WorldWideScience

Sample records for tissue-engineered heart valve

  1. Tissue engineering of heart valves: in vitro experiences.

    Science.gov (United States)

    Sodian, R; Hoerstrup, S P; Sperling, J S; Daebritz, S H; Martin, D P; Schoen, F J; Vacanti, J P; Mayer, J E

    2000-07-01

    Tissue engineering is a new approach, whereby techniques are being developed to transplant autologous cells onto biodegradable scaffolds to ultimately form new functional tissue in vitro and in vivo. Our laboratory has focused on the tissue engineering of heart valves, and we have fabricated a trileaflet heart valve scaffold from a biodegradable polymer, a polyhydroxyalkanoate. In this experiment we evaluated the suitability of this scaffold material as well as in vitro conditioning to create viable tissue for tissue engineering of a trileaflet heart valve. We constructed a biodegradable and biocompatible trileaflet heart valve scaffold from a porous polyhydroxyalkanoate (Meatabolix Inc, Cambridge, MA). The scaffold consisted of a cylindrical stent (1 x 15 x 20 mm inner diameter) and leaflets (0.3 mm thick), which were attached to the stent by thermal processing techniques. The porous heart valve scaffold (pore size 100 to 240 microm) was seeded with vascular cells grown and expanded from an ovine carotid artery and placed into a pulsatile flow bioreactor for 1, 4, and 8 days. Analysis of the engineered tissue included biochemical examination, enviromental scanning electron microscopy, and histology. It was possible to create a trileaflet heart valve scaffold from polyhydroxyalkanoate, which opened and closed synchronously in a pulsatile flow bioreactor. The cells grew into the pores and formed a confluent layer after incubation and pulsatile flow exposure. The cells were mostly viable and formed connective tissue between the inside and the outside of the porous heart valve scaffold. Additionally, we demonstrated cell proliferation (DNA assay) and the capacity to generate collagen as measured by hydroxyproline assay and movat-stained glycosaminoglycans under in vitro pulsatile flow conditions. Polyhydroxyalkanoates can be used to fabricate a porous, biodegradable heart valve scaffold. The cells appear to be viable and extracellular matrix formation was induced

  2. A new approach to heart valve tissue engineering

    DEFF Research Database (Denmark)

    Kaasi, Andreas; Cestari, Idágene A.; Stolf, Noedir A G.

    2011-01-01

    The 'biomimetic' approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes...... chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD's inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber...

  3. Surface Modification using Plasma treatments and Adhesion Peptide for Durable Tissue-Engineered Heart Valves

    International Nuclear Information System (INIS)

    Jung, Young mee; Kim, Soo Hyun

    2010-01-01

    Artificial heart valves are used in valvular heart diseases, but these valves have disadvantages that they cannot grow, repair and remodel. In current study, the strategies to development of in vitro cultured functional tissue by tissue engineering is available to heart valve disease. In the point of using viable autolougous cells, tissue engineered heart valves have some advantage to include that they can repair, remodel, and grow. Because heart valve is placed under the strong shear stress condition by pumping of heart, the durability of tissue-engineered heart valves is now questionable. The purpose of the study is to evaluate of the durability of tissue engineered heart valve with surface modified scaffolds under hemodynamic conditions

  4. The contribution of matrix and cells to leaflet retraction in heart valve tissue engineering

    NARCIS (Netherlands)

    Vlimmeren, van M.A.A.

    2011-01-01

    Heart valve tissue engineering is a promising technique to overcome the drawbacks of currently used mechanical and prosthetic heart valve replacements. Tissue engineered (TE) heart valves are viable and autologous implants that have the capacity to grow, remodel and repair throughout a patient’s

  5. Variation in tissue outcome of ovine and human engineered heart valve constructs : relevance for tissue engineering

    NARCIS (Netherlands)

    Geemen, van D.; Driessen - Mol, A.; Grootzwagers, L.G.M.; Soekhradj - Soechit, R.S.; Riem Vis, P.W.; Baaijens, F.P.T.; Bouten, C.V.C.

    AIM: Clinical application of tissue engineered heart valves requires precise control of the tissue culture process to predict tissue composition and mechanical properties prior to implantation, and to understand the variation in tissue outcome. To this end we investigated cellular phenotype and

  6. Nondestructive and noninvasive assessment of mechanical properties in heart valve tissue engineering

    NARCIS (Netherlands)

    Kortsmit, J.; Driessen, N.J.B.; Rutten, M.C.M.; Baaijens, F.P.T.

    2009-01-01

    Despite recent progress, mechanical behavior of tissue-engineered heart valves still needs improvement when native aortic valves are considered as a benchmark. Although it is known that cyclic straining enhances tissue formation, optimal loading protocols have not been defined yet. To obtain a

  7. Intermittent straining accelerates the development of tissue properties in engineered heart valve tissue

    NARCIS (Netherlands)

    Rubbens, M.P.; Mol, A.; Boerboom, R.A.; Bank, R.A.; Baaijens, F.P.T.; Bouten, C.V.C.

    2009-01-01

    Tissue-engineered heart valves lack sufficient amounts of functionally organized structures and consequently do not meet in vivo mechanical demands. To optimize tissue architecture and hence improve mechanical properties, various in vitro mechanical conditioning protocols have been proposed, of

  8. Characterizing nanoscale topography of the aortic heart valve basement membrane for tissue engineering heart valve scaffold design.

    Science.gov (United States)

    Brody, Sarah; Anilkumar, Thapasimuthu; Liliensiek, Sara; Last, Julie A; Murphy, Christopher J; Pandit, Abhay

    2006-02-01

    A fully effective prosthetic heart valve has not yet been developed. A successful tissue-engineered valve prosthetic must contain a scaffold that fully supports valve endothelial cell function. Recently, topographic features of scaffolds have been shown to influence the behavior of a variety of cell types and should be considered in rational scaffold design and fabrication. The basement membrane of the aortic valve endothelium provides important parameters for tissue engineering scaffold design. This study presents a quantitative characterization of the topographic features of the native aortic valve endothelial basement membrane; topographical features were measured, and quantitative data were generated using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and light microscopy. Optimal conditions for basement membrane isolation were established. Histological, immunohistochemical, and TEM analyses following decellularization confirmed basement membrane integrity. SEM and AFM photomicrographs of isolated basement membrane were captured and quantitatively analyzed. The basement membrane of the aortic valve has a rich, felt-like, 3-D nanoscale topography, consisting of pores, fibers, and elevations. All features measured were in the sub-100 nm range. No statistical difference was found between the fibrosal and ventricular surfaces of the cusp. These data provide a rational starting point for the design of extracellular scaffolds with nanoscale topographic features that mimic those found in the native aortic heart valve basement membrane.

  9. Design and efficacy of a single-use bioreactor for heart valve tissue engineering.

    Science.gov (United States)

    Converse, Gabriel L; Buse, Eric E; Neill, Kari R; McFall, Christopher R; Lewis, Holley N; VeDepo, Mitchell C; Quinn, Rachael W; Hopkins, Richard A

    2017-02-01

    Heart valve tissue engineering offers the promise of improved treatments for congenital heart disorders; however, widespread clinical availability of a tissue engineered heart valve (TEHV) has been hindered by scientific and regulatory concerns, including the lack of a disposable, bioreactor system for nondestructive valve seeding and mechanical conditioning. Here we report the design for manufacture and the production of full scale, functional prototypes of such a system. To evaluate the efficacy of this bioreactor as a tool for seeding, ovine aortic valves were decellularized and subjected to seeding with human mesenchymal stem cells (hMSC). The effects of pulsatile conditioning using cyclic waveforms tuned to various negative and positive chamber pressures were evaluated, with respect to the seeding of cells on the decellularized leaflet and the infiltration of seeded cells into the interstitium of the leaflet. Infiltration of hMSCs into the aortic valve leaflet was observed following 72 h of conditioning under negative chamber pressure. Additional conditioning under positive pressure improved cellular infiltration, while retaining gene expression within the MSC-valve interstitial cell phenotype lineage. This protocol resulted in a subsurface pilot population of cells, not full tissue recellularization. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 249-259, 2017. © 2015 Wiley Periodicals, Inc.

  10. A new construction technique for tissue-engineered heart valves using the self-assembly method.

    Science.gov (United States)

    Tremblay, Catherine; Ruel, Jean; Bourget, Jean-Michel; Laterreur, Véronique; Vallières, Karine; Tondreau, Maxime Y; Lacroix, Dan; Germain, Lucie; Auger, François A

    2014-11-01

    Tissue engineering appears as a promising option to create new heart valve substitutes able to overcome the serious drawbacks encountered with mechanical substitutes or tissue valves. The objective of this article is to present the construction method of a new entirely biological stentless aortic valve using the self-assembly method and also a first assessment of its behavior in a bioreactor when exposed to a pulsatile flow. A thick tissue was created by stacking several fibroblast sheets produced with the self-assembly technique. Different sets of custom-made templates were designed to confer to the thick tissue a three-dimensional (3D) shape similar to that of a native aortic valve. The construction of the valve was divided in two sequential steps. The first step was the installation of the thick tissue in a flat preshaping template followed by a 4-week maturation period. The second step was the actual cylindrical 3D forming of the valve. The microscopic tissue structure was assessed using histological cross sections stained with Masson's Trichrome and Picrosirius Red. The thick tissue remained uniformly populated with cells throughout the construction steps and the dense extracellular matrix presented corrugated fibers of collagen. This first prototype of tissue-engineered heart valve was installed in a bioreactor to assess its capacity to sustain a light pulsatile flow at a frequency of 0.5 Hz. Under the light pulsed flow, it was observed that the leaflets opened and closed according to the flow variations. This study demonstrates that the self-assembly method is a viable option for the construction of complex 3D shapes, such as heart valves, with an entirely biological material.

  11. Tissue properties and collagen remodeling in heart valve tissue engineering

    NARCIS (Netherlands)

    Geemen, van D.

    2012-01-01

    Valvular heart disease is a major health problem worldwide causing morbidity and mortality. Heart valve replacement is frequently applied to avoid serious cardiac, pulmonary, or systemic problems. However, the current replacements do not consist of living tissue and, consequently, cannot grow,

  12. Engineering of a polymer layered bio-hybrid heart valve scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Jahnavi, S., E-mail: jani84@gmail.com [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN (India); Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Kumary, T.V., E-mail: tvkumary@yahoo.com [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Bhuvaneshwar, G.S., E-mail: gs.bhuvnesh@gmail.com [Trivitron Innovation Centre, Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, TN (India); Natarajan, T.S., E-mail: tsniit@gmail.com [Conducting Polymer laboratory, Department of Physics, Indian Institute of Technology, Madras, Chennai 600036, TN (India); Verma, R.S., E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN (India)

    2015-06-01

    Current treatment strategy for end stage valve disease involves either valvular repair or replacement with homograft/mechanical/bioprosthetic valves. In cases of recurrent stenosis/ regurgitation, valve replacement is preferred choice of treatment over valvular repair. Currently available mechanical valves primarily provide durability whereas bioprosthetic valves have superior tissue compatibility but both lack remodelling and regenerative properties making their utility limited in paediatric patients. With advances in tissue engineering, attempts have been made to fabricate valves with regenerative potential using various polymers, decellularized tissues and hybrid scaffolds. To engineer an ideal heart valve, decellularized bovine pericardium extracellular matrix (DBPECM) is an attractive biocompatible scaffold but has weak mechanical properties and rapid degradation. However, DBPECM can be modified with synthetic polymers to enhance its mechanical properties. In this study, we developed a Bio-Hybrid scaffold with non-cross linked DBPECM in its native structure coated with a layer of Polycaprolactone-Chitosan (PCL-CH) nanofibers that displayed superior mechanical properties. Surface and functional studies demonstrated integration of PCL-CH to the DBPECM with enhanced bio and hemocompatibility. This engineered Bio-Hybrid scaffold exhibited most of the physical, biochemical and functional properties of the native valve that makes it an ideal scaffold for fabrication of cardiac valve with regenerative potential. - Highlights: • A Bio-Hybrid scaffold was fabricated with PCL-CH blend and DBPECM. • PCL-CH functionally interacted with decellularized matrix without cross linking. • Modified scaffold exhibited mechanical properties similar to native heart valve. • Supported better fibroblast and endothelial cell adhesion and proliferation. • The developed scaffold can be utilized for tissue engineering of heart valve.

  13. Are adipose-derived stem cells cultivated in human platelet lysate suitable for heart valve tissue engineering?

    NARCIS (Netherlands)

    Frese, L.; Sasse, T.; Sanders, B.; Baaijens, F.P.T.; Beer, G.M.; Hoerstrup, S.P.

    2017-01-01

    Tissue-engineered heart valves represent a promising strategy for the growing need for valve replacements in cardiovascular medicine. Recent studies have shown that adipose-derived stem cells (ADSC) are a viable cell source, as they are readily available in both the young and the elderly, show

  14. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.

    Science.gov (United States)

    Zhang, Xing; Xu, Bin; Puperi, Daniel S; Yonezawa, Aline L; Wu, Yan; Tseng, Hubert; Cuchiara, Maude L; West, Jennifer L; Grande-Allen, K Jane

    2015-03-01

    The development of advanced scaffolds that recapitulate the anisotropic mechanical behavior and biological functions of the extracellular matrix in leaflets would be transformative for heart valve tissue engineering. In this study, anisotropic mechanical properties were established in poly(ethylene glycol) (PEG) hydrogels by crosslinking stripes of 3.4 kDa PEG diacrylate (PEGDA) within 20 kDa PEGDA base hydrogels using a photolithographic patterning method. Varying the stripe width and spacing resulted in a tensile elastic modulus parallel to the stripes that was 4.1-6.8 times greater than that in the perpendicular direction, comparable to the degree of anisotropy between the circumferential and radial orientations in native valve leaflets. Biomimetic PEG-peptide hydrogels were prepared by tethering the cell-adhesive peptide RGDS and incorporating the collagenase-degradable peptide PQ (GGGPQG↓IWGQGK) into the polymer network. The specific amounts of RGDS and PEG-PQ within the resulting hydrogels influenced the elongation, de novo extracellular matrix deposition and hydrogel degradation behavior of encapsulated valvular interstitial cells (VICs). In addition, the morphology and activation of VICs grown atop PEG hydrogels could be modulated by controlling the concentration or micro-patterning profile of PEG-RGDS. These results are promising for the fabrication of PEG-based hydrogels using anatomically and biologically inspired scaffold design features for heart valve tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Favorable Effects of the Detergent and Enzyme Extraction Method for Preparing Decellularized Bovine Pericardium Scaffold for Tissue Engineered Heart Valves

    NARCIS (Netherlands)

    Yang, Min; Chen, Chang-Zhi; Wang, Xue-Ning; Zhu, Ya-Bin; Gu, Y. John

    2009-01-01

    Bovine pericardium has been extensively applied as the biomaterial for artificial heart valves and may potentially be used as a scaffold for tissue-engineered heart valves after decellularization. Although various methods of decellularization are currently available, it is unknown which method is

  16. Potential applications of three-dimensional structure of silk fibroin/poly(ester-urethane) urea nanofibrous scaffold in heart valve tissue engineering

    Science.gov (United States)

    Du, Juan; Zhu, Tonghe; Yu, Haiyan; Zhu, Jingjing; Sun, Changbing; Wang, Jincheng; Chen, Sihao; Wang, Jihu; Guo, Xuran

    2018-07-01

    Tissue engineering heart valves (TEHV) are thought to have many advantages in low immunogenicity, good histocompatibility, excellent mechanical properties. In this paper, we reported the fabrication and characterization of a novel composite nanofibrous scaffold consisting of silk fibroin (SF) and poly(ester-urethane) urea (LDI-PEUU) by using electrospinning. Chemical and physical properties of scaffolds were evaluated using scanning electron microscopy, attenuated total reflectance Fourier transform infrared, X-ray diffraction, contact angle measurement, thermogravimetric analysis, biodegradation test and tensile strength analysis. We determined that the composite scaffolds supported the growth of human umbilical vein endothelial cell (HUVEC). The results of cell proliferation and cell morphology indicate that SF/LDI-PEUU nanofibers promoted cell viability, which supporting the application in tissue engineering. All results clarified that SF/LDI-PEUU (40:60) nanofibrous scaffolds meet the required specifications for tissue engineering and could be used as a promising construct for heart valve tissue engineering.

  17. Control of an air pressure actuated disposable bioreactor for cultivating heart valves

    NARCIS (Netherlands)

    Beelen, M.J.; Neerincx, P.E.; Molengraft, van de M.J.G.

    2011-01-01

    A disposable injection molded bioreactor for growing tissue-engineered heart valves is controlled to mimic the physiological heart cycle. Tissue-engineered heart valves, cultured from human stem cells, are a possible alternative for replacing failing aortic heart valves, where nowadays biological

  18. Challenges in developing a reseeded, tissue-engineered aortic valve prosthesis.

    Science.gov (United States)

    Hof, Alexander; Raschke, Silja; Baier, Karina; Nehrenheim, Laura; Selig, Jessica Isabel; Schomaker, Markus; Lichtenberg, Artur; Meyer, Heiko; Akhyari, Payam

    2016-09-01

    Biological heart valve prostheses are characterized by a limited durability due to the degenerative processes after implantation. Tissue engineering may provide new approaches in the development of optimized valvular grafts. While re-endothelialization of decellularized heart valves has already been successfully implemented, interstitial repopulation still remains an unaccomplished objective although it is essential for valvular functionality and regeneration potential. The aim of this study was to compare different concepts for an improved in vitro interstitial repopulation of decellularized heart valves. A novel 3D heart valve model has been developed to investigate the cell behaviour of valvular interstitial cells (VIC) in their physiological environment and to evaluate the potential of in vitro repopulation of acellular heart valves. Ovine aortic heart valves were decellularized by detergent solutions and additionally treated with trypsin or laser perforation. Subsequently, the decellularized extracellular matrices (dECM) were reseeded with ovine VIC using reseeding devices to provide a repopulation of the matrix on a defined area under controlled conditions. After an initial attachment of the VIC, reseeded dECM were transferred into a transwell system to improve the nutrient supply inside the valvular matrix. Cell migration and expression of cell markers were analysed histologically. The results were compared with VIC cultivation in a biological scaffold. VIC did not migrate into the matrix of untreated dECM and reseeding in laser perforated dECM showed inconsistent results. However, trypsinization increased the susceptibility of the valvular cusps to VIC penetration and repopulation of superficial areas. Additionally, the cultivation of reseeded dECM in a transwell system significantly increased the total number of cells repopulating the valvular matrix and their mean migration distance, representing the best repopulation results. Immunohistological analysis

  19. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jahnavi, S [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Saravanan, U [Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Arthi, N [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Bhuvaneshwar, G S [Department of Engineering Design, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Kumary, T V [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Rajan, S [Madras Medical Mission, Institute of Cardio-Vascular Diseases, Mogappair, Chennai, Tamil Nadu 600037 (India); Verma, R S, E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India)

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44{sup +}, αSMA{sup +}, Vimentin{sup +} and CD105{sup −} human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. - Highlights: • We report detailed biological and mechanical investigations of a Bio-Hybrid scaffold. • Optimized polymer thickness yielded desired biological and mechanical properties. • Bio-Hybrid scaffold revealed hVIC proliferation with dense ECM deposition. • Biaxial testing indicated that Bio-Hybrid scaffolds are mechanically stronger than native valves. • Bio-Hybrid scaffold is a promising material for autologous valve tissue engineering.

  20. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.

    Science.gov (United States)

    Jahnavi, S; Saravanan, U; Arthi, N; Bhuvaneshwar, G S; Kumary, T V; Rajan, S; Verma, R S

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44 + , αSMA + , Vimentin + and CD105 - human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A human pericardium biopolymeric scaffold for autologous heart valve tissue engineering: cellular and extracellular matrix structure and biomechanical properties in comparison with a normal aortic heart valve.

    Science.gov (United States)

    Straka, Frantisek; Schornik, David; Masin, Jaroslav; Filova, Elena; Mirejovsky, Tomas; Burdikova, Zuzana; Svindrych, Zdenek; Chlup, Hynek; Horny, Lukas; Daniel, Matej; Machac, Jiri; Skibová, Jelena; Pirk, Jan; Bacakova, Lucie

    2018-04-01

    The objective of our study was to compare the cellular and extracellular matrix (ECM) structure and the biomechanical properties of human pericardium (HP) with the normal human aortic heart valve (NAV). HP tissues (from 12 patients) and NAV samples (from 5 patients) were harvested during heart surgery. The main cells in HP were pericardial interstitial cells, which are fibroblast-like cells of mesenchymal origin similar to the valvular interstitial cells in NAV tissue. The ECM of HP had a statistically significantly (p structures of the two tissues, the dense part of fibrous HP (49 ± 2%) and the lamina fibrosa of NAV (47 ± 4%), was similar. In both tissues, the secant elastic modulus (Es) was significantly lower in the transversal direction (p structure and has the biomechanical properties required for a tissue from which an autologous heart valve replacement may be constructed.

  2. Decreased mechanical properties of heart valve tissue constructs cultured in platelet lysate as compared to fetal bovine serum

    NARCIS (Netherlands)

    Geemen, van D.; Riem Vis, P.W.; Soekhradj - Soechit, R.S.; Sluijter, J.P.G.; Liefde - van Beest, de M.; Kluin, J.; Bouten, C.V.C.

    2011-01-01

    In autologous heart valve tissue engineering, there is an ongoing search for alternatives of fetal bovine serum (FBS). Human platelet-lysate (PL) might be a promising substitute. In the present article, we aimed to examine the tissue formation, functionality, and mechanical properties of engineered

  3. Experience in procurement and processing of heart valves at the Northwest Tissue Center

    International Nuclear Information System (INIS)

    Strong, M.; O'Neal, P.D.; Gage, H.N.; Moogk, M.

    1999-01-01

    The Northwest Tissue Center established a human heart valve program in 199 1. It is one of four non-profit tissue banks and one for-profit program that recover and process heart valves in the United States. During the eight years in which the Northwest Tissue Center has been involved in heart valve banking, there have been a total of 673 hearts procured for processing. The age of the donors ranged from <1 to 44 years with a mean of 26.2 years, 66% werw male,and 6.5% of the hearts procered were discarded due to a variety of medical and criteria reason. The primary reasons for differal were questions of possible cancer and questions of high risk behavior/social history. Of the 1,264 cardiovascular tissues processed, 6% were lost because of donor history, 17% were lost because of microbiology results, and 5% were lost because of donor serology . There were total a total of 190 aortic valves and 48 pulmonic conduits transplanted over this time period. The mean age of the recipients was 23.4 with a median or 23 years; 102 of the recipients were less than one year of age. Males comprised 62% of the recipients. Since 1993, there has been a clear shift towards more use of pulmonic valves over aortic valves as a results of the acceptance of the Ross procedure. Early in the program, reports were received from surgeons that some heart valves appeared to have cracks in the conduits. Experimentations in the laboratory led to the discovery that thawing too rapidly would result in cracking of these materials. Packaging was designed to reduce the rate of thawing and this has resolved the problem with cracking. The heart valve program at the Northwest Tissue Center has been very successful in providing the necessary valves for patients in the Northwest Region of the United States

  4. Adhesive protein interactions with chitosan: consequences for valve endothelial cell growth on tissue-engineering materials.

    Science.gov (United States)

    Cuy, Janet L; Beckstead, Benjamin L; Brown, Chad D; Hoffman, Allan S; Giachelli, Cecilia M

    2003-11-01

    Stable endothelialization of a tissue-engineered heart valve is essential for proper valve function, although adhesive characteristics of the native valve endothelial cell (VEC) have rarely been explored. This research evaluated VEC adhesive qualities and attempted to enhance VEC growth on the biopolymer chitosan, a novel tissue-engineering scaffold material with promising biological and chemical properties. Aortic VEC cultures were isolated and found to preferentially adhere to fibronectin, collagen types IV and I over laminin and osteopontin in a dose-dependent manner. Seeding of VEC onto comparison substrates revealed VEC growth and morphology to be preferential in the order: tissue culture polystyrene > gelatin, poly(DL-lactide-co-glycolide), chitosan > poly(hydroxy alkanoate). Adhesive protein precoating of chitosan did not significantly enhance VEC growth, despite equivalent protein adsorption as to polystyrene. Initial cell adhesion to protein-precoated chitosan, however, was higher than for polystyrene. Composite chitosan/collagen type IV films were investigated as an alternative to simple protein precoatings, and were shown to improve VEC growth and morphology over chitosan alone. These findings suggest potential manipulation of chitosan properties to improve amenability to valve tissue-engineering applications. Copyright 2003 Wiley Periodicals, Inc.

  5. Development of a tissue engineered heart valve for pediatrics: a case study in bioengineering ethics.

    Science.gov (United States)

    Merryman, W David

    2008-03-01

    The following hypothetical case study was developed for bioengineering students and is concerned with choosing between two devices used for development of a pediatric tissue engineered heart valve (TEHV). This case is intended to elicit assessment of the devices, possible future outcomes, and ramifications of the decision making. It is framed in light of two predominant ethical theories: utilitarianism and rights of persons. After the case was presented to bioengineering graduate students, they voted on which device should be released. The results revealed that these bioengineering students preferred the more reliable (and substantially more expensive) design, though this choice precludes the majority of the world from having access to this technology. This case is intended to examine and explore where the balance lies between design, cost, and adequate distribution of biomedical devices.

  6. Emerging Trends in Heart Valve Engineering: Part IV. Computational Modeling and Experimental Studies.

    Science.gov (United States)

    Kheradvar, Arash; Groves, Elliott M; Falahatpisheh, Ahmad; Mofrad, Mohammad K; Hamed Alavi, S; Tranquillo, Robert; Dasi, Lakshmi P; Simmons, Craig A; Jane Grande-Allen, K; Goergen, Craig J; Baaijens, Frank; Little, Stephen H; Canic, Suncica; Griffith, Boyce

    2015-10-01

    In this final portion of an extensive review of heart valve engineering, we focus on the computational methods and experimental studies related to heart valves. The discussion begins with a thorough review of computational modeling and the governing equations of fluid and structural interaction. We then move onto multiscale and disease specific modeling. Finally, advanced methods related to in vitro testing of the heart valves are reviewed. This section of the review series is intended to illustrate application of computational methods and experimental studies and their interrelation for studying heart valves.

  7. Bioprinting a cardiac valve.

    Science.gov (United States)

    Jana, Soumen; Lerman, Amir

    2015-12-01

    Heart valve tissue engineering could be a possible solution for the limitations of mechanical and biological prostheses, which are commonly used for heart valve replacement. In tissue engineering, cells are seeded into a 3-dimensional platform, termed the scaffold, to make the engineered tissue construct. However, mimicking the mechanical and spatial heterogeneity of a heart valve structure in a fabricated scaffold with uniform cell distribution is daunting when approached conventionally. Bioprinting is an emerging technique that can produce biological products containing matrix and cells, together or separately with morphological, structural and mechanical diversity. This advance increases the possibility of fabricating the structure of a heart valve in vitro and using it as a functional tissue construct for implantation. This review describes the use of bioprinting technology in heart valve tissue engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Developments in mechanical heart valve prosthesis

    Indian Academy of Sciences (India)

    Artificial heart valves are engineered devices used for replacing diseased or damaged natural valves of the heart. Most commonly used for replacement are mechanical heart valves and biological valves. This paper briefly outlines the evolution, designs employed, materials being used,. and important factors that affect the ...

  9. Growth and remodeling play opposing roles during postnatal human heart valve development.

    Science.gov (United States)

    Oomen, Pim J A; Holland, Maria A; Bouten, Carlijn V C; Kuhl, Ellen; Loerakker, Sandra

    2018-01-19

    Tissue growth and remodeling are known to govern mechanical homeostasis in biological tissue, but their relative contributions to homeostasis remain unclear. Here, we use mechanical models, fueled by experimental findings, to demonstrate that growth and remodeling have different effects on heart valve stretch homeostasis during physiological postnatal development. Two developmental stages were considered: early-stage (from infant to adolescent) and late-stage (from adolescent to adult) development. Our models indicated that growth and remodeling play opposing roles in preserving tissue stretch and with time. During early-stage development, excessive tissue stretch was decreased by tissue growth and increased by remodeling. In contrast, during late-stage development tissue stretch was decreased by remodeling and increased by growth. Our findings contribute to an improved understanding of native heart valve adaptation throughout life, and are highly relevant for the development of tissue-engineered heart valves.

  10. Modeling collagen remodeling in tissue engineered cardiovascular tissues

    NARCIS (Netherlands)

    Soares, A.L.F.

    2012-01-01

    Commonly, heart valve replacements consist of non-living materials lacking the ability to grow, repair and remodel. Tissue engineering (TE) offers a promising alternative to these replacement strategies since it can overcome its disadvantages. The technique aims to create an autologous living tissue

  11. Fluid mechanics of heart valves.

    Science.gov (United States)

    Yoganathan, Ajit P; He, Zhaoming; Casey Jones, S

    2004-01-01

    Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.

  12. Heart valve surgery

    Science.gov (United States)

    ... replacement; Valve repair; Heart valve prosthesis; Mechanical valves; Prosthetic valves ... surgery. Your heart valve has been damaged by infection ( endocarditis ). You have received a new heart valve ...

  13. Supercritical Carbon Dioxide–Based Sterilization of Decellularized Heart Valves

    Directory of Open Access Journals (Sweden)

    Ryan S. Hennessy, MD

    2017-02-01

    Full Text Available Summary: Sterilization of grafts is essential. Supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide techniques were compared for impact on sterility and mechanical integrity of porcine decellularized aortic valves. Ethanol-peracetic acid– and supercritical carbon dioxide–treated valves were found to be sterile using histology, microbe culture, and electron microscopy assays. The cusp tensile properties of supercritical carbon dioxide–treated valves were higher compared with valves treated with other techniques. Superior sterility and integrity was found in the decellularized valves treated with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues. Key Words: decellularized, decontamination, heart valve, tensile properties, tissue engineering

  14. Reinforced chitosan-based heart valve scaffold and utility of bone marrow-derived mesenchymal stem cells for cardiovascular tissue engineering

    Science.gov (United States)

    Albanna, Mohammad Zaki

    Recent research has demonstrated a strong correlation between the differentiation profile of mesenchymal stem cells (MSCs) and scaffold stiffness. Chitosan is being widely studied for tissue engineering applications due to its biocompatibility and biodegradability. However, its use in load-bearing applications is limited due to moderate to low mechanical properties. In this study, we investigated the effectiveness of a fiber reinforcement method for enhancing the mechanical properties of chitosan scaffolds. Chitosan fibers were fabricated using a solution extrusion and neutralization method and incorporated into porous chitosan scaffolds. The effects of different fiber/scaffold mass ratios, fiber mechanical properties and fiber lengths on scaffold mechanical properties were studied. The results showed that incorporating fibers improved scaffold strength and stiffness in proportion to the fiber/scaffold mass ratio. A fiber-reinforced heart valve leaflet scaffold achieved strength values comparable to the radial values of human pulmonary and aortic valves. Additionally, the effects of shorter fibers (2 mm) were found to be up to 3-fold greater than longer fibers (10 mm). Despite this reduction in fiber mechanical properties caused by heparin crosslinking, the heparin-modified fibers still improved the mechanical properties of the reinforced scaffolds, but to a lesser extent than the unmodified fibers. The results demonstrate that chitosan fiber-reinforcement can be used to generate tissue-matching mechanical properties in porous chitosan scaffolds and that fiber length and mechanical properties are important parameters in defining the degree of mechanical improvement. We further studied various chemical and physical treatments to improve the mechanical properties of chitosan fibers. With combination of chemical and physical treatments, fiber stiffness improved 40fold compared to unmodified fibers. We also isolated ovine bone marrow-derived MSCs and evaluated their

  15. Environmental regulation of valvulogenesis:implications for tissue engineering

    NARCIS (Netherlands)

    Riem Vis, P.W.; Kluin, J.; Sluijter, J.P.G.; Herwerden, van L.A.; Bouten, C.V.C.

    2011-01-01

    Ongoing research efforts aim at improving the creation of tissue-engineered heart valves for in vivo systemic application. Hence, in vitro studies concentrate on optimising culture protocols incorporating biological as well as biophysical stimuli for tissue development. Important lessons can be

  16. Mid-term function and remodeling potential of tissue engineered tricuspid valve

    DEFF Research Database (Denmark)

    Ropcke, Diana M; Rasmussen, Jonas; Ilkjær, Christine

    2018-01-01

    . CONCLUSIONS: ECM tricuspid tube grafts were stronger than native leaflet tissue. Histologically, the acellular ECM tube grafts showed evidence of constructive tissue remodeling with endothelialization and connective tissue organization. These findings support the concept of tissue engineering...... at implantation (baseline) compared to native leaflet tissue (0.3 ± 0.02 mg/mm3vs. 0.1 ± 0.03 mg/mm3, p ...). Histologically, ECM valves showed endothelialization, host cell infiltration and structural collagen organization together with elastin generation after six months, indicating tissue remodeling and -engineering together with gradual development of a close-to-native leaflet structure without foreign body response...

  17. Heart Valve Diseases

    Science.gov (United States)

    Your heart has four valves. Normally, these valves open to let blood flow through or out of your heart, and then shut to keep it from flowing ... close tightly. It's one of the most common heart valve conditions. Sometimes it causes regurgitation. Stenosis - when ...

  18. 3D Biofabrication of Thermoplastic Polyurethane (TPU/Poly-l-lactic Acid (PLLA Electrospun Nanofibers Containing Maghemite (γ-Fe2O3 for Tissue Engineering Aortic Heart Valve

    Directory of Open Access Journals (Sweden)

    Ehsan Fallahiarezoudar

    2017-11-01

    Full Text Available Valvular dysfunction as the prominent reason of heart failure may causes morbidity and mortality around the world. The inability of human body to regenerate the defected heart valves necessitates the development of the artificial prosthesis to be replaced. Besides, the lack of capacity to grow, repair or remodel of an artificial valves and biological difficulty such as infection or inflammation make the development of tissue engineering heart valve (TEHV concept. This research presented the use of compound of poly-l-lactic acid (PLLA, thermoplastic polyurethane (TPU and maghemite nanoparticle (γ-Fe2O3 as the potential biomaterials to develop three-dimensional (3D aortic heart valve scaffold. Electrospinning was used for fabricating the 3D scaffold. The steepest ascent followed by the response surface methodology was used to optimize the electrospinning parameters involved in terms of elastic modulus. The structural and porosity properties of fabricated scaffold were characterized using FE-SEM and liquid displacement technique, respectively. The 3D scaffold was then seeded with aortic smooth muscle cells (AOSMCs and biological behavior in terms of cell attachment and proliferation during 34 days of incubation was characterized using MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay and confocal laser microscopy. Furthermore, the mechanical properties in terms of elastic modulus and stiffness were investigated after cell seeding through macro-indentation test. The analysis indicated the formation of ultrafine quality of nanofibers with diameter distribution of 178 ± 45 nm and 90.72% porosity. In terms of cell proliferation, the results exhibited desirable proliferation (109.32 ± 3.22% compared to the control of cells over the 3D scaffold in 34 days of incubation. The elastic modulus and stiffness index after cell seeding were founded to be 22.78 ± 2.12 MPa and 1490.9 ± 12 Nmm2, respectively. Overall, the fabricated 3D

  19. Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models.

    Science.gov (United States)

    Deddens, Janine C; Sadeghi, Amir Hossein; Hjortnaes, Jesper; van Laake, Linda W; Buijsrogge, Marc; Doevendans, Pieter A; Khademhosseini, Ali; Sluijter, Joost P G

    2017-02-01

    Cardiac remodeling is critical for effective tissue healing, however, excessive production and deposition of extracellular matrix components contribute to scarring and failing of the heart. Despite the fact that novel therapies have emerged, there are still no lifelong solutions for this problem. An urgent need exists to improve the understanding of adverse cardiac remodeling in order to develop new therapeutic interventions that will prevent, reverse, or regenerate the fibrotic changes in the failing heart. With recent advances in both disease biology and cardiac tissue engineering, the translation of fundamental laboratory research toward the treatment of chronic heart failure patients becomes a more realistic option. Here, the current understanding of cardiac fibrosis and the great potential of tissue engineering are presented. Approaches using hydrogel-based tissue engineered heart constructs are discussed to contemplate key challenges for modeling tissue engineered cardiac fibrosis and to provide a future outlook for preclinical and clinical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. In-body tissue-engineered aortic valve (Biovalve type VII) architecture based on 3D printer molding.

    Science.gov (United States)

    Nakayama, Yasuhide; Takewa, Yoshiaki; Sumikura, Hirohito; Yamanami, Masashi; Matsui, Yuichi; Oie, Tomonori; Kishimoto, Yuichiro; Arakawa, Mamoru; Ohmuma, Kentaro; Tajikawa, Tsutomu; Kanda, Keiichi; Tatsumi, Eisuke

    2015-01-01

    In-body tissue architecture--a novel and practical regeneration medicine technology--can be used to prepare a completely autologous heart valve, based on the shape of a mold. In this study, a three-dimensional (3D) printer was used to produce the molds. A 3D printer can easily reproduce the 3D-shape and size of native heart valves within several processing hours. For a tri-leaflet, valved conduit with a sinus of Valsalva (Biovalve type VII), the mold was assembled using two conduit parts and three sinus parts produced by the 3D printer. Biovalves were generated from completely autologous connective tissue, containing collagen and fibroblasts, within 2 months following the subcutaneous embedding of the molds (success rate, 27/30). In vitro evaluation, using a pulsatile circulation circuit, showed excellent valvular function with a durability of at least 10 days. Interposed between two expanded polytetrafluoroethylene grafts, the Biovalves (N = 3) were implanted in goats through an apico-aortic bypass procedure. Postoperative echocardiography showed smooth movement of the leaflets with minimal regurgitation under systemic circulation. After 1 month of implantation, smooth white leaflets were observed with minimal thrombus formation. Functional, autologous, 3D-shaped heart valves with clinical application potential were formed following in-body embedding of specially designed molds that were created within several hours by 3D printer. © 2014 Wiley Periodicals, Inc.

  1. Engineering Complex Tissues

    Science.gov (United States)

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue

  2. CD133 antibody conjugation to decellularized human heart valves intended for circulating cell capture.

    Science.gov (United States)

    Vossler, John D; Min Ju, Young; Williams, J Koudy; Goldstein, Steven; Hamlin, James; Lee, Sang Jin; Yoo, James J; Atala, Anthony

    2015-09-03

    The long term efficacy of tissue based heart valve grafts may be limited by progressive degeneration characterized by immune mediated inflammation and calcification. To avoid this degeneration, decellularized heart valves with functionalized surfaces capable of rapid in vivo endothelialization have been developed. The aim of this study is to examine the capacity of CD133 antibody-conjugated valve tissue to capture circulating endothelial progenitor cells (EPCs). Decellularized human pulmonary valve tissue was conjugated with CD133 antibody at varying concentrations and exposed to CD133 expressing NTERA-2 cl.D1 (NT2) cells in a microflow chamber. The amount of CD133 antibody conjugated on the valve tissue surface and the number of NT2 cells captured in the presence of shear stress was measured. Both the amount of CD133 antibody conjugated to the valve leaflet surface and the number of adherent NT2 cells increased as the concentration of CD133 antibody present in the surface immobilization procedure increased. The data presented in this study support the hypothesis that the rate of CD133(+) cell adhesion in the presence of shear stress to decellularized heart valve tissue functionalized by CD133 antibody conjugation increases as the quantity of CD133 antibody conjugated to the tissue surface increases.

  3. Plasma and tissue oxidative stress index in patients with rheumatic and degenerative heart valve disease.

    Science.gov (United States)

    Rabus, Murat; Demirbağ, Recep; Sezen, Yusuf; Konukoğlu, Oğuz; Yildiz, Ali; Erel, Ozcan; Zeybek, Rahmi; Yakut, Cevat

    2008-12-01

    We investigated whether patients with rheumatic and degenerative heart valve disease (HVD) differed with regard to plasma and tissue oxidative stress index (OSI). The study included 56 patients who underwent valve replacement due to rheumatic (n=32; 15 males; mean age 47+/-10 years) and degenerative (n=24; 13 males; mean age 55+/-12 years) HVD. Plasma and tissue total oxidative status (TOS) and total antioxidative capacity (TAC) levels were measured and OSI was calculated. Patients with degenerative HVD had significantly higher age, increased interventricular septum thickness, and higher frequency of aortic stenosis, whereas the incidence of mitral stenosis was higher in patients with rheumatic HVD (p0.05). Tissue TAC was significantly lower in patients with rheumatic HVD (p=0.027), whereas tissue TOS and OSI were similar between the two HVD groups (p>0.05). In bivariate analysis, plasma OSI did not show any correlation with clinical, laboratory, and echocardiographic variables (p>0.05). Our data show that plasma and tissue OSI levels are similar in patients with rheumatic and degenerative HVD.

  4. Magnesium Presence Prevents Removal of Antigenic Nuclear-Associated Proteins from Bovine Pericardium for Heart Valve Engineering.

    Science.gov (United States)

    Dalgliesh, Ailsa J; Liu, Zhi Zhao; Griffiths, Leigh G

    2017-07-01

    Current heart valve prostheses are associated with significant complications, including aggressive immune response, limited valve life expectancy, and inability to grow in juvenile patients. Animal derived "tissue" valves undergo glutaraldehyde fixation to mask tissue antigenicity; however, chronic immunological responses and associated calcification still commonly occur. A heart valve formed from an unfixed bovine pericardium (BP) extracellular matrix (ECM) scaffold, in which antigenic burden has been eliminated or significantly reduced, has potential to overcome deficiencies of current bioprostheses. Decellularization and antigen removal methods frequently use sequential solutions extrapolated from analytical chemistry approaches to promote solubility and removal of tissue components from resultant ECM scaffolds. However, the extent to which such prefractionation strategies may inhibit removal of antigenic tissue components has not been explored. We hypothesize that presence of magnesium in prefractionation steps causes DNA precipitation and reduces removal of nuclear-associated antigenic proteins. Keeping all variables consistent bar the addition or absence of magnesium (2 mM magnesium chloride hexahydrate), residual BP ECM scaffold antigenicity and removed antigenicity were assessed, along with residual and removed DNA content, ECM morphology, scaffold composition, and recellularization potential. Furthermore, we used proteomic methods to determine the mechanism by which magnesium presence or absence affects scaffold residual antigenicity. This study demonstrates that absence of magnesium from antigen removal solutions enhances solubility and subsequent removal of antigenic nuclear-associated proteins from BP. We therefore conclude that the primary mechanism of action for magnesium removal during antigen removal processes is avoidance of DNA precipitation, facilitating solubilization and removal of nuclear-associated antigenic proteins. Future studies are

  5. Biomechanical regulation of in vitro cardiogenesis for tissue-engineered heart repair.

    Science.gov (United States)

    Zimmermann, Wolfram-Hubertus

    2013-01-01

    The heart is a continuously pumping organ with an average lifespan of eight decades. It develops from the onset of embryonic cardiogenesis under biomechanical load, performs optimally within a defined range of hemodynamic load, and fails if acutely or chronically overloaded. Unloading of the heart leads to defective cardiogenesis in utero, but can also lead to a desired therapeutic outcome (for example, in patients with heart failure under left ventricular assist device therapy). In light of the well-documented relevance of mechanical loading for cardiac physiology and pathology, it is plausible that tissue engineers have integrated mechanical stimulation regimens into protocols for heart muscle construction. To achieve optimal results, physiological principles of beat-to-beat myocardial loading and unloading should be simulated. In addition, heart muscle engineering, in particular if based on pluripotent stem cell-derived cardiomyocytes, may benefit from staggered tonic loading protocols to simulate viscoelastic properties of the prenatal and postnatal myocardial stroma. This review will provide an overview of heart muscle mechanics, summarize observations on the role of mechanical loading for heart development and postnatal performance, and discuss how physiological loading regimens can be exploited to advance myocardial tissue engineering towards a therapeutic application.

  6. Decellularized allogeneic heart valves demonstrate self-regeneration potential after a long-term preclinical evaluation.

    Directory of Open Access Journals (Sweden)

    Laura Iop

    Full Text Available Tissue-engineered heart valves are proposed as novel viable replacements granting longer durability and growth potential. However, they require extensive in vitro cell-conditioning in bioreactor before implantation. Here, the propensity of non-preconditioned decellularized heart valves to spontaneous in body self-regeneration was investigated in a large animal model. Decellularized porcine aortic valves were evaluated for right ventricular outflow tract (RVOT reconstruction in Vietnamese Pigs (n = 11 with 6 (n = 5 and 15 (n = 6 follow-up months. Repositioned native valves (n = 2 for each time were considered as control. Tissue and cell components from explanted valves were investigated by histology, immunohistochemistry, electron microscopy, and gene expression. Most substitutes constantly demonstrated in vivo adequate hemodynamic performances and ex vivo progressive repopulation during the 15 implantation months without signs of calcifications, fibrosis and/or thrombosis, as revealed by histological, immunohistochemical, ultrastructural, metabolic and transcriptomic profiles. Colonizing cells displayed native-like phenotypes and actively synthesized novel extracellular matrix elements, as collagen and elastin fibers. New mature blood vessels, i.e. capillaries and vasa vasorum, were identified in repopulated valves especially in the medial and adventitial tunicae of regenerated arterial walls. Such findings correlated to the up-regulated vascular gene transcription. Neoinnervation hallmarks were appreciated at histological and ultrastructural levels. Macrophage populations with reparative M2 phenotype were highly represented in repopulated valves. Indeed, no aspects of adverse/immune reaction were revealed in immunohistochemical and transcriptomic patterns. Among differentiated elements, several cells were identified expressing typical stem cell markers of embryonic, hematopoietic, neural and mesenchymal lineages in significantly

  7. Engineered Heart Repair.

    Science.gov (United States)

    Fujita, B; Zimmermann, W-H

    2017-08-01

    There is a pressing need for the development of advanced heart failure therapeutics. Current state-of-the-art is protection from neurohumoral overstimulation, which fails to address the underlying cause of heart failure, namely loss of cardiomyocytes. Implantation of stem cell-derived cardiomyocytes via tissue-engineered myocardium is being advanced to realize the remuscularization of the failing heart. Here, we discuss pharmacological challenges pertaining to the clinical translation of tissue-engineered heart repair with a focus on engineered heart muscle (EHM). © 2017 American Society for Clinical Pharmacology and Therapeutics.

  8. Soluble CD54 induces human endothelial cells ex vivo expansion useful for cardiovascular regeneration and tissue engineering application

    KAUST Repository

    Malara, N.M.; Trunzo, V.; Musolino, G.; Aprigliano, S.; Rotta, G.; Macrina, L.; Limongi, T.; Gratteri, S.; Di Fabrizio, Enzo M.; Renzulli, A.; Fini, M.; Mollace, V.

    2015-01-01

    -source variability. Resulting primary cultures can be useful, for tissue engineering in regenerative medicine (e.g. artificial micro tissue generation, coating artificial heart valve etc.) and bio-nanotechnology applications. © 2015 The Authors. Published by Elsevier

  9. Heart Valve Surgery Recovery and Follow Up

    Science.gov (United States)

    ... Guide: Understanding Your Heart Valve Problem | Spanish Symptom Tracker | Spanish Pre-surgery Checklist | Spanish What Is Heart ... Heart ValvesHeart Valve Problems and Causes • Risks, Signs and Symptoms • Accurate Diagnosis • Treatment Options • Recovery and ...

  10. Multi-scale mechanical characterization of scaffolds for heart valve tissue engineering

    NARCIS (Netherlands)

    Argento, G.; Simonet, M.; Oomens, C.W.J.; Baaijens, F.P.T.

    2012-01-01

    Electrospinning is a promising technology to produce scaffolds for cardiovascular tissue engineering. Each electrospun scaffold is characterized by a complex micro-scale structure that is responsible for its macroscopic mechanical behavior. In this study, we focus on the development and the

  11. [Periodontal microbiota and microorganisms isolated from heart valves in patients undergoing valve replacement surgery in a clinic in Cali, Colombia].

    Science.gov (United States)

    Moreno, Sandra; Parra, Beatriz; Botero, Javier E; Moreno, Freddy; Vásquez, Daniel; Fernández, Hugo; Alba, Sandra; Gallego, Sara; Castillo, Gilberto; Contreras, Adolfo

    2017-12-01

    Periodontitis is an infectious disease that affects the support tissue of the teeth and it is associated with different systemic diseases, including cardiovascular disease. Microbiological studies facilitate the detection of microorganisms from subgingival and cardiovascular samples. To describe the cultivable periodontal microbiota and the presence of microorganisms in heart valves from patients undergoing valve replacement surgery in a clinic in Cali. We analyzed 30 subgingival and valvular tissue samples by means of two-phase culture medium, supplemented blood agar and trypticase soy agar with antibiotics. Conventional PCR was performed on samples of valve tissue. The periodontal pathogens isolated from periodontal pockets were: Fusobacterium nucleatum (50%), Prevotella intermedia/ nigrescens (40%), Campylobacter rectus (40%), Eikenella corrodens (36.7%), Gram negative enteric bacilli (36.7%), Porphyromonas gingivalis (33.3%), and Eubacterium spp. (33.3%). The pathogens isolated from the aortic valve were Propionibacterium acnes (12%), Gram negative enteric bacilli (8%), Bacteroides merdae (4%), and Clostridium bifermentans (4%), and from the mitral valve we isolated P. acnes and Clostridium beijerinckii. Conventional PCR did not return positive results for oral pathogens and bacterial DNA was detected only in two samples. Periodontal microbiota of patients undergoing surgery for heart valve replacement consisted of species of Gram-negative bacteria that have been associated with infections in extraoral tissues. However, there is no evidence of the presence of periodontal pathogens in valve tissue, because even though there were valve and subgingival samples positive for Gram-negative enteric bacilli, it is not possible to maintain they corresponded to the same phylogenetic origin.

  12. Simulation of Blood flow in Artificial Heart Valve Design through Left heart

    Science.gov (United States)

    Hafizah Mokhtar, N.; Abas, Aizat

    2018-05-01

    In this work, an artificial heart valve is designed for use in real heart with further consideration on the effect of thrombosis, vorticity, and stress. The design of artificial heart valve model is constructed by Computer-aided design (CAD) modelling and simulated using Computational fluid dynamic (CFD) software. The effect of blood flow pattern, velocity and vorticity of the artificial heart valve design has been analysed in this research work. Based on the results, the artificial heart valve design shows that it has a Doppler velocity index that is less than the allowable standards for the left heart with values of more than 0.30 and less than 2.2. These values are safe to be used as replacement of the human heart valve.

  13. Experimental investigations on the fluid-mechanics of an electrospun heart valve by means of particle image velocimetry.

    Science.gov (United States)

    Del Gaudio, Costantino; Gasbarroni, Pier Luca; Romano, Giovanni Paolo

    2016-12-01

    End-stage failing heart valves are currently replaced by mechanical or biological prostheses. Both types positively contribute to restore the physiological function of native valves, but a number of drawbacks limits the expected performances. In order to improve the outcome, tissue engineering can offer an alternative approach to design and fabricate innovative heart valves capable to support the requested function and to promote the formation of a novel, viable and correctly operating physiological structure. This potential result is particularly critical if referred to the aortic valve, being the one mainly exposed to structural and functional degeneration. In this regard, the here proposed study presents the fabrication and in vitro characterization of a bioresorbable electrospun heart valve prosthesis using the particle image velocimetry technique either in physiological and pathological fluid dynamic conditions. The scaffold was designed to reproduce the aortic valve geometry, also mimicking the fibrous structure of the natural extracellular matrix. To evaluate its performances for possible implantation, the flow fields downstream the valve were accurately investigated and compared. The experimental results showed a correct functionality of the device, supported by the formation of vortex structures at the edge of the three cusps, with Reynolds stress values below the threshold for the risk of hemolysis (which can be comprised in the range 400-4000N/m(2) depending on the exposure period), and a good structural resistance to the mechanical loads generated by the driving pressure difference. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Problem: Heart Valve Regurgitation

    Science.gov (United States)

    ... should be completely closed For example: Watch an animation of mitral valve regurgitation A leaking mitral valve ... Not Alone Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...

  15. The radiology of prosthetic heart valves

    International Nuclear Information System (INIS)

    Steiner, R.M.; Flicker, S.

    1985-01-01

    The development of prosthetic heart valves in the late 1950s ushered in a new era in the treatment of heart disease. The radiologist has an important role to play preoperatively in the diagnosis of valvular heart disease. Radiology is valuable in identification of the implanted prosthetic valve and recognition of complications associated with valve implantation. Radiologists must be familiar with the imaging techniques best suited to evaluate the function of the valve prosthesis in question. In this chapter the authors discuss the radiographic approach to the evaluation of the status of patients for valve replacement and the imaging problems peculiar to the types of valves in current use. The relative value of plain-film radiography, fluoroscopy, videorecording and cinerecording, and aortography is addressed, as well as the potential value of magnetic resonance imaging and subsecond dynamic computed tomography

  16. Heart valve surgery - discharge

    Science.gov (United States)

    ... ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College ... Editorial team. Related MedlinePlus Health Topics Heart Surgery Heart Valve Diseases Browse the Encyclopedia A.D.A.M., Inc. ...

  17. Resurgery for recurrent heart valve diseases

    Directory of Open Access Journals (Sweden)

    Chong-lei REN

    2017-02-01

    Full Text Available Objective To summarize the experience with resurgery for recurrent valvular heart diseases. Methods From June 2004 to June 2015, 28 patients (15 males and 13 females with ages ranging from 44 to 67 years (55.6±6.5 years with recurrent heart valve disease underwent resurgery. The reasons for resurgery included perivalvular leakage (7 cases, bioprosthetic valve decline (6 cases in mitral valve and 3 in tricuspid valve, mechanical prostheses dysfunction (2cases, infective endocarditis after valve replacement (2 cases, restenosis of repaired native valve (1 case, and severe tricuspid insufficiency after left-side valve surgery (7 cases. Resurgery included mitral valve replacement in 18 patients and tricuspid valve replacement in 10. All the patients underwent third or fourth or even fifth cardiac surgery for valve replacement. Results There were 2 hospital deaths with a mortality of 7.1% (2/28. The main causes of early-stage deaths were low cardiac output syndrome. The main postoperative complications were respiratory failure in 3, low cardiac output syndrome in 2, reexploration for bleeding in 2 and serious infectious shock in 1. All the patients were found with the great improvement in heart function and the re-implanted prostheses worked well during follow-up. Conclusions Although resurgery for recurrent heart valve disease poses a continuing challenge to cardiac surgeon, it could be performed with the satisfactory results. The keys to a successful cardiac resurgery include appropriate operational timing, refined surgical technique and reasonable perioperative managements. DOI: 10.11855/j.issn.0577-7402.2017.01.11

  18. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    Science.gov (United States)

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.

  19. Fine Structure of Glycosaminoglycans from Fresh and Decellularized Porcine Cardiac Valves and Pericardium

    Directory of Open Access Journals (Sweden)

    Antonio Cigliano

    2012-01-01

    Full Text Available Cardiac valves are dynamic structures, exhibiting a highly specialized architecture consisting of cells and extracellular matrix with a relevant proteoglycan and glycosaminoglycan content, collagen and elastic fibers. Biological valve substitutes are obtained from xenogenic cardiac and pericardial tissues. To overcome the limits of such non viable substitutes, tissue engineering approaches emerged to create cell repopulated decellularized scaffolds. This study was performed to determine the glycosaminoglycans content, distribution, and disaccharides composition in porcine aortic and pulmonary valves and in pericardium before and after a detergent-based decellularization procedure. The fine structural characteristics of galactosaminoglycans chondroitin sulfate and dermatan sulfate were examined by FACE. Furthermore, the mechanical properties of decellularized pericardium and its propensity to be repopulated by in vitro seeded fibroblasts were investigated. Results show that galactosaminoglycans and hyaluronan are differently distributed between pericardium and valves and within heart valves themselves before and after decellularization. The distribution of glycosaminoglycans is also dependent from the vascular district and topographic localization. The decellularization protocol adopted resulted in a relevant but not selective depletion of galactosaminoglycans. As a whole, data suggest that both decellularized porcine heart valves and bovine pericardium represent promising materials bearing the potential for future development of tissue engineered heart valve scaffolds.

  20. Dysfunction of an On-X Heart Valve by Pannus.

    Science.gov (United States)

    Abad, Cipriano; Urso, Stefano; Gomez, Elsa; De la Vega, Maria

    2016-09-01

    A 68-year-old woman with a history of previous double-valve replacement with On-X mechanical heart valves presented with clinical, echocardiographic and cardiac catheterization signs of obstruction of the On-X tricuspid heart valve prosthesis. The patient was successfully reoperated, but at surgery the valve was seen to be invaded by an abnormal overgrowth of pannus that blocked one of the leaflets. A small amount of non-obstructive fresh thrombus was also observed. The valve was successfully replaced with a biological heart valve prosthesis. The patient was discharged home, and is doing well four months after the operation, when echocardiography demonstrated normal function in the tricuspid valve. The present case represents the first ever report of pannus formation and subsequent dysfunction in an On-X heart valve, and also the first case of tricuspid valve malfunction and obstruction using this type of heart valve substitute.

  1. Rheumatic Heart Disease and Myxomatous Degeneration: Differences and Similarities of Valve Damage Resulting from Autoimmune Reactions and Matrix Disorganization.

    Science.gov (United States)

    Martins, Carlo de Oliveira; Demarchi, Lea; Ferreira, Frederico Moraes; Pomerantzeff, Pablo Maria Alberto; Brandao, Carlos; Sampaio, Roney Orismar; Spina, Guilherme Sobreira; Kalil, Jorge; Cunha-Neto, Edecio; Guilherme, Luiza

    2017-01-01

    Autoimmune inflammatory reactions leading to rheumatic fever (RF) and rheumatic heart disease (RHD) result from untreated Streptococcus pyogenes throat infections in individuals who exhibit genetic susceptibility. Immune effector mechanisms have been described that lead to heart tissue damage culminating in mitral and aortic valve dysfunctions. In myxomatous valve degeneration (MXD), the mitral valve is also damaged due to non-inflammatory mechanisms. Both diseases are characterized by structural valve disarray and a previous proteomic analysis of them has disclosed a distinct profile of matrix/structural proteins differentially expressed. Given their relevance in organizing valve tissue, we quantitatively evaluated the expression of vimentin, collagen VI, lumican, and vitronectin as well as performed immunohistochemical analysis of their distribution in valve tissue lesions of patients in both diseases. We identified abundant expression of two isoforms of vimentin (45 kDa, 42 kDa) with reduced expression of the full-size protein (54 kDa) in RHD valves. We also found increased vitronectin expression, reduced collagen VI expression and similar lumican expression between RHD and MXD valves. Immunohistochemical analysis indicated disrupted patterns of these proteins in myxomatous degeneration valves and disorganized distribution in rheumatic heart disease valves that correlated with clinical manifestations such as valve regurgitation or stenosis. Confocal microscopy analysis revealed a diverse pattern of distribution of collagen VI and lumican into RHD and MXD valves. Altogether, these results demonstrated distinct patterns of altered valve expression and tissue distribution/organization of structural/matrix proteins that play important pathophysiological roles in both valve diseases.

  2. Mitral valve-sparing procedures and prosthetic heart valve failure: A case report

    Science.gov (United States)

    Khan, Nasir A; Butany, Jagdish; Leong, Shaun W; Rao, Vivek; Cusimano, Robert J; Ross, Heather J

    2009-01-01

    Prosthetic heart valve dysfunction due to thrombus or pannus formation can be a life-threatening complication. The present report describes a 47-year-old woman who developed valvular cardiomyopathy after chorda-sparing mitral valve replacement, and subsequently underwent heart transplantation for progressive heart failure. The explanted mitral valve prosthesis showed significant thrombus and pannus leading to reduced leaflet mobility and valvular stenosis. The present report illustrates the role of the subvalvular apparatus and pannus in prosthesis dysfunction. PMID:19279993

  3. Computed Flow Through An Artificial Heart Valve

    Science.gov (United States)

    Rogers, Stewart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee

    1994-01-01

    Report discusses computations of blood flow through prosthetic tilting disk valve. Computational procedure developed in simulation used to design better artificial hearts and valves by reducing or eliminating following adverse flow characteristics: large pressure losses, which prevent hearts from working efficiently; separated and secondary flows, which causes clotting; and high turbulent shear stresses, which damages red blood cells. Report reiterates and expands upon part of NASA technical memorandum "Computed Flow Through an Artificial Heart and Valve" (ARC-12983). Also based partly on research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478).

  4. Classification of heart valve condition using acoustic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Prosthetic heart valves and the many great strides in valve design have been responsible for extending the life spans of many people with serious heart conditions. Even though the prosthetic valves are extremely reliable, they are eventually susceptible to long-term fatigue and structural failure effects expected from mechanical devices operating over long periods of time. The purpose of our work is to classify the condition of in vivo Bjork-Shiley Convexo-Concave (BSCC) heart valves by processing acoustic measurements of heart valve sounds. The structural failures of interest for Bscc valves is called single leg separation (SLS). SLS can occur if the outlet strut cracks and separates from the main structure of the valve. We measure acoustic opening and closing sounds (waveforms) using high sensitivity contact microphones on the patient`s thorax. For our analysis, we focus our processing and classification efforts on the opening sounds because they yield direct information about outlet strut condition with minimal distortion caused by energy radiated from the valve disc.

  5. Options for Heart Valve Replacement

    Science.gov (United States)

    ... Guide: Understanding Your Heart Valve Problem | Spanish Symptom Tracker | Spanish Pre-surgery Checklist | Spanish What Is Heart ... Cardiac Arrest: How Are They Different? 7 Warning Signs of a Heart Attack 8 Low Blood Pressure - ...

  6. Mechanical performance of pyrolytic carbon in prosthetic heart valve applications.

    Science.gov (United States)

    Cao, H

    1996-06-01

    An experimental procedure has been developed for rigorous characterization of the fracture resistance and fatigue crack extension in pyrolytic carbon for prosthetic heart valve application. Experiments were conducted under sustained and cyclic loading in a simulated biological environment using Carbomedics Pyrolite carbon. While the material was shown to have modest fracture toughness, it exhibited excellent resistance to subcritical crack growth. The crack growth kinetics in pyrolytic carbon were formulated using a phenomenological description. A fatigue threshold was observed below which the crack growth rate diminishes. A damage tolerance concept based on fracture mechanics was used to develop an engineering design approach for mechanical heart valve prostheses. In particular, a new quantity, referred to as the safe-life index, was introduced to assess the design adequacy against subcritical crack growth in brittle materials. In addition, a weakest-link statistical description of the fracture strength is provided and used in the design of component proof-tests. It is shown that the structural reliability of mechanical heart valves can be assured by combining effective flaw detection and manufacturing quality control with adequate damage tolerance design.

  7. Banking cryopreserved heart valves in Europe: assessment of a 5-year operation in an international tissue bank in Brussels.

    Science.gov (United States)

    Goffin, Y; Grandmougin, D; Van Hoeck, B

    1996-01-01

    The heart valve bank of the European Homograft Bank has been set up in 1988 to meet the growing demand of cardiac surgeons for various sized and quality controlled cryopreserved homografts. Heart valve donors less than 60 years of age were classified in 3 categories: multiorgan donors with non transplantable hearts, recipients of cardiac transplantation and non beating heart cadavers with a warm ischemic time of less than 6 hours. Past history and biology were checked for transmissible diseases. Preparation, progressive freezing and storage in liquid nitrogen vapors, and quality control were according to the standards of the Belgian Ministry of Health. From end January 1989 to end May 1994, 989 homograft valves were cryopreserved (514 pulmonary, 475 aortic and 3 mitral) whereas 962 valves were discarded. The first cause of rejection being a major macroscopic lesion (41.48%). 138 hearts accepted at inspection were contaminated and 43 cases remained so after antibiotics. 38 cases were positive for hepatitis B or C. Complication at distribution and thawing included 10 instances of bag rupture and 15 of transversal fracture through the wall of the conduit. 477 aortic, 474 pulmonary valves as well as one mitral were implanted between May 1989 and May 1994, either for left or right ventricular outflow tract reconstruction. In the left ventricular outflow tract series 111 aortic and 23 pulmonary homograft valves were used in cases of native endocarditis, prosthetic endocarditis or recurrent endocarditis after homograft implantation. 9.6% of the requests could no be satisfied. Regular follow up information was available from 382 implants-40.1% only. The assessment of 5 years operation of the heart valve bank indicates: 1) the efficiency of selecting, cryopreserving and allocating quality controlled homograft valves from a large pool of donor hearts provided by a network of hospitals; 2) the difficulty of obtaining regular follow up information on the implants.

