volume loss in MS patients was in the range of 7.5% and 1.7% considering the brain parenchymal fraction. All findings were significant (P<0.001. CONCLUSIONS: Chronic-progressive MS disease courses show a pronounced reduction of the cerebral shear elasticity compared to early relapsing-remitting disease. The powerlaw exponent α decreased only in the chronic-progressive stage of MS, suggesting an alteration in the geometry of the cerebral mechanical network due to chronic neuroinflammation.
Earthquake Cycle Simulations with Rate-and-State Friction and Linear and Nonlinear Viscoelasticity
Allison, K. L.; Dunham, E. M.
2016-12-01
We have implemented a parallel code that simultaneously models both rate-and-state friction on a strike-slip fault and off-fault viscoelastic deformation throughout the earthquake cycle in 2D. Because we allow fault slip to evolve with a rate-and-state friction law and do not impose the depth of the brittle-to-ductile transition, we are able to address: the physical processes limiting the depth of large ruptures (with hazard implications); the degree of strain localization with depth; the relative partitioning of fault slip and viscous deformation in the brittle-to-ductile transition zone; and the relative contributions of afterslip and viscous flow to postseismic surface deformation. The method uses a discretization that accommodates variable off-fault material properties, depth-dependent frictional properties, and linear and nonlinear viscoelastic rheologies. All phases of the earthquake cycle are modeled, allowing the model to spontaneously generate earthquakes, and to capture afterslip and postseismic viscous flow. We compare the effects of a linear Maxwell rheology, often used in geodetic models, with those of a nonlinear power law rheology, which laboratory data indicates more accurately represents the lower crust and upper mantle. The viscosity of the Maxwell rheology is set by power law rheological parameters with an assumed a geotherm and strain rate, producing a viscosity that exponentially decays with depth and is constant in time. In contrast, the power law rheology will evolve an effective viscosity that is a function of the temperature profile and the stress state, and therefore varies both spatially and temporally. We will also integrate the energy equation for the thermomechanical problem, capturing frictional heat generation on the fault and off-fault viscous shear heating, and allowing these in turn to alter the effective viscosity.
Explicit solution for the natural frequency of structures with partial viscoelastic treatment
DEFF Research Database (Denmark)
Høgsberg, Jan Becker
2016-01-01
The free vibration characteristics of structures with viscoelastic treatment are represented by the complex-valued natural frequencies. The assumed single mode representation associated with the low-frequency stiffness of the viscoelastic treatment is modified by a correction term representing...
Cohen, S. C.
1979-01-01
A model of viscoelastic deformations associated with earthquakes is presented. A strike-slip fault is represented by a rectangular dislocation in a viscoelastic layer (lithosphere) lying over a viscoelastic half-space (asthenosphere). Deformations occur on three time scales. The initial response is governed by the instantaneous elastic properties of the earth. A slower response is associated with viscoelastic relaxation of the lithosphere and a yet slower response is due to viscoelastic relaxation of the asthenosphere. The major conceptual contribution is the inclusion of lithospheric viscoelastic properties into a dislocation model of earthquake related deformations and stresses. Numerical calculations using typical fault parameters reveal that the postseismic displacements and strains are small compared to the coseismic ones near the fault, but become significant further away. Moreover, the directional sense of the deformations attributable to the elastic response, the lithospheric viscoelastic softening, and the asthenospheric viscoelastic flow may differ and depend on location and model details. The results and theoretical arguments suggest that the stress changes accompanying lithospheric relaxation may also be in a different sense than and be larger than the strain changes.
Veeregowda, Deepak H.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.
The visco-elasticity of salivary-protein films is related to mouthfeel, lubrication, biofilm formation, and protection against erosion and is influenced by the adsorption of toothpaste components. The thickness and the visco-elasticity of hydrated films (determined using a quartz crystal
Dynamic rheological properties of viscoelastic magnetic fluids in uniform magnetic fields
International Nuclear Information System (INIS)
Yamaguchi, Hiroshi; Niu Xiaodong; Ye Xiaojiang; Li Mingjun; Iwamoto, Yuhiro
2012-01-01
The dynamic rheological properties of viscoelastic magnetic fluids in externally applied uniform magnetic fields are investigated by a laboratory-made cone-plate rheometer in this study. In particular, the effects of the magnetic field on the viscoelastic properties (the complex dynamic modulus) of the viscoelastic magnetic fluids are studied. In the investigation, three viscoelastic magnetic fluids are made by mixing a magnetic fluid and a viscoelastic fluid with different mass ratios. As a supplementation to the experimental investigation, a theoretical analysis is also presented. The present study shows that the viscosity and elasticity of the viscoelastic magnetic fluids are significantly influenced by the magnetic field and the concentrations of the magnetic particles in the test fluids. Theoretical analysis qualitatively explains the present findings. - Highlights: ► The dynamic rheological properties of the viscoelastic magnetic fluids in uniform magnetic fields are investigated. ► Both the magnetic field strength and the concentration of the magnetic particles in the fluids have significant effects on the viscosity and elasticity of the viscoelastic magnetic fluids. ► Theoretical prediction and analysis qualitatively explains the present findings.
Fluid-structure interaction with pipe-wall viscoelasticity during water hammer
Keramat, A.; Tijsseling, A.S.; Hou, Q.; Ahmadi, A.
2011-01-01
Fluid-structure interaction (FSI) due to water hammer in a pipeline which has viscoelastic wall behaviour is studied. Appropriate governing equations are derived and numerically solved. In the numerical implementation of the hydraulic and structural equations, viscoelasticity is incorporated using
Fluid-structure interaction with pipe-wall viscoelasticity during water hammer
Keramat, A.; Tijsseling, A.S.; Hou, Q.; Ahmadi, A.
2012-01-01
Fluid–structure interaction (FSI) due to water hammer in a pipeline which has viscoelastic wall behaviour is studied. Appropriate governing equations are derived and numerically solved. In the numerical implementation of the hydraulic and structural equations, viscoelasticity is incorporated using
Chaotic convection of viscoelastic fluids in porous media
Energy Technology Data Exchange (ETDEWEB)
Sheu, L.-J. [Department of Mechanical Engineering, Chung Hua University, Hsinchu, Taiwan (China)], E-mail: ljsheu@chu.edu.tw; Tam, L.-M. [Department of Electromechanical Engineering, University of Macau, Macau (China)], E-mail: fstlmt@umac.mo; Chen, J.-H. [Department of Mechanical Engineering, Chung Hua University, Hsinchu, Taiwan (China)], E-mail: chen@chu.edu.tw; Chen, H.-K. [Department of Industrial Engineering and Management, Hsiuping Institute of Technology, Taichung, Taiwan (China)], E-mail: kanechen@giga.net.tw; Lin, K.-T. [Department of Mechanical Engineering, Chung Yuan Christian University, Chung Li, Taiwan (China)], E-mail: willie@nanya.edu.tw; Kang Yuan [Department of Mechanical Engineering, Chung Yuan Christian University, Chung Li, Taiwan (China)], E-mail: yk@cycu.edu.tw
2008-07-15
Buoyancy-induced convection in a viscoelastic fluid-saturated porous medium was analyzed using an Oldroydian-type constitutive relation. An autonomous system with four differential equations was deduced by applying the truncated Galerkin expansion to the momentum and heat transfer equations. The four-dimensional system can be reduced to many systems provided in the literature such as the Lorenz system, Vadasz system, Khayat system, and Akhatov system. Depending on the flow parameters, the asymptotic behavior can be stationary, periodic, or chaotic. Generation of a four-scroll, or two-'butterfly', chaotic attractor was observed. Results also show that stress relaxation tends to precipitate the onset of chaos.
Viscoelastic machine elements elastomers and lubricants in machine systems
MOORE, D F
2015-01-01
Viscoelastic Machine Elements, which encompass elastomeric elements (rubber-like components), fluidic elements (lubricating squeeze films) and their combinations, are used for absorbing vibration, reducing friction and improving energy use. Examplesinclude pneumatic tyres, oil and lip seals, compliant bearings and races, and thin films. This book sets out to show that these elements can be incorporated in machine analysis, just as in the case of conventional elements (e.g. gears, cogs, chaindrives, bearings). This is achieved by introducing elementary theory and models, by describing new an
Viscoelastic behaviour of stabilized polyethylenes irradiated with gamma rays
Energy Technology Data Exchange (ETDEWEB)
Novakovic, Lj; Gal, O; Stannett, V T
1987-01-01
Two-cycle creep recovery penetration measurements at 150/sup 0/C are used to determine the viscoelastic parameters for irradiated low density and linear low density polyethylenes, pure and with 0.5% antioxidant. The amplitudes and the time factors of each cycle are calculated using the mechanical model expression. From the differences between the creep parameters of the first and the second cycle, the contribution of the nonelastic component is considered. The efficiency of radiation crosslinking of different systems is discussed on the base of the corresponding compliances.
Viscoelastic dynamic models of resilient elements used in railway tracks
Directory of Open Access Journals (Sweden)
Zbiciak Artur
2016-01-01
Full Text Available The paper presents selected theoretical aspects concerning viscoelastic dynamic modelling of resilient elements used in railway tracks. In order to characterize the research methodology for resilient mats in railway tracks, German Standards [1-4] are used herein. The main goal of the paper is to demonstrate the procedure of insertion loss calculation for a single degree of freedom truck system containing under-ballast mats. Selected results of certain dynamic characteristics of resilient truck systems (transmissibility, Bode and Nyquist plots etc. are also discussed. The results of calculations visualized in graphs, were obtained by using own applications written in programming language MATLAB.
Energy Technology Data Exchange (ETDEWEB)
Leblanc, Jean L. [University P. and M. Curie-Paris 6, Polymer Rheology and Processing, Vitry-sur-Seine (France)
2007-10-15
The so-called thermoplastic vulcanizates (TPV) are essentially blends of a crystalline thermoplastic polymer (e.g., polypropylene) and a vulcanizable rubber composition, prepared through a special process called dynamic vulcanization, which yields a fine dispersion of micron-size crosslinked rubber particles in a thermoplastic matrix. Such materials are by nature complex polymer systems, i.e., multiphase, heterogeneous, typically disordered materials for which structure is as important as composition. Correctly assessing their rheological properties is a challenging task for several reasons: first, even if the uniformity of their composition is taken for granted, TPV are indeed very complicated materials, not only heterogeneous but also with a morphology related to their composition; second, their morphology can be affected by the flow field used; third, the migration of small labile ingredients (e.g., oil, curative residue, etc.) can in the meantime significantly change the boundary flow conditions, for instance through self-lubrication due to phase separation of the oil, or wall slip, or both. The aims of the work reported were to investigate a series of commercial TPV through the so-called Fourier transform rheometry, a testing technique especially developed to accurately investigate the nonlinear viscoelastic domain. Results are tentatively interpreted in terms of material composition and structure. (orig.)
Putignano, Carmine; Carbone, Giuseppe
2018-05-01
Viscoelastic reciprocating contacts are crucial in a number of systems, ranging from sealing components to viscoelastic dampers. Roughness plays in these conditions a central role, but no exhaustive assessment in terms of influence on area, separation and friction has been drawn so far. This is due to the huge number of time and space scales involved in the problem. By means of an innovative Boundary Element methodology, which treats the time as a parameter and then requires only to discretize the space domain, we investigate the viscoelastic reciprocating contact mechanics between rough solids. In particular, we consider the alternate contact of a rigid finite-size rough punch over a viscoelastic layer: the importance of the domain finiteness in the determination of the contact area and the contact solution anisotropy is enlightened. Implications on real system may be drawn on this basis. Finally, we focus on the hysteretic cycle related to the viscoelastic tangential forces.
Goodarzi, Mohammad Saeed; Hosseini-Toudeshky, Hossein
2017-11-01
In this paper a formulation of a viscoelastic-damage interface model with friction in mode-II is presented. The cohesive constitutive law contains elastic and damage regimes. It has been assumed that the shear stress in the elastic regime follows the viscoelastic properties of the matrix material. The three element Voigt model has been used for the formulation of relaxation modulus of the material. Damage evolution proceeds according to the bilinear cohesive constitutive law combined with friction stress consideration. Combination of damage and friction is based on the presumption that the damaged area, related to an integration point, can be dismembered into the un-cracked area with the cohesive damage and cracked area with friction. Samples of a one element model have been presented to see the effect of parameters on the cohesive constitutive law. A comparison between the predicted results with available results of end-notched flexure specimens in the literature is also presented to verify the model. Transverse crack tension specimens are also simulated for different applied displacement velocities.
A large deformation viscoelastic model for double-network hydrogels
Mao, Yunwei; Lin, Shaoting; Zhao, Xuanhe; Anand, Lallit
2017-03-01
We present a large deformation viscoelasticity model for recently synthesized double network hydrogels which consist of a covalently-crosslinked polyacrylamide network with long chains, and an ionically-crosslinked alginate network with short chains. Such double-network gels are highly stretchable and at the same time tough, because when stretched the crosslinks in the ionically-crosslinked alginate network rupture which results in distributed internal microdamage which dissipates a substantial amount of energy, while the configurational entropy of the covalently-crosslinked polyacrylamide network allows the gel to return to its original configuration after deformation. In addition to the large hysteresis during loading and unloading, these double network hydrogels also exhibit a substantial rate-sensitive response during loading, but exhibit almost no rate-sensitivity during unloading. These features of large hysteresis and asymmetric rate-sensitivity are quite different from the response of conventional hydrogels. We limit our attention to modeling the complex viscoelastic response of such hydrogels under isothermal conditions. Our model is restricted in the sense that we have limited our attention to conditions under which one might neglect any diffusion of the water in the hydrogel - as might occur when the gel has a uniform initial value of the concentration of water, and the mobility of the water molecules in the gel is low relative to the time scale of the mechanical deformation. We also do not attempt to model the final fracture of such double-network hydrogels.
Viscoelasticity-based MR elastography of skeletal muscle
International Nuclear Information System (INIS)
Klatt, Dieter; Papazoglou, Sebastian; Sack, Ingolf; Braun, Juergen
2010-01-01
An in vivo multifrequency magnetic resonance elastography (MRE) protocol was developed for studying the viscoelastic properties of human skeletal muscle in different states of contraction. Low-frequency shear vibrations in the range of 25-62.5 Hz were synchronously induced into the femoral muscles of seven volunteers and measured in a cross-sectional view by encoding the fast-transverse shear wave component parallel to the muscle fibers. The so-called springpot model was used for deriving two viscoelastic constants, μ and α, from the dispersion functions of the complex shear modulus in relaxed and in loaded muscle. Representing the shear elasticity parallel to the muscle fibers, μ increased in all volunteers upon contraction from 2.68 ± 0.23 kPa to 3.87 ± 0.50 kPa. Also α varied with load, indicating a change in the geometry of the mechanical network of muscle from relaxation (α = 0.253 ± 0.009) to contraction (α = 0.270 ± 0.009). These results provide a reference for a future assessment of muscular dysfunction using rheological parameters.
Viscoelasticity-based MR elastography of skeletal muscle
Klatt, Dieter; Papazoglou, Sebastian; Braun, Jürgen; Sack, Ingolf
2010-11-01
An in vivo multifrequency magnetic resonance elastography (MRE) protocol was developed for studying the viscoelastic properties of human skeletal muscle in different states of contraction. Low-frequency shear vibrations in the range of 25-62.5 Hz were synchronously induced into the femoral muscles of seven volunteers and measured in a cross-sectional view by encoding the fast-transverse shear wave component parallel to the muscle fibers. The so-called springpot model was used for deriving two viscoelastic constants, μ and α, from the dispersion functions of the complex shear modulus in relaxed and in loaded muscle. Representing the shear elasticity parallel to the muscle fibers, μ increased in all volunteers upon contraction from 2.68 ± 0.23 kPa to 3.87 ± 0.50 kPa. Also α varied with load, indicating a change in the geometry of the mechanical network of muscle from relaxation (α = 0.253 ± 0.009) to contraction (α = 0.270 ± 0.009). These results provide a reference for a future assessment of muscular dysfunction using rheological parameters.
