WorldWideScience

Sample records for tissue types based

  1. Tissue types (image)

    Science.gov (United States)

    ... are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports ... binds them together (bone, blood, and lymph tissues). Epithelial tissue provides a covering (skin, the linings of the ...

  2. The MiAge Calculator: a DNA methylation-based mitotic age calculator of human tissue types.

    Science.gov (United States)

    Youn, Ahrim; Wang, Shuang

    2018-01-01

    Cell division is important in human aging and cancer. The estimation of the number of cell divisions (mitotic age) of a given tissue type in individuals is of great interest as it allows not only the study of biological aging (using a new molecular aging target) but also the stratification of prospective cancer risk. Here, we introduce the MiAge Calculator, a mitotic age calculator based on a novel statistical framework, the MiAge model. MiAge is designed to quantitatively estimate mitotic age (total number of lifetime cell divisions) of a tissue using the stochastic replication errors accumulated in the epigenetic inheritance process during cell divisions. With the MiAge model, the MiAge Calculator was built using the training data of DNA methylation measures of 4,020 tumor and adjacent normal tissue samples from eight TCGA cancer types and was tested using the testing data of DNA methylation measures of 2,221 tumor and adjacent normal tissue samples of five other TCGA cancer types. We showed that within each of the thirteen cancer types studied, the estimated mitotic age is universally accelerated in tumor tissues compared to adjacent normal tissues. Across the thirteen cancer types, we showed that worse cancer survivals are associated with more accelerated mitotic age in tumor tissues. Importantly, we demonstrated the utility of mitotic age by showing that the integration of mitotic age and clinical information leads to improved survival prediction in six out of the thirteen cancer types studied. The MiAge Calculator is available at http://www.columbia.edu/∼sw2206/softwares.htm .

  3. Wavelet-based feature extraction applied to small-angle x-ray scattering patterns from breast tissue: a tool for differentiating between tissue types

    International Nuclear Information System (INIS)

    Falzon, G; Pearson, S; Murison, R; Hall, C; Siu, K; Evans, A; Rogers, K; Lewis, R

    2006-01-01

    This paper reports on the application of wavelet decomposition to small-angle x-ray scattering (SAXS) patterns from human breast tissue produced by a synchrotron source. The pixel intensities of SAXS patterns of normal, benign and malignant tissue types were transformed into wavelet coefficients. Statistical analysis found significant differences between the wavelet coefficients describing the patterns produced by different tissue types. These differences were then correlated with position in the image and have been linked to the supra-molecular structural changes that occur in breast tissue in the presence of disease. Specifically, results indicate that there are significant differences between healthy and diseased tissues in the wavelet coefficients that describe the peaks produced by the axial d-spacing of collagen. These differences suggest that a useful classification tool could be based upon the spectral information within the axial peaks

  4. Human Innate Lymphoid Cell Subsets Possess Tissue-Type Based Heterogeneity in Phenotype and Frequency

    DEFF Research Database (Denmark)

    Simoni, Yannick; Fehlings, Michael; Kloverpris, Henrik N.

    2017-01-01

    Animal models have highlighted the importance of innate lymphoid cells (ILCs) in multiple immune responses. However, technical limitations have hampered adequate characterization of ILCs in humans. Here, we used mass cytometry including a broad range of surface markers and transcription factors...... to accurately identify and profile ILCs across healthy and inflamed tissue types. High dimensional analysis allowed for clear phenotypic delineation of ILC2 and ILC3 subsets. We were not able to detect ILC1 cells in any of the tissues assessed, however, we identified intra-epithelial (ie)ILC1-like cells...... that represent a broader category of NK cells in mucosal and non-mucosal pathological tissues. In addition, we have revealed the expression of phenotypic molecules that have not been previously described for ILCs. Our analysis shows that human ILCs are highly heterogeneous cell types between individuals...

  5. Cell-Based Strategies for Meniscus Tissue Engineering

    Science.gov (United States)

    Niu, Wei; Guo, Weimin; Han, Shufeng; Zhu, Yun; Liu, Shuyun; Guo, Quanyi

    2016-01-01

    Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering. PMID:27274735

  6. Stem cell homing-based tissue engineering using bioactive materials

    Science.gov (United States)

    Yu, Yinxian; Sun, Binbin; Yi, Chengqing; Mo, Xiumei

    2017-06-01

    Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitro studies and animal tests, there is still a long way before clinical application.

  7. Combined spectroscopic imaging and chemometric approach for automatically partitioning tissue types in human prostate tissue biopsies

    Science.gov (United States)

    Haka, Abigail S.; Kidder, Linda H.; Lewis, E. Neil

    2001-07-01

    We have applied Fourier transform infrared (FTIR) spectroscopic imaging, coupling a mercury cadmium telluride (MCT) focal plane array detector (FPA) and a Michelson step scan interferometer, to the investigation of various states of malignant human prostate tissue. The MCT FPA used consists of 64x64 pixels, each 61 micrometers 2, and has a spectral range of 2-10.5 microns. Each imaging data set was collected at 16-1 resolution, resulting in 512 image planes and a total of 4096 interferograms. In this article we describe a method for separating different tissue types contained within FTIR spectroscopic imaging data sets of human prostate tissue biopsies. We present images, generated by the Fuzzy C-Means clustering algorithm, which demonstrate the successful partitioning of distinct tissue type domains. Additionally, analysis of differences in the centroid spectra corresponding to different tissue types provides an insight into their biochemical composition. Lastly, we demonstrate the ability to partition tissue type regions in a different data set using centroid spectra calculated from the original data set. This has implications for the use of the Fuzzy C-Means algorithm as an automated technique for the separation and examination of tissue domains in biopsy samples.

  8. Streamlined bioreactor-based production of human cartilage tissues.

    Science.gov (United States)

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-05-27

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.

  9. Microfluidic systems for stem cell-based neural tissue engineering.

    Science.gov (United States)

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-05

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

  10. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting.

    Science.gov (United States)

    Park, Ju Young; Choi, Jong-Cheol; Shim, Jin-Hyung; Lee, Jung-Seob; Park, Hyoungjun; Kim, Sung Won; Doh, Junsang; Cho, Dong-Woo

    2014-09-01

    Bioprinting is a promising technique for engineering composite tissues, such as osteochondral tissues. In this study, as a first step toward bioprinting-based osteochondral tissue regeneration, we systematically examined the behavior of chondrocytes and osteoblasts to hyaluronic acid (HA) and type I collagen (Col-1) hydrogels. First, we demonstrated that cells on hydrogels that were comprised of major native tissue extracellular matrix (ECM) components (i.e. chondrocytes on HA hydrogels and osteoblasts on Col-1 hydrogels) exhibited better proliferation and cell function than cells on non-native ECM hydrogels (i.e., chondrocytes on Col-1 hydrogels and osteoblasts on HA hydrogels). In addition, cells located near their native ECM hydrogels migrated towards them. Finally, we bioprinted three-dimensional (3D) osteochondral tissue-mimetic structures composed of two compartments, osteoblast-encapsulated Col-1 hydrogels and chondrocyte-encapsulated HA hydrogels, and found viability and functions of each cell type were well maintained within the 3D structures up to 14 days in vitro. These results suggest that with proper choice of hydrogel materials, bioprinting-based approaches can be successfully applied for osteochondral tissue regeneration.

  11. Digital sorting of complex tissues for cell type-specific gene expression profiles.

    Science.gov (United States)

    Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong

    2013-03-07

    Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.

  12. Interactive classification and content-based retrieval of tissue images

    Science.gov (United States)

    Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof

    2002-11-01

    We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.

  13. Tumor type resulting in upgrade: An analysis based on 333 low grade soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Langer, Stefan

    2014-11-01

    Full Text Available [english] Introduction: Soft tissue sarcomas (STS are rare tumors. Based on histopathological criteria, three grades are distinguished from low (G1 to intermediate (G2 and high grade (G3. After complete initial surgical resection, some G1 STS recur as lesions with an upgrade of a previous G1 STS to a recurrent G2 STS. This upgrade indicates higher malignancy of the STS. Our aim was to find possible risk factors for these upgrades including age, localization of tumor and tumor type. Methods: This retrospective case-control study evaluated 333 patients. Of these 333, 54.7% were male and 45.3% female. All patients underwent R0 resections and among these, 10% subsequently upgraded. The processed data include age, gender, tumor type, tumor localization, local recurrence and upgrade. Results: Patients with upgrades have a higher mean age of 5.5 years than our reference collective. The tumor type has a significant effect on upgrades. Patients with fibrosarcomas are at a threefold risk of an upgrade compared to patients with other G1 STS.Conclusion: Our results indicate that age and tumor type play a key role in upgrades in G1 STS. Patients, age 60 and above and diagnosed with G1 fibrosarcomas, are three times as likely to upgrade compared to patients younger than 60 with other G1 STS. We discuss the significance of these risk factors and whether aside from complete tumor resection, additional therapies (e.g. irradiation may be applied to improve therapeutic outcome.

  14. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    Science.gov (United States)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  15. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting

    International Nuclear Information System (INIS)

    Park, Ju Young; Choi, Jong-Cheol; Lee, Jung-Seob; Park, Hyoungjun; Doh, Junsang; Cho, Dong-Woo; Shim, Jin-Hyung; Kim, Sung Won

    2014-01-01

    Bioprinting is a promising technique for engineering composite tissues, such as osteochondral tissues. In this study, as a first step toward bioprinting-based osteochondral tissue regeneration, we systematically examined the behavior of chondrocytes and osteoblasts to hyaluronic acid (HA) and type I collagen (Col-1) hydrogels. First, we demonstrated that cells on hydrogels that were comprised of major native tissue extracellular matrix (ECM) components (i.e. chondrocytes on HA hydrogels and osteoblasts on Col-1 hydrogels) exhibited better proliferation and cell function than cells on non-native ECM hydrogels (i.e., chondrocytes on Col-1 hydrogels and osteoblasts on HA hydrogels). In addition, cells located near their native ECM hydrogels migrated towards them. Finally, we bioprinted three-dimensional (3D) osteochondral tissue-mimetic structures composed of two compartments, osteoblast-encapsulated Col-1 hydrogels and chondrocyte-encapsulated HA hydrogels, and found viability and functions of each cell type were well maintained within the 3D structures up to 14 days in vitro. These results suggest that with proper choice of hydrogel materials, bioprinting-based approaches can be successfully applied for osteochondral tissue regeneration. (paper)

  16. Mammary-type myofibroblastoma of soft tissue

    Directory of Open Access Journals (Sweden)

    Nebojsa Arsenovic

    2011-01-01

    Full Text Available A 40-year-old woman presented with a 1 year history of a painless, subcutaneous lump on the right buttock. Clinical examination showed an approximately 6 cm large subcutaneous mass covered by apparently normal-looking skin. No inguinal lymphadenopathy was found. The mass was excised with the clinical diagnosis of fibroma. Histologically, the lesion was consistent with mammary-type myofibroblastoma of soft tissue, a very rare, benign mesenchymal neoplasm with myofibroblastic differentiation. After surgical excision she was free of recurrence over a period of 8 months. This article also challenges the theory that suggests the origin of this tumor to be from the embryonic mammary tissue, adding another case of a site other than the milk lines.

  17. In-body tissue-engineered aortic valve (Biovalve type VII) architecture based on 3D printer molding.

    Science.gov (United States)

    Nakayama, Yasuhide; Takewa, Yoshiaki; Sumikura, Hirohito; Yamanami, Masashi; Matsui, Yuichi; Oie, Tomonori; Kishimoto, Yuichiro; Arakawa, Mamoru; Ohmuma, Kentaro; Tajikawa, Tsutomu; Kanda, Keiichi; Tatsumi, Eisuke

    2015-01-01

    In-body tissue architecture--a novel and practical regeneration medicine technology--can be used to prepare a completely autologous heart valve, based on the shape of a mold. In this study, a three-dimensional (3D) printer was used to produce the molds. A 3D printer can easily reproduce the 3D-shape and size of native heart valves within several processing hours. For a tri-leaflet, valved conduit with a sinus of Valsalva (Biovalve type VII), the mold was assembled using two conduit parts and three sinus parts produced by the 3D printer. Biovalves were generated from completely autologous connective tissue, containing collagen and fibroblasts, within 2 months following the subcutaneous embedding of the molds (success rate, 27/30). In vitro evaluation, using a pulsatile circulation circuit, showed excellent valvular function with a durability of at least 10 days. Interposed between two expanded polytetrafluoroethylene grafts, the Biovalves (N = 3) were implanted in goats through an apico-aortic bypass procedure. Postoperative echocardiography showed smooth movement of the leaflets with minimal regurgitation under systemic circulation. After 1 month of implantation, smooth white leaflets were observed with minimal thrombus formation. Functional, autologous, 3D-shaped heart valves with clinical application potential were formed following in-body embedding of specially designed molds that were created within several hours by 3D printer. © 2014 Wiley Periodicals, Inc.

  18. Biobanking of Fresh-Frozen Cancer Tissue: RNA Is Stable Independent of Tissue Type with Less Than 1 Hour of Cold Ischemia.