  8. Comparative assessment of hepatic Glisson's capsule and bovine pericardium in heart valve bioprostheses.

    Science.gov (United States)

    Kagramanov, I I; Kokshenev, I V; Dobrova, N B; Kastava, V T; Serov, R A; Zaets, S B

    1998-05-01

    The optimal material for heart valve bioprostheses remains disputable. This investigation was initiated to compare the properties of hepatic Glisson's capsule, clinical experience of which in cardiovascular surgery is minimal, with those of bovine pericardium. Hepatic Glisson's capsule was harvested from bull calves and used to create composite pulmonary arterial monocusp grafts and bioprostheses. Comparison of the strength and elastic properties of Glisson's capsule and bovine pericardium, as well as the hydrodynamic characteristics of valves made from these materials, was performed. Late results of operations using these materials were estimated echocardiographically. Although Glisson's capsule tissue is thinner than the bovine pericardium, its elasticity modulus is greater. However, the hydrodynamic characteristics of heart valves made from either tissue are similar. Moreover, valves made from Glisson's capsule have a lower systolic pressure gradient on the prosthesis and a higher effective orifice area. Composite pulmonary arterial xenopericardial grafts with a monocusp of Glisson's capsule were used in 30 patients during tetralogy of Fallot repair. Glisson's capsule was also used for tricuspid valve reconstruction and as a bioprosthesis in six patients with Ebstein's anomaly. At 1-2 years after surgery, the Glisson's capsule tissue remained thin and flexible, with no calcification. Although the hydrodynamic properties of hepatic Glisson's capsule and the bovine pericardium are similar, the capsule tissue is thinner and has a greater elasticity modulos. Thus, Glisson's capsule may be used for bioprosthesis construction both independently and in combination with bovine pericardium.

  9. Understanding the requirements of self-expandable stents for heart valve replacement: Radial force, hoop force and equilibrium.

    Science.gov (United States)

    Cabrera, María Sol; Oomens, Cees W J; Baaijens, Frank P T

    2017-04-01

    A proper interpretation of the forces developed during stent crimping and deployment is of paramount importance for a better understanding of the requirements for successful heart valve replacement. The present study combines experimental and computational methods to assess the performance of a nitinol stent for tissue-engineered heart valve implantation. To validate the stent model, the mechanical response to parallel plate compression and radial crimping was evaluated experimentally. Finite element simulations showed good agreement with the experimental findings. The computational models were further used to determine the hoop force on the stent and radial force on a rigid tool during crimping and self-expansion. In addition, stent deployment against ovine and human pulmonary arteries was simulated to determine the hoop force on the stent-artery system and the equilibrium diameter for different degrees of oversizing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. A New Approach to Heart Valve Tissue Engineering Based on Modifying Autologous Human Pericardium by 3D Cellular Mechanotransduction

    Czech Academy of Sciences Publication Activity Database

    Straka, František; Schorník, David; Mašín, J.; Filová, Elena; Miřejovský, T.; Burdíková, Z.; Švindrych, Z.; Chlup, H.; Horný, L.; Veselý, J.; Pirk, J.; Bačáková, Lucie

    2017-01-01

    Roč. 7, č. 7 (2017), s. 527-543 ISSN 2157-9083 R&D Projects: GA MZd(CZ) NV15-29153A; GA MZd(CZ) NT11270 Institutional support: RVO:67985823 Keywords : autologous human pericardium * pericardial interstitial cells * heart valve * 3D mechanotranduction * bioreactor Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery OBOR OECD: Cardiac and Cardiovascular systems Impact factor: 1.383, year: 2016

  11. Heart valve disease among patients with hyperprolactinemia

    DEFF Research Database (Denmark)

    Steffensen, Maria Charlotte; Maegbaek, Merete Lund; Laurberg, Peter

    2012-01-01

    Increased risk of heart valve disease during treatment with certain dopamine agonists, such as cabergoline, has been observed in patients with Parkinson's disease. The same compound is used to treat hyperprolactinemia, but it is unknown whether this also associates with heart valve disease....

  12. Double-reed exhaust valve engine

    Science.gov (United States)

    Bennett, Charles L.

    2015-06-30

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  13. International Heart Valve Bank Survey: A Review of Processing Practices and Activity Outcomes

    Science.gov (United States)

    Albrecht, Helmi; Lim, Yeong Phang; Manning, Linda

    2013-01-01

    A survey of 24 international heart valve banks was conducted to acquire information on heart valve processing techniques used and outcomes achieved. The objective was to provide an overview of heart valve banking activities for tissue bankers, tissue banking associations, and regulatory bodies worldwide. Despite similarities found for basic manufacturing processes, distinct differences in procedural details were also identified. The similarities included (1) use of sterile culture media for procedures, (2) antibiotic decontamination, (3) use of dimethyl sulfoxide (DMSO) as a cryoprotectant, (4) controlled rate freezing for cryopreservation, and (5) storage at ultralow temperatures of below −135°C. Differences in procedures included (1) type of sterile media used, (2) antibiotics combination, (3) temperature and duration used for bioburden reduction, (4) concentration of DMSO used for cryopreservation, and (5) storage duration for released allografts. For most banks, the primary reasons why allografts failed to meet release criteria were positive microbiological culture and abnormal morphology. On average, 85% of allografts meeting release criteria were implanted, with valve size and type being the main reasons why released allografts were not used clinically. The wide variation in percentage of allografts meeting release requirements, despite undergoing validated manufacturing procedures, justifies the need for regular review of important outcomes as cited in this paper, in order to encourage comparison and improvements in the HVBs' processes. PMID:24163756

  14. Antithrombotic Therapy in Patients with Prosthetic Heart Valves

    Directory of Open Access Journals (Sweden)

    Mohamed HA

    2009-01-01

    Full Text Available Patients with mechanical valve prostheses require a lifelong anticoagulant treatment. The combined use of Warfarin and low-dose aspirin appears to reduce the risk of valve thrombosis and systemic embolism at a low risk of bleeding. The management of women with prosthetic heart valves during pregnancy poses a particular challenge, as there are no available controlled clinical trials to provide guidelines for effective antithrombotic therapy. Oral anticoagulants, such as Warfarin, cause foetal embryopathy; unfractionated heparin and low-molecular-weight heparin have been reported to be ineffective in preventing thromboembolic complications.This article discusses the available data and the most recent guidelines in the antithrombotic management of patients with prosthetic valves, and antithrombotic therapy in various clinical situations such as pregnant women with prosthetic heart valves, and patients with prosthetic heart valves undergoing noncardiac surgery.

  15. [History, present and future of biomaterials used for artificial heart valves].

    Science.gov (United States)

    Kostrzewa, Benita; Rybak, Zbigniew

    2013-01-01

    Artificial heart valves can be classified into mechanical and biological. We have three types of mechanical heart valves: caged ball, tilting disc and bileaflet. Mechanical heart valves are made from various materials. They may be produced from metals, ceramics and polymers, e.g.: stainless steel, titanium, silicone, pyrolytic carbon. Biological valves are made from synthetic components (e.g.: PTFE, Dacron) and materials of biological origin (e.g.: cow pericardium, pig heart valve). We have also identified transcatheter aortic valve implantation (TAVI). TAVI may be produced from metals, ceramics and polymers (e.g.: stainless steel, titanium, Dacron) and biological material (e.g.: pig heart valve). This paper describes advantages and disadvantages of different types of artificial heart valves. The lifespan of mechanical valves is 20-30 years and they can be used for patients of any age. Mechanical valves have also disadvantages--anticoagulants are required to prevent thrombosis. Biological valves are made from natural materials, so they do not require prolonged anticoagulation. Their lifetime is 10-15 years, so they are offered to patients over 40 years. Another problem is the occurrence of calcification.

  16. Echocardiographic evaluation of heart valve prosthetic dysfunction

    Directory of Open Access Journals (Sweden)

    Yuriy Ivaniv

    2018-02-01

    Full Text Available Patients with replaced heart valve submitted to echocardiographic examination may have symptoms related either to valvular malfunction or ventricular dysfunction from different causes. Clinical examination is not reliable in a prosthetic valve evaluation and the main information regarding its function could be obtained using different cardiac ultrasound modalities. This review provides a description of echocardiographic and Doppler techniques useful in evaluation of prosthetic heart valves. For the interpretation of echocardiography there is a need in special knowledge of prosthesis types and possible reasons of prosthetic function deterioration. Echocardiography allows to reveal valve thrombosis, pannus formation, vegetation and such complications of infective endocarditis as valve ring abscess or dehiscence. Transthoracic echocardiography requires different section plane angles and unconventional views. Transesophageal echocardiography is more often used than in native valve examination due to better visualization of prosthetic valve structure and function. Three-dimensional echocardiography could provide more detailed visual information especially in the assessment of paravalvular regurgitation or valve obstruction.

  17. Radiological visualization of prosthetic heart valves in situ

    International Nuclear Information System (INIS)

    Hoffmeister, H.M.; Pirschel, J.

    1986-01-01

    To determine the radiographic appearance of prosthetic heart valves 15 different models were investigated in situ. Fluoroscopy with detail radiographs and standard chest-radiographs were used for identification of the specific type of the prosthesis, for determination of details of the valve apparatus and for evaluation of the motion of the valve disc/ball. - Fluoroscopy and routine radiographs provided sufficient information to identify all prosthetic heart valves with exception of the Xenomedica bioprosthesis. If radiopaque material was used for the valve disc/ball, fluoroscopic assessment of the function of the valve was possible. Thus, in most types of disc or ball valves the opening/closing of the valve can be visualized, whereas in bioprosthesis a radiological determination of the mechanical function is not possible. (orig.) [de

  18. How Heart Valves Evolve to Adapt to an Extreme-Pressure System

    DEFF Research Database (Denmark)

    Amstrup Funder, Jonas; Christian Danielsen, Carl; Baandrup, Ulrik

    2017-01-01

    BACKGROUND: Heart valves which exist naturally in an extreme-pressure system must have evolved in a way to resist the stresses of high pressure. Giraffes are interesting as they naturally have a blood pressure twice that of humans. Thus, knowledge regarding giraffe heart valves may aid...... in developing techniques to design improved pressure-resistant biological heart valves. METHODS: Heart valves from 12 giraffes and 10 calves were explanted and subjected to either biomechanical or morphological examinations. Strips from the heart valves were subjected to cyclic loading tests, followed...... in giraffes than in calves, which would make giraffe valves more resistant to the high-pressure forces. However, collagen also stiffens and thickens the valves. The mitral leaflets showed similar (but mostly insignificant) trends in strength, stiffness, and collagen content....

  19. Electrospinning versus knitting: two scaffolds for tisssue engineering of the aortic valve

    NARCIS (Netherlands)

    Lieshout, van M.I.; Vaz, C.M.; Rutten, M.C.M.; Peters, G.W.M.; Baaijens, F.P.T.

    2006-01-01

    Two types of scaffolds were developed for tissue engineering of the aortic valve; an electrospun valvular scaffold and a knitted valvular scaffold. These scaffolds were compared in a physiologic flow system and in a tissue-engineering process. In fibrin gel enclosed human myofibroblasts were seeded

  20. Towards robot-assisted anchor deployment in beating-heart mitral valve surgery.

    Science.gov (United States)

    Cheng, Lingbo; Sharifi, Mojtaba; Tavakoli, Mahdi

    2018-06-01

    Beating-heart intracardiac surgery promises significant benefits for patients compared with cardiopulmonary bypass based procedures. However, the fast motions of the heart introduce serious challenges for surgeons. In this work, a new impedance-controlled master-slave telerobotic system is developed to help perform anchor deployment for mitral valve annuloplasty under the guidance of live ultrasound images of the heart. The proposed bilateral teleoperation system can both reflect the non-oscillatory portion of slave-heart tissue interaction force on the surgeon's hand as haptic feedback and implement rapid compensation for the beating heart's motion. The surgical task involves performing anchor deployment on a simulated moving heart tissue to evaluate the effectiveness of the proposed strategy for safely interacting with a moving organ. The results obtained show that the telerobotic system increases the success rate of anchor deployment by 100% and reduces the excess force application rate by 70% compared with manual attempts. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Heart valve replacements with regenerative capacity

    NARCIS (Netherlands)

    Dijkman, P.E.; Fioretta, E.S.; Frese, L.; Pasqualini, F.S.; Hoerstrup, S.P.

    2016-01-01

    The incidence of severe valvular dysfunctions (e.g., stenosis and insufficiency) is increasing, leading to over 300,000 valves implanted worldwide yearly. Clinically used heart valve replacements lack the capacity to grow, inherently requiring repetitive and high-risk surgical interventions during

  2. Cardioscopic tricuspid valve repair in a beating ovine heart.

    Science.gov (United States)

    Umakanthan, Ramanan; Ghanta, Ravi K; Rangaraj, Aravind T; Lee, Lawrence S; Laurence, Rita G; Fox, John A; Mihaljevic, Tomislav; Bolman, Ralph M; Cohn, Lawrence H; Chen, Frederick Y

    2009-04-01

    Open heart surgery is commonly associated with cardiopulmonary bypass and cardioplegic arrest. The attendant risks of cardiopulmonary bypass may be prohibitive in high-risk patients. We present a novel endoscopic technique of performing tricuspid valve repair without cardiopulmonary bypass in a beating ovine heart. Six sheep underwent sternotomy and creation of a right heart shunt to eliminate right atrial and right ventricular blood for clear visualization. The superior vena cava, inferior vena cava, pulmonary artery, and coronary sinus were cannulated, and the blood flow from these vessels was shunted into the pulmonary artery via a roller pump. The posterior leaflet of the tricuspid valve was partially excised to create tricuspid regurgitation, which was confirmed by Doppler echocardiography. A 7.0-mm fiberoptic videoscope was inserted into the right atrium to visualize the tricuspid valve. Under cardioscopic vision, an endoscopic needle driver was inserted into the right atrium, and a concentric stitch was placed along the posterior annulus to bicuspidize the tricuspid valve. Doppler echocardiography confirmed reduction of tricuspid regurgitation. All animals successfully underwent and tolerated the surgical procedure. The right heart shunt generated a bloodless field, facilitating cardioscopic tricuspid valve visualization. The endoscopic stitch resulted in annular plication and functional tricuspid valve bicuspidization, significantly reducing the degree of tricuspid regurgitation. Cardioscopy enables less invasive, beating-heart tricuspid valve surgery in an ovine model. This technique may be useful in performing right heart surgery without cardiopulmonary bypass in high-risk patients.

  3. Computed Flow Through An Artificial Heart And Valve

    Science.gov (United States)

    Rogers, Stuart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee

    1994-01-01

    NASA technical memorandum discusses computations of flow of blood through artificial heart and through tilting-disk artificial heart valve. Represents further progress in research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478). One purpose of research to exploit advanced techniques of computational fluid dynamics and capabilities of supercomputers to gain understanding of complicated internal flows of viscous, essentially incompressible fluids like blood. Another to use understanding to design better artificial hearts and valves.

  4. A novel customizable modular bioreactor system for whole-heart cultivation under controlled 3D biomechanical stimulation.

    Science.gov (United States)

    Hülsmann, Jörn; Aubin, Hug; Kranz, Alexander; Godehardt, Erhardt; Munakata, Hiroshi; Kamiya, Hiroyuki; Barth, Mareike; Lichtenberg, Artur; Akhyari, Payam

    2013-09-01

    In the last decade, cardiovascular tissue engineering has made great progress developing new strategies for regenerative medicine applications. However, while tissue engineered heart valves are already entering the clinical routine, tissue engineered myocardial substitutes are still restrained to experimental approaches. In contrast to the heart valves, tissue engineered myocardium cannot be repopulated in vivo because of its biological complexity, requiring elaborate cultivation conditions ex vivo. Although new promising approaches-like the whole-heart decellularization concept-have entered the myocardial tissue engineering field, bioreactor technology needed for the generation of functional myocardial tissue still lags behind in the sense of user-friendly, flexible and low cost systems. Here, we present a novel customizable modular bioreactor system that can be used for whole-heart cultivation. Out of a commercially obtainable original equipment manufacturer platform we constructed a modular bioreactor system specifically aimed at the cultivation of decellularized whole-hearts through perfusion and controlled 3D biomechanical stimulation with a simple but highly flexible operation platform based on LabVIEW. The modular setup not only allows a wide range of variance regarding medium conditioning under controlled 3D myocardial stretching but can also easily be upgraded for e.g. electrophysiological monitoring or stimulation, allowing for a tailor-made low-cost myocardial bioreactor system.

  5. Prior oral conditions in patients undergoing heart valve surgery.

    Science.gov (United States)

    Silvestre, Francisco-Javier; Gil-Raga, Irene; Martinez-Herrera, Mayte; Lauritano, Dorina; Silvestre-Rangil, Javier

    2017-11-01

    Patients scheduled for heart valve surgery should be free of any oral infectious disorders that might pose a risk in the postoperative period. Few studies have been made on the dental conditions of such patients prior to surgery. The present study describes the most frequent prior oral diseases in this population group. A prospective, observational case-control study was designed involving 60 patients (30 with heart valve disease and 30 controls, with a mean age of 71 years in both groups). A dental exploration was carried out, with calculation of the DMFT (decayed, missing and filled teeth) index and recording of the periodontal parameters (plaque index, gingival bleeding index, periodontal pocket depth, and attachment loss). The oral mucosa was also examined, and panoramic X-rays were used to identify possible intrabony lesions. Significant differences in bacterial plaque index were observed between the two groups ( p <0.05), with higher scores in the patients with valve disease. Probing depth and the presence of moderate pockets were also greater in the patients with valve disease than among the controls ( p <0.01). Sixty percent of the patients with valve disease presented periodontitis. Patients scheduled for heart valve surgery should be examined for possible active periodontitis before the operation. Those individuals found to have periodontal disease should receive adequate periodontal treatment before heart surgery. Key words: Valve disease, aortic, mitral, heart surgery, periodontitis.

  6. Exercise-based cardiac rehabilitation after heart valve surgery

    DEFF Research Database (Denmark)

    Hansen, T B; Zwisler, Ann-Dorthe; Berg, S K

    2015-01-01

    BACKGROUND: Owing to a lack of evidence, patients undergoing heart valve surgery have been offered exercise-based cardiac rehabilitation (CR) since 2009 based on recommendations for patients with ischaemic heart disease in Denmark. The aim of this study was to investigate the impact of CR...... expensive outpatient visits. Further studies should investigate the benefits of CR to heart valve surgery patients as part of a formal cost-utility analysis....

  7. Heart rate, heart rate variability, and arrhythmias in dogs with myxomatous mitral valve disease

    DEFF Research Database (Denmark)

    Rasmussen, Caroline Elisabeth; Falk, Bo Torkel; Zois, Nora Elisabeth

    2012-01-01

    Autonomic modulation of heart rhythm is thought to influence the pathophysiology of myxomatous mitral valve disease (MMVD).......Autonomic modulation of heart rhythm is thought to influence the pathophysiology of myxomatous mitral valve disease (MMVD)....

  8. Leaky valves : New operation improves the heart's pumping action

    NARCIS (Netherlands)

    Pistecky, P.; Havlik, P.; Van Kasteren, J.

    2003-01-01

    The action of any pump will start to decline when the valves no longer close properly. The same goes for the heart, the pump that maintains the circulation in our vascular system. Consequently, a major field of focus of open heart surgery is the repair or replacement of heart valves. Petr Havl a

  9. Recurrent infective endocarditis causing heart valve failure: A case report

    Directory of Open Access Journals (Sweden)

    Victoria McIntyre, BASc Chemical Engineering (2018 candidate

    2017-11-01

    Full Text Available Infective endocarditis (IE is an infection that does not usually respond rapidly to treatment, often because its early symptoms are non-specific. The diseased valves (native or bioprosthetic may be calcified and the thrombotic vegetations on them typically friable and embolize easily. Left untreated IE leads to damage to the infected valve and to congestive heart failure (CHF. Its treatment usually requires heart valve replacement. Our 69-year-old patient had IE, and underwent aortic valve replacement (AVR with a bioprosthesis. This case stresses the complications of IE and its tendency to recur in patients with bioprosthetic heart valves (BHV who previously had IE.

  10. Computed Tomography of Prosthetic Heart Valves

    NARCIS (Netherlands)

    Habets, J.

    2012-01-01

    Prosthetic heart valve (PHV) dysfunction is an infrequent but potentially life-threatening disease with a heterogeneous clinical presentation. Patients with PHV dysfunction clinically can present with symptoms of congestive heart failure (dyspnea, fatigue, edema), fever, angina pectoris, dizziness

  11. High readmission rate after heart valve surgery

    DEFF Research Database (Denmark)

    Sibilitz, K L; Berg, S K; Thygesen, L C

    2015-01-01

    investigated. RESULTS: After valve surgery, the self-reported health was lower (Short Form-36 (SF-36) Physical Component Scale (PCS): 44.5 vs. 50.6 and Mental Component Scale (MCS): 51.9 vs. 55.0, pClinical signs......BACKGROUND: After heart valve surgery, knowledge on long-term self-reported health status and readmission is lacking. Thus, the optimal strategy for out-patient management after surgery remains unclear. METHODS: Using a nationwide survey with linkage to Danish registers with one year follow-up, we...... included all adults 6-12months after heart valve surgery irrespective of valve procedure, during Jan-June 2011 (n=867). Participants completed a questionnaire regarding health-status (n=742), and answers were compared with age- and sex-matched healthy controls. Readmission rates and mortality were...

  12. Patient-specific pediatric silicone heart valve models based on 3D ultrasound

    Science.gov (United States)

    Ilina, Anna; Lasso, Andras; Jolley, Matthew A.; Wohler, Brittany; Nguyen, Alex; Scanlan, Adam; Baum, Zachary; McGowan, Frank; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Patient-specific heart and valve models have shown promise as training and planning tools for heart surgery, but physically realistic valve models remain elusive. Available proprietary, simulation-focused heart valve models are generic adult mitral valves and do not allow for patient-specific modeling as may be needed for rare diseases such as congenitally abnormal valves. We propose creating silicone valve models from a 3D-printed plastic mold as a solution that can be adapted to any individual patient and heart valve at a fraction of the cost of direct 3D-printing using soft materials. METHODS: Leaflets of a pediatric mitral valve, a tricuspid valve in a patient with hypoplastic left heart syndrome, and a complete atrioventricular canal valve were segmented from ultrasound images. A custom software was developed to automatically generate molds for each valve based on the segmentation. These molds were 3D-printed and used to make silicone valve models. The models were designed with cylindrical rims of different sizes surrounding the leaflets, to show the outline of the valve and add rigidity. Pediatric cardiac surgeons practiced suturing on the models and evaluated them for use as surgical planning and training tools. RESULTS: Five out of six surgeons reported that the valve models would be very useful as training tools for cardiac surgery. In this first iteration of valve models, leaflets were felt to be unrealistically thick or stiff compared to real pediatric leaflets. A thin tube rim was preferred for valve flexibility. CONCLUSION: The valve models were well received and considered to be valuable and accessible tools for heart valve surgery training. Further improvements will be made based on surgeons' feedback.

  13. Supra-annular valve strategy for an early degenerated transcatheter balloon-expandable heart valve.

    Science.gov (United States)

    Kamioka, Norihiko; Caughron, Hope; Corrigan, Frank; Block, Peter; Babaliaros, Vasilis

    2018-01-23

    Currently, there are no recommendations regarding the selection of valve type for a transcatheter heart valve (THV)-in-THV procedure. A supra-annular valve design may be superior in that it results in a larger effective orifice area and may have a lower chance of valve thrombosis after THV-in-THV. In this report, we describe the use of a supra-annular valve strategy for an early degenerated THV. © 2018 Wiley Periodicals, Inc.

  14. Ultrasound-targeted transfection of tissue-type plasminogen activator gene carried by albumin nanoparticles to dog myocardium to prevent thrombosis after heart mechanical valve replacement

    Directory of Open Access Journals (Sweden)

    Ji J

    2012-06-01

    Full Text Available Ji Jun, Ji Shang-Yi, Yang Jian-An, He Xia, Yang Xiao-Han, Ling Wen-Ping, Chen Xiao-LingDepartment of Pathology and Cardiovascular Surgery, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, Guangdong, People's Republic of ChinaBackground: There are more than 300,000 prosthetic heart valve replacements each year worldwide. These patients are faced with a higher risk of thromboembolic events after heart valve surgery and long-term or even life-long anticoagulative and antiplatelet therapies are necessary. Some severe complications such as hemorrhaging or rebound thrombosis can occur when the therapy ceases. Tissue-type plasminogen activator (t-PA is a thrombolytic agent. One of the best strategies is gene therapy, which offers a local high expression of t-PA over a prolonged time period to avoid both systemic hemorrhaging and local rebound thrombosis. There are some issues with t-PA that need to be addressed: currently, there is no up-to-date report on how the t-PA gene targets the heart in vivo and the gene vector for t-PA needs to be determined.Aims: To fabricate an albumin nano-t-PA gene ultrasound-targeted agent and investigate its targeting effect on prevention of thrombosis after heart mechanic valve replacement under therapeutic ultrasound.Methods: A dog model of mechanical tricuspid valve replacement was constructed. A highly expressive t-PA gene plasmid was constructed and packaged by nanoparticles prepared with bovine serum albumin. This nanopackaged t-PA gene plasmid was further cross-linked to ultrasonic microbubbles prepared with sucrose and bovine serum albumin to form the ultrasonic-targeted agent for t-PA gene transfection. The agent was given intravenously followed by a therapeutic ultrasound treatment (1 MHz, 1.5 w/cm2, 10 minutes of the heart soon after valve replacement had been performed. The expression of t-PA in myocardium was detected with multiclonal antibodies to t-PA by the indirect immunohistochemical method

  15. Heart valve cardiomyocytes of mouse embryos express the serotonin transporter SERT

    International Nuclear Information System (INIS)

    Pavone, Luigi Michele; Spina, Anna; Lo Muto, Roberta; Santoro, Dionea; Mastellone, Vincenzo; Avallone, Luigi

    2008-01-01

    Multiple evidence demonstrate a role for serotonin and its transporter SERT in heart valve development and disease. By utilizing a Cre/loxP system driven by SERT gene expression, we recently demonstrated a regionally restricted distribution of SERT-expressing cells in developing mouse heart. In order to characterize the cell types exhibiting SERT expression within the mouse heart valves at early developmental stages, in this study we performed immunohistochemistry for Islet1 (Isl1) and connexin-43 (Cx-43) on heart sections from SERT Cre/+ ;ROSA26R embryos previously stained with X-gal. We observed the co-localization of LacZ staining with Isl1 labelling in the outflow tract, the right ventricle and the conal region of E11.5 mouse heart. Cx-43 labelled cells co-localized with LacZ stained cells in the forming atrioventricular valves. These results demonstrate the cardiomyocyte phenotype of SERT-expressing cells in heart valves of the developing mouse heart, thus suggesting an active role of SERT in early heart valve development.

  16. Fracturing mechanics before valve-in-valve therapy of small aortic bioprosthetic heart valves.

    Science.gov (United States)

    Johansen, Peter; Engholt, Henrik; Tang, Mariann; Nybo, Rasmus F; Rasmussen, Per D; Nielsen-Kudsk, Jens Erik

    2017-10-13

    Patients with degraded bioprosthetic heart valves (BHV) who are not candidates for valve replacement may benefit from transcatheter valve-in-valve (VIV) therapy. However, in smaller-sized surgical BHV the resultant orifice may become too narrow. To overcome this, the valve frame can be fractured by a high-pressure balloon prior to VIV. However, knowledge on fracture pressures and mechanics are prerequisites. The aim of this study was to identify the fracture pressures needed in BHV, and to describe the fracture mechanics. Commonly used BHV of small sizes were mounted on a high-pressure balloon situated in a biplane fluoroscopic system with a high-speed camera. The instant of fracture was captured along with the balloon pressure. The valves were inspected for material protrusion and later dissected for fracture zone investigation and description. The valves with a polymer frame fractured at a lower pressure (8-10 atm) than those with a metal stent (19-26 atm). None of the fractured valves had elements protruding. VIV procedures in small-sized BHV may be performed after prior fracture of the valve frame by high-pressure balloon dilatation. This study provides tentative guidelines for expected balloon sizes and pressures for valve fracturing.

  17. Coronary artery assessment by multidetector computed tomography in patients with prosthetic heart valves

    International Nuclear Information System (INIS)

    Habets, Jesse; Mali, Willem P.T.M.; Budde, Ricardo P.J.; Brink, Renee B.A. van den; Uijlings, Ruben; Spijkerboer, Anje M.; Chamuleau, Steven A.J.

    2012-01-01

    Patients with prosthetic heart valves may require assessment for coronary artery disease. We assessed whether valve artefacts hamper coronary artery assessment by multidetector CT. ECG-gated or -triggered CT angiograms were selected from our PACS archive based on the presence of prosthetic heart valves. The best systolic and diastolic axial reconstructions were selected for coronary assessment. Each present coronary segment was scored for the presence of valve-related artefacts prohibiting coronary artery assessment. Scoring was performed in consensus by two observers. Eighty-two CT angiograms were performed on a 64-slice (n = 27) or 256-slice (n = 55) multidetector CT. Eighty-nine valves and five annuloplasty rings were present. Forty-three out of 1160 (3.7%) present coronary artery segments were non-diagnostic due to valve artefacts (14/82 patients). Valve artefacts were located in right coronary artery (15/43; 35%), left anterior descending artery (2/43; 5%), circumflex artery (14/43; 32%) and marginal obtuse (12/43; 28%) segments. All cobalt-chrome containing valves caused artefacts prohibiting coronary assessment. Biological and titanium-containing valves did not cause artefacts except for three specific valve types. Most commonly implanted prosthetic heart valves do not hamper coronary assessment on multidetector CT. Cobalt-chrome containing prosthetic heart valves preclude complete coronary artery assessment because of severe valve artefacts. circle Most commonly implanted prosthetic heart valves do not hamper coronary artery assessment circle Prosthetic heart valve composition determines the occurrence of prosthetic heart valve-related artefacts circle Bjoerk-Shiley and Sorin tilting disc valves preclude diagnostic coronary artery segment assessment. (orig.)

  18. Automated control of the laser welding process of heart valve scaffolds

    Directory of Open Access Journals (Sweden)

    Weber Moritz

    2016-09-01

    Full Text Available Using the electrospinning process the geometry of a heart valve is not replicable by just one manufacturing process. To produce heart valve scaffolds the heart valve leaflets and the vessel have to be produced in separated spinning processes. For the final product of a heart valve they have to be mated afterwards. In this work an already existing three-axes laser was enhanced to laser weld those scaffolds. The automation control software is based on the robot operating system (ROS. The mechatronically control is done by an Arduino Mega. A graphical user interface (GUI is written with Python and Kivy.

  19. Multimodality Imaging of Heart Valve Disease

    International Nuclear Information System (INIS)

    Rajani, Ronak; Khattar, Rajdeep; Chiribiri, Amedeo; Victor, Kelly; Chambers, John

    2014-01-01

    Unidentified heart valve disease is associated with a significant morbidity and mortality. It has therefore become important to accurately identify, assess and monitor patients with this condition in order that appropriate and timely intervention can occur. Although echocardiography has emerged as the predominant imaging modality for this purpose, recent advances in cardiac magnetic resonance and cardiac computed tomography indicate that they may have an important contribution to make. The current review describes the assessment of regurgitant and stenotic heart valves by multimodality imaging (echocardiography, cardiac computed tomography and cardiac magnetic resonance) and discusses their relative strengths and weaknesses

  20. Multimodality Imaging of Heart Valve Disease

    Energy Technology Data Exchange (ETDEWEB)

    Rajani, Ronak, E-mail: Dr.R.Rajani@gmail.com [Department of Cardiology, St. Thomas’ Hospital, London (United Kingdom); Khattar, Rajdeep [Department of Cardiology, Royal Brompton Hospital, London (United Kingdom); Chiribiri, Amedeo [Divisions of Imaging Sciences, The Rayne Institute, St. Thomas' Hospital, London (United Kingdom); Victor, Kelly; Chambers, John [Department of Cardiology, St. Thomas’ Hospital, London (United Kingdom)

    2014-09-15

    Unidentified heart valve disease is associated with a significant morbidity and mortality. It has therefore become important to accurately identify, assess and monitor patients with this condition in order that appropriate and timely intervention can occur. Although echocardiography has emerged as the predominant imaging modality for this purpose, recent advances in cardiac magnetic resonance and cardiac computed tomography indicate that they may have an important contribution to make. The current review describes the assessment of regurgitant and stenotic heart valves by multimodality imaging (echocardiography, cardiac computed tomography and cardiac magnetic resonance) and discusses their relative strengths and weaknesses.

  1. Nanopatterned acellular valve conduits drive the commitment of blood-derived multipotent cells

    Directory of Open Access Journals (Sweden)

    Di Liddo R

    2016-10-01

    Full Text Available Rosa Di Liddo,1,2 Paola Aguiari,3 Silvia Barbon,1,2 Thomas Bertalot,1 Amit Mandoli,1 Alessia Tasso,1 Sandra Schrenk,1 Laura Iop,3 Alessandro Gandaglia,3 Pier Paolo Parnigotto,2 Maria Teresa Conconi,1,2 Gino Gerosa31Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 2Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS, 3Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy Abstract: Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC on acellular aortic (AVL and pulmonary (PVL valve conduits prepared with TriCol method and under no-flow condition. Isolated by our group from Vietnamese pigs before heart valve prosthetic implantation, porcine CMC revealed high proliferative abilities, three-lineage differentiative potential, and distinct hematopoietic/endothelial and mesenchymal properties. Their interaction with valve extracellular matrix nanostructures boosted differential messenger RNA expression pattern and morphologic features on AVL compared to PVL, while promoting on both matrices the commitment to valvular and endothelial cell-like phenotypes. Based on their origin from peripheral blood, porcine CMC are hypothesized in vivo to exert a pivotal role to homeostatically replenish valve cells and contribute to hetero- or allograft colonization. Furthermore, due to their high responsivity to extracellular matrix nanostructure signaling, porcine CMC could be useful for a preliminary

  2. Echocardiographic Evaluation of Hemodynamic Changes in Left-Sided Heart Valves in Pregnant Women With Valvular Heart Disease.

    Science.gov (United States)

    Samiei, Niloufar; Amirsardari, Mandana; Rezaei, Yousef; Parsaee, Mozhgan; Kashfi, Fahimeh; Hantoosh Zadeh, Sedigheh; Beikmohamadi, Somayeh; Fouladi, Masoumeh; Hosseini, Saeid; Peighambari, Mohammad Mehdi; Mohebbi, Ahmad

    2016-10-01

    Physiologic changes during pregnancy can deteriorate or improve patients' hemodynamic status in the setting of valvular heart disease. There are sparse data regarding the effect of pregnancy on valve hemodynamics in normal pregnant women with known valvular heart disease. In a prospective study from July 2014 to January 2016, a total of 52 normal pregnant women who had mitral stenosis, aortic stenosis, or a history of mitral valve or aortic valve replacements were assessed. All patients underwent echocardiographic examinations and hemodynamic parameters were measured for both the mitral valve and aortic valve at first, second, and third trimesters. The parameters included mean gradient, peak gradient, mean gradient/heart rate, peak gradient/heart rate, pressure halftime, dimensionless velocity index, and valve area. Although most hemodynamic parameters (i.e., mean gradient, peak gradient, mean gradient/heart rate, and peak gradient/heart rate) increased approximately 50% from first to second trimester and first to third trimester (p 0.05). The ratio of changes between trimesters for valve area and dimensionless velocity index were comparable. No clinical decompensations were observed except for 3 and 7 cases of deterioration to functional class II at second and third trimesters, respectively. In conclusion, during a full-term and uncomplicated pregnancy, mitral and aortic valve gradients increase without significant changes in valve area that are more marked between the second and first trimester than between the third and second trimester. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Structural alterations in heart valves during left ventricular pressure overload in the rat

    NARCIS (Netherlands)

    Willems, I. E.; Havenith, M. G.; Smits, J. F.; Daemen, M. J.

    1994-01-01

    Heart valves are an important denominator of the function of the heart but detailed studies of structural alterations of heart valves after hemodynamic changes are lacking. Structural alterations of heart valves, including DNA synthesis, collagen mRNA, and protein concentration were measured in

  4. Antibody formation towards porcine tissue in patients implanted with crosslinked heart valves is directed to antigenic tissue proteins and αGal epitopes and is reduced in healthy vegetarian subjects.

    Science.gov (United States)

    Böer, Ulrike; Buettner, Falk F R; Schridde, Ariane; Klingenberg, Melanie; Sarikouch, Samir; Haverich, Axel; Wilhelmi, Mathias

    2017-03-01

    Glutaraldehyde-fixed porcine heart valves (ga-pV) are one of the most frequently used substitutes for insufficient aortic and pulmonary heart valves which, however, degenerate after 10-15 years. Yet, xeno-immunogenicity of ga-pV in humans including identification of immunogens still needs to be investigated. We here determined the immunogenicity of ga-pV in patients with respect to antibody formation, identity of immunogens and potential options to reduce antibody levels. Levels of tissue-specific and anti-αGal antibodies were determined retrospectively in patients who received ga-pV for 51 months (n=4), 25 months (n=6) or 5 months (n=4) and compared to age-matched untreated subjects (n=10) or younger subjects with or without vegetarian diet (n=12/15). Immunogenic proteins were investigated by Western blot approaches. Tissue-specific antibodies in patients were elevated after 5 (1.73-fold) and 25 (1.46-fold, both PVegetarian diet reduced significantly (0.63-fold, P<.01) the level of pre-formed αGal but not of tissue-specific antibodies. Immune response in patients towards ga-pV is induced by the porcine proteins albumin and collagen 6A1 as well as αGal epitopes, which seemed to be more sustained. In contrast, in healthy young subjects pre-formed anti-Gal antibodies were reduced by a meat-free nutrition. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Textile for heart valve prostheses: fabric long-term durability testing.

    Science.gov (United States)

    Heim, Frederic; Durand, Bernard; Chakfe, Nabil

    2010-01-01

    The rapid developments and success in percutaneous vascular surgery over the last two decades with the now common stent grafts implantation, make the noninvasive surgery technique today attractive even for heart valve replacement. Less traumatic for the patient and also less time consuming, percutaneous heart valve replacement is however at its beginning and restricted to end of life patients. The noninvasive procedure expects from the heart valve prosthesis material to be resistant and adapted to folding requirements of the implantation process (catheter). Polyester fabric could be a suited material for heart valve implanted percutaneously. Highly flexible and resistant, polyester fabric proved to be well adapted to the dynamic behavior of a valve and polyester (Dacron) is also widely used for vascular grafts implantation and shows good biocompatibility and durability. However, today there's no data available on long-term durability of fabric used as heart valve material. The purpose of this work is to study the long term behavior of a microdenier polyester fabric construction under combined in vitro flexure and tension fatigue stress. In the novel in vitro testing technique presented, a fabric specimen was subjected to combined flexural and tensile fatigue generated by fluid flow under physiological pressure conditions. The results obtained show how flexural properties change with fatigue time, which reflects directly on the suitability of a fabric in such devices. It was also observed that these fabric structural changes directly influence the in vitro behavior of the textile heart valve prosthesis. (c) 2009 Wiley Periodicals, Inc.

  6. Swirling flow in bileaflet mechanical heart valve

    Science.gov (United States)

    Gataulin, Yakov A.; Khorobrov, Svyatoslav V.; Yukhnev, Andrey D.

    2018-05-01

    Bileaflet mechanical valves are most commonly used for heart valve replacement. Nowadays swirling blood flow is registered in different parts of the cardiovascular system: left ventricle, aorta, arteries and veins. In present contribution for the first time the physiological swirling flow inlet conditions are used for numerical simulation of aortic bileaflet mechanical heart valve hemodynamics. Steady 3-dimensional continuity and RANS equations are employed to describe blood motion. The Menter SST model is used to simulate turbulence effects. Boundary conditions are corresponded to systolic peak flow. The domain was discretized into hybrid tetrahedral and hexahedral mesh with an emphasis on wall boundary layer. A system of equations was solved in Ansys Fluent finite-volume package. Noticeable changes in the flow structure caused by inlet swirl are shown. The swirling flow interaction with the valve leaflets is analyzed. A central orifice jet changes its cross-section shape, which leads to redistribution of wall shear stress on the leaflets. Transvalvular pressure gradient and area-averaged leaflet wall shear stress increase. Physiological swirl intensity noticeably reduces downstream of the valve.

  7. An evaluation of the effects of long term cryopreservation, cause of death, and time between death and donation on heart valve leaflet viability

    International Nuclear Information System (INIS)

    Strachan, K.

    1999-01-01

    The protocol for cryopreservation of allograft heart valves at the Donor Tissue Bank of Victoria was based on validation studies on the viability of the heart valve leaflets at the time of processing. The heart block is removed within 24 hours of death and the aor-tic and pulmonary valves trimmed immediately following retrieval. Following this processing, the valves are incubated in antibiotics at 30 degree C for 6 to 8 hours before being frozen in 10% DMSO at a controlled rate. A sample of tricuspid valve leaflet is placed in Krebs solution at the time of trimfning and is used for viability studies. Leaflet viability studies have been perfon-ned on all heart valves retrieved from 1993 to the present day at the Donor Tissue Bank of Victoria. Viability involves a qualitative assessment of the cellular outgrowth by leaflet fibroblasts, this assessment ranging from '-' for no outgrowth to '++++' for maximum outgrowth. Surgeons do not request valves with any particular viability and will use them whether they are viable or not. This evaluation was to determine the effects of long-term cryopreservation, cause of death, and also time lapse of heart removal following death on the viability of the retrieved leaflets. The aim of investigating the effects of long-term cryopreservation was to determine whether there was any correlation between initial viability and viability following storage for several months to several years. It was also decided to investigate whether there was any correlation between time length between death and heart retrieval and the viability. It was also thought that the cause of death may have had an effect on the viability, for example, did death by carbon monoxide poisoning have an effect on the viability of heart valve cells. Heart valves, which had been cryopreserved but could not be transplanted for various reasons were used to study the effects of cryopreservation in this study. These were thawed according to protocol and a sample of the valve

  8. Gamma radiation and its role in bio prosthetic aortic valves implanted in rat hearts

    International Nuclear Information System (INIS)

    Lamas, Gloria I.; Kairiyama, Eulogia; Navia, Jose

    2000-01-01

    Porcine heart valves glutaraldehyde fixed are implanted in patients with valvular deterioration. Mineralization may be the major factor in the long-term failure of tissue bio prosthesis. Gamma radiation randomly breaks some glutaraldehyde cross-links. As a consequence of irradiation, the polymeric fibers belonging to the valvular tissue are broken too, leading to sites of collagen fiber disorganisation. It is well known that the collagen fibers may act as a passive nucleator of salts where the calcium phosphate salts precipitate. This salt concentration has been described in association with disintegrated sites of protein fiber, which may favour new sites where the calcium salts would be deposit. The irradiation process is a technique used for sterilization of porcine heart valve. The main objective of this work was to study the effect of different doses of gamma radiation on the calcification process of subcutaneously implanted valves in rats. Small pieces from glutaraldehyde fixed valves, irradiated to different doses with a 60 Co sources were implanted subcutaneously in rats. The calcium was measured by X-ray and atomic absorption spectrophotometry. In our experimental conditions and at the radiation doses used in these tests, the calcium measurements on control and irradiated material were not significantly different. We conclude that, at the employed doses, the gamma radiation does not alter the process. (author) [es

  9. Surgical pathology of excised heart valves in a referral hospital in iran

    International Nuclear Information System (INIS)

    Yaghoubi, A.R.; Raeesi, K.

    2007-01-01

    Assessment of surgical pathology of excised heart valves in a referral hospital in Iran in a five years period. This retrospective descriptive study was done from 2002 to 2005 in Rajaie heart center in Tehran, Iran. Surgery and pathology records of patients who underwent valve replacement or repair surgery were reviewed. Of 1563 patients 738 (47.2%) underwent mitral, 565 (36.1%) aortic, and 215 (14%) multivalve operation. Most common pathology of mitral valve was rheumatic (68%), while degenerative calcific pathology was dominant in aortic valve (52%). Rheumatic involvement was 46%, and degenerative pathology was common in tricuspid and pulmonary valves (50% and 67%, respectively). Time trend analysis shows no significant variation in excised valves pathology or pattern from 2002 to 2005 (p=0.112). Rheumatic pathology in excised heart valves is still common in this referral heart center in Iran, and no obvious change in this pattern was found during a 5 years period. (author)

  10. Modeling and remodeling of the collagen architecture in cardiovascular tissues

    NARCIS (Netherlands)

    Driessen, N.J.B.

    2006-01-01

    Heart valve replacement by a mechanical or biological prosthesis represents a common surgical therapy for end-stage valvular heart diseases. A critical drawback of these prostheses is the inability to grow, repair and remodel in response to changes in the tissue’s environment. Tissue engineering

  11. Comparison of heart valve culture between two Danish endocarditis centres

    DEFF Research Database (Denmark)

    Voldstedlund, Marianne; Fuursted, Kurt; Bruun, Niels Eske

    2012-01-01

    The degree to which the results of valve culture depend on different laboratory procedures as well as other factors is unknown. The aim of this study was to compare the results of heart valve culture at 2 different endocarditis centres in order to clarify this.......The degree to which the results of valve culture depend on different laboratory procedures as well as other factors is unknown. The aim of this study was to compare the results of heart valve culture at 2 different endocarditis centres in order to clarify this....

  12. Three-dimentional simulation of flow-induced platelet activation in artificial heart valves

    Science.gov (United States)

    Hedayat, Mohammadali; Asgharzadeh, Hafez; Borazjani, Iman

    2015-11-01

    Since the advent of heart valve, several valve types such as mechanical and bio-prosthetic valves have been designed. Mechanical Heart Valves (MHV) are durable but suffer from thromboembolic complications that caused by shear-induced platelet activation near the valve region. Bio-prosthetic Heart Valves (BHV) are known for better hemodynamics. However, they usually have a short average life time. Realistic simulations of heart valves in combination with platelet activation models can lead to a better understanding of the potential risk of thrombus formation in such devices. In this study, an Eulerian approach is developed to calculate the platelet activation in three-dimensional simulations of flow through MHV and BHV using a parallel overset-curvilinear immersed boundary technique. A curvilinear body-fitted grid is used for the flow simulation through the anatomic aorta, while the sharp-interface immersed boundary method is used for simulation of the Left Ventricle (LV) with prescribed motion. In addition, dynamics of valves were calculated numerically using under-relaxed strong-coupling algorithm. Finally, the platelet activation results for BMV and MHV are compared with each other.

  13. Tricuspid valve regurgitation after heart transplantation.

    Science.gov (United States)

    Kwon, Murray H; Shemin, Richard J

    2017-05-01

    Tricuspid valve regurgitation (TVR) in the orthotopic heart transplant (OHT) recipient is quite common and has varied clinical sequelae. In its severest forms, it can lead to right-sided failure symptoms indistinguishable from that seen in native heart TVR disease. While certain implantation techniques are widely recognized to reduce the risk of TVR in the cardiac allograft, concomitant tricuspid annuloplasty, while having advocates, is not currently accepted as a routinely established adjunct. Decisions to surgically correct TVR in the OHT recipient must be made carefully, as certain clinical scenarios have high risk of failure. Like in the native heart, anatomic etiologies typically have the greatest chances for success compared to functional etiologies. While repair options have been utilized, there is emerging data to support replacement as the more durable option. While mechanical prostheses are impractical in the heart transplant recipient, biologic valves offer the advantage of continued access to the right ventricle for biopsies in addition to acceptable durability in the low pressure system of the right side.

  14. Periodontal bacteria DNA findings in human cardiac tissue - Is there a link of periodontitis to heart valve disease?

    Science.gov (United States)

    Ziebolz, D; Jahn, C; Pegel, J; Semper-Pinnecke, E; Mausberg, R F; Waldmann-Beushausen, R; Schöndube, F A; Danner, B C

    2018-01-15

    The aim of the study was to detect periodontal pathogens DNA in atrial and myocardial tissue, and to investigate periodontal status and their connection to cardiac tissue inflammation. In 30 patients, biopsy samples were taken from the atrium (A) and the ventricle myocardium (M) during aortic valve surgery. The dental examination included the dental and periodontal status (PS) and a collection of a microbiological sample. The detection of 11 periodontal pathogens DNA in oral and heart samples was carried out using PCR. The heart samples were prepared for detecting the LPS-binding protein (LBP), and for inflammation scoring on immunohistochemistry (IHC), comprising macrophages (CD68), LPS-binding protein receptor (CD14), and LBP (big42). 28 (93%) patients showed moderate to severe periodontitis. The periodontal pathogens in the oral samples of all patients revealed a similar distribution (3-93%). To a lesser extent and with a different distribution, these bacteria DNA were also detected in atrium and myocardium (3-27%). The LBP was detected in higher amount in atrium (0.22±0.16) versus myocardium (0.13±0.13, p=0.001). IHC showed a higher inflammation score in atrial than myocardial tissue as well as for CD14, CD68 and for LBP. Additional, periodontal findings showed a significant correlation to CD14 and CD68. The results provide evidence of the occurrence of oral bacteria DNA at the cardiac tissue, with a different impact on atrial and myocardial tissue inflammation. Influence of periodontal findings was identified, but their relevance is not yet distinct. Therefore further clinical investigations with long term implication are warranted. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A novel polymeric prosthetic heart valve: design, manufacture, and testing

    OpenAIRE

    Brubert, Jacob

    2016-01-01

    In this thesis a flexible leaflet polymeric prosthetic aortic heart valve was designed, manufactured, and tested. The prosthesis was designed with the aim of overcoming the need for anticoagulant therapy, which is required for current mechanical prostheses; while also having lifelong durability, which current bioprosthetic heart valves are not able to achieve. Inspired by the anisotropic architecture of collagen in the natural valve, a shortlist of polystyrene based block copolymers (BCPs), w...

  16. Echocardiographic Assessment of Heart Valve Prostheses

    Science.gov (United States)

    Sordelli, Chiara; Severino, Sergio; Ascione, Luigi; Coppolino, Pasquale; Caso, Pio

    2014-01-01

    Patients submitted to valve replacement with mechanical or biological prosthesis, may present symptoms related either to valvular malfunction or ventricular dysfunction from other causes. Because a clinical examination is not sufficient to evaluate a prosthetic valve, several diagnostic methods have been proposed to assess the functional status of a prosthetic valve. This review provides an overview of echocardiographic and Doppler techniques useful in evaluation of prosthetic heart valves. Compared to native valves, echocardiographic evaluation of prosthetic valves is certainly more complex, both for the examination and the interpretation. Echocardiography also allows discriminating between intra- and/or peri-prosthetic regurgitation, present in the majority of mechanical valves. Transthoracic echocardiography (TTE) requires different angles of the probe with unconventional views. Transesophageal echocardiography (TEE) is the method of choice in presence of technical difficulties. Three-dimensional (3D)-TEE seems to be superior to 2D-TEE, especially in the assessment of paravalvular leak regurgitation (PVL) that it provides improved localization and analysis of the PVL size and shape. PMID:28465917

  17. Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again.

    Science.gov (United States)

    Patterson, Joseph T; Gilliland, Thomas; Maxfield, Mark W; Church, Spencer; Naito, Yuji; Shinoka, Toshiharu; Breuer, Christopher K

    2012-05-01

    Since the first tissue-engineered vascular graft (TEVG) was implanted in a child over a decade ago, growth in the field of vascular tissue engineering has been driven by clinical demand for improved vascular prostheses with performance and durability similar to an autologous blood vessel. Great strides were made in pediatric congenital heart surgery using the classical tissue engineering paradigm, and cell seeding of scaffolds in vitro remained the cornerstone of neotissue formation. Our second-generation bone marrow cell-seeded TEVG diverged from tissue engineering dogma with a design that induces the recipient to regenerate vascular tissue in situ. New insights suggest that neovessel development is guided by cell signals derived from both seeded cells and host inflammatory cells that infiltrate the graft. The identification of these signals and the regulatory interactions that influence cell migration, phenotype and extracellular matrix deposition during TEVG remodeling are yielding a next-generation TEVG engineered to guide neotissue regeneration without the use of seeded cells. These developments represent steady progress towards our goal of an off-the-shelf tissue-engineered vascular conduit for pediatric congenital heart surgery.

  18. Profile of Heart Donors from the Human Valve Bank of the Santa Casa de Misericórdia de Curitiba.

    Science.gov (United States)

    Ferreira, Renata Maria; da Costa, Marise Teresinha Brenner Affonso; Canciglieri Junior, Osiris; Sant'Anna, Ângelo Márcio Oliveira

    2016-04-01

    Human heart valves are used as replacement valves and have satisfactory functional results compared with conventional prostheses. Characterize the profile of effective heart donors from the human valve bank of the santa casa de misericórdia de curitiba and analyze the association between the profile variables. It consists of a retrospective and quantitative study of electronic medical records from heart donors for heart valves. every heart donation made to the bank between january 2004 and december 2014 was studied. 2,149 donations were analyzed, from donors aged 0 to 71 years old, with an average of 34.9 ± 15.03 years old. most donors were male 65.7% (n=1,411) and 34.3% (n=738) were female. among the most frequent causes of the donors' death are trauma at 53% (n=1,139) and cerebral vascular accident at 34.2% (n=735). there was significant statistical association between the analyzed variables. There has been an improvement in brazil's donation rate, being essential that the tissue banks work together with the state and federal district centers for notification, procurement and distribution of organs in order to increase the number of donors.

  19. Physical activity increases survival after heart valve surgery

    DEFF Research Database (Denmark)

    Lund, K.; Sibilitz, Kirstine Lærum; Kikkenborg Berg, Selina

    2016-01-01

    physical activity levels 6-12 months after heart valve surgery and (1) survival, (2) hospital readmission 18-24 months after surgery and (3) participation in exercise-based cardiac rehabilitation. METHODS: Prospective cohort study with registry data from The CopenHeart survey, The Danish National Patient......OBJECTIVES: Increased physical activity predicts survival and reduces risk of readmission in patients with coronary heart disease. However, few data show how physical activity is associated with survival and readmission after heart valve surgery. Objective were to assess the association between...... Register and The Danish Civil Registration System of 742 eligible patients. Physical activity was quantified with the International Physical Activity Questionnaire and analysed using Kaplan-Meier analysis and Cox regression and logistic regression methods. RESULTS: Patients with a moderate to high physical...

  20. Cardiac tissue engineering

    Directory of Open Access Journals (Sweden)

    MILICA RADISIC

    2005-03-01

    Full Text Available We hypothesized that clinically sized (1-5 mm thick,compact cardiac constructs containing physiologically high density of viable cells (~108 cells/cm3 can be engineered in vitro by using biomimetic culture systems capable of providing oxygen transport and electrical stimulation, designed to mimic those in native heart. This hypothesis was tested by culturing rat heart cells on polymer scaffolds, either with perfusion of culture medium (physiologic interstitial velocity, supplementation of perfluorocarbons, or with electrical stimulation (continuous application of biphasic pulses, 2 ms, 5 V, 1 Hz. Tissue constructs cultured without perfusion or electrical stimulation served as controls. Medium perfusion and addition of perfluorocarbons resulted in compact, thick constructs containing physiologic density of viable, electromechanically coupled cells, in contrast to control constructs which had only a ~100 mm thick peripheral region with functionally connected cells. Electrical stimulation of cultured constructs resulted in markedly improved contractile properties, increased amounts of cardiac proteins, and remarkably well developed ultrastructure (similar to that of native heart as compared to non-stimulated controls. We discuss here the state of the art of cardiac tissue engineering, in light of the biomimetic approach that reproduces in vitro some of the conditions present during normal tissue development.

  1. Exercise-based cardiac rehabilitation for adults after heart valve surgery

    DEFF Research Database (Denmark)

    Sibilitz, Kirstine Lærum; Berg, Selina Kikkenborg; Tang, Lars Hermann

    2016-01-01

    BACKGROUND: Exercise-based cardiac rehabilitation may benefit heart valve surgery patients. We conducted a systematic review to assess the evidence for the use of exercise-based intervention programmes following heart valve surgery. OBJECTIVES: To assess the benefits and harms of exercise......-based cardiac rehabilitation compared with no exercise training intervention, or treatment as usual, in adults following heart valve surgery. We considered programmes including exercise training with or without another intervention (such as a psycho-educational component). SEARCH METHODS: We searched...... handsearched Web of Science, bibliographies of systematic reviews and trial registers (ClinicalTrials.gov, Controlled-trials.com, and The World Health Organization International Clinical Trials Registry Platform). SELECTION CRITERIA: We included randomised clinical trials that investigated exercise...

  2. Proangiogenic scaffolds as functional templates for cardiac tissue engineering

    OpenAIRE

    Madden, Lauran R.; Mortisen, Derek J.; Sussman, Eric M.; Dupras, Sarah K.; Fugate, James A.; Cuy, Janet L.; Hauch, Kip D.; Laflamme, Michael A.; Murry, Charles E.; Ratner, Buddy D.

    2010-01-01

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-s...

  3. Effects of combined cryopreservation and decellularization on the biomechanical, structural and biochemical properties of porcine pulmonary heart valves.

    Science.gov (United States)

    Theodoridis, Karolina; Müller, Janina; Ramm, Robert; Findeisen, Katja; Andrée, Birgit; Korossis, Sotirios; Haverich, Axel; Hilfiker, Andres

    2016-10-01

    Non-fixed, decellularized allogeneic heart valve scaffolds seem to be the best choice for heart valve replacement, their availability, however, is quite limited. Cryopreservation could prolong their shelf-life, allowing for their ideal match to a recipient. In this study, porcine pulmonary valves were decellularized using detergents, either prior or after cryopreservation, and analyzed. Mechanical integrity was analyzed by uniaxial tensile testing, histoarchitecture by histological staining, and composition by DNA, collagen (hydroxyproline) and GAG (chondroitin sulfate) quantification. Residual sodium dodecyl sulfate (SDS) in the scaffold was quantified by applying a methylene blue activation assay (MBAS). Cryopreserved decellularized scaffolds (DC) and scaffolds that were decellularized after cryopreservation (CD) were compared to fresh valves (F), cryopreserved native valves (C), and decellularized only scaffolds (D). The E-modulus and tensile strength of decellularized (D) tissue showed no significant difference compared to DC and CD. The decellularization resulted in an overall reduction of DNA and GAG, with DC containing the lowest amount of GAGs. The DNA content in the valvular wall of the CD group was higher than in the D and DC groups. CD valves showed slightly more residual SDS than DC valves, which might be harmful to recipient cells. In conclusion, cryopreservation after decellularization was shown to be preferable over cryopreservation before decellularization. However, in vivo testing would be necessary to determine whether these differences are significant in biocompatibility or immunogenicity of the scaffolds. Absence of adverse effects on biomechanical stability of acellular heart valve grafts by cryopreservation, neither before nor after decellularization, allows the identification of best matching patients in a less time pressure dictated process, and therefore to an optimized use of a very limited, but best-suited heart valve prosthesis

  4. Anatomic, histopathologic, and echocardiographic features in a dog with an atypical pulmonary valve stenosis with a fibrous band of tissue and a patent ductus arteriosus.

    Science.gov (United States)

    Yoon, Hakyoung; Kim, Jaehwan; Nahm, Sang-Soep; Eom, Kidong

    2017-07-11

    Congenital pulmonary valve stenosis and patent ductus arteriosus are common congenital heart defects in dogs. However, concurrence of atypical pulmonary valve stenosis and patent ductus arteriosus is uncommon. This report describes the anatomic, histopathologic, and echocardiographic features in a dog with concomitant pulmonary valve stenosis and patent ductus arteriosus with atypical pulmonary valve dysplasia that included a fibrous band of tissue. A 1.5-year-old intact female Chihuahua dog weighing 3.3 kg presented with a continuous grade VI cardiac murmur, poor exercise tolerance, and an intermittent cough. Echocardiography indicated pulmonary valve stenosis, a thickened dysplastic valve without annular hypoplasia, and a type IIA patent ductus arteriosus. The pulmonary valve was thick line-shaped in systole and dome-shaped towards the right ventricular outflow tract in diastole. The dog suffered a fatal cardiac arrest during an attempted balloon pulmonary valvuloplasty. Necropsy revealed pulmonary valve dysplasia, commissural fusion, and incomplete opening and closing of the pulmonary valve because of a fibrous band of tissue causing adhesion between the right ventricular outflow tract and the dysplastic intermediate cusp of the valve. A fibrous band of tissue between the right ventricular outflow track and the pulmonary valve should be considered as a cause of pulmonary valve stenosis. Pulmonary valve stenosis and patent ductus arteriosus can have conflicting effects on diastolic and systolic dysfunction, respectively. Therefore, beta-blockers should always be used carefully, particularly in patients with a heart defect where there is concern about left ventricular systolic function.

  5. Modification and performance evaluation of a mono-valve engine

    Science.gov (United States)

    Behrens, Justin W.

    A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.

  6. Structural valve deterioration in the Mitroflow biological heart valve prosthesis

    DEFF Research Database (Denmark)

    Issa, Issa Farah; Poulsen, Steen Hvitfeldt; Waziri, Farhad

    2018-01-01

    OBJECTIVES: Concern has been raised regarding the long-term durability of the Mitroflow biological heart valve prosthesis. Our aim was to assess the incidence of structural valve degeneration (SVD) for the Mitroflow bioprosthesis in a nationwide study in Denmark including all patients alive......: A total of 173 patients were diagnosed with SVD by echocardiography. Of these, 64 (11%) patients had severe SVD and 109 (19%) patients moderate SVD. Severe SVD was associated with the age of the prosthesis and small prosthesis size [Size 21: hazard ratio (95% confidence interval, CI) 2.72 (0.97-8.56), P...

  7. A Structural Analysis of a Mechanical Heart Valve Prosthesis with Flat Leaflet

    Science.gov (United States)

    Kwon, Young Joo

    This paper addresses the basic concept of MDO methodology and the structural analysis that should be performed in the design process of a mechanical heart valve prosthesis with flat leaflet using MDO methodology. In the structural design of the mechanical heart valve (MHV) prosthesis, the fluid mechanics analysis is executed for the blood flow passing through the leaflets of a mechanical heart valve prosthesis. Thereafter, the rigid body dynamics analysis of the leaflet motion is performed to obtain the structural condition for the structural mechanics analysis of the deformed leaflet. Then the structural mechanics analysis of the deformed leaflet follows to confirm the minimum thickness of the leaflet for the structural durability of the mechanical heart valve prosthesis. This paper shows that the minimum leaflet thickness can be evaluated to be 0.6mm among the suggested thicknesses.

  8. Experimental substantiation of the design of a prosthetic heart valve for «valve-in-valve» implantation

    Directory of Open Access Journals (Sweden)

    K. Yu. Klyshnikov

    2017-01-01

    Full Text Available The aim of the study was to perform a series of in vitro tests of a prototype of the developing heart valve prosthesis to evaluate its functional characteristics. Materials and methods. In this work we have used the frames and full prototypes of the prosthesis, consisting of a stent-like stainless steel support frame with mounted biological leaflets and cover. The authors evaluated the calculated and experimental forces necessary for the displacement of the sutureless implanted prosthesis using the test machine under uniaxial tension. The risk of defects and damages to the supporting framework as a result of implantation was evaluated by scanning electron microscopy. The hydrodynamic characteristics of the prosthesis were investigated under physiological conditions and «valvein-valve» implantation. Evaluation of the ergonomics and applicability of the proposed construction on the cadaver heart model of cattle was carried out. Results. As a result of the forces assessment, it was found that the force required to shear the prosthesis was 3.12 ± 0.37 N, while the calculated value was 1.7 N, which is significantly lower than the obtained value. The comparison of the images obtained with small and large magnifications demonstrated the absence of critical surface defects. Additional analysis under the super-large magnifications also did not reveal problem areas. During the hydrodynamic study, it was shown that the average transplant gradient increased slightly from 2.8–3.4 to 3.2–4.5 mm Hg for the initial prosthesis and the «valve-in-valve» complex, respectively. The decrease of the effective orifice area was 6–9% relative to the initial one. Evaluation of the implantation technique demonstrated the consistency of the approach: the use of the developed holder in combination with the balloon implantation system made it possible to position the prosthesis throughout the procedure. Conclusion. The series of tests demonstrates the consistency

  9. Tissue Engineering Applications of Three-Dimensional Bioprinting.

    Science.gov (United States)

    Zhang, Xiaoying; Zhang, Yangde

    2015-07-01

    Recent advances in tissue engineering have adapted the additive manufacturing technology, also known as three-dimensional printing, which is used in several industrial applications, for the fabrication of bioscaffolds and viable tissue and/or organs to overcome the limitations of other in vitro conventional methods. 3D bioprinting technology has gained enormous attention as it enabled 3D printing of a multitude of biocompatible materials, different types of cells and other supporting growth factors into complex functional living tissues in a 3D format. A major advantage of this technology is its ability for simultaneously 3D printing various cell types in defined spatial locations, which makes this technology applicable to regenerative medicine to meet the need for suitable for transplantation suitable organs and tissues. 3D bioprinting is yet to successfully overcome the many challenges related to building 3D structures that closely resemble native organs and tissues, which are complex structures with defined microarchitecture and a variety of cell types in a confined area. An integrated approach with a combination of technologies from the fields of engineering, biomaterials science, cell biology, physics, and medicine is required to address these complexities. Meeting this challenge is being made possible by directing the 3D bioprinting to manufacture biomimetic-shaped 3D structures, using organ/tissue images, obtained from magnetic resonance imaging and computerized tomography, and employing computer-aided design and manufacturing technologies. Applications of 3D bioprinting include the generation of multilayered skin, bone, vascular grafts, heart valves, etc. The current 3D bioprinting technologies need to be improved with respect to the mechanical strength and integrity in the manufactured constructs as the presently used biomaterials are not of optimal viscosity. A better understanding of the tissue/organ microenvironment, which consists of multiple types of

  10. Developments in mechanical heart valve prosthesis

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    BHUVANESHWAR. Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences. & Technology ... affect the performance of mechanical heart valves. The clinical performance of ... those who cannot be put under anticoagulant therapy, like women who may still wish to bear children, or hemolytic patients.