Viscoelasticity-based MR elastography of skeletal muscle
Energy Technology Data Exchange (ETDEWEB)
Klatt, Dieter; Papazoglou, Sebastian; Sack, Ingolf [Department of Radiology, Charite-Universitaetsmedizin, Berlin (Germany); Braun, Juergen, E-mail: ingolf.sack@charite.d [Institute of Medical Informatics, Charite-Universitaetsmedizin, Berlin (Germany)
2010-11-07
An in vivo multifrequency magnetic resonance elastography (MRE) protocol was developed for studying the viscoelastic properties of human skeletal muscle in different states of contraction. Low-frequency shear vibrations in the range of 25-62.5 Hz were synchronously induced into the femoral muscles of seven volunteers and measured in a cross-sectional view by encoding the fast-transverse shear wave component parallel to the muscle fibers. The so-called springpot model was used for deriving two viscoelastic constants, {mu} and {alpha}, from the dispersion functions of the complex shear modulus in relaxed and in loaded muscle. Representing the shear elasticity parallel to the muscle fibers, {mu} increased in all volunteers upon contraction from 2.68 {+-} 0.23 kPa to 3.87 {+-} 0.50 kPa. Also {alpha} varied with load, indicating a change in the geometry of the mechanical network of muscle from relaxation ({alpha} = 0.253 {+-} 0.009) to contraction ({alpha} = 0.270 {+-} 0.009). These results provide a reference for a future assessment of muscular dysfunction using rheological parameters.
Innovative design of viscoelastic dampers for seismic mitigation
International Nuclear Information System (INIS)
Tsai, C.S.
1993-01-01
In this paper, an advanced and more reliable design of viscoelastic dampers for seismic mitigation of high-rise buildings is presented. The innovative design of energy-absorbing devices has some advantages, compared to the classical design, as follows: One, the device is directly subjected to shear strains and forces due to story drifts; two, the device can support its own weight during normal operations, and maintain stable for large deformations during earthquakes; three, the device can reduce the responses of a structure to horizontal as well as vertical seismic loadings; and four, the device can also decrease the responses of the floor system of a building. In this study, a ten-story building is given as an example to express the merits obtained from the new system. Comparisons of the building equipped with classical and proposed devices of viscoelastic dampers are carefully studied. Numerical results show that the energy-absorbing capacity of the new device is superior to the classical one, especially for vertical vibrations. (orig.)
Viscoelastic properties of orthodontic adhesives used for lingual fixed retainer bonding.
Papadogiannis, D; Iliadi, A; Bradley, T G; Silikas, N; Eliades, G; Eliades, T
2017-01-01
To evaluate the viscoelastic properties of two experimental BPA-free and one BisGMA-based orthodontic resin composite adhesives for bonding fixed retainers. A commercially available BisGMA-based (TXA: Transbond LR) and two bisphenol A-free experimental adhesives (EXA and EXB) were included in the study. The viscoelastic behavior of the adhesives was evaluated under static and dynamic conditions at dry and wet states and at various temperatures (21, 37, 50°C). The parameters determined were shear modulus (G), Young's modulus (E) under static testing and storage modulus (G 1 ), loss tangent (tanδ) and dynamic viscosity (n*) under dynamic testing. Statistical analysis was performed by 2-way ANOVA and Bonferroni post-hoc tests (α=0.05). For static testing, a significant difference was found within material and storage condition variables and a significant interaction between the two independent variables (p<0.001 for G and E). EXA demonstrated the highest G and E values at 21°C/dry group. Dry specimens showed the highest G and E values, but with no significant difference from 21°C/wet specimens, except EXA in G. Wet storage at higher temperatures (37°C and 50°C) adversely affected all the materials to a degree ranging from 40 to 60% (p<0.001). For dynamic testing, a significant difference was also found in material and testing condition groups, with a significant interaction between the two independent variables (p<0.001 for G 1 and n*, p<0.01 for tanδ). Reduction in G 1 , and n* values, and increase in tanδ values were encountered at increased water temperatures. The apparent detrimental effect of high temperature on the reduction of properties of adhesives may contribute to the loss of stiffness of the fixed retainer configuration under ordinary clinical conditions with unfavorable effects on tooth position and stability of the orthodontic treatment result. Copyright © 2016 The Academy of Dental Materials. All rights reserved.
Sugino, Naoto; Nakajima, Shinya; Kameda, Takao; Takei, Satoshi; Hanabata, Makoto
2017-08-01
Silicone elastomers ( polydimethylsiloxane _ PDMS) are widely used in the field of imprint lithography and microcontactprinting (μCP). When performing microcontactprinting, the mechanical properties of the PCMS as a base material have a great influence on the performance of the device. Cellulose nanofibers having features of high strength, high elasticity and low coefficient of linear expansion have attracted attention in recent years due to their characteristics. Therefore, three types of crystalline cellulose having different molecular weights were added to PDMS to prepare a composite material, and dynamic viscoelasticity was measured using a rheometer. The PDMS with the highest molecular weight crystalline cellulose added exhibited smaller storage modulus than PDMS with other molecular weight added in all temperature ranges. Furthermore, when comparing PDMS to which crystalline cellulose was added and PDMS which is not added, the storage modulus of PDMS to which cellulose was added in the low temperature region was higher than that of PDMS to which it was not added, but it was reversed in the high temperature region It was a result. When used in a low temperature range (less than 150 ° C.), it can be said that cellulose can function as a reinforcing material for PDMS.
Determining the Viscosity Coefficient for Viscoelastic Wave Propagation in Rock Bars
Niu, Leilei; Zhu, Wancheng; Li, Shaohua; Guan, Kai
2018-05-01
Rocks with microdefects exhibit viscoelastic behavior during stress wave propagation. The viscosity coefficient of the wave can be used to characterize the attenuation as the wave propagates in rock. In this study, a long artificial bar with a readily adjustable viscosity coefficient was fabricated to investigate stress wave attenuation. The viscoelastic behavior of the artificial bar under dynamic loading was investigated, and the initial viscoelastic coefficient was obtained based on the amplitude attenuation of the incident harmonic wave. A one-dimensional wave propagation program was compiled to reproduce the time history of the stress wave measured during the experiments, and the program was well fitted to the Kelvin-Voigt model. The attenuation and dispersion of the stress wave in long artificial viscoelastic bars were quantified to accurately determine the viscoelastic coefficient. Finally, the method used to determine the viscoelastic coefficient of a long artificial bar based on the experiments and numerical simulations was extended to determine the viscoelastic coefficient of a short rock bar. This study provides a new method of determining the viscosity coefficient of rock.
Multi-pulse orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt
International Nuclear Information System (INIS)
Zhang Wei; Yao Minghui
2006-01-01
In this paper, the Shilnikov type multi-pulse orbits and chaotic dynamics of parametrically excited viscoelastic moving belt are studied in detail. Using Kelvin-type viscoelastic constitutive law, the equations of motion for viscoelastic moving belt with the external damping and parametric excitation are given. The four-dimensional averaged equation under the case of primary parametric resonance is obtained by directly using the method of multiple scales and Galerkin's approach to the partial differential governing equation of viscoelastic moving belt. From the averaged equations obtained here, the theory of normal form is used to give the explicit expressions of normal form with a double zero and a pair of pure imaginary eigenvalues. Based on normal form, the energy-phrase method is employed to analyze the global bifurcations and chaotic dynamics in parametrically excited viscoelastic moving belt. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type multi-pulse homoclinic orbits in the averaged equation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense in parametrically excited viscoelastic moving belt. The chaotic motions of viscoelastic moving belts are also found by using numerical simulation. A new phenomenon on the multi-pulse jumping orbits is observed from three-dimensional phase space
Viscoelastic-gravitational deformation by a rectangular thrust fault in a layered earth
International Nuclear Information System (INIS)
Rundle, J.B.
1982-01-01
Previous papers in this series have been concerned with developing the numerical techniques required for the evaluation of vertical displacements which are the result of thrust faulting in a layered, elastic-gravitational earth model. This paper extends these methods to the calculation of fully time-dependent vertical surface deformation from a rectangular, dipping thrust fault in an elastic-gravitational layer over a viscoelastic-gravitational half space. The elastic-gravitational solutions are used together with the correspondence principle of linear viscoelasticity to give the solution in the Laplace transform domain. The technique used here to invert the displacements into the time domain is the Prony series technique, wherein the transformed solution is fit to the transformed representation of a truncated series of decaying exponentials. Purely viscoelastic results obtained are checked against results found previously using a different inverse transform method, and agreement is excellent. A series of results are obtained for a rectangular, 30 0 dipping thrust fault in an elastic-gravitational layer over viscoelastic-gravitational half space. Time-dependent displacements are calculated out to 50 half space relaxation times tau/sub a/, or 100 Maxwell times 2tau/sub m/ = tau/sub a/. Significant effects due to gravity are shown to exist in the solutions as early as several tau/sub a/. The difference between the purely viscoelastic solution and the viscoelastic-gravitational solutions grows as time progresses. Typically, the solutions with gravity reach an equilibrium value after 10--20 relaxation times, when the purely viscoelastic solutions are still changing significantly. Additionally, the length scaling which was apparent in the purely viscoelastic problem breaks down in the viscoelastic-gravitational problem
Nonlinear Viscoelastic Rheology and the Occurrence of Aftershocks
Shcherbakov, R.; Zhang, X.
2017-12-01
Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. There are compelling evidences that the lower continental crust and upper mantle are governed by various solid state creep mechanisms. Among those mechanisms a power-law viscous flow was suggested to explain the postseismic surface deformation after large earthquakes. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle controls the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and mantle, which were estimated
Observational evidences of viscoelastic behaviour at low strain
Daminelli, Rosastella; Marcellini, Alberto; Tento, Alberto
2014-05-01
Theoretical formulations of inhomogeneous waves in low-loss media have been suggested by a number of researchers due to the important role played by anelasticity in changing the characteristics of seismic waves. The Homogeneous Isotropic Linear Viscoelastic Model (HILV) introduced by Borcherdt (2009) is particularly promising because of its mathematical simplicity and the handiness to test the model in real seismograms. We showed that the seismograms of the explosion of a 2nd World War bomb found in Milan recorded by a seismic station at 2 km epicentral distance, exhibit a clear elliptical prograde P wave particle motion (Marcellini and Tento, 2011) as predicted by HILV. We observed a similar P wave prograde elliptical motion analysing a ML 4.8 earthquake occurred on July 17, 2011 in the Po Valley at a 48 km epicentral distance from a seismic station located at Palazzo Te, Mantova (Daminelli et al., 2013). In both cases the stations were situated on the deep quaternary sediments of the Po Valley. Based on measured Vp and Vs and the amplitude of the recorded motion, the strain at the station sites was estimated to be 10-6, 10-7. In this paper we extend the analysis of the previously mentioned seismograms to check the feasibility of HILV application to other types of waves that are particularly relevant in fields such as the engineering seismology. We focus on the S waves (as it is well known HILV predicts the split of S in S type I and S type II) of the seismograms of the earthquake recorded in Mantova and on the Rayleigh waves of the explosion recorded in Milan. The results show that observational evidences of HILV are not as clear as for P waves, probably because of noise or superposition of converted waves. However, once established the validity of HILV by P waves (that is very simple), the whole seismograms can be interpreted following HILV, confirming the relevancy of anelasticity also at low strain. Borcherdt, R.D. (2009) 'Viscoelastic Waves in Layered Media
Modelling of Asphalt Concrete Stiffness in the Linear Viscoelastic Region
Mazurek, Grzegorz; Iwański, Marek
2017-10-01
Stiffness modulus is a fundamental parameter used in the modelling of the viscoelastic behaviour of bituminous mixtures. On the basis of the master curve in the linear viscoelasticity range, the mechanical properties of asphalt concrete at different loading times and temperatures can be predicted. This paper discusses the construction of master curves under rheological mathematical models i.e. the sigmoidal function model (MEPDG), the fractional model, and Bahia and co-workers’ model in comparison to the results from mechanistic rheological models i.e. the generalized Huet-Sayegh model, the generalized Maxwell model and the Burgers model. For the purposes of this analysis, the reference asphalt concrete mix (denoted as AC16W) intended for the binder coarse layer and for traffic category KR3 (5×105 controlled strain mode. The fixed strain level was set at 25με to guarantee that the stiffness modulus of the asphalt concrete would be tested in a linear viscoelasticity range. The master curve was formed using the time-temperature superposition principle (TTSP). The stiffness modulus of asphalt concrete was determined at temperatures 10°C, 20°C and 40°C and at loading times (frequency) of 0.1, 0.3, 1, 3, 10, 20 Hz. The model parameters were fitted to the rheological models using the original programs based on the nonlinear least squares sum method. All the rheological models under analysis were found to be capable of predicting changes in the stiffness modulus of the reference asphalt concrete to satisfactory accuracy. In the cases of the fractional model and the generalized Maxwell model, their accuracy depends on a number of elements in series. The best fit was registered for Bahia and co-workers model, generalized Maxwell model and fractional model. As for predicting the phase angle parameter, the largest discrepancies between experimental and modelled results were obtained using the fractional model. Except the Burgers model, the model matching quality was
Material Modelling - Composite Approach
DEFF Research Database (Denmark)
Nielsen, Lauge Fuglsang
1997-01-01
is successfully justified comparing predicted results with experimental data obtained in the HETEK-project on creep, relaxation, and shrinkage of very young concretes cured at a temperature of T = 20^o C and a relative humidity of RH = 100%. The model is also justified comparing predicted creep, shrinkage......, and internal stresses caused by drying shrinkage with experimental results reported in the literature on the mechanical behavior of mature concretes. It is then concluded that the model presented applied in general with respect to age at loading.From a stress analysis point of view the most important finding...... in this report is that cement paste and concrete behave practically as linear-viscoelastic materials from an age of approximately 10 hours. This is a significant age extension relative to earlier studies in the literature where linear-viscoelastic behavior is only demonstrated from ages of a few days. Thus...
Baro Urbea, J.; Davidsen, J.
2017-12-01
The hypothesis of critical failure relates the presence of an ultimate stability point in the structural constitutive equation of materials to a divergence of characteristic scales in the microscopic dynamics responsible of deformation. Avalanche models involving critical failure have determined universality classes in different systems: from slip events in crystalline and amorphous materials to the jamming of granular media or the fracture of brittle materials. However, not all empirical failure processes exhibit the trademarks of critical failure. As an example, the statistical properties of ultrasonic acoustic events recorded during the failure of porous brittle materials are stationary, except for variations in the activity rate that can be interpreted in terms of aftershock and foreshock activity (J. Baró et al., PRL 2013).The rheological properties of materials introduce dissipation, usually reproduced in atomistic models as a hardening of the coarse-grained elements of the system. If the hardening is associated to a relaxation process the same mechanism is able to generate temporal correlations. We report the analytic solution of a mean field fracture model exemplifying how criticality and temporal correlations are tuned by transient hardening. We provide a physical meaning to the conceptual model by deriving the constitutive equation from the explicit representation of the transient hardening in terms of a generalized viscoelasticity model. The rate of 'aftershocks' is controlled by the temporal evolution of the viscoelastic creep. At the quasistatic limit, the moment release is invariant to rheology. Therefore, the lack of criticality is explained by the increase of the activity rate close to failure, i.e. 'foreshocks'. Finally, the avalanche propagation can be reinterpreted as a pure mathematical problem in terms of a stochastic counting process. The statistical properties depend only on the distance to a critical point, which is universal for any
Calibration of trapping force and response function of optical tweezers in viscoelastic media
DEFF Research Database (Denmark)
Fischer, Mario; Berg-Sørensen, Kirstine
2007-01-01
, 594) is not possible as the viscoelastic properties of the bio-active medium are a priori unknown. Here, we present an approach that neither requires explicit assumptions about the size of the trapped particle nor about the viscoelastic properties of the medium. Instead, the interaction between...... the medium and the trapped particle is described in a general manner, through velocity and acceleration memory. Our method is applicable to general, at least locally homogeneous, viscoelastic media. The procedure combines active and passive approaches by the application of Onsager's regression hypothesis...