    Science.gov (United States)

    Song, Sang Yong; Jun, Jonghyun; Park, Miyeon; Park, Seo Kyu; Choi, Wonju; Park, Kyunghee; Jang, Kee-Taek; Lee, Myoyong

    2018-02-01

    The effects of preanalytical variables in tissue processing and storage periods on RNA quality of tissues have been well documented in each type of cancer. However, few studies have been performed on a comparative assessment of the impacts across different cancer tissues, even though it is well known that RNase activity is highly variable in various tissue types and RNase-rich tissues have been found to yield low-quality RNA. We investigated the impacts of cold ischemia times and long-term storage on RNA integrity in various types of cancer tissue, which had been fresh-frozen and collected at the Samsung Medical Center Biobank. RNA quality was also evaluated with regard to histopathological variables. We analyzed RNA integrity number (RIN) data, which had been obtained from our quality control (QC) processes over the last 7 years. Approximately 2% of samples were randomly selected and processed to measure RIN quarterly and after 6 years of storage for QC purposes. Fresh-frozen tumor tissues yielded high-quality RNA regardless of tumor type and histopathological features. Up to 1-hour cold ischemia times and up to 6-year storage times did not adversely influence RNA integrity. Only 3 samples showed RIN of <7 out of a total of 396 analyzed tumor tissues. Tissue quality was not adversely affected by long-term storage or limited variations of cold ischemia times. The low-quality samples could be correlated with the structural composition or intratumoral heterogeneity of tissues. The strict application of standardized protocols for tissue collection is the key for high-quality biobanking.

  19. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.

    Science.gov (United States)

    Naahidi, Sheva; Jafari, Mousa; Logan, Megan; Wang, Yujie; Yuan, Yongfang; Bae, Hojae; Dixon, Brian; Chen, P

    2017-09-01

    Recently, understanding of the extracellular matrix (ECM) has expanded rapidly due to the accessibility of cellular and molecular techniques and the growing potential and value for hydrogels in tissue engineering. The fabrication of hydrogel-based cellular scaffolds for the generation of bioengineered tissues has been based on knowledge of the composition and structure of ECM. Attempts at recreating ECM have used either naturally-derived ECM components or synthetic polymers with structural integrity derived from hydrogels. Due to their increasing use, their biocompatibility has been questioned since the use of these biomaterials needs to be effective and safe. It is not surprising then that the evaluation of biocompatibility of these types of biomaterials for regenerative and tissue engineering applications has been expanded from being primarily investigated in a laboratory setting to being applied in the multi-billion dollar medicinal industry. This review will aid in the improvement of design of non-invasive, smart hydrogels that can be utilized for tissue engineering and other biomedical applications. In this review, the biocompatibility of hydrogels and design criteria for fabricating effective scaffolds are examined. Examples of natural and synthetic hydrogels, their biocompatibility and use in tissue engineering are discussed. The merits and clinical complications of hydrogel scaffold use are also reviewed. The article concludes with a future outlook of the field of biocompatibility within the context of hydrogel-based scaffolds. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Methods of Monitoring Cell Fate and Tissue Growth in Three-Dimensional Scaffold-Based Strategies for In Vitro Tissue Engineering.

    Science.gov (United States)

    Leferink, Anne M; van Blitterswijk, Clemens A; Moroni, Lorenzo

    2016-08-01

    In the field of tissue engineering, there is a need for methods that allow assessing the performance of tissue-engineered constructs noninvasively in vitro and in vivo. To date, histological analysis is the golden standard to retrieve information on tissue growth, cellular distribution, and cell fate on tissue-engineered constructs after in vitro cell culture or on explanted specimens after in vivo applications. Yet, many advances have been made to optimize imaging techniques for monitoring tissue-engineered constructs with a sub-mm or μm resolution. Many imaging modalities have first been developed for clinical applications, in which a high penetration depth has been often more important than lateral resolution. In this study, we have reviewed the current state of the art in several imaging approaches that have shown to be promising in monitoring cell fate and tissue growth upon in vitro culture. Depending on the aimed tissue type and scaffold properties, some imaging methods are more applicable than others. Optical methods are mostly suited for transparent materials such as hydrogels, whereas magnetic resonance-based methods are mostly applied to obtain contrast between hard and soft tissues regardless of their transparency. Overall, this review shows that the field of imaging in scaffold-based tissue engineering is developing at a fast pace and has the potential to overcome the limitations of destructive endpoint analysis.

  1. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  2. Evaluation of peripheral vasodilative indices in skin tissue of type 1 diabetic rats by use of RGB images

    Science.gov (United States)

    Tanaka, Noriyuki; Nishidate, Izumi; Nakano, Kazuya; Aizu, Yoshihisa; Niizeki, Kyuichi

    2016-04-01

    We investigated a method to evaluate the arterial inflow and the venous capacitance in the skin tissue of streptozotocin-induced type 1 diabetic rats from RGB digital color images. The arterial inflow and the venous capacitance in the dorsal reversed McFarlane skin flap are calculated based on the responses of change in the total blood concentration to occlusion of blood flow to and from the flap tissues at a pressure of 50 mmHg. The arterial inflow and the venous capacitance in the skin flap tissue were significantly reduced in type 1 diabetic rat group compared with the non-diabetic rat group. The results of the present study indicate the possibility of using the proposed method for evaluating the peripheral vascular dysfunctions in diabetes mellitus.

  3. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.

    Directory of Open Access Journals (Sweden)

    Arash Hanifi

    Full Text Available Hyaline cartilage and mechanically inferior fibrocartilage consisting of mixed collagen types are frequently found together in repairing articular cartilage. The present study seeks to develop methodology to identify collagen type and other tissue components using Fourier transform infrared (FTIR spectral evaluation of matrix composition in combination with multivariate analyses. FTIR spectra of the primary molecular components of repair cartilage, types I and II collagen, and aggrecan, were used to develop multivariate spectral models for discrimination of the matrix components of the tissues of interest. Infrared imaging data were collected from bovine bone, tendon, normal cartilage, meniscus and human repair cartilage tissues, and composition predicted using partial least squares analyses. Histology and immunohistochemistry results were used as standards for validation. Infrared fiber optic probe spectral data were also obtained from meniscus (a tissue with mixed collagen types to evaluate the potential of this method for identification of collagen type in a minimally-invasive clinical application. Concentration profiles of the tissue components obtained from multivariate analysis were in excellent agreement with histology and immunohistochemistry results. Bone and tendon showed a uniform distribution of predominantly type I collagen through the tissue. Normal cartilage showed a distribution of type II collagen and proteoglycan similar to the known composition, while in repair cartilage, the spectral distribution of both types I and II collagen were similar to that observed via immunohistochemistry. Using the probe, the outer and inner regions of the meniscus were shown to be primarily composed of type I and II collagen, respectively, in accordance with immunohistochemistry data. In summary, multivariate analysis of infrared spectra can indeed be used to differentiate collagen type I and type II, even in the presence of proteoglycan, in

  4. Biochemical Stimulus-Based Strategies for Meniscus Tissue Engineering and Regeneration

    Science.gov (United States)

    Chen, Mingxue; Guo, Weimin; Gao, Shunag; Hao, Chunxiang; Shen, Shi; Zhang, Zengzeng; Wang, Zhenyong; Wang, Zehao; Li, Xu; Jing, Xiaoguang; Zhang, Xueliang; Yuan, Zhiguo; Wang, Mingjie; Zhang, Yu; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang

    2018-01-01

    Meniscus injuries are very common and still pose a challenge for the orthopedic surgeon. Meniscus injuries in the inner two-thirds of the meniscus remain incurable. Tissue-engineered meniscus strategies seem to offer a new approach for treating meniscus injuries with a combination of seed cells, scaffolds, and biochemical or biomechanical stimulation. Cell- or scaffold-based strategies play a pivotal role in meniscus regeneration. Similarly, biochemical and biomechanical stimulation are also important. Seed cells and scaffolds can be used to construct a tissue-engineered tissue; however, stimulation to enhance tissue maturation and remodeling is still needed. Such stimulation can be biomechanical or biochemical, but this review focuses only on biochemical stimulation. Growth factors (GFs) are one of the most important forms of biochemical stimulation. Frequently used GFs always play a critical role in normal limb development and growth. Further understanding of the functional mechanism of GFs will help scientists to design the best therapy strategies. In this review, we summarize some of the most important GFs in tissue-engineered menisci, as well as other types of biological stimulation. PMID:29581987

  5. Cell type-specific characterization of nuclear DNA contents within complex tissues and organs

    Directory of Open Access Journals (Sweden)

    Lambert Georgina M

    2005-10-01

    Full Text Available Abstract Background Eukaryotic organisms are defined by the presence of a nucleus, which encloses the chromosomal DNA, and is characterized by its DNA content (C-value. Complex eukaryotic organisms contain organs and tissues that comprise interspersions of different cell types, within which polysomaty, endoreduplication, and cell cycle arrest is frequently observed. Little is known about the distribution of C-values across different cell types within these organs and tissues. Results We have developed, and describe here, a method to precisely define the C-value status within any specific cell type within complex organs and tissues of plants. We illustrate the application of this method to Arabidopsis thaliana, specifically focusing on the different cell types found within the root. Conclusion The method accurately and conveniently charts C-value within specific cell types, and provides novel insight into developmental processes. The method is, in principle, applicable to any transformable organism, including mammals, within which cell type specificity of regulation of endoreduplication, of polysomaty, and of cell cycle arrest is suspected.

  6. Tissue-engineering-based Strategies for Regenerative Endodontics

    Science.gov (United States)

    Albuquerque, M.T.P.; Valera, M.C.; Nakashima, M.; Nör, J.E.; Bottino, M.C.

    2014-01-01

    Stemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on

  7. Effects of temperature and tissue type on Chrysomya rufifacies (Diptera: Calliphoridae) (Macquart) development.

    Science.gov (United States)

    Flores, Micah; Longnecker, Michael; Tomberlin, Jeffery K

    2014-12-01

    The hairy maggot blow fly, Chrysomya rufifacies (Diptera: Calliphoridae), is a forensically important fly often encountered on human and other vertebrate remains in temperate and tropic regions throughout the world including Australia, Asia, Central America and North America. C. rufifacies was reared under controlled laboratory conditions on three muscle types (i.e., porcine, equine and canine) at three temperatures (i.e., 20.8, 24.8 and 28.3°C). Rate of larval weight gain across time was statistically significant between muscle types (P≤0.0001) and approaching significance across time between temperatures (P=0.0511). This research represents the first development study for C. rufifacies from central Texas, USA and the first study to examine the impact of tissue type on its development. Furthermore, these data, when compared to those available in the literature, indicate developmental differences that could be due to genetic differences in populations or possibly methods employed during the studies. Caution should be emphasized when applying development data for this species from one region to forensic investigations in other ecoregions as such differences in development based on tissue fed upon by larvae, population genetics, and methodologies used in the studies could represent error in estimating the time of colonization. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Joint learning and weighting of visual vocabulary for bag-of-feature based tissue classification

    KAUST Repository

    Wang, Jim Jing-Yan

    2013-12-01

    Automated classification of tissue types of Region of Interest (ROI) in medical images has been an important application in Computer-Aided Diagnosis (CAD). Recently, bag-of-feature methods which treat each ROI as a set of local features have shown their power in this field. Two important issues of bag-of-feature strategy for tissue classification are investigated in this paper: the visual vocabulary learning and weighting, which are always considered independently in traditional methods by neglecting the inner relationship between the visual words and their weights. To overcome this problem, we develop a novel algorithm, Joint-ViVo, which learns the vocabulary and visual word weights jointly. A unified objective function based on large margin is defined for learning of both visual vocabulary and visual word weights, and optimized alternately in the iterative algorithm. We test our algorithm on three tissue classification tasks: classifying breast tissue density in mammograms, classifying lung tissue in High-Resolution Computed Tomography (HRCT) images, and identifying brain tissue type in Magnetic Resonance Imaging (MRI). The results show that Joint-ViVo outperforms the state-of-art methods on tissue classification problems. © 2013 Elsevier Ltd.

  9. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Science.gov (United States)

    Liu, Ran; Wang, Jia; Liu, Jing

    2015-07-01

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  10. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Directory of Open Access Journals (Sweden)

    Ran Liu

    2015-07-01

    Full Text Available Hyperthermia (42-46°C, treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  11. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ran, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn; Liu, Jing, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Wang, Jia [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2015-07-15

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  12. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin

    DEFF Research Database (Denmark)

    Hoadley, Katherine A; Yau, Christina; Wolf, Denise M

    2014-01-01

    Recent genomic analyses of pathologically defined tumor types identify "within-a-tissue" disease subtypes. However, the extent to which genomic signatures are shared across tissues is still unclear. We performed an integrative analysis using five genome-wide platforms and one proteomic platform...... on 3,527 specimens from 12 cancer types, revealing a unified classification into 11 major subtypes. Five subtypes were nearly identical to their tissue-of-origin counterparts, but several distinct cancer types were found to converge into common subtypes. Lung squamous, head and neck, and a subset...

  13. Reversal of Type 1 Diabetes in Mice by Brown Adipose Tissue Transplant

    OpenAIRE

    Gunawardana, Subhadra C.; Piston, David W.

    2012-01-01

    Current therapies for type 1 diabetes (T1D) involve insulin replacement or transplantation of insulin-secreting tissue, both of which suffer from numerous limitations and complications. Here, we show that subcutaneous transplants of embryonic brown adipose tissue (BAT) can correct T1D in streptozotocin-treated mice (both immune competent and immune deficient) with severely impaired glucose tolerance and significant loss of adipose tissue. BAT transplants result in euglycemia, normalized gluco...

  14. Supplementary Material for: Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-01-01

    Abstract Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis

  15. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues.

    Science.gov (United States)

    Foldager, Casper Bindzus; Toh, Wei Seong; Gomoll, Andreas H; Olsen, Bjørn Reino; Spector, Myron

    2014-04-01

    The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti-collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins

  16. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues

    Science.gov (United States)

    Toh, Wei Seong; Gomoll, Andreas H.; Olsen, Bjørn Reino; Spector, Myron

    2014-01-01

    Objective: The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Design: Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti–collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. Results: When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. Conclusions: We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional

  17. Tissue-specific expression of type IX collagen

    International Nuclear Information System (INIS)

    Nishimura, I.; Muragaki, Y.; Ninomiya, Y.; Olsen, B.R.; Hayashi, M.