  11. Embryological origin of the endocardium and derived valve progenitor cells: from developmental biology to stem cell-based valve repair.

    Science.gov (United States)

    Pucéat, Michel

    2013-04-01

    The cardiac valves are targets of both congenital and acquired diseases. The formation of valves during embryogenesis (i.e., valvulogenesis) originates from endocardial cells lining the myocardium. These cells undergo an endothelial-mesenchymal transition, proliferate and migrate within an extracellular matrix. This leads to the formation of bilateral cardiac cushions in both the atrioventricular canal and the outflow tract. The embryonic origin of both the endocardium and prospective valve cells is still elusive. Endocardial and myocardial lineages are segregated early during embryogenesis and such a cell fate decision can be recapitulated in vitro by embryonic stem cells (ESC). Besides genetically modified mice and ex vivo heart explants, ESCs provide a cellular model to study the early steps of valve development and might constitute a human therapeutic cell source for decellularized tissue-engineered valves. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Biomaterials in myocardial tissue engineering

    Science.gov (United States)

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  13. Diesel Engine Valve Clearance Detection Using Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Fathi Elamin

    2010-01-01

    Full Text Available This paper investigated, using experimental method, the suitability of acoustic emission (AE technique for the condition monitoring of diesel engine valve faults. The clearance fault was adjusted experimentally in an exhaust valve and successfully detected and diagnosed in a Ford FSD 425 four-cylinder, four-stroke, in-line OHV, direct injection diesel engine. The effect of faulty exhaust valve clearance on engine performance was monitored and the difference between the healthy and faulty engine was observed from the recorded AE signals. The measured results from this technique show that using only time domain and frequency domain analysis of acoustic emission signals can give a superior measure of engine condition. This concludes that acoustic emission is a powerful and reliable method of detection and diagnosis of the faults in diesel engines and this is considered to be a unique approach to condition monitoring of valve performance.

  14. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs.

    Science.gov (United States)

    Wang, Bo; Patnaik, Sourav S; Brazile, Bryn; Butler, J Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2015-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications.

  15. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes.

    Science.gov (United States)

    Zimmermann, W H; Fink, C; Kralisch, D; Remmers, U; Weil, J; Eschenhagen, T

    2000-04-05

    A technique is presented that allows neonatal rat cardiac myocytes to form spontaneously and coherently beating 3-dimensional engineered heart tissue (EHT) in vitro, either as a plane biconcaval matrix anchored at both sides on Velcro-coated silicone tubes or as a ring. Contractile activity was monitored in standard organ baths or continuously in a CO(2) incubator for up to 18 days (=26 days after casting). Long-term measurements showed an increase in force between days 8 and 18 after casting and stable forces thereafter. At day 10, the twitch amplitude (TA) of electrically paced EHTs (average length x width x thickness, 11 x 6 x 0.4 mm) was 0.51 mN at length of maximal force development (L(max)) and a maximally effective calcium concentration. EHTs showed typical features of neonatal rat heart: a positive force-length and a negative force-frequency relation, high sensitivity to calcium (EC(50) 0.24 mM), modest positive inotropic (increase in TA by 46%) and pronounced positive lusitropic effect of isoprenaline (decrease in twitch duration by 21%). Both effects of isoprenaline were sensitive to the muscarinic receptor agonist carbachol in a pertussis toxin-sensitive manner. Adenovirus-mediated gene transfer of beta-galactosidase into EHTs reached 100% efficiency. In summary, EHTs retain many of the physiological characteristics of rat cardiac tissue and allow efficient gene transfer with subsequent force measurement. Copyright 2000 John Wiley & Sons, Inc.

  16. Simulation of Blood flow in Different Configurations Design of Bi-leaflet Mechanical Heart Valve

    Science.gov (United States)

    Hafizah Mokhtar, N.; Abas, Aizat

    2018-05-01

    In this work, two different designs of artificial heart valve were devised and then compared by considering the thrombosis, wear and valve orifice to anatomical orifice ratio of each mechanical heart valve. These different design configurations of bi-leaflet mechanical heart valves model are created through the use of Computer-aided design (CAD) modelling and simulated using Computational fluid dynamic (CFD) software. Design 1 is based on existing conventional bi-leaflet valve and design 2 based on modified bi-leaflet respectively. The flow pattern, velocity, vorticity and stress analysis have been done to justify the best design. Based on results, both of the designs show a Doppler velocity index of less than the allowable standard of 2.2 which is safe to be used as replacement of the human heart valve. However, design 2 shows that it has a lower possibility of cavitation issue which will lead to lower thrombosis and provide good central flow area of blood as compared to design 1.

  17. Which valve is which?

    Directory of Open Access Journals (Sweden)

    Pravin Saxena

    2015-01-01

    Full Text Available A 25-year-old man presented with a history of breathlessness for the past 2 years. He had a history of operation for Tetralogy of Fallot at the age of 5 years and history suggestive of Rheumatic fever at the age of 7 years. On echocardiographic examination, all his heart valves were severely regurgitating. Morphologically, all the valves were irreparable. The ejection fraction was 35%. He underwent quadruple valve replacement. The aortic and mitral valves were replaced by metallic valve and the tricuspid and pulmonary by tissue valve.

  18. Outcomes in nonagenarians after heart valve replacement operation.

    Science.gov (United States)

    Edwards, Maria-Benedicta; Taylor, Kenneth M

    2003-03-01

    Changes in the age profile of the United Kingdom population and improvements in preoperative and postoperative care have resulted in increasing numbers of very elderly patients undergoing heart valve replacement (HVR) operations. Although HVR operations in nonagenarians are relatively uncommon, the demand for cardiac operations in this age group may increase over time. Outcomes after HVR operations in nonagenarians have not been well described yet. Therefore, the aim of this study was to determine outcomes in terms of early mortality and long-term survival in 35 nonagenarians after HVR operation. Data from the United Kingdom Heart Valve Registry were analyzed and nonagenarian patients were identified. Additional analyzed data include gender, valve position, valve type, valve size, operative priority, follow-up time, and date and cause of death. Kaplan-Meier actuarial curves were calculated to determine accurate 30-day mortality and long-term survival. On average five HVR operations are performed annually in the United Kingdom in nonagenarians with equal numbers of males and females. Aortic valve replacement with a bioprosthetic valve was the most common operation and 86% were elective admissions. Fourteen patients died within the review period; mean time to death was 402 days. Overall 30-day mortality was 17%, which was higher for males compared with females; females also displayed better long-term survival. HVR operations in nonagenarians carry a significantly higher risk of early mortality and reduced long-term survival. Despite increases in the age profile of the population, elective HVR operation with patients aged 90 years or older is likely to remain an infrequent surgical procedure reserved for very carefully selected patients.

  19. The surface microstructure of cusps and leaflets in rabbit and mouse heart valves

    Directory of Open Access Journals (Sweden)

    Xia Ye

    2014-05-01

    Full Text Available In this investigation, scanning electron microscopy was used to characterize the microstructure on the surfaces of animal heart valve cusps/leaflets. The results showed that though these surfaces appear smooth to the naked eye, they are actually comprised of a double hierarchical structure consisting of a cobblestone-like microstructure and nano-cilia along with mastoids with a directional arrangement. Such nanostructures could play a very important role in the hemocompatibility characteristics of heart valves. On this basis, the model of the microstructure was constructed and theoretical analysis was used to obtain optimal geometric parameters for the rough surface of artificial valve cusps/leaflets. This model may help improve reconstructive techniques and it may be beneficial in the design and fabrication of valve substitutes or partial substitutes. Namely, the model may help ameliorate heart valve replacement surgery.

  20. Cardiac rehabilitation patient's perspectives on the recovery following heart valve surgery: a narrative analysis

    DEFF Research Database (Denmark)

    Hansen, Tina Birgitte; Zwisler, Ann Dorthe Olsen; Kikkenborg Berg, Selina

    2016-01-01

    collected data over 18 months (April 2013-October 2014). We recruited nine patients undergoing heart valve surgery from a randomized trial, CopenHeartVR and conducted 27 individual narrative interviews at 2-3 weeks, 3-4 months and 8-9 months after surgery. FINDINGS: Following heart valve surgery...

  1. Effects of valve timing, valve lift and exhaust backpressure on performance and gas exchanging of a two-stroke GDI engine with overhead valves

    International Nuclear Information System (INIS)

    Dalla Nora, Macklini; Lanzanova, Thompson Diórdinis Metzka; Zhao, Hua

    2016-01-01

    Highlights: • Two-stroke operation was achieved in a four-valve direct injection gasoline engine. • Shorter valve opening durations improved torque at lower engine speeds. • The longer the valve opening duration, the lower was the air trapping efficiency. • Higher exhaust backpressure and lower valve lift reduced the compressor work. - Abstract: The current demand for fuel efficient and lightweight powertrains, particularly for application in downsized and hybrid electric vehicles, has renewed the interest in two-stroke engines. In this framework, an overhead four-valve spark-ignition gasoline engine was modified to run in the two-stroke cycle. The scavenging process took place during a long valve overlap period around bottom dead centre at each crankshaft revolution. Boosted intake air was externally supplied at a constant pressure and gasoline was directly injected into the cylinder after valve closure. Intake and exhaust valve timings and lifts were independently varied through an electrohydraulic valve train, so their effects on engine performance and gas exchanging were investigated at 800 rpm and 2000 rpm. Different exhaust backpressures were also evaluated by means of exhaust throttling. Air trapping efficiency, charging efficiency and scavenge ratio were calculated based on air and fuel flow rates, and exhaust oxygen concentration at fuel rich conditions. The results indicated that longer intake and exhaust valve opening durations increased the charge purity and hence torque at higher engine speeds. At lower speeds, although, shorter valve opening durations increased air trapping efficiency and reduced the estimated supercharger power consumption due to lower air short-circuiting. A strong correlation was found between torque and charging efficiency, while air trapping efficiency was more associated to exhaust valve opening duration. The application of exhaust backpressure, as well as lower intake/exhaust valve lifts, made it possible to increase

  2. Cardiac Rehabilitation After Heart Valve Surgery

    DEFF Research Database (Denmark)

    Pollmann, Agathe Gerwina Elena; Frederiksen, Marianne; Prescott, Eva

    2017-01-01

    PURPOSE: Evidence of the effect of cardiac rehabilitation (CR) after heart valve surgery is scarce, but nevertheless CR is recommended for this group of patients. Therefore, this study assessed the effect of CR on exercise capacity, cardiovascular risk factors, and long-term mortality and morbidity...... ((Equation is included in full-text article.)O2peak) or 6-minute walk test (6MWT). A composite endpoint of all-cause mortality and hospital admission due to myocardial infarction, stroke, heart failure, endocarditis, revascularization, or reoperation was used to assess the hazard ratio between CR attenders...

  3. Multimodality Imaging Assessment of Prosthetic Heart Valves

    NARCIS (Netherlands)

    Suchá, D.; Symersky, Petr; Tanis, W; Mali, Willem P Th M; Leiner, Tim; van Herwerden, LA; Budde, Ricardo P J

    Echocardiography and fluoroscopy are the main techniques for prosthetic heart valve (PHV) evaluation, but because of specific limitations they may not identify the morphological substrate or the extent of PHV pathology. Cardiac computed tomography (CT) and magnetic resonance imaging (MRI) have

  4. A 3D velocimetry study of the flow through prosthetic heart valves

    Science.gov (United States)

    Ledesma, R.; Zenit, R.; Pulos, G.; Sanchez, E.; Juarez, A.

    2006-11-01

    Blood damage commonly appears in medical valve prothesis. It is a mayor concern for the designers and surgeons. It is well known that this damage and other complications result from the modified fluid dynamics through the replacement valve. To evaluate the performance of prosthetic heart valves, it is necessary to study the flow through them. To conduct this study , we have built a flow channel that emulates cardiac conditions and allows optical access such that a 3D-PIV velocimetry system could be used. The experiments are aimed to reconstruct the downstream structure of the flow through a mechanical and a bio-material tricuspid heart valve prothesis. Preliminary results show that the observed coherent structures can be related with haemolysis and trombosis, illnesses commonly found in valve prothesis recipients. The mean flow, the levels of strain rate and the turbulence intensity generated by the valves can also be directly related to blood damage. In general, bio-material made valves tend to reduce these complications.

  5. Proangiogenic scaffolds as functional templates for cardiac tissue engineering.

    Science.gov (United States)

    Madden, Lauran R; Mortisen, Derek J; Sussman, Eric M; Dupras, Sarah K; Fugate, James A; Cuy, Janet L; Hauch, Kip D; Laflamme, Michael A; Murry, Charles E; Ratner, Buddy D

    2010-08-24

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30-40 microm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.

  6. Evaluation of shrinkage temperature of bovine pericardium tissue for bioprosthetic heart valve application by differential scanning calorimetry and freeze-drying microscopy

    Directory of Open Access Journals (Sweden)

    Virgilio Tattini Jr

    2007-03-01

    Full Text Available Bovine pericardium bioprosthesis has become a commonly accepted device for heart valve replacement. Present practice relies on the measurement of shrinkage temperature, observed as a dramatic shortening of tissue length. Several reports in the last decade have utilized differential scanning calorimetry (DSC as an alternative method to determine the shrinkage temperature, which is accompanied by the absorption of heat, giving rise to an endothermic peak over the shrinkage temperature range of biological tissues. Usually, freeze-drying microscope is used to determine collapse temperature during the lyophilization of solutions. On this experiment we used this technique to study the shrinkage event. The aim of this work was to compare the results of shrinkage temperature obtained by DSC with the results obtained by freeze-drying microscopy. The results showed that both techniques provided excellent sensitivity and reproducibility, and gave information on the thermal shrinkage transition via the thermodynamical parameters inherent of each method.

  7. Design And Analysis Of A Camless Valve Mechanism For I.C Engines Using Rotary Disc Valves

    Directory of Open Access Journals (Sweden)

    Vivek Jitendra Panchal

    2017-09-01

    Full Text Available It is the object of the presented paper to provide an electromechanical rotary valve actuating system for opening and closing valves of an internal combustion engine capable of separately controlling both the inlet and exhaust valve operations of each individual cylinder in a multi-cylinder engine. This indicates that only one valve will be required for each cylinder of the engine. Previously published versions of this concept require a separate valve for intake and exhaust in each cylinder. The system provides an alternative to the camshaft assembly in an attempt to overcome the limitations and inadequacies inevitably posed by a fully mechanical system. The prototype development is approached in a theoretical manner beginning with the conceptualization and design of a rotating disk with a notches and corresponding closure surfaces to open and close the flow path. The actuated disk and notch design is then refined and followed by the design of an inlet and exhaust manifold to correspond to the valve design and the theorizing and design of a sealing gasket. The rotating speed of the valve is determined by a general idling speed and can be varied to provide variable valve timing with the motor. The final assembly eliminates a majority of the moving parts currently used in camshaft systems like the cam camshaft rocker arm push rod and springs and results in a significantly lighter valve actuation system. By eliminating the translatory motion of valves the problem of valves slamming on the valve seats at high velocities is eliminated thus greatly reducing engine wear.

  8. Role of CT in patients with prosthetic heart valves

    NARCIS (Netherlands)

    Suchá, D.

    2016-01-01

    Valvular heart disease accounts for a substantial part of the cardiovascular disease worldwide with an estimated prevalence of 2.5% in the Western population aged <65 years and over 13% in the population aged >75 years. Surgical prosthetic heart valve (PHV) replacement is the indicated therapy for

  9. Space Shuttle OMS engine valve technology. [Orbital Maneuvering System

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Valve technology program to determine shutoff valve concepts suitable for the Orbital Maneuvering System (OMS) engine of the Space Shuttle. The tradeoff studies selected the electric torque motor operated dual poppet and ball valves as the most desirable valve concepts for the OMS Engine Shutoff Valve. A prototype of one of these concepts was built and subjected to a design verification program. A number of unique features were designed to include the required contamination insensitivity, operating fluid compatibility, decontamination capability, minimum maintenance requirement and long service life capability.

  10. Alternative causes of bioreaction to prosthetic heart valves: three cases with pannus formation.

    Science.gov (United States)

    Karakoyun, Süleyman; Gürsoy, Ozan Mustafa; Kalçık, Macit; Coban Kökten, Sermin; Ozkan, Mehmet

    2014-01-01

    Pannus formation is an infrequent but serious complication of prosthetic heart valve surgery. The cause of pannus is recognized as a bioreaction to the prostheses; histological investigations have shown that pannus comprises collagen and elastic tissues containing endothelial cells, chronic inflammatory cells, and myofibroblasts. However, the detailed mechanism of its formation has not been fully demonstrated. We aimed to evaluate the potential role of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-2 (MMP-2) in the pathogenesis of pannus formation in three patients with mechanical prosthetic heart valves. Pannus specimens removed from the prostheses were fixed in 10% neutral-buffered formalin for 24 hours after surgical removal and paraffin-embedded using standard procedures. Serial sections were cut at 4 µm for immunohistochemistry analysis. Hematoxylin and eosin (HE) was used in the histological analysis. VEGF and MMP-2 were studied in the immunohistochemistry analysis. Three patients with mechanical prosthetic obstruction due to pannus overgrowth underwent redo valve surgery. In the first and second patients, the mitral prosthesis was explanted along with the pannus overgrowth. The third patient had both aortic and mitral prostheses; the aortic prosthesis was explanted with obstructive pannus formation, whereas the mitral valve was spared with excision of the nonobstructive pannus. The immunohistochemical study demonstrated the expressions of MMP-2 and VEGF in all of the pannus specimens acquired from these cases. VEGF and MMP-2 may play a role in the mechanism of pannus formation as the elements of the chronic active inflammatory process.

  11. Heart valves from polyester fibers: a preliminary 6-month in vivo study.

    Science.gov (United States)

    Vaesken, Antoine; Pelle, Anne; Pavon-Djavid, Graciela; Rancic, Jeanne; Chakfe, Nabil; Heim, Frederic

    2017-05-03

    Transcatheter aortic valve implantation (TAVI) has become a popular alternative technique to surgical valve replacement for critical patients. Biological valve tissue has been used in TAVI procedures for over a decade, with over 150,000 implantations to date. However, with only 6 years of follow up, little is known about the long-term durability of biological tissue. Moreover, the high cost of tissue harvesting and chemical treatment procedures favor the development of alternative synthetic valve leaflet materials. In that context, textile polyester [polyethylene terephthalate (PET)] could be considered as an interesting candidate to replace the biological valve leaflets in TAVI procedures. However, no result is available in the literature about the behavior of textile once in contact with biological tissue in the valve position. The interaction of synthetic textile material with living tissues should be comparable to biological tissue. The purpose of this preliminary work is to compare the in vivo performances of various woven textile PET valves over a 6-month period in order to identify favorable textile construction features. In vivo results indicate that fibrosis as well as calcium deposit can be limited with an appropriate material design.

  12. Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model.

    Science.gov (United States)

    He, Z; Xi, B; Zhu, K; Hwang, N H

    2001-09-01

    The induction of mechanical heart valve (MHV) cavitation was investigated using a 27 mm Medtronic Hall (MH27) tilting disk valve. The MH27 valve was mounted in the mitral position of a simulating pulse flow system, and stroboscopic lighting used to visualize cavitation bubbles on the occluder inflow surface at the instant of valve closure. MHV cavitation was monitored using a digital camera with 0.04 mm/pixel resolution sufficient to render the tiny bubbles clearly visible on the computer monitor screen. Cavitation on MH27 valve was classified as five types according to the time, site and shape of the cavitation bubbles. Valve cavitation occurred at the instant of occluder impact with the valve seat at closing. The impact motion was subdivided into three temporal phases: (i) squeezing flow; (ii) elastic collision; and (iii) leaflet rebound. MHV cavitation caused by vortices was found to be initiated by the squeezing jet and/or by the transvalvular leakage jets. By using a tension wave which swept across the occluder surface immediately upon elastic impact, nuclei in the vortex core were expanded to form cavitation bubbles. Analysis of the shape and location of the cavitation bubbles permitted a better understanding of MHV cavitation mechanisms, based on the fluid dynamics of jet vortex and tension wave propagations.

  13. Engineering Cardiac Muscle Tissue: A Maturating Field of Research.

    Science.gov (United States)

    Weinberger, Florian; Mannhardt, Ingra; Eschenhagen, Thomas

    2017-04-28

    Twenty years after the initial description of a tissue engineered construct, 3-dimensional human cardiac tissues of different kinds are now generated routinely in many laboratories. Advances in stem cell biology and engineering allow for the generation of constructs that come close to recapitulating the complex structure of heart muscle and might, therefore, be amenable to industrial (eg, drug screening) and clinical (eg, cardiac repair) applications. Whether the more physiological structure of 3-dimensional constructs provides a relevant advantage over standard 2-dimensional cell culture has yet to be shown in head-to-head-comparisons. The present article gives an overview on current strategies of cardiac tissue engineering with a focus on different hydrogel methods and discusses perspectives and challenges for necessary steps toward the real-life application of cardiac tissue engineering for disease modeling, drug development, and cardiac repair. © 2017 American Heart Association, Inc.

  14. Optimal elastomeric scaffold leaflet shape for pulmonary heart valve leaflet replacement.

    Science.gov (United States)

    Fan, Rong; Bayoumi, Ahmed S; Chen, Peter; Hobson, Christopher M; Wagner, William R; Mayer, John E; Sacks, Michael S

    2013-02-22

    Surgical replacement of the pulmonary valve (PV) is a common treatment option for congenital pulmonary valve defects. Engineered tissue approaches to develop novel PV replacements are intrinsically complex, and will require methodical approaches for their development. Single leaflet replacement utilizing an ovine model is an attractive approach in that candidate materials can be evaluated under valve level stresses in blood contact without the confounding effects of a particular valve design. In the present study an approach for optimal leaflet shape design based on finite element (FE) simulation of a mechanically anisotropic, elastomeric scaffold for PV replacement is presented. The scaffold was modeled as an orthotropic hyperelastic material using a generalized Fung-type constitutive model. The optimal shape of the fully loaded PV replacement leaflet was systematically determined by minimizing the difference between the deformed shape obtained from FE simulation and an ex-vivo microCT scan of a native ovine PV leaflet. Effects of material anisotropy, dimensional changes of PV root, and fiber orientation on the resulting leaflet deformation were investigated. In-situ validation demonstrated that the approach could guide the design of the leaflet shape for PV replacement surgery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves

    Energy Technology Data Exchange (ETDEWEB)

    Gallyamov, Marat O., E-mail: glm@spm.phys.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Chaschin, Ivan S. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Khokhlova, Marina A. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Grigorev, Timofey E. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Bakuleva, Natalia P.; Lyutova, Irina G.; Kondratenko, Janna E. [Bakulev Scientific Center for Cardiovascular Surgery of the Russian Academy of Medical Sciences, Roublyevskoe Sh. 135, Moscow 121552 (Russian Federation); Badun, Gennadii A.; Chernysheva, Maria G. [Radiochemistry Division, Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Khokhlov, Alexei R. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation)

    2014-04-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H{sub 2}O and CO{sub 2}. Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16–33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1 wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. - Highlights: • Treatment of GA

  16. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves

    International Nuclear Information System (INIS)

    Gallyamov, Marat O.; Chaschin, Ivan S.; Khokhlova, Marina A.; Grigorev, Timofey E.; Bakuleva, Natalia P.; Lyutova, Irina G.; Kondratenko, Janna E.; Badun, Gennadii A.; Chernysheva, Maria G.; Khokhlov, Alexei R.

    2014-01-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H 2 O and CO 2 . Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16–33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1 wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. - Highlights: • Treatment of GA-stabilised bovine

  17. Cost-utility analysis of cardiac rehabilitation after conventional heart valve surgery versus usual care

    DEFF Research Database (Denmark)

    Hansen, Tina; Zwisler, Ann Dorthe; Berg, Selina Kikkenborg

    2017-01-01

    and effect differences were presented in a cost-effectiveness plane and were transformed into net benefit and presented in cost-effectiveness acceptability curves. Results No statistically significant differences were found in total societal costs (-1609 Euros; 95% CI: -6162 to 2942 Euros) or in quality......Background While cardiac rehabilitation in patients with ischaemic heart disease and heart failure is considered cost-effective, this evidence may not be transferable to heart valve surgery patients. The aim of this study was to investigate the cost-effectiveness of cardiac rehabilitation following...... heart valve surgery. Design We conducted a cost-utility analysis based on a randomised controlled trial of 147 patients who had undergone heart valve surgery and were followed for 6 months. Methods Patients were randomised to cardiac rehabilitation consisting of 12 weeks of physical exercise training...

  18. A DECISION SUPPORT SYSTEM FOR THE DIAGNOSIS OF HEART VALVE DISEASES

    OpenAIRE

    Türkoğlu, İbrahim; Arslan, Ahmet; İlkay, Erdoğan

    2018-01-01

    In this pa per, a decision s up port system is presented for interpretation of the Doppler signals of the heart valve diseases based on the pattern recognition. This paper especially deals with the feature extraction from measured Doppler signal waveforms at the heart valve using the Doppler Ultrasound. Wavelet transforms and power spectrum estimate by Yule-Walker AR method are used to feature extract from the Doppler signals on the time­frequency domain. Wavelet entropy method is applied to ...

  19. Patient experiences of recovery after heart valve replacement: suffering weakness, struggling to resume normality

    DEFF Research Database (Denmark)

    Kikkenborg Berg, Selina; Zwisler, Ann-Dorthe; Pedersen, Birthe D.

    2013-01-01

    Heart valve disease is becoming a public health problem due to increasing life expectancy and new treatment methods. Patients are at risk of developing depression, anxiety or post-traumatic stress disorder after heart valve surgery. To better plan proper care, describing and understanding patients...

  20. Non-cardiac surgery in patients with prosthetic heart valves: a 12 years experience

    International Nuclear Information System (INIS)

    Akhtar, R.P.; Khan, J.S.; Abid, A.R.; Gardezi, S.J.R.

    2007-01-01

    To study patients with mechanical heart valves undergoing non-cardiac surgery and their anticoagulation management during these procedures. Patients with mechanical heart valves undergoing non-cardiac surgical operation during this period, were included. Their anticoagulation was monitored and anticoagulation related complications were recorded. In this study, 507 consecutive patients with a mechanical heart valve replacement were followed-up. Forty two (8.28%) patients underwent non-cardiac surgical operations of which 24 (57.1%) were for abdominal and non-abdominal surgeries, 5 (20.8%) were emergency and 19 (79.2%) were planned. There were 18 (42.9%) caesarean sections for pregnancies. Among the 24 procedures, there were 7(29.1%) laparotomies, 7(29.1%) hernia repairs, 2 (8.3%) cholecystectomies, 2 (8.3%) hysterectomies, 1(4.1%) craniotomy, 1(4.1%) spinal surgery for neuroblastoma, 1(4.1%) ankle fracture and 1(4.1%) carbuncle. No untoward valve or anticoagulation related complication was seen during this period. Patients with mechanical valve prosthesis on life-long anticoagulation, if managed properly, can undergo any type of noncardiac surgical operation with minimal risk. (author)

  1. Comprehensive microRNA profiling reveals potential augmentation of the IL1 pathway in rheumatic heart valve disease.

    Science.gov (United States)

    Lu, Qiyu; Sun, Yi; Duan, Yuyin; Li, Bin; Xia, Jianming; Yu, Songhua; Zhang, Guimin

    2018-03-16

    Valvular heart disease is a leading cause of cardiovascular mortality, especially in China. More than a half of valvular heart diseases are caused by acute rheumatic fever. microRNA is involved in many physiological and pathological processes. However, the miRNA profile of the rheumatic valvular heart disease is unknown. This research is to discuss microRNAs and their target gene pathways involved in rheumatic heart valve disease. Serum miRNA from one healthy individual and four rheumatic heart disease patients were sequenced. Specific differentially expressed miRNAs were quantified by Q-PCR in 40 patients, with 20 low-to-moderate rheumatic mitral valve stenosis patients and 20 severe mitral valve stenosis patients. The target relationship between certain miRNA and predicted target genes were analysis by Luciferase reporter assay. The IL-1β and IL1R1 expression levels were analyzed by immunohistochemistry and western blot in the mitral valve from surgery of mitral valve replacement. The results showed that 13 and 91 miRNAs were commonly upregulated or downregulated in all four patients. Nine miRNAs, 1 upregulated and 8 downregulated, that had a similar fold change in all 4 patients were selected for quantitative PCR verification. The results showed similar results from miRNA sequencing. Within these 9 tested miRNAs, hsa-miR-205-3p and hsa-miR-3909 showed a low degree of dispersion between the members of each group. Hsa miR-205-3p and hsa-miR-3909 were predicted to target the 3'UTR of IL-1β and IL1R1 respectively. This was verified by luciferase reporter assays. Immunohistochemistry and Western blot results showed that the mitral valve from rheumatic valve heart disease showed higher levels of IL- 1β and IL1R1 expression compared with congenital heart valve disease. This suggested a difference between rheumatic heart valve disease and other types of heart valve diseases, with more inflammatory responses in the former. In the present study, by next generation

  2. Effects of chronic severe pulmonary regurgitation and percutaneous valve repair on right ventricular geometry and contractility assessed by tissue Doppler echocardiography

    DEFF Research Database (Denmark)

    Kjaergaard, Jesper; Iversen, Kasper K; Vejlstrup, Niels G

    2010-01-01

    Pulmonary regurgitation (PR) following repair of right ventricular (RV) outflow obstruction is related to slowly progressive RV dilatation and heart failure and will eventually require surgical intervention, but optimal timing of pulmonary valve replacement is challenging. Tissue Doppler based...

  3. The value of MRI in the diagnosis of heart valve diseases

    International Nuclear Information System (INIS)

    Zhao Shihua; Lu Minjie; Zhang Yan; Jiang Shiliang; Liu Yuqing; Zhang Puhong

    2006-01-01

    Objective: To assess the diagnostic value of the magnetic resonance imaging (MRI) for heart valve disease qualitatively and quantitatively. Methods: From 18th Sep, 2004 to 30th Jun, 2005, 56 consecutive patients underwent MR scanning with multiple sequences, including two-dimensional dark and bright sequences, K-space segmented TrueFISP and FLASH cine sequences, as well as velocity-encoded cine MR(VEC-MR). Morphologic and functional parameters were applied to assess the disease qualitatively and quantitatively. For quantitative analysis, Doppler echocardiography was compared to evaluate the reliability of VEC-MR in assessing the severity of aortic valve disease. Correlations coefficient was analyzed by a statistic software (SPSS 13.0), P sq =0.951, P=0.01 for AS and R=0.965, R sq =0.932, P<0.01 for AI). Conclusion: Heart valve diseases can be qualitatively and quantitatively evaluated by MR multiple sequences, especially in aortic valve disease. (authors)

  4. Radiological symptoms of the disfunction of artificial heart valves

    Energy Technology Data Exchange (ETDEWEB)

    Erdelyi, M Jr [Orszagos Roentgen es Sugarfizikai Intezet, Budapest (Hungary)

    1981-01-31

    The possible causes of the disfunction of artificial valves are detailed. Routine X-ray examinations of the chest only rarely reveal direct signs of disfunction, but the haemodynamic alterations (dilated heart chambers, or veins) must be considered as important indirect signs. The characteristics and possibly the cause of the valve insufficience can be analyzed on the basis of kino- and spot radiograms. The symptoms observed by these methods are reported in detail.

  5. Lymphangiogenesis is increased in heart valve endocarditis.

    Science.gov (United States)

    Niinimäki, Eetu; Mennander, Ari A; Paavonen, Timo; Kholová, Ivana

    2016-09-15

    Inflammation-associated lymphangiogenesis (IAL) has been identified as part of several acute and chronic inflammation. Sparse data exist on lymphatics during endocarditis. Fifty-two patients with surgically resected valves were included. Endocarditis was present in 18 aortic and 10 mitral valves. Controls consisted of 15 degenerative aortic and 9 degenerative mitral valves. There were 22 males with endocarditis and 17 males in controls. The mean age was 58 (SD 15) years with endocarditis vs. 62 (SD 13) years for controls. Lymphatics were detected by podoplanin antibody immunohistochemistry and morphometrical analysis was performed. The lymphatic density in endocarditis was 833 (SD 529) vessels/mm(2) (range 0-1707) as compared with 39 (SD 60) vessels/mm(2) (range 0-250) in controls (p=0.000). In endocarditis, the mean lymphatic size was 153 (SD 372) μm(2) ranging from 1 to 2034μm(2), whereas it was 30 (SD 29) μm(2), with maximum 90μm(2) and minimum 2μm(2) in controls (p=0.000). IAL is increased in valves with endocarditis as compared with controls. Lymphatics in heart valves may provide a novel means for treatment strategies against endocarditis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions.

    Science.gov (United States)

    Lo, Chi-Wen; Liu, Jia-Shing; Li, Chi-Pei; Lu, Po-Chien; Hwang, Ned H

    2008-01-01

    Accelerated testing provides a substantial amount of data on mechanical heart valve durability in a short period of time, but such conditions may not accurately reflect in vivo performance. Cavitation, which occurs during mechanical heart valve closure when local flow field pressure decreases below vapor pressure, is thought to play a role in valve damage under accelerated conditions. The underlying flow dynamics and mechanisms behind cavitation bubble formation are poorly understood. Under physiologic conditions, random perivalvular cavitation is difficult to capture. We applied accelerated testing at a pulse rate of 600 bpm and transvalvular pressure of 120 mm Hg, with synchronized videographs and high-frequency pressure measurements, to study cavitation of the Medtronic Hall Standard (MHS), Medtronic Hall D-16 (MHD), and Omni Carbon (OC) valves. Results showed cavitation bubbles between 340 and 360 micros after leaflet/housing impact of the MHS, MHD, and OC valves, intensified by significant leaflet rebound. Squeeze flow, Venturi, and water hammer effects each contributed to cavitation, depending on valve design.

  7. Aortic valve prosthesis-patient mismatch and exercise capacity in adult patients with congenital heart disease

    NARCIS (Netherlands)

    van Slooten, Ymkje J.; Melle, van Joost P.; Freling, Hendrik G.; Bouma, Berto J.; van Dijk, Arie P. J.; Jongbloed, Monique R. M.; Post, Martijn C.; Sieswerda, Gertjan T.; in 't Veld, Anna Huis; Ebels, Tjark; Voors, Adriaan A.; Pieper, Petronella G.

    Objectives To report the prevalence of aortic valve prosthesis patient mismatch (PPM) in an adult population with congenital heart disease (CHD) and its impact on exercise capacity. Adults with congenital heart disease (ACHD) with a history of aortic valve replacement may outgrow their prosthesis

  8. Aortic valve prosthesis-patient mismatch and exercise capacity in adult patients with congenital heart disease

    NARCIS (Netherlands)

    van Slooten, Ymkje J.; van Melle, Joost P.; Freling, Hendrik G.; Bouma, Berto J.; van Dijk, Arie Pj; Jongbloed, Monique Rm; Post, Martijn C.; Sieswerda, Gertjan T.; Huis In 't Veld, Anna; Ebels, Tjark; Voors, Adriaan A.; Pieper, Petronella G.

    2016-01-01

    To report the prevalence of aortic valve prosthesis-patient mismatch (PPM) in an adult population with congenital heart disease (CHD) and its impact on exercise capacity. Adults with congenital heart disease (ACHD) with a history of aortic valve replacement may outgrow their prosthesis later in

  9. Intrinsic Cell Stress is Independent of Organization in Engineered Cell Sheets.

    Science.gov (United States)

    van Loosdregt, Inge A E W; Dekker, Sylvia; Alford, Patrick W; Oomens, Cees W J; Loerakker, Sandra; Bouten, Carlijn V C

    2018-06-01

    Understanding cell contractility is of fundamental importance for cardiovascular tissue engineering, due to its major impact on the tissue's mechanical properties as well as the development of permanent dimensional changes, e.g., by contraction or dilatation of the tissue. Previous attempts to quantify contractile cellular stresses mostly used strongly aligned monolayers of cells, which might not represent the actual organization in engineered cardiovascular tissues such as heart valves. In the present study, therefore, we investigated whether differences in organization affect the magnitude of intrinsic stress generated by individual myofibroblasts, a frequently used cell source for in vitro engineered heart valves. Four different monolayer organizations were created via micro-contact printing of fibronectin lines on thin PDMS films, ranging from strongly anisotropic to isotropic. Thin film curvature, cell density, and actin stress fiber distribution were quantified, and subsequently, intrinsic stress and contractility of the monolayers were determined by incorporating these data into sample-specific finite element models. Our data indicate that the intrinsic stress exerted by the monolayers in each group correlates with cell density. Additionally, after normalizing for cell density and accounting for differences in alignment, no consistent differences in intrinsic contractility were found between the different monolayer organizations, suggesting that the intrinsic stress exerted by individual myofibroblasts is independent of the organization. Consequently, this study emphasizes the importance of choosing proper architectural properties for scaffolds in cardiovascular tissue engineering, as these directly affect the stresses in the tissue, which play a crucial role in both the functionality and remodeling of (engineered) cardiovascular tissues.

  10. Incidence and factors associated with infective endocarditis in patients undergoing left-sided heart valve replacement

    DEFF Research Database (Denmark)

    Østergaard, Lauge; Valeur, Nana; Ihlemann, Nikolaj

    2018-01-01

    Aims: Patients with left-sided heart valve replacement are considered at high-risk of infective endocarditis (IE). However, data on the incidence and risk factors associated with IE are sparse. Methods and results: Through Danish administrative registries, we identified patients who underwent left.......35-2.15), and cardiac implantable electronic device (CIED) (HR = 1.57, 95% CI 1.19-2.06) were among factors associated with an increased risk of IE. Conclusion: Infective endocarditis after left-sided heart valve replacement is not uncommon and occurs in about 1/20 over 10 years. Male, bioprosthetic valve, and heart...

  11. Redo mitral valve surgery

    Directory of Open Access Journals (Sweden)

    Redoy Ranjan

    2018-03-01

    Full Text Available This study is based on the findings of a single surgeon’s practice of mitral valve replacement of 167 patients from April 2005 to June 2017 who developed symptomatic mitral restenosis after closed or open mitral commisurotomy. Both clinical and color doppler echocardiographic data of peri-operative and six months follow-up period were evaluated and compared to assess the early outcome of the redo mitral valve surgery. With male-female ratio of 1: 2.2 and after a duration of 6 to 22 years symptom free interval between the redo procedures, the selected patients with mitral valve restenosis undergone valve replacement with either mechanical valve in 62% cases and also tissue valve in 38% cases. Particular emphasis was given to separate the adhered pericardium from the heart completely to ameliorate base to apex and global contraction of the heart. Besides favorable post-operative clinical outcome, the echocardiographic findings were also encouraging as there was statistically significant increase in the mitral valve area and ejection fraction with significant decrease in the left atrial diameter, pressure gradient across the mitral valve and pulmonary artery systolic pressure. Therefore, in case of inevitable mitral restenosis after closed or open commisurotomy, mitral valve replacement is a promising treatment modality.

  12. Obstructive Prosthetic Mitral Valve Thrombosis Successfully Thrombolysed with Low-Dose Ultra-Slow Infusion of Tissue Plasminogen Activator

    Directory of Open Access Journals (Sweden)

    Macit Kalçık

    2015-01-01

    Full Text Available Prosthetic valve thrombosis (PVT is one of the major causes of posthetic heart valve failure. Treatment modalities for this rare but life threatening complication include anticoagulation with heparin, thrombolytic therapy (TT and re-do valve surgery. Guidelines lack definitive class I recommendations due to lack of randomised controlled trials, and usually leave the choice of treatment to the clinician’s experience. Surgery is suggested as a first line strategy in most situations of left sided PVT; however, TT has been recently used with successful outcomes1-3. This report describes a patient with giant thrombus located on the prosthetic mitral valve, which was succesfully treated with ultraslow infusion (25 hours of low dose (25 mg tissue plasminogen activator (tPA under the guidance of two-dimensional (2D and real-time three-dimensional (RT -3D transesophageal echocardiography (TEE and fluoroscopy.

  13. Application of several variable-valve-timing concepts to an LHR engine

    Science.gov (United States)

    Morel, T.; Keribar, R.; Sawlivala, M.; Hakim, N.

    1987-01-01

    The paper discusses advantages provided by electronically controlled hydraulically activated valves (ECVs) when applied to low heat rejection (LHR) engines. The ECV concept provides additional engine control flexibility by allowing for a variable valve timing as a function of speed and load, or for a given transient condition. The results of a study carried out to assess the benefits that this flexibility can offer to an LHR engine indicated that, when judged on the benefits to BSFC, volumetric efficiency, and peak firing pressure, ECVs would provide only modest benefits in comparison to conventional valve profiles. It is noted, however, that once installed on the engine, the ECVs would permit a whole range of certain more sophisticated variable valve timing strategies not otherwise possible, such as high compression cranking, engine braking, cylinder cutouts, and volumetric efficiency timing with engine speed.

  14. Baseline MDCT findings after prosthetic heart valve implantation provide important complementary information to echocardiography for follow-up purposes

    Energy Technology Data Exchange (ETDEWEB)

    Sucha, Dominika; Mali, Willem P.T.M.; Habets, Jesse [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Chamuleau, Steven A.J. [University Medical Center Utrecht, Department of Cardiology, Utrecht (Netherlands); Symersky, Petr [VU Medical Center, Department of Cardiothoracic Surgery, Amsterdam (Netherlands); Meijs, Matthijs F.L. [Thoraxcentrum Twente, Medisch Spectrum Twente, Department of Cardiology, Enschede (Netherlands); Brink, Renee B.A. van den [Academic Medical Center, Department of Cardiology, Amsterdam (Netherlands); Mol, Bas A.J.M. de [Academic Medical Center, Department of Cardiothoracic Surgery, Amsterdam (Netherlands); Herwerden, Lex A. van [University Medical Center Utrecht, Department of Cardiothoracic Surgery, Utrecht (Netherlands); Budde, Ricardo P.J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands)

    2016-04-15

    Recent studies have proposed additional multidetector-row CT (MDCT) for prosthetic heart valve (PHV) dysfunction. References to discriminate physiological from pathological conditions early after implantation are lacking. We present baseline MDCT findings of PHVs 6 weeks post implantation. Patients were prospectively enrolled and TTE was performed according to clinical guidelines. 256-MDCT images were systematically assessed for leaflet excursions, image quality, valve-related artefacts, and pathological and additional findings. Forty-six patients were included comprising 33 mechanical and 16 biological PHVs. Overall, MDCT image quality was good and relevant regions remained reliably assessable despite mild-moderate PHV-artefacts. MDCT detected three unexpected valve-related pathology cases: (1) prominent subprosthetic tissue, (2) pseudoaneurysm and (3) extensive pseudoaneurysms and valve dehiscence. The latter patient required valve surgery to be redone. TTE only showed trace periprosthetic regurgitation, and no abnormalities in the other cases. Additional findings were: tilted aortic PHV position (n = 3), pericardial haematoma (n = 3) and pericardial effusion (n = 3). Periaortic induration was present in 33/40 (83 %) aortic valve patients. MDCT allowed evaluation of relevant PHV regions in all valves, revealed baseline postsurgical findings and, despite normal TTE findings, detected three cases of unexpected, clinically relevant pathology. (orig.)

  15. Identification of critical zones in the flow through prosthetic heart valves

    Science.gov (United States)

    Lopez, A.; Ledesma, R.; Zenit, R.; Pulos, G.

    2008-11-01

    The hemodynamic properties of prosthetic heart valves can cause blood damage and platelet activation due to the non- physiological flow patterns. Blood recirculation and elevated shear stresses are believed to be responsible for these complications. The objective of this study is to identify and quantify the conditions for which recirculation and high stress zones appear. We have performed a comparative study between a mechanical monoleaflet and biological valve. In order to generate the flow conditions to test the prosthesis, we have built a hydraulic circuit which reproduces the human systemic circulation, on the basis of the Windkessel model. This model is based on an electrical analogy which consists of an arterial resistance and compliance. Using PIV 3D- Stereo measurements, taken downstream from the prosthetic heart valves, we have reconstructed the full phase-averaged tridimensional velocity field. Preliminary results show that critical zones are more prominent in mechanical prosthesis, indicating that valves made with bio-materials are less likely to produce blood trauma. This is in accordance with what is generally found in the literature.

  16. System and method for controlling engine knock using electro-hydraulic valve actuation

    Science.gov (United States)

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  17. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  18. Risk-adjusted survival after tissue versus mechanical aortic valve replacement: a 23-year assessment.

    Science.gov (United States)

    Gaca, Jeffrey G; Clare, Robert M; Rankin, J Scott; Daneshmand, Mani A; Milano, Carmelo A; Hughes, G Chad; Wolfe, Walter G; Glower, Donald D; Smith, Peter K

    2013-11-01

    Detailed analyses of risk-adjusted outcomes after mitral valve surgery have documented significant survival decrements with tissue valves at any age. Several recent studies of prosthetic aortic valve replacement (AVR) also have suggested a poorer performance of tissue valves, although analyses have been limited to small matched series. The study aim was to test the hypothesis that AVR with tissue valves is associated with a lower risk-adjusted survival, as compared to mechanical valves. Between 1986 and 2009, primary isolated AVR, with or without coronary artery bypass grafting (CABG), was performed with currently available valve types in 2148 patients (1108 tissue valves, 1040 mechanical). Patients were selected for tissue valves to be used primarily in the elderly. Baseline and operative characteristics were documented prospectively with a consistent variable set over the entire 23-year period. Follow up was obtained with mailed questionnaires, supplemented by National Death Index searches. The average time to death or follow up was seven years, and follow up for survival was 96.2% complete. Risk-adjusted survival characteristics for the two groups were evaluated using a Cox proportional hazards model with stepwise selection of candidate variables. Differences in baseline characteristics between groups were (tissue versus mechanical): median age 73 versus 61 years; non-elective surgery 32% versus 28%; CABG 45% versus 35%; median ejection fraction 55% versus 55%; renal failure 6% versus 1%; diabetes 18% versus 7% (pvalves; however, after risk adjustment for the adverse profiles of tissue valve patients, no significant difference was observed in survival after tissue or mechanical AVR. Thus, the hypothesis did not hold, and risk-adjusted survival was equivalent, of course qualified by the fact that selection bias was evident. With selection criteria that employed tissue AVR more frequently in elderly patients, tissue and mechanical valves achieved similar survival

  19. Experimental Assessment of Flow Fields Associated with Heart Valve Prostheses Using Particle Image Velocimetry (PIV): Recommendations for Best Practices.

    Science.gov (United States)

    Raghav, Vrishank; Sastry, Sudeep; Saikrishnan, Neelakantan

    2018-03-12

    Experimental flow field characterization is a critical component of the assessment of the hemolytic and thrombogenic potential of heart valve substitutes, thus it is important to identify best practices for these experimental techniques. This paper presents a brief review of commonly used flow assessment techniques such as Particle image velocimetry (PIV), Laser doppler velocimetry, and Phase contrast magnetic resonance imaging and a comparison of these methodologies. In particular, recommendations for setting up planar PIV experiments such as recommended imaging instrumentation, acquisition and data processing are discussed in the context of heart valve flows. Multiple metrics such as residence time, local velocity and shear stress that have been identified in the literature as being relevant to hemolysis and thrombosis in heart valves are discussed. Additionally, a framework for uncertainty analysis and data reporting for PIV studies of heart valves is presented in this paper. It is anticipated that this paper will provide useful information for heart valve device manufacturers and researchers to assess heart valve flow fields for the potential for hemolysis and thrombosis.

  20. Heart valve bioprosthesis durability: a challenge to the new generation of porcine valves.

    Science.gov (United States)

    Valente, M; Minarini, M; Maizza, A F; Bortolotti, U; Thiene, G

    1992-01-01

    Long-term experience with first generation porcine valve xenografts enabled identification of the major limitations to their durability: (1) prosthetic-ventricular mismatch due to the high profile of the stent in patients with mitral stenosis and a small left ventricle; (2) high-pressure fixation with loss of natural collagen crimping in the fibrosa, and wash-out of proteoglycans in the spongiosa; (3) xenograft tissue autolysis, due to the long interval between animal slaughter and aortic valve removal fixation; (4) muscle shelf in the right coronary cusp, which created a gradient and could undergo accelerated calcification and/or spontaneous perforation with time; (5) a flexible polypropylene stent, which could creep or even fracture with consequent inward bending of the stent; (6) progressive time-related dystrophic calcification; (7) host fibrous tissue ingrowth. An awareness of these limitations stimulated technical modifications, which frequently brought about distinct improvements: (1) the reduction of the stent profile eliminated the problem of mismatch, but resulted in a higher tendency towards cusp prolapse and earlier commissural tearing; (2) natural collagen waviness, proteoglycans and cusp extensibility were preserved by employing low or even zero pressure during the fixation process; (3) earlier valve fixation enabled preservation of cell integrity; (4) a new orifice for small valves was designed by replacing the right muscular cusp, thus achieving less gradient and avoiding muscle-shelf-related complications; (5) polypropylene was replaced by Delrin as stent material; (6) calcium-retarding agents like T6 and toluidine blue were applied during commercial processing and storage in order to mitigate tissue mineralization.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Feasibility of pig and human-derived aortic valve interstitial cells seeding on fixative-free decellularized animal pericardium.

    Science.gov (United States)

    Santoro, Rosaria; Consolo, Filippo; Spiccia, Marco; Piola, Marco; Kassem, Samer; Prandi, Francesca; Vinci, Maria Cristina; Forti, Elisa; Polvani, Gianluca; Fiore, Gianfranco Beniamino; Soncini, Monica; Pesce, Maurizio

    2016-02-01

    Glutaraldehyde-fixed pericardium of animal origin is the elective material for the fabrication of bio-prosthetic valves for surgical replacement of insufficient/stenotic cardiac valves. However, the pericardial tissue employed to this aim undergoes severe calcification due to chronic inflammation resulting from a non-complete immunological compatibility of the animal-derived pericardial tissue resulting from failure to remove animal-derived xeno-antigens. In the mid/long-term, this leads to structural deterioration, mechanical failure, and prosthesis leaflets rupture, with consequent need for re-intervention. In the search for novel procedures to maximize biological compatibility of the pericardial tissue into immunocompetent background, we have recently devised a procedure to decellularize the human pericardium as an alternative to fixation with aldehydes. In the present contribution, we used this procedure to derive sheets of decellularized pig pericardium. The decellularized tissue was first tested for the presence of 1,3 α-galactose (αGal), one of the main xenoantigens involved in prosthetic valve rejection, as well as for mechanical tensile behavior and distensibility, and finally seeded with pig- and human-derived aortic valve interstitial cells. We demonstrate that the decellularization procedure removed the αGAL antigen, maintained the mechanical characteristics of the native pig pericardium, and ensured an efficient surface colonization of the tissue by animal- and human-derived aortic valve interstitial cells. This establishes, for the first time, the feasibility of fixative-free pericardial tissue seeding with valve competent cells for derivation of tissue engineered heart valve leaflets. © 2015 Wiley Periodicals, Inc.

  2. Outcome of double vs. single valve replacement for rheumatic heart disease

    International Nuclear Information System (INIS)

    Akhtar, R.P.; Abid, A.R.

    2010-01-01

    To compare the follow-up results of double valve replacement (DVR) i.e. mitral valve replacement (MVR) and aortic valve replacement (AVR) vs. isolated MVR or AVR for rheumatic heart disease. Study Design: An interventional qausi-experimental study. Prospective follow-up of 493 patients with mechanical heart valves was carried out using clinical assessment, international normalized ratio and echocardiography. Patients were divided into three groups: group I having MVR, group II having AVR and group III having DVR. Survival, time and causes of mortality, and frequency of valve thrombosis, haemorrhage and cerebrovascular haemorrhage was noted in the three groups and described as proportions. Actuarial survival was analyzed by Kaplan-Meier method. There were 493 with 287 (58.3%) in group I, 87 (17.6%) in group II and 119 (24.1%) in group III. Total follow-up was 2429.2 patient (pt)-years. Of 77 (15.6%) deaths, 19 (3.8%) were in-hospital and 58 (11.8%) were late. In-hospital mortality was highest 4 (4.6%) in group II followed by 5 (4.2%) group III and 10 (3.5%) group I. Late deaths were 39 (13.4%) in group I, 9 (10.2%) in group II and 10 (8.3%) in group III. The total actuarial survival was 84.4% with survival of 83%, 85.1%, 87.4% in groups I, II and III respectively. On follow-up valve thrombosis occurred in 12 (0.49%/pt-years) patients; 9 (0.67%/pt-years) group I, 1 (0.22%/pt-years) in group II and 2 (0.31%/pt-years) in group III. Severe haemorrhage occurred in 19 (0.78%/pt-years); 14 in (1.04%/pt-years) in group I, 3 (0.66%/pt-years) group II and 2 (0.31%/pt-years) in group III. Cerebrovascular accidents occurred in 34 (1.3%/pt-years); 26 (1.95%/pt-years) in group I and 4 in groups II (0.89%/pt-years) and III (0.62%/pt-years) each. In patients with rheumatic heart disease having combined mitral and aortic valve disease DVR should be performed whenever indicated as it has similar in-hospital mortality and better late survival as compared to isolated aortic or mitral

  3. Preparation of degradable porous structures based on 1,3-trimethylene carbonate and D,L-lactide (co)polymers for heart tissue engineering

    NARCIS (Netherlands)

    Pego, AP; Siebum, B; Van Luyn, MJA; Van Seijen, XJGY; Poot, AA; Grijpma, DW; Feijen, J

    2003-01-01

    Biodegradable porous scaffolds for heart tissue engineering were prepared from amorphous elastomeric (co)polymers of 1,3-trimethylene carbonate (TMC) and D,L-lactide (DLLA). Leaching of salt from compression-molded polymer-salt composites allowed the preparation of highly porous structures in a

  4. 3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/Gelatin Hydrogels

    Science.gov (United States)

    Duan, Bin; Hockaday, Laura A.; Kang, Kevin H.; Butcher, Jonathan T.

    2013-01-01

    Heart valve disease is a serious and growing public health problem for which prosthetic replacement is most commonly indicated. Current prosthetic devices are inadequate for younger adults and growing children. Tissue engineered living aortic valve conduits have potential for remodeling, regeneration, and growth, but fabricating natural anatomical complexity with cellular heterogeneity remain challenging. In the current study, we implement 3D bioprinting to fabricate living alginate/gelatin hydrogel valve conduits with anatomical architecture and direct incorporation of dual cell types in a regionally constrained manner. Encapsulated aortic root sinus smooth muscle cells (SMC) and aortic valve leaflet interstitial cells (VIC) were viable within alginate/gelatin hydrogel discs over 7 days in culture. Acellular 3D printed hydrogels exhibited reduced modulus, ultimate strength, and peak strain reducing slightly over 7-day culture, while the tensile biomechanics of cell-laden hydrogels were maintained. Aortic valve conduits were successfully bioprinted with direct encapsulation of SMC in the valve root and VIC in the leaflets. Both cell types were viable (81.4±3.4% for SMC and 83.2±4.0% for VIC) within 3D printed tissues. Encapsulated SMC expressed elevated alpha-smooth muscle actin when printed in stiff matrix, while VIC expressed elevated vimentin in soft matrix. These results demonstrate that anatomically complex, heterogeneously encapsulated aortic valve hydrogel conduits can be fabricated with 3D bioprinting. PMID:23015540

  5. Tissue Engineering Strategies for Myocardial Regeneration: Acellular Versus Cellular Scaffolds?

    Science.gov (United States)

    Domenech, Maribella; Polo-Corrales, Lilliana; Ramirez-Vick, Jaime E; Freytes, Donald O

    2016-12-01

    Heart disease remains one of the leading causes of death in industrialized nations with myocardial infarction (MI) contributing to at least one fifth of the reported deaths. The hypoxic environment eventually leads to cellular death and scar tissue formation. The scar tissue that forms is not mechanically functional and often leads to myocardial remodeling and eventual heart failure. Tissue engineering and regenerative medicine principles provide an alternative approach to restoring myocardial function by designing constructs that will restore the mechanical function of the heart. In this review, we will describe the cellular events that take place after an MI and describe current treatments. We will also describe how biomaterials, alone or in combination with a cellular component, have been used to engineer suitable myocardium replacement constructs and how new advanced culture systems will be required to achieve clinical success.

  6. Diagnostic evaluation of left-sided prosthetic heart valve dysfunction

    NARCIS (Netherlands)

    Habets, Jesse; Budde, Ricardo P.; Symersky, Petr; van den Brink, Renee B.; de Mol, Bas A.; Mali, Willem P.; van Herwerden, Lex A.; Chamuleau, Steven A.

    Prosthetic heart valve (PHV) dysfunction is a rare, but potentially life-threatening, complication. In clinical practice, PHV dysfunction poses a diagnostic dilemma. Echocardiography and fluoroscopy are the imaging techniques of choice and are routinely used in daily practice. However, these

  7. Diagnostic evaluation of left-sided prosthetic heart valve dysfunction

    NARCIS (Netherlands)

    Habets, Jesse; Budde, Ricardo P.; Symersky, Petr; van den Brink, Renee B.; de Mol, Bas A.; Mali, Willem P.; van Herwerden, Lex A.; Chamuleau, Steven A.

    2011-01-01

    Prosthetic heart valve (PHV) dysfunction is a rare, but potentially life-threatening, complication. In clinical practice, PHV dysfunction poses a diagnostic dilemma. Echocardiography and fluoroscopy are the imaging techniques of choice and are routinely used in daily practice. However, these

  8. Magnetic resonance imaging in patients with heart valve prostheses

    International Nuclear Information System (INIS)

    Bachmann, R.; Juengehuelsing, M.; Schicha, H.; Deutsch, H.J.; Sechtem, U.; Hilger, H.H.

    1991-01-01

    Artifical valve prostheses are often regarded as a contraindication for magnetic resonance imaging (MRI), although preliminary in vitro studies suggested, that patients with these metallic implants might safely undergo MR examination. This study reports on the experience with a group of 89 patients with 100 heart valve prostheses who were examined by spin-echo MR and gradient-echo MR. MR examination was performed in all patients without complications. The spin-echo sequence showed advantages in the depiction of anatomical structures like paravalvular abcesses. Anatomical structures adjacent to the artificial valve were clearly visivle and the metal components of the valves showes no or only small artifacts. Artifacts were accentuated when using gradient-echo sequences. Gradient-echo sequences provided valuable information regarding the presence of valvular insufficiency. Physiological valvular regurgitation was easy to differentiate from pathological paravalvular or transvalvular regurgitation. These results demonstrate that patients with artificial valve prostheses can be imaged by MR without risk and that prosthesis-induced artifacts do no interfere with image interpretation. (orig.) [de

  9. Effects of Pannus Formation on the Flow around a Bileaflet Mechanical Heart Valve

    Science.gov (United States)

    Kim, Woojin; Choi, Haecheon; Kweon, Jihoon; Yang, Dong Hyun; Kim, Namkug; Kim, Young-Hak

    2013-11-01

    A pannus, an abnormal layer of fibrovascular tissue observed on a bileaflet mechanical heart valve (BMHV), induces dysfunctions of BMHV such as the time delay and incomplete valve closing. We numerically simulate the flows around an intra-annular type BMHV model with and without pannus formation, respectively, and investigate the flow and bileaflet-movement modifications due to the pannus formation. Simulations are conducted at a physiological condition (mean flow rate of 5 l/min, cycle duration of 866 ms, and the Reynolds number of 7200 based on the inflow peak bulk velocity and inflow diameter). We model the pannus as an annulus with fixed outer radius and vary the inner radius of the pannus. Our preliminary results indicate that the flow field changes significantly and the bileaflet does not close properly due to the pannus formation. The detailed results will be given at the final presentation. Supported by the NRF Programs (NRF-2011-0028032, NRF-2012M2A8A4055647).

  10. Externally heated valve engine a new approach to piston engines

    CERN Document Server

    Kazimierski, Zbyszko

    2016-01-01

    This book reports on a novel approach for generating mechanical energy from different, external heat sources using the body of a typical piston engine with valves. By presenting simple yet effective numerical models, the authors show how this new approach, which combines existing internal combustion technology with a lubrication system, is able to offer an economic solution to the problem of mechanical energy generation in piston engines. Their results also show that a stable heat generation process can be guaranteed outside of the engine. The book offers a detailed report on physical and numerical models of 4-stroke and 2-stroke versions of the EHVE together with different models of heat exchange, valves and results of their simulations. It also delivers the test results of an engine prototype run in laboratory conditions. By presenting a novel theoretical framework and providing readers with extensive knowledge of both the advantages and challenges of the method, this book is expected to inspire academic re...

  11. Biomimetic material strategies for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Prabhakaran, Molamma P.; Venugopal, J.; Kai, Dan; Ramakrishna, Seeram

    2011-01-01

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  12. Biomimetic material strategies for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Venugopal, J. [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (Singapore); Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-04-08

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  13. Tissue Engineering: Toward a New Era of Medicine.

    Science.gov (United States)

    Shafiee, Ashkan; Atala, Anthony

    2017-01-14

    The goal of tissue engineering is to mitigate the critical shortage of donor organs via in vitro fabrication of functional biological structures. Tissue engineering is one of the most prominent examples of interdisciplinary fields, where scientists with different backgrounds work together to boost the quality of life by addressing critical health issues. Many different fields, such as developmental and molecular biology, as well as technologies, such as micro- and nanotechnologies and additive manufacturing, have been integral for advancing the field of tissue engineering. Over the past 20 years, spectacular advancements have been achieved to harness nature's ability to cure diseased tissues and organs. Patients have received laboratory-grown tissues and organs made out of their own cells, thus eliminating the risk of rejection. However, challenges remain when addressing more complex solid organs such as the heart, liver, and kidney. Herein, we review recent accomplishments as well as challenges that must be addressed in the field of tissue engineering and provide a perspective regarding strategies in further development.

  14. Thromboembolism and mechanical heart valves : A randomized study revisited

    NARCIS (Netherlands)

    Kuntze, CEE; Blackstone, EH; Ebels, T

    Background. This study was designed to revise and substantiate previous inferences, based on short-term follow-up, about differences in the incidence of anticoagulant-related events after heart valve replacement among patients who had been randomly assigned to receive either a Bjork-Shiley,

  15. Hydraulic engine valve actuation system including independent feedback control

    Science.gov (United States)

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  16. [Hydrodynamics of disk artificial heart valves with different design characteristics].

    Science.gov (United States)

    Dobrova, N B; Zaretskiĭ, Iu V

    1989-01-01

    Bench tests for 38 models of artificial heart valves (AHV) with different design parameters allowed us to decide in favour of the valves with reduced eccentricity (compared to the serial AHV of the EMAHV type) according to its resistance in the constant flow. Out of the compatibility checks of the design parameters tested it was concluded that the disk did not make the complete calculated angle when rotated. The dependence of AHV resistance on the disk rotation angle showed that there is no necessity to increase that angle more than 70 degrees for the mitral valve and more than 75 degrees for the aortic AHV.

  17. Non-cardiac surgery in patients with prosthetic heart valves: a 12 years experience.

    Science.gov (United States)

    Akhtar, Raja Parvez; Abid, Abdul Rehman; Zafar, Hasnain; Gardezi, Syed Javed Raza; Waheed, Abdul; Khan, Jawad Sajid

    2007-10-01

    To study patients with mechanical heart valves undergoing non-cardiac surgery and their anticoagulation management during these procedures. It was a cohort study. The study was conducted at the Department of Cardiac Surgery, Punjab Institute of Cardiology, Lahore and Department of Surgery, Services Institute of Medical Sciences, Lahore, from September 1994 to June 2006. Patients with mechanical heart valves undergoing non-cardiac surgical operation during this period, were included. Their anticoagulation was monitored and anticoagulation related complications were recorded. In this study, 507 consecutive patients with a mechanical heart valve replacement were followed-up. Forty two (8.28%) patients underwent non-cardiac surgical operations of which 24 (57.1%) were for abdominal and non-abdominal surgeries, 5 (20.8%) were emergency and 19 (79.2%) were planned. There were 18 (42.9%) caesarean sections for pregnancies. Among the 24 procedures, there were 7(29.1%) laparotomies, 7(29.1%) hernia repairs, 2 (8.3%) cholecystectomies, 2 (8.3%) hysterectomies, 1(4.1%) craniotomy, 1(4.1%) spinal surgery for neuroblastoma, 1(4.1%) ankle fracture and 1(4.1%) carbuncle. No untoward valve or anticoagulation related complication was seen during this period. Patients with mechanical valve prosthesis on life-long anticoagulation, if managed properly, can undergo any type of non-cardiac surgical operation with minimal risk.