Aspects Concerning Modelling Contact Pressure of Polymeric Materials Used in Robotic Soft Elements
Directory of Open Access Journals (Sweden)
Florina-Carmen Ciornei
2015-06-01
Full Text Available Compliant materials are used in applications of robotics for final elements of robotic systems. Contact pressure between a spherical indenter and a linear viscoelastic halfspace is modeled for a cosine normal load. The Maxwell viscoelastic halfspace is described by relaxation function and creep function. For the working frequency domain, the material does not present obvious relaxation. Only for very low frequencies, the pressure variation presents a maximum during approaching delayed with respect to maximum force
Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids
Santos, J. E.; Savioli, G. B.
2018-04-01
Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.
Directory of Open Access Journals (Sweden)
Treutenaere S.
2015-01-01
Full Text Available The use of fabric reinforced polymers in the automotive industry is growing significantly. The high specific stiffness and strength, the ease of shaping as well as the great impact performance of these materials widely encourage their diffusion. The present model increases the predictability of explicit finite element analysis and push the boundaries of the ongoing phenomenological model. Carbon fibre composites made up various preforms were tested by applying different mechanical load up to dynamic loading. This experimental campaign highlighted the physical mechanisms affecting the initial mechanical properties, namely intra- and interlaminar matrix damage, viscoelasticty and fibre failure. The intralaminar behaviour model is based on the explicit formulation of the matrix damage model developed by the ONERA as the given damage formulation correlates with the experimental observation. Coupling with a Maxwell-Wiechert model, the viscoelasticity is included without losing the direct explicit formulation. Additionally, the model is formulated under a total Lagrangian scheme in order to maintain consistency for finite strain. Thus, the material frame-indifference as well as anisotropy are ensured. This allows reorientation of fibres to be taken into account particularly for in-plane shear loading. Moreover, fall within the framework of the total Lagrangian scheme greatly makes the parameter identification easier, as based on the initial configuration. This intralaminar model thus relies upon a physical description of the behaviour of fabric composites and the numerical simulations show a good correlation with the experimental results.
Hu, Anqi; Li, Xiaolin; Ajdari, Amin; Jiang, Bing; Burkhart, Craig; Chen, Wei; Brinson, L. Catherine
2018-05-01
The concept of representative volume element (RVE) is widely used to determine the effective material properties of random heterogeneous materials. In the present work, the RVE is investigated for the viscoelastic response of particle-reinforced polymer nanocomposites in the frequency domain. The smallest RVE size and the minimum number of realizations at a given volume size for both structural and mechanical properties are determined for a given precision using the concept of margin of error. It is concluded that using the mean of many realizations of a small RVE instead of a single large RVE can retain the desired precision of a result with much lower computational cost (up to three orders of magnitude reduced computation time) for the property of interest. Both the smallest RVE size and the minimum number of realizations for a microstructure with higher volume fraction (VF) are larger compared to those of one with lower VF at the same desired precision. Similarly, a clustered structure is shown to require a larger minimum RVE size as well as a larger number of realizations at a given volume size compared to the well-dispersed microstructures.
Drop dynamics on a stretched viscoelastic filament: An experimental study
Peixinho, Jorge; Renoult, Marie-Charlotte; Crumeyrolle, Olivier; Mutabazi, Innocent
2016-11-01
Capillary pressure can destabilize a thin liquid filament during breakup into a succession of drops. Besides, the addition of a linear, high molecular weight, flexible and soluble polymer is enough to modify the morphology of this instability. In the time period preceding the breakup, the development of beads-on-a-string structures where drops are connected by thin threads is monitored. The drops dynamics involve drop formation, drop migration and drop coalescence. Experiments using a high-speed camera on stretched bridges of viscoelastic polymeric solutions were conducted for a range of viscosities and polymer concentrations. The rheological properties of the solutions are also quantified through conventional shear rheology and normal stress difference. The overall goal of this experimental investigation is to gain more insight into the formation and time evolution of the drops. The project BIOENGINE is co-financed by the European Union with the European regional development fund and by the Normandie Regional Council.
Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites.
Boland, Conor S; Khan, Umar; Ryan, Gavin; Barwich, Sebastian; Charifou, Romina; Harvey, Andrew; Backes, Claudia; Li, Zheling; Ferreira, Mauro S; Möbius, Matthias E; Young, Robert J; Coleman, Jonathan N
2016-12-09
Despite its widespread use in nanocomposites, the effect of embedding graphene in highly viscoelastic polymer matrices is not well understood. We added graphene to a lightly cross-linked polysilicone, often encountered as Silly Putty, changing its electromechanical properties substantially. The resulting nanocomposites display unusual electromechanical behavior, such as postdeformation temporal relaxation of electrical resistance and nonmonotonic changes in resistivity with strain. These phenomena are associated with the mobility of the nanosheets in the low-viscosity polymer matrix. By considering both the connectivity and mobility of the nanosheets, we developed a quantitative model that completely describes the electromechanical properties. These nanocomposites are sensitive electromechanical sensors with gauge factors >500 that can measure pulse, blood pressure, and even the impact associated with the footsteps of a small spider. Copyright © 2016, American Association for the Advancement of Science.
Analytical solution for dynamic pressurization of viscoelastic fluids
International Nuclear Information System (INIS)
Hashemabadi, S.H.; Etemad, S.Gh.; Thibault, J.; Golkar Naranji, M.R.
2003-01-01
The flow of simplified Phan-Thien-Tanner model fluid between parallel plates is studied analytically for the case where the upper plate moves at constant velocity. Two forms of the stress coefficient, linear and exponential, are used in the constitutive equation. For the linear stress coefficient, the dimensionless pressure gradient, the velocity profile and the product of friction factor and Reynolds number are obtained for a wide range of flow rate, Deborah number and elongational parameter. The results indicate the strong effects of the viscoelastic parameter on the velocity profile, the extremum of the velocity, and the friction factor. A correlation for the maximum pressure rise in single screw extruders is proposed. For the exponential stress coefficient, only velocity profiles were obtained and compared with velocity profiles obtained with the linear stress coefficient
Damping analysis of cylindrical composite structures with enhanced viscoelastic properties
DEFF Research Database (Denmark)
Kliem, Mathias; Høgsberg, Jan Becker; Vanwalleghem, Joachim
2018-01-01
is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the eﬃciency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass ﬁbre-reinforced plastics. Diﬀerent cross...... section geometries with shear webs have been investigated in order to study a beneﬁcial eﬀect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at diﬀerent locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate...... in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure....
Viscoelastic and dynamic properties of embryonic stem cells
DEFF Research Database (Denmark)
Ritter, Christine
Stem cells are often referred to as the ‘holy grail’ of regenerative medicine, because they possessthe ability to develop into any cell type. The use of stem cells within medicine is currently limited bythe effectivity of differentiation and cell reprogramming protocols, making it therefore...... imperative tounderstand stem cells’ differentiation mechanisms better. Studies have shown that mechanical cuescan have an influence on stem cell fate decision. However, in order to understand the reaction of stemcells to mechanical input, one should first investigate and understand the mechanical properties...... ofthe cells themselves. In this thesis, the viscoelastic properties of mouse embryonic stem cells primedeither toward the epiblast (Epi) or the primitive endoderm (PrE) lineage were investigated.Optical tweezers were used to measure the fluctuations of endogenous lipid granules and therebydraw...
Li, Dongna; Li, Xudong; Dai, Jianfeng
2018-06-01
In this paper, two kinds of transient models, the viscoelastic model and the linear elastic model, are established to analyze the curing deformation of the thermosetting resin composites, and are calculated by COMSOL Multiphysics software. The two models consider the complicated coupling between physical and chemical changes during curing process of the composites and the time-variant characteristic of material performance parameters. Subsequently, the two proposed models are implemented respectively in a three-dimensional composite laminate structure, and a simple and convenient method of local coordinate system is used to calculate the development of residual stresses, curing shrinkage and curing deformation for the composite laminate. Researches show that the temperature, degree of curing (DOC) and residual stresses during curing process are consistent with the study in literature, so the curing shrinkage and curing deformation obtained on these basis have a certain referential value. Compared the differences between the two numerical results, it indicates that the residual stress and deformation calculated by the viscoelastic model are more close to the reference value than the linear elastic model.
Ionic and viscoelastic mechanisms of a bucky-gel actuator
Kruusamäe, Karl; Sugino, Takushi; Asaka, Kinji
2015-07-01
Ionic electromechanically active polymers (IEAPs) are considered attractive candidates for soft, miniature, and lightweight actuators. The bucky-gel actuator is a carbonaceous subtype of IEAP that due to its structure (i.e. two highly porous electrodes sandwiching a thin ion-permeable electrolyte layer) and composition (i.e. being composed of soft porous polymer, carbon nanotubes, and ionic liquid) is very similar to an electric double-layer capacitor. In response to the voltage applied between the electrodes of a bucky-gel actuator, the laminar structure bends. The time domain behavior exhibits, however, a phenomenon called the back-relaxation, i.e., after some time the direction of bending is reversed even though voltage remains constant. In spite of the working mechanism of IEAP actuators being generally attributed to the transport of ions within the soft multilayer system, the specific details remain unclear. A so-called two-carrier model proposes that the bending and subsequent back-relaxation are caused by the relocation of two ionic species having different mobilities as they enter and exit the electrode layers. By adopting the two-carrier model for bucky-gel actuators, we see very good agreement between the mathematical representation and the experimental data of the electromechanical behavior. Furthermore, since the bucky-gel actuator is viscoelastic, we propose to use the time domain response of a blocking force as the key parameter related to the inner ionic mechanism. We also introduce a method to estimate the viscoelastic creep compliance function from the time domain responses for curvature and blocking force. This analysis includes four types of bucky-gel actuators of varying composition and structure.
Visco-instability of shear viscoelastic collisional dusty plasma systems
Mahdavi-Gharavi, M.; Hajisharifi, K.; Mehidan, H.
2018-04-01
In this paper, the stability of Newtonian and non-Newtonian viscoelastic collisional shear-velocity dusty plasmas is studied, using the framework of a generalized hydrodynamic (GH) model. Motivated by Banerjee et al.'s work (Banerjee et al., New J. Phys., vol. 12 (12), 2010, p. 123031), employing linear perturbation theory as well as the local approximation method in the inhomogeneous direction, the dispersion relations of the Fourier modes are obtained for Newtonian and non-Newtonian dusty plasma systems in the presence of a dust-neutral friction term. The analysis of the obtained dispersion relation in the non-Newtonian case shows that the inhomogeneous viscosity force depending on the velocity shear profile can be the genesis of a free energy source which leads the shear system to be unstable. Study of the dust-neutral friction effect on the instability of the considered systems using numerical analysis of the dispersion relation in the Newtonian case demonstrates that the maximum growth rate decreases considerably by increasing the collision frequency in the hydrodynamic regime, while this reduction can be neglected in the kinetic regime. Results show a more significant stabilization role of the dust-neutral friction term in the non-Newtonian cases, through decreasing the maximum growth rate at any fixed wavenumber and construction of the instable wavenumber region. The results of the present investigation will greatly contribute to study of the time evolution of viscoelastic laboratory environments with externally applied shear; where in these experiments the dust-neutral friction process can play a considerable role.
Directory of Open Access Journals (Sweden)
R Muralidhar
2012-01-01
Full Text Available Context : Pediatric cataract surgery is traditionally done with the aid of high-molecular-weight viscoelastics which are expensive. It needs to be determined if low-cost substitutes are just as successful. Aims : The study aims to determine the success rates for anterior and posterior capsulorrhexis and intraocular lens (IOL implantation in the bag for pediatric cataract surgery performed with the aid of a low-molecular-weight viscoelastic. Settings and Design : Nonrandomized observational study. Materials and Methods: Children less than 6 years of age who underwent cataract surgery with IOL implantation in the period May 2008-May 2009 were included. The surgeries were done by pediatric ophthalmology fellows. A standard procedure of anterior capsulorrhexis, lens aspiration with primary posterior capsulorrhexis, anterior vitrectomy, and IOL implantation was followed. Three parameters were studied: successful completion of anterior and posterior capsulorrhexis and IOL implantation in the bag. Results: 33 eyes of 28 children were studied. The success rate for completion was 66.7% and 88.2 % for anterior and posterior capsulorrhexis, respectively. IOL implantation in the bag was successful in 87.9%. Conclusions: 2% hydroxypropylmethylcellulose is a viable low-cost alternative to more expensive options similar to high-molecular-weight viscoelastics. This is of great relevance to hospitals in developing countries.
Directory of Open Access Journals (Sweden)
Mojtaba Rahimi Varposhti
2017-11-01
Full Text Available Abstract Background: This study aimed to compare the effect of cold eye irrigation solution (BSS and viscoelastic gel with their combination in room temperature on the dosage of sedative drugs which we use in Phacoemulsification cataract surgery. Material and Methods: 190 patients scheduled for cataract surgery under sedation were randomly divided into two equal groups. During surgery, we used cold (4ºc and warm (room temperature BSS and viscoelastic gel in the first and second group respectively. For all patients, we started sedation with Midazolam and Fentanyl and in case that we needed additional drug, we used Sodium Thiopental till we reached desired sedation level. Ramsay sedation scores (before, during and after surgery and total sedative drug consumption were evaluated and compared between two groups and at the end of the surgery, we checked and recorded the satisfaction score of patients and surgeon about the quality of sedation. Results: The average dosage of Midazolam wasn’t significantly different between two groups, while the average dosage of Sodium Thiopental was significantly lower in cold group. Also, the average time on which we reached desired Ramsay sedation score and the level of Ramsay score were significantly different between two groups. Conclusion: Using cold BSS and viscoelastic gel in cataract surgery in comparison of their combination in room temperature will reduce the dosage of sedative drugs which we use during surgery and help us getting a more effective sedation and higher patient and surgeon satisfaction.
RICHTER, DAVID; IACCARINO, GIANLUCA; SHAQFEH, ERIC S. G.
2010-01-01
The results from a numerical investigation of inertial viscoelastic flow past a circular cylinder are presented which illustrate the significant effect that dilute concentrations of polymer additives have on complex flows. In particular, effects
Refillable and magnetically actuated drug delivery system using pear-shaped viscoelastic membrane
So, Hongyun; Seo, Young Ho; Pisano, Albert P.
2014-01-01
We report a refillable and valveless drug delivery device actuated by an external magnetic field for on-demand drug release to treat localized diseases. The device features a pear-shaped viscoelastic magnetic membrane inducing asymmetrical
Viscoelastic and thermal properties of woven sisal fabric reinforced natural rubber biocomposites
CSIR Research Space (South Africa)
John, MJ
2009-01-01
Full Text Available This study explores the dynamic mechanical behavior of woven sisal fabric reinforced natural rubber composites. The influence of chemical modification on the viscoelastic properties has also been determined. Moreover, the effect of frequency...
Khan, Kamran; El Sayed, Tamer S.
2012-01-01
We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer
International Nuclear Information System (INIS)
Ricaud, J.M.; Masson, R.; Masson, R.
2009-01-01
The Laplace-Carson transform classically used for homogenization of linear viscoelastic heterogeneous media yields integral formulations of effective behaviours. These are far less convenient than internal variables formulations with respect to computational aspects as well as to theoretical extensions to closely related problems such as ageing viscoelasticity. Noticing that the collocation method is usually adopted to invert the Laplace-Carson transforms, we first remark that this approximation is equivalent to an internal variables formulation which is exact in some specific situations. This result is illustrated for a two-phase composite with phases obeying a compressible Maxwellian behaviour. Next, an incremental formulation allows to extend at each time step the previous general framework to ageing viscoelasticity. Finally, with the help of a creep test of a porous viscoelastic matrix reinforced with elastic inclusions, it is shown that the method yields accurate predictions (comparing to reference results provided by periodic cell finite element computations). (authors)
N'Doye, Ibrahima; Laleg-Kirati, Taous-Meriem
2015-01-01
, and show the existence of chaos. The behavior and stability analysis of the integer-order and the fractional commensurate and non-commensurate orders of a fractional viscoelastic fluids system, which exhibits chaos, are presented as well.
Leise, Tanya L.; Walton, Jay R.; Gorb, Yuliya
2009-01-01
interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation
Viscoelastic and thermal behavior of structural concrete with reference to containment vessels
International Nuclear Information System (INIS)
Stefanou, G.D.