    1990-01-01

    This paper reports on the tissue-specific expression of type IX collagen, a major component of cartilage fibrils. It contains molecules with three genetically distinct subunits. The subunits form three triple-helical (CO) domains separated by non-triple-helical (NC) sequences. One of the subunits in cartilage, α1(IX), contains a large amino-terminal globular domain, NC4, while a second subunit, α2(IX), contains a covalently attached chondroitin sulfate chain. The site of attachment for this chain is located within the non-triple-helical sequence NC3, which separates the amino-terminal and central triple-helical domains of the type IX molecules. The NC3 region is 5 amino acid residues longer in the α2(IX) chain than in the α1(IX) and α3(IX) chains. This may explain why type IX molecules tend to show a sharp angle in the NC3 region, and why monoclonal antibody molecules that are specific for the stub left after chondroitinase ABC digestion of the chondroitin sulfate side chain always are located on the outside of the angle

  18. Oligoaniline-based conductive biomaterials for tissue engineering.

    Science.gov (United States)

    Zarrintaj, Payam; Bakhshandeh, Behnaz; Saeb, Mohammad Reza; Sefat, Farshid; Rezaeian, Iraj; Ganjali, Mohammad Reza; Ramakrishna, Seeram; Mozafari, Masoud

    2018-05-01

    The science and engineering of biomaterials have improved the human life expectancy. Tissue engineering is one of the nascent strategies with an aim to fulfill this target. Tissue engineering scaffolds are one of the most significant aspects of the recent tissue repair strategies; hence, it is imperative to design biomimetic substrates with suitable features. Conductive substrates can ameliorate the cellular activity through enhancement of cellular signaling. Biocompatible polymers with conductivity can mimic the cells' niche in an appropriate manner. Bioconductive polymers based on aniline oligomers can potentially actualize this purpose because of their unique and tailoring properties. The aniline oligomers can be positioned within the molecular structure of other polymers, thus painter acting with the side groups of the main polymer or acting as a comonomer in their backbone. The conductivity of oligoaniline-based conductive biomaterials can be tailored to mimic the electrical and mechanical properties of targeted tissues/organs. These bioconductive substrates can be designed with high mechanical strength for hard tissues such as the bone and with high elasticity to be used for the cardiac tissue or can be synthesized in the form of injectable hydrogels, particles, and nanofibers for noninvasive implantation; these structures can be used for applications such as drug/gene delivery and extracellular biomimetic structures. It is expected that with progress in the fields of biomaterials and tissue engineering, more innovative constructs will be proposed in the near future. This review discusses the recent advancements in the use of oligoaniline-based conductive biomaterials for tissue engineering and regenerative medicine applications. The tissue engineering applications of aniline oligomers and their derivatives have recently attracted an increasing interest due to their electroactive and biodegradable properties. However, no reports have systematically reviewed

  19. Effect of substrate choice and tissue type on tissue preparation for spectral histopathology by Raman microspectroscopy.

    Science.gov (United States)

    Fullwood, Leanne M; Griffiths, Dave; Ashton, Katherine; Dawson, Timothy; Lea, Robert W; Davis, Charles; Bonnier, Franck; Byrne, Hugh J; Baker, Matthew J

    2014-01-21

    Raman spectroscopy is a non-destructive, non-invasive, rapid and economical technique which has the potential to be an excellent method for the diagnosis of cancer and understanding disease progression through retrospective studies of archived tissue samples. Historically, biobanks are generally comprised of formalin fixed paraffin preserved tissue and as a result these specimens are often used in spectroscopic research. Tissue in this state has to be dewaxed prior to Raman analysis to reduce paraffin contributions in the spectra. However, although the procedures are derived from histopathological clinical practice, the efficacy of the dewaxing procedures that are currently employed is questionable. Ineffective removal of paraffin results in corruption of the spectra and previous experiments have shown that the efficacy can depend on the dewaxing medium and processing time. The aim of this study was to investigate the influence of commonly used spectroscopic substrates (CaF2, Spectrosil quartz and low-E slides) and the influence of different histological tissue types (normal, cancerous and metastatic) on tissue preparation and to assess their use for spectral histopathology. Results show that CaF2 followed by Spectrosil contribute the least to the spectral background. However, both substrates retain paraffin after dewaxing. Low-E substrates, which exhibit the most intense spectral background, do not retain wax and resulting spectra are not affected by paraffin peaks. We also show a disparity in paraffin retention depending upon the histological identity of the tissue with abnormal tissue retaining more paraffin than normal.

  20. Strengths and weaknesses of EST-based prediction of tissue-specific alternative splicing

    Directory of Open Access Journals (Sweden)

    Vingron Martin

    2004-09-01

    Full Text Available Abstract Background Alternative splicing contributes significantly to the complexity of the human transcriptome and proteome. Computational prediction of alternative splice isoforms are usually based on EST sequences that also allow to approximate the expression pattern of the related transcripts. However, the limited number of tissues represented in the EST data as well as the different cDNA construction protocols may influence the predictive capacity of ESTs to unravel tissue-specifically expressed transcripts. Methods We predict tissue and tumor specific splice isoforms based on the genomic mapping (SpliceNest of the EST consensus sequences and library annotation provided in the GeneNest database. We further ascertain the potentially rare tissue specific transcripts as the ones represented only by ESTs derived from normalized libraries. A subset of the predicted tissue and tumor specific isoforms are then validated via RT-PCR experiments over a spectrum of 40 tissue types. Results Our strategy revealed 427 genes with at least one tissue specific transcript as well as 1120 genes showing tumor specific isoforms. While our experimental evaluation of computationally predicted tissue-specific isoforms revealed a high success rate in confirming the expression of these isoforms in the respective tissue, the strategy frequently failed to detect the expected restricted expression pattern. The analysis of putative lowly expressed transcripts using normalized cDNA libraries suggests that our ability to detect tissue-specific isoforms strongly depends on the expression level of the respective transcript as well as on the sensitivity of the experimental methods. Especially splice isoforms predicted to be disease-specific tend to represent transcripts that are expressed in a set of healthy tissues rather than novel isoforms. Conclusions We propose to combine the computational prediction of alternative splice isoforms with experimental validation for

  1. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchrotron radiation micro-CT approach.

    Science.gov (United States)

    Andronowski, Janna M; Mundorff, Amy Z; Pratt, Isaac V; Davoren, Jon M; Cooper, David M L

    2017-05-01

    Molecular human identification has conventionally focused on DNA sampling from dense, weight-bearing cortical bone tissue, typically from femora or tibiae. A comparison of skeletal elements from three contemporary individuals demonstrated that elements with high quantities of cancellous bone yielded nuclear DNA at the highest rates, suggesting that preferentially sampling cortical bone may be suboptimal (Mundorff & Davoren, 2014). Despite these findings, the reason for the differential DNA yields between cortical and cancellous bone tissues remains unknown. The primary goal of this work is to ascertain whether differences in bone microstructure can be used to explain differential nuclear DNA yield among bone tissue types observed by Mundorff and Davoren (2014), with a focus on osteocytes and the three-dimensional (3D) quantification of their associated lacunae. Osteocytes and other bone cells are recognized to house DNA in bone tissue, thus examining the density of their lacunae may explain why nuclear DNA yield rates differ among bone tissue types. Lacunae were visualized and quantified using synchrotron radiation-based micro-Computed Tomographic imaging (SR micro-CT). Volumes of interest (VOIs) from cortical and cancellous bone tissues (n=129) were comparatively analyzed from the three skeletons sampled for Mundorff and Davoren's (2014) study. Analyses tested the primary hypothesis that the abundance and density of osteocytes (inferred from their lacunar spaces) vary between cortical and cancellous bone tissue types. Results demonstrated that osteocyte lacunar abundance and density vary between cortical and cancellous bone tissue types, with cortical bone VOIs containing a higher lacunar abundance and density. We found that the osteocyte lacunar density values are independent of nuclear DNA yield, suggesting an alternative explanation for the higher nuclear DNA yields from bones with greater quantities of cancellous bone tissue. The use of SR micro-CT allowed for

  2. Perivascular adipose tissue: role in the pathogenesis of obesity, type 2 diabetes mellitus and cardiovascular pathology.

    Directory of Open Access Journals (Sweden)

    Tat'yana Ivanovna Romantsova

    2015-09-01

    Full Text Available Perivascular adipose tissue is a part of blood vessel wall, regulating endovascular homeostasis, endothelial and smooth muscle cells functioning. Under physiological conditions, perivascular tissue provides beneficial anticontractile effect, though undergoes structural and functional changes in obesity, atherosclerosis and diabetes mellitus type2.Collected data suggest the possible key role of perivascular adipose tissue in the pathogenesis of these diseases. Perivascular tissue has been determined as an independent cardiovascular risk factor, regardless of visceral obesity. General mechanisms include a local low-grade inflammation, oxidative stress, tissue renin-angiotensin-aldosterone system activation, paracrine and metabolic alterations. Properties of perivascular adipose tissue depend on the certain type of adipocytes it contains. Brown adipocytes are well known for their metabolic preferences, however it has been shown recently that brown perivascular tissue can contribute to dyslipidemia under some conditions.  The aim of this review is to discuss the current literature understanding of perivascular adipose tissue specifics, changes in its activity, secretory and genetic profilein a course of the most common non-infectious diseases development, as well as molecular mechanisms of its functioning. We also discuss perspectives of target interventions using metabolic pathways and genes of perivascular tissue, for the effective prevention of obesity, diabetes mellitus type2 and cardiovascular diseases.

  3. Anisotropic Shape-Memory Alginate Scaffolds Functionalized with Either Type I or Type II Collagen for Cartilage Tissue Engineering.

    Science.gov (United States)

    Almeida, Henrique V; Sathy, Binulal N; Dudurych, Ivan; Buckley, Conor T; O'Brien, Fergal J; Kelly, Daniel J

    2017-01-01

    Regenerating articular cartilage and fibrocartilaginous tissue such as the meniscus is still a challenge in orthopedic medicine. While a range of different scaffolds have been developed for joint repair, none have facilitated the development of a tissue that mimics the complexity of soft tissues such as articular cartilage. Furthermore, many of these scaffolds are not designed to function in mechanically challenging joint environments. The overall goal of this study was to develop a porous, biomimetic, shape-memory alginate scaffold for directing cartilage regeneration. To this end, a scaffold was designed with architectural cues to guide cellular and neo-tissue alignment, which was additionally functionalized with a range of extracellular matrix cues to direct stem cell differentiation toward the chondrogenic lineage. Shape-memory properties were introduced by covalent cross-linking alginate using carbodiimide chemistry, while the architecture of the scaffold was modified using a directional freezing technique. Introducing such an aligned pore structure was found to improve the mechanical properties of the scaffold, and promoted higher levels of sulfated glycosaminoglycans (sGAG) and collagen deposition compared to an isotropic (nonaligned) pore geometry when seeded with adult human stem cells. Functionalization with collagen improved stem cell recruitment into the scaffold and facilitated more homogenous cartilage tissue deposition throughout the construct. Incorporating type II collagen into the scaffolds led to greater cell proliferation, higher sGAG and collagen accumulation, and the development of a stiffer tissue compared to scaffolds functionalized with type I collagen. The results of this study demonstrate how both scaffold architecture and composition can be tailored in a shape-memory alginate scaffold to direct stem cell differentiation and support the development of complex cartilaginous tissues.

  4. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    Directory of Open Access Journals (Sweden)

    Viti Federica

    2008-04-01

    Full Text Available Abstract Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes.

  5. Beneficial autoimmunity at body surfaces - immune surveillance and rapid type 2 immunity regulate tissue homeostasis and cancer.

    Science.gov (United States)

    Dalessandri, Tim; Strid, Jessica

    2014-01-01

    Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress - a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis.

  6. Concentration Levels of Imidacloprid and Dinotefuran in Five Tissue Types of Black Walnut, Juglans nigra

    Directory of Open Access Journals (Sweden)

    Paul Merten

    2013-11-01

    Full Text Available Black walnut, a valuable economic and environmentally important species, is threatened by thousand cankers disease. Systemic imidacloprid and dinotefuran applications were made to mature black walnut trees to evaluate their translocation and concentration levels in various tissue types including leaf, twig, trunk core, nutmeat, and walnut husk. The metabolism of imidacloprid in plants produces a metabolite, olefin-imidacloprid, which has been documented to have insecticidal properties in other systems. Trunk CoreTect (imidacloprid soil pellets and a trunk spray of dinotefuran were applied to mature black walnuts in spring 2011. Imidacloprid concentrations were detected in both the lower and upper strata in all tissue types tested and progressively increased through month 12 post-treatment in twig and leaf tissue. Olefin-imidacloprid was detected in the nutmeat and walnut husk. Dinotefuran was only detected in the first sampling period and was found in low concentration levels in leaf and twig tissue types, and was not detected in the trunk, nutmeat or the walnut husk.

  7. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds.

    Science.gov (United States)

    Lim, Janice; You, Mingliang; Li, Jian; Li, Zibiao

    2017-10-01

    Polyhydroxyalkanoates (PHAs) are a class of biodegradable polymers derived from microorganisms. On top of their biodegradability and biocompatibility, different PHA types can contribute to varying mechanical and chemical properties. This has led to increasing attention to the use of PHAs in numerous biomedical applications over the past few decades. Bone tissue engineering refers to the regeneration of new bone through providing mechanical support while inducing cell growth on the PHA scaffolds having a porous structure for tissue regeneration. This review first introduces the various properties PHA scaffold that make them suitable for bone tissue engineering such as biocompatibility, biodegradability, mechanical properties as well as vascularization. The typical fabrication techniques of PHA scaffolds including electrospinning, salt-leaching and solution casting are further discussed, followed by the relatively new technology of using 3D printing in PHA scaffold fabrication. Finally, the recent progress of using different types of PHAs scaffold in bone tissue engineering applications are summarized in intrinsic PHA/blends forms or as composites with other polymeric or inorganic hybrid materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Role of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in psychological stress and depression.