  18. Age-related changes in biomechanical properties of transgenic porcine pulmonary and aortic conduits

    International Nuclear Information System (INIS)

    Wilczek, Piotr; Malota, Zbigniew; Lesiak, Anna; Niemiec-Cyganek, Aleksandra; Kubin, Barbara; Nozynski, Jerzy; Mzyk, Aldona; Gramatyka, Michalina; Slomski, Ryszard; Wilczek, Grazyna; Opiela, Jolanta

    2014-01-01

    The limitations associated with conventional valve prosthesis have led to a search for alternatives. One potential approach is tissue engineering. Most tissue engineering studies have described the biomechanical properties of heart valves derived from adult pigs. However, because one of the factors affecting the function of valve prosthesis after implantation is appropriate sizing for a given patient, it is important to evaluate the usefulness of a heart valve given the donor animal’s weight and age. The aim of this study was to evaluate how the age of a pig can influence the biomechanical and hemodynamical properties of porcine heart valve prosthesis after acellularization. Acellular porcine aortic and pulmonary valve conduits were used. Hearts were harvested from animals differing in weight and age. The biomechanical properties of the valves were then characterized using a uniaxial tensile test. Moreover, computer simulations based on the finite element method (FEM) were used to study the influence of biomechanical properties on the hemodynamic conditions. Studying biomechanical and morphological changes in porcine heart valve conduits according to the weight and age of the animals can be valuable for developing age-targeted therapy using tissue engineering techniques. (paper)

  19. Clinical case of acute chord rupture of the mitral valve posterior leaflet in older patient with comorbidities

    OpenAIRE

    Zhuravlyova, L.; Lopina, N.; Kuznetsov, I.; Lopin, D.; Kramarenko, I.; Sumanova, I.

    2015-01-01

    The article describes the etiologic role of various factors such as chronic rheumatic heart disease, bacterial endocarditis, aortic valve stenosis, hypertension, coronary heart disease, including acute myocardial infarction, degenerative disease of the valves, connective tissue diseases, chest trauma, systemic lupus erythematosus, con-genital heart disease which leading to the mitral valve chords rupture, gives the current classification of the nosology and also features of manifestation and ...

  20. Tomographic PIV behind a prosthetic heart valve

    Science.gov (United States)

    Hasler, D.; Landolt, A.; Obrist, D.

    2016-05-01

    The instantaneous three-dimensional velocity field past a bioprosthetic heart valve was measured using tomographic particle image velocimetry. Two digital cameras were used together with a mirror setup to record PIV images from four different angles. Measurements were conducted in a transparent silicone phantom with a simplified geometry of the aortic root. The refraction indices of the silicone phantom and the working fluid were matched to minimize optical distortion from the flow field to the cameras. The silicone phantom of the aorta was integrated in a flow loop driven by a piston pump. Measurements were conducted for steady and pulsatile flow conditions. Results of the instantaneous, ensemble and phase-averaged flow field are presented. The three-dimensional velocity field reveals a flow topology, which can be related to features of the aortic valve prosthesis.

  1. Pericardial tissue valves and Gore-Tex conduits as an alternative for right ventricular outflow tract replacement in children.

    Science.gov (United States)

    Allen, Bradley S; El-Zein, Chawki; Cuneo, Betina; Cava, Joseph P; Barth, Mary Jane; Ilbawi, Michel N

    2002-09-01

    There is still no perfect conduit for reconstruction of the right ventricular outflow tract (RVOT) in children. Homografts are not always available in the appropriate size, and degenerate in a few years. This study evaluates the pericardial valve with Gore-Tex conduit as an alternative for RVOT construction. From January 1, 1993, to September 30, 1999, a pericardial tissue valve was inserted in all patients undergoing RVOT reconstruction or pulmonary valve replacement (PVR) who were large enough to accommodate a tissue valve. In patients without a native main pulmonary artery, a new technique was used to construct an RV-PA conduit out of a flat sheet of Gore-Tex, as Dacron frequently leads to stenosis. Data were collected by retrospective review, follow-up echocardiograms, and assessment by a single cardiologist. There were 48 patients, 22 undergoing a PVR alone and 26 a RV-PA valved Gore-Tex conduit. Diagnosis included tetralogy of Fallot (n = 25); truncus arteriosis (n = 9); ventricular septal defect with PA (n = 5); DORV (n = 4); D-TGA with PS (n = 2); and 1 each IAA with sub AS, VSD with PI, and PS s/p Ross procedure. Patient age ranged from 3 to 33 years and 98% were reoperations. The valve sizes ranged from 19 to 33 mm and the median hospital length of stay was 4 days. There were 2 (4.2%) perioperative and 1 (2.1%) late deaths, none related to the valve or Gore-Tex conduit. At a follow-up of 15 to 86 months (mean 43 +/- 16 months), all remaining 45 patients are New York Heart Association class I, all valves are functional, and no patient has required valve or conduit replacement or revision; more importantly, echocardiogram revealed no significant valve or conduit stenosis (mean gradient 16 +/- 8 mm Hg) and no evidence of regurgitation or structural degeneration. A pericardial tissue valve and Gore-Tex conduit provides a reliable alternative for RVOT reconstruction in pediatric patients. It is readily available, molds in the limited retrosternal space, and

  2. Decellularized matrices for cardiovascular tissue engineering.

    Science.gov (United States)

    Moroni, Francesco; Mirabella, Teodelinda

    2014-01-01

    Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement of damaged vessels and valves has been practiced since the 1950's. Synthetic grafts, usually made of bio-inert materials, are long-lasting and mechanically relevant, but fail when it comes to "biointegration". Decellularized matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limitations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current state of the art relative to decellularization techniques and biological performance of decellularized heart, valves and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellularization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption.

  3. Anticoagulation in pregnant females with mechanical heart valves

    International Nuclear Information System (INIS)

    Shafique, H.; Chaudhry, A.; Ayyub, M.

    2006-01-01

    To evaluate the complications and outcome of anticoagulation therapy in pregnant females with valvular heart diseases. All pregnant females with prosthetic heart valves admitted in Armed Forces Institute of Cardiology from Jan 2004 to Dec 2004 were included in this study Basic demographic data including age, duration of pregnancy and complications observed were recorded. Warfarin was replaced with un-fractionated heparin (UFH) in first trimester and after that warfarin was continued with a targeted INR between 2.0-3.0. At 36 weeks warfarin was stopped and UFH was added; however, if patient went into spontaneous labour before this then immediate caesarian section was performed and UFH was restarted 4-6 hours after delivery along with oral warfarin. Out of 21 patients, sixteen (76.1%) had mitral valve diseases and five (23.9%) had both mitral and atrial. Majority (42.3%)of patients were in age group 26-30 years. Eleven (52.2%) reported in 9th month of gestation. Complications observed were hypertension (1), transient ischaemic attacks (1), pulmonary embolism (1), haemoptysis (1) and abortion (1). All patients, except one had successful completion of pregnancy. No case of foetal abnormality was seen. In 76% patients, daily dose of warfarin was <5 mg. Thrombo-prophylaxis in pregnancy with warfarin and UFH with an INR of 2.0-3.0 is effective in preventing thrombotic complications in females with mechanical valves without resulting in increase hemorrhagic complications. (author)

  4. Double Valve Replacement (Mitral and Aortic for Rheumatic Heart Disease: A 20-year experience with 300 patients.

    Directory of Open Access Journals (Sweden)

    Prashant Mishra

    2016-09-01

    Full Text Available Introduction: Rheumatic heart disease still remains one of the leading causes of congestive heart failure and death owing to valvular pathologies, in developing countries. Valve replacement still remains the treatment of choice in such patients.The aim of this study wasto analyze the postoperative outcome of  double valve replacement (Mitral and Aortic in patients of rheumatic heart disease. Materials and Methods: Between 1988 and 2008, 300 patients of rheumatic heart disease underwent double (Mitral and Aortic valve replacement with Starr Edwards valve or St Jude mechanical valve prosthesis were implanted. These patients were studied retrospectively for preoperative data and postoperative outcome including causes of early and late deaths and the data was analyzed statistically. Results: The 30-day hospital death rate was 11.3% andlate death occurred in 11.6%. Anticoagulant regimen was followed to maintain the target pro-thrombin time at 1.5 times the control value. The actuarial survival (exclusive of hospital mortality was 92.4%, 84.6%, and 84.4%, per year at 5, 10, and 20 years, respectively Conclusions: In view of the acknowledged advantageof superior durability, increased thromboresistance in our patient population, and its cost effectiveness the Starr-Edwards ball valve or St. Jude valve is the mechanical prosthesis of choice for advanced combined valvular disease. The low-intensity anticoagulant regimen has offered suffcient protection against thromboembolism as well as hemorrhage.

  5. MECHANICAL HEART-VALVE PROSTHESES - SOUND LEVEL AND RELATED COMPLAINTS

    NARCIS (Netherlands)

    LAURENS, RRP; WIT, HP; EBELS, T

    In a randomised study, we investigated the sound production of mechanical heart valve prostheses and the complaints related to this sound. The CarboMedics, Bjork-Shiley monostrut and StJude Medical prostheses were compared. A-weighted levels of the pulse-like sound produced by the prosthesis were

  6. Cardiac Hemodynamics in the Pathogenesis of Congenital Heart Disease and Aortic Valve Calcification

    Science.gov (United States)

    Nigam, Vishal

    2011-11-01

    An improved understanding of the roles of hemodynamic forces play in cardiac development and the pathogenesis of cardiac disease will have significant scientific and clinical impact. I will focus on the role of fluid dynamics in congenital heart disease and aortic valve calcification. Congenital heart defects are the most common form of birth defect. Aortic valve calcification/stenosis is the third leading cause of adult heart disease and the most common form of acquired valvular disease in developed countries. Given the high incidence of these diseases and their associated morbidity and mortality, the potential translational impact of an improved understanding of cardiac hemodynamic forces is very large. Division of Pediatric Cardiology, Rady Children's Hospital, San Diego

  7. Tangible nanocomposites with diverse properties for heart valve application

    Science.gov (United States)

    Vignesh Vellayappan, Muthu; Balaji, Arunpandian; Priyadarshini Subramanian, Aruna; Aruna John, Agnes; Jaganathan, Saravana Kumar; Murugesan, Selvakumar; Mohandas, Hemanth; Supriyanto, Eko; Yusof, Mustafa

    2015-06-01

    Cardiovascular disease claims millions of lives every year throughout the world. Biomaterials are used widely for the treatment of this fatal disease. With the advent of nanotechnology, the use of nanocomposites has become almost inevitable in the field of biomaterials. The versatile properties of nanocomposites, such as improved durability and biocompatibility, make them an ideal choice for various biomedical applications. Among the various nanocomposites, polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane, bacterial cellulose with polyvinyl alcohol, carbon nanotubes, graphene oxide and nano-hydroxyapatite nanocomposites have gained popularity as putative choices for biomaterials in cardiovascular applications owing to their superior properties. In this review, various studies performed utilizing these nanocomposites for improving the mechanical strength, anti-calcification potential and hemocompatibility of heart valves are reviewed and summarized. The primary motive of this work is to shed light on the emerging nanocomposites for heart valve applications. Furthermore, we aim to promote the prospects of these nanocomposites in the campaign against cardiovascular diseases.

  8. Tangible nanocomposites with diverse properties for heart valve application

    International Nuclear Information System (INIS)

    Vellayappan, Muthu Vignesh; Balaji, Arunpandian; Subramanian, Aruna Priyadarshini; John, Agnes Aruna; Jaganathan, Saravana Kumar; Supriyanto, Eko; Yusof, Mustafa; Murugesan, Selvakumar; Mohandas, Hemanth

    2015-01-01

    Cardiovascular disease claims millions of lives every year throughout the world. Biomaterials are used widely for the treatment of this fatal disease. With the advent of nanotechnology, the use of nanocomposites has become almost inevitable in the field of biomaterials. The versatile properties of nanocomposites, such as improved durability and biocompatibility, make them an ideal choice for various biomedical applications. Among the various nanocomposites, polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane, bacterial cellulose with polyvinyl alcohol, carbon nanotubes, graphene oxide and nano-hydroxyapatite nanocomposites have gained popularity as putative choices for biomaterials in cardiovascular applications owing to their superior properties. In this review, various studies performed utilizing these nanocomposites for improving the mechanical strength, anti-calcification potential and hemocompatibility of heart valves are reviewed and summarized. The primary motive of this work is to shed light on the emerging nanocomposites for heart valve applications. Furthermore, we aim to promote the prospects of these nanocomposites in the campaign against cardiovascular diseases. (review)

  9. Biomaterial Characterization of Off-the-Shelf Decellularized Porcine Pericardial Tissue for use in Prosthetic Valvular Applications.

    Science.gov (United States)

    Choe, Joshua A; Jana, Soumen; Tefft, Brandon J; Hennessy, Ryan S; Go, Jason; Morse, David; Lerman, Amir; Young, Melissa D

    2018-05-10

    Fixed pericardial tissue is commonly used for commercially available xenograft valve implants, and has proven durability, but lacks the capability to remodel and grow. Decellularized porcine pericardial tissue has the promise to outperform fixed tissue and remodel, but the decellularization process has been shown to damage the collagen structure and reduce mechanical integrity of the tissue. Therefore, a comparison of uniaxial tensile properties was performed on decellularized, decellularized-sterilized, fixed, and native porcine pericardial tissue, versus native valve leaflet cusps. The results of non-parametric analysis showed statistically significant differences (ptesting of the tissues showed no statistical difference between decellularized or decell-sterilized tissue compared to native cusps (p>0.05). SEM confirmed that valvular endothelial and interstitial cells colonized the decellularized pericardial surface when seeded and grown for 30 days in static culture. Collagen assays and TEM analysis showed limited reductions in collagen with processing; yet, GAG assays showed great reductions in the processed pericardium relative to native cusps. Decellularized pericardium had comparatively lower mechanical properties amongst the groups studied; yet, the stiffness was comparatively similar to the native cusps and demonstrated a lack of cytotoxicity. Suture retention, accelerated wear, and hydrodynamic testing of prototype decellularized and decell-sterilized valves showed positive functionality. Sterilized tissue could mimic valvular mechanical environment in vitro, therefore making it a viable potential candidate for off-the-shelf tissue engineered valvular applications. KEYTERMS Decellularization, Sterilization, Pericardial Tissue, Heart Valves, Tissue Engineering, Biomechanics. This article is protected by copyright. All rights reserved.

  10. The effect of varying degrees of stenosis on the characteristics of turbulent pulsatile flow through heart valves.

    Science.gov (United States)

    Bluestein, D; Einav, S

    1995-08-01

    Many problems and complications associated with heart valves are related to the dynamic behavior of the valve and the resultant unsteady flow patterns. An accurate depiction of the spatial and temporal velocity and rms distributions imparts better understanding of flow related valve complications, and may be used as a guideline in valve design. While the generalized correlation between increased turbulence level and the severity of the stenosis is well established, few studies addressed the issue of the intermittent nature of turbulence and its timing in the cardiac cycle, and almost none assessed the effect of a progressive stenosis on the flow characteristics through heart valves. In this experimental work we simulated the type of flow which is present in normal and stenosed valves and conducted a comprehensive investigation of valve hemodynamics, valvular turbulence and morphology under varying degrees of stenosis. The characteristics of valves and stenoses were simulated closely, to achieve the flow conditions that initiate turbulent flow conditions. Laser Doppler anemometry (LDA) measurements were carried out in a pulse duplicator system distal to trileaflet polyurethane prosthetic heart valves, installed at mitral and aortic positions. The effect of the degree of the stenosis was comparatively studied through the structure of the turbulent jets emerging from normal and stenotic heart valves. Maximum turbulence level was achieved during the decelerating phase and correlated to the severity of the stenosis, followed by relaminarization of the flow during the acceleration phase. The intermittent nature of the turbulence emphasized the importance of realizing the timing of the turbulence production and its spatial location for optimizing current valve designs. The plug flow through the normal aortic valve prosthesis was replaced by jet like behavior for a 65% stenosis, with the jet becoming narrower and stronger for a 90% stenosis. The morphology of the velocity

  11. Cardiac tissue engineering and regeneration using cell-based therapy

    Directory of Open Access Journals (Sweden)

    Alrefai MT

    2015-05-01

    Full Text Available Mohammad T Alrefai,1–3 Divya Murali,4 Arghya Paul,4 Khalid M Ridwan,1,2 John M Connell,1,2 Dominique Shum-Tim1,2 1Division of Cardiac Surgery, 2Division of Surgical Research, McGill University Health Center, Montreal, QC, Canada; 3King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; 4Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS, USA Abstract: Stem cell therapy and tissue engineering represent a forefront of current research in the treatment of heart disease. With these technologies, advancements are being made into therapies for acute ischemic myocardial injury and chronic, otherwise nonreversible, myocardial failure. The current clinical management of cardiac ischemia deals with reestablishing perfusion to the heart but not dealing with the irreversible damage caused by the occlusion or stenosis of the supplying vessels. The applications of these new technologies are not yet fully established as part of the management of cardiac diseases but will become so in the near future. The discussion presented here reviews some of the pioneering works at this new frontier. Key results of allogeneic and autologous stem cell trials are presented, including the use of embryonic, bone marrow-derived, adipose-derived, and resident cardiac stem cells. Keywords: stem cells, cardiomyocytes, cardiac surgery, heart failure, myocardial ischemia, heart, scaffolds, organoids, cell sheet and tissue engineering

  12. Pulmonary heart valve replacement using stabilized acellular xenogeneic scaffolds; effects of seeding with autologous stem cells

    Directory of Open Access Journals (Sweden)

    Harpa Marius Mihai

    2015-12-01

    Full Text Available Background: We hypothesized that an ideal heart valve replacement would be acellular valve root scaffolds seeded with autologous stem cells. To test this hypothesis, we prepared porcine acellular pulmonary valves, seeded them with autologous adipose derived stem cells (ADSCs and implanted them in sheep and compared them to acellular valves.

  13. Aortic Valve Stenosis

    Science.gov (United States)

    ... most cases, doctors don't know why a heart valve fails to develop properly, so it isn't something you could have prevented. Calcium buildup on the valve. With age, heart valves may accumulate deposits of calcium (aortic valve ...

  14. Towards a Tissue-Engineered Contractile Fontan-Conduit: The Fate of Cardiac Myocytes in the Subpulmonary Circulation.

    Directory of Open Access Journals (Sweden)

    Daniel Biermann

    Full Text Available The long-term outcome of patients with single ventricles improved over time, but remains poor compared to other congenital heart lesions with biventricular circulation. Main cause for this unfavourable outcome is the unphysiological hemodynamic of the Fontan circulation, such as subnormal systemic cardiac output and increased systemic-venous pressure. To overcome this limitation, we are developing the concept of a contractile extracardiac Fontan-tunnel. In this study, we evaluated the survival and structural development of a tissue-engineered conduit under in vivo conditions. Engineered heart tissue was generated from ventricular heart cells of neonatal Wistar rats, fibrinogen and thrombin. Engineered heart tissues started beating around day 8 in vitro and remained contractile in vivo throughout the experiment. After culture for 14 days constructs were implanted around the right superior vena cava of Wistar rats (n = 12. Animals were euthanized after 7, 14, 28 and 56 days postoperatively. Hematoxylin and eosin staining showed cardiomyocytes arranged in thick bundles within the engineered heart tissue-conduit. Immunostaining of sarcomeric actin, alpha-actin and connexin 43 revealed a well -developed cardiac myocyte structure. Magnetic resonance imaging (d14, n = 3 revealed no constriction or stenosis of the superior vena cava by the constructs. Engineered heart tissues survive and contract for extended periods after implantation around the superior vena cava of rats. Generation of larger constructs is warranted to evaluate functional benefits of a contractile Fontan-conduit.

  15. Vent-induced prosthetic leaflet thrombosis treated by open-heart valve-in-valve implantation.

    Science.gov (United States)

    Stamm, Christof; Pasic, Miralem; Buz, Semih; Hetzer, Roland

    2015-09-01

    A patient required emergency mitral valve replacement and extracorporeal membrane oxygenation (ECMO) support for acute biventricular failure. The left ventricular (LV) vent inserted via the left upper pulmonary vein induced thrombotic immobilization of a prosthetic valve leaflet, with significant intra-prosthesis regurgitation after ECMO explantation. Therefore, the left atrium was opened on the beating heart during conventional extracorporeal circulation, all prosthesis leaflets were excised and a 29-mm expandable Edwards Sapien prosthesis was inserted within the scaffold of the original prosthesis under direct vision. This case illustrates the benefits and potential problems of LV venting on ECMO support, and a rapid and safe way of replacing the prosthesis leaflets in a critical situation. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  16. Research on micro-structure and hemo-compatibility of the artificial heart valve surface

    International Nuclear Information System (INIS)

    Ye Xia; Shao Yunliang; Zhou Ming; Li Jian; Cai Lan

    2009-01-01

    In order to seek the method to improve the hemo-compatibility of artificial mechanical heart valve, the surface of rabbit's heart valve was observed using the scanning electron microscopy (SEM). The results showed that the dual-scale structure which consists of cobblestones-like structure of 8 μm in underside diameter and 3 μm in height, and the fine cilia of about 150 nm in diameter, was helpful to the hemo-compatibility of the heart valve. Therefore, the polydimethylsiloxane (PDMS) surface with hierarchical micro-structure was fabricated using femtosecond laser fabrication technique and soft lithography. At the same time, the tests of apparent contact angle and platelet adhesion on both smooth and textured PDMS surfaces were carried out to study their wettability and hemo-compatibility. The results demonstrated that the surface with textured structure displayed more excellent wettabililty and anti-coagulation property than that of smooth surface. The apparent contact angle of textured surface enhanced from 113.1 deg. to 163.6 deg. and the amount of adsorbed platelet on such surface was fewer, no distortion and no activation were found.

  17. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  18. Evaluation of prosthetic heart valves by transesophageal echocardiography: problems, pitfalls, and timing of echocardiography

    NARCIS (Netherlands)

    van den Brink, Renee B. A.

    2006-01-01

    Transesophageal echocardiography (TEE) is especially suitable for examination of prosthetic valves because of the proximity of the esophagus to the heart and absence of interference with lungs and ribs. This article reviews normal and abnormal morphologic characteristics of prosthetic valves such as

  19. Space Shuttle Orbital Maneuvering Subsystem (OMS) Engine Propellant Leakage Ball-Valve Shaft Seals

    Science.gov (United States)

    Lueders, Kathy; Buntain, Nick; Fries, Joseph (Technical Monitor)

    1999-01-01

    Evidence of propellant leakage across ball-valve shaft seals has been noted during the disassembly of five flight engines and one test engine at the NASA Lyndon B. Johnson Space Center, White Sands Test Facility. Based on data collected during the disassembly of these five engines, the consequences of propellant leakage across the ball-valve shaft seals can be divided into four primary areas of concern: Damage to the ball-valve pinion shafts, damage to sleeved bearings inside the ball-valve and actuator assemblies, degradation of the synthetic rubber o-rings used in the actuator assemblies, and corrosion and degradation to the interior of the actuator assemblies. The exact time at which leakage across the ball-valve shaft seals occurs has not been determined, however, the leakage most likely occurs during engine firings when, depending on the specification used, ball-valve cavity pressures range as high as 453 to 550 psia. This potential pressure range for the ball-valve cavities greatly exceeds the acceptance leakage test pressure of 332 psia. Since redesign and replacement of the ball-valve shaft seals is unlikely, the near term solution to prevent damage that occurs from shaft-seal leakage is to implement a routine overhaul and maintenance program for engines in the fleet. Recommended repair, verification, and possible preventative maintenance measures are discussed in the paper.

  20. Mitral Valve Stenosis

    Science.gov (United States)

    ... the left ventricle from flowing backward. A defective heart valve fails to either open or close fully. Risk factors Mitral valve stenosis is less common today than it once was because the most common cause, ... other heart valve problems, mitral valve stenosis can strain your ...

  1. Low intake valve lift in a port fuel-injected engine

    Energy Technology Data Exchange (ETDEWEB)

    Begg, S.M.; Hindle, M.P.; Cowell, T.; Heikal, M.R. [The Sir Harry Ricardo Laboratories, Centre for Automotive Engineering, Cockcroft Building, University of Brighton, Lewes Road, Brighton, East Sussex, BN2 4GJ (United Kingdom)

    2009-12-15

    A phenomenological study of the airflow and fuel spray interaction in a variable valve gasoline engine is presented. Experiments were performed in a steady-state flow rig fitted with a modified production cylinder head. The intake valve lift was varied manually. The mass flow rates of air and fuel through the test rig were adjusted to match typical engine operating conditions. Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) measurements of the airflow showed the breakdown of a single, forward tumbling vortex-like structure into a pair of high-speed, turbulent jets at low valve lifts. Two transitional phases in the flow at the valve gap were identified for valve lifts less than 1.5 mm and greater than 3 mm. At the lower limit, a jet flapping instability was recorded. A port fuel injector (PFI) spray was characterised in a quiescent, chamber and within the test rig. High Speed Photography (HSP) and Phase Doppler Anemometry (PDA) were used to measure the effects of varying valve lift upon the fuel droplet characteristics. The in-cylinder measurements showed a reduction in mean droplet diameter of up to 50%, close to the valve gap, for peak valve lifts of less than 3 mm. (author)

  2. Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development.

    Science.gov (United States)

    Lincoln, Joy; Kist, Ralf; Scherer, Gerd; Yutzey, Katherine E

    2007-05-01

    Heart valve structures derived from mesenchymal cells of the endocardial cushions (ECs) are composed of highly organized cell lineages and extracellular matrix. Sox9 is a transcription factor required for both early and late stages of cartilage formation that is also expressed in the developing valves of the heart. The requirements for Sox9 function during valvulogenesis and adult valve homeostasis in mice were examined by conditional inactivation of Sox9 using Tie2-cre and Col2a1-cre transgenes. Sox9(flox/flox);Tie2-cre mice die before E14.5 with hypoplastic ECs, reduced cell proliferation and altered extracellular matrix protein (ECM) deposition. Sox9(flox/flox);Col2a1-cre mice die at birth with thickened heart valve leaflets, reduced expression of cartilage-associated proteins and abnormal ECM patterning. Thickened valve leaflets and calcium deposits, characteristic of valve disease, are observed in heterozygous adult Sox9(flox/+);Col2a1-cre mice. Therefore, Sox9 is required early in valve development for expansion of the precursor cell population and later is required for normal expression and distribution of valvular ECM proteins. These data indicate that Sox9 is required for early and late stages of valvulogenesis and identify a potential role for Sox9 in valve disease mechanisms.

  3. Experimental study of physical properties of artificial materials for the development of the tissue-engineered valvular heart apparatus in comparison with biological analogs

    Science.gov (United States)

    Chiryatyeva, Aleksandra; Trebushat, Dmitry; Prokhorokhin, Aleksei; Khakhalkin, Vladimir; Andreev, Mark; Novokhreschenov, Aleksei; Kretov, Evgeny

    2017-12-01

    Cardiovascular diseases are the leading cause of death worldwide. Valvular heart disease often requires valve repair or replacement. Today, surgery uses xenograft—porcine or bovine pericardium. However, bioprosthetic valves do not ensure sufficient durability. We investigated 0.6% glutaraldehyde-treated porcine pericardium to define its properties. Using a tensile test stand, we studied characteristics of the polymeric material—expanded polytetrafluoroethylene (ePTFE)—and compared it to xenopericardium. The artificial material provides a better durability; it has higher elastic modulus and ultimate tensile strength. However, ePTFE samples demonstrated direction anisotropy due to extrusion features. It requires the enhancement of quality of the ePTFE sheet or investigation of other polymeric materials to find the adequate replacement for bioprosthetic heart valves.

  4. Internal combustion engine with rotary valve assembly having variable intake valve timing

    Science.gov (United States)

    Hansen, Craig N.; Cross, Paul C.

    1995-01-01

    An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

  5. Emergency heart valve replacement: an analysis of 170 patients.

    Science.gov (United States)

    Louw, J W; Kinsley, R H; Dion, R A; Colsen, P R; Girdwood, R W

    1980-05-01

    The results of 170 emergency heart valve procedures performed during a 4 1/2-year period were analyzed. Five pathological groups of patients were recognized: those with infective endocarditis (Group 1, 28 patients); acute rheumatic carditis (Group 2, 43 patients); previous valve operation (Group 3, 29 patients); acute-on-chronic cardiac disease (Group 4, 67 patients); and miscellaneous conditions (Group 5, 3 patients). Mitral, aortic, and multiple valve procedures were performed on 58, 65, and 44 patients, respectively. The most common functional lesion was regurgitation. Hospital mortality was highest in Groups 3 (34%) and 4 (31%). By contrast, among the hospital survivors, the highest rate of attrition was in Group 2. Myocardial failure was the predominat cause of death. In view of the hopeless prognosis without operation, the 52% overall 3-year actuarial survival is a gratifying salvage. Unnecessary procrastination can only jeopardize the prospects for surgical cure.

  6. Guide to prosthetic cardiac valves

    International Nuclear Information System (INIS)

    Morse, D.; Steiner, R.M.; Fernandez, J.

    1985-01-01

    This book contains 10 chapters. Some of the chapter titles are: The development of artificial heart valves: Introduction and historical perspective; The radiology of prosthetic heart valves; The evaluation of patients for prosthetic valve implantation; Pathology of cardiac valve replacement; and Bioengineering of mechanical and biological heart valve substitutes

  7. Fibrous composite material for textile heart valve design: in vitro assessment.

    Science.gov (United States)

    Amri, Amna; Laroche, Gaetan; Chakfe, Nabil; Heim, Frederic

    2018-04-17

    With over 150,000 implantations performed over the world, transcatheter aortic valve replacement (TAVR) has become a surgical technique, which largely competes with open surgery valve replacement for an increasing number of patients. The success of the procedure favors the research toward synthetic valve leaflet materials as an alternative to biological tissues, whose durability remains unknown. In particular, fibrous constructions have recently proven to be durable in vivo over a 6-month period of time in animal sheep models. Exaggerated fibrotic tissue formation remains, however, a critical issue to be addressed. This work investigates the design of a composite fibrous construction combining a woven polyethylene terephthalate (PET) layer and a non-woven PET mat, which are expected to provide, respectively, strength and appropriate topography toward limited fibrotic tissue ingrowth. For this purpose, a specific equipment has been developed to produce non-woven PET mats made from fibers with small diameter. These mats were assembled with woven PET substrates using various assembling techniques in order to obtain hybrid fibrous constructions. The physical and mechanical properties of the obtained materials were assessed and valve samples were manufactured to be tested in vitro for hydrodynamic performances. The results show that the composite fibrous construction is characterized by properties suitable for the valve leaflet function, but the durability of the assembling is however limited under accelerated cyclic loading.

  8. Novel imaging strategies for the Detection of Prosthetic Heart Valve Obstruction and Endocarditis

    NARCIS (Netherlands)

    Tanis, W.

    2014-01-01

    Valvular heart disease is accompanied by a high mortality/morbidity and often requires prosthetic heart valve (PHV) replacement in order to improve quality of life and survival. The major drawback of both mechanical and biological PHV implantations is development of dysfunction, which is a life

  9. Mechanostimulation Protocols for Cardiac Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Marco Govoni

    2013-01-01

    Full Text Available Owing to the inability of self-replacement by a damaged myocardium, alternative strategies to heart transplantation have been explored within the last decades and cardiac tissue engineering/regenerative medicine is among the present challenges in biomedical research. Hopefully, several studies witness the constant extension of the toolbox available to engineer a fully functional, contractile, and robust cardiac tissue using different combinations of cells, template bioscaffolds, and biophysical stimuli obtained by the use of specific bioreactors. Mechanical forces influence the growth and shape of every tissue in our body generating changes in intracellular biochemistry and gene expression. That is why bioreactors play a central role in the task of regenerating a complex tissue such as the myocardium. In the last fifteen years a large number of dynamic culture devices have been developed and many results have been collected. The aim of this brief review is to resume in a single streamlined paper the state of the art in this field.

  10. David valve-sparing aortic root replacement: equivalent mid-term outcome for different valve types with or without connective tissue disorder.

    Science.gov (United States)

    Kvitting, John-Peder Escobar; Kari, Fabian A; Fischbein, Michael P; Liang, David H; Beraud, Anne-Sophie; Stephens, Elizabeth H; Mitchell, R Scott; Miller, D Craig

    2013-01-01

    Although implicitly accepted by many that the durability of valve-sparing aortic root replacement in patients with bicuspid aortic valve disease and connective tissue disorders will be inferior, this hypothesis has not been rigorously investigated. From 1993 to 2009, 233 patients (27% bicuspid aortic valve, 40% Marfan syndrome) underwent Tirone David valve-sparing aortic root replacement. Follow-up averaged 4.7 ± 3.3 years (1102 patient-years). Freedom from adverse outcomes was determined using log-rank calculations. Survival at 5 and 10 years was 98.7% ± 0.7% and 93.5% ± 5.1%, respectively. Freedom from reoperation (all causes) on the aortic root was 92.2% ± 3.6% at 10 years; 3 reoperations were aortic valve replacement owing to structural valve deterioration. Freedom from structural valve deterioration at 10 years was 96.1% ± 2.1%. No significant differences were found in survival (P = .805, P = .793, respectively), reoperation (P = .179, P = .973, respectively), structural valve deterioration (P = .639, P = .982, respectively), or any other functional or clinical endpoints when patients were stratified by valve type (tricuspid aortic valve vs bicuspid aortic valve) or associated connective tissue disorder. At the latest echocardiographic follow-up (95% complete), 202 patients (94.8%) had none or trace aortic regurgitation, 10 (4.7%) mild, 0 had moderate to severe, and 1 (0.5%) had severe aortic regurgitation. Freedom from greater than 2+ aortic regurgitation at 10 years was 95.3% ± 2.5%. Six patients sustained acute type B aortic dissection (freedom at 10 years, 90.4% ± 5.0%). Tirone David reimplantation valve-sparing aortic root replacement in carefully selected young patients was associated with excellent clinical and echocardiographic outcome in patients with either a tricuspid aortic valve or bicuspid aortic valve. No demonstrable adverse influence was found for Marfan syndrome or connective tissue disorder on durability, clinical outcome

  11. Comparison of magnetic resonance imaging and Laser Doppler Anemometry velocity measurements downstream of replacement heart valves: implications for in vivo assessment of prosthetic valve function.

    Science.gov (United States)

    Fontaine, A A; Heinrich, R S; Walker, P G; Pedersen, E M; Scheidegger, M B; Boesiger, P; Walton, S P; Yoganathan, A P

    1996-01-01

    The non-invasive, in-vivo assessment of prosthetic valve function is compromised by the lack of accurate measurements of the transvalvular flow fields or hemodynamics by current techniques. Short echo time magnetic resonance imaging (MRI) may provide a method for the non-invasive, in vivo assessment of prosthetic valve function by accurately measuring changes in the transvalvular flow fields associated with normal and dysfunctional prosthetic valves. The objectives of these in vitro experiments were to investigate the potential for using MRI as a tool to measure the complex flow fields distal to replacement heart valves, and to assess the accuracy of MRI velocity measurements by comparison with Laser Doppler Anemometry (LDA), a gold standard. The velocity fields downstream of tilting disc, bileaflet, ball and cage, and pericardial tissue valves were measured using both three-component LDA and MRI phase velocity encoding under a steady flow rate of 22.8 l/min, simulating peak systolic flow. The valves were tested under normal and stenotic conditions to assess the MRI capabilities under a wide range of local flow conditions, velocities and turbulence levels. A new short echo time MRI technique (FAcE), which allowed velocity measurements in stenotic jets with high turbulence, was tested. Good overall agreement was obtained between the MRI velocity measurements and the LDA data. The MRI velocity measurements adequately reproduced the spatial structure of the flow fields. In most cases peak velocities were accurately measured to within 15%. The results indicate that the FAcE MRI method has the potential to be used as a diagnostic tool to assess prosthetic valve function.

  12. Subclinical leaflet thickening and stent frame geometry in self-expanding transcatheter heart valves

    DEFF Research Database (Denmark)

    Fuchs, Andreas; De Backer, Ole; Brooks, Matthew

    2017-01-01

    AIMS: This study aimed to assess the potential relationship between subclinical leaflet thickening and stent frame geometry in patients who underwent aortic valve replacement with a self-expanding transcatheter heart valve (THV). METHODS AND RESULTS: Seventy-five patients with a self-expanding THV....... CONCLUSIONS: Regional THV stent frame underexpansion is associated with an increased risk of leaflet thickening. Post-dilatation of self-expanding THV as well as a supra-annular valve position seem to reduce the occurrence of this phenomenon....

  13. Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure

    Science.gov (United States)

    Finosh, G.T.; Jayabalan, Muthu

    2012-01-01

    Regeneration of myocardium through regenerative therapy and tissue engineering is appearing as a prospective treatment modality for patients with end-stage heart failure. Focusing on this area, this review highlights the new developments and challenges in the regeneration of myocardial tissue. The role of various cell sources, calcium ion and cytokine on the functional performance of regenerative therapy is discussed. The evolution of tissue engineering and the role of tissue matrix/scaffold, cell adhesion and vascularisation on tissue engineering of cardiac tissue implant are also discussed. PMID:23507781

  14. Repeat transcatheter aortic valve implantation using a latest generation balloon-expandable device for treatment of failing transcatheter heart valves.

    Science.gov (United States)

    Schaefer, Andreas; Treede, Hendrik; Seiffert, Moritz; Deuschl, Florian; Schofer, Niklas; Schneeberger, Yvonne; Blankenberg, Stefan; Reichenspurner, Hermann; Schaefer, Ulrich; Conradi, Lenard

    2016-01-15

    Paravalvular leakage (PVL) is a known complication of transcatheter aortic valve implantation (TAVI) and is associated with poor outcome. Besides balloon-post-dilatation, valve-in-valve (ViV) procedures can be taken into consideration to control this complication. Herein we present initial experience with use of the latest generation balloon-expandable Edwards Sapien 3® (S3) transcatheter heart valve (THV) for treatment of failing THVs. Between 01/2014 and 12/2014 three patients (two male, age: 71-80 y, log EUROScore I: 11.89 - 32.63) with failing THVs were refered to our institution for further treatment. THV approach with secondary implantation of an S3 was chosen after mutual agreement of the local interdisciplinary heart team at an interval of 533-1119 days from the index procedure. The performed procedures consisted of: S3 in Sapien XT, JenaValve and CoreValve. Successful transfemoral implantation with significant reduction of PVL was achieved in all cases. No intraprocedural complications occurred regarding placement of the S3 with a postprocedural effective orifice area (EOA) of 1.5-2.5 cm(2) and pressure gradients of max/mean 14/6-36/16 mmHg. 30-day mortality was 0%. At the latest follow-up of 90-530 days, all patients are alive and well with satisfactory THV function. Regarding VARC-2 criteria one major bleeding and one TIA was reported. In the instance of moderate or severe aortic regurgitation after TAVI, S3 ViV deployment is an excellent option to reduce residual regurgitation to none or mild. For further assertions concerning functional outcomes long-term results have to be awaited.

  15. Combined PCI and minimally invasive heart valve surgery for high-risk patients.

    Science.gov (United States)

    Umakanthan, Ramanan; Leacche, Marzia; Petracek, Michael R; Zhao, David X; Byrne, John G

    2009-12-01

    Combined coronary artery valvular heart disease is a major cause of morbidity and mortality in the adult patient population. The standard treatment for such disease has been open heart surgery in which coronary artery bypass grafting (CABG) is performed concurrently with valve surgery using a median sternotomy and cardiopulmonary bypass. With the increasing complexity of patients referred to surgery, some patients may prove to be poor surgical candidates for combined valve and CABG surgery. In certain selected patients who fall into this category, valve surgery and percutaneous coronary intervention (PCI) have been considered a feasible alternative. Conventionally, valve surgery is performed in the cardiac surgical operating room, whereas PCI is carried out in the cardiac catheterization laboratory. Separation of these two procedural suites has presented a logistic limitation because it impedes the concomitant performance of both procedures in one setting. Hence, PCI and valve surgery usually have been performed as a "two-stage" procedure in two different operative suites, with the procedures being separated by hours, days, or weeks. Technologic advancements have made possible the construction of a "hybrid" procedural suite that combines the facilities of a cardiac surgical operating room with those of a cardiac catheterization laboratory. This design has enabled the concept of "one-stage" or "one-stop" PCI and valve surgery, allowing both procedures to be performed in a hybrid suite in one setting, separated by minutes. The advantages of such a method could prove to be multifold by enabling a less invasive surgical approach and improving logistics, patient satisfaction, and outcomes in selected patients.

  16. Joint Modelling of Longitudinal and Survival Data with Applications in Heart Valve Data

    NARCIS (Netherlands)

    E-R. Andrinopoulou (Eleni-Rosalina)

    2014-01-01

    markdownabstract__Abstract__ The heart is one of the most important organs in the entire human body. Specifically, it is a pump composed of muscle which pumps blood throughout the blood vessels to various parts of the body by repeated rhythmic contractions. The four heart valves determine the

  17. Nursing Casuistry in Heart Surgery : Plastic Mitral Valve

    OpenAIRE

    Břízová, Pavla

    2010-01-01

    Topic of this thesis is " Mitral Valvuloplasty". The thesis has been divided into theoretical and practical parts. The theoretical part begins with the classification of heart diseases. Main topic of this thesis is mitral insufficiency - its etiology and pathogenesis, clinical picture, therapy, the possibility of prosthetic valves and post surgery complications. Theoretical part also contains information about the preoperative and post-operative care at cardiac surgery department. The practic...

  18. On the feasibility of detecting flaws in artificial heart valves

    NARCIS (Netherlands)

    Lepelaars, E.S.A.M.; Ooijen, van W.D.R.; Tijhuis, A.G.

    2000-01-01

    Investigates the feasibility of detecting defects in certain artificial heart valves by determining the electromagnetic behavior of some simple models with the aid of thin-wire integral equations. The idea is to use the stationary current that occurs at late times after the excitation of a closed

  19. Minimally Invasive Implantation of HeartWare Assist Device and Simultaneous Tricuspid Valve Reconstruction Through Partial Upper Sternotomy.

    Science.gov (United States)

    Hillebrand, Julia; Hoffmeier, Andreas; Djie Tiong Tjan, Tonny; Sindermann, Juergen R; Schmidt, Christoph; Martens, Sven; Scherer, Mirela

    2017-05-01

    Left ventricular assist device (LVAD) implantation is a well-established therapy to support patients with end-stage heart failure. However, the operative procedure is associated with severe trauma. Third generation LVADs like the HeartWare assist device (HeartWare, Inc., Framingham, MA, USA) are characterized by enhanced technology despite smaller size. These devices offer new minimally invasive surgical options. Tricuspid regurgitation requiring valve repair is frequent in patients with the need for mechanical circulatory support as it is strongly associated with ischemic and nonischemic cardiomyopathy. We report on HeartWare LVAD implantation and simultaneous tricuspid valve reconstruction through minimally invasive access by partial upper sternotomy to the fifth left intercostal space. Four male patients (mean age 51.72 ± 11.95 years) suffering from chronic heart failure due to dilative (three patients) and ischemic (one patient) cardiomyopathy and also exhibiting concomitant tricuspid valve insufficiency due to annular dilation underwent VAD implantation and tricuspid valve annuloplasty. Extracorporeal circulation was established via the ascending aorta, superior vena cava, and right atrium. In all four cases the LVAD implantation and tricuspid valve repair via partial median sternotomy was successful. During the operative procedure, no conversion to full sternotomy was necessary. One patient needed postoperative re-exploration because of pericardial effusion. No postoperative focal neurologic injury was observed. New generation VADs are advantageous because of the possibility of minimally invasive implantation procedure which can therefore minimize surgical trauma. Concomitant tricuspid valve reconstruction can also be performed simultaneously through partial upper sternotomy. Nevertheless, minimally invasive LVAD implantation is a challenging operative technique. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals

  20. Experimental investigation of the fluid dynamic efficiency of a high performance multi-valve internal combustion engine during the intake phase: Influence of valve-valve interference phenomena

    Directory of Open Access Journals (Sweden)

    Algieri Angelo

    2013-01-01

    Full Text Available The purpose of the present work is the analysis of the fluid dynamic behavior of a high performance internal combustion engine during the intake phase. In particular, a four-valve spark-ignition engine has been characterized at the steady flow rig. Dimensionless discharge coefficients have been used to define the global fluid dynamic efficiency of the intake system, while the Laser Doppler Anemometry (LDA technique has been employed to evaluate the mean flow in the valve curtain area and to characterise the interference phenomena between the two intake valves. The investigation has shown the significant influence of the valve lift on the volumetric efficiency of the intake apparatus. Moreover, the experimental analysis has highlighted that the valve-valve interference phenomena have a relevant impact on the head breathability, on the flow development within the combustion chamber and on the velocity standard deviations.

  1. Human prenatal progenitors for pediatric cardiovascular tissue engineering

    NARCIS (Netherlands)

    Schmidt, D.

    2007-01-01

    Pediatric cardiovascular tissue engineering is a promising strategy to overcome the lack of autologous, growing replacements for the early repair of congenital malformations in order to prevent secondary damage to the immature heart. Therefore, cells should be harvested during pregnancy as soon as

  2. Multivariate Normal Tissue Complication Probability Modeling of Heart Valve Dysfunction in Hodgkin Lymphoma Survivors

    International Nuclear Information System (INIS)

    Cella, Laura; Liuzzi, Raffaele; Conson, Manuel; D’Avino, Vittoria; Salvatore, Marco; Pacelli, Roberto

    2013-01-01

    Purpose: To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced asymptomatic heart valvular defects (RVD). Methods and Materials: Fifty-six patients treated with sequential chemoradiation therapy for Hodgkin lymphoma (HL) were retrospectively reviewed for RVD events. Clinical information along with whole heart, cardiac chambers, and lung dose distribution parameters was collected, and the correlations to RVD were analyzed by means of Spearman's rank correlation coefficient (Rs). For the selection of the model order and parameters for NTCP modeling, a multivariate logistic regression method using resampling techniques (bootstrapping) was applied. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). Results: When we analyzed the whole heart, a 3-variable NTCP model including the maximum dose, whole heart volume, and lung volume was shown to be the optimal predictive model for RVD (Rs = 0.573, P<.001, AUC = 0.83). When we analyzed the cardiac chambers individually, for the left atrium and for the left ventricle, an NTCP model based on 3 variables including the percentage volume exceeding 30 Gy (V30), cardiac chamber volume, and lung volume was selected as the most predictive model (Rs = 0.539, P<.001, AUC = 0.83; and Rs = 0.557, P<.001, AUC = 0.82, respectively). The NTCP values increase as heart maximum dose or cardiac chambers V30 increase. They also increase with larger volumes of the heart or cardiac chambers and decrease when lung volume is larger. Conclusions: We propose logistic NTCP models for RVD considering not only heart irradiation dose but also the combined effects of lung and heart volumes. Our study establishes the statistical evidence of the indirect effect of lung size on radio-induced heart toxicity

  3. The new BMW four-cylinder four-valve engine. Der neue BMW-Vierzylinder-Vierventilmotor

    Energy Technology Data Exchange (ETDEWEB)

    Bender, K.H.; Ederer, G.; Frerk, J.; Kramer, F.

    1989-09-01

    BMW offers with the 318is a new sporty 3 series model since September 1989. This new BMW is equipped with a new 1.8-l-four-valve engine, which had been developed on the basis of the 1.8-l-two-valve engine. Technical features are two overhead camshafts driven by a duplex chain drive, bucket tappet control with integrated hydraulic valve clearance compensation and a distributorless direct fire ignition system. In addition to the increase of the maximum output to 100 kW the advantages of the four-valve-technique have been used to achieve a remarkable low end troque characteristic. The maximum bmep of 1.2 kJ/dm{sup 3} (corresponds to172 Nm) at an engine speed of 4600 rpm is a notable level for a catalitic converter model. Extraordinary development work in the lay out of mixture preparation, combustion process and exhaust gas treatment in general resulted in more favourable emissions and fuel consumption figures compared with two valve engines. (orig.).

  4. Mechanical stimulation in the engineering of heart muscle.

    Science.gov (United States)

    Liaw, Norman Yu; Zimmermann, Wolfram-Hubertus

    2016-01-15

    Recreating the beating heart in the laboratory continues to be a formidable bioengineering challenge. The fundamental feature of the heart is its pumping action, requiring considerable mechanical forces to compress a blood filled chamber with a defined in- and outlet. Ventricular output crucially depends on venous loading of the ventricles (preload) and on the force generated by the preloaded ventricles to overcome arterial blood pressure (afterload). The rate of contraction is controlled by the spontaneously active sinus node and transmission of its electrical impulses into the ventricles. The underlying principles for these physiological processes are described by the Frank-Starling mechanism and Bowditch phenomenon. It is essential to consider these principles in the design and evaluation of tissue engineered myocardium. This review focuses on current strategies to evoke mechanical loading in hydrogel-based heart muscle engineering. Copyright © 2015. Published by Elsevier B.V.

  5. Optical Study of Flow and Combustion in an HCCI Engine with Negative Valve Overlap

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Trevor S [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Xu Hongming [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Richardson, Steve [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Wyszynski, Miroslaw L [University of Birmingham, Edgbaston, Birmingham. B15 2TT (United Kingdom); Megaritis, Thanos [University of Birmingham, Edgbaston, Birmingham. B15 2TT (United Kingdom)

    2006-07-15

    One of the most widely used methods to enable Homogeneous Charge Compression Ignition (HCCI) combustion is using negative valve overlapping to trap a sufficient quantity of hot residual gas. The characteristics of air motion with specially designed valve events having reduced valve lift and durations associated with HCCI engines and their effect on subsequent combustion are not yet fully understood. In addition, the ignition process and combustion development in such engines are very different from those in conventional spark-ignition or diesel compression ignition engines. Very little data has been reported concerning optical diagnostics of the flow and combustion in the engine using negative valve overlapping. This paper presents an experimental investigation into the in-cylinder flow characteristics and combustion development in an optical engine operating in HCCI combustion mode. PIV measurements have been taken under motored engine conditions to provide a quantitative flow characterisation of negative valve overlap in-cylinder flows. The ignition and combustion process was imaged using a high resolution charge coupled device (CCD) camera and the combustion imaging data was supplemented by simultaneously recorded in-cylinder pressure data which assisted the analysis of the images. It is found that the flow characteristics with negative valve overlapping are less stable and more valve event driven than typical spark ignition in-cylinder flows, while the combustion initiation locations are not uniformly distributed.

  6. What Is Heart Valve Surgery?

    Science.gov (United States)

    ... working correctly. Most valve replacements involve the aortic Tricuspid valve and mitral valves. The aortic valve separates ... where it shouldn’t. This is called incompetence, insufficiency or regurgitation. • Prolapse — mitral valve flaps don’t ...

  7. What Is Heart Valve Disease?

    Science.gov (United States)

    ... and replacing it with a man-made or biological valve. Biological valves are made from pig, cow, or human ... the valve. Man-made valves last longer than biological valves and usually don’t have to be ...

  8. Tissue and Organ 3D Bioprinting.

    Science.gov (United States)

    Xia, Zengmin; Jin, Sha; Ye, Kaiming

    2018-02-01

    Three-dimensional (3D) bioprinting enables the creation of tissue constructs with heterogeneous compositions and complex architectures. It was initially used for preparing scaffolds for bone tissue engineering. It has recently been adopted to create living tissues, such as cartilage, skin, and heart valve. To facilitate vascularization, hollow channels have been created in the hydrogels by 3D bioprinting. This review discusses the state of the art of the technology, along with a broad range of biomaterials used for 3D bioprinting. It provides an update on recent developments in bioprinting and its applications. 3D bioprinting has profound impacts on biomedical research and industry. It offers a new way to industrialize tissue biofabrication. It has great potential for regenerating tissues and organs to overcome the shortage of organ transplantation.

  9. A study of applying variable valve timing to highly rated diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C R; Leonard, H J [comps.; Brunel Univ., Uxbridge (United Kingdom); Charlton, S J [comp.; Bath Univ. (United Kingdom)

    1992-10-01

    The main objective of the research was to use Simulation Program for Internal Combustion Engines (SPICE) to quantify the potential offered by Variable Valve Timing (VVT) in improving engine performance. A model has been constructed of a particular engine using SPICE. The model has been validated with experimental data, and it has been shown that accurate predictions are made when the valve timing is changed. (author)

  10. Recommendations for the anticoagulation of pregnant patients with mechanical heart valves

    NARCIS (Netherlands)

    Schapkaitz, Elise; Jacobson, Barry Frank; Manga, Pravin; Chitsike, Rufaro Saeed; Benade, Estee; Haas, Sylvia; Buller, Harry R.

    2015-01-01

    The management of pregnant patients with mechanical heart valves remains challenging because there are no large randomised studies to provide guidelines for effective anticoagulant therapy. Both vitamin K antagonists and heparins may be associated with maternal and foetal adverse events. The

  11. Prosthetic valves in adult patients with congenital heart disease : Rationale and design of the Dutch PROSTAVA study

    NARCIS (Netherlands)

    Freling, H. G.; van Slooten, Y. J.; van Melle, J. P.; Mulder, B. J. M.; van Dijk, A. P. J.; Hillege, H. L.; Post, M. C.; Sieswerda, G. Tj; Jongbloed, M. R. M.; Willems, T. P.; Pieper, P. G.

    2012-01-01

    Data on long-term complications in adult patients with congenital heart disease (ACHD) and a prosthetic valve are scarce. Moreover, the influence of prosthetic valves on quality of life (QoL) and functional outcome in ACHD patients with prosthetic valves has not been studied. The primary objective

  12. Engineering and maintenance applied to safety-related valves in nuclear power plants

    International Nuclear Information System (INIS)

    Verdu, M. F.; Perez-Aranda, J.

    2014-01-01

    Nuclear Division in Iberdrola engineering and Construction has a team with extensive experience on engineering and services works related to valves. Also, this team is linked to UNESA as Technical support and Reference Center. Iberdrola engineering and construction experience in nuclear power plants valves, gives effective response to engineering and maintenance works that can be demanded in a nuclear power plant and it requires a high degree of qualification and knowledge both in Operation and Outages. (Author)

  13. Single leg separation prevalence among explanted Björk-Shiley prosthetic heart valves.

    Science.gov (United States)

    Blot, William J; Signorello, Lisa B; Cohen, Sarah S; Ibrahim, Michel A

    2007-11-01

    Björk-Shiley convexo-concave (BSCC) prosthetic heart valves are believed to have been implanted in over 86,000 patients worldwide. Limited data are available on the prevalence of single leg separations (SLS) of the valves' outlet struts, a potential precursor to complete valve fracture. Data maintained by the manufacturer, including results of examinations for SLS in explanted valves, were merged with available information on the characteristics of the valve. The prevalence of SLS in the examined valves was calculated according to valve angle, size, position, and study. Among 343 examined valves, the overall prevalence of SLS was 8.2%, but this varied significantly by valve size, being three-fold higher among 29+ mm valves than among smaller valves, with statistically non-significantly higher prevalences among mitral than aortic, and among 70 degrees than 60 degrees valves. By applying the size, position and angle-specific SLS prevalences to the worldwide valve distribution, it is estimated that SLS may be present in 6.8% (95% confidence limits 4.1-9.4%) of all BSCC valves. These findings suggest that SLS may affect between 820 and 1,880 of the almost 20,000 BSCC valves among surviving patients worldwide. Such estimates help frame the context for potential patient screenings, should imaging and acoustic techniques to detect SLS become available.

  14. [Ministernotomy: a preliminary experience in heart valve surgery].

    Science.gov (United States)

    Kovarević, Pavle; Mihajlović, Bogoljub; Velicki, Lazar; Redzek, Aleksandar; Ivanović, Vladimir; Komazec, Nikola

    2011-05-01

    The last decade of the 20th century brought up a significant development in the field of minimally invasive approaches to the valvular heart surgery. Potential benefits of this method are: good esthetic appearance, reduced pain, reduction of postoperative hemorrhage and incidence of surgical site infection, shorter postoperative intensive care units (ICU) period and overall in-hospital period. Partial upper median stemotomy currently presents as a state-of-the art method for minimally invasive surgery of cardiac valves. The aim of this study was to report on initial experience in application of this surgical method in the surgery of mitral and aortic valves. The study was designed and conducted in a prospective manner and included all the patients who underwent minimally invasive cardiac valve surgery through the partial upper median stemotomy during the period November 2008 - August 2009. We analyzed the data on mean age of patients, mean extubation time, mean postoperative drainage, mean duration of hospital stay, as well as on occurance of postoperative complications (postoperative bleeding, surgical site infection and cerebrovascular insult). During the observed period, in the Institute for Cardiovascular Diseases of Vojvodina, Clinic for Cardiovascular Surgery, 17 ministernotomies were performed, with 14 aortic valve replacements (82.35%) and 3 mitral valve replacements (17.65%). Mean age of the patients was 60.78 +/- 12.99 years (64.71% males, 35.29% females). Mean extubation time was 12.53 +/- 8.87 hours with 23.5% of the patients extubated in less than 8 hours. Mean duration of hospital stay was 12.35 +/- 10.17 days (in 29.4% of the patients less than 8 days). Mean postoperative drainage was 547.06 +/- 335.2 mL. Postoperative complications included: bleeding (5.88%) and cerebrovascular insult (5.88%). One patient (5.88%) required conversion to full stemotomy. Partial upper median sternotomy represents the optimal surgical method for the interventions on the

  15. [Pannus Formation Six-years after Aortic and Mitral Valve Replacement with Tissue Valves;Report of a Case].

    Science.gov (United States)

    Nakamura, Makoto; Muraoka, Arata; Aizawa, Kei; Akutsu, Hirohiko; Kurumisawa, Soki; Misawa, Yoshio

    2015-07-01

    A 77-year-old man presented with exertional dyspnea. He had undergone aortic and mitral valve replacement with tissue valves 6-years earlier. The patient's hemoglobin level was 9.8 g/dl and serum aspartate aminotransferase (70 mU/ml) and lactate dehydrogenase (1,112 mU/ml) were elevated. Echocardiography revealed stenosis of the prosthetic valve in the aortic position with peak flow velocity of 3.8 m/second and massive mitral regurgitation. The patient underwent repeat valve replacement. Pannus formation around both implanted valves was observed. The aortic valve orifice was narrowed by the pannus, and one cusp of the prosthesis in the mitral position was fixed and caused the regurgitation, but they were free from cusp laceration or calcification. The patient's postoperative course was uneventful, and he continues to do well 14 months after surgery.

  16. Recurrent protein-losing enteropathy and tricuspid valve insufficiency in a transplanted heart: a causal relationship?

    Science.gov (United States)

    Aggarwal, Sanjeev; Delius, Ralph E; Walters, Henry L; L'Ecuyer, Thomas J

    2012-01-01

    This case report describes a toddler who developed a protein-losing enteropathy (PLE) 4 years after orthotopic heart transplantation (OHT). He was born with a hypoplastic left heart syndrome for which he underwent a successful Norwood procedure, a Hemi-Fontan palliation, and a Fontan palliation at 18 months of age. Fifteen months following the Fontan operation, he developed a PLE and Fontan failure requiring OHT. Four years after OHT, he developed a severe tricuspid regurgitation and a PLE. His PLE improved after tricuspid valve replacement. It is now 2 years since his tricuspid valve replacement and he remains clinically free of ascites and peripheral edema with a normal serum albumin level. His prosthetic tricuspid valve is functioning normally. © 2011 Wiley Periodicals, Inc.

  17. Arteriosclerotic changes in the myocardium, lung, and kidney in dogs with chronic congestive heart failure and myxomatous mitral valve disease

    DEFF Research Database (Denmark)

    Falk, Bo Torkel; Jönsson, Lennart; Olsen, Lisbeth Høier

    2006-01-01

    Background: The occurrence of small vessel arteriosclerosis in the myocardium, kidney, and lung in dogs with naturally occurring myxomatous mitral valve disease has not been previously investigated systematically. Methods: Twenty-one dogs with naturally occurring congestive heart failure and 21 age......-matched, sex-matched, and weight-matched control dogs underwent extensive pathological and histopathological examination. Morphometry and scoring of tissue sections were used to measure arterial narrowing and fibrosis in the myocardium, kidney, and lung; and intimal thickness and plaque formation in the aorta...... and pulmonary artery. Results: Dogs with congestive heart failure had significantly more arterial narrowing in the left ventricle (Pdogs. However...

  18. Human engineered heart tissue as a model system for drug testing.

    Science.gov (United States)

    Eder, Alexandra; Vollert, Ingra; Hansen, Arne; Eschenhagen, Thomas

    2016-01-15

    Drug development is time- and cost-intensive and, despite extensive efforts, still hampered by the limited value of current preclinical test systems to predict side effects, including proarrhythmic and cardiotoxic effects in clinical practice. Part of the problem may be related to species-dependent differences in cardiomyocyte biology. Therefore, the event of readily available human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) has raised hopes that this human test bed could improve preclinical safety pharmacology as well as drug discovery approaches. However, hiPSC-CM are immature and exhibit peculiarities in terms of ion channel function, gene expression, structural organization and functional responses to drugs that limit their present usefulness. Current efforts are thus directed towards improving hiPSC-CM maturity and high-content readouts. Culturing hiPSC-CM as 3-dimensional engineered heart tissue (EHT) improves CM maturity and anisotropy and, in a 24-well format using silicone racks, enables automated, multiplexed high content readout of contractile function. This review summarizes the principal technology and focuses on advantages and disadvantages of this technology and its potential for preclinical drug screening. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Dynamic behavior of prosthetic aortic tissue valves as viewed by high-speed cinematography.

    Science.gov (United States)

    Rainer, W G; Christopher, R A; Sadler, T R; Hilgenberg, A D

    1979-09-01

    Using a valve testing apparatus of our own design and with a high-speed (600 to 800 frames per second) 16 mm movie camera, films were made of Hancock porcine, Carpentier-Edwards porcine, and Ionescu-Shiley bovine pericardial valves mounted in the aortic position and cycled under physiological conditions at 72 to 100 beats per minute. Fresh and explanted valves were observed using saline or 36.5% glycerol as the pumping solution. When fresh valves were studied using saline solution as the pumpint fluid, the Hancock and Carpentier-Edwards porcine valves showed high-frequency leaflet vibration, which increased in frequency with higher cycling rates. Abnormal leaflet motion was decreased when glycerol was used as the blood analogue. The Ionescu-Shiley bovine pericardial valve did not show abnormal leaflet motion under these conditions. Conclusions drawn from tissue valve testing studies that use excessively high pulsing rates and pressures (accelerated testing) and saline or water as pumping solutions cannot be transposed to predict the fate of tissue valves in a clinical setting.

  20. Calcific Aortic Valve Disease Is Associated with Layer-Specific Alterations in Collagen Architecture.

    Directory of Open Access Journals (Sweden)

    Heather N Hutson

    Full Text Available Disorganization of the valve extracellular matrix (ECM is a hallmark of calcific aortic valve disease (CAVD. However, while microarchitectural features of the ECM can strongly influence the biological and mechanical behavior of tissues, little is known about the ECM microarchitecture in CAVD. In this work, we apply advanced imaging techniques to quantify spatially heterogeneous changes in collagen microarchitecture in CAVD. Human aortic valves were obtained from individuals between 50 and 75 years old with no evidence of valvular disease (healthy and individuals who underwent valve replacement surgery due to severe stenosis (diseased. Second Harmonic Generation microscopy and subsequent image quantification revealed layer-specific changes in fiber characteristics in healthy and diseased valves. Specifically, the majority of collagen fiber changes in CAVD were found to occur in the spongiosa, where collagen fiber number increased by over 2-fold, and fiber width and density also significantly increased. Relatively few fibrillar changes occurred in the fibrosa in CAVD, where fibers became significantly shorter, but did not otherwise change in terms of number, width, density, or alignment. Immunohistochemical staining for lysyl oxidase showed localized increased expression in the diseased fibrosa. These findings reveal a more complex picture of valvular collagen enrichment and arrangement in CAVD than has previously been described using traditional analysis methods. Changes in fiber architecture may play a role in regulating the pathobiological events and mechanical properties of valves during CAVD. Additionally, characterization of the ECM microarchitecture can inform the design of fibrous scaffolds for heart valve tissue engineering.

  1. Rheumatic heart disease- a study of surgically excised cardiac valves and biopsies

    International Nuclear Information System (INIS)

    Khalil Ullah; Badsha, S.; Khan, A.; Kiani, M.R.; Ahmed, S.A.