1981-01-01
A method of numerical viscoelastic stress analysis is described suitable for concrete structures operating at elevated temperatures. The paper describes how approximate numerical methods of elastic analysis of the finite element type can be extended to incorporate the viscoelastic behavior of structural concrete of the quasi-static type. A new eight parameter viscoelastic model is proposed to represent concrete behavior in the loaded and unloaded stage. The deformational expressions for the proposed viscoelastic analogue are also developed. Finally, as a result of courve-fitting procedures, the evaluation of the creep law coefficients are obtained for creep laws appropriate to a test regime. The proposed method is of general application providing that the properties of concrete are assessed reasonably well. The analytical predictions are compared with experimental results obtained on concrete model specimens loaded for 3 1/2 months, at a temperature of 80 0 C. (author)
N'Doye, Ibrahima
2015-05-25
In this paper, a dynamical fractional viscoelastic fluids convection model in porous media is proposed and its chaotic behavior is studied. A preformed equilibrium points analysis indicates the conditions where chaotic dynamics can be observed, and show the existence of chaos. The behavior and stability analysis of the integer-order and the fractional commensurate and non-commensurate orders of a fractional viscoelastic fluids system, which exhibits chaos, are presented as well.
Theoretical Investigation of Creeping Viscoelastic Flow Transition Around a Rotating Curved Pipe
Hamza, S. E. E.; El-Bakry, Mostafa Y.
2015-01-01
The study of creeping motion of viscoelastic fluid around a rotating rigid torus is investigated. The analysis of the problem is performed using a second-order viscoelastic model. The study is carried out in terms of the bipolar toroidal system of coordinates where the toroid is rotating about its axis of symmetry (z-axis). The problem is solved within the frame of slow flow approximation. Therefore, all variables in the governing equations are expanded in a power series of angular velocity. ...
Patankar, Kshitish A
2009-01-01
In this dissertation, the effect of temperature and humidity on the viscoelastic and fracture properties of proton exchange membranes (PEM) used in fuel cell applications was studied. Understanding and accurately modeling the linear and nonlinear viscoelastic constitutive properties of a PEM are important for making hygrothermal stress predictions in the cyclic temperature and humidity environment of operating fuel cells. In this study, NafionÂ® NRE 211, Gore-SelectÂ® 57, and Ion PowerÂ® N111...
Materials Analysis and Modeling of Underfill Materials.
Energy Technology Data Exchange (ETDEWEB)
Wyatt, Nicholas B [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chambers, Robert S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-08-01
The thermal-mechanical properties of three potential underfill candidate materials for PBGA applications are characterized and reported. Two of the materials are a formulations developed at Sandia for underfill applications while the third is a commercial product that utilizes a snap-cure chemistry to drastically reduce cure time. Viscoelastic models were calibrated and fit using the property data collected for one of the Sandia formulated materials. Along with the thermal-mechanical analyses performed, a series of simple bi-material strip tests were conducted to comparatively analyze the relative effects of cure and thermal shrinkage amongst the materials under consideration. Finally, current knowledge gaps as well as questions arising from the present study are identified and a path forward presented.
Okamoto, R. J.; Clayton, E. H.; Bayly, P. V.
2011-10-01
Magnetic resonance elastography (MRE) is used to quantify the viscoelastic shear modulus, G*, of human and animal tissues. Previously, values of G* determined by MRE have been compared to values from mechanical tests performed at lower frequencies. In this study, a novel dynamic shear test (DST) was used to measure G* of a tissue-mimicking material at higher frequencies for direct comparison to MRE. A closed-form solution, including inertial effects, was used to extract G* values from DST data obtained between 20 and 200 Hz. MRE was performed using cylindrical 'phantoms' of the same material in an overlapping frequency range of 100-400 Hz. Axial vibrations of a central rod caused radially propagating shear waves in the phantom. Displacement fields were fit to a viscoelastic form of Navier's equation using a total least-squares approach to obtain local estimates of G*. DST estimates of the storage G' (Re[G*]) and loss modulus G'' (Im[G*]) for the tissue-mimicking material increased with frequency from 0.86 to 0.97 kPa (20-200 Hz, n = 16), while MRE estimates of G' increased from 1.06 to 1.15 kPa (100-400 Hz, n = 6). The loss factor (Im[G*]/Re[G*]) also increased with frequency for both test methods: 0.06-0.14 (20-200 Hz, DST) and 0.11-0.23 (100-400 Hz, MRE). Close agreement between MRE and DST results at overlapping frequencies indicates that G* can be locally estimated with MRE over a wide frequency range. Low signal-to-noise ratio, long shear wavelengths and boundary effects were found to increase residual fitting error, reinforcing the use of an error metric to assess confidence in local parameter estimates obtained by MRE.
Kink and kink-like waves in pre-stretched Mooney-Rivlin viscoelastic rods
Directory of Open Access Journals (Sweden)
Y. Z. Wang
2015-08-01
Full Text Available The present paper theoretically investigates kink and kink-like waves propagating in pre-stretched Mooney-Rivlin viscoelastic rods. In the constitutive modeling, the Cauchy stress tensor is assumed to consist of an elastic part and a dissipative part. The asymptotic method is adopted to simplify the nonlinear dynamic equations in the limit of finite-small amplitude and long wavelength. Using the reductive perturbation method, we further derive the well-known far-field equation (i.e. the KdV-Burgers equation, to which two kinds of explicit traveling wave solutions are presented. Examples are given to show the influences of pre-stretch and viscosity on the wave shape and wave velocity. It is shown that pre-stretch could be an effective method for modulating the two types of waves. In addition, such waves may be utilized to measure the viscosity coefficient of the material. The competition between the effects of pre-stretch and viscosity on the kink and kink-like waves is also revealed.
Quasi-Static Viscoelastic Finite Element Model of an Aircraft Tire
Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.
1999-01-01
An elastic large displacement thick-shell mixed finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at the element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses is included in the mixed variational functional. The nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the nonlinear elastic equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to computationally simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.
Blast Analysis of Laminated Glass Curtain Walls Equipped by Viscoelastic Dissipative Devices
Directory of Open Access Journals (Sweden)
Chiara Bedon
2012-09-01
Full Text Available Nonlinear numerical simulations are reported for a conventional unitized laminated glass curtain wall subjected to high- and low-level air blast loading. The studied curtain wall, spanning floor to floor, consisted of a laminated glass panel, a continuous bead of structural silicone sealant, a split screw spline frame and four rigid brackets. Firstly, a linear elastic FE-model (M01 is presented to investigate dynamic stresses and deflections due to explosion, by taking into account geometrical nonlinearities. Since, in similar glazing systems, it is important to take into account the possible cracking of glass lites, a second model (M02, calibrated to previous experimental data, is proposed. In it, glass behaves as a brittle-elastic material, whereas an elastoplastic characteristic curve is assumed for mullions. As a result, the design explosion seriously affects the main components of the curtain wall, especially the bead of silicone. To address these criticalities, additional viscoelastic (VE devices are installed at the frame corners (M03. Their effectiveness explains the additional deformability provided to the conventional curtain wall, as well as the obvious dissipation of the incoming energy due to blast loading. Structural and energy capabilities provided by devices are highlighted by means of numerical simulations.
Modelling and Simulation of a Manipulator with Stable Viscoelastic Grasping Incorporating Friction
Directory of Open Access Journals (Sweden)
A. Khurshid
2016-12-01
Full Text Available Design, dynamics and control of a humanoid robotic hand based on anthropological dimensions, with joint friction, is modelled, simulated and analysed in this paper by using computer aided design and multibody dynamic simulation. Combined joint friction model is incorporated in the joints. Experimental values of coefficient of friction of grease lubricated sliding contacts representative of manipulator joints are presented. Human fingers deform to the shape of the grasped object (enveloping grasp at the area of interaction. A mass-spring-damper model of the grasp is developed. The interaction of the viscoelastic gripper of the arm with objects is analysed by using Bond Graph modelling method. Simulations were conducted for several material parameters. These results of the simulation are then used to develop a prototype of the proposed gripper. Bond graph model is experimentally validated by using the prototype. The gripper is used to successfully transport soft and fragile objects. This paper provides information on optimisation of friction and its inclusion in both dynamic modelling and simulation to enhance mechanical efficiency.
A micromechanical approach to elastic and viscoelastic properties of fiber reinforced concrete
International Nuclear Information System (INIS)
Pasa Dutra, V.F.; Maghous, S.; Campos Filho, A.; Pacheco, A.R.
2010-01-01
Some aspects of the constitutive behavior of fiber reinforced concrete (FRC) are investigated within a micromechanical framework. Special emphasis is put on the prediction of creep of such materials. The linear elastic behavior is first examined by implementation of a Mori-Tanaka homogenization scheme. The micromechanical predictions for the overall stiffness prove to be very close to finite element solutions obtained from the numerical analysis of a representative elementary volume of FRC modeled as a randomly heterogeneous medium. The validation of the micromechanical concepts based on comparison with a set of experiments, shows remarkable predictive capabilities of the micromechanical representation. The second part of the paper is devoted to non-ageing viscoelasticity of FRC. Adopting a Zener model for the behavior of the concrete matrix and making use of the correspondence principle, the homogenized relaxation moduli are derived analytically. The validity of the model is established by mean of comparison with available experiment measurements of creep strain of steel fiber reinforced concrete under compressive load. Finally, the model predictions are compared to those derived from analytical models formulated within a one-dimensional setting.
Viscoelasticity and pattern formations in stock market indices
Gündüz, Güngör; Gündüz, Aydın
2017-06-01
The viscoelastic and thermodynamic properties of four stock indices, namely, DJI, Nasdaq-100, Nasdaq-Composite, and S&P were analyzed for a period of 30 years from 1986 to 2015. The asset values (or index) can be placed into Aristotelian `potentiality-actuality' framework by using scattering diagram. Thus, the index values can be transformed into vectorial forms in a scattering diagram, and each vector can be split into its horizontal and vertical components. According to viscoelastic theory, the horizontal component represents the conservative, and the vertical component represents the dissipative behavior. The related storage and the loss modulus of these components are determined and then work-like and heat-like terms are calculated. It is found that the change of storage and loss modulus with Wiener noise (W) exhibit interesting patterns. The loss modulus shows a featherlike pattern, whereas the storage modulus shows figurative man-like pattern. These patterns are formed due to branchings in the system and imply that stock indices do have a kind of `fine-order' which can be detected when the change of modulus values are plotted with respect to Wiener noise. In theoretical calculations it is shown that the tips of the featherlike patterns stay at negative W values, but get closer to W = 0 as the drift in the system increases. The shift of the tip point from W = 0 indicates that the price change involves higher number of positive Wiener number corrections than the negative Wiener. The work-like and heat-like terms also exhibit patterns but with different appearance than modulus patterns. The decisional changes of people are reflected as the arrows in the scattering diagram and the propagation path of these vectors resemble the path of crack propagation. The distribution of the angle between two subsequent vectors shows a peak at 90°, indicating that the path mostly obeys the crack path occurring in hard objects. Entropy mimics the Wiener noise in the evolution
The effects of physical aging at elevated temperatures on the viscoelastic creep on IM7/K3B
Gates, Thomas S.; Feldman, Mark
1994-01-01
Physical aging at elevated temperature of the advanced composite IM7/K3B was investigated through the use of creep compliance tests. Testing consisted of short term isothermal, creep/recovery with the creep segments performed at constant load. The matrix dominated transverse tensile and in-plane shear behavior were measured at temperatures ranging from 200 to 230 C. Through the use of time based shifting procedures, the aging shift factors, shift rates and momentary master curve parameters were found at each temperature. These material parameters were used as input to a predictive methodology, which was based upon effective time theory and linear viscoelasticity combined with classical lamination theory. Long term creep compliance test data was compared to predictions to verify the method. The model was then used to predict the long term creep behavior for several general laminates.
Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro
2018-02-01
The viscoelastic deformation of an elastic-viscoelastic composite system is significantly different from that of a simple viscoelastic medium. Here, we show that complicated transient deformation due to viscoelastic stress relaxation after a megathrust earthquake can occur even in a very simple situation, in which an elastic surface layer (lithosphere) is underlain by a viscoelastic substratum (asthenosphere) under gravity. Although the overall decay rate of the system is controlled by the intrinsic relaxation time constant of the asthenosphere, the apparent decay time constant at each observation point is significantly different from place to place and generally much longer than the intrinsic relaxation time constant of the asthenosphere. It is also not rare that the sense of displacement rate is reversed during the viscoelastic relaxation. If we do not bear these points in mind, we may draw false conclusions from observed deformation data. Such complicated transient behavior can be explained mathematically from the characteristics of viscoelastic solution: for an elastic-viscoelastic layered half-space, the viscoelastic solution is expressed as superposition of three decaying components with different relaxation time constants that depend on wavelength.
Ramirez, Brian Josue
The aim of this thesis was to develop advance, high performance polyurea foams for multi-hit capability in protective equipment that respond over a range of impact energies, temperatures, and strain rates. In addition, the microstructure of these materials should be tunable such that the peak stress (or force) transmitted across the foam section can be limited to a specific value defined by an injury threshold while maximizing impact energy absorption. Novel polyurea foams were manufactured and found to exhibit a reversible viscoelastic shear deformation at the molecular level. The intrinsic shear dissipation process is synergistically coupled to controlled collapse of a novel pore structure. The microstructure compromises of stochastic polyhedral cells ranging from 200 - 500 mum with perforated membranes with small apertures ( 20 mum). This makes them strain rate sensitive as the rate at which the air escapes the cells depend upon the loading rate. These mechanisms operate simultaneously and sequentially, thereby significantly reducing the transmitted impact forces across the foam section. Thus, they behave as an elastically modulated layered composite because the cells stiffen or soften in response to the changing loading rate. Therefore, the newly developed polyurea foams are able to manage the varying material strain rate that occurs within the same loading event without the need to modulate the stiffness or density. Additionally, polyurea foams were found to retain its excellent impact properties over a range of temperatures (0°C to 40°C) by having a glass transition temperature well below 0°C. This is in contrast to commercially available high performance foams that have the glass transition temperature near 0°C and absorb energy through phase transformation at ambient conditions, but significantly stiffen at lower temperatures, and dramatically soften at higher temperatures. This expands the application domain of polyurea foam material considerably as it
Indentation analysis of active viscoelastic microplasmodia of P. polycephalum
Fessel, Adrian; Oettmeier, Christina; Wechsler, Klaus; Döbereiner, Hans-Günther
2018-01-01
Simple organisms like Physarum polycephalum realize complex behavior, such as shortest path optimization or habituation, via mechanochemical processes rather than by a network of neurons. A full understanding of these phenomena requires detailed investigation of the underlying mechanical properties. To date, micromechanical measurements on P. polycephalum are sparse and lack reproducibility. This prompts study of microplasmodia, a reproducible and homogeneous form of P. polycephalum that resembles the plasmodial ectoplasm responsible for mechanical stability and generation of forces. We combine investigation of ultra-structure and dimension of P. polycephalum with the analysis of data obtained by indentation of microplasmodia, employing a novel nonlinear viscoelastic scaling model that accounts for finite dimension of the sample. We identify the multi-modal distribution of parameters such as Young’s moduls, Poisson’s ratio, and relaxation times associated with viscous processes that cover five orders of magnitude. Results suggest a characterization of microplasmodia as porous, compressible structures that act like elastic solids with high Young’s modulus on short time scales, whereas on long time-scales and upon repeated indentation viscous behavior dominates and the effective modulus is significantly decreased. Furthermore, Young’s modulus is found to oscillate in phase with shape of microplasmodia, emphasizing that modeling P. polycephalum oscillations as a driven oscillator with constant moduli is not practicable.
Flapping motion and force generation in a viscoelastic fluid
Normand, Thibaud; Lauga, Eric
2008-12-01
In a variety of biological situations, swimming cells have to move through complex fluids. Similarly, mucociliary clearance involves the transport of polymeric fluids by beating cilia. Here, we consider the extent to which complex fluids could be exploited for force generation on small scales. We consider a prototypical reciprocal motion (i.e., identical under time-reversal symmetry): the periodic flapping of a tethered semi-infinite plane. In the Newtonian limit, such motion cannot be used for force generation according to Purcell’s scallop theorem. In a polymeric fluid (Oldroyd-B, and its generalization), we show that this is not the case and calculate explicitly the forces on the flapper for small-amplitude sinusoidal motion. Three setups are considered: a flapper near a wall, a flapper in a wedge, and a two-dimensional scalloplike flapper. In all cases, we show that at quadratic order in the oscillation amplitude, the tethered flapping motion induces net forces, but no average flow. Our results demonstrate therefore that the scallop theorem is not valid in polymeric fluids. The reciprocal component of the movement of biological appendages such as cilia can thus generate nontrivial forces in polymeric fluid such as mucus, and normal-stress differences can be exploited as a pure viscoelastic force generation and propulsion method.
Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion
Ślęzak, Jakub; Metzler, Ralf; Magdziarz, Marcin
2018-02-01
Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.
Fractal Folding and Medium Viscoelasticity Contribute Jointly to Chromosome Dynamics
Polovnikov, K. E.; Gherardi, M.; Cosentino-Lagomarsino, M.; Tamm, M. V.
2018-02-01
Chromosomes are key players of cell physiology, their dynamics provides valuable information about its physical organization. In both prokaryotes and eukaryotes, the short-time motion of chromosomal loci has been described with a Rouse model in a simple or viscoelastic medium. However, little emphasis has been put on the influence of the folded organization of chromosomes on the local dynamics. Clearly, stress propagation, and thus dynamics, must be affected by such organization, but a theory allowing us to extract such information from data, e.g., on two-point correlations, is lacking. Here, we describe a theoretical framework able to answer this general polymer dynamics question. We provide a scaling analysis of the stress-propagation time between two loci at a given arclength distance along the chromosomal coordinate. The results suggest a precise way to assess folding information from the dynamical coupling of chromosome segments. Additionally, we realize this framework in a specific model of a polymer whose long-range interactions are designed to make it fold in a fractal way and immersed in a medium characterized by subdiffusive fractional Langevin motion with a tunable scaling exponent. This allows us to derive explicit analytical expressions for the correlation functions.
Energy decay of a viscoelastic wave equation with supercritical nonlinearities
Guo, Yanqiu; Rammaha, Mohammad A.; Sakuntasathien, Sawanya
2018-06-01
This paper presents a study of the asymptotic behavior of the solutions for the history value problem of a viscoelastic wave equation which features a fading memory term as well as a supercritical source term and a frictional damping term: u_{tt}- k(0) Δ u - \\int \\limits _0^{&infty } k'(s) Δ u(t-s) ds +|u_t|^{m-1}u_t =|u|^{p-1}u, { in } Ω × (0,T), u(x,t)=u_0(x,t), \\quad { in } Ω × (-∞,0]), where Ω is a bounded domain in R^3 with a Dirichlét boundary condition and u_0 represents the history value. A suitable notion of a potential well is introduced for the system, and global existence of solutions is justified, provided that the history value u_0 is taken from a subset of the potential well. Also, uniform energy decay rate is obtained which depends on the relaxation kernel -k'(s) as well as the growth rate of the damping term. This manuscript complements our previous work (Guo et al. in J Differ Equ 257:3778-3812, 2014, J Differ Equ 262:1956-1979, 2017) where Hadamard well-posedness and the singularity formulation have been studied for the system. It is worth stressing the special features of the model, namely the source term here has a supercritical growth rate and the memory term accounts to the full past history that goes back to -∞.
Viscoelastic capillary flow: the case of whole blood
Directory of Open Access Journals (Sweden)
David Rabaud
2016-07-01
Full Text Available The dynamics of spontaneous capillary flow of Newtonian fluids is well-known and can be predicted by the Lucas-Washburn-Rideal (LWR law. However a wide variety of viscoelastic fluids such as alginate, xanthan and blood, does not exhibit the same Newtonian behavior.In this work we consider the Herschel-Bulkley (HB rheological model and Navier-Stokes equation to derive a generic expression that predicts the capillary flow of non-Newtonian fluids. The Herschel-Bulkley rheological model encompasses a wide variety of fluids, including the Power-law fluids (also called Ostwald fluids, the Bingham fluids and the Newtonian fluids. It will be shown that the proposed equation reduces to the Lucas-Washburn-Rideal law for Newtonian fluids and to the Weissenberg-Rabinowitsch-Mooney (WRM law for power-law fluids. Although HB model cannot reduce to Casson’s law, which is often used to model whole blood rheology, HB model can fit the whole blood rheology with the same accuracy.Our generalized expression for the capillary flow of non-Newtonian fluid was used to accurately fit capillary flow of whole blood. The capillary filling of a cylindrical microchannel by whole blood was monitored. The blood first exhibited a Newtonian behavior, then after 7 cm low shear stress and rouleaux formation made LWR fails to fit the data: the blood could not be considered as Newtonian anymore. This non-Newtonian behavior was successfully fit by the proposed equation.
Kinetic study and thermal decomposition behavior of viscoelastic memory foam
International Nuclear Information System (INIS)
Garrido, María A.; Font, Rafael; Conesa, Juan A.
2016-01-01
Highlights: • The thermal degradation has been studied under three different atmospheres. • Pyrolysis and combustion kinetic models have been proposed. • Evolved products under different atmospheres have been analyzed by TG-FTIR and TG-MS. - Abstract: A systematic investigation of the thermal decomposition of viscoelastic memory foam (VMF) was performed using thermogravimetric analysis (TGA) to obtain the kinetic parameters, and thermogravimetric analysis coupled to Fourier Transformed Infrared Spectrometry (TGA-FTIR) and thermogravimetric analysis coupled to Mass Spectrometry (TGA-MS) to obtain detailed information of evolved products on pyrolysis and oxidative degradations. Two consecutive nth-order reactions were employed to correlate the experimental data from dynamic and isothermal runs performed at three different heating rates (5, 10 and 20 K/min) under an inert atmosphere. On the other hand, for the kinetic study of the oxidative decomposition, the data from combustion (synthetic air) and poor oxygen combustion (N_2:O_2 = 9:1) runs, at three heating rates and under dynamic and isothermal conditions, were correlated simultaneously. A kinetic model consisting of three consecutive reactions presented a really good correlation in all runs. TGA-FTIR analysis showed that the main gases released during the pyrolysis of VMF were determined as ether and aliphatic hydrocarbons, whereas in combustion apart from the previous gases, aldehydes, amines and CO_2 have also been detected as the main gases. These results were confirmed by the TGA-MS.
Seismic response of base-isolated buildings using a viscoelastic model
International Nuclear Information System (INIS)
Uras, R.A.
1993-01-01
Due to recent developments in elastomer technology,seismic isolation using elastomer bearings is rapidly gaining acceptance as a design tool to enhance structural seismic margins and to protect people and equipment from earthquake damage. With proper design of isolators, the fundamental frequency of the structure can be reduced to a value that is lower than the dominant frequencies of earthquake ground motions. The other feature of an isolation system is that it can provide a mechanism for energy dissipation. In the USA, the use of seismic base-isolation has become an alternate strategy for advanced Liquid Metal-cooled Reactors (LMRs). ANL has been deeply involved in the development and implementation of seismic isolation for use in both nuclear facilities and civil structures for the past decade. Shimizu Corporation of Japan has a test facility at Tohoku University in Sendai, Japan. The test facility has two buildings: one is base isolated and the other is conventionally founded. The buildings are full-size, three-story reinforced concrete structures. The dimensions and construction of the superstructures are identical. They were built side by side in a seismically active area. In 1988, the ANL/Shimizu Joint Program was established to study the differences in behavior of base-isolated and ordinarily founded structures when subjected to earthquake loading. A more comprehensive description of this joint program is presented in a companion paper (Wang et al. 1993). With the increased use of elastomeric polymers in industrial applications such as isolation bearings, the importance of constitutive modeling of viscoelastic materials is more and more pronounced. A realistic representation of material behavior is essential for computer simulations to replicate the response observed in experiments
Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity
International Nuclear Information System (INIS)
Hoyt, Kenneth; Kneezel, Timothy; Castaneda, Benjamin; Parker, Kevin J
2008-01-01
A novel quantitative sonoelastography technique for assessing the viscoelastic properties of skeletal muscle tissue was developed. Slowly propagating shear wave interference patterns (termed crawling waves) were generated using a two-source configuration vibrating normal to the surface. Theoretical models predict crawling wave displacement fields, which were validated through phantom studies. In experiments, a viscoelastic model was fit to dispersive shear wave speed sonoelastographic data using nonlinear least-squares techniques to determine frequency-independent shear modulus and viscosity estimates. Shear modulus estimates derived using the viscoelastic model were in agreement with that obtained by mechanical testing on phantom samples. Preliminary sonoelastographic data acquired in healthy human skeletal muscles confirm that high-quality quantitative elasticity data can be acquired in vivo. Studies on relaxed muscle indicate discernible differences in both shear modulus and viscosity estimates between different skeletal muscle groups. Investigations into the dynamic viscoelastic properties of (healthy) human skeletal muscles revealed that voluntarily contracted muscles exhibit considerable increases in both shear modulus and viscosity estimates as compared to the relaxed state. Overall, preliminary results are encouraging and quantitative sonoelastography may prove clinically feasible for in vivo characterization of the dynamic viscoelastic properties of human skeletal muscle
Simulating Seismic Wave Propagation in Viscoelastic Media with an Irregular Free Surface
Liu, Xiaobo; Chen, Jingyi; Zhao, Zhencong; Lan, Haiqiang; Liu, Fuping
2018-05-01
In seismic numerical simulations of wave propagation, it is very important for us to consider surface topography and attenuation, which both have large effects (e.g., wave diffractions, conversion, amplitude/phase change) on seismic imaging and inversion. An irregular free surface provides significant information for interpreting the characteristics of seismic wave propagation in areas with rugged or rapidly varying topography, and viscoelastic media are a better representation of the earth's properties than acoustic/elastic media. In this study, we develop an approach for seismic wavefield simulation in 2D viscoelastic isotropic media with an irregular free surface. Based on the boundary-conforming grid method, the 2D time-domain second-order viscoelastic isotropic equations and irregular free surface boundary conditions are transferred from a Cartesian coordinate system to a curvilinear coordinate system. Finite difference operators with second-order accuracy are applied to discretize the viscoelastic wave equations and the irregular free surface in the curvilinear coordinate system. In addition, we select the convolutional perfectly matched layer boundary condition in order to effectively suppress artificial reflections from the edges of the model. The snapshot and seismogram results from numerical tests show that our algorithm successfully simulates seismic wavefields (e.g., P-wave, Rayleigh wave and converted waves) in viscoelastic isotropic media with an irregular free surface.
Fluid-structure interaction with pipe-wall viscoelasticity during water hammer
Keramat, A.; Tijsseling, A. S.; Hou, Q.; Ahmadi, A.
2012-01-01
Fluid-structure interaction (FSI) due to water hammer in a pipeline which has viscoelastic wall behaviour is studied. Appropriate governing equations are derived and numerically solved. In the numerical implementation of the hydraulic and structural equations, viscoelasticity is incorporated using the Kelvin-Voigt mechanical model. The equations are solved by two different approaches, namely the Method of Characteristics-Finite Element Method (MOC-FEM) and full MOC. In both approaches two important effects of FSI in fluid-filled pipes, namely Poisson and junction coupling, are taken into account. The study proposes a more comprehensive model for studying fluid transients in pipelines as compared to previous works, which take into account either FSI or viscoelasticity. To verify the proposed mathematical model and its numerical solutions, the following problems are investigated: axial vibration of a viscoelastic bar subjected to a step uniaxial loading, FSI in an elastic pipe, and hydraulic transients in a pressurised polyethylene pipe without FSI. The results of each case are checked with available exact and experimental results. Then, to study the simultaneous effects of FSI and viscoelasticity, which is the new element of the present research, one problem is solved by the two different numerical approaches. Both numerical methods give the same results, thus confirming the correctness of the solutions.
Rutting Prediction in Asphalt Pavement Based on Viscoelastic Theory
Directory of Open Access Journals (Sweden)
Nahi Mohammed Hadi
2016-01-01
Full Text Available Rutting is one of the most disturbing failures on the asphalt roads due to the interrupting it is caused to the drivers. Predicting of asphalt pavement rutting is essential tool leads to better asphalt mixture design. This work describes a method of predicting the behaviour of various asphalt pavement mixes and linking these to an accelerated performance testing. The objective of this study is to develop a finite element model based on viscoplastic theory for simulating the laboratory testing of asphalt mixes in Hamburg Wheel Rut Tester (HWRT for rutting. The creep parameters C1, C2 and C3 are developed from the triaxial repeated load creep test at 50°C and at a frequency of 1 Hz and the modulus of elasticity and Poisson’ s ratio determined at the same temperature. Viscoelastic model (creep model is adopted using a FE simulator (ANSYS in order to calculate the rutting for various mixes under a uniform loading pressure of 500 kPa. An eight-node with a three Degrees of Freedom (UX, UY, and UZ Element is used for the simulation. The creep model developed for HWRT tester was verified by comparing the predicted rut depths with the measured one and by comparing the rut depth with ABAQUS result from literature. Reasonable agreement can be obtained between the predicted rut depths and the measured one. Moreover, it is found that creep model parameter C1 and C3 have a strong relationship with rutting. It was clear that the parameter C1 strongly influences rutting than the parameter C3. Finally, it can be concluded that creep model based on finite element method can be used as an effective tool to analyse rutting of asphalt pavements.
Viscoelastic properties of graphene-based epoxy resins
Nobile, Maria Rossella; Fierro, Annalisa; Rosolia, Salvatore; Raimondo, Marialuigia; Lafdi, Khalid; Guadagno, Liberata
2015-12-01
In this paper the viscoelastic properties of an epoxy resin filled with graphene-based nanoparticles have been investigated in the liquid state, before curing, by means of a rotational rheometer equipped with a parallel plate geometry. Exfoliated graphite was prepared using traditional acid intercalation followed by a sudden treatment at high temperature (900°C). The percentage of exfoliated graphite was found to be 56%. The epoxy matrix was prepared by mixing a tetrafunctional precursor with a reactive diluent which produces a significant decrease in the viscosity of the epoxy precursor so that the dispersion step of nanofillers in the matrix can easily occur. The hardener agent, the 4,4-diaminodiphenyl sulfone (DDS), was added at a stoichiometric concentration with respect to all the epoxy rings. The inclusion of the partially exfoliated graphite (pEG) in the formulated epoxy mixture significantly modifies the rheological behaviour of the mixture itself. The epoxy mixture, indeed, shows a Newtonian behaviour while, at 3 wt % pEG content, the complex viscosity of the nanocomposite clearly shows a shear thinning behaviour with η* values much higher at the lower frequencies. The increase in complex viscosity with the increasing of the partially exfoliated graphite content was mostly caused by a dramatic increase in the storage modulus. All the graphene-based epoxy mixtures were cured by a two-stage curing cycles: a first isothermal stage was carried out at the lower temperature of 125°C for 1 hour while the second isothermal stage was performed at the higher temperature of 200°C for 3 hours. The mechanical properties of the cured nanocomposites show high values in the storage modulus and glass transition temperature.
Energy Technology Data Exchange (ETDEWEB)
Farina, Luis Claudio
2009-07-01
One of the main requirements for the use of fiber-reinforced polymer matrix composites in structural applications is the evaluation of their behavior during service life. The warranties of the integrity of these structural components demand a study of the time dependent behavior of these materials due to viscoelastic response of the polymeric matrix and of the countless possibilities of design configurations. In the present study, creep and creep rupture test in stress were performed in specimens of unidirectional carbon fiber-reinforced epoxy composites with fibers orientations of 60 degree and 90 degree, at temperatures of 25 and 70 degree C. The aim is the viscoelastic characterization of the material through the creep curves to some levels of constant tension during periods of 1000 h, the attainment of the creep rupture envelope by the creep rupture curves and the determination of the transition of the linear for non-linear behavior through isochronous curves. In addition, comparisons of creep compliance curves with a viscoelastic behavior prediction model based on Schapery equation were also performed. For the test, a modification was verified in the behavior of the material, regarding the resistance, stiffness and deformation, demonstrating that these properties were affected for the time and tension level, especially in work temperature above the ambient. The prediction model was capable to represent the creep behavior, however the determination of the equations terms should be considered, besides the variation of these with the applied tension and the elapsed time of test. (author)
Wang, Deli; Xu, Wei; Zhao, Xiangrong
2016-03-01
This paper aims to deal with the stationary responses of a Rayleigh viscoelastic system with zero barrier impacts under external random excitation. First, the original stochastic viscoelastic system is converted to an equivalent stochastic system without viscoelastic terms by approximately adding the equivalent stiffness and damping. Relying on the means of non-smooth transformation of state variables, the above system is replaced by a new system without an impact term. Then, the stationary probability density functions of the system are observed analytically through stochastic averaging method. By considering the effects of the biquadratic nonlinear damping coefficient and the noise intensity on the system responses, the effectiveness of the theoretical method is tested by comparing the analytical results with those generated from Monte Carlo simulations. Additionally, it does deserve attention that some system parameters can induce the occurrence of stochastic P-bifurcation.