    Science.gov (United States)

    Tsai, Shih-Jen

    2017-12-22

    Major depressive disorder is a common illness worldwide, but the pathogenesis of the disorder remains incompletely understood. The tissue-type plasminogen activator-plasminogen proteolytic cascade is highly expressed in the brain regions involved in mood regulation and neuroplasticity. Accumulating evidence from animal and human studies suggests that tissue-type plasminogen activator and its chief inhibitor, plasminogen activator inhibitor-1, are related to stress reaction and depression. Furthermore, the neurotrophic hypothesis of depression postulates that compromised neurotrophin brain-derived neurotrophic factor (BDNF) function is directly involved in the pathophysiology of depression. In the brain, the proteolytic cleavage of proBDNF, a BDNF precursor, to mature BDNF through plasmin represents one mechanism that can change the direction of BDNF action. We also discuss the implications of tissue-type plasminogen activator and plasminogen activator inhibitor-1 alterations as biomarkers for major depressive disorder. Using drugs that increase tissue-type plasminogen activator or decrease plasminogen activator inhibitor-1 levels may open new avenues to develop conceptually novel therapeutic strategies for depression treatment.

  9. Beneficial Autoimmunity at Body Surfaces – Immune Surveillance and Rapid Type 2 Immunity Regulate Tissue Homeostasis and Cancer

    Science.gov (United States)

    Dalessandri, Tim; Strid, Jessica

    2014-01-01

    Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress – a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis. PMID:25101088

  10. Visualizing tissue molecular structure of a black type of canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way.

    Science.gov (United States)

    Yu, Peiqiang

    2013-02-20

    Heat-related processing of cereal grains, legume seeds, and oil seeds could be used to improve nutrient availability in ruminants. However, different types of processing may have a different impact on intrinsic structure of tissues. To date, there is little research on structure changes after processing within intact tissues. The synchrotron-based molecular imaging technique enables us to detect inherent structure change on a molecular level. The objective of this study was to visualize tissue of black-type canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way using the synchrotron imaging technique. The results showed that the chemical images of protein amides were obtained through the imaging technique for the raw, wet, and dry heated black type of canola seed tissues. It seems that different types of processing have a different impact on the protein spectral profile in the black type of canola tissues. Wet heating had a greater impact on the protein α-helix to β-sheet ratio than dry heating. Both dry and wet heating resulted in different patterns in amide I, the second derivative, and FSD spectra. However, the exact differences in the tissue images are relatively difficult to be obtained through visual comparison. Future studies should focus on (1) comparing the response and sensitivity of canola seeds to various processing methods between the yellow-type and black-type of canola seeds; (2) developing a sensitive method to compare the image difference between tissues and between treatments; (3) developing a method to link images to nutrient digestion, and (4) revealing how structure changes affect nutrient absorption in humans and animals.

  11. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology.

    Science.gov (United States)

    Xu, Tao; Zhao, Weixin; Zhu, Jian-Ming; Albanna, Mohammad Z; Yoo, James J; Atala, Anthony

    2013-01-01

    This study was designed to develop a versatile method for fabricating complex and heterogeneous three-dimensional (3D) tissue constructs using simultaneous ink-jetting of multiple cell types. Human amniotic fluid-derived stem cells (hAFSCs), canine smooth muscle cells (dSMCs), and bovine aortic endothelial cells (bECs), were separately mixed with ionic cross-linker calcium chloride (CaCl(2)), loaded into separate ink cartridges and printed using a modified thermal inkjet printer. The three cell types were delivered layer-by-layer to pre-determined locations in a sodium alginate-collagen composite located in a chamber under the printer. The reaction between CaCl(2) and sodium alginate resulted in a rapid formation of a solid composite gel and the printed cells were anchored in designated areas within the gel. The printing process was repeated for several cycles leading to a complex 3D multi-cell hybrid construct. The biological functions of the 3D printed constructs were evaluated in vitro and in vivo. Each of the printed cell types maintained their viability and normal proliferation rates, phenotypic expression, and physiological functions within the heterogeneous constructs. The bioprinted constructs were able to survive and mature into functional tissues with adequate vascularization in vivo. These findings demonstrate the feasibility of fabricating complex heterogeneous tissue constructs containing multiple cell types using inkjet printing technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Tissue-based map of the human proteome

    DEFF Research Database (Denmark)

    Uhlén, Mathias; Fagerberg, Linn; Hallström, Björn M.

    2015-01-01

    Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transc...

  13. A brief review of extrusion-based tissue scaffold bio-printing.

    Science.gov (United States)

    Ning, Liqun; Chen, Xiongbiao

    2017-08-01

    Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion-based bio-printing for scaffold fabrication, focusing on the prior-printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to-date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi-materials/cells manipulation, and process-induced cell damage in extrusion-based bio-printing. The key issue and challenges for extrusion-based bio-printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio-printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio-printing. The address of these challenges will significantly enhance the capability of extrusion-based bio-printing. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Multi-tissue computational modeling analyzes pathophysiology of type 2 diabetes in MKR mice.

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    Full Text Available Computational models using metabolic reconstructions for in silico simulation of metabolic disorders such as type 2 diabetes mellitus (T2DM can provide a better understanding of disease pathophysiology and avoid high experimentation costs. There is a limited amount of computational work, using metabolic reconstructions, performed in this field for the better understanding of T2DM. In this study, a new algorithm for generating tissue-specific metabolic models is presented, along with the resulting multi-confidence level (MCL multi-tissue model. The effect of T2DM on liver, muscle, and fat in MKR mice was first studied by microarray analysis and subsequently the changes in gene expression of frank T2DM MKR mice versus healthy mice were applied to the multi-tissue model to test the effect. Using the first multi-tissue genome-scale model of all metabolic pathways in T2DM, we found out that branched-chain amino acids' degradation and fatty acids oxidation pathway is downregulated in T2DM MKR mice. Microarray data showed low expression of genes in MKR mice versus healthy mice in the degradation of branched-chain amino acids and fatty-acid oxidation pathways. In addition, the flux balance analysis using the MCL multi-tissue model showed that the degradation pathways of branched-chain amino acid and fatty acid oxidation were significantly downregulated in MKR mice versus healthy mice. Validation of the model was performed using data derived from the literature regarding T2DM. Microarray data was used in conjunction with the model to predict fluxes of various other metabolic pathways in the T2DM mouse model and alterations in a number of pathways were detected. The Type 2 Diabetes MCL multi-tissue model may explain the high level of branched-chain amino acids and free fatty acids in plasma of Type 2 Diabetic subjects from a metabolic fluxes perspective.

  15. Tissue Multiplatform-Based Metabolomics/Metabonomics for Enhanced Metabolome Coverage.

    Science.gov (United States)

    Vorkas, Panagiotis A; Abellona U, M R; Li, Jia V

    2018-01-01

    The use of tissue as a matrix to elucidate disease pathology or explore intervention comes with several advantages. It allows investigation of the target alteration directly at the focal location and facilitates the detection of molecules that could become elusive after secretion into biofluids. However, tissue metabolomics/metabonomics comes with challenges not encountered in biofluid analyses. Furthermore, tissue heterogeneity does not allow for tissue aliquoting. Here we describe a multiplatform, multi-method workflow which enables metabolic profiling analysis of tissue samples, while it can deliver enhanced metabolome coverage. After applying a dual consecutive extraction (organic followed by aqueous), tissue extracts are analyzed by reversed-phase (RP-) and hydrophilic interaction liquid chromatography (HILIC-) ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS) and nuclear magnetic resonance (NMR) spectroscopy. This pipeline incorporates the required quality control features, enhances versatility, allows provisional aliquoting of tissue extracts for future guided analyses, expands the range of metabolites robustly detected, and supports data integration. It has been successfully employed for the analysis of a wide range of tissue types.

  16. Effect of Tissue Heterogeneity on the Transmembrane Potential of Type-1 Spiral Ganglion Neurons: A Simulation Study.

    Science.gov (United States)

    Sriperumbudur, Kiran Kumar; Pau, Hans Wilhelm; van Rienen, Ursula

    2018-03-01

    Electric stimulation of the auditory nerve by cochlear implants has been a successful clinical intervention to treat the sensory neural deafness. In this pathological condition of the cochlea, type-1 spiral ganglion neurons in Rosenthal's canal play a vital role in the action potential initiation. Various morphological studies of the human temporal bones suggest that the spiral ganglion neurons are surrounded by heterogeneous structures formed by a variety of cells and tissues. However, the existing simulation models have not considered the tissue heterogeneity in the Rosenthal's canal while studying the electric field interaction with spiral ganglion neurons. Unlike the existing models, we have implemented the tissue heterogeneity in the Rosenthal's canal using a computationally inexpensive image based method in a two-dimensional finite element model. Our simulation results suggest that the spatial heterogeneity of surrounding tissues influences the electric field distribution in the Rosenthal's canal, and thereby alters the transmembrane potential of the spiral ganglion neurons. In addition to the academic interest, these results are especially useful to understand how the latest tissue regeneration methods such as gene therapy and drug-induced resprouting of peripheral axons, which probably modify the density of the tissues in the Rosenthal's canal, affect the cochlear implant functionality.

  17. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.

    Science.gov (United States)

    Kundu, Joydip; Shim, Jin-Hyung; Jang, Jinah; Kim, Sung-Won; Cho, Dong-Woo

    2015-11-01

    Regenerative medicine is targeted to improve, restore or replace damaged tissues or organs using a combination of cells, materials and growth factors. Both tissue engineering and developmental biology currently deal with the process of tissue self-assembly and extracellular matrix (ECM) deposition. In this investigation, additive manufacturing (AM) with a multihead deposition system (MHDS) was used to fabricate three-dimensional (3D) cell-printed scaffolds using layer-by-layer (LBL) deposition of polycaprolactone (PCL) and chondrocyte cell-encapsulated alginate hydrogel. Appropriate cell dispensing conditions and optimum alginate concentrations for maintaining cell viability were determined. In vitro cell-based biochemical assays were performed to determine glycosaminoglycans (GAGs), DNA and total collagen contents from different PCL-alginate gel constructs. PCL-alginate gels containing transforming growth factor-β (TGFβ) showed higher ECM formation. The 3D cell-printed scaffolds of PCL-alginate gel were implanted in the dorsal subcutaneous spaces of female nude mice. Histochemical [Alcian blue and haematoxylin and eosin (H&E) staining] and immunohistochemical (type II collagen) analyses of the retrieved implants after 4 weeks revealed enhanced cartilage tissue and type II collagen fibril formation in the PCL-alginate gel (+TGFβ) hybrid scaffold. In conclusion, we present an innovative cell-printed scaffold for cartilage regeneration fabricated by an advanced bioprinting technology. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Role of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in psychological stress and depression

    OpenAIRE

    Tsai, Shih-Jen

    2017-01-01

    Major depressive disorder is a common illness worldwide, but the pathogenesis of the disorder remains incompletely understood. The tissue-type plasminogen activator-plasminogen proteolytic cascade is highly expressed in the brain regions involved in mood regulation and neuroplasticity. Accumulating evidence from animal and human studies suggests that tissue-type plasminogen activator and its chief inhibitor, plasminogen activator inhibitor-1, are related to stress reaction and depression. Fur...

  19. Tissues segmentation based on multi spectral medical images

    Science.gov (United States)

    Li, Ya; Wang, Ying

    2017-11-01

    Each band image contains the most obvious tissue feature according to the optical characteristics of different tissues in different specific bands for multispectral medical images. In this paper, the tissues were segmented by their spectral information at each multispectral medical images. Four Local Binary Patter descriptors were constructed to extract blood vessels based on the gray difference between the blood vessels and their neighbors. The segmented tissue in each band image was merged to a clear image.

  20. Human papillomavirus in normal conjunctival tissue and in conjunctival papilloma: types and frequencies in a large series.

    Science.gov (United States)

    Sjö, Nicolai Christian; von Buchwald, Christian; Cassonnet, Patricia; Norrild, Bodil; Prause, Jan Ulrik; Vinding, Troels; Heegaard, Steffen

    2007-08-01

    To examine conjunctival papilloma and normal conjunctival tissue for the presence of human papillomavirus (HPV). Archival paraffin wax-embedded tissue from 165 conjunctival papillomas and from 20 histological normal conjunctival biopsy specimens was analysed for the presence of HPV by PCR. Specimens considered HPV positive using consensus primers, but with a negative or uncertain PCR result using type-specific HPV probes, were analysed with DNA sequencing. HPV was present in 86 of 106 (81%) beta-globin-positive papillomas. HPV type 6 was positive in 80 cases, HPV type 11 was identified in 5 cases and HPV type 45 was present in a single papilloma. All the 20 normal conjunctival biopsy specimens were beta-globin positive and HPV negative. There is a strong association between HPV and conjunctival papilloma. The study presents the largest material of conjunctival papilloma investigated for HPV and the first investigation of HPV in normal conjunctival tissue. HPV types 6 and 11 are the most common HPV types in conjunctival papilloma. This also is the first report of HPV type 45 in conjunctival papilloma.

  1. Evaluation of endogenous control genes for gene expression studies across multiple tissues and in the specific sets of fat- and muscle-type samples of the pig.