    2002-01-01

    Objective: To examine the prevalence, age, sex and topographical distribution of the rheumatic heart diseases and its morphology. Design: A cross sectional descriptive study. Place and Duration of Study: Pathology Department, Army Medical College, Rawalpindi between 1981-1990. Patients and Methods: Five hundred and twenty six surgically excised cardiac valves and biopsies were studied in the laboratory in the light of clinical data. Results: Carditis constituted 87.4 % of the cardiac valvular disease with 23.5% active and 71% healed rheumatic lesions. About 5.5% had morphological appearances consistent with RHD. The lesions affected mitral valves (37.0%), aortic valve (22.1%), mitral and aortic valves together (21.0%) and atrial appendages (19.0%). Presentation was mostly as mitral stenosis either isolated (49.2% ) or combined (31.0%), aortic stenosis (11.7% ) and aortic incompetence with regurgitation (7.3%). Conclusion: Rheumatic carditis constitutes a significant proportion of cardiac valvular disease and affects comparatively younger age, with slight male preponderance and primarily affects mitral valve. (author)

  2. Fabrication of myogenic engineered tissue constructs.

    Science.gov (United States)

    Pacak, Christina A; Cowan, Douglas B

    2009-05-01

    Despite the fact that electronic pacemakers are life-saving medical devices, their long-term performance in pediatric patients can be problematic owing to the restrictions imposed by a child's small size and their inevitable growth. Consequently, there is a genuine need for innovative therapies designed specifically for pediatric patients with cardiac rhythm disorders. We propose that a conductive biological alternative consisting of a collagen-based matrix containing autologously-derived cells could better adapt to growth, reduce the need for recurrent surgeries, and greatly improve the quality of life for these patients. In the present study, we describe a procedure for incorporating primary skeletal myoblast cell cultures within a hydrogel matrix to fashion a surgically-implantable tissue construct that will serve as an electrical conduit between the upper and lower chambers of the heart. Ultimately, we anticipate using this type of engineered tissue to restore atrioventricular electrical conduction in children with complete heart block. In view of that, we isolate myoblasts from the skeletal muscles of neonatal Lewis rats and plate them onto laminin-coated tissue culture dishes using a modified version of established protocols. After one to two days, cultured cells are collected and mixed with antibiotics, type 1 collagen, Matrigel, and NaHCO(3). The result is a viscous, uniform solution that can be cast into a mold of nearly any shape and size. For our tissue constructs, we employ type 1 collagen isolated from fetal lamb skin using standard procedures. Once the tissue has solidified at 37 degrees C, culture media is carefully added to the plate until the construct is submerged. The engineered tissue is then allowed to further condense through dehydration for 2 more days, at which point it is ready for in vitro assessment or surgical-implantation.

  3. Effect of tricuspid regurgitation and the right heart on survival after transcatheter aortic valve replacement: insights from the Placement of Aortic Transcatheter Valves II inoperable cohort.

    Science.gov (United States)

    Lindman, Brian R; Maniar, Hersh S; Jaber, Wael A; Lerakis, Stamatios; Mack, Michael J; Suri, Rakesh M; Thourani, Vinod H; Babaliaros, Vasilis; Kereiakes, Dean J; Whisenant, Brian; Miller, D Craig; Tuzcu, E Murat; Svensson, Lars G; Xu, Ke; Doshi, Darshan; Leon, Martin B; Zajarias, Alan

    2015-04-01

    Tricuspid regurgitation (TR) and right ventricular (RV) dysfunction adversely affect outcomes in patients with heart failure or mitral valve disease, but their impact on outcomes in patients with aortic stenosis treated with transcatheter aortic valve replacement has not been well characterized. Among 542 patients with symptomatic aortic stenosis treated in the Placement of Aortic Transcatheter Valves (PARTNER) II trial (inoperable cohort) with a Sapien or Sapien XT valve via a transfemoral approach, baseline TR severity, right atrial and RV size and RV function were evaluated by echocardiography according to established guidelines. One-year mortality was 16.9%, 17.2%, 32.6%, and 61.1% for patients with no/trace (n=167), mild (n=205), moderate (n=117), and severe (n=18) TR, respectively (Pright atrial and RV enlargement were also associated with increased mortality (Pright atrial and RV enlargement, but not RV dysfunction. There was an interaction between TR and mitral regurgitation severity (P=0.04); the increased hazard of death associated with moderate/severe TR only occurred in those with no/trace/mild mitral regurgitation. In inoperable patients treated with transcatheter aortic valve replacement, moderate or severe TR and right heart enlargement are independently associated with increased 1-year mortality; however, the association between moderate or severe TR and an increased hazard of death was only found in those with minimal mitral regurgitation at baseline. These findings may improve our assessment of anticipated benefit from transcatheter aortic valve replacement and support the need for future studies on TR and the right heart, including whether concomitant treatment of TR in operable but high-risk patients with aortic stenosis is warranted. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01314313. © 2015 American Heart Association, Inc.

  4. Two-step rocket engine bipropellant valve concept

    Science.gov (United States)

    Capps, J. E.; Ferguson, R. E.; Pohl, H. O.

    1969-01-01

    Initiating combustion of altitude control rocket engines in a precombustion chamber of ductile material reduces high pressure surges generated by hypergolic propellants. Two-step bipropellant valve concepts control initial propellant flow into precombustion chamber and subsequent full flow into main chamber.

  5. Imaging of aortic valve dynamics in 4D OCT

    Directory of Open Access Journals (Sweden)

    Schnabel Christian

    2015-09-01

    Full Text Available The mechanical components of the heart, especially the valves and leaflets, are enormous stressed during lifetime. Therefore, those structures undergo different pathophysiological tissue transformations which affect cardiac output and in consequence living comfort of affected patients. These changes may lead to calcific aortic valve stenosis (AVS, the major heart valve disease in humans. The knowledge about changes of the dynamic behaviour during the course of this disease and the possibility of early stage diagnosis is of particular interest and could lead to the development of new treatment strategies and drug based options of prevention or therapy. 4D optical coherence tomography (OCT in combination with high-speed video microscopy were applied to characterize dynamic behaviour of the murine aortic valve and to characterize dynamic properties during artificial stimulation. We present a promising tool to investigate the aortic valve dynamics in an ex vivo disease model with a high spatial and temporal resolution using a multimodal imaging setup.

  6. An Ineffective Differential Diagnosis of Infective Endocarditis and Rheumatic Heart Disease after Streptococcal Skin and Soft Tissue Infection.

    Science.gov (United States)

    Suzuki, Tetsuya; Mawatari, Momoko; Iizuka, Toshihiko; Amano, Tatsuya; Kutsuna, Satoshi; Fujiya, Yoshihiro; Takeshita, Nozomi; Hayakawa, Kayoko; Ohmagari, Norio

    2017-09-01

    We herein report the case of a 68-year-old woman with a skin and soft tissue infection at her extremities. The blood culture results were positive for Streptococcus pyogenes, and we started treatment using ampicillin and clindamycin, although subsequent auscultation revealed a new-onset heart murmur. We therefore suspected rheumatic heart disease and infective endocarditis. The case met both the Jones criteria and the modified Duke criteria. Transesophageal echocardiography revealed vegetation on the aortic valve, although the pathological findings were also compatible with both rheumatic heart disease and infective endocarditis. The present findings suggest that these two diseases can coexist in some cases.

  7. Enhanced Electrical Integration of Engineered Human Myocardium via Intramyocardial versus Epicardial Delivery in Infarcted Rat Hearts.

    Directory of Open Access Journals (Sweden)

    Kaytlyn A Gerbin

    Full Text Available Cardiac tissue engineering is a promising approach to provide large-scale tissues for transplantation to regenerate the heart after ischemic injury, however, integration with the host myocardium will be required to achieve electromechanical benefits. To test the ability of engineered heart tissues to electrically integrate with the host, 10 million human embryonic stem cell (hESC-derived cardiomyocytes were used to form either scaffold-free tissue patches implanted on the epicardium or micro-tissue particles (~1000 cells/particle delivered by intramyocardial injection into the left ventricular wall of the ischemia/reperfusion injured athymic rat heart. Results were compared to intramyocardial injection of 10 million dispersed hESC-cardiomyocytes. Graft size was not significantly different between treatment groups and correlated inversely with infarct size. After implantation on the epicardial surface, hESC-cardiac tissue patches were electromechanically active, but they beat slowly and were not electrically coupled to the host at 4 weeks based on ex vivo fluorescent imaging of their graft-autonomous GCaMP3 calcium reporter. Histologically, scar tissue physically separated the patch graft and host myocardium. In contrast, following intramyocardial injection of micro-tissue particles and suspended cardiomyocytes, 100% of the grafts detected by fluorescent GCaMP3 imaging were electrically coupled to the host heart at spontaneous rate and could follow host pacing up to a maximum of 300-390 beats per minute (5-6.5 Hz. Gap junctions between intramyocardial graft and host tissue were identified histologically. The extensive coupling and rapid response rate of the human myocardial grafts after intramyocardial delivery suggest electrophysiological adaptation of hESC-derived cardiomyocytes to the rat heart's pacemaking activity. These data support the use of the rat model for studying electromechanical integration of human cardiomyocytes, and they

  8. Engine including hydraulically actuated valvetrain and method of valve overlap control

    Science.gov (United States)

    Cowgill, Joel [White Lake, MI

    2012-05-08

    An exhaust valve control method may include displacing an exhaust valve in communication with the combustion chamber of an engine to an open position using a hydraulic exhaust valve actuation system and returning the exhaust valve to a closed position using the hydraulic exhaust valve actuation assembly. During closing, the exhaust valve may be displaced for a first duration from the open position to an intermediate closing position at a first velocity by operating the hydraulic exhaust valve actuation assembly in a first mode. The exhaust valve may be displaced for a second duration greater than the first duration from the intermediate closing position to a fully closed position at a second velocity at least eighty percent less than the first velocity by operating the hydraulic exhaust valve actuation assembly in a second mode.

  9. Analysis of Mitral Valve Replacement Outcomes is Enhanced by Meaningful Clinical Use of Electronic Health Records

    Science.gov (United States)

    Chen, John C; Pfeffer, Thomas; Johnstone, Shelley; Chen, Yuexin; Kiley, Mary-Lou; Richter, Richard; Lee, Hon

    2013-01-01

    Objective: Cardiac surgical mortality has improved during the last decade despite the aging of the population. An integrated US health plan developed a heart valve registry to track outcomes and complications of heart valve operations. This database was used for longitudinal evaluation of mitral valve (MV) outcomes from 1999 to 2008 at four affiliated hospitals. Methods: We identified 3130 patients in the Apollo database who underwent 3180 initial MV procedures. Internal administrative and Social Security Administration databases were merged to determine survival rates. Electronic health records were searched to ascertain demographics, comorbidities, and postoperative complications. Cox regression was used to evaluate mean survival and identify risk factors. Results: The procedures included 1160 mechanical valve replacements, 1159 tissue valve replacements, and 861 annuloplasties. The mean age of patients undergoing these procedures was 58 ± 11 years, 69 ± 12 years, and 62 ± 12 years, respectively. Mean survival was 8.9 ± 0.1 years for mechanical valve replacement, 7.0 ± 0.1 years for tissue valve replacement, and 7.7 ± 0.1 years for annuloplasty. Early in the study, there was a preference for implanting mechanical MVs. Beginning in 2003, more patients received tissue valve replacements rather than mechanical valves. Over time, there was an increasing trend of annuloplasty. Cox regression analysis identified the following risk factors for increased ten-year mortality: tissue valve implantation; advanced age; female sex; nonelective, nonisolated procedure; diabetes; postoperative use of banked blood products; previous cardiovascular intervention; dialysis; and longer perfusion time. Hospital location, reoperation, preoperative anticoagulation, and cardiogenic shock were not statistically significant risk factors. Conclusions: When controlling for other risk factors, we observed a lower long-term survival rate for tissue valve replacement compared with

  10. Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine

    Science.gov (United States)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.

  11. Transcatheter pulmonary valve replacement by hybrid approach using a novel polymeric prosthetic heart valve: proof of concept in sheep.

    Directory of Open Access Journals (Sweden)

    Ben Zhang

    Full Text Available Since 2000, transcatheter pulmonary valve replacement has steadily advanced. However, the available prosthetic valves are restricted to bioprosthesis which have defects like poor durability. Polymeric heart valve is thought as a promising alternative to bioprosthesis. In this study, we introduced a novel polymeric transcatheter pulmonary valve and evaluated its feasibility and safety in sheep by a hybrid approach.We designed a novel polymeric trileaflet transcatheter pulmonary valve with a balloon-expandable stent, and the valve leaflets were made of 0.1-mm expanded polytetrafluoroethylene (ePTFE coated with phosphorylcholine. We chose glutaraldehyde-treated bovine pericardium valves as control. Pulmonary valve stents were implanted in situ by a hybrid transapical approach in 10 healthy sheep (8 for polymeric valve and 2 for bovine pericardium valve, weighing an average of 22.5±2.0 kg. Angiography and cardiac catheter examination were performed after implantation to assess immediate valvular functionality. After 4-week follow-up, angiography, echocardiography, computed tomography, and cardiac catheter examination were used to assess early valvular function. One randomly selected sheep with polymeric valve was euthanized and the explanted valved stent was analyzed macroscopically and microscopically.Implantation was successful in 9 sheep. Angiography at implantation showed all 9 prosthetic valves demonstrated orthotopic position and normal functionality. All 9 sheep survived at 4-week follow-up. Four-week follow-up revealed no evidence of valve stent dislocation or deformation and normal valvular and cardiac functionality. The cardiac catheter examination showed the peak-peak transvalvular pressure gradient of the polymeric valves was 11.9±5.0 mmHg, while that of two bovine pericardium valves were 11 and 17 mmHg. Gross morphology demonstrated good opening and closure characteristics. No thrombus or calcification was seen macroscopically

  12. Aortic valve ochronosis: a rare manifestation of alkaptonuria.

    Science.gov (United States)

    Steger, Christina Maria

    2011-07-28

    Alkaptonuric ochronosis is a heritable disorder of tyrosine metabolism, with various systemic abnormalities related to pigment deposition and degeneration of collagen and other tissues, including the heart and aorta. A 65-year-old woman with alkaptonuric ochronosis and a history of four joint replacements required aortic valve replacement for severe aortic stenosis. Operative findings included ochronosis of a partly calcified aortic valve and the aortic intima. The aortic valve was removed at surgery and histologically investigated. Light microscopic examination of the aortic valve revealed intracellular and extracellular deposits of ochronotic pigment and a chronic inflammatory infiltrate. Beside the case representation, the disease history, aetiology, pathogenesis, clinical presentation and treatment of aortic valve ochronosis are reviewed.

  13. Minimally invasive mitral valve repair in osteogenesis imperfecta.

    Science.gov (United States)

    Tagliasacchi, Isabella; Martinelli, Luigi; Bardaro, Leopoldo; Chierchia, Sergio

    2017-10-01

    Osteogenesis imperfecta is a disorder of the connective tissue that affects several structures including heart valves. However, cardiac surgery is associated with high mortality and morbidity rates. In a 48-year-old man with osteogenesis imperfecta and mitral valve prolapse, we performed the first successful mitral valve repair by right anterior mini-thoracotomy. At the 1-year follow-up, he was asymptomatic and echocardiography confirmed the initial success. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  14. An in vitro investigation of the retrograde flow fields of two bileaflet mechanical heart valves.

    Science.gov (United States)

    Ellis, J T; Healy, T M; Fontaine, A A; Weston, M W; Jarret, C A; Saxena, R; Yoganathan, A P

    1996-11-01

    Fluid stresses occurring in retrograde flow fields during valve closure may play a significant role in thrombogenesis. The squeeze flow and regurgitant jets can cause damage to formed blood elements due to high levels of turbulent shear stress. The aim of this study was to characterize in detail the spatial structure and temporal behavior of the retrograde flow fields of the St. Jude Medical and Medtronic Parallel bileaflet mechanical heart valves. Three-component, coincident laser Doppler anemometry (LDA) velocity measurements were obtained facilitating the determination of the full Reynolds stress tensor and the principal stresses in the valve flow fields. The experiments were performed in the Georgia Tech aortic flow chamber under physiologic pulsatile flow conditions. Data were collected over several hundred cardiac cycles for subsequent phase window averaging and generation of mean velocity and turbulence statistics over 20 ms intervals. A region approximately 8 mm x 10 mm was mapped 1.0 mm upstream of one hinge of each valve with an incremental resolution of 0.13-0.25 mm. Animation of the data allowed the visualization of the flow fields and a quantitative display of mean velocity and turbulent stress values. In the St. Jude Medical squeeze flow, the peak turbulent shear stress was 800 dynes/cm2 and the peak reverse velocity was 0.60 m/s. In the Medtronic Parallel squeeze flow, the peak turbulent shear stress was 1,000 dynes/cm2 and the peak velocity 0.70 m/s. The leakage jet fields of the two valves were very different: in the case of the St. Jude Medical valve, turbulent shear stresses reached 1,800 dynes/cm2 and peak jet velocity was 0.80 m/s; in the case of the Medtronic Parallel valve, turbulent shear stresses reached 3,690 dynes/cm2 and the peak jet velocity was 1.9 m/s. The retrograde flow fields of these two bileaflet mechanical heart valves appear to be design-dependent. The elevated turbulent shear stresses generated by both valve designs may

  15. The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: potential material for synthetic leaflet heart valve.

    Science.gov (United States)

    Ghanbari, Hossein; Kidane, Asmeret G; Burriesci, Gaetano; Ramesh, Bala; Darbyshire, Arnold; Seifalian, Alexander M

    2010-11-01

    Calcification currently represents a major cause of failure of biological tissue heart valves. It is a complex phenomenon influenced by a number of biochemical and mechanical factors. Recent advances in material science offer new polymers with improved properties, potentially suitable for synthetic leaflets heart valves manufacturing. In this study, the calcification-resistance efficacy and mechanical and surface properties of a new nanocomposite polymeric material (polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane; POSS-PCU) which has been developed by our group are assessed by means of in vitro testing. In particular, thin sheets of nanocomposite, glutaraldehyde-fixed bovine pericardium (BP) and polyurethane (PU) were exposed to a calcium solution into a specially designed in vitro accelerated physiological pulsatile pressure system for a period of 31days and a total of 4×10(7) cycles. The samples were investigated for signs of calcification after exposure to calcium solution by means of X-ray, microscopic and chemical inspections. Mechanical and surface properties were also studied using stress-strain behaviour and surface morphology and hydrophobicity. Comparison shows that, in the experimental conditions, the level of calcification for the nanocomposite is considerably lower than for the fixed BP (p=0.008) and PU samples (p=0.015). Also, mechanical properties were unchanged in POSS-PCU, while there was a significant deterioration in PU samples (pnanocomposite remained more hydrophobic than the PU sample (pnanocomposite in synthetic leaflets heart valves may lead to potential advantages in terms of long-term performances and durability. Copyright © 2010. Published by Elsevier Ltd.

  16. Presence of gingivitis and periodontitis significantly increases hospital charges in patients undergoing heart valve surgery.

    Science.gov (United States)

    Allareddy, Veerasathpurush; Elangovan, Satheesh; Rampa, Sankeerth; Shin, Kyungsup; Nalliah, Romesh P; Allareddy, Veerajalandhar

    2015-01-01

    To examine the prevalence and impact of gingivitis and periodontitis in patients having heart valve surgical procedures. Nationwide Inpatient Sample for the years 2004-2010 was used. All patients who had heart valve surgical procedures were selected. Prevalence of gingivitis/periodontitis was examined in these patients. Impact of gingivitis/periodontitis on hospital charges, length of stay, and infectious complications was examined. 596,190 patients had heart valve surgical procedures. Gingivitis/periodontitis was present in 0.2 percent. Outcomes included: median hospital charges ($175,418 with gingivitis/ periodontitis versus $149,353 without gingivitis/periodontitis) and median length of stay (14 days with gingivitis/periodontitis versus 8 days without gingivitis/periodontitis). After adjusting for the effects of patient- and hospital-level confounding factors, hospital charges and length of stay were significantly higher (p gingivitis/periodontitis compared to their counterparts. Further, patients with gingivitis/periodontitis had significantly higher odds for having bacterial infections (OR = 3.41, 95% CI = 2.33-4.98, p gingivitis/periodontitis. Presence of gingivitis and periodontitis is associated with higher risk for bacterial infections and significant hospital resource utilization.

  17. Studies of valve lifter for automotive heavy duty diesel engine by ceramic materials. II. Development of SiC valve lifter by injection molding method

    Energy Technology Data Exchange (ETDEWEB)

    Yun, H W [Technical Centre of KIA-ASIA MOTORS (Korea, Republic of); Han, I S [Korea Institute of Energy Research, Tajeon (Korea, Republic of); Lim, Y S; Chung, Y J [Myong Ji University (Korea, Republic of)

    1998-02-01

    Valve lifter, namely tappet, is supported by lifter hole which is located upper side of camshaft in cylinder block, transforms rotatic movement of camshaft into linear movement and helps to open and shut the engine valve as an engine parts. The face of valve lifter, which is continuously contacting with camshaft, brings about abnormal wears, such as unfair wear and early wear, because it is severely loaded in the valve train system. These wears act as a defect like over-clearance and cause imperfect combustion of fuel during the valve lifting in the combustion chamber. Consequently, this imperfect combustion makes the engine out-put decrease and has cause on air pollution. To prevent these wears, therefore, the valve lifter cast in metal developed into SiC ceramics valve lifter which has an excellence in wear and impact resistance. As a result, the optimum process conditions like injection condition, mixture ratio and debonding process could be established. After sintering, fine-sinered dual microstructure in which prior {alpha}-SiC, carbon and silicon was obtained. Based on the new SiC({beta}-SiC) produced by reaction among the {alpha}-SiC, carbon and silicon was obtained. Based on the study, it is verified that mechanical properties of SiC valve lifter are excellent in Vickers hardness 1100{approx}1200 bending strength (300{approx}350 Pa), fracture toughness (1.5{approx}1.7 MPacentre dotm{sup 1/2}). Through engine dynamo testing, SiC valve lifter and metal valve lifter are examined and compared into abnormal phenomena such early fracture, unfair and early wear. It is hoped that this research will serve as an important springboard for the future study of heavy duty diesel engine parts developed by ceramics which has a good wear resistance, reliability, and lightability.

  18. Self-management of oral anticoagulant therapy for mechanical heart valve patients

    DEFF Research Database (Denmark)

    Christensen, Thomas D; Attermann, Jørn; Pilegaard, Hans K

    2001-01-01

    .4%–2.9%) for the control group. Conclusion: Self-management of OAT is a feasible and safe concept for selected patients with mechanical heart valve prostheses also on a long-term basis. It provides at least as good and most likely better quality of anticoagulant therapy than conventional management assessed by time within......Objective: Self-management of oral anticoagulant therapy (OAT) has shown good results on a short-term basis. We hypothesize that self-management of OAT provides a better quality of treatment than conventional management also on a long-term basis. The aim of this study was to assess the quality...... of conventionally managed heart valve patients (control group) was used as reference. Results: The median observation time was 1175 days (range: 174–1428 days). The self-managed patients were within therapeutic INR target range for a mean of 78.0% (range: 36.1%–93.9%) of the time compared with 61.0% (range 37...

  19. Laser Doppler anemometry measurements of steady flow through two bi-leaflet prosthetic heart valves

    Directory of Open Access Journals (Sweden)

    Ovandir Bazan

    2013-12-01

    Full Text Available INTRODUCTION: In vitro hydrodynamic characterization of prosthetic heart valves provides important information regarding their operation, especially if performed by noninvasive techniques of anemometry. Once velocity profiles for each valve are provided, it is possible to compare them in terms of hydrodynamic performance. In this first experimental study using laser doppler anemometry with mechanical valves, the simulations were performed at a steady flow workbench. OBJECTIVE: To compare unidimensional velocity profiles at the central plane of two bi-leaflet aortic prosthesis from St. Jude (AGN 21 - 751 and 21 AJ - 501 models exposed to a steady flow regime, on four distinct sections, three downstream and one upstream. METHODS: To provide similar conditions for the flow through each prosthesis by a steady flow workbench (water, flow rate of 17L/min. and, for the same sections and sweeps, to obtain the velocity profiles of each heart valve by unidimensional measurements. RESULTS: It was found that higher velocities correspond to the prosthesis with smaller inner diameter and instabilities of flow are larger as the section of interest is closer to the valve. Regions of recirculation, stagnation of flow, low pressure, and flow peak velocities were also found. CONCLUSIONS: Considering the hydrodynamic aspect and for every section measured, it could be concluded that the prosthesis model AGN 21 - 751 (RegentTM is superior to the 21 AJ - 501 model (Master Series. Based on the results, future studies can choose to focus on specific regions of the these valves.

  20. Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology.

    Directory of Open Access Journals (Sweden)

    Sebastian Schaaf

    Full Text Available Human embryonic stem cell (hESC progenies hold great promise as surrogates for human primary cells, particularly if the latter are not available as in the case of cardiomyocytes. However, high content experimental platforms are lacking that allow the function of hESC-derived cardiomyocytes to be studied under relatively physiological and standardized conditions. Here we describe a simple and robust protocol for the generation of fibrin-based human engineered heart tissue (hEHT in a 24-well format using an unselected population of differentiated human embryonic stem cells containing 30-40% α-actinin-positive cardiac myocytes. Human EHTs started to show coherent contractions 5-10 days after casting, reached regular (mean 0.5 Hz and strong (mean 100 µN contractions for up to 8 weeks. They displayed a dense network of longitudinally oriented, interconnected and cross-striated cardiomyocytes. Spontaneous hEHT contractions were analyzed by automated video-optical recording and showed chronotropic responses to calcium and the β-adrenergic agonist isoprenaline. The proarrhythmic compounds E-4031, quinidine, procainamide, cisapride, and sertindole exerted robust, concentration-dependent and reversible decreases in relaxation velocity and irregular beating at concentrations that recapitulate findings in hERG channel assays. In conclusion this study establishes hEHT as a simple in vitro model for heart research.

  1. Design and CFD analysis of intake port and exhaust port for a 4 valve cylinder head engine

    Science.gov (United States)

    Latheesh, V. M.; Parthasarathy, P.; Baskaran, V.; Karthikeyan, S.

    2018-02-01

    In cylinder air motion in a compression ignition engine effects mixing of air-fuel, quality of combustion and emission produced. The primary objective is to design and analyze intake and the exhaust port for a four valve cylinder head to meet higher emission norms for a given diesel engine with two valves. In this work, an existing cylinder head designed for two valves was redesigned with 4 valves. The modern trend also confirms this approach. This is being followed in the design and development of new generation engines to meet the stringent environment norms, competition in market and demand for more fuel-efficient engines. The swirl ratio and flow coefficient were measured for different valve lifts using STAR CCM+. CFD results were validated with the two-valve cylinder experimental results. After validation, a comparison between two-valve and four-valve cylinder head was done. The conversion of two valve cylinder head to 4 valves may not support modern high swirl generating port layout and requires a trade-off between many design parameters.

  2. In Situ Cardiovascular Tissue Engineering

    NARCIS (Netherlands)

    Talacua, H

    2016-01-01

    In this thesis, the feasibility of in situ TE for vascular and valvular purposes were tested with the use of different materials, and animal models. First, the feasibility of a decellularized biological scaffold (pSIS-ECM) as pulmonary heart valve prosthesis is examined in sheep (Chapter 2). Next,

  3. Mid-term clinical results of tissue-engineered vascular autografts

    International Nuclear Information System (INIS)

    Matsumura, Goki; Shin'oka, Toshiharu; Hibino, Narutoshi; Saito, Satoshi; Sakamoto, Takahiko; Ichihara, Yuki; Hobo, Kyoko; Miyamoto, Shin'ka; Kurosawa, Hiromi

    2007-01-01

    Prosthetic and bioprosthetic materials currently in use lack growth potential and therefore must be repeatedly replaced in pediatric patients as they grow. Tissue engineering is a new discipline that offers the potential for creating replacement structures from autologous cells and biodegradable polymer scaffolds. In May 2000, we initiated clinical application of tissue-engineered vascular grafts seeded with cultured cells. However, cell culturing is time-consuming, and xenoserum must be used. To overcome these disadvantages, we began to use bone marrow cells, readily available on the day of surgery, as a cell source. Since September 2001, tissue-engineered grafts seeded with autologous bone marrow cells have been implanted in 44 patients. The patients or their parents were fully informed and had given consent to the procedure. A 3 to 10 ml/kg specimen of bone marrow was aspirated with the patient under general anesthesia before the skin incision. The polymer tube serving as a scaffold for the cells was composed of a copolymer of lactide and ε-caprolactone (50:50) which degrades by hydrolysis. Polyglycolic or poly-l-lactic acid woven fabric was used for reinforcement. Twenty-six tissue-engineered conduits and 19 tissue-engineered patches were used for the repair of congenital heart defects. The patients' ages ranged from 1 to 24 years (median 7.4 years). All patients underwent a catheterization study, CT scan, or both, for evaluation after the operation. There were 4 late deaths due to heart failure with or without multiple organ failure or brain bleeding in this series; these were unrelated to the tissue-engineered graft function. One patient required percutaneous balloon angioplasty for tubular graft-stenosis and 4 patients for the stenosis of the patch-shaped tissue engineered material. Two patients required re-do operation; one for recurrent pulmonary stenosis and another for a resulting R-L shunt after the lateral tunnel method. Kaplan-Meier analysis in

  4. Ministernotomy: A preliminary experience in heart valve surgery

    Directory of Open Access Journals (Sweden)

    Kovačević Pavle

    2011-01-01

    Full Text Available Background/Aim. The last decade of the 20th century brought up a significant development in the field of minimally invasive approaches to the valvular heart surgery. Potential benefits of this method are: good esthetic appearance, reduced pain, reduction of postoperative hemorrhage and incidence of surgical site infection, shorter postoperative intensive care units (ICU period and overall in-hospital period. Partial upper median sternotomy currently presents as a state-of-the art method for minimally invasive surgery of cardiac valves. The aim of this study was to report on initial experience in application of this surgical method in the surgery of mitral and aortic valves. Methods. The study was designed and conducted in a prospective manner and included all the patients who underwent minimally invasive cardiac valve surgery through the partial upper median sternotomy during the period November 2008 - August 2009. We analyzed the data on mean age of patients, mean extubation time, mean postoperative drainage, mean duration of hospital stay, as well as on occurance of postoperative complications (postoperative bleeding, surgical site infection and cerebrovascular insult. Results. During the observed period, in the Institute for Cardiovascular Diseases of Vojvodina, Clinic for Cardiovascular Surgery, 17 ministernotomies were performed, with 14 aortic valve replacements (82.35% and 3 mitral valve replacements (17.65%. Mean age of the patients was 60.78 ± 12.99 years (64.71% males, 35.29% females. Mean extubation time was 12.53 ± 8.87 hours with 23.5% of the patients extubated in less than 8 hours. Mean duration of hospital stay was 12.35 ± 10.17 days (in 29.4% of the patients less than 8 days. Mean postoperative drainage was 547.06 ± 335.2 mL. Postoperative complications included: bleeding (5.88% and cerebrovascular insult (5.88%. One patient (5.88% required conversion to full sternotomy. Conclusion. Partial upper median sternotomy represents

  5. Modeling the Human Scarred Heart In Vitro : Toward New Tissue Engineered Models

    NARCIS (Netherlands)

    Deddens, Janine C.; Sadeghi, Amir Hossein; Hjortnaes, Jesper; van Laake, Linda W.; Buijsrogge, Marc; Doevendans, Pieter A.; Khademhosseini, Ali; Sluijter, Joost P G

    2017-01-01

    Cardiac remodeling is critical for effective tissue healing, however, excessive production and deposition of extracellular matrix components contribute to scarring and failing of the heart. Despite the fact that novel therapies have emerged, there are still no lifelong solutions for this problem. An

  6. [Percutaneous catheter-based implantation of artificial pulmonary valves in patients with congenital heart defects].

    Science.gov (United States)

    Wyller, Vegard Bruun; Aaberge, Lars; Thaulow, Erik; Døhlen, Gaute

    2011-07-01

    Percutaneous catheter-based implantation of artificial heart valves is a new technique that may supplement surgery and which may be used more in the future. We here report our first experience with implantation of artificial pulmonary valves in children with congenital heart defects. Eligible patients were those with symptoms of heart failure combined with stenosis and/or insufficiency in an established artificial right ventricular outflow tract. The valve was inserted through a catheter from a vein in the groin or neck. Symptoms, echocardiography, invasive measurements and angiography were assessed for evaluation of treatment effect. Our treatment results are reported for the period April 2007-September 2009. Ten patients (seven men and three women, median age 17 years) were assessed. The procedure reduced pressure in the right ventricle (p = 0.008) and resolved the pulmonary insufficiency in all patients. The median time in hospital was two days. No patients had complications that were directly associated with the implantation procedure. One patient developed a pseudoaneurysm in the femoral artery, another had a short-lasting fever two days after the procedure and one patient experienced a stent fracture that required surgery 9 months after the implantation. After 6 months all patients had a reduced pressure gradient in the right ventricular outflow tract (p = 0.008), the pulmonary insufficiency had improved (p = 0.006) and they all reported improval of symptoms. These results persisted for at least 24 months for the four patients who were monitored until then. Percutaneous catheter-based implantation of artificial pulmonary valves improves hemodynamics in the right ventricle of selected patients with congenital heart defects. A randomized controlled study should be undertaken to provide a stronger evidence-base for usefulness of this procedure.

  7. Mitral Valve Prolapse

    Science.gov (United States)

    ... valve syndrome . What happens during MVP? Watch an animation of mitral valve prolapse When the heart pumps ( ... our brochures Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...

  8. Investigation of a rotary valving system with variable valve timing for internal combustion engines

    Science.gov (United States)

    Cross, Paul C.; Hansen, Craig N.

    1994-11-01

    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve Timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multifuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this final report.

  9. Mitral valve surgery - open

    Science.gov (United States)

    ... Taking warfarin (Coumadin) References Otto CM, Bonow RO. Valvular heart disease. In: Mann DL, Zipes DP, Libby P, Bonow ... A.M. Editorial team. Heart Surgery Read more Heart Valve Diseases Read more Mitral Valve Prolapse Read more A. ...

  10. Variable valve trains for internal combustion engines to control the valve height and the opening time; Variable Ventiltriebe fuer Verbrennungsmotoren zur Veraenderung von Ventilhub und Oeffnungsdauer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Gunther [ThyssenKrupp Presta TecCenter AG, Eschen (Liechtenstein). R and D Projects

    2009-11-15

    The PDVC (Presta Delta Valve Control) continuously variable valve lift system is a mechanical system of valve control for achieving optimum performance and resulting in improved fuel consumption and reduced emissions across the entire operating range of the combustion engine. The continuous variability allows for engine load control by adjusting the valve height and therefore can also be used to replace the traditional throttle. The advantages are lower fuel consumption, reduction in emissions, quicker engine response, higher torque during the low speed range as well as more stable idling. The PSVC (Presta Shiftable Valve Control) is a 3 step shiftable valve lift system that offers the possibility to achieve a major part of these performance and associated consumption benefits with a simpler and therefore more cost-effective system. (orig.)

  11. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    International Nuclear Information System (INIS)

    Mahrous, A-F.M.; Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P.

    2009-01-01

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing

  12. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    Energy Technology Data Exchange (ETDEWEB)

    Mahrous, A-F.M. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lecturer at the Department of Mechanical Power Engineering, Faculty of Engineering (Shebin El-Kom), Menoufiya University, Shebin El-Kom (Egypt); Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-02-15

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing. (author)

  13. The Fluid Mechanics of Transcatheter Heart Valve Leaflet Thrombosis in the Neosinus.

    Science.gov (United States)

    Midha, Prem A; Raghav, Vrishank; Sharma, Rahul; Condado, Jose F; Okafor, Ikechukwu U; Rami, Tanya; Kumar, Gautam; Thourani, Vinod H; Jilaihawi, Hasan; Babaliaros, Vasilis; Makkar, Raj R; Yoganathan, Ajit P

    2017-10-24

    Transcatheter heart valve (THV) thrombosis has been increasingly reported. In these studies, thrombus quantification has been based on a 2-dimensional assessment of a 3-dimensional phenomenon. Postprocedural, 4-dimensional, volume-rendered CT data of patients with CoreValve, Evolut R, and SAPIEN 3 transcatheter aortic valve replacement enrolled in the RESOLVE study (Assessment of Transcatheter and Surgical Aortic Bioprosthetic Valve Dysfunction With Multimodality Imaging and Its Treatment with Anticoagulation) were included in this analysis. Patients on anticoagulation were excluded. SAPIEN 3 and CoreValve/Evolut R patients with and without hypoattenuated leaflet thickening were included to study differences between groups. Patients were classified as having THV thrombosis if there was any evidence of hypoattenuated leaflet thickening. Anatomic and THV deployment geometries were analyzed, and thrombus volumes were computed through manual 3-dimensional reconstruction. We aimed to identify and evaluate risk factors that contribute to THV thrombosis through the combination of retrospective clinical data analysis and in vitro imaging in the space between the native and THV leaflets (neosinus). SAPIEN 3 valves with leaflet thrombosis were on average 10% further expanded (by diameter) than those without (95.5±5.2% versus 85.4±3.9%; P <0.001). However, this relationship was not evident with the CoreValve/Evolut R. In CoreValve/Evolut Rs with thrombosis, the thrombus volume increased linearly with implant depth ( R 2 =0.7, P <0.001). This finding was not seen in the SAPIEN 3. The in vitro analysis showed that a supraannular THV deployment resulted in a nearly 7-fold decrease in stagnation zone size (velocities <0.1 m/s) when compared with an intraannular deployment. In addition, the in vitro model indicated that the size of the stagnation zone increased as cardiac output decreased. Although transcatheter aortic valve replacement thrombosis is a multifactorial process

  14. Transition to turbulence in pulsatile flow through heart valves--a modified stability approach.

    Science.gov (United States)

    Bluestein, D; Einav, S

    1994-11-01

    The presence of turbulence in the cardiovascular system is generally an indication of some type of abnormality. Most cardiologists agree that turbulence near a valve indicates either valvular stenosis or regurgitation, depending on the phase of its occurrence during the cardiac cycle. As no satisfying analytical solutions of the stability of turbulent pulsatile flow exist, accurate, unbiased flow stability criteria are needed for the identification of turbulence initiation. The traditional approach uses a stability diagram based upon the stability of a plane Stokes layer where alpha (the Womersley parameter) is defined by the fundamental heart rate. We suggest a modified approach that involves the decomposition of alpha into its frequency components, where alpha is derived from the preferred modes induced on the flow by interaction between flow pulsation and the valve. Transition to turbulence in pulsatile flow through heart values was investigated in a pulse duplicator system using three polymer aortic valve models representing a normal aortic valve, a 65 percent stenosed valve and a 90 percent severely stenosed valve, and two mitral valve models representing a normal mitral valve and a 65 percent stenosed valve. Valve characteristics were closely simulated as to mimic the conditions that alter flow stability and initiate turbulent flow conditions. Valvular velocity waveforms were measured by laser Doppler anemometry (LDA). Spectral analysis was performed on velocity signals at selected spatial and temporal points to produce the power density spectra, in which the preferred frequency modes were identified. The spectra obtained during the rapid closure stage of the valves were found to be governed by the stenosis geometry. A shift toward higher dominant frequencies was correlated with the severity of the stenosis. According to the modified approach, stability of the flow is represented by a cluster of points, each corresponding to a specific dominant mode apparent

  15. Novel imaging strategies for the detection of prosthetic heart valve obstruction and endocarditis

    NARCIS (Netherlands)

    W. Tanis (Wilco); R.P.J. Budde (Ricardo); I.A.C. van der Bilt (Ivo); B. Delemarre; G. Hoohenker; J.-K. Van Rooden; A.M. Scholtens (Asbjørn M.); J. Habets; S.A.J. Chamuleau (Steven)

    2016-01-01

    textabstractProsthetic heart valve (PHV) dysfunction remains difficult to recognise correctly by two-dimensional (2D) transthoracic and transoesophageal echocardiography (TTE/TEE). ECG-triggered multidetector-row computed tomography (MDCT), 18-fluorine-fluorodesoxyglucose positron emission

  16. Surface-modified polymers for cardiac tissue engineering.

    Science.gov (United States)

    Moorthi, Ambigapathi; Tyan, Yu-Chang; Chung, Tze-Wen

    2017-09-26

    Cardiovascular disease (CVD), leading to myocardial infarction and heart failure, is one of the major causes of death worldwide. The physiological system cannot significantly regenerate the capabilities of a damaged heart. The current treatment involves pharmacological and surgical interventions; however, less invasive and more cost-effective approaches are sought. Such new approaches are developed to induce tissue regeneration following injury. Hence, regenerative medicine plays a key role in treating CVD. Recently, the extrinsic stimulation of cardiac regeneration has involved the use of potential polymers to stimulate stem cells toward the differentiation of cardiomyocytes as a new therapeutic intervention in cardiac tissue engineering (CTE). The therapeutic potentiality of natural or synthetic polymers and cell surface interactive factors/polymer surface modifications for cardiac repair has been demonstrated in vitro and in vivo. This review will discuss the recent advances in CTE using polymers and cell surface interactive factors that interact strongly with stem cells to trigger the molecular aspects of the differentiation or formulation of cardiomyocytes for the functional repair of heart injuries or cardiac defects.

  17. Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  18. Novel imaging strategies for the detection of prosthetic heart valve obstruction and endocarditis

    NARCIS (Netherlands)

    Tanis, W; Budde, R P J; van der Bilt, I A C; Delemarre, B; Hoohenkerk, G; van Rooden, J-K; Scholtens, A M; Habets, J; Chamuleau, S

    Prosthetic heart valve (PHV) dysfunction remains difficult to recognise correctly by two-dimensional (2D) transthoracic and transoesophageal echocardiography (TTE/TEE). ECG-triggered multidetector-row computed tomography (MDCT), 18-fluorine-fluorodesoxyglucose positron emission tomography including

  19. Engine Cycle Analysis of Air Breathing Microwave Rocket with Reed Valves

    International Nuclear Information System (INIS)

    Fukunari, Masafumi; Komatsu, Reiji; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Arakawa, Yoshihiro; Katsurayama, Hiroshi

    2011-01-01

    The Microwave Rocket is a candidate for a low cost launcher system. Pulsed plasma generated by a high power millimeter wave beam drives a blast wave, and a vehicle acquires impulsive thrust by exhausting the blast wave. The thrust generation process of the Microwave Rocket is similar to a pulse detonation engine. In order to enhance the performance of its air refreshment, the air-breathing mechanism using reed valves is under development. Ambient air is taken to the thruster through reed valves. Reed valves are closed while the inside pressure is high enough. After the time when the shock wave exhausts at the open end, an expansion wave is driven and propagates to the thrust-wall. The reed valve is opened by the negative gauge pressure induced by the expansion wave and its reflection wave. In these processes, the pressure oscillation is important parameter. In this paper, the pressure oscillation in the thruster was calculated by CFD combined with the flux through from reed valves, which is estimated analytically. As a result, the air-breathing performance is evaluated using Partial Filling Rate (PFR), the ratio of thruster length to diameter L/D, and ratio of opening area of reed valves to superficial area α. An engine cycle and predicted thrust was explained.

  20. Role of vortices in cavitation formation in the flow across a mechanical heart valve.

    Science.gov (United States)

    Li, Chi-Pei; Lu, Po-Chien; Liu, Jia-Shing; Lo, Chi-Wen; Hwang, Ned H

    2008-07-01

    Cavitation occurs during mechanical heart valve closure when the local pressure drops below vapor pressure. The formation of stable gas bubbles may result in gaseous emboli, and secondarily cause transient ischemic attacks or strokes. It is noted that instantaneous valve closure, occluder rebound and high-speed leakage flow generate vortices that promote low-pressure regions in favor of stable bubble formation; however, to date no studies have been conducted for the quantitative measurement and analysis of these vortices. A Björk-Shiley Monostrut (BSM) monoleaflet valve was placed in the mitral position of a pulsatile mock circulatory loop. Particle image velocimetry (PIV) and pico coulomb (PCB) pressure measurements were applied. Flow field measurements were carried out at t = -5, -3, -1, -0.5, 0 (valve closure), 0.3, 0.5, 0.75, 1.19, 1.44, 1.69, 1.94, 2, 2.19, 2.54, 2.79, 3.04, 3.29, 3.54, 5 and 10 ms. The vortices were quantitatively analyzed using the Rankine vortex model. A single counter-clockwise vortex was The instantaneous formation of cavitation bubbles at mechanical heart valve (MHV) closure, which subsequently damage blood cells and valve integrity, is a well-known and widely studied phenomenon (1-4). Contributing factors seem to include the water-hammer, squeeze flow and Venturi effects, all of which are short-lived. Both, Dauzat et al. (5) and Sliwka et al. (6) have detected high-intensity transient signals (HITS) with transcranial Doppler ultrasound in the carotid and cerebral arteries of MHV recipients, while Deklunder (7) observed clinical occurrences of cerebral gas emboli that were not seen with bioprosthetic valves. These detected over the major orifice, while a pair of counter-rotating vortices was found over the minor orifice. Velocity profiles were consistent with Rankine vortices. The vortex strength and magnitude of the pressure drop peaked shortly after initial occluder-housing impact and rapidly decreased after 0.5 ms, indicating viscous

  1. [Lessons from a heart valve prosthesis controversy].

    Science.gov (United States)

    Vandenbroucke, J P; Grobbee, D E

    1998-07-18

    Two lessons are to be learnt from the Björk-Shiley heart valve prosthesis tragedy. In the first place pharmacoepidemiologic studies are seriously hampered by recent privacy legislation. Individual patients carrying such a prosthesis cannot be traced and advised as to their health risks any more, because their legal autonomy has to be respected. This is clearly not to their advantage. In the second place the atmosphere of marketing and litigation and the increasing dependency of researchers on money from sources with conflicting interests is not conducive to a well-informed and balanced judgement of the epidemiological evidence of safety and efficacy of medical treatments.

  2. Tissue Banking: Current procedures, ethical consideration and ...

    African Journals Online (AJOL)

    Tissue banking provides safe and effective cells and tissues for transplantation in reconstruction surgery. Bone, amnion, skin, cartilage, heart valves and xenograft tissues are the most commonly used biological tissues. Acquisition of tissue is dependent on elaborate donor screening criteria based on medical and social ...

  3. Valve-sparing root and ascending aorta replacement after heart transplantation.

    Science.gov (United States)

    Elhenawy, Abdelsalam M; Feindel, Christopher M; Ross, Heather; Butany, Jagdish; Yau, Terrence M

    2012-12-01

    A 45-year-old female underwent heart transplantation 17 years ago, with a heart from a 15-year-old donor. Recently, she had developed an aneurysm of the donor aortic root and ascending aorta, with severe aortic insufficiency. Two surgical options were considered; retransplantation versus replacement of the aortic root and ascending aorta. A valve-sparing replacement of the aortic root and ascending aortic aneurysm was performed. The donor aorta showed pathologic changes typical of Marfan syndrome. Nineteen months postoperatively, the patient remains in functional class I, with trivial aortic insufficiency. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Heart Team therapeutic decision-making and treatment in severe aortic valve stenosis

    DEFF Research Database (Denmark)

    Thyregod, Hans Gustav Hørsted; Holmberg, Fredrik; Gerds, Thomas Alexander

    2016-01-01

    Objectives: After transcatheter aortic valve implantation (TAVI) has been available for high-risk patients with severe aortic valve stenosis (AVS), the decision-making of the Heart Team (HT) has not been examined. Design: All adult patients with severe AVS referred to a large tertiary medical......%), and surgical aortic valve replacement (SAVR) in 392 (81%) of patients. In patients referred to intervention, TAVI compared with SAVR patients were older (OR = 1.17 per year, 95% CI 1.09-1.26; p obesity (OR = 4.69, 1.......51-13.77; p disease (COPD) (OR = 3.66, 1.21-10.75; p = 0.02). MT patients compared with patients referred to any intervention were older, had a higher prevalence of COPD, peripheral arterial disease, previous myocardial infarction, and cerebrovascular disease...

  5. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves

    DEFF Research Database (Denmark)

    Dvir, Danny; Webb, John G; Bleiziffer, Sabine

    2014-01-01

    for patients with structural valve deterioration; however, a comprehensive evaluation of survival after the procedure has not yet been performed. OBJECTIVE: To determine the survival of patients after transcatheter valve-in-valve implantation inside failed surgical bioprosthetic valves. DESIGN, SETTING......, stroke, and New York Heart Association functional class. RESULTS: Modes of bioprosthesis failure were stenosis (n = 181 [39.4%]), regurgitation (n = 139 [30.3%]), and combined (n = 139 [30.3%]). The stenosis group had a higher percentage of small valves (37% vs 20.9% and 26.6% in the regurgitation...... and combined groups, respectively; P = .005). Within 1 month following valve-in-valve implantation, 35 (7.6%) patients died, 8 (1.7%) had major stroke, and 313 (92.6%) of surviving patients had good functional status (New York Heart Association class I/II). The overall 1-year Kaplan-Meier survival rate was 83...

  6. Time-Resolved Micro PIV in the Pivoting Area of the Triflo Mechanical Heart Valve.

    Science.gov (United States)

    Vennemann, Bernhard M; Rösgen, Thomas; Carrel, Thierry P; Obrist, Dominik

    2016-09-01

    The Lapeyre-Triflo FURTIVA valve aims at combining the favorable hemodynamics of bioprosthetic heart valves with the durability of mechanical heart valves (MHVs). The pivoting region of MHVs is hemodynamically of special interest as it may be a region of high shear stresses, combined with areas of flow stagnation. Here, platelets can be activated and may form a thrombus which in the most severe case can compromise leaflet mobility. In this study we set up an experiment to replicate the pulsatile flow in the aortic root and to study the flow in the pivoting region under physiological hemodynamic conditions (CO = 4.5 L/min / CO = 3.0 L/min, f = 60 BPM). It was found that the flow velocity in the pivoting region could reach values close to that of the bulk flow during systole. At the onset of diastole the three valve leaflets closed in a very synchronous manner within an average closing time of 55 ms which is much slower than what has been measured for traditional bileaflet MHVs. Hot spots for elevated viscous shear stresses were found at the flanges of the housing and the tips of the leaflet ears. Systolic VSS was maximal during mid-systole and reached levels of up to 40 Pa.

  7. Working characteristics of variable intake valve in compressed air engine.

    Science.gov (United States)

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  8. Fiber heart valve prosthesis: influence of the fabric construction parameters on the valve fatigue performances.

    Science.gov (United States)

    Vaesken, Antoine; Heim, Frederic; Chakfe, Nabil

    2014-12-01

    Transcatheter aortic valve replacement (TAVR) has become today a largely considered alternative technique to surgical valve replacement in patients who are not operable or patients with high risk for open chest surgery. However, the biological valve tissue used in the devices implanted clinically appears to be fragile material when folded for low diameter catheter insertion purpose and released in calcified environment with irregular geometry. Textile polyester material is characterized by outstanding folding and strength properties combined with proven biocompatibility. It could thereof be considered to replace biological valve leaflets in the TAVR procedure. The textile construction parameters must however be tuned to obtain a material compatible with the valve requested durability. In that context, one issue to be addressed is the friction effect that occurs between filaments and between yarns within a fabric under flexure loading. This phenomenon could be critical for the resistance of the material on the long term. The purpose of the present work is to assess the fatigue performances of textile valve prototypes made from different fabric constructions (monofilament, multifilament, calendered mutifilament) under accelerated cyclic loading. The goal is to identify, which construction is the best suited to long term fatigue stress. Results show that calendered multifilament and monofilament fabric constructions undergo strong ruptures already from 40 Mio cycles, while non calendered multifilament appears more durable. The rupture patterns observed point out that durability is directly related to the flexure stiffness level of the fibrous elements in the construction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Advances in tissue engineering through stem cell-based co-culture.

    Science.gov (United States)

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Mitral Valve Disease

    Science.gov (United States)

    ... for mitral valve replacement—mechanical valves (metal) or biological valves (tissue). The principal advantage of mechanical valves ... small risk of stroke due to blood clotting. Biological valves usually are made from animal tissue. Biological ...

  11. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues.

    Science.gov (United States)

    Kant, Rajeev J; Coulombe, Kareen L K

    2018-03-15

    The field of tissue engineering has turned towards biomimicry to solve the problem of tissue oxygenation and nutrient/waste exchange through the development of vasculature. Induction of angiogenesis and subsequent development of a vascular bed in engineered tissues is actively being pursued through combinations of physical and chemical cues, notably through the presentation of topographies and growth factors. Presenting angiogenic signals in a spatiotemporal fashion is beginning to generate improved vascular networks, which will allow for the creation of large and dense engineered tissues. This review provides a brief background on the cells, mechanisms, and molecules driving vascular development (including angiogenesis), followed by how biomaterials and growth factors can be used to direct vessel formation and maturation. Techniques to accomplish spatiotemporal control of vascularization include incorporation or encapsulation of growth factors, topographical engineering, and 3D bioprinting. The vascularization of engineered tissues and their application in angiogenic therapy in vivo is reviewed herein with an emphasis on the most densely vascularized tissue of the human body - the heart. Vascularization is vital to wound healing and tissue regeneration, and development of hierarchical networks enables efficient nutrient transfer. In tissue engineering, vascularization is necessary to support physiologically dense engineered tissues, and thus the field seeks to induce vascular formation using biomaterials and chemical signals to provide appropriate, pro-angiogenic signals for cells. This review critically examines the materials and techniques used to generate scaffolds with spatiotemporal cues to direct vascularization in engineered and host tissues in vitro and in vivo. Assessment of the field's progress is intended to inspire vascular applications across all forms of tissue engineering with a specific focus on highlighting the nuances of cardiac tissue

  12. AN EXPERIMENTAL INVESTIGATION OF THE EFFECTS OF VARIABLE VALVE TIMING ON THE PERFORMANCE IN SPARK IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    Ali AKBAŞ

    2001-01-01

    Full Text Available In this study, an alternative prototype has been designed and constructed for variable valve timing systems which are used in spark ignition engines. The effects of intake valve timing and lift changing on engine performance have been investigated without changing the opening duration of the valves. A four stroke, single cylinder, spark ignition engine has been used for these experiments.

  13. Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure: new developments and challenges.

    Science.gov (United States)

    Finosh, G T; Jayabalan, Muthu

    2012-01-01

    Regeneration of myocardium through regenerative therapy and tissue engineering is appearing as a prospective treatment modality for patients with end-stage heart failure. Focusing on this area, this review highlights the new developments and challenges in the regeneration of myocardial tissue. The role of various cell sources, calcium ion and cytokine on the functional performance of regenerative therapy is discussed. The evolution of tissue engineering and the role of tissue matrix/scaffold, cell adhesion and vascularisation on tissue engineering of cardiac tissue implant are also discussed.

  14. Valve Disease

    Science.gov (United States)

    ... blood. There are 4 valves in the heart: tricuspid, pulmonary, mitral, and aortic. Two types of problems can disrupt blood flow through the valves: regurgitation or stenosis. Regurgitation is also called insufficiency or incompetence. Regurgitation happens when a valve doesn’ ...

  15. Heart valve replacement with the Sorin tilting-disc prosthesis. A 10-year experience.

    Science.gov (United States)

    Milano, A; Bortolotti, U; Mazzucco, A; Mossuto, E; Testolin, L; Thiene, G; Gallucci, V

    1992-02-01

    aortic valve replacement, 92% +/- 4% after mitral valve replacement, and 89% +/- 3% after aortic valve replacement, with no cases of mechanical fracture. The Sorin valve has shown a satisfactory long-term overall performance, comparable with other mechanical prostheses, and an excellent durability that renders it a reliable heart valve substitute for the mitral and aortic positions.

  16. Histopathological and Immunohistochemical Evaluation of Pannus Tissue in Patients with Prosthetic Valve Dysfunction.

    Science.gov (United States)

    Karakoyun, Süleyman; Ozan Gürsoy, Mustafa; Yesin, Mahmut; Kalçık, Macit; Astarcıoğlu, Mehmet Ali; Gündüz, Sabahattin; Emrah Oğuz, Ali; Çoban Kökten, Şermin; Nimet Karadayı, Ayşe; Tuncer, Altuğ; Köksal, Cengiz; Gökdeniz, Tayyar; Özkan, Mehmet

    2016-01-01

    Prosthetic valve dysfunction due to pannus formation is a rare but serious complication. Currently, limited data are available concerning the pathogenesis and immunohistochemical properties of pannus. The study aim was to investigate the morphological, histopathological and immunohistochemical characteristics of pannus formation in patients with prosthetic valve dysfunction. A total of 35 patients (10 males, 25 females; mean age 44 ± 16 years) who had undergone re-do valve surgery due to prosthetic valve obstruction was enrolled in the study. Immunohistochemical studies were aimed at evaluating the expression of alphasmooth muscle actin (α-SMA) and desmin in myofibroblasts and smooth muscle cells; epithelial membrane antigen (EMA) in epithelial cells; and CD34, Factor VIII and vascular endothelial growth factor (VEGF) in endothelial cells. Matrix metalloproteinases (MMPs) -2 and -9, and transforming growth factor-beta (TGF-β) were used to demonstrate cytokine release from macrophages, leukocytes, fibroblasts and myofibroblasts. Pannus appeared as a tough and thick tissue hyperplasia which began from outside the suture ring in the periannular region and extended to the inflow and outflow surfaces of the prosthetic valves. Histopathological analysis showed the pannus tissue to consist of chronic inflammatory cells (lymphocytes, plasma cells, macrophages and foreign body giant cells), spindle cells such as myofibroblasts, capillary blood vessels and endothelial cells laying down the lumens. Calcification was present in the pannus tissue of 19 explanted prostheses. Immunohistochemical studies revealed positive α-SMA expression in all patients, whereas 60.5% of patients were positive for desmin, 50% for EMA, 42.1% for VEGF, 39.5% for TBF-β, 42.1% for MMP-2, 86.8% for CD34, and 97.4% for Factor VIII. MMP-9 was negative in all patients. Pannus tissue appears to be formed as the result of a neointimal response in periannular regions of prosthetic valves that consist

  17. Heart Rate Variability in Cavalier King Charles Spaniels with Different Degree of Myxomatous Mitral Valve Disease

    DEFF Research Database (Denmark)

    Rasmussen, Caroline Elisabeth; Falk, Bo Torkel; Zois, Nora Elisabeth

    2010-01-01

    Sciences, University of Copenhagen, Frederiksberg, Denmark, 2Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; and 3Novo Nordic A/S, Maaloev, Denmark. Introduction: Modulation of heart rate by the autonomic nervous system can indirectly be measured by heart rate...... variability (HRV). Reduced HRV is seen in dogs with heart failure secondary to myxomatous mitral valve disease (MMVD). However, HRV is suggested to increase with disease progression in dogs with early stages of MMVD. Comparable results are found in people with primary mitral valve prolapse, a disease...... resembling canine MMVD. Aim: To associate progression of MMVD in dogs with time and frequency domain HRV, analysed from 24-hour electrocardiography. Materials and Methods: Eighty-one Cavalier King Charles Spaniels (CKCS) were examined by echocardiography and 24-hour electrocardiography. CKCS were divided...

  18. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    Science.gov (United States)

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536

  19. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    Directory of Open Access Journals (Sweden)

    Qihui Yu

    2014-01-01

    Full Text Available A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  20. Function and expression differences between ergot and non-ergot dopamine D2 agonists on heart valve interstitial cells.

    Science.gov (United States)

    Oana, Fumiki; Onozuka, Hiroshi; Tsuchioka, Akihiro; Suzuki, Takayuki; Tanaka, Nobuyuki; Kaidoh, Kouichi; Hoyano, Yuji; Hiratochi, Masahiro; Kikuchi, Shinji; Takehana, Yasuo; Shibata, Nobuo

    2014-03-01

    The symptoms of Parkinson's disease are alleviated by dopamine D2 agonists, which are classified as ergot dopamine D2 agonists and non-ergot D2 agonists. Among the former, pergolide has been associated with valvular heart disease, since it has both potent D2 receptor and serotonin 5-HT(2B) receptor agonistic properties. Among the latter, pramipexole has few incidences of heart valve disease onset, since it has an absence of 5-HT(2B) receptor agonism. A [3H]thymidine incorporation assay was performed to monitor function, and microarray global analysis to monitor gene expression, on porcine heart valve interstitial cells (VICs) treated with pergolide or pramipexole. The 5-HT(2B) receptor was abundantly expressed in porcine VICs. The 5-HT(2B) receptor agonist pergolide induced an increase in [3H]thymidine incorporation, accompanied by a decrease in 5-HT(2B) receptor mRNA expression. [3H]thymidine incorporation was blocked by lisuride, a 5-HT(2B) receptor antagonist, and also by LY-294002, a specific inhibitor of PI3K and Akt. Moreover, type 2 iodothyronine deiodinase (Dio2) expression in porcine VICs treated with pergolide was shown, by a global analysis of mRNA, to be markedly increased compared to that induced by pramipexole. Such changes in VICs may correlate with the mechanism of heart valve disease pathogenesis. There were substantial differences (increased [3H]thymidine incorporation, and Dio2 expression) between pergolide and pramipexole, which might correlate with the mechanism of heart valve disease onset.

  1. An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves

    Science.gov (United States)

    Kamensky, David; Hsu, Ming-Chen; Schillinger, Dominik; Evans, John A.; Aggarwal, Ankush; Bazilevs, Yuri; Sacks, Michael S.; Hughes, Thomas J. R.

    2014-01-01

    In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading

  2. Long-term tricuspid valve prosthesis-related complications in patients with congenital heart disease

    NARCIS (Netherlands)

    van Slooten, Ymkje J.; Freling, Hendrik G.; van Melle, Joost P.; Mulder, Barbara J. M.; Jongbloed, Monique R. M.; Ebels, Tjark; Voors, Adriaan A.; Pieper, Petronella G.

    2014-01-01

    In patients with acquired valvar disease, morbidity and mortality rates after tricuspid valve replacement (TVR) are high. However, in adult patients with congenital heart disease, though data concerning outcome after TVR are scarce, even poorer results are suggested in patients with Ebstein anomaly.

  3. Long-term tricuspid valve prosthesis-related complications in patients with congenital heart disease

    NARCIS (Netherlands)

    van Slooten, Ymkje J.; Freling, Hendrik G.; van Melle, Joost P.; Mulder, Barbara J. M.; Jongbloed, Monique R. M.; Ebels, Tjark; Voors, Adriaan A.; Pieper, Petronella G.

    OBJECTIVES: In patients with acquired valvar disease, morbidity and mortality rates after tricuspid valve replacement (TVR) are high. However, in adult patients with congenital heart disease, though data concerning outcome after TVR are scarce, even poorer results are suggested in patients with

  4. Carbon Fiber Reinforced Carbon Composite Rotary Valve for an Internal Combustion Engine

    Science.gov (United States)

    Northam, G.Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    2000-01-01

    Carbon fiber reinforced carbon composite rotary sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or wrap-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties do not present the sealing and lubrication problems that have prevented rotary sleeve and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  5. Amyloidosis, Inflammation, and Oxidative Stress in the Heart of an Alkaptonuric Patient

    Directory of Open Access Journals (Sweden)

    Lia Millucci

    2014-01-01

    Full Text Available Background. Alkaptonuria, a rare autosomal recessive metabolic disorder caused by deficiency in homogentisate 1,2-dioxygenase activity, leads to accumulation of oxidised homogentisic acid in cartilage and collagenous structures present in all organs and tissues, especially joints and heart, causing a pigmentation called ochronosis. A secondary amyloidosis is associated with AKU. Here we report a study of an aortic valve from an AKU patient. Results. Congo Red birefringence, Th-T fluorescence, and biochemical assays demonstrated the presence of SAA-amyloid deposits in AKU stenotic aortic valve. Light and electron microscopy assessed the colocalization of ochronotic pigment and SAA-amyloid, the presence of calcified areas in the valve. Immunofluorescence detected lipid peroxidation of the tissue and lymphocyte/macrophage infiltration causing inflammation. High SAA plasma levels and proinflammatory cytokines levels comparable to those from rheumatoid arthritis patients were found in AKU patient. Conclusions. SAA-amyloidosis was present in the aortic valve from an AKU patient and colocalized with ochronotic pigment as well as with tissue calcification, lipid oxidation, macrophages infiltration, cell death, and tissue degeneration. A local HGD expression in human cardiac tissue has also been ascertained suggesting a consequent local production of ochronotic pigment in AKU heart.

  6. Amyloidosis, Inflammation, and Oxidative Stress in the Heart of an Alkaptonuric Patient

    Science.gov (United States)

    Ghezzi, Lorenzo; Giorgetti, Giovanna; Viti, Cecilia; Geminiani, Michela; Soldani, Patrizia; Lupetti, Pietro; Benvenuti, Chiara; Perfetto, Federico; Spreafico, Adriano; Santucci, Annalisa

    2014-01-01

    Background. Alkaptonuria, a rare autosomal recessive metabolic disorder caused by deficiency in homogentisate 1,2-dioxygenase activity, leads to accumulation of oxidised homogentisic acid in cartilage and collagenous structures present in all organs and tissues, especially joints and heart, causing a pigmentation called ochronosis. A secondary amyloidosis is associated with AKU. Here we report a study of an aortic valve from an AKU patient. Results. Congo Red birefringence, Th-T fluorescence, and biochemical assays demonstrated the presence of SAA-amyloid deposits in AKU stenotic aortic valve. Light and electron microscopy assessed the colocalization of ochronotic pigment and SAA-amyloid, the presence of calcified areas in the valve. Immunofluorescence detected lipid peroxidation of the tissue and lymphocyte/macrophage infiltration causing inflammation. High SAA plasma levels and proinflammatory cytokines levels comparable to those from rheumatoid arthritis patients were found in AKU patient. Conclusions. SAA-amyloidosis was present in the aortic valve from an AKU patient and colocalized with ochronotic pigment as well as with tissue calcification, lipid oxidation, macrophages infiltration, cell death, and tissue degeneration. A local HGD expression in human cardiac tissue has also been ascertained suggesting a consequent local production of ochronotic pigment in AKU heart. PMID:24876668

  7. [Long-term outcome of aortic valve sparing procedures in connective tissue disorders].