Pressure drop and heat transfer in viscoelastic duct flow - A new look
International Nuclear Information System (INIS)
Kostic, M.; Hartnett, J.P.
1987-01-01
Asymptotic friction factors and heat transfer j-factors for turbulent duct flow of viscoelastic fluids are viewed from a new reference - the extended laminar flow results which exhibit the lowest possible friction and heat transfer. This analysis suggests that the presence of elasticity laminarizes the flow. A simple model which takes account of the reinforced fluid structure resulting from the presence of macromolecular polymer chains is introduced to explain the decrease in the turbulence level associated with viscoelastic fluids. A major feature of the proposed model is that a viscoelastic fluid has a nonuniform and nonisotropic viscosity, which in a duct flow produced non-homogeneous turbulent fluctuations. The observed decrease in friction factor and heat transfer, as well as the large increases in critical Reynolds number and hydrodynamic and thermal entrance lengths are consistent with the model
Directory of Open Access Journals (Sweden)
R. Jayendiran
2015-02-01
Full Text Available This work focuses on evaluating the time-dependent non-linear ferroelastic behaviour of 1-3 piezocomposites under pure uni-axial compressive stress loading condition. An experimental setup is developed to study the influence of high-stress levels on the stress-strain and stress-polarization behaviour of 1-3 piezocomposites. The electro-elastic effective properties of 1-3 piezocomposites are measured experimentally based on IEEE standard and compared with the proposed numerical model using finite-element software ABAQUS. The time-dependent effective properties are evaluated using viscoelastic model and it is incorporated into a 3D micromechanical model to predict the viscoelastic behaviour of 1-3 piezocomposites under mechanical loading. The simulated results are compared with the viscoelastic behaviour of 1-3 piezocomposites obtained from experiments.
Growth and decay of weak disturbances in visco-elastic arteries
International Nuclear Information System (INIS)
Gaur, M.; Rai, S.K.
1996-01-01
In non-linear mathematical models of the arterial circulation, the visco-elasticity of the vessel walls has generally been neglected or only taken into account in a highly approximate manner. The object of the present paper is to provide a mathematical model for the propagation of weak disturbances in visco-elastic arteries. A differential equation governing the growth and decay of the waves has been obtained and solved analytically. It is observed that compressive pulses may grow into shock waves. A mathematical model which is based on geometrical and mechanical properties of arteries admits disturbances in the propagating pulses which are not observed in human beings under normal physiological conditions. It is also predicted that visco-elasticity delays the shock wave formation in the model. The shock wave may appear in periphery in the case of aortic insufficiency due to increased pressure at the root of aorta. The corresponding predictions are in much better agreement with in vivo measurements
Sakai, Yasumasa; Taki, Hirofumi; Kanai, Hiroshi
2016-07-01
In our previous study, the viscoelasticity of the radial artery wall was estimated to diagnose endothelial dysfunction using a high-frequency (22 MHz) ultrasound device. In the present study, we employed a commercial ultrasound device (7.5 MHz) and estimated the viscoelasticity using arterial pressure and diameter, both of which were measured at the same position. In a phantom experiment, the proposed method successfully estimated the elasticity and viscosity of the phantom with errors of 1.8 and 30.3%, respectively. In an in vivo measurement, the transient change in the viscoelasticity was measured for three healthy subjects during flow-mediated dilation (FMD). The proposed method revealed the softening of the arterial wall originating from the FMD reaction within 100 s after avascularization. These results indicate the high performance of the proposed method in evaluating vascular endothelial function just after avascularization, where the function is difficult to be estimated by a conventional FMD measurement.
Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media
Zhang, K.; Luo, Y.; Xia, J.; Chen, C.
2011-01-01
Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P
Nonlinear shear wave in a non Newtonian visco-elastic medium
Energy Technology Data Exchange (ETDEWEB)
Banerjee, D.; Janaki, M. S.; Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Chaudhuri, M. [Max-Planck-Institut fuer extraterrestrische Physik, 85741 Garching (Germany)
2012-06-15
An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau-Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries equation. This model has application from laboratory to astrophysical plasmas as well as in biological systems.
Ex-Vivo Cow Skin Viscoelastic Effect for Tribological Aspects in Endoprosthesis
Subhi, K. A.; Tudor, A.; Hussein, E. K.; Wahad, H.; Chisiu, G.
2018-01-01
The viscoelastic behavior of ex-vivo cow skin was experimentally studied by applied load from different indenter types (circle, square and triangle, all types have the same area) for different times (10 sec, 30 sec, and 60 sec). The viscoelastic tests were carried out using a UMT series (UMT-II, CETR Corporation). The experimental results collected at different operating conditions showed that the cow skin has a higher reaction against the triangle indenter compared to the other shapes. Whereas the hysteresis of cow skin was lower at low applied load time and it's increased when the time increased.
Neuro-adaptive control in beating heart surgery based on the viscoelastic tissue model
Directory of Open Access Journals (Sweden)
Setareh Rezakhani
2014-04-01
Full Text Available In this paper, the problem of 3D heart motion in beating heart surgery is resolved by proposing a parallel force-motion controller. Motion controller is designed based on neuro-adaptive approach to compensate 3D heart motion and deal with uncertainity in dynamic parameters, while an implicit force control is implemented by considering a viscoelastic tissue model. Stability analysis is proved through Lypanov’s stability theory and Barballet’s lemma. Simulation results, for D2M2 robot, which is done in nominal case and viscoelastic parameter mismatches demonstrate the robust performance of the controller.
Estimation of viscoelastic parameters in Prony series from shear wave propagation
Energy Technology Data Exchange (ETDEWEB)
Jung, Jae-Wook; Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr, E-mail: jwhong@alum.mit.edu [Department of Civil and Environmental Engineering, KAIST, 291 Deahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Hyoung-Ki; Choi, Kiwan [Health and Medical Equipment, Samsung Electronics, 1003 Daechi-dong, Gangnam-gu, Seoul 135-280 (Korea, Republic of)
2016-06-21
When acquiring accurate ultrasonic images, we must precisely estimate the mechanical properties of the soft tissue. This study investigates and estimates the viscoelastic properties of the tissue by analyzing shear waves generated through an acoustic radiation force. The shear waves are sourced from a localized pushing force acting for a certain duration, and the generated waves travel horizontally. The wave velocities depend on the mechanical properties of the tissue such as the shear modulus and viscoelastic properties; therefore, we can inversely calculate the properties of the tissue through parametric studies.
Changes in the texture and viscoelastic properties of bread containing rice porridge during storage.
Tsai, Chia-Ling; Sugiyama, Junichi; Shibata, Mario; Kokawa, Mito; Fujita, Kaori; Tsuta, Mizuki; Nabetani, Hiroshi; Araki, Tetsuya
2012-01-01
The objective of this study was to investigate the effects of rice porridge on the texture and viscoelastic properties of bread during storage. Three types of bread, wheat flour bread, 15% rice flour bread, and 15% rice porridge bread, were prepared. After baking and storing the bread for 24 h, 48 h, and 72 h at room temperature, we measured the texture and viscoelastic properties of the bread crumbs by texture profile analysis (TPA) and creep test. The 15% rice porridge bread showed a significantly higher specific volume and maintained softer crumbs than the other two types (pbread crumbs during storage.
Lame problem for a multilayer viscoelastic hollow ball with regard to inhomogeneous aging
Davtyan, Z. A.; Mirzoyan, S. Y.; Gasparyan, A. V.
2018-04-01
Determination of characteristics of the stress strain state of compound viscoelastic bodies is of both theoretical and practical interest. In the present paper, the Lamé problem is investigated for an uneven-aged multilayer viscoelastic hollow ball in the framework of N. Kh. Arutyunyan’s theory of creep of nonhomogeneously aging bodies [1, 2]. Solving this problem reduces to solving an inhomogeneous finite-difference equation of second order that contains operators with coordinates of time and space. The obtained formulas allow one to determine the required contact stresses and other mechanical characteristics of the problem related to uneven age of contacting balls.
Peña, Estefania; Calvo, B; Martínez, M A; Martins, P; Mascarenhas, T; Jorge, R M N; Ferreira, A; Doblaré, M
2010-02-01
In this paper, the viscoelastic mechanical properties of vaginal tissue are investigated. Using previous results of the authors on the mechanical properties of biological soft tissues and newly experimental data from uniaxial tension tests, a new model for the viscoelastic mechanical properties of the human vaginal tissue is proposed. The structural model seems to be sufficiently accurate to guarantee its application to prediction of reliable stress distributions, and is suitable for finite element computations. The obtained results may be helpful in the design of surgical procedures with autologous tissue or prostheses.
Energy Technology Data Exchange (ETDEWEB)
Gnibidin, V N
1980-01-01
Presented are the results of industrial tests of the displacing ability of a viscoelastic separator, obtained by mixing a clay suspension and an aqueous solution of polyacrylamide. It is established that the displacing ability of the viscoelastic separator is determined mainly by the value of the final normal stresses sigma /SUB f/ . The greatest effect from the use of this separator is achieved with sigma /SUB f/ of at least 600 dyne/cm/sup 2/ and a rate of movement of not more than 0.5 m/sec.
Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard
2016-08-01
Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.
Directory of Open Access Journals (Sweden)
S Saha Ray
2016-05-01
Full Text Available This article presents the formulation and a new approach to find analytic solutions for fractional continuously variable order dynamic models, namely, fractional continuously variable order mass–spring–damper systems. Here, we use the viscoelastic and viscous–viscoelastic dampers for describing the damping nature of the oscillating systems, where the order of fractional derivative varies continuously. Here, we handle the continuous changing nature of fractional order derivative for dynamic systems, which has not been studied yet. By successive recursive method, here we find the solution of fractional continuously variable order mass–spring–damper systems and then obtain closed-form solutions. We then present and discuss the solutions obtained in the cases with continuously variable order of damping for oscillator through graphical plots.
Banichuk, Nikolay; Neittaanmäki, Pekka; Saksa, Tytti; Tuovinen, Tero
2014-01-01
This book deals with theoretical aspects of modelling the mechanical behaviour of manufacturing, processing, transportation or other systems in which the processed or supporting material is travelling through the system. Examples of such applications include paper making, transmission cables, band saws, printing presses, manufacturing of plastic films and sheets, and extrusion of aluminium foil, textiles and other materials. The work focuses on out-of-plane dynamics and stability analysis for isotropic and orthotropic travelling elastic and viscoelastic materials, with and without fluid-structure interaction, using analytical and semi-analytical approaches. Also topics such as fracturing and fatigue are discussed in the context of moving materials. The last part of the book deals with optimization problems involving physical constraints arising from the stability and fatigue analyses, including uncertainties in the parameters. The book is intended for researchers and specialists in the field, providin...
Directory of Open Access Journals (Sweden)
B Ghasemi
2015-09-01
Full Text Available Introduction: Apple is one of the most important horticultural crops of Iran. Its production in the country stands in the second place after citrus. Iran holds the fourth place in the world production of apples and gains a major share in the export of this product. Therefore, it is necessary to enhance the quantity and quality of the fruit in order to maintain and promote its position among the countries importing this product from Iran. Most of the mechanical damages to fruits and vegetables occur due to contact stresses under static, quasi-static and impact loading. To obtain stress distribution inside the fruit we can use finite element analysis. The aim of this study was to simulate the behavior of the apple as a viscoelastic body subjected to quasi-static loading and also to determine the failure criteria (maximum normal stress or shear stress of apple flesh to estimate its susceptibility to mechanical bruising. Materials and methods: In this study, Golab kohanz apple was used. Two samples were removed from each apple using a core sampler, one was used for uniaxial compression and the other was used for confined compression test using Instron universal tension and compression machine. Spherical indenter and parallel plate tests were performed in order to study apple susceptibility to bruising at four deformation levels (1, 2, 3 and 4 mm and the bruise volume was then measured after 24 hours. Stress-strain curves were plotted and then, the elastic and viscoelastic properties were obtained. Then, by using the data obtained from apple properties, the apple was modeled in Abaqus software as spherical and cylindrical shapes with viscoelastic behavior subjected to quasi-static loadings. Results and Discussion: The normal stress distribution of the modeled apple in the shape of a cylindrical sample is shown in Fig. 4. The value of maximum normal stress was obtained (0.51 MPa at the contact point of the loading plate with the sample. Experimental
Alteration of brain viscoelasticity after shunt treatment in normal pressure hydrocephalus
Energy Technology Data Exchange (ETDEWEB)
Freimann, Florian Baptist; Sprung, Christian [Charite - University Medicine Berlin, Campus Virchow-Klinikum, Neurosurgical Department, Berlin (Germany); Streitberger, Kaspar-Josche; Klatt, Dieter; Sack, Ingolf [Charite - University Medicine Berlin, Campus Charite Mitte, Department of Radiology, Berlin (Germany); Lin, Kui; McLaughlin, Joyce [Rensselaer Polytechnic Institute, Mathematics Department, Troy, NY (United States); Braun, Juergen [Charite - University Medicine Campus Benjamin Franklin, Institute of Medical Informatics, Berlin (Germany)
2012-03-15
Normal pressure hydrocephalus (NPH) represents a chronic neurological disorder with increasing incidence. The symptoms of NPH may be relieved by surgically implanting a ventriculoperitoneal shunt to drain excess cerebrospinal fluid. However, the pathogenesis of NPH is not yet fully elucidated, and the clinical response of shunt treatment is hard to predict. According to current theories of NPH, altered mechanical properties of brain tissue seem to play an important role. Magnetic resonance elastography (MRE) is a unique method for measuring in vivo brain mechanics. In this study cerebral MRE was applied to test the viscoelastic properties of the brain in 20 patients with primary (N = 14) and secondary (N = 6) NPH prior and after (91 {+-} 16 days) shunt placement. Viscoelastic parameters were derived from the complex modulus according to the rheological springpot model. This model provided two independent parameters {mu} and {alpha}, related to the inherent rigidity and topology of the mechanical network of brain tissue. The viscoelastic parameters {mu} and {alpha} were found to be decreased with -25% and -10%, respectively, compared to age-matched controls (P < 0.001). Interestingly, {alpha} increased after shunt placement (P < 0.001) to almost normal values whereas {mu} remained symptomatically low. The results indicate the fundamental role of altered viscoelastic properties of brain tissue during disease progression and tissue repair in NPH. Clinical improvement in NPH is associated with an increasing complexity of the mechanical network whose inherent strength, however, remains degraded. (orig.)
Dave, Eshan V.
2009-01-01
Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative aging of asphalt binder and temperature cycling due to climatic conditions being the major cause of non-homogeneity. Current pavement analysis and simulation procedures dwell on the use of layered approach to account for these non-homogeneities. The conventional…
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz
2000-01-01
The 3D-LIM has as yet been used to simulate the following two three-dimensional problems. First, the method has been used to simulete for viscoelastic end-plate instability that occurs under certain conditions in the transient filament stretching apparatus for pressure sensitive adhesives (polyme...