    Science.gov (United States)

    Gu, Y R; Li, M Z; Zhang, K; Chen, L; Jiang, A A; Wang, J Y; Li, X W

    2011-08-01

    To normalize a set of quantitative real-time PCR (q-PCR) data, it is essential to determine an optimal number/set of housekeeping genes, as the abundance of housekeeping genes can vary across tissues or cells during different developmental stages, or even under certain environmental conditions. In this study, of the 20 commonly used endogenous control genes, 13, 18 and 17 genes exhibited credible stability in 56 different tissues, 10 types of adipose tissue and five types of muscle tissue, respectively. Our analysis clearly showed that three optimal housekeeping genes are adequate for an accurate normalization, which correlated well with the theoretical optimal number (r ≥ 0.94). In terms of economical and experimental feasibility, we recommend the use of the three most stable housekeeping genes for calculating the normalization factor. Based on our results, the three most stable housekeeping genes in all analysed samples (TOP2B, HSPCB and YWHAZ) are recommended for accurate normalization of q-PCR data. We also suggest that two different sets of housekeeping genes are appropriate for 10 types of adipose tissue (the HSPCB, ALDOA and GAPDH genes) and five types of muscle tissue (the TOP2B, HSPCB and YWHAZ genes), respectively. Our report will serve as a valuable reference for other studies aimed at measuring tissue-specific mRNA abundance in porcine samples. © 2011 Blackwell Verlag GmbH.

  2. Cell-based and biomaterial approaches to connective tissue repair

    Science.gov (United States)

    Stalling, Simone Suzette

    Connective tissue injuries of skin, tendon and ligament, heal by a reparative process in adults, filling the wound site with fibrotic, disorganized scar tissue that poorly reflects normal tissue architecture or function. Conversely, fetal skin and tendon have been shown to heal scarlessly. Complete regeneration is not intrinsically ubiquitous to all fetal tissues; fetal diaphragmatic and gastrointestinal injuries form scars. In vivo studies suggest that the presence of fetal fibroblasts is essential for scarless healing. In the orthopaedic setting, adult anterior cruciate ligament (ACL) heals poorly; however, little is known about the regenerative capacity of fetal ACL or fetal ACL fibroblasts. We characterized in vitro wound healing properties of fetal and adult ACL fibroblasts demonstrating that fetal ACL fibroblasts migrate faster and elaborate greater quantities of type I collagen, suggesting the healing potential of the fetal ACL may not be intrinsically poor. Similar to fetal ACL fibroblasts, fetal dermal fibroblasts also exhibit robust cellular properties. We investigated the age-dependent effects of dermal fibroblasts on tendon-to-bone healing in rat supraspinatus tendon injuries, a reparative injury model. We hypothesized delivery of fetal dermal fibroblasts would increase tissue organization and mechanical properties in comparison to adult dermal fibroblasts. However, at 1 and 8 weeks, the presence of dermal fibroblasts, either adult or fetal, had no significant effect on tissue histology or mechanical properties. There was a decreasing trend in cross-sectional area of repaired tendons treated with fetal dermal fibroblasts in comparison to adult, but this finding was not significant in comparison to controls. Finally, we synthesized a novel polysaccharide, methacrylated methylcellulose (MA-MC), and fabricated hydrogels using a well-established photopolymerization technique. We characterized the physical and mechanical properties of MA-MC hydrogels in

  3. Tissue response to a new type of biomaterial implanted subcutaneously in rats

    DEFF Research Database (Denmark)

    Boennelycke, Marie; Christensen, Lise; Nielsen, Lene Feldskov

    2011-01-01

    -cellular matrix (ECM) or estrogen. Methods Ten implants of each type were tested for 3 and 8 weeks, respectively. Histological assessment of connective tissue organization, inflammation, vascularization, and thickness of regenerated tissue was undertaken. Results All implants had a high degree of biocompatibility....... ECM-enriched implants had significantly higher inflammatory scores compared to pure implants at 3 weeks. At 8 weeks, neither of the parameters differed significantly. No trace of the implants remained. Conclusions The MPEG-PLGA is highly biocompatible, degrades quickly, and seems inert in the process...

  4. Network-Based Method for Identifying Co- Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues.

    Science.gov (United States)

    Chen, Lei; Pan, Hongying; Zhang, Yu-Hang; Feng, Kaiyan; Kong, XiangYin; Huang, Tao; Cai, Yu-Dong

    2017-10-02

    Bone and dental diseases are serious public health problems. Most current clinical treatments for these diseases can produce side effects. Regeneration is a promising therapy for bone and dental diseases, yielding natural tissue recovery with few side effects. Because soft tissues inside the bone and dentin are densely populated with nerves and vessels, the study of bone and dentin regeneration should also consider the co-regeneration of nerves and vessels. In this study, a network-based method to identify co-regeneration genes for bone, dentin, nerve and vessel was constructed based on an extensive network of protein-protein interactions. Three procedures were applied in the network-based method. The first procedure, searching, sought the shortest paths connecting regeneration genes of one tissue type with regeneration genes of other tissues, thereby extracting possible co-regeneration genes. The second procedure, testing, employed a permutation test to evaluate whether possible genes were false discoveries; these genes were excluded by the testing procedure. The last procedure, screening, employed two rules, the betweenness ratio rule and interaction score rule, to select the most essential genes. A total of seventeen genes were inferred by the method, which were deemed to contribute to co-regeneration of at least two tissues. All these seventeen genes were extensively discussed to validate the utility of the method.

  5. Do cell based tissue engineering products for meniscus regeneration influence vascularization?

    Science.gov (United States)

    Koch, Matthias; Ehrenreich, Tobias; Koehl, Gudrun; Pattappa, Girish; Pfeifer, Christian; Loibl, Markus; Müller, Michael; Nerlich, Michael; Angele, Peter; Zellner, Johannes

    2017-01-01

    Meniscus regeneration is observed within the peripheral, vascularized zone but decreases in the inner two thirds alongside the vascularization. Within this avascular area, cell-based tissue-engineering-approaches appear to be a promising strategy for the treatment of meniscal defects. Evaluation of the angiogenic potential of cell-based tissue-engineering-products for meniscus healing. Evaluation of angiogenesis induced by rabbit meniscus-pellets, meniscus-cells (MC) or mesenchymal stem-cells (MSC) in cell-based tissue-engineering-products within a rabbit meniscus-ring was performed using a transparent dorsal skin fold chamber in nude mice. Observations were undertaken during a 14 days period. Cell preconditioning differed between experimental groups. Immunohistochemical analysis of the regenerated tissue in the meniscus-ring induced by cell loaded composite scaffolds for differentiation and anti-angiogenic factors were performed. Meniscus-pellets and MSC-/MC-based tissue-engineering-products induced angiogenesis. An accelerated vascularization was detected in the group of meniscus-pellets derived from the vascularized zone compared to avascular meniscus-pellets. In terms of cell-based tissue-engineering-products, chondrogenic preconditioning resulted in significantly increased vessel growth. MSC-constructs showed an accelerated angiogenesis. Immunohistochemical evaluation showed a progressive differentiation and lower content for anti-angiogenic endostatin in the precultured group. Preconditioning of MC-/MSC-based tissue-engineering-products is a promising tool to influence the angiogenic potential of tissue-engineering-products and to adapt these properties according to the aimed tissue qualities.

  6. Breast tissue classification in digital tomosynthesis images based on global gradient minimization and texture features

    Science.gov (United States)

    Qin, Xulei; Lu, Guolan; Sechopoulos, Ioannis; Fei, Baowei

    2014-03-01

    Digital breast tomosynthesis (DBT) is a pseudo-three-dimensional x-ray imaging modality proposed to decrease the effect of tissue superposition present in mammography, potentially resulting in an increase in clinical performance for the detection and diagnosis of breast cancer. Tissue classification in DBT images can be useful in risk assessment, computer-aided detection and radiation dosimetry, among other aspects. However, classifying breast tissue in DBT is a challenging problem because DBT images include complicated structures, image noise, and out-of-plane artifacts due to limited angular tomographic sampling. In this project, we propose an automatic method to classify fatty and glandular tissue in DBT images. First, the DBT images are pre-processed to enhance the tissue structures and to decrease image noise and artifacts. Second, a global smooth filter based on L0 gradient minimization is applied to eliminate detailed structures and enhance large-scale ones. Third, the similar structure regions are extracted and labeled by fuzzy C-means (FCM) classification. At the same time, the texture features are also calculated. Finally, each region is classified into different tissue types based on both intensity and texture features. The proposed method is validated using five patient DBT images using manual segmentation as the gold standard. The Dice scores and the confusion matrix are utilized to evaluate the classified results. The evaluation results demonstrated the feasibility of the proposed method for classifying breast glandular and fat tissue on DBT images.

  7. Synchrotron FTIR Imaging For The Identification Of Cell Types Within Human Tissues

    International Nuclear Information System (INIS)

    Walsh, Michael J.; Pounder, F. Nell; Nasse, Michael J.; Macias, Virgilia; Kajdacsy-Balla, Andre; Hirschmugl, Carol; Bhargava, Rohit

    2010-01-01

    The use of synchrotron Fourier Transform Infrared spectroscopy (S-FTIR) has been shown to be a very promising tool for biomedical research. S-FTIR spectroscopy allows for the fast acquisition of infrared (IR) spectra at a spatial resolution approaching the IR diffraction limit. The development of the Infrared Environmental Imaging (IRENI) beamline at the Synchrotron Radiation Center (SRC) at the University of Wisconsin-Madison has allowed for diffraction limited imaging measurements of cells in human prostate and breast tissues. This has allowed for the identification of cell types within tissues that would otherwise not have been resolvable using conventional FTIR sources.

  8. Expressed sequence tag analysis of adult human optic nerve for NEIBank: Identification of cell type and tissue markers

    Directory of Open Access Journals (Sweden)

    Peterson Katherine

    2009-09-01

    Full Text Available Abstract Background The optic nerve is a pure white matter central nervous system (CNS tract with an isolated blood supply, and is widely used in physiological studies of white matter response to various insults. We examined the gene expression profile of human optic nerve (ON and, through the NEIBANK online resource, to provide a resource of sequenced verified cDNA clones. An un-normalized cDNA library was constructed from pooled human ON tissues and was used in expressed sequence tag (EST analysis. Location of an abundant oligodendrocyte marker was examined by immunofluorescence. Quantitative real time polymerase chain reaction (qRT-PCR and Western analysis were used to compare levels of expression for key calcium channel protein genes and protein product in primate and rodent ON. Results Our analyses revealed a profile similar in many respects to other white matter related tissues, but significantly different from previously available ON cDNA libraries. The previous libraries were found to include specific markers for other eye tissues, suggesting contamination. Immune/inflammatory markers were abundant in the new ON library. The oligodendrocyte marker QKI was abundant at the EST level. Immunofluorescence revealed that this protein is a useful oligodendrocyte cell-type marker in rodent and primate ONs. L-type calcium channel EST abundance was found to be particularly low. A qRT-PCR-based comparative mammalian species analysis reveals that L-type calcium channel expression levels are significantly lower in primate than in rodent ON, which may help account for the class-specific difference in responsiveness to calcium channel blocking agents. Several known eye disease genes are abundantly expressed in ON. Many genes associated with normal axonal function, mRNAs associated with axonal transport, inflammation and neuroprotection are observed. Conclusion We conclude that the new cDNA library is a faithful representation of human ON and EST data

  9. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  10. Influence of collagen type II and nucleus pulposus cells on aggregation and differentiation of adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Lu, Z.F.; Zandieh Doulabi, B.; Wuisman, P.I.; Bank, R.A.; Helder, M.N.

    2008-01-01

    Tissue microenvironment plays a critical role in guiding local stem cell differentiation. Within the intervertebral disc, collagen type II and nucleus pulposus (NP) cells are two major components. This study aimed to investigate how collagen type II and NP cells affect adipose tissue-derived stem

  11. Porous titanium bases for osteochondral tissue engineering

    Science.gov (United States)

    Nover, Adam B.; Lee, Stephanie L.; Georgescu, Maria S.; Howard, Daniel R.; Saunders, Reuben A.; Yu, William T.; Klein, Robert W.; Napolitano, Anthony P.; Ateshian, Gerard A.

    2015-01-01

    Tissue engineering of osteochondral grafts may offer a cell-based alternative to native allografts, which are in short supply. Previous studies promote the fabrication of grafts consisting of a viable cell-seeded hydrogel integrated atop a porous, bone-like metal. Advantages of the manufacturing process have led to the evaluation of porous titanium as the bone-like base material. Here, porous titanium was shown to support the growth of cartilage to produce native levels of Young’s modulus, using a clinically relevant cell source. Mechanical and biochemical properties were similar or higher for the osteochondral constructs compared to chondral-only controls. Further investigation into the mechanical influence of the base on the composite material suggests that underlying pores may decrease interstitial fluid pressurization and applied strains, which may be overcome by alterations to the base structure. Future studies aim to optimize titanium-based tissue engineered osteochondral constructs to best match the structural architecture and strength of native grafts. Statement of Significance The studies described in this manuscript follow up on previous studies from our lab pertaining to the fabrication of osteochondral grafts that consist of a bone-like porous metal and a chondrocyte-seeded hydrogel. Here, tissue engineered osteochondral grafts were cultured to native stiffness using adult chondrocytes, a clinically relevant cell source, and a porous titanium base, a material currently used in clinical implants. This porous titanium is manufactured via selective laser melting, offering the advantages of precise control over shape, pore size, and orientation. Additionally, this manuscript describes the mechanical influence of the porous base, which may have applicability to porous bases derived from other materials. PMID:26320541

  12. Reversal of Type 1 Diabetes in Mice by Brown Adipose Tissue Transplant

    Science.gov (United States)

    Gunawardana, Subhadra C.; Piston, David W.