    Science.gov (United States)

    Tanaka, Hiroshi; Ogino, H; Matsuda, H; Minatoya, K; Sasaki, N

    2009-10-01

    The aim of this study is to determine the long-term outcome of aortic valve sparing procedures for patients having connective tissue disorder. Between 1993 and 2008, the aortic valve sparing surgery was performed in 94 patients having aortic root dilatation. Eighty patients of them (37.2 +/- 13.4 years, 50 male) had cystic medial necrosis in the aortic wall, which was confirmed the pathological examination. We reviewed these patients. Sixty percent (48/80) had Marfan syndrome, 5% (4/80) had Loeyz-Dietz syndrome, 2% (2/80) had bicuspid aortic valve, and 11% (9/80) had aortic dissection. Our reimplantation procedure has been refined as followed: with a tube graft in 41, a tube graft with creation of neo-sinuses in 11, and a Valsalva graft in 14. Fourteen patients underwent the remodeling procedure. The follow-up rate was 100% with the duration of 3.7+/- 3.4 years. There were no operative death but six late deaths. Seventeen (21.3%) patients required aortic valve replacement, for recurrent aortic insufficiency in 13 and infection in 4. Freedom from reoperation was 80%, 43%, and freedom from moderate or severe aortic insufficiency was 80%, 54%, at 5 and 10 years, respectively. Pathological findings of the aortic valve obtained in the reoperations showed elongation and prolapse of the aortic valve due to myxomatous degeneration and fibrous thickening caused by aortic insufficiency. Even in connective tissue disorders, aortic valve sparing operation is associated with acceptable long-term durability, although cusp degeneration resulting in recurrent aortic insufficiency might be progressive.

  8. Aortic valve replacement and the stentless Freedom SOLO valve

    NARCIS (Netherlands)

    Wollersheim, L.W.L.M.

    2016-01-01

    Aortic valve stenosis has become the most prevalent valvular heart disease in Europe and North America, and is generally caused by age-related calcification of the aortic valve. For most patients, severe symptomatic aortic stenosis needs effective mechanical relief in the form of valve replacement

  9. Combining tissue repair and tissue engineering ; bioactivating implantable cell-free vascular scaffolds

    NARCIS (Netherlands)

    Muylaert, D.E.P.; Fledderus, J.O.; Bouten, C.V.C.; Dankers, P.Y.W.; Verhaar, M.C.

    2014-01-01

    Synthetic replacement grafts for heart valves and small-diameter blood vessels such as coronary arteries have the potential to circumvent many of the limitations of currently available autologous grafting materials. Cell-free material incorporating biologically active compounds may guide the

  10. Porcine Tricuspid Valve Anatomy and Human Compatibility: Relevance for Preclinical Validation of Novel Valve Interventions.

    Science.gov (United States)

    Waziri, Farhad; Lyager Nielsen, Sten; Michael Hasenkam, John

    2016-09-01

    Tricuspid regurgitation may be a precursor for heart failure, reduced functional capacity, and poor survival. A human compatible experimental model is required to understand the pathophysiology of the tricuspid valve disease as a basis for validating novel tricuspid valve interventions before clinical use. The study aim was to evaluate and compare the tricuspid valve anatomy of porcine and human hearts. The anatomy of the tricuspid valve and the surrounding structures that affect the valve during a cardiac cycle were examined in detail in 100 fresh and 19 formalin-fixed porcine hearts obtained from Danish Landrace pigs (body weight 80 kg). All valvular dimensions were compared with human data acquired from literature sources. No difference was seen in the tricuspid annulus circumference between porcine and human hearts (13.0 ± 1.2 cm versus 13.5 ± 1.5 cm; p = NS), or in valve area (5.7 ± 1.6 cm2 versus 5.6 ± 1.0 cm2; p = NS). The majority of chordae types exhibited a larger chordal length and thickness in human hearts compared to porcine hearts. In both species, the anterior papillary muscle (PM) was larger than other PMs in the right ventricle, but muscle length varied greatly (range: 5.2-40.3 mm) and was significantly different in pigs and in humans (12.2 ± 3.2 mm versus 19.2 mm; p human hearts.

  11. Interstage evaluation of homograft-valved right ventricle to pulmonary artery conduits for palliation of hypoplastic left heart syndrome.

    Science.gov (United States)

    Sandeep, Nefthi; Punn, Rajesh; Balasubramanian, Sowmya; Smith, Shea N; Reinhartz, Olaf; Zhang, Yulin; Wright, Gail E; Peng, Lynn F; Wise-Faberowski, Lisa; Hanley, Frank L; McElhinney, Doff B

    2018-04-01

    Palliation of hypoplastic left heart syndrome with a standard nonvalved right ventricle to pulmonary artery conduit results in an inefficient circulation in part due to diastolic regurgitation. A composite right ventricle pulmonary artery conduit with a homograft valve has a hypothetical advantage of reducing regurgitation, but may differ in the propensity for stenosis because of valve remodeling. This retrospective cohort study included 130 patients with hypoplastic left heart syndrome who underwent a modified stage 1 procedure with a right ventricle to pulmonary artery conduit from 2002 to 2015. A composite valved conduit (cryopreserved homograft valve anastomosed to a polytetrafluoroethylene tube) was placed in 100 patients (47 aortic, 32 pulmonary, 13 femoral/saphenous vein, 8 unknown), and a nonvalved conduit was used in 30 patients. Echocardiographic functional parameters were evaluated before and after stage 1 palliation and before the bidirectional Glenn procedure, and interstage interventions were assessed. On competing risk analysis, survival over time was better in the valved conduit group (P = .040), but this difference was no longer significant after adjustment for surgical era. There was no significant difference between groups in the cumulative incidence of bidirectional Glenn completion (P = .15). Patients with a valved conduit underwent more interventions for conduit obstruction in the interstage period, but this difference did not reach significance (P = .16). There were no differences between groups in echocardiographic parameters of right ventricle function at baseline or pre-Glenn. In this cohort of patients with hypoplastic left heart syndrome, inclusion of a valved right ventricle to pulmonary artery conduit was not associated with any difference in survival on adjusted analysis and did not confer an identifiable benefit on right ventricle function. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier

  12. Involvement of proinflammatory S100A9/A8 in the atherocalcinosis of aortic valves

    Directory of Open Access Journals (Sweden)

    R. А. Moskalenko

    2017-04-01

    Full Text Available According to the results of the Euro-Heart Survey on Vascular Heart Disease the most common pathology is nonrheumatic aortic stenosis, it is also called as calcific aortic valve stenosis (CAVS, as in its pathogenesis the process of biomineralization of valve cusps and ring plays the main role. The aim of the work is the immunohistochemical study of mineralized tissue of aortic heart valves, which are affected by atherocalcinosis. Materials and methods. 30 samples of mineralized aortic valves (I group and 10 samples of aortic valve without evidence of biomineralization (II group -– control were studied. Immunohistochemical study of expression of collagen (Collagen I, CD68, myeloperoxidase (MPO, calgranulin A (S100A8, calgranulin B (S100A9, caspase 3 (Casp 3 and osteopontin (OPN was conducted in AV tissue of both groups. Results. In CAV tissues the fibrillar component (collagen I growths was found, but the quantitative and qualitative compositions of CD68+ circulating inflammatory cells are not significantly different from the control group. CAVs contain much more MPO+ -cells (p <0.001 in comparison to the group of AVs without biomineralization. Our data show a significant increase of the S100A9 and OPN expression in the mineralized tissue of AVs (p < 0.01. Also, a higher expression level of Casp3 and MPO was found in CAVs (p < 0.05. Comparing the first and the second groups of AVs connection between the expression of S100A8 was not determined. Conclusion. High Casp 3 expression confirms the increased level of cell elimination in the CAVs tissue, which is obviously connected with the impact of high local concentrations of S100A9. These facts can contribute to the development of pathological biomineralization of AV. Since osteopontin inhibits the hydroxyapatite formation by binding to the surface of the crystals, its hyperproduction is a counteracting factor against biomineralization in AV tissue.

  13. Shelf-life of bioprosthetic heart valves: a structural and mechanical study.

    Science.gov (United States)

    Julien, M; Létouneau, D R; Marois, Y; Cardou, A; King, M W; Guidoin, R; Chachra, D; Lee, J M

    1997-04-01

    This study was undertaken to evaluate the influence of storage conditions on the shelf-life of porcine bioprosthetic valves. Fifty-five unimplanted porcine bioprostheses have been evaluated. The valves were stored in 0.5% buffered glutaraldehyde solution for different periods of time (7, 23 and 32 months). Twenty-eight valves were refrigerated while the remaining valves were stored at room temperature. The pH of the glutaraldehyde solution at room temperature decreased with time of storage, while that kept in the refrigerator remained stable over the course of the study. Macroscopic observations showed that the valve tissues kept at room temperature, especially for the periods of 23 and 32 months, became darker and more yellow in colour, whereas the refrigerated specimens exhibited no such changes in appearance. Scanning electron microscopy analysis revealed no noticeable differences on the surfaces of the leaflets stored under different conditions. Mechanical tests, including stress-strain response, stress relaxation and fracture behaviour, were carried out. Analysis of variance showed that the storage temperature, but not the length of storage, had a significant effect on some mechanical properties. The stress relaxation at 1000 s (P = 0.05), the ultimate tensile strength (P = 0.01) and the strain at fracture (P = 0.04) were all higher after storage at room temperature compared to the results after refrigeration. No statistically significant changes in the denaturation temperature of the collagen were observed between the different storage conditions. In conclusion, the storage temperature appears to have some influence on the bioprosthetic tissue. The bioprostheses stored under ambient conditions experience changes which may influence their longterm in vivo performance.

  14. Björk-Shiley convexoconcave valves: susceptibility artifacts at brain MR imaging and mechanical valve fractures.

    Science.gov (United States)

    van Gorp, Maarten J; van der Graaf, Yolanda; de Mol, Bas A J M; Bakker, Chris J G; Witkamp, Theo D; Ramos, Lino M P; Mali, Willem P T M

    2004-03-01

    To assess the relationship between heart valve history and susceptibility artifacts at magnetic resonance (MR) imaging of the brain in patients with Björk-Shiley convexoconcave (BSCC) valves. MR images of the brain were obtained in 58 patients with prosthetic heart valves: 20 patients had BSCC valve replacements, and 38 had other types of heart valves. Two experienced neuroradiologists determined the presence or absence of susceptibility artifacts in a consensus reading. Artifacts were defined as characteristic black spots that were visible on T2*-weighted gradient-echo MR images. The statuses of the 20 explanted BSCC valves-specifically, whether they were intact or had an outlet strut fracture (OSF) or a single-leg fracture (SLF)-had been determined earlier. Number of artifacts seen at brain MR imaging was correlated with explanted valve status, and differences were analyzed with nonparametric statistical tests. Significantly more patients with BSCC valves (17 [85%] of 20 patients) than patients with other types of prosthetic valves (18 [47%] of 38 patients) had susceptibility artifacts at MR imaging (P =.005). BSCC valve OSFs were associated with a significantly higher number of artifacts than were intact BSCC valves (P =.01). No significant relationship between SLF and number of artifacts was observed. Susceptibility artifacts at brain MR imaging are not restricted to patients with BSCC valves. These artifacts can be seen on images obtained in patients with various other types of fractured and intact prosthetic heart valves. Copyright RSNA, 2004

  15. Accordion-like honeycombs for tissue engineering of cardiac anisotropy

    Science.gov (United States)

    Engelmayr, George C.; Cheng, Mingyu; Bettinger, Christopher J.; Borenstein, Jeffrey T.; Langer, Robert; Freed, Lisa E.

    2008-12-01

    Tissue-engineered grafts may be useful in myocardial repair; however, previous scaffolds have been structurally incompatible with recapitulating cardiac anisotropy. Here, we use microfabrication techniques to create an accordion-like honeycomb microstructure in poly(glycerol sebacate), which yields porous, elastomeric three-dimensional (3D) scaffolds with controllable stiffness and anisotropy. Accordion-like honeycomb scaffolds with cultured neonatal rat heart cells demonstrated utility through: (1) closely matched mechanical properties compared to native adult rat right ventricular myocardium, with stiffnesses controlled by polymer curing time; (2) heart cell contractility inducible by electric field stimulation with directionally dependent electrical excitation thresholds (pthe formation of grafts with aligned heart cells and mechanical properties more closely resembling native myocardium.

  16. Management of tricuspid valve regurgitation: Position statement of the European Society of Cardiology Working Groups of Cardiovascular Surgery and Valvular Heart Disease.

    Science.gov (United States)

    Antunes, Manuel J; Rodríguez-Palomares, José; Prendergast, Bernard; De Bonis, Michele; Rosenhek, Raphael; Al-Attar, Nawwar; Barili, Fabio; Casselman, Filip; Folliguet, Thierry; Iung, Bernard; Lancellotti, Patrizio; Muneretto, Claudio; Obadia, Jean-François; Pierard, Luc; Suwalski, Piotr; Zamorano, Pepe

    2017-12-01

    Tricuspid regurgitation (TR) is a very frequent manifestation of valvular heart disease. It may be due to the primary involvement of the valve or secondary to pulmonary hypertension or to the left-sided heart valve disease (most commonly rheumatic and involving the mitral valve). The pathophysiology of secondary TR is complex and is intrinsically connected to the anatomy and function of the right ventricle. A systematic multimodality approach to diagnosis and assessment (based not only on the severity of the TR but also on the assessment of annular size, RV function and degree of pulmonary hypertension) is, therefore, essential. Once considered non-important, treatment of secondary TR is currently viewed as an essential concomitant procedure at the time of mitral (and, less frequently, aortic valve) surgery. Although the indications for surgical management of severe TR are now generally accepted (Class I), controversy persists concerning the role of intervention for moderate TR. However, there is a trend for intervention in this setting, especially at the time of surgery for left-sided heart valve disease and/or in patients with significant tricuspid annular dilatation (Class IIa). Currently, surgery remains the best approach for the interventional treatment of TR. Percutaneous tricuspid valve intervention (both repair and replacement) is still in its infancy but may become a reliable option in future, especially for high-risk patients with isolated primary TR or with secondary TR related to advanced left-sided heart valve disease. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  17. Cardiac rehabilitation increases physical capacity but not mental health after heart valve surgery

    DEFF Research Database (Denmark)

    Sibilitz, Kirstine L.; Berg, Selina K.; Rasmussen, Trine B.

    2016-01-01

    Objective: The evidence for cardiac rehabilitation after valve surgery remains sparse. Current recommendations are therefore based on patients with ischaemic heart disease. The aim of this randomised clinical trial was to assess the effects of cardiac rehabilitation versus usual care after heart......-educational consultations (intervention) versus usual care without structured physical exercise or psycho-educational consultations (control). Primary outcome was physical capacity measured by VO2 peak and secondary outcome was self-reported mental health measured by Short Form-36. Results: 76% were men, mean age 62 years......, with aortic (62%), mitral (36%) or tricuspid/pulmonary valve surgery (2%). Cardiac rehabilitation compared with control had a beneficial effect on VO2 peak at 4 months (24.8 mL/kg/min vs 22.5 mL/kg/min, p=0.045) but did not affect Short Form-36 Mental Component Scale at 6 months (53.7 vs 55.2 points, p=0...

  18. Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics

    Directory of Open Access Journals (Sweden)

    Dewy C. van der Valk

    2018-05-01

    Full Text Available In calcific aortic valve disease (CAVD, microcalcifications originating from nanoscale calcifying vesicles disrupt the aortic valve (AV leaflets, which consist of three (biomechanically distinct layers: the fibrosa, spongiosa, and ventricularis. CAVD has no pharmacotherapy and lacks in vitro models as a result of complex valvular biomechanical features surrounding resident mechanosensitive valvular interstitial cells (VICs. We measured layer-specific mechanical properties of the human AV and engineered a three-dimensional (3D-bioprinted CAVD model that recapitulates leaflet layer biomechanics for the first time. Human AV leaflet layers were separated by microdissection, and nanoindentation determined layer-specific Young’s moduli. Methacrylated gelatin (GelMA/methacrylated hyaluronic acid (HAMA hydrogels were tuned to duplicate layer-specific mechanical characteristics, followed by 3D-printing with encapsulated human VICs. Hydrogels were exposed to osteogenic media (OM to induce microcalcification, and VIC pathogenesis was assessed by near infrared or immunofluorescence microscopy. Median Young’s moduli of the AV layers were 37.1, 15.4, and 26.9 kPa (fibrosa/spongiosa/ventricularis, respectively. The fibrosa and spongiosa Young’s moduli matched the 3D 5% GelMa/1% HAMA UV-crosslinked hydrogels. OM stimulation of VIC-laden bioprinted hydrogels induced microcalcification without apoptosis. We report the first layer-specific measurements of human AV moduli and a novel 3D-bioprinted CAVD model that potentiates microcalcification by mimicking the native AV mechanical environment. This work sheds light on valvular mechanobiology and could facilitate high-throughput drug-screening in CAVD.

  19. Aortic valve prosthesis-patient mismatch and exercise capacity in adult patients with congenital heart disease.

    Science.gov (United States)

    van Slooten, Ymkje J; van Melle, Joost P; Freling, Hendrik G; Bouma, Berto J; van Dijk, Arie Pj; Jongbloed, Monique Rm; Post, Martijn C; Sieswerda, Gertjan T; Huis In 't Veld, Anna; Ebels, Tjark; Voors, Adriaan A; Pieper, Petronella G

    2016-01-01

    To report the prevalence of aortic valve prosthesis-patient mismatch (PPM) in an adult population with congenital heart disease (CHD) and its impact on exercise capacity. Adults with congenital heart disease (ACHD) with a history of aortic valve replacement may outgrow their prosthesis later in life. However, the prevalence and clinical consequences of aortic PPM in ACHD are presently unknown. From the national Dutch Congenital Corvitia (CONCOR) registry, we identified 207 ACHD with an aortic valve prosthesis for this cross-sectional cohort study. Severe PPM was defined as an indexed effective orifice area ≤0.65 cm2/m2 and moderate PPM as an indexed orifice area ≤0.85 cm2/m2 measured using echocardiography. Exercise capacity was reported as percentage of predicted exercise capacity (PPEC). Of the 207 patients, 68% was male, 71% had a mechanical prosthesis and mean age at inclusion was 43.9 years ±11.4. The prevalence of PPM was 42%, comprising 23% severe PPM and 19% moderate PPM. Prevalence of PPM was higher in patients with mechanical prostheses (pHeart Association (NYHA) class remained stable in most patients. PPM showed no significant effect on death or hospitalisation during follow-up (p=0.218). In this study we report a high prevalence (42%) of PPM in ACHD with an aortic valve prosthesis and an independent association of PPM with diminished exercise capacity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Design and Performance Evaluation of an Electro-Hydraulic Camless Engine Valve Actuator for Future Vehicle Applications.

    Science.gov (United States)

    Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B

    2017-12-18

    This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench.

  1. PIV validation of blood-heart valve leaflet interaction modelling.

    Science.gov (United States)

    Kaminsky, R; Dumont, K; Weber, H; Schroll, M; Verdonck, P

    2007-07-01

    The aim of this study was to validate the 2D computational fluid dynamics (CFD) results of a moving heart valve based on a fluid-structure interaction (FSI) algorithm with experimental measurements. Firstly, a pulsatile laminar flow through a monoleaflet valve model with a stiff leaflet was visualized by means of Particle Image Velocimetry (PIV). The inflow data sets were applied to a CFD simulation including blood-leaflet interaction. The measurement section with a fixed leaflet was enclosed into a standard mock loop in series with a Harvard Apparatus Pulsatile Blood Pump, a compliance chamber and a reservoir. Standard 2D PIV measurements were made at a frequency of 60 bpm. Average velocity magnitude results of 36 phase-locked measurements were evaluated at every 10 degrees of the pump cycle. For the CFD flow simulation, a commercially available package from Fluent Inc. was used in combination with inhouse developed FSI code based on the Arbitrary Lagrangian-Eulerian (ALE) method. Then the CFD code was applied to the leaflet to quantify the shear stress on it. Generally, the CFD results are in agreement with the PIV evaluated data in major flow regions, thereby validating the FSI simulation of a monoleaflet valve with a flexible leaflet. The applicability of the new CFD code for quantifying the shear stress on a flexible leaflet is thus demonstrated.

  2. Mitral Valve Prolapse

    Science.gov (United States)

    Mitral valve prolapse (MVP) occurs when one of your heart's valves doesn't work properly. The flaps of the valve are "floppy" and ... to run in families. Most of the time, MVP doesn't cause any problems. Rarely, blood can ...

  3. Dysfunction of mechanical heart valve prosthesis: experience with surgical management in 48 patients

    Science.gov (United States)

    Ma, Wei-Guo; Hou, Bin; Abdurusul, Adiljan; Gong, Ding-Xu; Tang, Yue; Chang, Qian; Xu, Jian-Ping

    2015-01-01

    Background Dysfunction of mechanical heart valve prostheses is an unusual but potentially lethal complication after mechanical prosthetic valve replacement. We seek to report our experience with mechanical valve dysfunction regarding etiology, surgical techniques and early outcomes. Methods Clinical data of 48 patients with mechanical valve dysfunction surgically treated between October 1996 and June 2011 were analyzed. Results Mean age was 43.7±10.9 years and 34 were female (70.8%). The median interval from primary valve implantation to dysfunction was 44.5 months (range, 1 hour to 20 years). There were 21 emergent and 27 elective reoperations. The etiology was thrombosis in 19 cases (39.6%), pannus in 12 (25%), thrombosis and pannus in 11 (22.9%), improper disc orientation in 2 (4.1%), missing leaflet in 1 (2.1%), excessively long knot end in 1 (2.1%), endogenous factor in 1 (2.1%) and unidentified in 1 (2.1%). Surgical procedure was mechanical valve replacement in 37 cases (77.1%), bioprosthetic valve replacement in 7 (14.9%), disc rotation in 2 (4.2%) and excision of excessive knot end in 1 (2.1%). Early deaths occurred in 7 patients (14.6%), due to low cardiac output in 3 (6.3%), multi-organ failure in 2 (4.2%) and refractory ventricular fibrillation in 2 (4.2%). Complications occurred in 10 patients (20.8%). Conclusions Surgical management of mechanical valve dysfunction is associated with significant mortality and morbidity. Earlier identification and prompt reoperation are vital to achieving better clinical outcomes. The high incidence of thrombosis in this series highlights the need for adequate anticoagulation and regular follow-up after mechanical valve replacement. PMID:26793354

  4. Design Methodology of Camshaft Driven Charge Valves for Pneumatic Engine Starts

    Directory of Open Access Journals (Sweden)

    Moser Michael M.

    2015-01-01

    Full Text Available Idling losses constitute a significant amount of the fuel consumption of internal combustion engines. Therefore, shutting down the engine during idling phases can improve its overall efficiency. For driver acceptance a fast restart of the engine must be guaranteed. A fast engine start can be performed using a powerful electric starter and an appropriate battery which are found in hybrid electric vehicles, for example. However, these devices involve additional cost and weight. An alternative method is to use a tank with pressurized air that can be injected directly into the cylinders to start the engine pneumatically. In this paper, pneumatic engine starts using camshaft driven charge valves are discussed. A general methodology for an air-optimal charge valve design is presented which can deal with various requirements. The proposed design methodology is based on a process model representing pneumatic engine operation. A design example for a two-cylinder engine is shown, and the resulting optimized pneumatic start is experimentally verified on a test bench engine. The engine’s idling speed of 1200 rpm can be reached within 350 ms for an initial pressure in the air tank of 10 bar. A detailed system analysis highlights the characteristics of the optimal design found.

  5. Degradable polymers for tissue engineering

    NARCIS (Netherlands)

    van Dijkhuizen-Radersma, Riemke; Moroni, Lorenzo; van Apeldoorn, Aart A.; Zhang, Zheng; Grijpma, Dirk W.; van Blitterswijk, Clemens A.

    2008-01-01

    This chapter elaborates the degradable polymers for tissue engineering and their required scaffold material in tissue engineering. It recognizes the examples of degradable polymers broadly used in tissue engineering. Tissue engineering is the persuasion of the body to heal itself through the

  6. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples.

    Science.gov (United States)

    Gorelick, Daniel A; Iwanowicz, Luke R; Hung, Alice L; Blazer, Vicki S; Halpern, Marnie E

    2014-04-01

    Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.

  7. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.

    Science.gov (United States)

    Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya

    2016-07-01

    Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Engineering Musculoskeletal Tissue Interfaces

    Directory of Open Access Journals (Sweden)

    Ece Bayrak

    2018-04-01

    Full Text Available Tissue engineering aims to bring together biomaterials, cells, and signaling molecules within properly designed microenvironments in order to create viable treatment options for the lost or malfunctioning tissues. Design and production of scaffolds and cell-laden grafts that mimic the complex structural and functional features of tissues are among the most important elements of tissue engineering strategy. Although all tissues have their own complex structure, an even more complex case in terms of engineering a proper carrier material is encountered at the tissue interfaces, where two distinct tissues come together. The interfaces in the body can be examined in four categories; cartilage-bone and ligament-bone interfaces at the knee and the spine, tendon-bone interfaces at the shoulder and the feet, and muscle-tendon interface at the skeletal system. These interfaces are seen mainly at the soft-to-hard tissue transitions and they are especially susceptible to injury and tear due to the biomechanical inconsistency between these tissues where high strain fields are present. Therefore, engineering the musculoskeletal tissue interfaces remain a challenge. This review focuses on recent advancements in strategies for musculoskeletal interface engineering using different biomaterial-based platforms and surface modification techniques.

  9. Tissue engineering in dentistry.

    Science.gov (United States)

    Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Salih, Vehid M; Kim, Hae-Won; Knowles, Jonathan C

    2014-08-01

    of this review is to inform practitioners with the most updated information on tissue engineering and its potential applications in dentistry. The authors used "PUBMED" to find relevant literature written in English and published from the beginning of tissue engineering until today. A combination of keywords was used as the search terms e.g., "tissue engineering", "approaches", "strategies" "dentistry", "dental stem cells", "dentino-pulp complex", "guided tissue regeneration", "whole tooth", "TMJ", "condyle", "salivary glands", and "oral mucosa". Abstracts and full text articles were used to identify causes of craniofacial tissue loss, different approaches for craniofacial reconstructions, how the tissue engineering emerges, different strategies of tissue engineering, biomaterials employed for this purpose, the major attempts to engineer different dental structures, finally challenges and future of tissue engineering in dentistry. Only those articles that dealt with the tissue engineering in dentistry were selected. There have been a recent surge in guided tissue engineering methods to manage periodontal diseases beyond the traditional approaches. However, the predictable reconstruction of the innate organisation and function of whole teeth as well as their periodontal structures remains challenging. Despite some limited progress and minor successes, there remain distinct and important challenges in the development of reproducible and clinically safe approaches for oral tissue repair and regeneration. Clearly, there is a convincing body of evidence which confirms the need for this type of treatment, and public health data worldwide indicates a more than adequate patient resource. The future of these therapies involving more biological approaches and the use of dental tissue stem cells is promising and advancing. Also there may be a significant interest of their application and wider potential to treat disorders beyond the craniofacial region. Considering the

  10. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    “Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  11. The nordic aortic valve intervention (NOTION) trial comparing transcatheter versus surgical valve implantation

    DEFF Research Database (Denmark)

    Thyregod, Hans Gustav; Søndergaard, Lars; Ihlemann, Nikolaj

    2013-01-01

    Degenerative aortic valve (AV) stenosis is the most prevalent heart valve disease in the western world. Surgical aortic valve replacement (SAVR) has until recently been the standard of treatment for patients with severe AV stenosis. Whether transcatheter aortic valve implantation (TAVI) can...

  12. Self-Expanding Transcatheter Aortic Valve System for Symptomatic High-Risk Patients With Severe Aortic Stenosis

    DEFF Research Database (Denmark)

    Reichenspurner, Hermann; Schaefer, Andreas; Schäfer, Ulrich

    2017-01-01

    BACKGROUND: The CENTERA transcatheter heart valve (THV) is a low-profile, self-expanding nitinol valve made from bovine pericardial tissue that is 14-F compatible with a motorized delivery system allowing for repositionability. OBJECTIVES: The pivotal study evaluated safety and efficacy of this THV...... permanent pacemaker was implanted in 4.5% of patients receiving the THV (4.9% for patients at risk). CONCLUSIONS: The herein described THV is safe and effective at 30 days with low mortality, significant improvements in hemodynamic outcomes, and low incidence of adverse events. Of particular interest...... is the low incidence of permanent pacemaker implantations. (Safety and Performance Study of the Edwards CENTERA-EU Self-Expanding Transcatheter Heart Valve [CENTERA-2]; NCT02458560)....

  13. Effect of the sinus of valsalva on the closing motion of bileaflet prosthetic heart valves.

    Science.gov (United States)

    Ohta, Y; Kikuta, Y; Shimooka, T; Mitamura, Y; Yuhta, T; Dohi, T

    2000-04-01

    Conventional bileaflet prosthetic mechanical heart valves close passively with backflow. Naturally, the valve has problems associated with closure, such as backflow, water hammer effect, and fracture of the leaflet. On the other hand, in the case of the natural aortic valve, the vortex flow in the sinus of Valsalva pushes the leaflet to close, and the valve starts the closing motion earlier than the prosthetic valve as the forward flow decelerates. This closing mechanism is thought to decrease backflow at valve closure. In this study, we propose a new bileaflet mechanical valve resembling a drawbridge in shape, and the prototype valve was designed so that the leaflet closes with the help of the vortex flow in the sinus. The test valve was made of aluminum alloy, and its closing motion was compared to that of the CarboMedics (CM) valve. Both valves were driven by a computer controlled hydraulic mock circulator and were photographed at 648 frames/s by a high speed charge-coupled device (CCD) camera. Each frame of the valve motion image was analyzed with a personal computer, and the opening angles were measured. The flow rate was set as 5.0 L/min. The system was pulsed with 70 bpm, and the systolic/diastolic ratio was 0.3. Glycerin water was used as the circulation fluid at room temperature, and polystyrene particles were used to visualize the streamline. The model of the sinus of Valsalva was made of transparent silicone rubber. As a result, high speed video analysis showed that the test valve started the closing motion 41 ms earlier than the CM valve, and streamline analysis showed that the test valve had a closing mechanism similar to the natural one with the effect of vortex flow. The structure of the test valve was thought to be effective for soft closure and could solve problems associated with closure.

  14. Two-dimensional FSI simulation of closing dynamics of a tilting disc mechanical heart valve.

    Science.gov (United States)

    Govindarajan, V; Udaykumar, H S; Herbertson, L H; Deutsch, S; Manning, K B; Chandran, K B

    2010-03-01

    The fluid dynamics during valve closure resulting in high shear flows and large residence times of particles has been implicated in platelet activation and thrombus formation in mechanical heart valves. Our previous studies with bi-leaflet valves have shown that large shear stresses induced in the gap between the leaflet edge and the valve housing results in relatively high platelet activation levels whereas flow between the leaflets results in shed vortices not conducive to platelet damage. In this study we compare the result of closing dynamics of a tilting disc valve with that of a bi-leaflet valve. The two-dimensional fluid-structure interaction analysis of a tilting disc valve closure mechanics is performed with a fixed grid Cartesian mesh flow solver with local mesh refinement, and a Lagrangian particle dynamic analysis for computation of potential for platelet activation. Throughout the simulation the flow remains in the laminar regime and the flow through the gap width is marked by the development of a shear layer which separates from the leaflet downstream of the valve. Zones of re-circulation are observed in the gap between the leaflet edge and the valve housing on the major orifice region of the tilting disc valve and are seen to be migrating towards the minor orifice region. Jet flow is observed at the minor orifice region and a vortex is formed which sheds in the direction of fluid motion as observed in experiments using PIV measurements. The activation parameter computed for the tilting disc valve, at the time of closure was found to be 2.7 times greater than that of the bi-leaflet mechanical valve and was found to be in the vicinity of the minor orifice region mainly due to the migration of vortical structures from the major to the minor orifice region during the leaflet rebound of the closing phase.

  15. The value of echocardiography in follow-up of human tissue valves in aortic position

    NARCIS (Netherlands)

    T.P. Willems (Tineke)

    1999-01-01

    textabstractThe application of human tissue valves for aortic valve or root replacement was introduced during the 19608. The first successful clinical orthotopic implantation of an aortic allograft was performed by Ross and Barrat-Boyes independently in 19621,2, In 1967 Ross first reported the use

  16. 3D velocity field characterization of prosthetic heart valve with two different valve testers by means of stereo-PIV.

    Science.gov (United States)

    D'Avenio, Giuseppe; Grigioni, Mauro; Daniele, Carla; Morbiducci, Umberto; Hamilton, Kathrin

    2015-01-01

    Prosthetic heart valves can be associated to mechanical loading of blood, potentially linked to complications (hemolysis and thrombogenicity) which can be clinically relevant. In order to test such devices in pulsatile mode, pulse duplicators (PDs) have been designed and built according to different concepts. This study was carried out to compare anemometric measurements made on the same prosthetic device, with two widely used PDs. The valve (a 27-mm bileaflet valve) was mounted in the aortic section of the PD. The Sheffield University PD and the RWTH Aachen PD were selected as physical models of the circulation. These two PDs differ mainly in the vertical vs horizontal realization, and in the ventricular section, which in the RWTH PD allows for storage of potential energy in the elastic walls of the ventricle. A glassblown aorta, realized according to the geometric data of the same anatomical district in healthy individuals, was positioned downstream of the valve, obtaining 1:1 geometric similarity conditions. A NaI-glycerol-water solution of suitable kinematic viscosity and, at the same time, the proper refractive index, was selected. The flow field downstream of the valve was measured by means of the stereo-PIV (Particle Image Velocimetry) technique, capable of providing the complete 3D velocity field as well as the entire Reynolds stress tensor. The measurements were carried out at the plane intersecting the valve axis. A three-jet profile was clearly found in the plane crossing the leaflets, with both PDs. The extent of the typical recirculation zone in the Valsalva sinus was much larger in the RWTH PD, on account of the different duration of the swirling motion in the ventricular chamber, caused by the elasticity of the ventricle and its geometry. The comparison of the hemodynamical behaviour of the same bileaflet valve tested in two PDs demonstrated the role of the mock loop in affecting the valve performance.

  17. ESC Working Group on Valvular Heart Disease position paper--heart valve clinics: organization, structure, and experiences.

    Science.gov (United States)

    Lancellotti, Patrizio; Rosenhek, Raphael; Pibarot, Philippe; Iung, Bernard; Otto, Catherine M; Tornos, Pilar; Donal, Erwan; Prendergast, Bernard; Magne, Julien; La Canna, Giovanni; Piérard, Luc A; Maurer, Gerald

    2013-06-01

    With an increasing prevalence of patients with valvular heart disease (VHD), a dedicated management approach is needed. The challenges encountered are manifold and include appropriate diagnosis and quantification of valve lesion, organization of adequate follow-up, and making the right management decisions, in particular with regard to the timing and choice of interventions. Data from the Euro Heart Survey have shown a substantial discrepancy between guidelines and clinical practice in the field of VHD and many patients are denied surgery despite having clear indications. The concept of heart valve clinics (HVCs) is increasingly recognized as the way to proceed. At the same time, very few centres have developed such expertise, indicating that specific recommendations for the initial development and subsequent operating requirements of an HVC are needed. The aim of this position paper is to provide insights into the rationale, organization, structure, and expertise needed to establish and operate an HVC. Although the main goal is to improve the clinical management of patients with VHD, the impact of HVCs on education is of particular importance: larger patient volumes foster the required expertise among more senior physicians but are also fundamental for training new cardiologists, medical students, and nurses. Additional benefits arise from research opportunities resulting from such an organized structure and the delivery of standardized care protocols. The growing volume of patients with VHD, their changing characteristics, and the growing technological opportunities of refined diagnosis and treatment in addition to the potential dismal prognosis if overlooked mandate specialized evaluation and care by dedicated physicians working in a specialized environment that is called the HVC.

  18. Effect of vortex generators on the closing transient flow of bileaflet mechanical heart valves

    Science.gov (United States)

    Murphy, David; Dasi, Lakshmi; Yoganathan, Ajit; Glezer, Ari

    2006-11-01

    The time-periodic closing of bileaflet mechanical heart valves is accompanied by a strong flow transient that is associated with the formation of a counter-rotating vortex pair near the b-datum line of leaflet edges. The strong transitory shear that is generated by these vortices may be damaging to blood elements and may result in platelet activation. In the present work, these flow transients are mitigated using miniature vortex generator arrays that are embedded on the surface of the leaflets. Two vortex generator designs were investigated: one design comprised staggered rectangular fins and the other one staggered hemispheres. The closing transients in the absence and presence of the passive vortex generators are characterized using phase locked PIV measurements. The study utilizes a 25 mm St. Jude Medical valve placed in the aortic position of the Georgia Tech left heart simulator. Measurements of the velocity field in the center plane of the leaflets demonstrate that the dynamics of the transient vortices that precede the formation of the leakage jets can be significantly altered and controlled by relatively simple passive modifications of existing valve designs. Human blood experiments validated the effectiveness of miniature vortex generators in reducing thrombus formation by over 42 percent.

  19. Mitral valve regurgitation

    Science.gov (United States)

    ... and dentist if you have a history of heart valve disease or congenital heart disease before treatment. Some people ... the middle Heart, front view References Carabello BA. Valvular heart disease. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  20. Fault Diagnosis of Internal Combustion Engine Valve Clearance Using the Impact Commencement Detection Method

    Science.gov (United States)

    Jiang, Zhinong; Wang, Zijia; Zhang, Jinjie

    2017-01-01

    Internal combustion engines (ICEs) are widely used in many important fields. The valve train clearance of an ICE usually exceeds the normal value due to wear or faulty adjustment. This work aims at diagnosing the valve clearance fault based on the vibration signals measured on the engine cylinder heads. The non-stationarity of the ICE operating condition makes it difficult to obtain the nominal baseline, which is always an awkward problem for fault diagnosis. This paper overcomes the problem by inspecting the timing of valve closing impacts, of which the referenced baseline can be obtained by referencing design parameters rather than extraction during healthy conditions. To accurately detect the timing of valve closing impact from vibration signals, we carry out a new method to detect and extract the commencement of the impacts. The results of experiments conducted on a twelve-cylinder ICE test rig show that the approach is capable of extracting the commencement of valve closing impact accurately and using only one feature can give a superior monitoring of valve clearance. With the help of this technique, the valve clearance fault becomes detectable even without the comparison to the baseline, and the changing trend of the clearance could be trackable. PMID:29244722

  1. Fault Diagnosis of Internal Combustion Engine Valve Clearance Using the Impact Commencement Detection Method.

    Science.gov (United States)

    Jiang, Zhinong; Mao, Zhiwei; Wang, Zijia; Zhang, Jinjie

    2017-12-15

    Internal combustion engines (ICEs) are widely used in many important fields. The valve train clearance of an ICE usually exceeds the normal value due to wear or faulty adjustment. This work aims at diagnosing the valve clearance fault based on the vibration signals measured on the engine cylinder heads. The non-stationarity of the ICE operating condition makes it difficult to obtain the nominal baseline, which is always an awkward problem for fault diagnosis. This paper overcomes the problem by inspecting the timing of valve closing impacts, of which the referenced baseline can be obtained by referencing design parameters rather than extraction during healthy conditions. To accurately detect the timing of valve closing impact from vibration signals, we carry out a new method to detect and extract the commencement of the impacts. The results of experiments conducted on a twelve-cylinder ICE test rig show that the approach is capable of extracting the commencement of valve closing impact accurately and using only one feature can give a superior monitoring of valve clearance. With the help of this technique, the valve clearance fault becomes detectable even without the comparison to the baseline, and the changing trend of the clearance could be trackable.

  2. Early clinical outcome of aortic transcatheter valve-in-valve implantation in the Nordic countries

    DEFF Research Database (Denmark)

    Ihlberg, Leo; Nissen, Henrik Hoffmann; Nielsen, Niels Erik

    2013-01-01

    Transcatheter valve-in-valve implantation has emerged as an option, in addition to reoperative surgical aortic valve replacement, to treat failed biologic heart valve substitutes. However, the clinical experience with this approach is still limited. We report the comprehensive experience...

  3. Bjork-Shiley convexoconcave valves: Susceptibility artifacts at brain MR imaging and mechanical valve fractures

    NARCIS (Netherlands)

    van Gorp, Maarten J.; van der Graaf, Yolanda; de Mol, Bas A. J. M.; Bakker, Chris J. G.; Witkamp, Theo D.; Ramos, Lino M. P.; Mali, Willem P. T. M.

    2004-01-01

    PURPOSE: To assess the relationship between heart valve history and susceptibility artifacts at magnetic resonance (MR) imaging of the brain in patients with Bjork-Shiley convexoconcave (BSCC) valves. MATERIALS AND METHODS: MR images of the brain were obtained in 58 patients with prosthetic heart

  4. Decreasing warfarin sensitivity during the first three months after heart valve surgery : Implications for dosing

    NARCIS (Netherlands)

    Meijer, K.; Kim, Y. -K.; Schulman, S.

    Introduction: Vitamin K antagonists are prescribed to prevent thromboembolic complications after heart valve surgery. In our experience, patients often show a progressive decrease in sensitivity to warfarin after surgery making it difficult to reach and maintain a therapeutic International

  5. Valvular Disorders in Carcinoid Heart Disease

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    Full Text Available Abstract Carcinoid heart disease is a rare but important cause of intrinsic right heart valve disorders leading to right heart failure. Occasionally, left-sided heart valves may also be involved. The characteristic cardiac pathological findings of carcinoid heart disease are endocardial thickening as a result of fibrous deposits on the endocardium. Echocardiographic examination and right heart catheterization are very useful for the diagnosis of the lesion. If more cardiac valves are affected, multiple valve replacement should be considered. The management of the pulmonary valve lesion depends on the extent of the diseased valve, either by valvulotomy, valvectomy, or valve replacement. Percutaneous valve implantations in the pulmonary and in the inferior vena cava positions have been advocated for high-risk patients.

  6. A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor.

    Science.gov (United States)

    Lei, Ying; Masjedi, Shirin; Ferdous, Zannatul

    2017-11-01

    In aortic valves, biaxial cyclic stretch is known to modulate cell differentiation, extracellular matrix (ECM) synthesis and organization. We designed a novel bioreactor that can apply independent and precise stretch along radial and circumferential directions in a tissue culture environment. While this bioreactor can be used for either native or engineered tissues, this study determined matrix remodeling and strain distribution of aortic cusps after culturing under biaxial stretch for 14 days. The contents of collagen and glycosaminoglycans were determined using standard biochemical assays and compared with fresh controls. Strain fields in static cusps were more uniform than those in stretched cusps, which indicated degradation of the ECM fibers. The glycosaminoglycan content was significantly elevated in the static control as compared to fresh or stretched cusps, but no difference was observed in collagen content among the groups. The strain profile of freshly isolated fibrosa vs. ventricularis and left, right, and noncoronary cusps were also determined by Digital Image Correlation technique. Distinct strain patterns were observed under stretch on fibrosa and ventricularis sides and among the three cusps. This work highlights the critical role of the anisotropic ECM structure for proper functions of native aortic valves and the beneficial effects of biaxial stretch for maintenance of the native ECM structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Functional characteristics of flexible supporting structures for heart valve bioprosthesis].

    Science.gov (United States)

    Dobrova, N B; Agafonov, A V; Barbarash, L S; Zavalishin, N N; Neniukov, A K

    1984-01-01

    Hydraulic characteristics of heart valve bioprostheses mounted on supporting structures of various rigidity have been studied under physiologic conditions. An actual mobility of the supporting structures made of different polymers is determined. Static and dynamic components of the support displacements have been shown to develop as the bioprosthesis is under the load, the dynamic component being strongly dependent upon the rigidity of fastening the bioprosthesis on the axis. It is noted that considerable improvements in hydraulic characteristics of bioprostheses are achieved through the use of flexible supporting structures.

  8. Transcatheter, valve-in-valve transapical aortic and mitral valve implantation, in a high risk patient with aortic and mitral prosthetic valve stenoses

    Directory of Open Access Journals (Sweden)

    Harish Ramakrishna

    2015-01-01

    Full Text Available Transcatheter valve implantation continues to grow worldwide and has been used principally for the nonsurgical management of native aortic valvular disease-as a potentially less invasive method of valve replacement in high-risk and inoperable patients with severe aortic valve stenosis. Given the burden of valvular heart disease in the general population and the increasing numbers of patients who have had previous valve operations, we are now seeing a growing number of high-risk patients presenting with prosthetic valve stenosis, who are not potential surgical candidates. For this high-risk subset transcatheter valve delivery may be the only option. Here, we present an inoperable patient with severe, prosthetic valve aortic and mitral stenosis who was successfully treated with a trans catheter based approach, with a valve-in-valve implantation procedure of both aortic and mitral valves.

  9. Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering

    Science.gov (United States)

    Wu, Jun; Zeng, Faquan; Weisel, Richard D.; Li, Ren-Ke

    Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.

  10. The JUPITER registry: One-year outcomes of transapical aortic valve implantation using a second generation transcatheter heart valve for aortic regurgitation.

    Science.gov (United States)

    Silaschi, Miriam; Conradi, Lenard; Wendler, Olaf; Schlingloff, Friederike; Kappert, Utz; Rastan, Ardawan J; Baumbach, Hardy; Holzhey, David; Eichinger, Walter; Bader, Ralf; Treede, Hendrik

    2018-06-01

    We present 1-year outcomes of the post-market registry of a next-generation transcatheter heart valve used for aortic regurgitation (AR). Transcatheter aortic valve replacement (TAVR) is routine in high-risk patients with aortic stenosis but is not recommended for AR. The JenaValve™ (JenaValve Technology GmbH, Munich, Germany) overcomes technical challenges in AR patients through a leaflet clipping mechanism. The JenaValve EvalUation of Long Term Performance and Safety In PaTients with SEvere Aortic Stenosis oR Aortic Insufficiency (JUPITER) Registry is a European study to evaluate safety and effectiveness of this THV. From 2012-2015, 30 patients with AR were enrolled. Mean age was 74.4 ± 9.3 years. Procedural success was 96.7% (29/30). One patient was converted to open surgery. No annular rupture or coronary ostia obstruction occurred. Mortality at 30 days was 10.0% (3/30). Combined safety endpoint was met in 13.3% (4/30). Paravalvular regurgitation was not present/trivial in 84.6% (22/26) and mild in 15.4% (4/26). Rate of permanent pacemaker implantation was 3.8% (1/26). One-year Kaplan-Meier survival was 79.9%, one-year combined efficacy was 73.1% (19/30). No further strokes were observed during 1 year of follow-up. The JenaValve overcomes technical challenges of TAVR in AR through a clipping mechanism. We report satisfactory outcomes of a multicenter registry using the JenaValve for predominant AR, as rate of THV embolization, residual AR and permanent pacemaker implantation was low. One-year results using the JenaValve for AR encourage its use for this indication. © 2017 Wiley Periodicals, Inc.

  11. Risk model of prolonged intensive care unit stay in Chinese patients undergoing heart valve surgery.

    Science.gov (United States)

    Wang, Chong; Zhang, Guan-xin; Zhang, Hao; Lu, Fang-lin; Li, Bai-ling; Xu, Ji-bin; Han, Lin; Xu, Zhi-yun

    2012-11-01

    The aim of this study was to develop a preoperative risk prediction model and an scorecard for prolonged intensive care unit length of stay (PrlICULOS) in adult patients undergoing heart valve surgery. This is a retrospective observational study of collected data on 3925 consecutive patients older than 18 years, who had undergone heart valve surgery between January 2000 and December 2010. Data were randomly split into a development dataset (n=2401) and a validation dataset (n=1524). A multivariate logistic regression analysis was undertaken using the development dataset to identify independent risk factors for PrlICULOS. Performance of the model was then assessed by observed and expected rates of PrlICULOS on the development and validation dataset. Model calibration and discriminatory ability were analysed by the Hosmer-Lemeshow goodness-of-fit statistic and the area under the receiver operating characteristic (ROC) curve, respectively. There were 491 patients that required PrlICULOS (12.5%). Preoperative independent predictors of PrlICULOS are shown with odds ratio as follows: (1) age, 1.4; (2) chronic obstructive pulmonary disease (COPD), 1.8; (3) atrial fibrillation, 1.4; (4) left bundle branch block, 2.7; (5) ejection fraction, 1.4; (6) left ventricle weight, 1.5; (7) New York Heart Association class III-IV, 1.8; (8) critical preoperative state, 2.0; (9) perivalvular leakage, 6.4; (10) tricuspid valve replacement, 3.8; (11) concurrent CABG, 2.8; and (12) concurrent other cardiac surgery, 1.8. The Hosmer-Lemeshow goodness-of-fit statistic was not statistically significant in both development and validation dataset (P=0.365 vs P=0.310). The ROC curve for the prediction of PrlICULOS in development and validation dataset was 0.717 and 0.700, respectively. We developed and validated a local risk prediction model for PrlICULOS after adult heart valve surgery. This model can be used to calculate patient-specific risk with an equivalent predicted risk at our centre in

  12. An Experimental Study of Emission and Combustion Characteristics of Marine Diesel Engine in Case of Cylinder Valves Leakage

    Directory of Open Access Journals (Sweden)

    Kowalski Jerzy

    2015-09-01

    Full Text Available Presented paper shows the results of the laboratory tests on the relationship between throttling of both air intake duct and exhaust gas duct and a gaseous emission from the marine engine. The object of research is a laboratory, four-stroke, DI diesel engine, operated at loads from 50 kW to 250 kW at a constant speed equal to 750 rpm. During the laboratory tests over 50 parameters of the engine were measured with its technical condition recognized as a „working properly” and with simulated leakage of both air intake valve and exhaust gas valve on the second cylinder. The results of this laboratory research confirm that the leakage of cylinder valves causes no significant changes of the thermodynamic parameters of the engine. Simulated leakages through the inlet and exhaust valve caused a significant increase in fuel consumption of the engine. Valve leakages cause an increase of the exhaust gas temperature behind the cylinder with leakage and behind other cylinders. The exhaust gas temperature increase is relatively small and clearly visible only at low loads of the engine. The increase of the temperature and pressure of the charging air behind the intercooler were observed too. Charging air temperature is significantly higher during the engine operation with inlet valve leakage. The study results show significant increases of the CO, NOx and CO2 emission for all the mentioned malfunctions. The conclusion is that the results of measurements of the composition of the exhaust gas may contain valuable diagnostic information about the technical condition of the air intake duct and the exhaust gas duct of the marine engine.

  13. Twenty-five-year experience with the Björk-Shiley convexoconcave heart valve: a continuing clinical concern.

    Science.gov (United States)

    Blot, William J; Ibrahim, Michel A; Ivey, Tom D; Acheson, Donald E; Brookmeyer, Ron; Weyman, Arthur; Defauw, Joseph; Smith, J Kermit; Harrison, Donald

    2005-05-31

    The first Björk-Shiley convexoconcave (BSCC) prosthetic heart valves were implanted in 1978. The 25th anniversary provided a stimulus to summarize the research data relevant to BSCC valve fracture, patient management, and current clinical options. Published and unpublished data on the risks of BSCC valve fracture and replacement were compiled, and strategies for identifying candidates for prophylactic valve reoperation were summarized. By December 2003, outlet strut fractures (OSFs), often with fatal outcomes, had been reported in 633 BSCC valves (0.7% of 86,000 valves implanted). Fractures still continue to occur, but average rates of OSFs in 60 degrees valves are now valve characteristics, especially valve angle and size, with weaker effects associated with other manufacturing variables. OSF risks are mildly lower among women than men but decline sharply with advancing age. The risks of valve replacement typically greatly exceed those of OSF. By comparing individualized estimated risks of OSF versus valve replacement, guidelines have been developed to identify the small percentage of BSCC patients (mostly younger men) who would be expected to have a gain in life expectancy should reoperative surgery be performed. Twenty-five years after the initial BSCC valve implants, fractures continue to occur. Continued monitoring of BSCC patients is needed to track and quantify risks and enable periodic updating of guidelines for patients and their physicians.

  14. THE RESULTS OF SURGICAL TREATMENT OF TRICUSPID VALVE INFECTIVE ENDOCARDITIS USING VALVE REPAIR AND VALVE REPLACEMENT OPERATIONS

    Directory of Open Access Journals (Sweden)

    S. A. Kovalev

    2015-01-01

    Full Text Available Aim. To evaluate in-hospital and long-term results of surgical treatment of patients with infective endocarditis of the tricuspid valve, to compare the effectiveness of valve repair and valve replacement techniques, and to identify risk factors of mortality and reoperations. Materials and methods. 31 surgical patients with tricuspid valve infective endocarditis were evaluated. Patients were divided into 2 groups. In Group 1 (n = 14 repairs of the tricuspid valve were performed, in Group 2 (n = 17 patients had undergone tricuspid valve replacements. Epidemiological, clinical, microbiological and echocardiographic data were studied. Methods of comparative analysis, the Kaplan–Meier method, and Cox risk models were applied. Results. The most common complication of in-hospital stay was atrioventricular block (17.7% of cases in Group 2. In Group 1, this type of complication was not found. Hospital mortality was 7.14% in Group 1, and 0% in Group 2. Long-term results have shown the significant reduction of heart failure in general cohort and in both groups. In Group 1 the severity of heart failure in the long term was less than in Group 2. No significant differences in the severity of tricuspid regurgitation were found between the groups. In 7-year follow up no cases of death were registered in Group 1. Cumulative survival rate in Group 2 within 60 months was 67.3 ± 16.2%. No reoperations were performed in patients from Group 1. In Group 2, the freedom from reoperation within 60 months was 70.9 ± 15.3%. Combined intervention was found as predictor of postoperative mortality. Prosthetic valve endocarditis was identified as risk factor for reoperation. Conclusion. Valve repair and valve replacement techniques of surgical treatment of tricuspid valve endocarditis can provide satisfactory hospital and long-term results. Tricuspid valve repair techniques allowed reducing the incidence of postoperative atrioventricular block. In the long-term, patients

  15. High-resolution measurement of the unsteady velocity field to evaluate blood damage induced by a mechanical heart valve.

    Science.gov (United States)

    Bellofiore, Alessandro; Quinlan, Nathan J

    2011-09-01

    We investigate the potential of prosthetic heart valves to generate abnormal flow and stress patterns, which can contribute to platelet activation and lysis according to blood damage accumulation mechanisms. High-resolution velocity measurements of the unsteady flow field, obtained with a standard particle image velocimetry system and a scaled-up model valve, are used to estimate the shear stresses arising downstream of the valve, accounting for flow features at scales less than one order of magnitude larger than blood cells. Velocity data at effective spatial and temporal resolution of 60 μm and 1.75 kHz, respectively, enabled accurate extraction of Lagrangian trajectories and loading histories experienced by blood cells. Non-physiological stresses up to 10 Pa were detected, while the development of vortex flow in the wake of the valve was observed to significantly increase the exposure time, favouring platelet activation. The loading histories, combined with empirical models for blood damage, reveal that platelet activation and lysis are promoted at different stages of the heart cycle. Shear stress and blood damage estimates are shown to be sensitive to measurement resolution.

  16. Midterm outcome of valve-sparing aortic root replacement in inherited connective tissue disorders.

    Science.gov (United States)

    Tanaka, Hiroshi; Ogino, Hitoshi; Matsuda, Hitoshi; Minatoya, Kenji; Sasaki, Hiroaki; Iba, Yutaka

    2011-11-01

    This study determined the midterm outcome of valve-sparing aortic root replacement for patients with inherited connective tissue disorders. From 1993 to 2008, 94 patients underwent valve-sparing aortic root replacement. Sixty patients (64%), average age 33 years (range, 15 to 61 years), had inherited connective tissue disorders: Marfan syndrome, 54 (92%); Loeys-Dietz syndrome, 5 (8%); and smooth muscle α-actin (ACTA2) mutation in 1. Median preoperative sinus diameter was 52 mm (range, 42 to 76 mm), and moderate/severe aortic regurgitation was present in 14 (23%). Seven (12%, 1993 to 1999) underwent remodeling procedures, and 53 had reimplantation procedures. Cusp repair was performed in 4. Median follow-up was 55 months (range, 1 to 149 months). There were 15 patients in the early term (1993 to 2000) and 45 in the late term (2001 to 2008). Four late deaths occurred (cardiac, 3; aortic, 1), with 10-year survival of 86%. Rates of freedom from aortic valve replacement at 5 and 10 years were 85% and 58% in remodeling and 96% and 58% in reimplantation. Risk factors for reoperations were postprocedure intraoperative aortic insufficiency greater than mild (p = 0.046), remodeling procedure (p = 0.016), and early term (p = 0.0002). One patient (2%) with none/trivial postprocedure aortic insufficiency required aortic valve replacement. Freedom from reoperation in patients with none/trivial postprocedure aortic insufficiency at 5 and 10 years was 100% and 67%. Meticulous control of aortic insufficiency during operation would bring favorable midterm durability in valve-sparing aortic root replacement using a reimplantation technique, even in patients with inherited connective tissue disorders. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Design and manufacture of high performance hollow engine valves by Additive Layer Manufacturing

    International Nuclear Information System (INIS)

    Cooper, D.; Thornby, J.; Blundell, N.; Henrys, R.; Williams, M.A.; Gibbons, G.

    2015-01-01

    Highlights: • High performance engine valve has been redesigned and optimised for and using ALM. • FEA was utilised to optimise and select a design for manufacture and testing. • Micro computed tomography was used in design and validation as an NDT technique. • Real world test of components was conducted to evaluate their performance. • Has demonstrated the potential for ALM in a high performance engineering context. - Abstract: Additive Layer Manufacture (ALM) of metallic components provides significant opportunities for the reduction of component weight, in order to realise improvements in vehicle fuel efficiency or performance. This paper examines the potential benefits of ALM with regard to reducing the weight of Internal Combustion Engine inlet or exhaust valves. A case study component is presented, for which an improved ALM design has been created, manufactured and evaluated. Micro-Computed Tomography (μ-CT) scanning was utilised to reverse engineer an original component, and to assess the ALM component’s internal geometry and material integrity. The case study valve was re-designed using Finite Element Analysis (FEA) to select a light weighted design which provides a conservative 9.4 g, (20%) weight saving on the Original Equipment Manufacturer (OEM) component. An engine test of over 175,000 cycles at between 2000 and 9500 rpm was conducted, after which μ-CT scanning confirmed no evidence of internal cracking, failure or significant deformation

  18. Pulmonary valve stenosis

    Science.gov (United States)

    ... surgery - discharge Images Heart valves References Carabello BA. Valvular heart disease. In: Goldman L, Schafer AI, eds. Goldman's Cecil ... Saunders; 2016:chap 69. Otto CM, Bownow RO. Valvular heart disease. In: Mann DL, Zipes DP, Libby P, Bonow ...

  19. Sixty-Four-Section Cardiac Computed Tomography in Mechanical Prosthetic Heart Valve Dysfunction: Thrombus or Pannus.

    Science.gov (United States)

    Gündüz, Sabahattin; Özkan, Mehmet; Kalçik, Macit; Gürsoy, Ozan Mustafa; Astarcioğlu, Mehmet Ali; Karakoyun, Süleyman; Aykan, Ahmet Çağri; Biteker, Murat; Gökdeniz, Tayyar; Kaya, Hasan; Yesin, Mahmut; Duran, Nilüfer Ekşi; Sevinç, Deniz; Güneysu, Tahsin

    2015-12-01

    Distinguishing pannus and thrombus in patients with prosthetic valve dysfunction is essential for the selection of proper treatment. We have investigated the utility of 64-slice multidetector computed tomography (MDCT) in distinguishing between pannus and thrombus, the latter amenable to thrombolysis. Sixty-two (23 men, mean age 44±14 years) patients with suspected mechanical prosthetic valve dysfunction assessed by transesophageal echocardiography were included in this prospective observational trial. Subsequently, MDCT was performed before any treatment was started. Periprosthetic masses were detected by MDCT in 46 patients, and their attenuation values were measured as Hounsfield Units (HU). Patients underwent thrombolysis unless contraindicated, and those with a contraindication or failed thrombolysis underwent surgery. A mass which was completely lysed or surgically detected as a clot was classified as thrombus, whereas a mass which was surgically detected as tissue overgrowth was classified as pannus. A definitive diagnosis could be achieved in 37 patients with 39 MDCT masses (22 thrombus and 17 pannus). The mean attenuation value of 22 thrombotic masses was significantly lower than that in 17 pannus (87±59 versus 322±122; Ppannus from thrombus. Complete lysis was more common for masses with HUpannus overgrowth, whereas a lower value is associated with thrombus formation. A higher attenuation (HU>90) is associated with reduced lysis rates. © 2015 American Heart Association, Inc.

  20. The additional value of three-dimensional transesophageal echocardiography in complex aortic prosthetic heart valve endocarditis

    NARCIS (Netherlands)

    Tanis, Wilco; Teske, Arco J.; Van Herwerden, Lex A.; Chamuleau, Steven; Meijboom, Folkert; Budde, Ricardo P J; Cramer, MJ

    2015-01-01

    Background Two-dimensional transthoracic and transesophageal echocardiography (2DTTE and 2DTEE) may fail to detect signs of prosthetic heart valve (PHV) endocarditis due to acoustic shadowing. Three-dimensional (3D) TEE may have additional value; however, data are scarce. This study was performed to

  1. Exercise-based cardiac rehabilitation for adults after Heart valve surgery (protocol)

    DEFF Research Database (Denmark)

    Lærum Sibilitz, Kristine; Berg, Selina Kikkenborg; Tang, Lars Hermann

    2013-01-01

    This is the protocol for a review and there is no abstract. The objectives are as follows: To assess the benefits and harms of exercise-based intervention programmes (exercise-based interventions alone or in combination with psycho-educational components), compared to no intervention, or treatment...... as usual, in adults who have had heart valve surgery. In this review we will focus on programmes that include an exercise-based intervention with, or without, another rehabilitation component (such as a psycho-educational component)....

  2. Computational Modeling in Tissue Engineering

    CERN Document Server

    2013-01-01

    One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in:  (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each...

  3. Tissue engineering and cell-based therapy toward integrated strategy with artificial organs.

    Science.gov (United States)

    Gojo, Satoshi; Toyoda, Masashi; Umezawa, Akihiro

    2011-09-01

    Research in order that artificial organs can supplement or completely replace the functions of impaired or damaged tissues and internal organs has been underway for many years. The recent clinical development of implantable left ventricular assist devices has revolutionized the treatment of patients with heart failure. The emerging field of regenerative medicine, which uses human cells and tissues to regenerate internal organs, is now advancing from basic and clinical research to clinical application. In this review, we focus on the novel biomaterials, i.e., fusion protein, and approaches such as three-dimensional and whole-organ tissue engineering. We also compare induced pluripotent stem cells, directly reprogrammed cardiomyocytes, and somatic stem cells for cell source of future cell-based therapy. Integrated strategy of artificial organ and tissue engineering/regenerative medicine should give rise to a new era of medical treatment to organ failure.

  4. Patient perceptions of experience with cardiac rehabilitation after isolated heart valve surgery

    DEFF Research Database (Denmark)

    Hansen, Tina B; Berg, Selina K; Sibilitz, Kirstine L

    2018-01-01

    in a cardiac rehabilitation programme, and none have analysed their experiences with it. AIMS: The purpose of this qualitative analysis was to gain insight into patients' experiences in cardiac rehabilitation, the CopenHeartVR trial. This trial specifically assesses patients undergoing isolated heart valve...... to take active personal responsibility for their health. Despite these benefits, participants experienced existential and psychological challenges and musculoskeletal problems. Participants also sought additional advice from healthcare professionals both inside and outside the healthcare system....... CONCLUSIONS: Even though the cardiac rehabilitation programme reduced insecurity and helped participants take active personal responsibility for their health, they experienced existential, psychological and physical challenges during recovery. The cardiac rehabilitation programme had several limitations...