The Modeling of Viscoelastic Circular Plates for Use as Waveguide Absorbers
1988-09-01
oncituoe Security Ciasstircation) X THE MODELING OF VISCOELASTIC CIRCULAR PLATES FOR USE AS WAVEGUIDE ABSORBERS C 12 PERSONAL AUTmO ?S) -Hettema...33mvU3dT’U Figure 67. Experimental Jmainiey Part ot the Driving Point Jmpedancs of a 6 in Radius Elastic Plate, With and Without aaker and Mount Conecon, In
Ferrando Chavez, Diana Lila; Nejidat, Ali; Herzberg, Moshe
2016-09-06
The role of the viscoelastic properties of biofouling layers in their removal from the membrane was studied. Model fouling layers of extracellular polymeric substances (EPS) originated from microbial biofilms of Pseudomonas aeruginosa PAO1 differentially expressing the Psl polysaccharide were used for controlled washing experiments of fouled RO membranes. In parallel, adsorption experiments and viscoelastic modeling of the EPS layers were conducted in a quartz crystal microbalance with dissipation (QCM-D). During the washing stage, as shear rate was elevated, significant differences in permeate flux recovery between the three different EPS layers were observed. According to the amount of organic carbon remained on the membrane after washing, the magnitude of Psl production provides elevated resistance of the EPS layer to shear stress. The highest flux recovery during the washing stage was observed for the EPS with no Psl. Psl was shown to elevate the layer's shear modulus and shear viscosity but had no effect on the EPS adhesion to the polyamide surface. We conclude that EPS retain on the membrane as a result of the layer viscoelastic properties. These results highlight an important relation between washing efficiency of fouling layers from membranes and their viscoelastic properties, in addition to their adhesion properties.
Role of viscoelasticity in instability in plane shear flow over a ...
Indian Academy of Sciences (India)
lence in boundary layer flow over deformable surfaces as found by pioneering experiments of ... supports a viscous fluid layer of thickness around 300 μm to 1000 μm in a parallel-plate rheome- ter. ... applications are viscoelastic. ... In the absence of inertia, the Newtonian fluid flow over a flat rigid surface is always stable,.
Formation of beads-on-a-string structures during break-up of viscoelastic filaments
Bhat, Pradeep P.; Appathurai, Santosh; Harris, Michael T.; Pasquali, Matteo; McKinley, Gareth H.; Basaran, Osman A.
2010-08-01
Break-up of viscoelastic filaments is pervasive in both nature and technology. If a filament is formed by placing a drop of saliva between a thumb and forefinger and is stretched, the filament's morphology close to break-up corresponds to beads of several sizes interconnected by slender threads. Although there is general agreement that formation of such beads-on-a-string (BOAS) structures occurs only for viscoelastic fluids, the underlying physics remains unclear and controversial. The physics leading to the formation of BOAS structures is probed by numerical simulation. Computations reveal that viscoelasticity alone does not give rise to a small, satellite bead between two much larger main beads but that inertia is required for its formation. Viscoelasticity, however, enhances the growth of the bead and delays pinch-off, which leads to a relatively long-lived beaded structure. We also show for the first time theoretically that yet smaller, sub-satellite beads can also form as seen in experiments.
A numerical method for reorientation of rotating tidally deformed viscoelastic bodies
Hu, H.; van der Wal, W.; Vermeersen, L.L.A.
2017-01-01
Existing approaches for simulating the true polar wander (TPW) of a viscoelastic body can be divided into three categories: (i) a linear dynamic approach which uses the linearized Liouville equation (e.g., Wu and Peltier (1984) and Mitrovica et al. (2005)); (ii) a nonlinear dynamic approach which
Directory of Open Access Journals (Sweden)
Himanshu Sharma
2016-07-01
Full Text Available Due to its roots in fundamental thermodynamic framework, continuum damage approach is popular for modeling asphalt concrete behavior. Currently used continuum damage models use mixture averaged values for model parameters and assume deterministic damage process. On the other hand, significant scatter is found in fatigue data generated even under extremely controlled laboratory testing conditions. Thus, currently used continuum damage models fail to account the scatter observed in fatigue data. This paper illustrates a novel approach for probabilistic fatigue life prediction based on viscoelastic continuum damage approach. Several specimens were tested for their viscoelastic properties and damage properties under uniaxial mode of loading. The data thus generated were analyzed using viscoelastic continuum damage mechanics principles to predict fatigue life. Weibull (2 parameter, 3 parameter and lognormal distributions were fit to fatigue life predicted using viscoelastic continuum damage approach. It was observed that fatigue damage could be best-described using Weibull distribution when compared to lognormal distribution. Due to its flexibility, 3-parameter Weibull distribution was found to fit better than 2-parameter Weibull distribution. Further, significant differences were found between probabilistic fatigue curves developed in this research and traditional deterministic fatigue curve. The proposed methodology combines advantages of continuum damage mechanics as well as probabilistic approaches. These probabilistic fatigue curves can be conveniently used for reliability based pavement design. Keywords: Probabilistic fatigue curve, Continuum damage mechanics, Weibull distribution, Lognormal distribution
RICHTER, DAVID
2010-03-29
The results from a numerical investigation of inertial viscoelastic flow past a circular cylinder are presented which illustrate the significant effect that dilute concentrations of polymer additives have on complex flows. In particular, effects of polymer extensibility are studied as well as the role of viscoelasticity during three-dimensional cylinder wake transition. Simulations at two distinct Reynolds numbers (Re = 100 and Re = 300) revealed dramatic differences based on the choice of the polymer extensibility (L2 in the FENE-P model), as well as a stabilizing tendency of viscoelasticity. For the Re = 100 case, attention was focused on the effects of increasing polymer extensibility, which included a lengthening of the recirculation region immediately behind the cylinder and a sharp increase in average drag when compared to both the low extensibility and Newtonian cases. For Re = 300, a suppression of the three-dimensional Newtonian mode B instability was observed. This effect is more pronounced for higher polymer extensibilities where all three-dimensional structure is eliminated, and mechanisms for this stabilization are described in the context of roll-up instability inhibition in a viscoelastic shear layer. © 2010 Cambridge University Press.
Global existence and uniqueness result for the diffusive Peterlin viscoelastic model
Czech Academy of Sciences Publication Activity Database
Medviďová-Lukáčová, M.; Mizerová, H.; Nečasová, Šárka
2015-01-01
Roč. 120, June (2015), s. 154-170 ISSN 0362-546X R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Peterlin viscoelastic model * existence * uniqueness Subject RIV: BA - General Mathematics Impact factor: 1.125, year: 2015 http://www.sciencedirect.com/science/article/pii/S0362546X1500070X
Guido, Christopher; Shaqfeh, Eric
2017-11-01
The simulation of fluids with suspended deformable solids is important to the design of microfluidic devices with soft particles and the examination of blood flow in complex channels. The fluids in these applications are often viscoelastic, motivating the development of a high-fidelity simulation tool with general constitutive model implementations for both the viscoelastic fluid and deformable solid. The Immersed Finite Element Method (IFEM) presented by Zhang et al. (2007) allows for distinct fluid and solid grids to be utilized reducing the need for costly re-meshing when particles translate. We discuss a modified version of the IFEM that allows for the simulation of deformable particles in viscoelastic flows. This simulation tool is validated for simple Newtonian shear flows with elastic particles that obey a Neo-Hookean Law. The tool is used to further explore the rheology of a dilute suspension of Neo-Hookean particles in a Giesekus fluid. The results show that dilute suspensions of soft particles have viscosities that decrease as the Capillary number becomes higher in both the case of a Newtonian and viscoelastic fluid. A discussion of multiple particle results will be included. NSF CBET-1066263 and 1066334.
Bhatt, Manish; Montagnon, Emmanuel; Destrempes, François; Chayer, Boris; Kazemirad, Siavash; Cloutier, Guy
2018-03-01
Deep vein thrombosis is a common vascular disease that can lead to pulmonary embolism and death. The early diagnosis and clot age staging are important parameters for reliable therapy planning. This article presents an acoustic radiation force induced resonance elastography method for the viscoelastic characterization of clotting blood. The physical concept of this method relies on the mechanical resonance of the blood clot occurring at specific frequencies. Resonances are induced by focusing ultrasound beams inside the sample under investigation. Coupled to an analytical model of wave scattering, the ability of the proposed method to characterize the viscoelasticity of a mimicked venous thrombosis in the acute phase is demonstrated. Experiments with a gelatin-agar inclusion sample of known viscoelasticity are performed for validation and establishment of the proof of concept. In addition, an inversion method is applied in vitro for the kinetic monitoring of the blood coagulation process of six human blood samples obtained from two volunteers. The computed elasticity and viscosity values of blood samples at the end of the 90 min kinetics were estimated at 411 ± 71 Pa and 0.25 ± 0.03 Pa · s for volunteer #1, and 387 ± 35 Pa and 0.23 ± 0.02 Pa · s for volunteer #2, respectively. The proposed method allowed reproducible time-varying thrombus viscoelastic measurements from samples having physiological dimensions.
Alteration of brain viscoelasticity after shunt treatment in normal pressure hydrocephalus
International Nuclear Information System (INIS)
Freimann, Florian Baptist; Sprung, Christian; Streitberger, Kaspar-Josche; Klatt, Dieter; Sack, Ingolf; Lin, Kui; McLaughlin, Joyce; Braun, Juergen
2012-01-01
Normal pressure hydrocephalus (NPH) represents a chronic neurological disorder with increasing incidence. The symptoms of NPH may be relieved by surgically implanting a ventriculoperitoneal shunt to drain excess cerebrospinal fluid. However, the pathogenesis of NPH is not yet fully elucidated, and the clinical response of shunt treatment is hard to predict. According to current theories of NPH, altered mechanical properties of brain tissue seem to play an important role. Magnetic resonance elastography (MRE) is a unique method for measuring in vivo brain mechanics. In this study cerebral MRE was applied to test the viscoelastic properties of the brain in 20 patients with primary (N = 14) and secondary (N = 6) NPH prior and after (91 ± 16 days) shunt placement. Viscoelastic parameters were derived from the complex modulus according to the rheological springpot model. This model provided two independent parameters μ and α, related to the inherent rigidity and topology of the mechanical network of brain tissue. The viscoelastic parameters μ and α were found to be decreased with -25% and -10%, respectively, compared to age-matched controls (P < 0.001). Interestingly, α increased after shunt placement (P < 0.001) to almost normal values whereas μ remained symptomatically low. The results indicate the fundamental role of altered viscoelastic properties of brain tissue during disease progression and tissue repair in NPH. Clinical improvement in NPH is associated with an increasing complexity of the mechanical network whose inherent strength, however, remains degraded. (orig.)
MHD flow of a dusty viscoelastic liquid through a porous medium between two inclined parallel plates
International Nuclear Information System (INIS)
Singh, A.K.; Singh, N.P.
1996-01-01
Magnetohydrodynamic flow of a dusty viscoelastic liquid (Oldroyd B-liquid) through a porous medium between two parallel plates inclined to the horizon has been studied. The liquid velocity, dust particle velocity and flux of flow have been obtained. Earlier results have been deduced as particular cases of the present investigation. The physical situation of the motion has been discussed graphically. (author)
Viscoelastic properties of poly(butylene succinate)-co-adipate) nanocomposites
CSIR Research Space (South Africa)
Al-Thabaiti, SA
2015-03-01
Full Text Available and melt-state viscoelastic properties of neat PBSA and various nanocomposites were studied in detail. The dynamic mechanical studies demonstrated an increase in the storage modulus of PBSA matrix with organoclay loading. Melt-state rheological properties...
Renardy, M.
1981-10-01
A semigroup approach to differential-delay equations is developed which seems more suitable for certain partial integro-differential equations than the standard theory. On a formal level, it is demonstrated that the stretching of filaments of viscoelastic liquids can be described by an equation of this form.
Şahan, Mehmet Fatih
2017-11-01
In this paper, the viscoelastic damped response of cross-ply laminated shallow spherical shells is investigated numerically in a transformed Laplace space. In the proposed approach, the governing differential equations of cross-ply laminated shallow spherical shell are derived using the dynamic version of the principle of virtual displacements. Following this, the Laplace transform is employed in the transient analysis of viscoelastic laminated shell problem. Also, damping can be incorporated with ease in the transformed domain. The transformed time-independent equations in spatial coordinate are solved numerically by Gauss elimination. Numerical inverse transformation of the results into the real domain are operated by the modified Durbin transform method. Verification of the presented method is carried out by comparing the results with those obtained by the Newmark method and ANSYS finite element software. Furthermore, the developed solution approach is applied to problems with several impulsive loads. The novelty of the present study lies in the fact that a combination of the Navier method and Laplace transform is employed in the analysis of cross-ply laminated shallow spherical viscoelastic shells. The numerical sample results have proved that the presented method constitutes a highly accurate and efficient solution, which can be easily applied to the laminated viscoelastic shell problems.
Canetta, Elisabetta; Duperray, Alain; Leyrat, Anne; Verdier, Claude
2005-01-01
Cell adhesive and rheological properties play a very important role in cell transmigration through the endothelial barrier, in particular in the case of inflammation (leukocytes) or cancer metastasis (cancer cells). In order to characterize cell viscoelastic properties, we have designed a force spectrometer (AFM) which can stretch cells thereby allowing measurement of their rheological properties. This custom-made force spectrometer allows two different visualizations, one lateral and one from below. It allows investigation of the effects of rheology involved during cell stretching. To test the ability of our system to characterize such viscoelastic properties, ICAM-1 transfected CHO cells were analyzed. Two forms of ICAM-1 were tested; wild type ICAM-1, which can interact with the cytoskeleton, and a mutant form which lacks the cytoplasmic domain, and is unable to associate with the cytoskeleton. Stretching experiments carried out on these cells show the formation of long filaments. Using a previous model of filament elongation, we could determine the viscoelastic properties of a single cell. As expected, different viscoelastic components were found between the wild type and the mutant, which reveal that the presence of interactions between ICAM-1 and the cytoskeleton increases the stiffness of the cell.
DEFF Research Database (Denmark)
Bastholm, Sara Kjær; Samson, Mie Hesselund; Becher, Naja
2017-01-01
The viscoelastic properties of the cervical mucus plug are considered essential for the occlusion of the cervical canal and thereby for protection against ascending infections during pregnancy. Factors controlling this property are virtually unknown. This study explores a possible role of trefoil...
Experimental validation of viscous and viscoelastic simulations of micro injection molding process
DEFF Research Database (Denmark)
Gava, Alberto; Tosello, Guido; Lucchetta, Giovanni
2009-01-01
The effects of two different rheological models used in the simulation of the micro injection molding (µIM) process are investigated. The Cross-WLF viscous model and the Giesekus viscoelastic model are selected and their performance evaluated using 3D models implemented on two different...
Bates, J H; Milic-Emili, J
1993-01-01
We hypothesized that the viscoelastic properties of the respiratory system should have significant implications for the energetically optimal frequency of breathing, in view of the fact that these properties cause marked dependencies of overall system resistance and elastance on frequency. To test our hypothesis we simulated two models of canine and human respiratory system mechanics during sinusoidal breathing and calculated the inspiratory work (WI) and pressure-time integral (PTI) per minute under both resting and exercise conditions. The two models were a two-compartment viscoelastic model and a single-compartment model. Requiring minute alveolar ventilation to be fixed, we found that both models predicted almost identical optimum breathing frequencies. The calculated PTI was very insensitive to increases in breathing frequency above the optimal frequencies, while WI was found to increase slowly with frequency above its optimum. In contrast, both WI and PTI increased sharply as frequency decreased below their respective optima. A sensitivity analysis showed that the model predictions were very insensitive to the elastance and resistance values chosen to characterize tissue viscoelasticity. We conclude that the WI criterion for choosing the frequency of breathing is compatible with observations in nature, whereas the optimal frequency predictions of the PTI are rather too high. Both criteria allow for a fairly wide margin of choice in frequency above the optimum values without incurring excessive additional energy expenditure. Furthermore, contrary to our expectations, the viscoelastic properties of the respiratory system tissues do not pose a noticeable problem to the respiratory controller in terms of energy expenditure.
Gao, Shaorui; Canning, John; Cook, Kevin
2013-12-15
By applying a suitable quadratic temperature distribution at a temperature within the viscoelastic softening region for silica, a regenerated chirped grating with bandwidth of 9.8 nm is produced from a uniform grating using post strain-tuning under load. Simulated and experimental results are in good agreement.
Ilg, Patrick; Evangelopoulos, Apostolos E. A. S.