    2012-01-01

    Current therapies for type 1 diabetes (T1D) involve insulin replacement or transplantation of insulin-secreting tissue, both of which suffer from numerous limitations and complications. Here, we show that subcutaneous transplants of embryonic brown adipose tissue (BAT) can correct T1D in streptozotocin-treated mice (both immune competent and immune deficient) with severely impaired glucose tolerance and significant loss of adipose tissue. BAT transplants result in euglycemia, normalized glucose tolerance, reduced tissue inflammation, and reversal of clinical diabetes markers such as polyuria, polydipsia, and polyphagia. These effects are independent of insulin but correlate with recovery of the animals’ white adipose tissue. BAT transplants lead to significant increases in adiponectin and leptin, but with levels that are static and not responsive to glucose. Pharmacological blockade of the insulin receptor in BAT transplant mice leads to impaired glucose tolerance, similar to what is seen in nondiabetic animals, indicating that insulin receptor activity plays a role in the reversal of diabetes. One possible candidate for activating the insulin receptor is IGF-1, whose levels are also significantly elevated in BAT transplant mice. Thus, we propose that the combined action of multiple adipokines establishes a new equilibrium in the animal that allows for chronic glycemic control without insulin. PMID:22315305

  13. Chord-based versus voxel-based methods of electron transport in the skeletal tissues

    International Nuclear Information System (INIS)

    Shah, Amish P.; Jokisch, Derek W.; Rajon, Didier A.; Watchman, Christopher J.; Patton, Phillip W.; Bolch, Wesley E.

    2005-01-01

    Anatomic models needed for internal dose assessment have traditionally been developed using mathematical surface equations to define organ boundaries, shapes, and their positions within the body. Many researchers, however, are now advocating the use of tomographic models created from segmented patient computed tomography (CT) or magnetic resonance (MR) scans. In the skeleton, however, the tissue structures of the bone trabeculae, marrow cavities, and endosteal layer are exceedingly small and of complex shape, and thus do not lend themselves easily to either stylistic representations or in-vivo CT imaging. Historically, the problem of modeling the skeletal tissues has been addressed through the development of chord-based methods of radiation particle transport, as given by studies at the University of Leeds (Leeds, UK) using a 44-year male subject. We have proposed an alternative approach to skeletal dosimetry in which excised sections of marrow-intact cadaver spongiosa are imaged directly via microCT scanning. The cadaver selected for initial investigation of this technique was a 66-year male subject of nominal body mass index (22.7 kg m -2 ). The objectives of the present study were to compare chord-based versus voxel-based methods of skeletal dosimetry using data from the UF 66-year male subject. Good agreement between chord-based and voxel-based transport was noted for marrow irradiation by either bone surface or bone volume sources up to 500-1000 keV (depending upon the skeletal site). In contrast, chord-based models of electron transport yielded consistently lower values of the self-absorbed fraction to marrow tissues than seen under voxel-based transport at energies above 100 keV, a feature directly attributed to the inability of chord-based models to account for nonlinear electron trajectories. Significant differences were also noted in the dosimetry of the endosteal layer (for all source tissues), with chord-based transport predicting a higher fraction of

  14. Increased lipids in non-lipogenic tissues are indicators of the severity of type 2 diabetes in mice

    DEFF Research Database (Denmark)

    Campbell-Tofte, J.; Hansen, H.S.; Mu, Huiling

    2007-01-01

    We hypothesised that the molecular changes triggered in type 2 diabetes might cause phenotypic changes in the lipid fraction of tissues. We compared tissue lipid profiles of inbred lean B6-Bom with those of the obese B6-ob/ob and diabetic BKS-db/db mice and found that genetically diabetic mice...... significantly accumulate fat (especially monounsaturated fatty acids, MUFA) in non-lipogenic tissues such as the eye (MUFA, 2-fold), skeletal muscle (MUFA, 13-fold) and pancreas (MUFA, 16-fold). In contrast, the B6-ob/ob mice which manifest a milder form of type 2 diabetes use the liver as their predominant...

  15. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, Annika; Siegmund, Birte J. [Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35 D-18057 Rostock (Germany); Grüttner, Cordula [Micromod Partikeltechnologie GmbH, Warnemünde, D-18115 Rostock (Germany); Kühn, Jens-Peter [Department of Radiology and Neuroradiology, Greifswald University Medical Center, D-17475 Greifswald (Germany); Frerich, Bernhard, E-mail: bernhard.frerich@med.uni-rostock.de [Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35 D-18057 Rostock (Germany)

    2015-04-15

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time. - Highlights: • Adipose tissue-derived stem cells (ASC) were labeled with magnetic iron oxide nanoparticles. • Nanoparticles influenced the adipogenic differentiation of ASC. • Labeled cells were seeded onto collagen scaffolds and implanted in SCID mice. • Nanoparticle-labeled cells were visualized in vivo using T2-weighted sequences. • Volume of collagen scaffolds was decreased over time after implantation.

  16. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    International Nuclear Information System (INIS)

    Kasten, Annika; Siegmund, Birte J.; Grüttner, Cordula; Kühn, Jens-Peter; Frerich, Bernhard

    2015-01-01

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time. - Highlights: • Adipose tissue-derived stem cells (ASC) were labeled with magnetic iron oxide nanoparticles. • Nanoparticles influenced the adipogenic differentiation of ASC. • Labeled cells were seeded onto collagen scaffolds and implanted in SCID mice. • Nanoparticle-labeled cells were visualized in vivo using T2-weighted sequences. • Volume of collagen scaffolds was decreased over time after implantation

  17. Treatment of tension-type headache with articulatory and suboccipital soft tissue therapy: A double-blind, randomized, placebo-controlled clinical trial.

    Science.gov (United States)

    Espí-López, Gemma V; Gómez-Conesa, Antonia; Gómez, Anna Arnal; Martínez, Josep Benítez; Pascual-Vaca, Angel Oliva; Blanco, Cleofás Rodríguez

    2014-10-01

    This study researches the effectiveness of two manual therapy treatments focused on the suboccipital region for tension-type headache. A randomized double-blind clinical trial was conducted over a period of four weeks with a follow-up at one month. Eighty-four patients with a mean age of 39.7 years (SD 11.4) with tension-type headache were assigned to 4 groups which included the following manual therapy treatment: suboccipital soft tissue inhibition; occiput-atlas-axis global manipulation; combination of both techniques; and a control group. The primary assessment consisted of collecting socio-demographic data and headache characteristics in a one-month base period, data such as age, gender, severity of pain, intensity and frequency of headache, among other. Outcome secondary assessment were: impact of headache, disability, ranges of motion of the craniocervical junction, frequency and intensity of headache, and pericranial tenderness. In the month prior to the study, average pain intensity, was rated at 6.49 (SD 1.69), and 66.7% subjects suffered headaches of moderate intensity. After 8 weeks, statistically significant improvements were noted. OAA manipulative treatment and combined therapy treatments proved to be more effective than suboccipital soft tissue inhibition for tension-type headache. The treatment with suboccipital soft tissue inhibition, despite producing less significant results, also has positive effects on different aspects of headache. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A cytogenetic analysis of 2 cases of phosphaturic mesenchymal tumor of mixed connective tissue type.

    Science.gov (United States)

    Graham, Rondell P; Hodge, Jennelle C; Folpe, Andrew L; Oliveira, Andre M; Meyer, Kevin J; Jenkins, Robert B; Sim, Franklin H; Sukov, William R

    2012-08-01

    Phosphaturic mesenchymal tumor of mixed connective tissue type is a rare, histologically distinctive mesenchymal neoplasm associated with tumor-induced osteomalacia resulting from production of the phosphaturic hormone fibroblast growth factor 23. Because of its rarity, specific genetic alterations that contribute to the pathogenesis of these tumors have yet to be elucidated. Herein, we report the abnormal karyotypes from 2 cases of confirmed phosphaturic mesenchymal tumor of mixed connective tissue type. G-banded analysis demonstrated the first tumor to have a karyotype of 46,Y,t(X;3;14)(q13;p25;q21)[15]/46XY[5], and the second tumor to have a karyotype of 46, XY,add(2)(q31),add(4)(q31.1)[2]/92,slx2[3]/46,sl,der(2)t(2;4)(q14.2;p14),der(4)t(2;4)(q14.2;p14),add(4)(q31.1)[10]/46,sdl,add(13)(q34)[4]/92,sdl2x2[1]. These represent what is, to our knowledge, the first examples of abnormal karyotypes obtained from phosphaturic mesenchymal tumor of mixed connective tissue type. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Aquaporin-4 autoantibodies in neuromyelitis optica spectrum disorders: comparison between tissue-based and cell-based indirect immunofluorescence assays

    Directory of Open Access Journals (Sweden)

    Chan Koon H

    2010-09-01

    Full Text Available Abstract Background Neuromyelitis optica spectrum disorders (NMOSD are severe central nervous system inflammatory demyelinating disorders (CNS IDD characterized by monophasic or relapsing, longitudinally extensive transverse myelitis (LETM and/or optic neuritis (ON. A significant proportion of NMOSD patients are seropositive for aquaporin-4 (AQP4 autoantibodies. We compared the AQP4 autoantibody detection rates of tissue-based indirect immunofluorescence assay (IIFA and cell-based IIFA. Methods Serum of Chinese CNS IDD patients were assayed for AQP4 autoantibodies by tissue-based IIFA using monkey cerebellum and cell-based IIFA using transfected HEK293 cells which express human AQP4 on their cell membranes. Results In total, 128 CNS IDD patients were studied. We found that 78% of NMO patients were seropositive for AQP4 autoantibodies by cell-based IIFA versus 61% by tissue-based IFA (p = 0.250, 75% of patients having relapsing myelitis (RM with LETM were seropositive by cell-based IIFA versus 50% by tissue-based IIFA (p = 0.250, and 33% of relapsing ON patients were seropositive by cell-based IIFA versus 22% by tissue-based IIFA (p = 1.000; however the differences were not statistically significant. All patients seropositive by tissue-based IIFA were also seropositive for AQP4 autoantibodies by cell-based IIFA. Among 29 NMOSD patients seropositive for AQP4 autoantibodies by cell-based IIFA, 20 (69% were seropositive by tissue-based IIFA. The 9 patients seropositive by cell-based IIFA while seronegative by tissue-based IIFA had NMO (3, RM with LETM (3, a single attack of LETM (1, relapsing ON (1 and a single ON attack (1. Among 23 NMO or RM patients seropositive for AQP4 autoantibodies by cell-based IIFA, comparison between those seropositive (n = 17 and seronegative (n = 6 by tissue-based IIFA revealed no differences in clinical and neuroradiological characteristics between the two groups. Conclusion Cell-based IIFA is slightly more sensitive

  20. TH-CD-206-01: Expectation-Maximization Algorithm-Based Tissue Mixture Quantification for Perfusion MRI

    International Nuclear Information System (INIS)

    Han, H; Xing, L; Liang, Z; Li, L

    2016-01-01

    Purpose: To investigate the feasibility of estimating the tissue mixture perfusions and quantifying cerebral blood flow change in arterial spin labeled (ASL) perfusion MR images. Methods: The proposed perfusion MR image analysis framework consists of 5 steps: (1) Inhomogeneity correction was performed on the T1- and T2-weighted images, which are available for each studied perfusion MR dataset. (2) We used the publicly available FSL toolbox to strip off the non-brain structures from the T1- and T2-weighted MR images. (3) We applied a multi-spectral tissue-mixture segmentation algorithm on both T1- and T2-structural MR images to roughly estimate the fraction of each tissue type - white matter, grey matter and cerebral spinal fluid inside each image voxel. (4) The distributions of the three tissue types or tissue mixture across the structural image array are down-sampled and mapped onto the ASL voxel array via a co-registration operation. (5) The presented 4-dimensional expectation-maximization (4D-EM) algorithm takes the down-sampled three tissue type distributions on perfusion image data to generate the perfusion mean, variance and percentage images for each tissue type of interest. Results: Experimental results on three volunteer datasets demonstrated that the multi-spectral tissue-mixture segmentation algorithm was effective to initialize tissue mixtures from T1- and T2-weighted MR images. Compared with the conventional ASL image processing toolbox, the proposed 4D-EM algorithm not only generated comparable perfusion mean images, but also produced perfusion variance and percentage images, which the ASL toolbox cannot obtain. It is observed that the perfusion contribution percentages may not be the same as the corresponding tissue mixture volume fractions estimated in the structural images. Conclusion: A specific application to brain ASL images showed that the presented perfusion image analysis method is promising for detecting subtle changes in tissue perfusions

  1. TH-CD-206-01: Expectation-Maximization Algorithm-Based Tissue Mixture Quantification for Perfusion MRI

    Energy Technology Data Exchange (ETDEWEB)

    Han, H; Xing, L [Stanford University, Palo Alto, CA (United States); Liang, Z [Stony Brook University, Stony Brook, NY (United States); Li, L [City University of New York College of Staten Island, Staten Island, NY (United States)

    2016-06-15

    Purpose: To investigate the feasibility of estimating the tissue mixture perfusions and quantifying cerebral blood flow change in arterial spin labeled (ASL) perfusion MR images. Methods: The proposed perfusion MR image analysis framework consists of 5 steps: (1) Inhomogeneity correction was performed on the T1- and T2-weighted images, which are available for each studied perfusion MR dataset. (2) We used the publicly available FSL toolbox to strip off the non-brain structures from the T1- and T2-weighted MR images. (3) We applied a multi-spectral tissue-mixture segmentation algorithm on both T1- and T2-structural MR images to roughly estimate the fraction of each tissue type - white matter, grey matter and cerebral spinal fluid inside each image voxel. (4) The distributions of the three tissue types or tissue mixture across the structural image array are down-sampled and mapped onto the ASL voxel array via a co-registration operation. (5) The presented 4-dimensional expectation-maximization (4D-EM) algorithm takes the down-sampled three tissue type distributions on perfusion image data to generate the perfusion mean, variance and percentage images for each tissue type of interest. Results: Experimental results on three volunteer datasets demonstrated that the multi-spectral tissue-mixture segmentation algorithm was effective to initialize tissue mixtures from T1- and T2-weighted MR images. Compared with the conventional ASL image processing toolbox, the proposed 4D-EM algorithm not only generated comparable perfusion mean images, but also produced perfusion variance and percentage images, which the ASL toolbox cannot obtain. It is observed that the perfusion contribution percentages may not be the same as the corresponding tissue mixture volume fractions estimated in the structural images. Conclusion: A specific application to brain ASL images showed that the presented perfusion image analysis method is promising for detecting subtle changes in tissue perfusions

  2. Investigating the effects of ABC transporter-based acquired drug resistance mechanisms at the cellular and tissue scale.