  5. Electrical stimulation directs engineered cardiac tissue to an age-matched native phenotype

    Directory of Open Access Journals (Sweden)

    Richard A Lasher

    2012-12-01

    Full Text Available Quantifying structural features of native myocardium in engineered tissue is essential for creating functional tissue that can serve as a surrogate for in vitro testing or the eventual replacement of diseased or injured myocardium. We applied three-dimensional confocal imaging and image analysis to quantitatively describe the features of native and engineered cardiac tissue. Quantitative analysis methods were developed and applied to test the hypothesis that environmental cues direct engineered tissue toward a phenotype resembling that of age-matched native myocardium. The analytical approach was applied to engineered cardiac tissue with and without the application of electrical stimulation as well as to age-matched and adult native tissue. Individual myocytes were segmented from confocal image stacks and assigned a coordinate system from which measures of cell geometry and connexin-43 spatial distribution were calculated. The data were collected from 9 nonstimulated and 12 electrically stimulated engineered tissue constructs and 5 postnatal day 12 and 7 adult hearts. The myocyte volume fraction was nearly double in stimulated engineered tissue compared to nonstimulated engineered tissue (0.34 ± 0.14 vs 0.18 ± 0.06 but less than half of the native postnatal day 12 (0.90 ± 0.06 and adult (0.91 ± 0.04 myocardium. The myocytes under electrical stimulation were more elongated compared to nonstimulated myocytes and exhibited similar lengths, widths, and heights as in age-matched myocardium. Furthermore, the percentage of connexin-43-positive membrane staining was similar in the electrically stimulated, postnatal day 12, and adult myocytes, whereas it was significantly lower in the nonstimulated myocytes. Connexin-43 was found to be primarily located at cell ends for adult myocytes and irregularly but densely clustered over the membranes of nonstimulated, stimulated, and postnatal day 12 myocytes. These findings support our hypothesis and reveal

  6. Diseases of the Tricuspid Valve

    Science.gov (United States)

    ... stenosis. Tricuspid Regurgitation Tricuspid regurgitation is also called tricuspid insufficiency or tricuspid incompetence. It means there is a ... require valve surgery. Tags: heart valves , tricuspid incompetence , ... tricuspid regurgitation , tricuspid stenosis , valve disease Related Links ...

  7. Bioprosthetic Valve Fracture Improves the Hemodynamic Results of Valve-in-Valve Transcatheter Aortic Valve Replacement.

    Science.gov (United States)

    Chhatriwalla, Adnan K; Allen, Keith B; Saxon, John T; Cohen, David J; Aggarwal, Sanjeev; Hart, Anthony J; Baron, Suzanne J; Dvir, Danny; Borkon, A Michael

    2017-07-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) may be less effective in small surgical valves because of patient/prosthesis mismatch. Bioprosthetic valve fracture (BVF) using a high-pressure balloon can be performed to facilitate VIV TAVR. We report data from 20 consecutive clinical cases in which BVF was successfully performed before or after VIV TAVR by inflation of a high-pressure balloon positioned across the valve ring during rapid ventricular pacing. Hemodynamic measurements and calculation of the valve effective orifice area were performed at baseline, immediately after VIV TAVR, and after BVF. BVF was successfully performed in 20 patients undergoing VIV TAVR with balloon-expandable (n=8) or self-expanding (n=12) transcatheter valves in Mitroflow, Carpentier-Edwards Perimount, Magna and Magna Ease, Biocor Epic and Biocor Epic Supra, and Mosaic surgical valves. Successful fracture was noted fluoroscopically when the waist of the balloon released and by a sudden drop in inflation pressure, often accompanied by an audible snap. BVF resulted in a reduction in the mean transvalvular gradient (from 20.5±7.4 to 6.7±3.7 mm Hg, P valve effective orifice area (from 1.0±0.4 to 1.8±0.6 cm 2 , P valves to facilitate VIV TAVR with either balloon-expandable or self-expanding transcatheter valves and results in reduced residual transvalvular gradients and increased valve effective orifice area. © 2017 American Heart Association, Inc.

  8. Cyclic stress-strain behavior of polymeric nonwoven structures for the use as artificial leaflet material for transcatheter heart valve prostheses

    Directory of Open Access Journals (Sweden)

    Arbeiter Daniela

    2017-09-01

    Full Text Available Xenogenic leaflet material, bovine and porcine pericardium, is widely used for the fabrication of surgically implanted and transcatheter heart valve prostheses. As a biological material, long term durability of pericardium is limited due to calcification, degeneration and homogeneity. Therefore, polymeric materials represent a promising approach for a next generation of artificial heart valve leaflets with improved durability. Within the current study we analyzed the mechanical performance of polymeric structures based on elastomeric materials. Polymeric cast films were prepared and nonwovens were manufactured in an electrospinning process. Analysis of cyclic stress-strain behavior was performed, using a universal testing machine. The uniaxial cyclic tensile experiments of the elastomeric samples yielded a non-linear elastic response due to viscoelastic behavior with hysteresis. Equilibrium of stress-strain curves was found after a specific number of cycles, for cast films and nonwovens, respectively. In conclusion, preconditioning was found obligatory for the evaluation of the mechanical performance of polymeric materials for the use as artificial leaflet material for heart valve prostheses.

  9. Introduction to tissue engineering and application for cartilage engineering.

    Science.gov (United States)

    de Isla, N; Huseltein, C; Jessel, N; Pinzano, A; Decot, V; Magdalou, J; Bensoussan, D; Stoltz, J-F

    2010-01-01

    Tissue engineering is a multidisciplinary field that applies the principles of engineering, life sciences, cell and molecular biology toward the development of biological substitutes that restore, maintain, and improve tissue function. In Western Countries, tissues or cells management for clinical uses is a medical activity governed by different laws. Three general components are involved in tissue engineering: (1) reparative cells that can form a functional matrix; (2) an appropriate scaffold for transplantation and support; and (3) bioreactive molecules, such as cytokines and growth factors that will support and choreograph formation of the desired tissue. These three components may be used individually or in combination to regenerate organs or tissues. Thus the growing development of tissue engineering needs to solve four main problems: cells, engineering development, grafting and safety studies.

  10. Cardioprotection of Electroacupuncture for Enhanced Recovery after Surgery on Patients Undergoing Heart Valve Replacement with Cardiopulmonary Bypass: A Randomized Control Clinical Trial

    Directory of Open Access Journals (Sweden)

    Fangxiang Zhang

    2017-01-01

    Full Text Available We attempted to investigate cardioprotection of electroacupuncture (EA for enhanced recovery after surgery on patients undergoing heart valve replacement with cardiopulmonary bypass. Forty-four patients with acquired heart valve replacement were randomly allocated to the EA group or the control group. Patients in the EA group received EA stimulus at bilateral Neiguan (PC6, Ximen (PC4, Shenting (GV24, and Baihui (GV20 acupoints twenty minutes before anesthesia induction to the end of surgery. The primary end point was cardioprotection effect of electroacupuncture postoperatively and the secondary endpoints were quality of recovery and cognitive functioning postoperatively. The present study demonstrated that electroacupuncture reduced the occurrence of complications and played a role of cardioprotective effect on patients after heart valve replacement surgery with cardiopulmonary bypass, and it benefits patients more comfortable and contributes to recovery after surgery. This trial is registered with ChiCTR-IOC-16009123.

  11. A Systematic Review of Infective Endocarditis in Patients With Bovine Jugular Vein Valves Compared With Other Valve Types.

    Science.gov (United States)

    Sharma, Ashutosh; Cote, Anita T; Hosking, Martin C K; Harris, Kevin C

    2017-07-24

    The aim of this study was to systematically evaluate the incidence of infective endocarditis (IE) in right ventricle-to-pulmonary artery conduits and valves, comparing bovine jugular vein (BJV) valves with all others. Recent evidence suggests that the incidence of IE is higher in patients with congenital heart disease who have undergone implantation of BJV valves in the pulmonary position compared with other valves. Systematic searches of published research were conducted using electronic databases (MEDLINE, Embase, and CINAHL) and citations cross-referenced current to April 2016. Included studies met the following criteria: patients had undergone right ventricle-to-pulmonary artery conduit or percutaneous pulmonary valve implantation, and investigators reported on the type of conduit or valve implanted, method of intervention (surgery or catheter based), IE incidence, and follow-up time. Fifty studies (Levels of Evidence: 2 to 4) were identified involving 7,063 patients. The median cumulative incidence of IE was higher for BJV compared with other valves (5.4% vs. 1.2%; p endocarditis with BJV valves than other types of right ventricle-to-pulmonary artery conduits. There was no difference in the incidence of endocarditis between catheter-based bovine valves and surgically implanted bovine valves, suggesting that the substrate for future infection is related to the tissue rather than the method of implantation. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  12. Enhancements to the Idaho National Engineering Laboratory motor-operated valve assessment software

    International Nuclear Information System (INIS)

    Holbrook, M.R.; Watkins, J.C.

    1994-01-01

    In January 1991, the U.S. Nuclear Regulatory Commission (USNRC) commenced Part 1 inspections to review licensee's motor-operated valve (MOV) programs that were developed to address Generic Letter 89-10, open-quotes Safety-Related Motor-Operated Valve Testing and Surveillanceclose quotes. In support, of this effort, the Isolation Valve Assessment (IVA) software, Version 3.10, was developed by the Idaho National Engineering Laboratory (INEL) to enable rapid in-depth review of MOV sizing and torque switch setting calculations. In 1994, the USNRC commenced Part 2 inspections, which involve a more in-depth review of MOV in situ testing relative to design-basis assumptions. The purpose of this paper is to describe the latest INEL and industry research that has been incorporated into Version 4.00 of the IVA software to support the latest round of inspections. Major improvements include (a) using dynamic and static test results to determine MOV performance parameters and validate design-basis engineering assumptions, (b) determining the stem/stem-nut coefficient of friction using new research-based techniques, (c) adding the ability to evaluate globe valves, and (d) incorporating new methods to account for the effects of high ambient temperature on the output torque of alternating current (ac) motors

  13. The effect of lymphatic valve morphology on fluid transport

    Science.gov (United States)

    Alexeev, Alexander; Ballard, Matthew; Nepiyushchikh, Zhanna; Dixon, Brandon

    2016-11-01

    The lymphatic vasculature is present in nearly all invertebrate tissue, and is essential in the transport of fluid and particles such as immune cells, antigens, proteins and lipids from the tissue to lymph nodes and to the venous circulation. Lymphatic vessels are made of up a series of contractile units that work together in harmony as "micro hearts" to pump fluid against a pressure gradient. Lymphatic valves are critical to this functionality, as they open and close with the oscillating pressure gradients from contractions, thus allowing flow in only one direction and leading to a net pumping effect. We use a hybrid lattice-Boltzmann lattice spring model which captures fluid-solid interactions through two-way coupling between a viscous fluid and lymphatic valves in a section of a lymphatic vessel to study the dynamics of lymphatic valves and their effect on fluid transport. Further, we investigate the effect of variations in valve geometry and material properties on fluid pumping. This work helps to increase our understanding of the mechanisms of lymphatic fluid transport, which has implications in a variety of pathologies, including cancer metastasis, autoimmunity, atherosclerosis and obesity. Support from NSF CMMI 1635133 is gratefully acknowledged.

  14. Colloidal gas aphron foams: A novel approach to a hydrogel based tissue engineered myocardial patch

    Science.gov (United States)

    Johnson, Elizabeth Edna

    Cardiovascular disease currently affects an estimated 58 million Americans and is the leading cause of death in the US. Over 2.3 million Americans are currently living with heart failure a leading cause of which is acute myocardial infarction, during which a part of the heart muscle is damaged beyond repair. There is a great need to develop treatments for damaged heart tissue. One potential therapy involves replacement of nonfunctioning scar tissue with a patch of healthy, functioning tissue. A tissue engineered cardiac patch would be ideal for such an application. Tissue engineering techniques require the use of porous scaffolds, which serve as a 3-D template for initial cell attachment and grow-th leading to tissue formation. The scaffold must also have mechanical properties closely matching those of the tissues at the site of implantation. Our research presents a new approach to meet these design requirements. A unique interaction between poly(vinyl alcohol) and amino acids has been discovered by our lab, resulting in the production of novel gels. These unique synthetic hydrogels along with one natural hydrogel, alginate (derived from brown seaweed), have been coupled with a new approach to tissue scaffold fabrication using solid colloidal gas aphrons (CGAs). CGAs are colloidal foams containing uniform bubbles with diameters on the order of micrometers. Upon solidification the GCAs form a porous, 3-D network suitable for a tissue scaffold. The project encompasses four specific aims: (I) characterize hydrogel formation mechanism, (II) use colloidal gas aphrons to produce hydrogel scaffolds, (III) chemically and physically characterize scaffold materials and (IV) optimize and evaluate scaffold biocompatibility.

  15. Bacterial translocation and plasma cytokines during transcatheter and open-heart aortic valve implantation.

    Science.gov (United States)

    Adrie, Christophe; Parlato, Marianna; Salmi, Lynda; Adib-Conquy, Minou; Bical, Olivier; Deleuze, Philippe; Fitting, Catherine; Cavaillon, Jean Marc; Monchi, Mehran

    2015-01-01

    To determine whether the good safety profile of transarterial aortic valve implantation (TAVI) is related to lower levels of systemic bacterial translocation and systemic inflammation compared with open-heart surgery. Transcatheter aortic valve implantation via the transfemoral approach is increasingly used in very high-risk patients with aortic stenosis. The outcomes seem similar to those after open-heart aortic valve replacement (OHAVR). Each of 26 consecutive high-risk patients (EuroSCORE >20% for risk of operative death) who underwent TAVI (cases) was matched to the first low-risk patient treated next in our department using elective OHAVR without coronary artery bypass (control subjects). We collected severity, outcome, and echocardiography indicators before and after surgery; complications; proinflammatory cytokine levels; and markers for microbial translocation. Despite greater illness severity, the TAVI patients had significantly lower vasopressor agent requirements, lower delirium rates, shorter hospital stays, and better hemodynamic findings compared with OHAVR patients. Vascular complications were more common after TAVI than after OHAVR (12, with seven requiring interventional therapy vs. 0, P = 0.006). Patients who underwent TAVI had lower blood transfusion requirements. Two TAVI patients died: one from iliac artery injury and the other from intracardiac prosthesis migration. Patients who underwent TAVI had lower plasma levels of endotoxin and bacterial peptidoglycan, as well as lower proinflammatory cytokine levels, suggesting less gastrointestinal bacterial translocation compared with OHAVR. Compared with OHAVR, TAVI was associated with decreases in bacterial translocation and inflammation. These differences may explain the lower delirium rate and better hemodynamic stability observed, despite the greater disease severity in TAVI patients.

  16. Molecular, cellular, and tissue engineering

    CERN Document Server

    Bronzino, Joseph D

    2015-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug deliver...

  17. Diagnosis of the prosthetic heart valve pannus formation with real-time three-dimensional transoesophageal echocardiography.

    Science.gov (United States)

    Ozkan, Mehmet; Gündüz, Sabahattin; Yildiz, Mustafa; Duran, Nilüfer Eksi

    2010-05-01

    Prosthetic heart valve obstruction (PHVO) caused by pannus formation is an uncommon but serious complication. Although two-dimensional transesophageal echocardiography (2D-TEE) is the method of choice in the evaluation of PHVO, visualization of pannus is almost impossible with 2D-TEE. While demonstrating the precise aetiology of PHVO is essential for guiding the therapy, either thrombolysis for valve thrombosis or surgery for pannus formation, more sophisticated imaging techniques are needed in patients with suspected pannus formation. We present real-time 3D-TEE imaging in a patient with mechanical mitral PHVO, clearly demonstrating pannus overgrowth.

  18. Quantitative assessment of an aortic and pulmonary valve function according to valve fenestration

    International Nuclear Information System (INIS)

    Mirkhani, S.H.; Golestani, M.G.; Hosini, M.; Kazemian, A.

    1999-01-01

    There are some reasons for malfunction of aortic and pulmonary valve like fibrosis, calcification, and atheroma. Although, in some papers fenestration were known as a pathologic sign, but it is not generally accepted, while this matter is important in choosing suitable Homograft Heart Valve. In this paper fenestrations and its size, numbers and situation effect was studied. We collected 98 hearts, the donors died because of accident, we excluded valves with atheroma, calcification, fibrosis and unequal cusps, 91 aortic and 93 pulmonary valves were given further consideration. We classified valves according to situation, number and size of fenestration. Each valve was tested with 104 cm of non-nal saline column pressure which is equal to 76 mm Hg. Valve efficacy was detected by fluid flow assay. With study of 184 valves, 95 had no fenestration, 64 had less than 2 fenestration and 25 had more than 2 fenestration. Valve efficacy in condition of less than 2 fenestration was more than others (p <0.01). Malfunction effects of fenestration increased in larger valve and it will be decreased if their situation would be marginal (free margin of cusp). In the comparison of aortic and pulmonary valve we saw that malfunction effect of fenestration in pulmonary valve was more than aortic valve. Our experience in Immam Khomeini Homograft Valve Bank has shown that a great deal of valves is fenestrated. It seems that fenestration must be considered as a quality criterion in homograft valve preparation, especially in pulmonary and large aortic valves; but complementary studies is necessary

  19. A systematic method for using 3D echocardiography to evaluate tricuspid valve insufficiency in hypoplastic left heart syndrome

    OpenAIRE

    Mart, Christopher Robin; Eckhauser, Aaron Wesley; Murri, Michael; Su, Jason Thomas

    2014-01-01

    With surgical palliation of hypoplastic left heart syndrome (HLHS), the tricuspid valve (TV) becomes the systemic atrioventricular valve and moderate/severe TV insufficiency (TVI), an adverse risk factor for survival to Fontan, has been reported in up to 35% of patients prior to stage I palliation. Precise echocardiographic identification of the mechanism of TVI cannot be determined by two-dimensional echocardiography. Three-dimensional echocardiography (3DE) can provide significant insight i...

  20. Hypoxic encephalopathy after heart valve replacement: etiology and pathogenesis, diagnostic criteria and treatment

    Directory of Open Access Journals (Sweden)

    В. Г. Постнов

    2015-10-01

    Full Text Available Reviewed in this paper are modern approaches in the intensive therapy of acute hypoxic encephalopathy developing in a number of occasions after the heart valve replacement surgery. The study is based on the results of neurological, neuropsychological and neurophysiological (EEG examinations of 240 patients who underwent heart valve replacement surgery under cardiopulmonary bypass conditions complicated later by the development of hypoxic encephalopathies of varying severity and who received complex intensive care. Relying on many years of experience in the treatment of heart surgery patients in whom manifestations of encephalopathy developed in the early postoperative period, or were delayed, we have formulated the following algorithms of therapy. (1 Maintenance of normal blood gas: Hb>100 g/L, pH 7.45, PaCO2 35 mmHg. (2 Maintenance of hemodynamics: ABPsystolic>90 mmHg. (3 Supplying fluids and electrolytes: isoosmolar infusion solutions, adding of KCl and MgSO4 to the infusion. (4 Antiedemic therapy: 15% mannitol or 40% glycerol solution. (5 If necessary (in case of psychomotor agitation, seizures, short-acting barbiturates (sodium thiopental, neuroleptics (haloperidol, propofol. No benzodiazepines in case of psychoses (6 Cerebral metabolism stimulation (not earlier than 48 hours after surgery with cholinomimetics, nootropics, cerebral blood flow protectors. Cholinomimetics are allowed on the first day after surgery. This algorithm and the above-mentioned groups of drugs, especially central cholinomimetics, allow for correcting the neurocognitive impairment in the discussed group of patients quickly and effectively.

  1. OMS engine shutoff valve and actuation system design and evaluation. [for space shuttles

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Shutoff valve and actuation system concepts that are most suitable for the Orbital Maneuvering Systems engine application were determined. Emphasis was placed on the ten year and 100 mission life requirement, propellant and propellant residue compatibility and weight. It was found that poppet or ball valves utilizing electric or electropneumatic actuation were most applicable. Preliminary design layouts of a number of valve and actuation concepts were prepared and analyzed to make the optimum concept selection. Pneumatic actuation systems were required to feature their own pneumatic supply so that for the quad redundant valve, it was necessary to include two pneumatic supply systems, one for each of the series legs of the quad redundant package. The requirement for the pneumatic package placed heavy reliability, weight, and maintenance penalties upon electropneumatic actuation systems. The two valve and actuation systems concepts selected featured electric torque motor operation and a poppet as well as a ball valve concept with a retractable seal.

  2. Von Willebrand Factor as a Novel Player in Valvular Heart Disease: From Bench to Valve Replacement.

    Science.gov (United States)

    Gragnano, Felice; Crisci, Mario; Bigazzi, Maurizio Cappelli; Bianchi, Renatomaria; Sperlongano, Simona; Natale, Francesco; Fimiani, Fabio; Concilio, Claudia; Cesaro, Arturo; Pariggiano, Ivana; Diana, Vincenzo; Limongelli, Giuseppe; Cirillo, Plinio; Russo, Mariagiovanna; Golia, Enrica; Calabrò, Paolo

    2018-02-01

    von Willebrand Factor (vWF) is a well-known mediator of hemostasis and vascular inflammation. Its dynamic modulation in the bloodstream, according to hemodynamic conditions, makes it an appealing biomarker in patients with valvular heart disease (VHD). Recent studies highlight the close connection between vWF and VHD, with possible implications in the pathogenesis of VHD, promoting valve aging and calcification or favoring the development of infective endocarditis. Moreover, vWF has been recently proposed as a new diagnostic and prognostic tool in patients with valve stenosis or regurgitation, showing a strict correlation with severity of valve disease, outcome, and bleeding (Heyde syndrome). A novel role for vWF is also emerging in patients undergoing percutaneous or surgical valve repair/replacement to select and stratify patients, evaluate periprocedural bleeding risk, and detect procedural complications. We also report our single-center experience, suggesting, for the first time, possible clinical implications for vWF in percutaneous mitral valve repair (MitraClip). This review summarizes recent advances in the role of vWF in VHD with an updated overview going from bench to operating room.

  3. Update to the study protocol, including statistical analysis plan for a randomized clinical trial comparing comprehensive cardiac rehabilitation after heart valve surgery with control

    DEFF Research Database (Denmark)

    Sibilitz, Kirstine Laerum; Berg, Selina Kikkenborg; Hansen, Tina Birgitte

    2015-01-01

    , either valve replacement or repair, remains the treatment of choice. However, post-surgery, the transition to daily living may become a physical, mental and social challenge. We hypothesize that a comprehensive cardiac rehabilitation program can improve physical capacity and self-assessed mental health...... and reduce hospitalization and healthcare costs after heart valve surgery. METHODS: This randomized clinical trial, CopenHeartVR, aims to investigate whether cardiac rehabilitation in addition to usual care is superior to treatment as usual after heart valve surgery. The trial will randomly allocate 210...... patients 1:1 to an intervention or a control group, using central randomization, and blinded outcome assessment and statistical analyses. The intervention consists of 12 weeks of physical exercise and a psycho-educational intervention comprising five consultations. The primary outcome is peak oxygen uptake...

  4. The Use of Large Valve Overlap in Scavenging a Supercharged Spark-ignition Engine Using Fuel Injection

    Science.gov (United States)

    Schey, Oscar W; Young, Alfred W

    1932-01-01

    This investigation was conducted to determine the effect of more complete scavenging on the full throttle power and the fuel consumption of a four-stroke-cycle engine. The NACA single-cylinder universal test engine equipped with both a fuel-injection system and a carburetor was used. The engine was scavenged by using a large valve overlap and maintaining a pressure in the inlet manifold of 2 inches of mercury above atmospheric. The maximum valve overlap used was 112 degrees. Tests were conducted for a range of compression ratios from 5.5 to 8.5. Except for variable speed tests, all tests were conducted at an engine speed of 1,500 r.p.m. The results of the tests show that the clearance volume of an engine can be scavenged by using a large valve overlap and about 2 to 5 inches of mercury pressure difference between the inlet and exhaust valve. With a fuel-injection system when the clearance volume was scavenged, a b.m.e.p. of over 185 pounds per square inch and a fuel consumption of 9.45 pound per brake horsepower per hour were obtained with a 6.5 compression ratio. An increase of approximately 10 pounds per square inch b.m.e.p. was obtained with a fuel-injection system over that with a carburetor.

  5. Application of ceramics to the sliding seat of valve bridge; Valve bridge yodobu eno ceramics tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, T; Ono, T [Mitsubishi Motors Corp., Tokyo (Japan)

    1997-10-01

    For use in the valve train, using an OHV (over head valve) configuration. of a 4 valve diesel engine for trucks and buses; we developed a valve bridge, a component of a valve train, with a ceramic head that is made of silicon nitride(Si3N4) in contact with a rocker arm in order to reduce cost and improve wear resistance for further diesel engine emissions regulations. In order to evaluate the effect of this valve bridge, RIG tests and durability tests on actual engines were carried out. 7 figs., 2 tabs.

  6. Tissue bionics: examples in biomimetic tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Green, David W [Bone and Joint Research Group, Developmental Origins of Health and Disease, General Hospital, University of Southampton, SO16 6YD (United Kingdom)], E-mail: Hindoostuart@googlemail.com

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  7. Tissue bionics: examples in biomimetic tissue engineering

    International Nuclear Information System (INIS)

    Green, David W

    2008-01-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic

  8. Self-reported quality of life and health among Björk-Shiley convexo-concave prosthetic heart valve patients.

    Science.gov (United States)

    Signorello, L B; Kennedy, J A; Richmond, R A; Sieu, K L; Blot, W J; Harrison, D C

    2001-03-01

    The risk of fracture of Björk-Shiley convexo-concave (BSCC) prosthetic heart valves has resulted in consideration of prophylactic explantation and replacement for patients with high-risk valves. Little information exists on perceived quality of life, health status, and serious morbidity among BSCC patients, including those who have undergone explantation. Self-administered questionnaires were completed by a cohort of 585 BSCC patients who participated in an X-ray imaging study to detect precursors to valve fracture up to seven years (average 3.9 years) previously. Responses from 31 explant patients were contrasted with those from 554 BSCC patients in whom explant surgery was not attempted. Perceived quality of life and health status and risk of hospitalization after participating in the imaging study varied considerably among patients, but on average tended not to differ significantly between those with and without explants. A slightly greater proportion of explantees tended to report both improved health status and high rates of heart attack and pacemaker implantation. The health status of these patients was, in general, considerably worse than previously reported among valve implant patients. Over half the cohort were hospitalized during follow up, and half were unable to walk up more than one flight of stairs without shortness of breath. The less than optimal health status of most BSCC patients and relatively high rates of morbidity should be taken into account when considering potential explantation of the valves.

  9. Introduction of an interdisciplinary heart team-based transcatheter aortic valve implantation programme: short and mid-term outcomes.

    Science.gov (United States)

    Martínez, G J; Seco, M; Jaijee, S K; Adams, M R; Cartwright, B L; Forrest, P; Celermajer, D S; Vallely, M P; Wilson, M K; Ng, M K C

    2014-09-01

    Transcatheter aortic valve implantation (TAVI) has been developed to treat symptomatic aortic stenosis in patients deemed too high risk for open-heart surgery. To address this complex population, an interdisciplinary heart team approach was proposed. Present the short- and mid-term outcomes of the first 100 patients in the Royal Prince Alfred Hospital multidisciplinary TAVI programme. Single-centre registry. Baseline and procedural data were prospectively recorded. Outcomes were recorded according to Valve Academic Research Consortium - version 2 guidelines. All patients underwent a comprehensive interdisciplinary pre-procedural evaluation. Sixty-eight transfemoral and 32 transapical implantations were performed. Mean age was 82 (±8.9) years old with an average logistic EuroSCORE of 33. Although 13 procedures had major complications, there was no intraprocedural mortality. During the first month, 9% of patients were re-admitted due to heart failure and 13% had a permanent pacemaker implanted. A 3% 30-day and 8% follow-up (mean 17 months) mortalities were recorded. While no significant differences in the rate of complications were found between the first and second half of the experience, all cases of mortality within 30 days (n = 3) occurred in the initial half. Sustained haemodynamic results were obtained with TAVI (immediate mean aortic valve gradient reduction from 47 to 9 mmHg; 1-year echocardiographic gradient 9.9 mmHg, with no moderate or severe aortic regurgitation). Excellent results can be achieved with TAVI in very high-risk patients at an Australian institution. A comprehensive evaluation based on a heart team can overcome most of the difficulties imposed by this challenging population. © 2014 The Authors; Internal Medicine Journal © 2014 Royal Australasian College of Physicians.

  10. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering.

    Science.gov (United States)

    Şenel Ayaz, H Gözde; Perets, Anat; Ayaz, Hasan; Gilroy, Kyle D; Govindaraj, Muthu; Brookstein, David; Lelkes, Peter I

    2014-10-01

    For patients with end-stage heart disease, the access to heart transplantation is limited due to the shortage of donor organs and to the potential for rejection of the donated organ. Therefore, current studies focus on bioengineering approaches for creating biomimetic cardiac patches that will assist in restoring cardiac function, by repairing and/or regenerating the intrinsically anisotropic myocardium. In this paper we present a simplified, straightforward approach for creating bioactive anisotropic cardiac patches, based on a combination of bioengineering and textile-manufacturing techniques in concert with nano-biotechnology based tissue-engineering stratagems. Using knitted conventional textiles, made of cotton or polyester yarns as template targets, we successfully electrospun anisotropic three-dimensional scaffolds from poly(lactic-co-glycolic) acid (PLGA), and thermoplastic polycarbonate-urethane (PCU, Bionate(®)). The surface topography and mechanical properties of textile-templated anisotropic scaffolds significantly differed from those of scaffolds electrospun from the same materials onto conventional 2-D flat-target electrospun scaffolds. Anisotropic textile-templated scaffolds electrospun from both PLGA and PCU, supported the adhesion and proliferation of H9C2 cardiac myoblasts cell line, and guided the cardiac tissue-like anisotropic organization of these cells in vitro. All cell-seeded PCU scaffolds exhibited mechanical properties comparable to those of a human heart, but only the cells on the polyester-templated scaffolds exhibited prolonged spontaneous synchronous contractility on the entire engineered construct for 10 days in vitro at a near physiologic frequency of ∼120 bpm. Taken together, the methods described here take advantage of straightforward established textile manufacturing strategies as an efficient and cost-effective approach to engineering 3D anisotropic, elastomeric PCU scaffolds that can serve as a cardiac patch. Copyright

  11. Gasoline New Timing and Flux Adjustable Rotary Valve Design (Hereinafter: Rotary Valve

    Directory of Open Access Journals (Sweden)

    Du huiqi

    2016-01-01

    Full Text Available Conventional gasoline engine with an umbrella valve control cylinder intake and exhaust, in order to achieve sealing effect, the valve is driven by the spring force; at the same time, when the cam opens the valve to overcome the spring force acting. Sealing the better, the more power consumed in the engine mechanical losses, the valve mechanism consumes about 30%, which is not a small loss! This article describes a new type of rotary valve is to significantly reduce mechanical losses, so as to achieve energy saving purposes.

  12. Chitin Scaffolds in Tissue Engineering

    Science.gov (United States)

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  13. Progression of thanatophagy in cadaver brain and heart tissues

    Directory of Open Access Journals (Sweden)

    Gulnaz T. Javan

    2016-03-01

    Full Text Available Autophagy is an evolutionarily conserved catabolic process for maintaining cellular homeostasis during both normal and stress conditions. Metabolic reprogramming in tissues of dead bodies is inevitable due to chronic ischemia and nutrient deprivation, which are well-known features that stimulate autophagy. Currently, it is not fully elucidated whether postmortem autophagy, also known as thanatophagy, occurs in dead bodies is a function of the time of death. In this study, we tested the hypothesis that thanatophagy would increase in proportion to time elapsed since death for tissues collected from cadavers. Brain and heart tissue from corpses at different time intervals after death were analyzed by Western blot. Densitometry analysis demonstrated that thanatophagy occurred in a manner that was dependent on the time of death. The autophagy-associated proteins, LC3 II, p62, Beclin-1 and Atg7, increased in a time-dependent manner in heart tissues. A potent inducer of autophagy, BNIP3, decreased in the heart tissues as time of death increased, whereas the protein levels increased in brain tissues. However, there was no expression of BNIP3 at extended postmortem intervals in both brain and heart samples. Collectively, the present study demonstrates for the first time that thanatophagy occurs in brain and heart tissues of cadavers in a time-dependent manner. Further, our data suggest that cerebral thanatophagy may occur in a Beclin-1- independent manner. This unprecedented study provides potential insight into thanatophagy as a novel method for the estimation of the time of death in criminal investigationsAbstract: Autophagy is an evolutionarily conserved catabolic process for maintaining cellular homeostasis during both normal and stress conditions. Metabolic reprogramming in tissues of dead bodies is inevitable due to chronic ischemia and nutrient deprivation, which are well-known features that stimulate autophagy. Currently, it is not fully

  14. Management of tricuspid regurgitation in congenital heart disease: is survival better with valve repair?

    Science.gov (United States)

    Said, Sameh M; Dearani, Joseph A; Burkhart, Harold M; Connolly, Heidi M; Eidem, Ben; Stensrud, Paul E; Schaff, Hartzell V

    2014-01-01

    Tricuspid valve (TV) regurgitation in congenital heart disease includes a heterogeneous group of lesions, and few series have documented the outcomes. We reviewed the records of 553 patients with congenital heart disease who had undergone TV surgery for tricuspid regurgitation from January 1993 to December 2010. Patients with Ebstein malformation were excluded. Their mean age was 32 ± 21 years, and 300 were female (54%). The most common diagnoses were conotruncal anomaly in 216 patients (39%), previous ventricular septal defect closure in 83 (15%), atrioventricular septal defect in 77 (14%), and pulmonary atresia with an intact ventricular septum in 11 (2%). Preoperative right-sided heart failure was present in 124 patients (22%), and 55 patients (10%) had pulmonary hypertension. TV repair was performed in 442 (80%) and TV replacement in 111 (20%) patients. Repeat sternotomy was performed in 415 patients (75%). Previous TV repair was present in 44 patients (8%); of these, 17 (38.6%) underwent repeat TV repair. The overall early mortality was 3.1% (17 patients) and was 2.5% for TV repair and 5.4% for TV replacement (P = .001). The mean follow-up period was 4.5 ± 4.1 years (maximum, 18). The overall survival at 1, 5, and 10 years was 97%, 93%, and 85%, respectively. Survival was better for patients with repair than with replacement. TV repair was an independent predictor of better survival (P = .001). Important tricuspid regurgitation can occur with a variety of congenital diagnoses. Early mortality is low and late survival is superior with tricuspid repair than with valve replacement. Surgical treatment of tricuspid regurgitation in congenital heart disease should be performed before the onset of heart failure. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  15. Successful thrombectomy of a stuck mechanical prosthetic mitral valve guided by perioperative transesophageal echocardiography and cinefluoroscopy

    Directory of Open Access Journals (Sweden)

    Paulo César Gobert Damasceno Campos

    2009-03-01

    Full Text Available We describe the case of a 53-year-old man with past history of rheumatic valvular disease who developed acute decompensated heart failure due to thrombosis of his mechanical mitral valve prosthesis. The diagnosis was established after a combined and complementary approach of echocardiography and cinefluoroscopy. Because of the severe heart failure at presentation, the patient was taken to surgery. The intraoperative transesophageal echocardiography was critical to guide a successful thrombectomy procedure. Postoperative pathological findings revealed the presence of thrombus and fibrotic tissue (pannus in the surgical specimens removed from the valve. The success of this case and the treatment choice are supported by the most recent literature data on prosthetic valve thrombosis. We highlight the use of three diagnostic approaches in our patient: echocardiography, cinefluoroscopy and pathology.

  16. Determinants and outcomes of acute transcatheter valve-in-valve therapy or embolization: a study of multiple valve implants in the U.S. PARTNER trial (Placement of AoRTic TraNscathetER Valve Trial Edwards SAPIEN Transcatheter Heart Valve).

    Science.gov (United States)

    Makkar, Raj R; Jilaihawi, Hasan; Chakravarty, Tarun; Fontana, Gregory P; Kapadia, Samir; Babaliaros, Vasilis; Cheng, Wen; Thourani, Vinod H; Bavaria, Joseph; Svensson, Lars; Kodali, Susheel; Shiota, Takahiro; Siegel, Robert; Tuzcu, E Murat; Xu, Ke; Hahn, Rebecca T; Herrmann, Howard C; Reisman, Mark; Whisenant, Brian; Lim, Scott; Beohar, Nirat; Mack, Michael; Teirstein, Paul; Rihal, Charanjit; Douglas, Pamela S; Blackstone, Eugene; Pichard, Augusto; Webb, John G; Leon, Martin B

    2013-07-30

    This study investigated the determinants and outcomes of acute insertion of a second transcatheter prosthetic valve (TV) within the first (TV-in-TV) or transcatheter valve embolization (TVE) after transcatheter aortic valve replacement (TAVR). TAVR failure can occur with both TV-in-TV and TVE as a consequence of TAVR malpositioning. Only case reports and limited series pertaining to these complications have been reported to date. Patients undergoing TAVR in the PARTNER (Placement of AoRTic TraNscathetER Valve Trial Edwards SAPIEN Transcatheter Heart Valve) randomized trial (cohorts A and B) and accompanying registries were studied. Data were dichotomized for those with and without TV-in-TV or TVE, respectively. From a total of 2,554 consecutive patients, 63 (2.47%) underwent TV-in-TV and 26 (1.01%) TVE. The indication for TV-in-TV was significant aortic regurgitation in most patients, often due not only to malpositioning but also to leaflet dysfunction. Despite similar aortic valve function on follow-up echoes, TV-in-TV was an independent predictor of 1-year cardiovascular mortality (hazard ratio [HR]: 1.86, 95% confidence interval [CI]: 1.03 to 3.38, p = 0.041), with a nonsignificant trend toward greater all-cause mortality (HR: 1.43, 95% CI: 0.88 to 2.33, p = 0.15). Technical and anatomical reasons accounted for most cases of TVE. A multivariable analysis found TVE to be an independent predictor of 1-year mortality (HR: 2.68, 95% CI: 1.34 to 5.36, p = 0.0055) but not cardiovascular mortality (HR: 1.30, 95% CI: 0.48 to 3.52, p = 0.60). Acute TV-in-TV and TVE are serious sequelae of TAVR, often resulting in multiple valve implants. They carry an excess of mortality and are caused by anatomic and technical factors, which may be avoidable with judicious procedural planning. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. Aortic valve surgery - open

    Science.gov (United States)

    ... gov/ency/article/007408.htm Aortic valve surgery - open To use the sharing features on this page, ... separates the heart and aorta. The aortic valve opens so blood can flow out. It then closes ...

  18. Problem: Mitral Valve Regurgitation

    Science.gov (United States)

    ... each time the left ventricle contracts. Watch an animation of mitral valve regurgitation A leaking mitral valve ... Not Alone Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...

  19. [Late complications following Björk-Shiley and St. Jude Medical heart valve replacement].

    Science.gov (United States)

    Horstkotte, D; Körfer, R; Budde, T; Haerten, K; Schulte, H D; Bircks, W; Loogen, F

    1983-05-01

    Valve-related complications after Björk-Shiley mitral (n = 475), aortic (n = 424), or mitral-aortic implantation (n = 119) were compared to complications after St. Jude mitral (n = 173), aortic (n = 152), and St. Jude mitral and aortic (n = 63) replacements. The 1,018 consecutive patients with Björk-Shiley valves had been operated upon between 1974 and 1982, those with St. Jude valves between 1978 and 1982. All patients were placed on anticoagulant therapy with phenprocoumon early after operation and no significant intergroup differences in the effectiveness of the anticoagulant therapy were found. At a comparable follow-up time of approximately 23 months, 24 major thromboembolic episodes were observed after Björk-Shiley mitral (BSM) and 3 after St. Jude mitral valve implantation (SJM), corresponding to a thromboembolic rate of 2.82/100 patient years with BSM and 0.93/100 patient years with SJM. After aortic valve replacements, 1.93 events in 100 patient years occurred after Björk-Shiley aortic (BSA) and 0.73 after St. Jude aortic implantation (SJA). In patients with double valve replacements, these rates were 3.2 (BSM + BSA) and 0.88 (SJM + SJA), respectively. The cerebral vessels were involved in 52% and the arteries of the extremities in 22% of these major events. Six Björk-Shiley prostheses had to be replaced because of valve thrombosis. The overall incidence of severe hemorrhagic complications was 2.94/100 patient years in BSM and 1.79 in SJM. After aortic valve replacement, we found rates of 1.80/100 patient years (BSA) and 2.57/100 patient years (SJA), respectively. Intravascular hemolysis no longer seems to be a significant clinical problem. However, indications of red cell damage after heart valve replacement were significantly greater in patients with perivalvular leakage, valve thrombosis, or dysfunction than in those with normally functioning prostheses. Reoperations were necessary because of valve thrombosis (0.46%), perivalvular leakage (2

  20. Biomaterials for tissue engineering applications.

    Science.gov (United States)

    Keane, Timothy J; Badylak, Stephen F

    2014-06-01

    With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community. Copyright © 2014. Published by Elsevier Inc.

  1. ECHOCARDIOGRAPHIC DIAGNOSTICS OF CARCINOID HEART DISEASE

    Directory of Open Access Journals (Sweden)

    Janez Ravnik

    2002-09-01

    Full Text Available Background. Carcinoid heart disease is a rare heart disease which affects endocard and heart valves on the right side of heart. It affects only patients with manifested carcinoid syndrome, which is thought to be the consequence of secretory active metastases of carcinoid tumour. The carcinoid endocardial plaques cause structural changes of tricuspid and pulmonic valve and later on their stenosis and/or insufficiency.Patients and methods. In this article we introduce a carcinoid valve heart disease (CVHD scoring system for easier end exact echocardiographic diagnostics. Four echocardiographic parameters are beeing estimated: structural changes of tricuspid valve, tricuspid valve regurgitation, stenosis of pulmonic valve and pulmonic valve regurgitation.Conclusions. The scoring system allows us to make an early diagnosis and evaluation of progression of carcinoid heart disease, which is very important for planning the treatment process. Our experiences confirm the usefulness of this scoring system in echocardiographic follow–up of patients with carcinoid syndrome.

  2. Commercial considerations in tissue engineering.

    Science.gov (United States)

    Mansbridge, Jonathan

    2006-10-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well.

  3. Tissue Engineering of the Penis

    Directory of Open Access Journals (Sweden)

    Manish N. Patel

    2011-01-01

    Full Text Available Congenital disorders, cancer, trauma, or other conditions of the genitourinary tract can lead to significant organ damage or loss of function, necessitating eventual reconstruction or replacement of the damaged structures. However, current reconstructive techniques are limited by issues of tissue availability and compatibility. Physicians and scientists have begun to explore tissue engineering and regenerative medicine strategies for repair and reconstruction of the genitourinary tract. Tissue engineering allows the development of biological substitutes which could potentially restore normal function. Tissue engineering efforts designed to treat or replace most organs are currently being undertaken. Most of these efforts have occurred within the past decade. However, before these engineering techniques can be applied to humans, further studies are needed to ensure the safety and efficacy of these new materials. Recent progress suggests that engineered urologic tissues and cell therapy may soon have clinical applicability.

  4. [Tricuspid valve insufficiency: what should be done?].

    Science.gov (United States)

    von Segesser, L K; Stauffer, J C; Delabays, A; Chassot, P G

    1998-12-01

    Tricuspid regurgitation is relatively common. Due to the progress made in echocardiography, its diagnosis is in general made readily and in reliable fashion. Basically one has to distinguish between functional tricuspid valve regurgitation due to volume and/or pressure overload of the right ventricle with intact valve structures versus tricuspid valve regurgitation due to pathologic valve structures. The clear identification of the regurgitation mechanism is of prime importance for the treatment. Functional tricuspid valve regurgitation can often be improved by medical treatment of heart failure, and eventually a tricuspid valve plasty can solve the problem. However, the presence of pathologic tricuspid valve structures makes in general more specific plastic surgical procedures and even prosthetic valve replacements necessary. A typical example for a structural tricuspid valve regurgitation is the case of a traumatic papillary muscle rupture. Due to the sudden onset, this pathology is not well tolerated and requires in general surgical reinsertion of the papillary muscle. In contrast, tricuspid valve regurgitation resulting from chronic pulmonary embolism with pulmonary artery hypertension, can be improved by pulmonary artery thrombendarteriectomy and even completely cured with an additional tricuspid annuloplasty. However, tricuspid regurgitations due to terminal heart failure are not be addressed with surgery directed to tricuspid valve repair or replacement. Heart transplantation, dynamic cardiomyoplasty or mechanical circulatory support should be evaluated instead.

  5. A predictive model for early mortality after surgical treatment of heart valve or prosthesis infective endocarditis. The EndoSCORE.

    Science.gov (United States)

    Di Mauro, Michele; Dato, Guglielmo Mario Actis; Barili, Fabio; Gelsomino, Sandro; Santè, Pasquale; Corte, Alessandro Della; Carrozza, Antonio; Ratta, Ester Della; Cugola, Diego; Galletti, Lorenzo; Devotini, Roger; Casabona, Riccardo; Santini, Francesco; Salsano, Antonio; Scrofani, Roberto; Antona, Carlo; Botta, Luca; Russo, Claudio; Mancuso, Samuel; Rinaldi, Mauro; De Vincentiis, Carlo; Biondi, Andrea; Beghi, Cesare; Cappabianca, Giangiuseppe; Tarzia, Vincenzo; Gerosa, Gino; De Bonis, Michele; Pozzoli, Alberto; Nicolini, Francesco; Benassi, Filippo; Rosato, Francesco; Grasso, Elena; Livi, Ugolino; Sponga, Sandro; Pacini, Davide; Di Bartolomeo, Roberto; De Martino, Andrea; Bortolotti, Uberto; Onorati, Francesco; Faggian, Giuseppe; Lorusso, Roberto; Vizzardi, Enrico; Di Giammarco, Gabriele; Marinelli, Daniele; Villa, Emmanuel; Troise, Giovanni; Picichè, Marco; Musumeci, Francesco; Paparella, Domenico; Margari, Vito; Tritto, Francesco; Damiani, Girolamo; Scrascia, Giuseppe; Zaccaria, Salvatore; Renzulli, Attilio; Serraino, Giuseppe; Mariscalco, Giovanni; Maselli, Daniele; Foschi, Massimiliano; Parolari, Alessandro; Nappi, Giannantonio

    2017-08-15

    The aim of this large retrospective study was to provide a logistic risk model along an additive score to predict early mortality after surgical treatment of patients with heart valve or prosthesis infective endocarditis (IE). From 2000 to 2015, 2715 patients with native valve endocarditis (NVE) or prosthesis valve endocarditis (PVE) were operated on in 26 Italian Cardiac Surgery Centers. The relationship between early mortality and covariates was evaluated with logistic mixed effect models. Fixed effects are parameters associated with the entire population or with certain repeatable levels of experimental factors, while random effects are associated with individual experimental units (centers). Early mortality was 11.0% (298/2715); At mixed effect logistic regression the following variables were found associated with early mortality: age class, female gender, LVEF, preoperative shock, COPD, creatinine value above 2mg/dl, presence of abscess, number of treated valve/prosthesis (with respect to one treated valve/prosthesis) and the isolation of Staphylococcus aureus, Fungus spp., Pseudomonas Aeruginosa and other micro-organisms, while Streptococcus spp., Enterococcus spp. and other Staphylococci did not affect early mortality, as well as no micro-organisms isolation. LVEF was found linearly associated with outcomes while non-linear association between mortality and age was tested and the best model was found with a categorization into four classes (AUC=0.851). The following study provides a logistic risk model to predict early mortality in patients with heart valve or prosthesis infective endocarditis undergoing surgical treatment, called "The EndoSCORE". Copyright © 2017. Published by Elsevier B.V.

  6. Risks of fracture of Björk-Shiley 60 degree convexo-concave prosthetic heart valves: long-term cohort follow up in the UK, Netherlands and USA.

    Science.gov (United States)

    Blot, W J; Omar, R Z; Kallewaard, M; Morton, L S; Fryzek, J P; Ibrahim, M A; Acheson, D; Taylor, K M; van der Graaf, Y

    2001-03-01

    Approximately 82,000 Björk-Shiley convexo-concave (BSCC) 60 degree prosthetic heart valves were implanted in patients worldwide between 1979 and 1986. Outlet strut fractures (OSF) of some of the valves were first reported shortly after their introduction. Here, the determinants of OSF are examined, and the between-country variation and long-term risk are assessed. Cohorts of patients in the UK, Netherlands and USA with 15,770 BSCC 60 degree heart valves were followed up to 18 years for the occurrence of OSF. Crude rates of OSF were highest in the UK (0.18% per year), intermediate in the Netherlands (0.13%), and lowest in the USA (0.06%), although risk factor adjustment reduced the inter-country differences. Furthermore, in the UK and Netherlands, OSF rates (particularly for mitral valves) declined with time since implantation, and between-country differences were considerably diminished 10 or more years post implantation. The risk of OSF decreased steadily with advancing patient age. Fracture rates were lower among women than men, and also varied significantly with valve size and position and OSF status of other valves in the same shoporder. This long-term follow up of BSCC 60 degree heart valve patients indicates that risk factors for valve fracture are generally similar in the UK, Netherlands and USA. It also identifies a strong association between fracture risk and age, newly reveals gender-related differences, and shows that the risk of valve fracture persisted, albeit at a reduced rate, into the 1990s.

  7. Prognostic value of heart valve calcifications for cardiovascular events in a lung cancer screening population.

    Science.gov (United States)

    Willemink, Martin J; Takx, Richard A P; Išgum, Ivana; de Koning, Harry J; Oudkerk, Matthijs; Mali, Willem P Th M; Budde, Ricardo P J; Leiner, Tim; Vliegenthart, Rozemarijn; de Jong, Pim A

    2015-08-01

    To assess the prognostic value of aortic valve and mitral valve/annulus calcifications for cardiovascular events in heavily smoking men without a history of cardiovascular disease. Heavily smoking men without a cardiovascular disease history who underwent non-contrast-enhanced low-radiation-dose chest CT for lung cancer screening were included. Non-imaging predictors (age, smoking status and pack-years) were collected and imaging-predictors (calcium volume of the coronary arteries, aorta, aortic valve and mitral valve/annulus) were obtained. The outcome was the occurrence of cardiovascular events. Multivariable Cox proportional-hazards regression was used to calculate hazard-ratios (HRs) with 95% confidence interval (CI). Subsequently, concordance-statistics were calculated. In total 3111 individuals were included, of whom 186 (6.0%) developed a cardiovascular event during a follow-up of 2.9 (Q1-Q3, 2.7-3.3) years. If aortic (n = 657) or mitral (n = 85) annulus/valve calcifications were present, cardiovascular event incidence increased to 9.0% (n = 59) or 12.9% (n = 11), respectively. HRs of aortic and mitral valve/annulus calcium volume for cardiovascular events were 1.46 (95% CI, 1.09-1.84) and 2.74 (95% CI, 0.92-4.56) per 500 mm(3). The c-statistic of a basic model including age, pack-years, current smoking status, coronary and aorta calcium volume was 0.68 (95% CI, 0.63-0.72), which did not change after adding heart valve calcium volume. Aortic valve calcifications are predictors of future cardiovascular events. However, there was no added prognostic value beyond age, number of pack-years, current smoking status, coronary and aorta calcium volume for short term cardiovascular events.

  8. The JUPITER registry: 1-year results of transapical aortic valve implantation using a second-generation transcatheter heart valve in patients with aortic stenosis.

    Science.gov (United States)

    Silaschi, Miriam; Treede, Hendrik; Rastan, Ardawan J; Baumbach, Hardy; Beyersdorf, Friedhelm; Kappert, Utz; Eichinger, Walter; Rüter, Florian; de Kroon, Thomas L; Lange, Rüdiger; Ensminger, Stephan; Wendler, Olaf

    2016-11-01

    Transcatheter aortic valve replacement (TAVR) is an established therapy for patients with aortic stenosis (AS) at high surgical risk. The JenaValve™ is a second-generation, self-expanding transcatheter heart valve (THV), implanted through transapical access (TA). During stent deployment, a specific 'clipping-mechanism' engages native aortic valve cusps for fixation. We present 1-year outcomes of the JUPITER registry, a post-market registry of the JenaValve for TA-TAVR. The JUPITER registry is a prospective, multicentre, uncontrolled and observational European study to evaluate the long-term safety and effectiveness of the Conformité Européenne-marked JenaValve THV. A total of 180 patients with AS were enrolled between 2012 and 2014. End-points were adjudicated in accordance with the valve academic research consortium document no. 1 definitions. The mean age was 80.4 ± 5.9 years and the mean logistic European system for cardiac operative risk evaluation I 21.2 ± 14.7%. The procedure was successful in 95.0% (171/180), implantation of a second THV (valve-in-valve) was performed in 2.2% (4/180) and conversion to surgical aortic valve replacement (SAVR) was necessary in 2.8% (5/180). No annular rupture or coronary ostia obstruction occurred. Two patients required SAVR after the day of index procedure (1.1%). All-cause mortality at 30 days was 11.1% (20/180), being cardiovascular in 7.2% (13/180). A major stroke occurred in 1.1% (2/180) at 30 days, no additional major strokes were observed during 1 year. All-cause mortality after 30 days was 13.1% (21/160) and combined efficacy at 1 year was 80.8% (122/151). At 1-year follow-up, no patient presented with more than moderate paravalvular leakage, while 2 patients (3.2%) showed moderate, 12 (19.0%) mild and 49 (82.4%) trace/none paravalvular regurgitation. In a high-risk cohort of patients undergoing TA-TAVR for AS, the use of the JenaValve THV is safe and effective. In patients at higher risk for coronary ostia

  9. Anatomic characteristics of bileaflet mitral valve prolapse--Barlow disease--in patients undergoing mitral valve repair.

    Science.gov (United States)

    Rostagno, Carlo; Droandi, Ginevra; Rossi, Alessandra; Bevilacqua, Sergio; Romagnoli, Stefano; Montesi, Gian Franco; Stefàno, Pier Luigi

    2014-01-01

    Barlow disease is a still challenging pathology for the surgeon. Aim of the present study is to report anatomic abnormalities of mitral valve in patients undergoing mitral valve repair. Between January 1st, 2007, and December 31st, 2010, 85 consecutive patients (54 men and 31 women, mean age 59 +/- 14 years--range: 28-85 years) with the features of a Barlow mitral valve disease underwent mitral repair Forty seven percent of patients were in New York Heart Association functional class III or IV. Preoperative transesophageal echocardiography was compared with anatomical findings at the moment of surgery. Transthoracic echocardiography diagnosis of Barlow disease according to the criteria described by Carpentier was confirmed at anatomical inspection. Annular calcifications were found in 28 patients while 7 patients presented single or multiple clefts. A flail posterior mitral leaflet was detected in 32 subjects, while a flail anterior leaflet in 8. Elongation of chordae tendineae was demonstrated in 45 patients and chordal rupture in 31. All patients showed at trans esophageal echocardiography the typical features of Barlow disease. Seventy-seven (90.6%) patients had severe mitral valve regurgitation, in the remaining 9.4% it was moderate to severe. Transesophageal echocardiography failed to identify clefts in 2/7 and chordal rupture in 4/31. bileaflet prolapse > 2 mm, billowing valve with excess tissue and thickened leaflets > or = 3 mm, and severe annular dilatation, are characteristics of Barlow disease, however the identification of the associated and complex abnormalities of mitral valve is necessary to obtain optimal valve repair.

  10. Aortic valve biomechanics during LVAD support: Implementation in a bioreactor design and preliminary testing

    Science.gov (United States)

    Jamal, Madiha

    Although Left Ventricle Assist Device (LVAD) support has enhanced the quality of life for many heart failure patients, its prolonged in-vivo implantation causes change in hemodynamics and biomechanics of the aortic heart valve eventually leading to development of aortic insufficiency (AI). The LVAD decreases pressure in the left ventricle, leading to high transvalvular pressure and reduced aortic valve opening. Our hypothesis is that the increased pressure leads to increased mechanical stretch in the aortic valve leaflets, inducing a cascade of responses that ultimately result in local tissue fibrosis and AI. The goal of this study is to investigate the mechanism behind this hypothesis using the methods of tissue engineering. A bioreactor has been built that imparts cyclic stretch and flow to small 3-D constructs of living cells cultured in a silicone membrane. The approach is to use this device for in vitro tissue culture of vascular interstitial cells (VICs) embedded in a collagen gel, which will be subjected to normal and altered stretch and shear representative of the in vivo valve biomechanics. The bioreactor was validated to measure the amount of stretch and shear it can impart to closely replicate in-vivo conditions using PIV technique and ImageJ software. Mean longitudinal strain of 0.037cm (SD= +/-0.013cm) was recorded with mean perpendicular strain being 0.0046cm (SD= +/-0.0169cm). Measured average shear stress imparted at 100ml/min was 2.735 dynes/cm2 (SD= +/-2.25 dynes/cm2) with 6.21 dynes/cm2 (SD= +/-3.35 dynes/cm2) at 200ml/min. The cells that underwent cycles of stretch and shear in the bioreactor were screened for formation of myofibroblast using techniques of immunohistochemistry. The marker used was ? smooth muscle actin (SMA) which identifies pathological differentiation of the CPCs to myofibroblast. Yhe expression of the myofibroblast phenotype is a feature of valvupathy. In case of Shear Vs Static control, the mean value for SMA expression for

  11. Supercharged two-cycle engines employing novel single element reciprocating shuttle inlet valve mechanisms and with a variable compression ratio

    Science.gov (United States)

    Wiesen, Bernard (Inventor)

    2008-01-01

    This invention relates to novel reciprocating shuttle inlet valves, effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines, employing spark or compression ignition. Also permitting the elimination of out-of-phase piston arrangements to control scavenging and supercharging of opposed-piston engines. The reciprocating shuttle inlet valve (32) and its operating mechanism (34) is constructed as a single and simple uncomplicated member, in combination with the lost-motion abutments, (46) and (48), formed in a piston skirt, obviating the need for any complex mechanisms or auxiliary drives, unaffected by heat, friction, wear or inertial forces. The reciprocating shuttle inlet valve retains the simplicity and advantages of two-cycle engines, while permitting an increase in volumetric efficiency and performance, thereby increasing the range of usefulness of two-cycle engines into many areas that are now dominated by the four-cycle engine.

  12. The growth of tissue engineering.

    Science.gov (United States)

    Lysaght, M J; Reyes, J

    2001-10-01

    This report draws upon data from a variety of sources to estimate the size, scope, and growth rate of the contemporary tissue engineering enterprise. At the beginning of 2001, tissue engineering research and development was being pursued by 3,300 scientists and support staff in more than 70 startup companies or business units with a combined annual expenditure of over $600 million. Spending by tissue engineering firms has been growing at a compound annual rate of 16%, and the aggregate investment since 1990 now exceeds $3.5 billion. At the beginning of 2001, the net capital value of the 16 publicly traded tissue engineering startups had reached $2.6 billion. Firms focusing on structural applications (skin, cartilage, bone, cardiac prosthesis, and the like) comprise the fastest growing segment. In contrast, efforts in biohybrid organs and other metabolic applications have contracted over the past few years. The number of companies involved in stem cells and regenerative medicine is rapidly increasing, and this area represents the most likely nidus of future growth for tissue engineering. A notable recent trend has been the emergence of a strong commercial activity in tissue engineering outside the United States, with at least 16 European or Australian companies (22% of total) now active.

  13. Design of Epoxy based Resin Composites for Automotive Applications: A Case Study on IC Engine Valve Guide

    Science.gov (United States)

    Sidhu, J. S.; Lathkar, G. S.; Sharma, S. B.

    2018-01-01

    The present attempt in this project is to reduce the vibrations, temperature due to friction, noise and weight of I C engine valve guide by replacing conventional metal valve guide with composite valve guide. Composite materials have been used in automotive components because of their properties such as low weight, high specific stiffness, corrosion resistance, ability to produce complex shapes, high specific strength and good impact energy absorption etc. The Internal combustion engine valve guides are the parts that support the valves in the cylinder head, besides this it keeps lubricating oil from getting sucked into the combustion chamber past the intake valve stem, it keeps exhaust gases from getting into the crankcase past the exhaust valve stem and it also keeps the valve face in perfect alignment with the valve seat. A valve guide test rig is indigenously fabricated. Valve guides are manufactured using the developed composite material (Resin ARL-136, Hardener AH-126 and 4 vol% WS2), on a CNC lathe. The performance of the developed composite guide under varied conditions of speeds, that is, fixed change in rpm and modulated changes in rpm is assessed. Noise, temperature and vibrations are measured. The experimental data revealed that contribution of composite guide in respect of acceleration, velocity and displacement components of vibration is not substantial. A substantial reduction in noise levels is seen. As far as temperature rise due to friction is concerned maximum components fail at elevated temperatures, with composite guides the temperature generated due to friction at higher speeds is less, a considerable weight reduction is also observed.

  14. 3D whole-heart myocardial tissue analysis

    NARCIS (Netherlands)

    van den Broek, HT; de Jong, Leon; Doevendans, Pieter A.; Chamuleau, Steven A.J.; van Slochteren, Frebus J.; Van Es, René

    2017-01-01

    Cardiac regenerative therapies aim to protect and repair the injured heart in patients with ischemic heart disease. By injecting stem cells or other biologicals that enhance angio- or vasculogenesis into the infarct border zone (IBZ), tissue perfusion is improved, and the myocardium can be protected

  15. Verification of pharmacogenetics-based warfarin dosing algorithms in Han-Chinese patients undertaking mechanic heart valve replacement.

    Science.gov (United States)

    Zhao, Li; Chen, Chunxia; Li, Bei; Dong, Li; Guo, Yingqiang; Xiao, Xijun; Zhang, Eryong; Qin, Li

    2014-01-01

    To study the performance of pharmacogenetics-based warfarin dosing algorithms in the initial and the stable warfarin treatment phases in a cohort of Han-Chinese patients undertaking mechanic heart valve replacement. We searched PubMed, Chinese National Knowledge Infrastructure and Wanfang databases for selecting pharmacogenetics-based warfarin dosing models. Patients with mechanic heart valve replacement were consecutively recruited between March 2012 and July 2012. The predicted warfarin dose of each patient was calculated and compared with the observed initial and stable warfarin doses. The percentage of patients whose predicted dose fell within 20% of their actual therapeutic dose (percentage within 20%), and the mean absolute error (MAE) were utilized to evaluate the predictive accuracy of all the selected algorithms. A total of 8 algorithms including Du, Huang, Miao, Wei, Zhang, Lou, Gage, and International Warfarin Pharmacogenetics Consortium (IWPC) model, were tested in 181 patients. The MAE of the Gage, IWPC and 6 Han-Chinese pharmacogenetics-based warfarin dosing algorithms was less than 0.6 mg/day in accuracy and the percentage within 20% exceeded 45% in all of the selected models in both the initial and the stable treatment stages. When patients were stratified according to the warfarin dose range, all of the equations demonstrated better performance in the ideal-dose range (1.88-4.38 mg/day) than the low-dose range (pharmacogenetics-based warfarin dosing regimens performed similarly in our cohort. However, the algorithms of Wei, Huang, and Miao showed a better potential for warfarin prediction in the initial and the stable treatment phases in Han-Chinese patients undertaking mechanic heart valve replacement.

  16. Understanding the requirements of self-expandable stents for heart valve replacement : radial force, hoop force and equilibrium

    NARCIS (Netherlands)

    Cabrera, M.S.; Oomens, C.W.J.; Baaijens, F.P.T.

    2017-01-01

    A proper interpretation of the forces developed during stent crimping and deployment is of paramount importance for a better understanding of the requirements for successful heart valve replacement. The present study combines experimental and computational methods to assess the performance of a

  17. An evaluation of Admedus' tissue engineering process-treated (ADAPT) bovine pericardium patch (CardioCel) for the repair of cardiac and vascular defects.

    Science.gov (United States)

    Strange, Geoff; Brizard, Christian; Karl, Tom R; Neethling, Leon

    2015-03-01

    Tissue engineers have been seeking the 'Holy Grail' solution to calcification and cytotoxicity of implanted tissue for decades. Tissues with all of the desired qualities for surgical repair of congenital heart disease (CHD) are lacking. An anti-calcification tissue engineering process (ADAPT TEP) has been developed and applied to bovine pericardium (BP) tissue (CardioCel, AdmedusRegen Pty Ltd, Perth, WA, Australia) to eliminate cytotoxicity, improve resistance to acute and chronic inflammation, reduce calcification and facilitate controlled tissue remodeling. Clinical data in pediatric patients, and additional pre-market authorized prescriber data demonstrate that CardioCel performs extremely well in the short term and is safe and effective for a range of congenital heart deformations. These data are supported by animal studies which have shown no more than normal physiologic levels of calcification, with good durability, biocompatibility and controlled healing.

  18. Extracellular matrix and tissue engineering applications

    NARCIS (Netherlands)

    Fernandes, H.A.M.; Moroni, Lorenzo; van Blitterswijk, Clemens; de Boer, Jan

    2009-01-01

    The extracellular matrix is a key component during regeneration and maintenance of tissues and organs, and it therefore plays a critical role in successful tissue engineering as well. Tissue engineers should recognise that engineering technology can be deduced from natural repair processes. Due to

  19. Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms

    International Nuclear Information System (INIS)

    Atashkari, K.; Nariman-Zadeh, N.; Goelcue, M.; Khalkhali, A.; Jamali, A.