2018-03-01
While magnetic nanoparticles suspended in Newtonian solvents (ferrofluids) have been intensively studied in recent years, the effects of viscoelasticity of the surrounding medium on the nanoparticle dynamics are much less understood. Here we investigate a mesoscopic model for the orientational dynamics of isolated magnetic nanoparticles subject to external fields, viscous and viscoelastic friction, as well as the corresponding random torques. We solve the model analytically in the overdamped limit for weak viscoelasticity. By comparison to Brownian dynamics simulations we establish the limits of validity of the analytical solution. We find that viscoelasticity not only slows down the magnetization relaxation, shifts the peak of the imaginary magnetic susceptibility χ″ to lower frequencies, and increases the magnetoviscosity but also leads to nonexponential relaxation and a broadening of χ″. The model we study also allows us to test a recent proposal for using magnetic susceptibility measurements as a nanorheological tool using a variant of the Germant-DiMarzio-Bishop relation. We find for the present model and certain parameter ranges that the relation of the magnetic susceptibility to the shear modulus is satisfied to a good approximation.
Relaxation of fibrils in blends with one viscoelastic component: Bulk and confined conditions
Cardinaels, R.M.; Moldenaers, P.
2010-01-01
Using a counter rotating parallel plate shear flow cell, shape relaxation of fibrils in a quiescent matrix is studied microscopically. Both the effects of geometrical confinement and component viscoelasticity are systematically explored. By applying a supercritical shear flow for varying amounts of
Calculation of viscoelastic properties of edible films: application of three models
Directory of Open Access Journals (Sweden)
CHANDRA Prabir K.
2000-01-01
Full Text Available The viscoelastic properties of edible films can provide information at the structural level of the biopolymers used. The objective of this work was to test three simple models of linear viscoelastic theory (Maxwell, Generalized Maxwell with two units in parallel, and Burgers using the results of stress relaxation tests in edible films of myofibrillar proteins of Nile Tilapia. The films were elaborated according to a casting technique and pre-conditioned at 58% relative humidity and 22ºC for 4 days. The testing sample (15mm x 118mm was submitted to tests of stress relaxation in an equipment of physical measurements, TA.XT2i. The deformation, imposed to the sample, was 1%, guaranteeing the permanency in the domain of the linear viscoelasticity. The models were fitted to experimental data (stress x time by nonlinear regression. The Generalized Maxwell model with two units in parallel and the Burgers model represented the relaxation curves of stress satisfactorily. The viscoelastic properties varied in a way that they were less dependent on the thickness of the films.
Lagrangian viscoelastic flow computations using a generalized molecular stress function model
DEFF Research Database (Denmark)
Rasmussen, Henrik K.
2002-01-01
A new finite element technique for the numerical simulation of 3D time-dependent flow of viscoelastic fluid is presented. The technique is based on a Lagrangian kinematics description of the fluid flow. It represents a further development of the 3D Lagrangian integral method (3D-LIM) from a Rivlin...
Yamasaki, Tadashi; Kobayashi, Tomokazu; Wright, Tim J.; Fukahata, Yukitoshi
2018-01-01
Geodetic signals observed at volcanoes, particularly their temporal patterns, have required us to make the correlation between the surface displacement and magmatic process at depth in terms of viscoelastic crustal rheology. Here we use a parallelized 3-D finite element model to examine the response of the linear Maxwell viscoelastic crust and mantle to the inflation of a sill in order to show the characteristics of a long-term volcano deformation. In the model, an oblate-spheroidal sill is instantaneously or gradually inflated in a two-layered medium that consists of an elastic layer underlain by a viscoelastic layer. Our numerical experiments show that syn-inflation surface uplift is followed by post-inflation surface subsidence as the viscoelastic substrate relaxes. For gradual inflation events, the magnitude of inflation-induced uplift is reduced by the relaxation, through which the volume of a magma inferred by matching the prediction of an elastic model with observed surface uplift could be underestimated. For a given crustal viscosity, sill depth is the principal factor controlling subsidence caused by viscoelastic relaxation. The subsidence rate is highest when the inflation occurs at the boundary between the elastic and the viscoelastic layers. The mantle viscosity has an insignificant impact unless the depth of the inflation is greater than a half the crustal thickness. We apply the viscoelastic model to the interferometric synthetic aperture radar (InSAR) data in the Kutcharo caldera, eastern Hokkaido, Japan, where the surface has slowly subsided over a period of approximately three years following about a two-year period of inflation. The emplacement of a magmatic sill is constrained to occur at a depth of 4.5 km, which is significantly shallower than the geophysically imaged large-scale magma chamber. The geodetically detected deformation in the caldera reflects the small-scale emplacement of a magma that ascended from the deeper chamber, but not the
Normal age-related viscoelastic properties of chondrons and chondrocytes isolated from rabbit knee
Institute of Scientific and Technical Information of China (English)
DUAN Wang-ping; SUN Zhen-wei; LI Qi; LI Chun-jiang; WANG Li; CHEN Wei-yi; Jennifer Tickner; ZHENG Ming-hao; WEI Xiao-chun
2012-01-01
Background The mechanical microenvironment of the chondrocytes plays an important role in cartilage homeostasis and in the health of the joint.The pericellular matrix,cellular membrane of the chondrocytes,and their cytoskeletal structures are key elements in the mechanical environment.The aims of this study are to measure the viscoelastic properties of isolated chondrons and chondrocytes from rabbit knee cartilage using micropipette aspiration and to determine the effect of aging on these properties.Methods Three age groups of rabbit knees were evaluated:(1) young (2 months,n=10);(2) adult (8 months,n=10);and (3) old (31 months,n=10).Chondrocytes were isolated from the right knee cartilage and chondrons were isolated from left knees using enzymatic methods.Micropipette aspiration combined with a standard linear viscoelastic solid model was used to quantify changes in the viscoelastic properties of chondrons and chondrocytes within 2 hours of isolation.The morphology and structure of isolated chondrons were evaluated by optical microscope using hematoxylin and eosin staining and collagen-6 immunofluorescence staining.Results In response to an applied constant 0.3-0.4 kPa of negative pressure,all chondrocytes exhibited standard linear viscoelastic solid properties.Model predictions of the creep data showed that the average equilibrium modulus (E∞),instantaneous modulus (E0).and apparent viscosity (μ) of old chondrocytes was significantly lower than the young and adult chondrocytes (P＜0.001);however,no difference was found between young and adult chondrocytes (P＞0.05).The adult and old chondrons generally possessed a thicker pericellular matrix (PCM) with more enclosed cells.The young and adult chondrons exhibited the same viscoelastic creep behavior under a greater applied pressure (1.0-1.1kPa) without the deformation seen in the old chondrons.The viscoelastic properties (E∞,E0,and u) of young and adult chondrons were significantly greater than that observed
Amador Carrascal, Carolina; Chen, Shigao; Urban, Matthew W; Greenleaf, James F
2018-01-01
Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue
Directory of Open Access Journals (Sweden)
Ashkan Maccabi
Full Text Available Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E, long term shear modulus (η, and time constant (τ in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.
Maccabi, Ashkan; Shin, Andrew; Namiri, Nikan K; Bajwa, Neha; St John, Maie; Taylor, Zachary D; Grundfest, Warren; Saddik, George N
2018-01-01
Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.
Sensitivity kernels for viscoelastic loading based on adjoint methods
Al-Attar, David; Tromp, Jeroen
2014-01-01
Observations of glacial isostatic adjustment (GIA) allow for inferences to be made about mantle viscosity, ice sheet history and other related parameters. Typically, this inverse problem can be formulated as minimizing the misfit between the given observations and a corresponding set of synthetic data. When the number of parameters is large, solution of such optimization problems can be computationally challenging. A practical, albeit non-ideal, solution is to use gradient-based optimization. Although the gradient of the misfit required in such methods could be calculated approximately using finite differences, the necessary computation time grows linearly with the number of model parameters, and so this is often infeasible. A far better approach is to apply the `adjoint method', which allows the exact gradient to be calculated from a single solution of the forward problem, along with one solution of the associated adjoint problem. As a first step towards applying the adjoint method to the GIA inverse problem, we consider its application to a simpler viscoelastic loading problem in which gravitationally self-consistent ocean loading is neglected. The earth model considered is non-rotating, self-gravitating, compressible, hydrostatically pre-stressed, laterally heterogeneous and possesses a Maxwell solid rheology. We determine adjoint equations and Fréchet kernels for this problem based on a Lagrange multiplier method. Given an objective functional J defined in terms of the surface deformation fields, we show that its first-order perturbation can be written δ J = int _{MS}K_{η }δ ln η dV +int _{t0}^{t1}int _{partial M}K_{dot{σ }} δ dot{σ } dS dt, where δ ln η = δη/η denotes relative viscosity variations in solid regions MS, dV is the volume element, δ dot{σ } is the perturbation to the time derivative of the surface load which is defined on the earth model's surface ∂M and for times [t0, t1] and dS is the surface element on ∂M. The `viscosity
Hanyga, Andrzej
2014-09-01
Dispersion, attenuation and wavefronts in a class of linear viscoelastic media proposed by Strick and Mainardi (Geophys J R Astr Soc 69:415-429, 1982) and a related class of models due to Lomnitz, Jeffreys and Strick are studied by a new method due to the author. Unlike the previously studied explicit models of relaxation modulus or creep compliance, these two classes support propagation of discontinuities. Due to an extension made by Strick, either of these two classes of models comprise both viscoelastic solids and fluids. We also discuss the Andrade viscoelastic media. The Andrade media do not support discontinuity waves and exhibit the pedestal effect.
Bulletin of Materials Science | Indian Academy of Sciences
Indian Academy of Sciences (India)
We have investigated the rheological properties of regenerated silk fibroin (RSF), a viscoelastic material at micro and nano length scales, by video microscopy. We describe here the principles and technique of video microscopy as a tool in such investigations. In this work, polystyrene beads were dispersed in the matrix of ...
The National Cancer Institute seeks licensees and/or co-development partners for methods that provide significant improvements in examining clinically relevant tissue samples, by improving spatial resolution and tissue depth using optical trapping.
Energy Technology Data Exchange (ETDEWEB)
Abo-Dahab, S. M. [Taif University, Taif (Saudi Arabia); Abd-Alla, A. M. [SVU, Qena (Egypt); Khan, Aftab [Sohag University, Sohag (Egypt)
2015-08-15
The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.
International Nuclear Information System (INIS)
Abo-Dahab, S. M.; Abd-Alla, A. M.; Khan, Aftab
2015-01-01
The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.
Wheatley, Benjamin B.; Fischenich, Kristine M.; Button, Keith D.; Haut, Roger C.; Haut Donahue, Tammy L.
2015-01-01
Inverse finite element (FE) analysis is an effective method to predict material behavior, evaluate mechanical properties, and study differences in biological tissue function. The meniscus plays a key role in load distribution within the knee joint and meniscal degradation is commonly associated with the onset of osteoarthritis. In the current study, a novel transversely isotropic hyper-poro-viscoelastic constitutive formulation was incorporated in a FE model to evaluate changes in meniscal material properties following tibiofemoral joint impact. A non-linear optimization scheme was used to fit the model output to indentation relaxation experimental data. This study is the first to investigate rate of relaxation in healthy versus impacted menisci. Stiffness was found to be decreased (p=0.003), while the rate of tissue relaxation increased (p=0.010) at twelve weeks post impact. Total amount of relaxation, however, did not change in the impacted tissue (p=0.513). PMID:25776872
Molchanov, Vyacheslav S.; Philippova, Olga E.
2013-01-01
Temperature effects on the rheological properties of viscoelastic solutions containing entangled wormlike micelles of potassium oleate and hydrophobically modified polyacrylamide were studied in a wide range of polymer concentrations. A very
Nguyen, Sy-Tuan; Vu, Mai-Ba; Vu, Minh-Ngoc; To, Quy-Dong
2018-02-01
Closed-form solutions for the effective rheological properties of a 2D viscoelastic drained porous medium made of a Generalized Maxwell viscoelastic matrix and pore inclusions are developed and applied for cortical bone. The in-plane (transverse) effective viscoelastic bulk and shear moduli of the Generalized Maxwell rheology of the homogenized medium are expressed as functions of the porosity and the viscoelastic properties of the solid phase. When deriving these functions, the classical inverse Laplace-Carson transformation technique is avoided, due to its complexity, by considering the short and long term approximations. The approximated results are validated against exact solutions obtained from the inverse Laplace-Carson transform for a simple configuration when the later is available. An application for cortical bone with assumption of circular pore in the transverse plane shows that the proposed approximation fit very well with experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Willemsen, K.L.D.D.; Panozzo, A.; Moelants, K.; Debon, S.J.J.; Desmet, C.; Cardinaels, R.M.; Moldenaers, P.; Wallecan, J.; Hendrickx, M.E.G.
2017-01-01
The viscoelastic properties of high pressure homogenized lemon peel cell wall fiber suspensions, obtained after sequential selective pectin extraction, were investigated in the current study. For comparison, a general pectin extraction was additionally performed on lemon peel under acid thermal
Iovieno, Alfonso; Chowdhury, Vivek; Stevens, Julian D; Maurino, Vincenzo
2012-07-01
Appropriate mounting and cutting of the donor sclero-corneal cap is often cumbersome during femtosecond laser-assisted keratoplasty. The authors describe a technique for donor cornea femtosecond laser cutting using ophthalmic viscoelastic devices. The donor sclero-corneal cap is mounted on the artificial anterior chamber using a dispersive ophthalmic viscoelastic device instead of saline solution. The chances of artificial anterior chamber pressure loss, inadequate applanation, and fluid leaks are consistently reduced with the use of dispersive ophthalmic viscoelastic devices. The speed of donor femtosecond laser cutting is increased. The viscosity and elasticity of dispersive ophthalmic viscoelastic devices greatly assist the procedure with regard to ease of applanation, corneal endothelium protection, and decreased distortion of the applanated cornea. Copyright 2012, SLACK Incorporated.
Viscoelastic nature of Au nanoparticle–PDMS nanocomposite gels
Indian Academy of Sciences (India)
1Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research,. Bangalore ... enhanced thermal stability.3 These unique properties have ..... (loss modulus) and G (storage modulus) for plain PDMS gel.
Modeling moisture absorption kinetics of barley grain using viscoelastic model and neural networks
Directory of Open Access Journals (Sweden)
M Kamali
2015-09-01
Network (ANN as an important artificial intelligent method comparable to human brain capabilities is applied to train and store data in the form of weighted networks (Dayhoff, 1990. This method has superiority to many ordinary statistical and model making methods. In comparison to linear regression models, ANN does not require placing estimated values around mean values and for this reason it retains actual variations in the data being analyzed. Prediction by using trained ANN enables the researchers to decrease or increase input and output variables.Therefore, it is possible to produce a multivariate model with an output even more than the objectives deemed necessary (Heristev, 1998. The goal of this research was to predict instant moisture content of three barley varieties (Reyhan3, Fajr and MB862 during the soaking process under three temperature levels (10, 20 and 45 ◦C using two conventional ANN methods of multilayer perceptron (MLP and radial basis function (RBF in comparison with viscoelastic mathematical model and reporting the results. Materials and method: Barley varieties were collected from the Isfahan Province Agriculture Organization grain depository and were cleaned and the debris were separated before the experiments. The selected grains were sorted to three groups of small, medium and large grains sizes. To exclude the effect of grain size during moisture absorption, the medium size grains were used. The moisture content of the grains was determined based on the ASAE S352.2 DEC97 (ASAE, 1999 which were %8.23, %8.62 and %8.89 on a dry basis for Reyhan3, Fajr and MB862, respectively with no significant difference at %5 probability level (p>0.05. Experiments were conducted under three temperatures (10, 20 and 45 ◦C in the refrigerator, at room temperature and in the oven, respectively for each variety. In each experiment, 10 medium size grains were selected randomly and weighed with an AND laboratory scale model Gf-400 (made in Japan and placed in foam
2010-07-13
Attenuation of spinal transients at heel strike using viscoelastic heel insoles: an in vivo study. Preventive Medicine. 2004;39:351-354. 30...2009 – March 2010 A-4 35. Bender JA, Pierson JK, Kaplan HM, Johnson AJ. Factors affecting the occurrence of knee injuries . Journal of the...EPIDEMIOLOGICAL REPORT NO. 12-HF-97G010-09 INFLUENCE OF A VISCOELASTIC INSOLE ON FOOT, KNEE AND BACK PAIN AMONG MEMBERS