    Science.gov (United States)

    Liu, Cong; Krishnan, J; Xu, Xiao Yun

    2013-03-01

    In this paper we systematically investigate the effects of acquired drug resistance at the cellular and tissue scale, with a specific focus on ATP-binding cassette (ABC) transporter-based mechanisms and contrast this with other representative intracellular resistance mechanisms. This is done by developing in silico models wherein the drug resistance mechanism is overlaid on a coarse-grained description of apoptosis; these cellular models are coupled with interstitial drug transport, allowing for a transparent examination of the effect of acquired drug resistances at the tissue level. While ABC transporter-mediated resistance mechanisms counteract drug effect at the cellular level, its tissue-level effect is more complicated, revealing unexpected trends in tissue response as drug stimuli are systematically varied. Qualitatively different behaviour is observed in other drug resistance mechanisms. Overall the paper (i) provides insight into the tissue level functioning of a particular resistance mechanism, (ii) shows that this is very different from other resistance mechanisms of an apparently similar type, and (iii) demonstrates a concrete instance of how the functioning of a negative feedback based cellular adaptive mechanism can have unexpected higher scale effects.

  3. Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue

    Directory of Open Access Journals (Sweden)

    Colin J. Palmer

    2017-10-01

    Conclusions: Cdkal1 is necessary for normal mitochondrial morphology and function in adipose tissue. These results suggest that the type 2 diabetes susceptibility gene CDKAL1 has novel functions in regulating mitochondrial activity.

  4. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.

    Science.gov (United States)

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2015-10-01

    Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The dynamics of the microcirculation in the subcutaneous adipose tissue is impaired in the postprandial state in type 2 diabetes

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Bülow, Jens

    2011-01-01

    that the postprandial adipose tissue blood flow (ATBF) increase is accompanied by capillary recruitment in healthy subjects. The aim of the present study was to investigate whether the postprandial capillary recruitment in adipose tissue is affected in type 2 diabetes mellitus. Eight type 2 diabetic overweight male....... No significant changes were found in the ATBF or in capillary recruitment in the type 2 diabetic subjects. There was no significant blood flow or microvascular blood volume changes in forearm skeletal muscle in either of the groups. CONCLUSION: After an oral glucose load, the abdominal ATBF and microvascular...... blood volume changes in abdominal subcutaneous adipose tissue are impaired in overweight type 2 diabetic subjects compared to weight-matched healthy subjects....

  6. Technique: imaging earliest tooth development in 3D using a silver-based tissue contrast agent.

    Science.gov (United States)

    Raj, Muhammad T; Prusinkiewicz, Martin; Cooper, David M L; George, Belev; Webb, M Adam; Boughner, Julia C

    2014-02-01

    Looking in microscopic detail at the 3D organization of initiating teeth within the embryonic jaw has long-proved technologically challenging because of the radio-translucency of these tiny un-mineralized oral tissues. Yet 3D image data showing changes in the physical relationships among developing tooth and jaw tissues are vital to understand the coordinated morphogenesis of vertebrate teeth and jaws as an animal grows and as species evolve. Here, we present a new synchrotron-based scanning solution to image odontogenesis in 3D and in histological detail using a silver-based contrast agent. We stained fixed, intact wild-type mice aged embryonic (E) day 10 to birth with 1% Protargol-S at 37°C for 12-32 hr. Specimens were scanned at 4-10 µm pixel size at 28 keV, just above the silver K-edge, using micro-computed tomography (µCT) at the Canadian Light Source synchrotron. Synchrotron µCT scans of silver-stained embryos showed even the earliest visible stages of tooth initiation, as well as many other tissue types and structures, in histological detail. Silver stain penetration was optimal for imaging structures in intact embryos E15 and younger. This silver stain method offers a powerful yet straightforward approach to visualize at high-resolution and in 3D the earliest stages of odontogenesis in situ, and demonstrates the important of studying the tooth organ in all three planes of view. Copyright © 2013 Wiley Periodicals, Inc.

  7. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples

    Science.gov (United States)

    Samani, Abbas; Zubovits, Judit; Plewes, Donald

    2007-03-01

    Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed.

  8. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples

    International Nuclear Information System (INIS)

    Samani, Abbas; Zubovits, Judit; Plewes, Donald

    2007-01-01

    Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed

  9. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples

    Energy Technology Data Exchange (ETDEWEB)

    Samani, Abbas [Department of Medical Biophysics/Electrical and Computer Engineering, University of Western Ontario, Medical Sciences Building, London, Ontario, N6A 5C1 (Canada); Zubovits, Judit [Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada); Plewes, Donald [Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada)

    2007-03-21

    Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed.

  10. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration

    DEFF Research Database (Denmark)

    Ohki, Makiko; Ohki, Yuichi; Ishihara, Makoto

    2010-01-01

    tissue regeneration is not well understood. Bone marrow (BM)-derived myeloid cells facilitate angiogenesis during tissue regeneration. Here, we report that a serpin-resistant form of tPA by activating the extracellular proteases matrix metalloproteinase-9 and plasmin expands the myeloid cell pool......-A. Remarkably, transplantation of BM-derived tPA-mobilized CD11b(+) cells and VEGFR-1(+) cells, but not carrier-mobilized cells or CD11b(-) cells, accelerates neovascularization and ischemic tissue regeneration. Inhibition of VEGF signaling suppresses tPA-induced neovascularization in a model of hind limb...... and mobilizes CD45(+)CD11b(+) proangiogenic, myeloid cells, a process dependent on vascular endothelial growth factor-A (VEGF-A) and Kit ligand signaling. tPA improves the incorporation of CD11b(+) cells into ischemic tissues and increases expression of neoangiogenesis-related genes, including VEGF...

  11. Detection of Benzoic Acid by an Amperometric Inhibitor Biosensor Based on Mushroom Tissue Homogenate

    Directory of Open Access Journals (Sweden)

    Mustafa Kemal Sezgintürk

    2005-01-01

    Full Text Available An amperometric benzoic acid-sensing inhibitor biosensor was prepared by immobilizing mushroom (Agaricus bisporus tissue homogenate on a Clark-type oxygen electrode. The effects of the quantity of mushroom tissue homogenate, the quantity of gelatin and the effect of the crosslinking agent glutaraldehyde percent on the biosensor were studied. The optimum concentration of phenol used as substrate was 200 μM. The bioanalytical properties of the proposed biosensor, such as dependence of the biosensor response on the pH value and the temperature, were investigated. The biosensor responded linearly to benzoic acid in a concentration range of 25–100 μM. Standard deviation (s.d. was ±0.49 μM for 7 successive determinations at a concentration of 75 μM. The inhibitor biosensor based on mushroom tissue homogenate was applied for the determination of benzoic acid in fizzy lemonade, some fruits and groundwater samples. Results were compared to those obtained using AOAC method, showing a good agreement.

  12. Fiber optic based multiparametric spectroscopy in vivo: Toward a new quantitative tissue vitality index

    Science.gov (United States)

    Kutai-Asis, Hofit; Barbiro-Michaely, Efrat; Deutsch, Assaf; Mayevsky, Avraham

    2006-02-01

    In our previous publication (Mayevsky et al SPIE 5326: 98-105, 2004) we described a multiparametric fiber optic system enabling the evaluation of 4 physiological parameters as indicators of tissue vitality. Since the correlation between the various parameters may differ in various pathophysiological conditions there is a need for an objective quantitative index that will integrate the relative changes measured in real time by the multiparametric monitoring system into a single number-vitality index. Such an approach to calculate tissue vitality index is critical for the possibility to use such an instrument in clinical environments. In the current presentation we are reporting our preliminary results indicating that calculation of an objective tissue vitality index is feasible. We used an intuitive empirical approach based on the comparison between the calculated index by the computer and the subjective evaluation made by an expert in the field of physiological monitoring. We used the in vivo brain of rats as an animal model in our current studies. The rats were exposed to anoxia, ischemia and cortical spreading depression and the responses were recorded in real time. At the end of the monitoring session the results were analyzed and the tissue vitality index was calculated offline. Mitochondrial NADH, tissue blood flow and oxy-hemoglobin were used to calculate the vitality index of the brain in vivo, where each parameter received a different weight, in each experiment type based on their significance. It was found that the mitochondrial NADH response was the main factor affected the calculated vitality index.

  13. Hydrogel based cartilaginous tissue regeneration: recent insights and technologies.

    Science.gov (United States)

    Chuah, Yon Jin; Peck, Yvonne; Lau, Jia En Josias; Hee, Hwan Tak; Wang, Dong-An

    2017-03-28

    Hydrogels have been extensively employed as an attractive biomaterial to address numerous existing challenges in the fields of regenerative medicine and research because of their unique properties such as the capability to encapsulate cells, high water content, ease of modification, low toxicity, injectability, in situ spatial fit and biocompatibility. These inherent properties have created many opportunities for hydrogels as a scaffold or a cell/drug carrier in tissue regeneration, especially in the field of cartilaginous tissue such as articular cartilage and intervertebral discs. A concise overview of the anatomy/physiology of these cartilaginous tissues and their pathophysiology, epidemiology and existing clinical treatments will be briefly described. This review article will discuss the current state-of-the-art of various polymers and developing strategies that are explored in establishing different technologies for cartilaginous tissue regeneration. In particular, an innovative approach to generate scaffold-free cartilaginous tissue via a transient hydrogel scaffolding system for disease modeling to pre-clinical trials will be examined. Following that, the article reviews numerous hydrogel-based medical implants used in clinical treatment of osteoarthritis and degenerated discs. Last but not least, the challenges and future directions of hydrogel based medical implants in the regeneration of cartilaginous tissue are also discussed.

  14. Novel wearable-type biometric devices based on skin tissue optics with multispectral LED-photodiode matrix

    Science.gov (United States)

    Jo, Young Chang; Kim, Hae Na; Kang, Jae Hwan; Hong, Hyuck Ki; Choi, Yeon Shik; Jung, Suk Won; Kim, Sung Phil

    2017-04-01

    In this study, we examined the possibility of using a multispectral skin photomatrix (MSP) module as a novel biometric device. The MSP device measures optical patterns of the wrist skin tissue. Optical patterns consist of 2 × 8 photocurrent intensities of photodiode arrays, which are generated by optical transmission and diffuse reflection of photons from LED light sources with variable wavelengths into the wrist skin tissue. Optical patterns detected by the MSP device provide information on both the surface and subsurface characteristics of the human skin tissue. We found that in the 21 subjects we studied, they showed their unique characteristics, as determined using several wavelengths of light. The experimental results show that the best personal identification accuracy can be acquired using a combination of infrared light and yellow light. This novel biometric device, the MSP module, exhibited an excellent false acceptance rate (FAR) of 0.3% and a false rejection rate (FRR) of 0.0%, which are better than those of commercialized biometric devices such as a fingerprint biometric system. From these experimental results, we found that people exhibit unique optical patterns of their inner-wrist skin tissue and this uniqueness could be used for developing novel high-accuracy personal identification devices.

  15. Local angiotensin II promotes adipogenic differentiation of human adipose tissue mesenchymal stem cells through type 2 angiotensin receptor

    Directory of Open Access Journals (Sweden)

    Veronika Y. Sysoeva

    2017-12-01

    Full Text Available Obesity is often associated with high systemic and local activity of renin-angiotensin system (RAS. Mesenchymal stem cells of adipose tissue are the main source of adipocytes. The aim of this study was to clarify how local RAS could control adipose differentiation of human adipose tissue derived mesenchymal stem cells (ADSCs. We examined the distribution of angiotensin receptor expressing cells in human adipose tissue and found that type 1 and type 2 receptors are co-expressed in its stromal compartment, which is known to contain mesenchymal stem cells. To study the expression of receptors specifically in ADSCs we have isolated them from adipose tissue. Up to 99% of cultured ADSCs expressed angiotensin II (AngII receptor type 1 (AT1. Using the analysis of Ca2+ mobilization in single cells we found that only 5.2 ± 2.7% of ADSCs specifically respond to serial Ang II applications via AT1 receptor and expressed this receptor constantly. This AT1const ADSCs subpopulation exhibited increased adipose competency, which was triggered by endogenous AngII. Inhibitory and expression analyses showed that AT1const ADSCs highly co-express AngII type 2 receptor (AT2, which was responsible for increased adipose competency of this ADSC subpopulation.

  16. Tissue-based standoff biosensors for detecting chemical warfare agents

    Science.gov (United States)

    Greenbaum, Elias; Sanders, Charlene A.

    2003-11-18

    A tissue-based, deployable, standoff air quality sensor for detecting the presence of at least one chemical or biological warfare agent, includes: a cell containing entrapped photosynthetic tissue, the cell adapted for analyzing photosynthetic activity of the entrapped photosynthetic tissue; means for introducing an air sample into the cell and contacting the air sample with the entrapped photosynthetic tissue; a fluorometer in operable relationship with the cell for measuring photosynthetic activity of the entrapped photosynthetic tissue; and transmitting means for transmitting analytical data generated by the fluorometer relating to the presence of at least one chemical or biological warfare agent in the air sample, the sensor adapted for deployment into a selected area.