    2007-01-01

    The main reason for the efficiency decrease at part load conditions for four-stroke spark-ignition (SI) engines is the flow restriction at the cross-sectional area of the intake system. Traditionally, valve-timing has been designed to optimize operation at high engine-speed and wide open throttle conditions. Several investigations have demonstrated that improvements at part load conditions in engine performance can be accomplished if the valve-timing is variable. Controlling valve-timing can be used to improve the torque and power curve as well as to reduce fuel consumption and emissions. In this paper, a group method of data handling (GMDH) type neural network and evolutionary algorithms (EAs) are firstly used for modelling the effects of intake valve-timing (V t ) and engine speed (N) of a spark-ignition engine on both developed engine torque (T) and fuel consumption (Fc) using some experimentally obtained training and test data. Using such obtained polynomial neural network models, a multi-objective EA (non-dominated sorting genetic algorithm, NSGA-II) with a new diversity preserving mechanism are secondly used for Pareto based optimization of the variable valve-timing engine considering two conflicting objectives such as torque (T) and fuel consumption (Fc). The comparison results demonstrate the superiority of the GMDH type models over feedforward neural network models in terms of the statistical measures in the training data, testing data and the number of hidden neurons. Further, it is shown that some interesting and important relationships, as useful optimal design principles, involved in the performance of the variable valve-timing four-stroke spark-ignition engine can be discovered by the Pareto based multi-objective optimization of the polynomial models. Such important optimal principles would not have been obtained without the use of both the GMDH type neural network modelling and the multi-objective Pareto optimization approach

  20. Soluble CD54 induces human endothelial cells ex vivo expansion useful for cardiovascular regeneration and tissue engineering application

    KAUST Repository

    Malara, N.M.

    2015-03-01

    Aim: Consistent expansion of primary human endothelial cells in vitro is critical in the development of engineered tissue. A variety of complex culture media and techniques developed from different basal media have been reported with alternate success. Incongruous results are further confounded by donor-to-donor variability and cellular source of derivation. Our results demonstrate how to overcome these limitations using soluble CD54 (sCD54) as additive to conventional culture medium. Methods and results: Isolated primary fragment of different vessel types was expanded in Ham\\'s F12 DMEM, enriched with growth factors, Fetal Calf Serum and conditioned medium of Human Umbilical Vein Endothelial Cells (HUVEC) collected at different passages. Cytokine content of culture media was analyzed in order to identify the soluble factors correlating with better proliferation profile. sCD54 was found to induce the in vitro expansion of human endothelial cells (HECs) independently from the vessels source and even in the absence of HUVEC-conditioned medium. The HECs cultivated in the presence of sCD54 (50 ng/ml), resulted positive for the expression of CD146 and negative for CD45, and lower fibroblast contamination. Cells were capable to proliferate with an S phase of 25%, to produce vascular endothelial growth factor, VEGF, (10 ng/ml) and to give origin to vessel-like tubule in vitro. Conclusion: Our results demonstrate that sCD54 is an essential factor for the in-vitro expansion of HECs without donor and vessel-source variability. Resulting primary cultures can be useful, for tissue engineering in regenerative medicine (e.g. artificial micro tissue generation, coating artificial heart valve etc.) and bio-nanotechnology applications. © 2015 The Authors. Published by Elsevier Ireland Ltd.

  1. Pannus Formation Leads to Valve Malfunction in the Tricuspid Position 19 Years after Triple Valve Replacement.

    Science.gov (United States)

    Alskaf, Ebraham; McConkey, Hannah; Laskar, Nabila; Kardos, Attila

    2016-06-20

    The Medtronic ATS Open Pivot mechanical valve has been successfully used in heart valve surgery for more than two decades. We present the case of a patient who, 19 years following a tricuspid valve replacement with an ATS prosthesis as part of a triple valve operation following infective endocarditis, developed severe tricuspid regurgitation due to pannus formation.

  2. Neoproteoglycans in tissue engineering

    Science.gov (United States)

    Weyers, Amanda; Linhardt, Robert J.

    2014-01-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318

  3. The Impact of Obesity on Postoperative Outcomes in Adults with Congenital Heart Disease Undergoing Pulmonary Valve Replacement.

    Science.gov (United States)

    Buelow, Matthew W; Earing, Michael G; Hill, Garick D; Cohen, Scott B; Bartz, Peter J; Tweddell, James S; Ginde, Salil

    2015-01-01

    The impact of obesity on surgical morbidity in adults with congenital heart disease is currently unknown. The aim of our study was to investigate the impact of obesity on postoperative outcomes in adults with congenital heart disease undergoing reoperation for pulmonary valve replacement. A retrospective analysis was performed assessing the influence of obesity on surgical outcomes. Obesity was defined as a body mass index ≥30 kg/m2. The mean body mass index of the cohort was 25.9 ± 6.9 kg/m2 . The cohort included 71 patients with 17 patients (24%) being obese. There was no postoperative mortality. Obese patients had a longer hospital length of stay (6.6 vs. 4.7 days; P obesity was independently associated with hospital length of stay >5 days (odds ratio [OR] = 5.2; 95% confidence interval [CI]: 1.5-18.2, P = .01) and with increased postoperative arrhythmias (OR = 4.2; 95% CI: 1.7-40, P Obesity is associated with increased morbidity in adults with congenital heart disease undergoing pulmonary valve replacement, including longer hospitalization and higher risk for postoperative arrhythmias. © 2015 Wiley Periodicals, Inc.

  4. Bioprosthetic Valve Fracture to Facilitate Transcatheter Valve-in-Valve Implantation.

    Science.gov (United States)

    Allen, Keith B; Chhatriwalla, Adnan K; Cohen, David J; Saxon, John T; Aggarwal, Sanjeev; Hart, Anthony; Baron, Suzanne; Davis, J Russell; Pak, Alex F; Dvir, Danny; Borkon, A Michael

    2017-11-01

    Valve-in-valve transcatheter aortic valve replacement is less effective in small surgical bioprostheses. We evaluated the feasibility of bioprosthetic valve fracture with a high-pressure balloon to facilitate valve-in-valve transcatheter aortic valve replacement. In vitro bench testing on aortic tissue valves was performed on 19-mm and 21-mm Mitroflow (Sorin, Milan, Italy), Magna and Magna Ease (Edwards Lifesciences, Irvine, CA), Trifecta and Biocor Epic (St. Jude Medical, Minneapolis, MN), and Hancock II and Mosaic (Medtronic, Minneapolis, MN). High-pressure balloons Tru Dilation, Atlas Gold, and Dorado (C.R. Bard, Murray Hill, NJ) were used to determine which valves could be fractured and at what pressure fracture occurred. Mitroflow, Magna, Magna Ease, Mosaic, and Biocor Epic surgical valves were successfully fractured using high-pressures balloon 1 mm larger than the labeled valve size whereas Trifecta and Hancock II surgical valves could not be fractured. Only the internal valve frame was fractured, and the sewing cuff was never disrupted. Manufacturer's rated burst pressures for balloons were exceeded, with fracture pressures ranging from 8 to 24 atmospheres depending on the surgical valve. Testing further demonstrated that fracture facilitated the expansion of previously constrained, underexpanded transcatheter valves (both balloon and self-expanding) to the manufacturer's recommended size. Bench testing demonstrates that the frame of most, but not all, bioprosthetic surgical aortic valves can be fractured using high-pressure balloons. The safety of bioprosthetic valve fracture to optimize valve-in-valve transcatheter aortic valve replacement in small surgical valves requires further clinical investigation. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  5. D-dimer to guide the intensity of anticoagulation in Chinese patients after mechanical heart valve replacement: a randomized controlled trial.

    Science.gov (United States)

    Zhang, L; Zheng, X; Long, Y; Wu, M; Chen, Y; Yang, J; Liu, Z; Zhang, Z

    2017-10-01

    Essentials Low anticoagulation intensity reduces bleeding but increases thrombosis during warfarin therapy. Elevated D-dimer level is associated with increased thrombosis events. D-dimer can be used to find potential thrombosis in those receiving low intensity therapy. D-dimer-guided therapy may be the optimal strategy for those with mechanical heart valve replacement. Background Controversies remain regarding the optimal anticoagulation intensity for Chinese patients after mechanical heart valve replacement despite guidelines having recommended a standard anticoagulation intensity. Objectives To investigate whether D-dimer could be used to determine the optimal anticoagulation intensity in Chinese patients after mechanical heart valve replacement. Patients/Methods This was a prospective, randomized controlled clinical study. A total of 748 patients following mechanical heart valve replacement in Wuhan Asia Heart Hospital were randomized to three groups at a ratio of 1 : 1 : 1. Patients in two control groups received warfarin therapy based on constant standard intensity (international normalized ratio [INR], 2.5-3.5; n = 250) and low intensity (INR, 1.8-2.6; n = 248), respectively. In the experimental group (n = 250), warfarin therapy was initiated at low intensity, then those with elevated D-dimer levels were adjusted to standard intensity. All patients were followed-up for 24 months until the occurrence of endpoints, including bleeding events, thrombotic events and all-cause mortality. Results A total of 718 patients were included in the analysis. Fifty-three events occurred during follow-up. There was less hemorrhage (3/240 vs. 16/241; hazard ratio [HR], 0.18; 95% confidence interval [CI], 0.07-0.45) and all-cause mortality (4/240 vs. 12/241; HR, 0.33; 95% CI, 0.12-0.87) observed in the D-dimer-guided group than in the standard-intensity group. A lower incidence of thrombotic events was also observed in the D-dimer-guided group when compared with the

  6. Bioprosthetic Valve Fracture During Valve-in-valve TAVR: Bench to Bedside.

    Science.gov (United States)

    Saxon, John T; Allen, Keith B; Cohen, David J; Chhatriwalla, Adnan K

    2018-01-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) has been established as a safe and effective means of treating failed surgical bioprosthetic valves (BPVs) in patients at high risk for complications related to reoperation. Patients who undergo VIV TAVR are at risk of patient-prosthesis mismatch, as the transcatheter heart valve (THV) is implanted within the ring of the existing BPV, limiting full expansion and reducing the maximum achievable effective orifice area of the THV. Importantly, patient-prosthesis mismatch and high residual transvalvular gradients are associated with reduced survival following VIV TAVR. Bioprosthetic valve fracture (BVF) is as a novel technique to address this problem. During BPV, a non-compliant valvuloplasty balloon is positioned within the BPV frame, and a highpressure balloon inflation is performed to fracture the surgical sewing ring of the BPV. This allows for further expansion of the BPV as well as the implanted THV, thus increasing the maximum effective orifice area that can be achieved after VIV TAVR. This review focuses on the current evidence base for BVF to facilitate VIV TAVR, including initial bench testing, procedural technique, clinical experience and future directions.

  7. Actuation and system design and evaluation OMS engine shutoff valve, Volume 1. [space shuttles

    Science.gov (United States)

    Dunn, V. B.

    1975-01-01

    A technology program was conducted to identify and verify the optimum valve and actuation system concept for the Space Shuttle Orbit Maneuvering System engine. Of major importance to the valve and actuation system selection was the ten-year, 100-mission, 10,000-cycle life requirement, while maintaining high reliability, low leakage, and low weight. Valve and actuation system concepts were comparatively evaluated against past valve failure reports and potential failure modes due to the shuttle mission profile to aid in the selection of the most optimum concept for design, manufacture and verification testing. Two valve concepts were considered during the preliminary design stage; i.e., the moving seat and lifting ball. Two actuation systems were manufactured and tested. Test results demonstrate the viability of a lifting ball concept as well as the applicability of an ac motor actuation system to best meet the requirements of the shuttle mission.

  8. Prospective ECG triggering reduces prosthetic heart valve-induced artefacts compared with retrospective ECG gating on 256-slice CT

    NARCIS (Netherlands)

    Symersky, P.; Habets, J.; Westers, P.; Mol, de B.A.J.M.; Prokop, M.; Budde, R.P.J.

    2012-01-01

    Objectives Multidetector computed tomography (MDCT) has diagnostic value for the evaluation of prosthetic heart valve (PHV) dysfunction but it is hampered by artefacts. We hypothesised that image acquisition using prospective triggering instead of retrospective gating would reduce artefacts related

  9. Engineering based assessment for a shape design of a pediatric ePTFE pulmonary conduit valve.

    Science.gov (United States)

    Tsuboko, Yusuke; Shiraishi, Yasuyuki; Yamada, Akihiro; Yambe, Tomoyuki; Miura, Hidekazu; Mura, Seitaro; Yamagishi, Masaaki

    2016-08-01

    The authors examined the hemodynamic characteristics of expanded polytetrafluoroethylene (ePTFE) pulmonary valved conduits quantitatively by our originally developed pediatric pulmonary mechanical circulatory system, in order to suggest the optimal shape design. The system consisted of pneumatically driven right atrium and ventricle model, a pulmonary valve chamber, and elastic pulmonary compliance model with peripheral vascular resistance units, a venous reservoir. We employed two different types of ePTFE valve and evaluated the relationship between the leaflets motion and hemodynamic characteristics by using a high-speed video camera. As a result, we successfully reproduced hemodynamic simulations in our pediatric pulmonary mock system. We confirmed that the presence of bulging sinuses in the pulmonary valved conduit reduced the transvalvular energy loss and increased the valve opening area during systolic period. Our engineering-based in vitro analysis could be useful for proposing a shape design optimization of sophisticated pediatric ePTFE pulmonary valve.

  10. 2013 update on congenital heart disease, clinical cardiology, heart failure, and heart transplant.

    Science.gov (United States)

    Subirana, M Teresa; Barón-Esquivias, Gonzalo; Manito, Nicolás; Oliver, José M; Ripoll, Tomás; Lambert, Jose Luis; Zunzunegui, José L; Bover, Ramon; García-Pinilla, José Manuel

    2014-03-01

    This article presents the most relevant developments in 2013 in 3 key areas of cardiology: congenital heart disease, clinical cardiology, and heart failure and transplant. Within the area of congenital heart disease, we reviewed contributions related to sudden death in adult congenital heart disease, the importance of specific echocardiographic parameters in assessing the systemic right ventricle, problems in patients with repaired tetralogy of Fallot and indication for pulmonary valve replacement, and confirmation of the role of specific factors in the selection of candidates for Fontan surgery. The most recent publications in clinical cardiology include a study by a European working group on correct diagnostic work-up in cardiomyopathies, studies on the cost-effectiveness of percutaneous aortic valve implantation, a consensus document on the management of type B aortic dissection, and guidelines on aortic valve and ascending aortic disease. The most noteworthy developments in heart failure and transplantation include new American guidelines on heart failure, therapeutic advances in acute heart failure (serelaxin), the management of comorbidities such as iron deficiency, risk assessment using new biomarkers, and advances in ventricular assist devices. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  11. On the connective tissue regulator Follistatin-like 1

    NARCIS (Netherlands)

    Sylva, M.

    2014-01-01

    Even though for many years the molecular mechanisms underlying cardiac development have been studied, the majority of cardiac defects remain unexplained. Defects in the cardiac connective tissue component result in a large proportion of heart defects such as valve and septal defects. Previous

  12. Near net shape, low cost ceramic valves for advanced engine applications

    Energy Technology Data Exchange (ETDEWEB)

    Pidria, M.; Merlone, E.; Parussa, F. [Fiat Research Centre, Orbassano (Italy); Handelsman, J.; Gorodnev, A. [Ceracom Materials Ltd., Yavneh (Israel)

    2003-07-01

    Future gasoline and diesel engines with electro-hydraulic or electro-mechanical valve control systems require the development of lighter valves to achieve the best results in terms of increased performances, lower fuel consumption and overall efficiency. Ceramic materials can adequately satisfy the required mechanical and thermal properties, nevertheless they still lack as far as manufacturing costs are concerned. Objective of the work was the development of a low-cost forming and sintering process, to produce near-net shape ceramic valves thus requiring very low finishing operations and significantly minimizing material waste. Between available technical ceramic materials, silicon nitride has been chosen to replace conventional steels and Ni-based alloys for the exhaust valves application. The work was then devoted to (i) the selection of the best starting materials composition, taking into account the requirements of a cost effective and high volume production, (ii) the development of an innovative pressure-injection molding process to produce near-net shape parts via a thermosetting feedstock and (iii) the optimization of a proper pressure-less sintering route to obtain cost-competitive, real scale components with adequate final density and mechanical properties. (orig.)

  13. Cycle-to-cycle variation analysis of in-cylinder flow in a gasoline engine with variable valve lift

    Science.gov (United States)

    Liu, Daming; Wang, Tianyou; Jia, Ming; Wang, Gangde

    2012-09-01

    In spark ignition engines, cycle-to-cycle variation (CCV) limits the expansion of the operating range because it induces the load variations and the occurrence of misfire and/or knock. Variable valve actuation (VVA) or variable valve lift (VVL) has been widely used in SI engines to improve the volumetric efficiency or to reduce the pumping losses. It is necessary to investigate the CCV of in-cylinder gas motion and mixing processes in SI engines with VVA/VVL system. This study is aimed to analyze the CCV of the tumble flow in a gasoline direct injection (GDI) engine when VVL is employed. Cycle-resolved digital particle image velocimetry (CRD-PIV) data were acquired for the in-cylinder flow field of a motored four-stroke multi-valve GDI optical engine. The CCV of in-cylinder gas motion with a series of valve profiles and different maximum valve lift (MVL) was analyzed, including cyclic variation characteristics of bulk flow (tumble centre and tumble ratio), large- and small-scale fluctuation, total kinetic energy, and circulation. The results show that the CCV of the in-cylinder flow is increased with reduced MVL. With lower MVLs, stable tumble flow cannot be formed in the cylinder, and the ensemble-averaged tumble ratio decreases to zero before the end of the compression stroke due to violent variation. In addition, the evolution of the circulation shows larger variation with lower MVLs that indicates the `spin' of the small-scale eddy in the flow field presents violent fluctuation from one cycle to another, especially at the end of the compression stroke. Moreover, the analyze of the kinetic energy indicates the total energy of the flow field with lower MVLs increases significantly comparing with higher MVL conditions due to the intake flow jet at the intake valve seat in the intake stroke. However, the CCV of the in-cylinder flow becomes more violent under lower MVL conditions, especially for the low-frequency fluctuation kinetic energy. Thus, present strong

  14. Strut fracture in a Bjork-Shiley aortic valve prosthesis.

    Science.gov (United States)

    Lifschultz, B D; Donoghue, E R

    1985-10-01

    Strut fracture can be a life-threatening adverse effect of mechanical prosthetic heart valves. This complication has occurred in the DeBakey, the Beall, the Cooley-Cutter and, most recently, the Bjork-Shiley valves. We report the case of a 35-year-old man who died suddenly 16 months after a 60 degree Bjork-Shiley Convexo-Concave heart valve prosthesis was inserted in the aortic position. At autopsy, the two welded attachments of the valve's outlet strut had fractured. The valve's tilting disc was found in his abdominal aorta.

  15. Numerical investigation on effect of aortic root geometry on flow induced structural stresses developed in a bileaflet mechanical heart valve

    Science.gov (United States)

    Abbas, S. S.; Nasif, M. S.; Said, M. A. M.; Kadhim, S. K.

    2017-10-01

    Structural stresses developed in an artificial bileaflet mechanical heart valve (BMHV) due to pulsed blood flow may cause valve failure due to yielding. In this paper, von-Mises stresses are computed and compared for BMHV placed in two types of aortic root geometries that are aortic root with axisymmetric sinuses and with axisymmetric bulb, at different physiological blood flow rates. With BMHV placed in an aortic root with axisymmetric sinuses, the von-Mises stresses developed in the valve were found to be up to 47% higher than BMHV placed in aortic root with axisymmetric bulb under similar physiological conditions. High velocity vectors and therefore high von-Mises stresses have been observed for BMHV placed in aortic root with axisymmetric sinuses, that can lead to valve failure.

  16. Radiation-induced valvular heart disease.

    Science.gov (United States)

    Gujral, Dorothy M; Lloyd, Guy; Bhattacharyya, Sanjeev

    2016-02-15

    Radiation to the mediastinum is a key component of treatment with curative intent for a range of cancers including Hodgkin's lymphoma and breast cancer. Exposure to radiation is associated with a risk of radiation-induced heart valve damage characterised by valve fibrosis and calcification. There is a latent interval of 10-20 years between radiation exposure and development of clinically significant heart valve disease. Risk is related to radiation dose received, interval from exposure and use of concomitant chemotherapy. Long-term outlook and the risk of valve surgery are related to the effects of radiation on mediastinal structures including pulmonary fibrosis and pericardial constriction. Dose prediction models to predict the risk of heart valve disease in the future and newer radiation techniques to reduce the radiation dose to the heart are being developed. Surveillance strategies for this cohort of cancer survivors at risk of developing significant heart valve complications are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Verification of Pharmacogenetics-Based Warfarin Dosing Algorithms in Han-Chinese Patients Undertaking Mechanic Heart Valve Replacement

    Science.gov (United States)

    Zhao, Li; Chen, Chunxia; Li, Bei; Dong, Li; Guo, Yingqiang; Xiao, Xijun; Zhang, Eryong; Qin, Li

    2014-01-01

    Objective To study the performance of pharmacogenetics-based warfarin dosing algorithms in the initial and the stable warfarin treatment phases in a cohort of Han-Chinese patients undertaking mechanic heart valve replacement. Methods We searched PubMed, Chinese National Knowledge Infrastructure and Wanfang databases for selecting pharmacogenetics-based warfarin dosing models. Patients with mechanic heart valve replacement were consecutively recruited between March 2012 and July 2012. The predicted warfarin dose of each patient was calculated and compared with the observed initial and stable warfarin doses. The percentage of patients whose predicted dose fell within 20% of their actual therapeutic dose (percentage within 20%), and the mean absolute error (MAE) were utilized to evaluate the predictive accuracy of all the selected algorithms. Results A total of 8 algorithms including Du, Huang, Miao, Wei, Zhang, Lou, Gage, and International Warfarin Pharmacogenetics Consortium (IWPC) model, were tested in 181 patients. The MAE of the Gage, IWPC and 6 Han-Chinese pharmacogenetics-based warfarin dosing algorithms was less than 0.6 mg/day in accuracy and the percentage within 20% exceeded 45% in all of the selected models in both the initial and the stable treatment stages. When patients were stratified according to the warfarin dose range, all of the equations demonstrated better performance in the ideal-dose range (1.88–4.38 mg/day) than the low-dose range (warfarin dose prediction and in the low-dose and the ideal-dose ranges. Conclusions All of the selected pharmacogenetics-based warfarin dosing regimens performed similarly in our cohort. However, the algorithms of Wei, Huang, and Miao showed a better potential for warfarin prediction in the initial and the stable treatment phases in Han-Chinese patients undertaking mechanic heart valve replacement. PMID:24728385

  18. A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve.

    Science.gov (United States)

    Mohammadi, H; Klassen, R J; Wan, W-K

    2008-10-01

    Pyrolytic carbon mechanical heart valves (MHVs) are widely used to replace dysfunctional and failed heart valves. As the human heart beats around 40 million times per year, fatigue is the prime mechanism of mechanical failure. In this study, a finite element approach is implemented to develop a model for fatigue analysis of MHVs due to the impact force between the leaflet and the stent and cavitation in the aortic position. A two-step method to predict crack propagation in the leaflets of MHVs has been developed. Stress intensity factors (SIFs) are computed at a small initiated crack located on the leaflet edge (the worst case) using the boundary element method (BEM). Static analysis of the crack is performed to analyse the stress distribution around the front crack zone when the crack is opened; this is followed by a dynamic crack analysis to consider crack propagation using the finite element approach. Two factors are taken into account in the calculation of the SIFs: first, the effect of microjet formation due to cavitation in the vicinity of leaflets, resulting in water hammer pressure; second, the effect of the impact force between the leaflet and the stent of the MHVs, both in the closing phase. The critical initial crack length, the SIFs, the water hammer pressure, and the maximum jet velocity due to cavitation have been calculated. With an initial crack length of 35 microm, the fatigue life of the heart valve is greater than 60 years (i.e. about 2.2 x 10(9) cycles) and, with an initial crack length of 170 microm, the fatigue life of the heart valve would be around 2.5 years (i.e. about 9.1 x 10(7) cycles). For an initial crack length greater than 170 microm, there is catastrophic failure and fatigue cracking no longer occurs. A finite element model of fatigue analysis using Patran command language (PCL custom code) in MSC software can be used to evaluate the useful lifespan of MHVs. Similar methodologies can be extended to other medical devices under cyclic

  19. Fuzzy Pattern Classification Based Detection of Faulty Electronic Fuel Control (EFC Valves Used in Diesel Engines

    Directory of Open Access Journals (Sweden)

    Umut Tugsal

    2014-05-01

    Full Text Available In this paper, we develop mathematical models of a rotary Electronic Fuel Control (EFC valve used in a Diesel engine based on dynamic performance test data and system identification methodology in order to detect the faulty EFC valves. The model takes into account the dynamics of the electrical and mechanical portions of the EFC valves. A recursive least squares (RLS type system identification methodology has been utilized to determine the transfer functions of the different types of EFC valves that were investigated in this study. Both in frequency domain and time domain methods have been utilized for this purpose. Based on the characteristic patterns exhibited by the EFC valves, a fuzzy logic based pattern classification method was utilized to evaluate the residuals and identify faulty EFC valves from good ones. The developed methodology has been shown to provide robust diagnostics for a wide range of EFC valves.

  20. Micro- and nanotechnology in cardiovascular tissue engineering

    International Nuclear Information System (INIS)

    Zhang Boyang; Xiao Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-01-01

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  1. Acupuncture in patients with valvular heart disease and prosthetic valves.

    Science.gov (United States)

    Stellon, Anthony

    2003-09-01

    Endocarditis has been reported in patients with valvular heart disease who have undergone acupuncture treatment, although most have been associated with the use of semi-permanent needles. This has led reviewers to suggest that acupuncture may not only be contraindicated in such patients but that prophylactic antibiotics should be given. This study investigated the use of acupuncture treatment in patients with proven valvular heart disease and observed whether endocarditis developed in such patients. All patients in a single-handed GP practice with proven valvular heart disease, including those with prosthetic valves, were identified over a ten-year period. Those who had undergone acupuncture treatment underwent a clinical examination and diagnostic tests, which focused on the signs, symptoms and laboratory criteria for the diagnosis of endocarditis and included a transthoracic echocardiogram. Autopsy findings were reviewed in any patient who died. Based on these clinical and laboratory data, using the modified Duke's criteria for the diagnosis of endocarditis, patients were identified as having definite or possible endocarditis, or the diagnosis was rejected. All patients underwent brief acupuncture with no skin disinfectant and no prophylactic antibiotics were given. Semi-permanent needles were avoided. Thirty-six patients with valvular heart disease underwent a total of 479 acupuncture treatments over a ten-year period. The median number of treatments was 9 (range 1-72), with a follow-up after treatment of 5.75 years (range 0.5-10 years). Definite endocarditis was not found in any patient, but two patients had possible endocarditis, eventually discounted by both negative blood cultures and echocardiography. In conclusion, brief acupuncture was safe in this small cohort of valvular heart disease patients and no case of endocarditis was detected over a ten-year period.

  2. Experimental and Potential Analysis of a Single-Valve Expander for Waste Heat Recovery of a Gasoline Engine

    Directory of Open Access Journals (Sweden)

    Wenzhi Gao

    2016-11-01

    Full Text Available In this paper, a Rankine cycle test system is established to recover exhaust energy from a 2.0 L gasoline engine. Experiments on the system’s performance are carried out under various working conditions. The experimental results indicate that the recovery power of the expander is strongly related to the load and speed of the gasoline engine. It is found that when the output power of the gasoline engine is 39.8–76.6 kW, the net power of the expander is 1.8–2.97 kW, which is equivalent to 3.9%–4.9% of the engine power. The performance simulation shows that the mass flow rate, power output, and isentropic efficiency of the piston expander are directly determined by the intake valve timing. Selecting a suitable intake valve timing can optimize the performance of the expander. The simulation results show that a 1 kW increment in power can be obtained only by selecting an optimum intake open timing. The experimental results further verify that the single-valve piston expander, because of its small dimensions, simple structure, and high speed, is appropriate, and has great potential for energy recovery of gasoline engine exhaust and has good prospects for engineering applications.

  3. Two-step bacterial broad-range polymerase chain reaction analysis of heart valve tissue improves bacteriological diagnosis of infective endocarditis.

    Science.gov (United States)

    Boussier, Rémi; Rogez, Sylvie; François, Bruno; Denes, Eric; Ploy, Marie-Cécile; Garnier, Fabien

    2013-03-01

    Positive heart valve (HV) culture is a major Duke's criterion for the diagnosis of infective endocarditis but is poorly sensitive. Two broad-range 16S rDNA polymerase chain reaction (PCR) methods were applied to 31 HV samples: first, a real-time method, then conventional end-point PCR was applied to HV samples on which the first PCR was negative. Five specific real-time PCR procedures were also used in order to identify Bartonella spp., Tropheryma whipplei, Chlamydophila pneumoniae, Mycoplasma pneumonia, and Coxiella burnetii. A strategy combining the 2-step broad-range PCR methods improved the sensitivity of the molecular method from 38.7% to 58%. Specific PCR identified 1 T. whipplei, which was also identified by conventional end-point PCR. These results confirm that blood culture is the gold standard for the diagnosis of infective endocarditis, shows that molecular methods applied to HV can be useful when blood culture is negative, and that 2-step broad-range PCR approach seems to be more sensitive. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Immunohistochemical abnormalities of fibrillin in cardiovascular tissues in Marfan's syndrome.

    Science.gov (United States)

    Fleischer, K J; Nousari, H C; Anhalt, G J; Stone, C D; Laschinger, J C

    1997-04-01

    Molecular defects in the glycoprotein fibrillin are believed to be responsible for impaired structural integrity of cardiovascular, skeletal, and ocular tissues in Marfan's syndrome (MFS). Traditionally, excellent results have been achieved with the Bentall composite graft repair of aneurysms of the ascending aorta in MFS. However, because of the potential complications associated with prosthetic valves, there is growing interest in techniques that preserve the native aortic valve. Between May 1994 and February 1995, 15 patients with a history of concomitant or remote aortic root aneurysms or dissection underwent operation for valvular heart disease. Specimens of aortic valve, ascending aortic wall, and mitral valve were obtained specifically to observe differences in fibrillin content and architecture between patients with (n = 9) and without (n = 6) MFS. In addition, control specimens of aortic valve, aortic wall, and mitral valve were obtained from 4 patients with isolated valvular or coronary artery disease but no evidence of connective tissue disorders or other aortic pathologic conditions. Fibrillin immunostaining using indirect immunofluorescence was used. Specimens were coded and graded by a blinded observer to determine quantity, homogeneity, and fragmentation of fibrillin. Observed fibrillin abnormalities in MFS and control patients were limited to the midportion (elastin-associated microfibrils) of the aortic valve, aortic wall, and mitral valve tissues. Fibrillin abnormalities of aortic valve, aortic wall, and mitral valve tissues were seen in all patients with MFS and were most severe in those older than 20 years. Similar fibrillin abnormalities of aortic valve and aortic wall specimens were observed in control patients more than 60 years old. Even in the setting of a normal-appearing aortic valve, the current rationale for widespread use of valve-sparing repairs of aortic root aneurysms in patients with MFS and patients older than 60 years should be

  5. Supra-annular structure assessment for self-expanding transcatheter heart valve size selection in patients with bicuspid aortic valve.

    Science.gov (United States)

    Liu, Xianbao; He, Yuxin; Zhu, Qifeng; Gao, Feng; He, Wei; Yu, Lei; Zhou, Qijing; Kong, Minjian; Wang, Jian'an

    2018-04-01

    To explore assessment of supra-annular structure for self-expanding transcatheter heart valve (THV) size selection in patients with bicuspid aortic stenosis (AS). Annulus-based device selection from CT measurement is the standard sizing strategy for tricuspid aortic valve before transcatheter aortic valve replacement (TAVR). Because of supra-annular deformity, device selection for bicuspid AS has not been systemically studied. Twelve patients with bicuspid AS who underwent TAVR with self-expanding THVs were included in this study. To assess supra-annular structure, sequential balloon aortic valvuloplasty was performed in every 2 mm increments until waist sign occurred with less than mild regurgitation. Procedural results and 30 day follow-up outcomes were analyzed. Seven patients (58.3%) with 18 mm; three patients (25%) with sequential 18 mm, 20 mm; and only two patients (16.7%) with sequential 18 mm, 20 mm, and 22 mm balloon sizing were performed, respectively. According to the results of supra-annular assessment, a smaller device size (91.7%) was selected in all but one patient compared with annulus based sizing strategy, and the outcomes were satisfactory with 100% procedural success. No mortality and 1 minor stroke were observed at 30 d follow-up. The percentage of NYHA III/IV decreased from 83.3% (9/12) to 16.7% (2/12). No new permanent pacemaker implantation and no moderate or severe paravalvular leakage were found. A supra-annular structure based sizing strategy is feasible for TAVR in patients with bicuspid AS. © 2018 The Authors Catheterization and Cardiovascular Interventions Published by Wiley Periodicals, Inc.

  6. Heart murmurs

    Science.gov (United States)

    Chest sounds - murmurs; Heart sounds - abnormal; Murmur - innocent; Innocent murmur; Systolic heart murmur; Diastolic heart murmur ... The heart has 4 chambers: Two upper chambers (atria) Two lower chambers (ventricles) The heart has valves that close ...

  7. Skip cycle method with a valve-control mechanism for spark ignition engines

    International Nuclear Information System (INIS)

    Baykara, Cemal; Akin Kutlar, O.; Dogru, Baris; Arslan, Hikmet

    2017-01-01

    Highlights: • A normal four-stroke cycle followed by a skip cycle without gas exchange is tested. • The normal and skipped mode results are compared at equal power levels. • The throttle valve is opened wider, thereby resulting in a higher volumetric efficiency. • The pumping work during the gas exchange decreases significantly. • The fuel consumption (BSFC) is reduced by approximately 14–26% under part load conditions. - Abstract: The efficiency decrease of spark ignition (SI) engines under part-load conditions is a considerable issue. Changing the effective stroke volume based on the load level is one of the methods using to improve the part-load efficiency. In this study, a novel alternative engine valve control technique in order to perform a cycle without gas exchange (skip cycle), is examined. The goal of skip cycle strategy is to reduce the effective stroke volume of an engine under part load conditions by skipping several of the four stroke cycles by cutting off the fuel injection and simultaneously deactivating the inlet and exhaust valves. To achieve the same power level in the skip cycle, the cylinder pressure level reaches higher values compared to those in a normal four stroke cycle operation, but inherently not higher than the maximum one at full load of normal cycle. According to the experimental results, the break specific fuel consumption (BSFC) was reduced by 14–26% at a 1–3 bar break mean effective pressure (BMEP) and a 1200–1800 rpm engine speed of skip cycle operation, in comparison to normal engine operation. The significant decrease in the pumping work from the gas exchange is one of the primary factors for an increase in efficiency under part load conditions. As expected, the fuel consumption reduction rate at lower load conditions was higher. These experimental results indicate a promising potential of the skip cycle system for reducing the fuel consumption under part load conditions.

  8. Biomechanics and mechanobiology in functional tissue engineering

    Science.gov (United States)

    Guilak, Farshid; Butler, David L.; Goldstein, Steven A.; Baaijens, Frank P.T.

    2014-01-01

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of “functional tissue engineering” has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. PMID:24818797

  9. Biological aspects of tissue-engineered cartilage.

    Science.gov (United States)

    Hoshi, Kazuto; Fujihara, Yuko; Yamawaki, Takanori; Harai, Motohiro; Asawa, Yukiyo; Hikita, Atsuhiko

    2018-04-01

    Cartilage regenerative medicine has been progressed well, and it reaches the stage of clinical application. Among various techniques, tissue engineering, which incorporates elements of materials science, is investigated earnestly, driven by high clinical needs. The cartilage tissue engineering using a poly lactide scaffold has been exploratorily used in the treatment of cleft lip-nose patients, disclosing good clinical results during 3-year observation. However, to increase the reliability of this treatment, not only accumulation of clinical evidence on safety and usefulness of the tissue-engineered products, but also establishment of scientific background on biological mechanisms, are regarded essential. In this paper, we reviewed recent trends of cartilage tissue engineering in clinical practice, summarized experimental findings on cellular and matrix changes during the cartilage regeneration, and discussed the importance of further studies on biological aspects of tissue-engineered cartilage, especially by the histological and the morphological methods.

  10. Studies of valve lifter for automotive heavy duty diesel engine by ceramic materials. I. Development of ceramic-metal joint by brazing method

    Energy Technology Data Exchange (ETDEWEB)

    Yun, H W [Technical Centre of KIA-ASIA MOTORS (Korea, Republic of); Han, I S [Korea Institute of Energy Research, Tajeon (Korea, Republic of); Lim, Y S; Chung, Y J [Myong Ji University (Korea, Republic of)

    1998-02-01

    Continuously contacting with camshaft, the face of Valve Lifter, made of cast iron, brings about abnormal wear such as unfair wear or early wear because it is heavily loaded in the valve train system as the engine gets more powered. This abnormal sear becomes a defect namely over-clearance when the valve is lifting so that the fuel gas imperfectly combusted by unsuitable open or close action of engine valve in the combustion chamber. The imperfect combustion, in the end, results in the major causes of air pollution and decrease of the engine output. Consequently, to prevent this wear, this study was to develop the valve lifter which is joined by brazing process with SCM435H and a tip by manufacturing the face as a superhardened ceramics alloy which has high wear resistance. Having the excellent surface hardness with Hv1100-1200, the sintered body developed with superhardened alloy(WC) can endure the severe face loading in the valve train system. We experienced with various brazing alloys and obtained the excellent joining strength to the joint had 150 MPa shear strength. Interface analysis and microstructure in a joint were examined through SEM and EDS, Optical microscope. Also, 2,500 hours, high speed(3,000{approx}4,000 rpm) and continuous (1step 12hr) engine dynamo testing was carried out to the casting valve lifter and ceramics-metal joint valve lifter so that the abnormal wears were compared and evaluated.

  11. Synthetic biology meets tissue engineering.

    Science.gov (United States)

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  12. Genetics of Valvular Heart Disease

    Science.gov (United States)

    LaHaye, Stephanie; Lincoln, Joy

    2015-01-01

    Valvular heart disease is associated with significant morbidity and mortality and often the result of congenital malformations. However, the prevalence is increasing in adults not only because of the growing aging population, but also because of improvements in the medical and surgical care of children with congenital heart valve defects. The success of the Human Genome Project and major advances in genetic technologies, in combination with our increased understanding of heart valve development, has led to the discovery of numerous genetic contributors to heart valve disease. These have been uncovered using a variety of approaches including the examination of familial valve disease and genome-wide association studies to investigate sporadic cases. This review will discuss these findings and their implications in the treatment of valvular heart disease. PMID:24743897

  13. Aortic root, not valve, calcification correlates with coronary artery calcification in patients with severe aortic stenosis

    DEFF Research Database (Denmark)

    Henein, Michael; Hällgren, Peter; Holmgren, Anders

    2015-01-01

    calcification (AVC), due to tissue similarity between the two types of vessel rather than with the valve leaflet tissue. MATERIAL AND METHODS: We studied 212 consecutive patients (age 72.5 ± 7.9 years, 91 females) with AS requiring aortic valve replacement (AVR) in two Heart Centers, who underwent multidetector...... cardiac CT preoperatively. CAC, AVC and ARC were quantified using Agatston scoring. Correlations were tested by Spearman's test and Mann-Whitney U-test was used for comparing different subgroups; bicuspid (BAV) vs tricuspid (TAV) aortic valve. RESULTS: CAC was present in 92%, AVC in 100% and ARC in 82......% of patients. CAC correlated with ARC (rho = 0.51, p AVC. The number of calcified coronary arteries correlated with ARC (rho = 0.45, p AVC. 29/152 patients had echocardiographic evidence of BAV and 123 TAV, who were older (p

  14. Factors influencing left ventricular outflow tract obstruction following a mitral valve-in-valve or valve-in-ring procedure, part 1.

    Science.gov (United States)

    Bapat, Vinnie; Pirone, Francesco; Kapetanakis, Stam; Rajani, Ronak; Niederer, Steven

    2015-10-01

    To determine the factors influencing left ventricular outflow tract (LVOT) area reduction after a mitral valve-in-valve (VIV) or a valve-in-ring (VIR) procedure. Transcatheter heart valves (THVs) are increasingly used in performing a VIV or a VIR procedure in high-risk patients. Although less invasive, a potential complication is LVOT obstruction. However, the factors predisposing to LVOT obstruction are ill defined. To understand the effects of the various factors, the study was carried out in three parts: To understand the effect of VIV and VIR on reduction in LVOT area with special attention to different surgical heart valve (SHV) orientations and depth of THV implant. This was carried out in porcine and cadaver hearts. To quantify aorto-mitral-annular (AMA) angle in 20 patients with or without mitral disease and to derive a static computational model to predict LVOT obstruction. To study the effect of SHV design on LVOT obstruction after VIV. This was carried out as a bench test. LVOT area reduction was similar after VIV irrespective of orientation of the mitral SHV implantation as it pinned open the SHV leaflets. Similar effect was seen after VIR. The degree of LVOT obstruction was partly determined by AMAangle and was inversely proportional. SHV design, ring design, and depth of SPAIEN XT implantation also had effect on LVOT obstruction. A possibility of LVOT obstruction should be considered when performing a VIV and VIR procedure. Type of SHV, flexible ring, less obtuse AMA angle, and depth of SAPIEN XT implant can influence the risk. © 2015 Wiley Periodicals, Inc.

  15. Mechanical versus bioprosthetic aortic valve replacement.

    Science.gov (United States)

    Head, Stuart J; Çelik, Mevlüt; Kappetein, A Pieter

    2017-07-21

    Mechanical valves used for aortic valve replacement (AVR) continue to be associated with bleeding risks because of anticoagulation therapy, while bioprosthetic valves are at risk of structural valve deterioration requiring reoperation. This risk/benefit ratio of mechanical and bioprosthetic valves has led American and European guidelines on valvular heart disease to be consistent in recommending the use of mechanical prostheses in patients younger than 60 years of age. Despite these recommendations, the use of bioprosthetic valves has significantly increased over the last decades in all age groups. A systematic review of manuscripts applying propensity-matching or multivariable analysis to compare the usage of mechanical vs. bioprosthetic valves found either similar outcomes between the two types of valves or favourable outcomes with mechanical prostheses, particularly in younger patients. The risk/benefit ratio and choice of valves will be impacted by developments in valve designs, anticoagulation therapy, reducing the required international normalized ratio, and transcatheter and minimally invasive procedures. However, there is currently no evidence to support lowering the age threshold for implanting a bioprosthesis. Physicians in the Heart Team and patients should be cautious in pursuing more bioprosthetic valve use until its benefit is clearly proven in middle-aged patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  16. Mitral valve prolapse - report of 3 cases

    International Nuclear Information System (INIS)

    Han, Moon Hee; Im, Chung Ki; Im, Dong Ran; Han, Man Chung; Lee, Young Woo; Seo, Jung Don

    1979-01-01

    Prolapse of mitral valve is characterized by its unique auscultatory, echocardiographic and angiographic findings and may be associated with various disease entities such as congenital heart disease, coronary heart disease and Marfan's syndrome etc. Authors report recent experience of 3 cases of prolapsed mitral valve, 2 cases associated with A.S.D. and 1 case with Marfan's syndrome.

  17. Quantification of Cardiomyocyte Alignment from Three-Dimensional (3D) Confocal Microscopy of Engineered Tissue.

    Science.gov (United States)

    Kowalski, William J; Yuan, Fangping; Nakane, Takeichiro; Masumoto, Hidetoshi; Dwenger, Marc; Ye, Fei; Tinney, Joseph P; Keller, Bradley B

    2017-08-01

    Biological tissues have complex, three-dimensional (3D) organizations of cells and matrix factors that provide the architecture necessary to meet morphogenic and functional demands. Disordered cell alignment is associated with congenital heart disease, cardiomyopathy, and neurodegenerative diseases and repairing or replacing these tissues using engineered constructs may improve regenerative capacity. However, optimizing cell alignment within engineered tissues requires quantitative 3D data on cell orientations and both efficient and validated processing algorithms. We developed an automated method to measure local 3D orientations based on structure tensor analysis and incorporated an adaptive subregion size to account for multiple scales. Our method calculates the statistical concentration parameter, κ, to quantify alignment, as well as the traditional orientational order parameter. We validated our method using synthetic images and accurately measured principal axis and concentration. We then applied our method to confocal stacks of cleared, whole-mount engineered cardiac tissues generated from human-induced pluripotent stem cells or embryonic chick cardiac cells and quantified cardiomyocyte alignment. We found significant differences in alignment based on cellular composition and tissue geometry. These results from our synthetic images and confocal data demonstrate the efficiency and accuracy of our method to measure alignment in 3D tissues.

  18. Short-course thrombolysis as the first line of therapy for cardiac valve thrombosis.

    Science.gov (United States)

    Manteiga, R; Carlos Souto, J; Altès, A; Mateo, J; Arís, A; Dominguez, J M; Borrás, X; Carreras, F; Fontcuberta, J

    1998-04-01

    To retrospectively evaluate the clinical and echocardiographic criteria of thrombolytic therapy for mechanical heart valve thrombosis. Nineteen consecutive patients with 22 instances of prosthetic heart valve thrombosis (14 mitral, 2 aortic, 3 tricuspid, and 3 pulmonary) were treated with short-course thrombolytic therapy as first option of treatment in absence of contraindications. The thrombolytic therapy protocol consisted of streptokinase (1,500,000 IU in 90 minutes) (n = 18) in one (n = 7) or two (n = 11) cycles or recombinant tissue-type plasminogen activator (100 mg in 90 minutes) (n = 4). Overall success was seen in 82%, immediate complete success in 59%, and partial success in 23%. Six patients without total response to thrombolytic therapy underwent surgery, and pannus was observed in 83%. Six patients showed complications: allergy, stroke, transient ischemic attack, coronary embolism, minor bleeding, and one death. At diagnosis, 10 patients evidenced atrial thrombus by transesophageal echocardiography, 3 of whom experienced peripheral embolism during thrombolysis. Four episodes of rethrombosis were observed (16%). The survivorship was 84% with a mean follow-up of 42.6 months. A short-course of thrombolytic therapy may be considered first-line therapy for prosthetic heart valve thrombosis. The risk of peripheral embolism may be evaluated for the presence of atrial thrombus by transesophageal echocardiography at diagnosis.

  19. Statistical characteristics of mechanical heart valve cavitation in accelerated testing.

    Science.gov (United States)

    Wu, Changfu; Hwang, Ned H C; Lin, Yu-Kweng M

    2004-07-01

    Cavitation damage has been observed on mechanical heart valves (MHVs) undergoing accelerated testing. Cavitation itself can be modeled as a stochastic process, as it varies from beat to beat of the testing machine. This in-vitro study was undertaken to investigate the statistical characteristics of MHV cavitation. A 25-mm St. Jude Medical bileaflet MHV (SJM 25) was tested in an accelerated tester at various pulse rates, ranging from 300 to 1,000 bpm, with stepwise increments of 100 bpm. A miniature pressure transducer was placed near a leaflet tip on the inflow side of the valve, to monitor regional transient pressure fluctuations at instants of valve closure. The pressure trace associated with each beat was passed through a 70 kHz high-pass digital filter to extract the high-frequency oscillation (HFO) components resulting from the collapse of cavitation bubbles. Three intensity-related measures were calculated for each HFO burst: its time span; its local root-mean-square (LRMS) value; and the area enveloped by the absolute value of the HFO pressure trace and the time axis, referred to as cavitation impulse. These were treated as stochastic processes, of which the first-order probability density functions (PDFs) were estimated for each test rate. Both the LRMS value and cavitation impulse were log-normal distributed, and the time span was normal distributed. These distribution laws were consistent at different test rates. The present investigation was directed at understanding MHV cavitation as a stochastic process. The results provide a basis for establishing further the statistical relationship between cavitation intensity and time-evolving cavitation damage on MHV surfaces. These data are required to assess and compare the performance of MHVs of different designs.

  20. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering.

    Science.gov (United States)

    Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D

    2017-11-01

    The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Gamma Ray Sterilization of Starr-Edwards Heart Valve Prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, J. R. P.; Alladine, M. F. [London Chest Hospital, London (United Kingdom)

    1967-09-15

    Starr-Edwards valves have normally been sterilized by exposure to ethylene oxide or by autoclaving. Patients having a prosthetic valve replacement are known to have a higher incidence of endocarditis in comparison with patients in which no prosthesis has been used. Ethylene oxide will only sterilize the surface of the valve and autoclaving has caused distortion of the polytetrafluorethylene ring. Work has been done on the effect of gamma radiation on the components of these valve prostheses and is given in detail. The bacteriological efficiency, at a total absorbed dose of 2. 5 Mrad, has been established. Thirty valves treated by this method have now been inserted and twelve patients have been examined post-operatively for a period of one to two years. All valves are working normally and there has been no evidence of blood-borne infection or malfunction of the valve. (author)

  2. Predominance of Abdominal Visceral Adipose Tissue Reflects the Presence of Aortic Valve Calcification.

    Science.gov (United States)

    Oikawa, Masayoshi; Owada, Takashi; Yamauchi, Hiroyuki; Misaka, Tomofumi; Machii, Hirofumi; Yamaki, Takayoshi; Sugimoto, Koichi; Kunii, Hiroyuki; Nakazato, Kazuhiko; Suzuki, Hitoshi; Saitoh, Shu-Ichi; Takeishi, Yasuchika

    2016-01-01

    Background. Aortic valve calcification (AVC) is a common feature of aging and is related to coronary artery disease. Although abdominal visceral adipose tissue (VAT) plays fundamental roles in coronary artery disease, the relationship between abdominal VAT and AVC is not fully understood. Methods. We investigated 259 patients who underwent cardiac and abdominal computed tomography (CT). AVC was defined as calcified lesion on the aortic valve by CT. %abdominal VAT was calculated as abdominal VAT area/total adipose tissue area. Results. AVC was detected in 75 patients, and these patients showed higher %abdominal VAT (44% versus 38%, p AVC. When the cutoff value of %abdominal VAT was set at 40.9%, the area under the curve to diagnose AVC was 0.626. Multivariable logistic regression analysis showed that age (OR 1.120, 95% CI 1.078-1.168, p AVC. The net reclassification improvement value for detecting AVC was increased when %abdominal VAT was added to the model: 0.5093 (95% CI 0.2489-0.7697, p AVC.

  3. Cycle-to-cycle variation analysis of in-cylinder flow in a gasoline engine with variable valve lift

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Daming; Wang, Tianyou; Wang, Gangde [Tianjin University, State Key Laboratory of Engines, Tianjin (China); Jia, Ming [Dalian University of Technology, School of Energy and Power Engineering, Dalian (China)

    2012-09-15

    In spark ignition engines, cycle-to-cycle variation (CCV) limits the expansion of the operating range because it induces the load variations and the occurrence of misfire and/or knock. Variable valve actuation (VVA) or variable valve lift (VVL) has been widely used in SI engines to improve the volumetric efficiency or to reduce the pumping losses. It is necessary to investigate the CCV of in-cylinder gas motion and mixing processes in SI engines with VVA/VVL system. This study is aimed to analyze the CCV of the tumble flow in a gasoline direct injection (GDI) engine when VVL is employed. Cycle-resolved digital particle image velocimetry (CRD-PIV) data were acquired for the in-cylinder flow field of a motored four-stroke multi-valve GDI optical engine. The CCV of in-cylinder gas motion with a series of valve profiles and different maximum valve lift (MVL) was analyzed, including cyclic variation characteristics of bulk flow (tumble centre and tumble ratio), large- and small-scale fluctuation, total kinetic energy, and circulation. The results show that the CCV of the in-cylinder flow is increased with reduced MVL. With lower MVLs, stable tumble flow cannot be formed in the cylinder, and the ensemble-averaged tumble ratio decreases to zero before the end of the compression stroke due to violent variation. In addition, the evolution of the circulation shows larger variation with lower MVLs that indicates the 'spin' of the small-scale eddy in the flow field presents violent fluctuation from one cycle to another, especially at the end of the compression stroke. Moreover, the analyze of the kinetic energy indicates the total energy of the flow field with lower MVLs increases significantly comparing with higher MVL conditions due to the intake flow jet at the intake valve seat in the intake stroke. However, the CCV of the in-cylinder flow becomes more violent under lower MVL conditions, especially for the low-frequency fluctuation kinetic energy. Thus, present

  4. Cell-Based Strategies for Meniscus Tissue Engineering

    Science.gov (United States)

    Niu, Wei; Guo, Weimin; Han, Shufeng; Zhu, Yun; Liu, Shuyun; Guo, Quanyi

    2016-01-01

    Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering. PMID:27274735

  5. Peculiarities of cardiac hemodynamics and functional state of left ventricular myocardium in teenagers with connective heart tissue dysplasia

    Directory of Open Access Journals (Sweden)

    Makhmudova F.M.

    2011-03-01

    Full Text Available The aim of investigation is to study heart hemodynamics in teenagers with connective tissue dysplasia of heart (CTDH. 35 patients ages 12 to 15 years with CTDH have been observed: Group I (n=14 are the patients with mitral valve prolapse (MVP without mitral regurgitation (MR and myxomatous degeneration(MD or isolated minor heart abnormalities (MHA, Group II (n=11are patients with MVP and MR in combination with 1 or2 MHA, and Group III (n=10 are patients with MVP and mixoid degeneration (MD in combination with 2 or more MHA. The control group consisted of 15 patients of the same age without MHA. All the children passed Doppler and echocardiography. According to the results significant changes of cardiohemodynamic indices in patients of Group I were not observed. The changes of size and volume indices of the left ventricle (LV, increase in wall thickness and diastolic dysfunction of the LV were observed in Group II. The significant changes of systolic function of left ventricular myocardium were observed in Group III. The study comes to the conclusion that teenagers with CTDH have definite changes of heart hemodynamics and functional state of left ventricular myocardium. These changes depend on mitral regurgitation, myxomatous degeneration and MHA combination

  6. Comparison of platelet activation through hinge vs bulk flow in mechanical heart valves

    Science.gov (United States)

    Hedayat, Mohammadali; Borazjani, Iman

    2017-11-01

    Bileaflet mechanical heart valves increase the risk of thrombus formation in patients which is believed to be initiated by platelet activation. Platelets can be activated by the elevated shear stresses in the bulk flow during the systole phase or the flow through the hinge during the diastole. However, the importance of platelet activation by the bulk flow vs the hinge in MHVs has yet to be studied. Here, we investigate the contribution of each of the above mechanisms to the activation of platelets in MHs by performing simulation of the flow through a 25mm St. Jude Medical valve placed in a straight aorta. Two different gap sizes (250 and 150 micrometer) are used in this study. The simulations are done using a sharp interface curvilinear immersed boundary method along with a strong-coupling algorithm for FSI solver on overset grids. The platelet activation through the hinge for different gap sizes is compared to the activation in the bulk flow using two platelet activation models to ensure the consistency of the results. Our results for all gap sizes using different activation models show that the integration of platelet activation caused by the bulk flow is several times higher in comparison to the activation through the hinge. This work is supported by the American Heart Association Grant 13SDG17220022, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.

  7. Aloe Vera for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Shekh Rahman

    2017-02-01

    Full Text Available Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers.

  8. Aloe Vera for Tissue Engineering Applications.

    Science.gov (United States)

    Rahman, Shekh; Carter, Princeton; Bhattarai, Narayan

    2017-02-14

    Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers.

  9. Transcatheter Mitral Valve-in-Ring Implantation

    LENUS (Irish Health Repository)

    Tanner, RE

    2018-05-01

    Failed surgical mitral valve repair using an annuloplasty ring has traditionally been treated with surgical valve replacement or repair1. For patients at high risk for repeat open heart surgery, placement of a trans-catheter aortic valve (i.e., TAVI valve) within the mitral ring (i.e., Mitral-Valve-in-Ring, MViR) has emerged as a novel alternative treatment strategy2-5 . We describe our experience of a failed mitral valve repair that was successfully treated with a TAVI valve delivered via the trans-septal approach, and summarise the data relating to this emerging treatment strategy.

  10. Mitral valve prolapse - report of 3 cases

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moon Hee; Im, Chung Ki; Im, Dong Ran; Han, Man Chung; Lee, Young Woo; Seo, Jung Don [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1979-12-15

    Prolapse of mitral valve is characterized by its unique auscultatory, echocardiographic and angiographic findings and may be associated with various disease entities such as congenital heart disease, coronary heart disease and Marfan's syndrome etc. Authors report recent experience of 3 cases of prolapsed mitral valve, 2 cases associated with A.S.D. and 1 case with Marfan's syndrome.

  11. Methodology for risk assessment and reliability applied for pipeline engineering design and industrial valves operation

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Dierci [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgia. Lab. de Sistemas de Producao e Petroleo e Gas], e-mail: dsilveira@metal.eeimvr.uff.br; Batista, Fabiano [CICERO, Rio das Ostras, RJ (Brazil)

    2009-07-01

    Two kinds of situations may be distinguished for estimating the operating reliability when maneuvering industrial valves and the probability of undesired events in pipelines and industrial plants: situations in which the risk is identified in repetitive cycles of operations and situations in which there is a permanent hazard due to project configurations introduced by decisions during the engineering design definition stage. The estimation of reliability based on the influence of design options requires the choice of a numerical index, which may include a composite of human operating parameters based on biomechanics and ergonomics data. We first consider the design conditions under which the plant or pipeline operator reliability concepts can be applied when operating industrial valves, and then describe in details the ergonomics and biomechanics risks that would lend itself to engineering design database development and human reliability modeling and assessment. This engineering design database development and reliability modeling is based on a group of engineering design and biomechanics parameters likely to lead to over-exertion forces and working postures, which are themselves associated with the functioning of a particular plant or pipeline. This approach to construct based on ergonomics and biomechanics for a more common industrial valve positioning in the plant layout is proposed through the development of a methodology to assess physical efforts and operator reach, combining various elementary operations situations. These procedures can be combined with the genetic algorithm modeling and four elements of the man-machine systems: the individual, the task, the machinery and the environment. The proposed methodology should be viewed not as competing to traditional reliability and risk assessment bur rather as complementary, since it provides parameters related to physical efforts values for valves operation and workspace design and usability. (author)

  12. Variable valve timing in a homogenous charge compression ignition engine

    Science.gov (United States)

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  13. Multilayer scaffolds in orthopaedic tissue engineering.

    Science.gov (United States)

    Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A

    2016-07-01

    The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.

  14. Correctness of multi-detector-row computed tomography for diagnosing mechanical prosthetic heart valve disorders using operative findings as a gold standard

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, I.Chen [Taichung Veterans General Hospital, Department of Radiology, Taichung (China); Institute of Clinical Medicine and Faculty of Medicine, National Yang-Ming University, Taipei (China); Lin, Yung-Kai; Chang, Yen; Wang, Chung-Chi; Hsieh, Shih-Rong; Wei, Hao-Ji; Tsai, Hung-Wen [Taichung Veterans General Hospital, Section of Cardiovascular Surgery, Cardiovascular Center, Taichung (China); Fu, Yun-Ching; Jan, Sheng-Ling [Institute of Clinical Medicine and Faculty of Medicine, National Yang-Ming University, Taipei (China); Taichung Veterans General Hospital, Section of Pediatric Cardiology, Department of Pediatrics, Taichung (China); Wang, Kuo-Yang [Taichung Veterans General Hospital, Section of General Cardiology, Cardiovascular Center, Taichung (China); Chung-Shan Medical University, Department of Medicine, Taichung (China); Chen, Min-Chi; Chen, Clayton Chi-Chang [Taichung Veterans General Hospital, Department of Radiology, Taichung (China); Central Taiwan University of Science and Technology, Department of Radiological Technology, Taichung (China)

    2009-04-15

    The purpose was to compare the findings of multi-detector computed tomography (MDCT) in prosthetic valve disorders using the operative findings as a gold standard. In a 3-year period, we prospectively enrolled 25 patients with 31 prosthetic heart valves. MDCT and transthoracic echocardiography (TTE) were done to evaluate pannus formation, prosthetic valve dysfunction, suture loosening (paravalvular leak) and pseudoaneurysm formation. Patients indicated for surgery received an operation within 1 week. The MDCT findings were compared with the operative findings. One patient with a Bjoerk-Shiley valve could not be evaluated by MDCT due to a severe beam-hardening artifact; thus, the exclusion rate for MDCT was 3.2% (1/31). Prosthetic valve disorders were suspected in 12 patients by either MDCT or TTE. Six patients received an operation that included three redo aortic valve replacements, two redo mitral replacements and one Amplatzer ductal occluder occlusion of a mitral paravalvular leak. The concordance of MDCT for diagnosing and localizing prosthetic valve disorders and the surgical findings was 100%. Except for images impaired by severe beam-hardening artifacts, MDCT provides excellent delineation of prosthetic valve disorders. (orig.)

  15. Design Approaches to Myocardial and Vascular Tissue Engineering.

    Science.gov (United States)

    Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y

    2017-06-21

    Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.

  16. Scientific and industrial status of tissue engineering ...

    African Journals Online (AJOL)

    Tissue engineering is a newly emerging field targeting many unresolved health problems. So far, the achievements of this technology in the production of different tissue engineered substitutes were promising. This review is intended to describe, briefly and in a simple language, what tissue engineering is, what the ...

  17. Biomaterials for tissue engineering: summary

    Science.gov (United States)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  18. Microgel Technology to Advance Modular Tissue Engineering

    NARCIS (Netherlands)

    Kamperman, Tom

    2018-01-01

    The field of tissue engineering aims to restore the function of damaged or missing tissues by combining cells and/or a supportive biomaterial scaffold into an engineered tissue construct. The construct’s design requirements are typically set by native tissues – the gold standard for tissue

  19. Study on gasoline HCCI engine equipped with electromagnetic variable valve timing system; Untersuchung an einem HCCI Verbrennungsmotor mit elektromagnetisch variablem Ventiltriebsystem

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Y.; Awasaka, M.; Takanashi, J.; Kimura, N. [Honda R and D Co., Ltd. (Japan)

    2004-07-01

    First, this paper describes a study on the technology behind the electromagnetic variable valve timing system. This system provides highly efficient and stable valve opening/closing control. At first, the main purposes of this mechanism were nonthrottling technology that is expected to a reduction in fuel consumption and improving the engine torque with optimal valve timing on stichomythic spark ignited engine. In resent years, increasing attention has been paid to a homogeneous charge compression ignition (HCCI). We also used this mechanism on HCCI study with controlling the amount of internal EGR and intake air. Schemes to extend the operational region of gasoline compression ignition were explored using single (optical) and 4-cylinder 4-stroke engines equipped with an electromagnetic variable valve timing system. This paper focuses mainly on the use of direct fuel injection devices (multi-hole and pintle types), exhaust gas recirculation (EGR) through valve timing, and their effects on the compression ignition operating ranges, and emissions. Also considered is charge boost HCCI using a mechanical supercharger. (orig.)

  20. Surgical outcomes in native valve infectious endocarditis: the experience of the Cardiovascular Surgery Department - Cluj-Napoca Heart Institute.

    Science.gov (United States)

    Molnar, Adrian; Muresan, Ioan; Trifan, Catalin; Pop, Dana; Sacui, Diana

    2015-01-01

    The introduction of Duke's criteria and the improvement of imaging methods has lead to an earlier and a more accurate diagnosis of infectious endocarditis (IE). The options for the best therapeutic approach and the timing of surgery are still a matter of debate and require a close colaboration between the cardiologist, the infectionist and the cardiac surgeon. We undertook a retrospective, descriptive study, spanning over a period of five years (from January 1st, 2007 to December 31st, 2012), on 100 patients who underwent surgery for native valve infectious endocarditis in our unit. The patients' age varied between 13 and 77 years (with a mean of 54 years), of which 85 were males (85%). The main microorganisms responsible for IE were: Streptococcus Spp. (21 cases - 21%), Staphylococcus Spp. (15 cases - 15%), and Enterococcus Spp. (9 cases - 9%). The potential source of infection was identified in 26 patients (26%), with most cases being in the dental area (16 cases - 16%). The lesions caused by IE were situated in the left heart in 96 patients (96%), mostly on the aortic valve (50 cases - 50%). In most cases (82%) we found preexisting endocardial lesions which predisposed to the development of IE, most of them being degenerative valvular lesions (38 cases - 38%). We performed the following surgical procedures: surgery on a single valve - aortic valve replacement (40 cases), mitral valve replacement (19 cases), mitral valve repair (1 case), surgery on more than one valve - mitral and aortic valve replacement (20 cases), aortic and tricuspid valve replacement (1 case), aortic valve replacement with a mechanical valve associated with mitral valve repair (5 cases), aortic valve replacement with a biological valve associated with mitral valve repair (2 cases), and mitral valve replacement with a mechanical valve combined with De Vega procedure on the tricuspid valve (1 case). In 5 patients (5%) the bacteriological examination of valve pieces excised during surgery was