  17. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering

    International Nuclear Information System (INIS)

    Gautam, Sneh; Chou, Chia-Fu; Dinda, Amit K.; Potdar, Pravin D.; Mishra, Narayan C.

    2014-01-01

    In the present study, a tri-polymer polycaprolactone (PCL)/gelatin/collagen type I composite nanofibrous scaffold has been fabricated by electrospinning for skin tissue engineering and wound healing applications. Firstly, PCL/gelatin nanofibrous scaffold was fabricated by electrospinning using a low cost solvent mixture [chloroform/methanol for PCL and acetic acid (80% v/v) for gelatin], and then the nanofibrous PCL/gelatin scaffold was modified by collagen type I (0.2–1.5 wt.%) grafting. Morphology of the collagen type I-modified PCL/gelatin composite scaffold that was analyzed by field emission scanning electron microscopy (FE-SEM), showed that the fiber diameter was increased and pore size was decreased by increasing the concentration of collagen type I. Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric (TG) analysis indicated the surface modification of PCL/gelatin scaffold by collagen type I immobilization on the surface of the scaffold. MTT assay demonstrated the viability and high proliferation rate of L929 mouse fibroblast cells on the collagen type I-modified composite scaffold. FE-SEM analysis of cell-scaffold construct illustrated the cell adhesion of L929 mouse fibroblasts on the surface of scaffold. Characteristic cell morphology of L929 was also observed on the nanofiber mesh of the collagen type I-modified scaffold. Above results suggest that the collagen type I-modified PCL/gelatin scaffold was successful in maintaining characteristic shape of fibroblasts, besides good cell proliferation. Therefore, the fibroblast seeded PCL/gelatin/collagen type I composite nanofibrous scaffold might be a potential candidate for wound healing and skin tissue engineering applications. - Highlights: • PCL/gelatin/collagen type I scaffold was fabricated for skin tissue engineering. • PCL/gelatin/collagen type I scaffold showed higher fibroblast growth than PCL/gelatin one. • PCL/gelatin/collagen type I might be one of the ideal scaffold for

  18. An antibody based approach for multi-coloring osteogenic and chondrogenic proteins in tissue engineered constructs.

    Science.gov (United States)

    Leferink, Anne M; Reis, Diogo Santos; van Blitterswijk, Clemens A; Moroni, Lorenzo

    2018-04-11

    When tissue engineering strategies rely on the combination of three-dimensional (3D) polymeric or ceramic scaffolds with cells to culture implantable tissue constructs in vitro, it is desirable to monitor tissue growth and cell fate to be able to more rationally predict the quality and success of the construct upon implantation. Such a 3D construct is often referred to as a 'black-box' since the properties of the scaffolds material limit the applicability of most imaging modalities to assess important construct parameters. These parameters include the number of cells, the amount and type of tissue formed and the distribution of cells and tissue throughout the construct. Immunolabeling enables the spatial and temporal identification of multiple tissue types within one scaffold without the need to sacrifice the construct. In this report, we concisely review the applicability of antibodies (Abs) and their conjugation chemistries in tissue engineered constructs. With some preliminary experiments, we show an efficient conjugation strategy to couple extracellular matrix Abs to fluorophores. The conjugated probes proved to be effective in determining the presence of collagen type I and type II on electrospun and additive manufactured 3D scaffolds seeded with adult human bone marrow derived mesenchymal stromal cells. The conjugation chemistry applied in our proof of concept study is expected to be applicable in the coupling of any other fluorophore or particle to the Abs. This could ultimately lead to a library of probes to permit high-contrast imaging by several imaging modalities.

  19. Connective Tissue Disorders

    Science.gov (United States)

    ... of connective tissue. Over 200 disorders that impact connective tissue. There are different types: Genetic disorders, such as Ehlers-Danlos syndrome, Marfan syndrome, and osteogenesis imperfecta Autoimmune disorders, such as lupus and scleroderma Cancers, like some types of soft tissue sarcoma Each ...

  20. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan

    2018-05-30

    Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.

  1. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends.

    Science.gov (United States)

    Qazi, Taimoor H; Mooney, David J; Pumberger, Matthias; Geissler, Sven; Duda, Georg N

    2015-01-01

    Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions

  2. Tissue-engineered cartilaginous constructs for the treatment of caprine cartilage defects, including distribution of laminin and type IV collagen.

    Science.gov (United States)

    Jeng, Lily; Hsu, Hu-Ping; Spector, Myron

    2013-10-01

    The purpose of this study was the immunohistochemical evaluation of (1) cartilage tissue-engineered constructs; and (2) the tissue filling cartilage defects in a goat model into which the constructs were implanted, particularly for the presence of the basement membrane molecules, laminin and type IV collagen. Basement membrane molecules are localized to the pericellular matrix in normal adult articular cartilage, but have not been examined in tissue-engineered constructs cultured in vitro or in tissue filling cartilage defects into which the constructs were implanted. Cartilaginous constructs were engineered in vitro using caprine chondrocyte-seeded type II collagen scaffolds. Autologous constructs were implanted into 4-mm-diameter defects created to the tidemark in the trochlear groove in the knee joints of skeletally mature goats. Eight weeks after implantation, the animals were sacrificed. Constructs underwent immunohistochemical and histomorphometric evaluation. Widespread staining for the two basement membrane molecules was observed throughout the extracellular matrix of in vitro and in vivo samples in a distribution unlike that previously reported for cartilage. At sacrifice, 70% of the defect site was filled with reparative tissue, which consisted largely of fibrous tissue and some fibrocartilage, with over 70% of the reparative tissue bonded to the adjacent host tissue. A novel finding of this study was the observation of laminin and type IV collagen in in vitro engineered cartilaginous constructs and in vivo cartilage repair samples from defects into which the constructs were implanted, as well as in normal caprine articular cartilage. Future work is needed to elucidate the role of basement membrane molecules during cartilage repair and regeneration.

  3. Comparative effects on type 2 diabetes of mesenchymal stem cells derived from bone marrow and adipose tissue

    Directory of Open Access Journals (Sweden)

    Li ZANG

    2016-08-01

    Full Text Available Objective  To compare the effects on type 2 diabetes of mesenchymal stem cells (MSCs derived from bone marrow and adipose tissue. Methods  Thirty type 2 diabetic rat models were established by an eight weeks high-fat diet (HFD with a low dose streptozotocin (STZ, 25mg/kg, and randomly assigned into three groups (10 each: diabetes group (T2DM, bone marrow MSCs transplantation group (BMSC and adipose tissue MSCs transplantation group (ADSC. Ten normal rats were set as control. MSCs were isolated from bone marrow or inguinal adipose tissue of normal rats. One week after STZ injection, 3×10 6 MSCs suspended in 1ml PBS were infused into rats via tail vein. The blood glucose was measured every day after MSCs transplantation, the intraperitoneal glucose tolerance test (IPGTT and intraperitoneal insulin tolerance test (IPITT were performed the 7th day after transplantation to evaluate the effects of MSCs on diabetic rats. Pancreatic tissues were collected for insulin/glucagon immunofluorescence staining. Results  After MSCs transplantation, the blood glucose decreased gradually and continuously in type 2 diabetic rats, with glucose tolerance and insulin sensitivity improved greatly. The improved insulin sensitivity was further confirmed by a decreased HOMA-IR (homeostasis model of assessment for insulin resistance index and increased pancreas islet β-cells (P<0.05. However, no significant differences were observed between BMSC and ADSC group. Conclusion  Both BMSC and ADSC have the same effect on type 2 diabetic rats, so the ADSC will be the ideal stem cells for treatment of type 2 diabetes. DOI: 10.11855/j.issn.0577-7402.2016.07.03

  4. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  5. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.

    Science.gov (United States)

    Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya

    2016-07-01

    Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Selecting "saviour siblings": reconsidering the regulation in Australia of pre-implantation genetic diagnosis in conjunction with tissue typing.

    Science.gov (United States)

    Taylor-Sands, Michelle

    2007-05-01

    In recent years, pre-implantation genetic diagnosis (PGD) has been developed to enable the selection of a tissue type matched "saviour sibling" for a sick child. This article examines the current regulatory framework governing PGD in Australia. The availability of PGD in Australia to create a saviour sibling depends on the regulation of ART services by each State and Territory. The limitations on the use of PGD vary throughout Australia, according to the level of regulation of ART in each jurisdiction. This article considers the limitations on the use of PGD for tissue typing in Australia and argues that some of these should be removed for a more consistent national approach. In particular, the focus in ART legislation on the "paramount interests" of the child to be born is inappropriate for the application of tissue typing, which necessarily involves the interests of other family members.

  7. Vascular and metabolic effects of adrenaline in adipose tissue in type 2 diabetes

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Galbo, H

    2012-01-01

    Objective:The aim was to investigate adipose tissue vascular and metabolic effects of an adrenaline infusion in vivo in subjects with and without type 2 diabetes mellitus (T2DM).Design:Clinical intervention study with 1-h intravenous adrenaline infusion.Subjects:Eight male overweight T2DM subjects...... and eight male weight-matched, non-T2DM subjects were studied before, during and after an 1-h intravenous adrenaline infusion. Adipose tissue blood flow (ATBF) was determined by Xenon wash-out technique, and microvascular volume in the adipose tissue was studied by contrast-enhanced ultrasound imaging...... infusion. One hour post adrenaline, ATBF was still increased in overweight T2DM subjects. Adrenaline increased microvascular volume in non-T2DM subjects while this response was impaired in overweight T2DM subjects. Adrenaline-induced increase in lipolysis was similar in both groups, but NEFA output from...

  8. An electromechanical based deformable model for soft tissue simulation.

    Science.gov (United States)

    Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan

    2009-11-01

    Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.

  9. Soft-tissue segmentation and three-dimensional display with MR imaging

    International Nuclear Information System (INIS)

    Koenig, H.A.; Laub, G.

    1987-01-01

    The purpose of this study is to design a method capable of segmenting different soft-tissue types. The investigated cases were measured using fast three-dimensional (3D) sequences (FISP of fast low-angle shot) with isotropic voxel resolution of nearly 1 mm. The segmentation is based on the assumption that different tissue types are discernible by their morphologic and/or physical features. Surface reconstructions are then used to display specific tissue types from different viewing directions. This automatic procedure is applied to different head cases to represent specific tissues in 3D format. With 3D techniques, rotation of classified objects in cine format is performed for better topologic correlation and therapeutic planning

  10. Tissue elasticity displayed by elastography and its correlation with the characteristics of collagen type I and type III in prostatic stroma

    Directory of Open Access Journals (Sweden)

    Jie Tang

    2014-04-01

    Full Text Available We investigated the prostate elasticity displayed by elastography and its correlation with the content and distribution of collagen type I (Col1 and type III (Col3. A total of 62 patients underwent transrectal real-time tissue elastography (TRTE examinations. Targeted biopsies were performed after 12-core systematic biopsy. The tissues corresponding to the elastograms were stained with picric acid-sirius red. The distribution of Col1 and type Col3 was observed, and the collagen volume fraction (CVF of these two types of collagen fibers was calculated. The CVFs of Col1 in the stiff and soft groups were 0.05 ± 0.02 and 0.02 ± 0.01 (P = 0.002, respectively. The CVFs of Col3 in the stiff and soft groups were 0.05 ± 0.04 and 0.07 ± 0.03 (P = 0.13, respectively. The circular analysis results showed that collagen fibers were disorganized both in the soft and stiff groups. Col1 and Col3 were mainly cross-linked, and some parallelization was observed in the sections. The distributions of Col1 and Col3 were different between the stiff and soft groups (P = 0.03. In conclusion, the texture of the prostate is due to the content of Col1 and its relative correlation with Col3.

  11. Tissue elasticity displayed by elastography and its correlation with the characteristics of collagen type I and type III in prostatic stroma.

    Science.gov (United States)

    Tang, Jie; Zhang, Yan; Zhang, Ming-Bo; Li, Yan-Mi; Fei, Xiang; Song, Zhi-Gang

    2014-01-01

    We investigated the prostate elasticity displayed by elastography and its correlation with the content and distribution of collagen type I (Col1) and type III (Col3). A total of 62 patients underwent transrectal real-time tissue elastography (TRTE) examinations. Targeted biopsies were performed after 12-core systematic biopsy. The tissues corresponding to the elastograms were stained with picric acid-sirius red. The distribution of Col1 and type Col3 was observed, and the collagen volume fraction (CVF) of these two types of collagen fibers was calculated. The CVFs of Col1 in the stiff and soft groups were 0.05 ± 0.02 and 0.02 ± 0.01 (P = 0.002), respectively. The CVFs of Col3 in the stiff and soft groups were 0.05 ± 0.04 and 0.07 ± 0.03 (P = 0.13), respectively. The circular analysis results showed that collagen fibers were disorganized both in the soft and stiff groups. Col1 and Col3 were mainly cross-linked, and some parallelization was observed in the sections. The distributions of Col1 and Col3 were different between the stiff and soft groups (P = 0.03). In conclusion, the texture of the prostate is due to the content of Col1 and its relative correlation with Col3.

  12. Sensing in tissue bioreactors

    Science.gov (United States)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  13. Use of focused ultrasonication in activity-based profiling of deubiquitinating enzymes in tissue

    OpenAIRE

    Nanduri, Bindu; Shack, Leslie A.; Rai, Aswathy N.; Epperson, William B.; Baumgartner, Wes; Schmidt, Ty B.; Edelmann, Mariola J.

    2016-01-01

    To develop a reproducible tissue-lysis method that retains enzyme function for activity-based protein profiling, we compared four different tissue lysis methods of bovine lung tissue: focused ultrasonication, standard sonication, mortar & pestle method, and homogenization combined with standard sonication. Focused ultrasonication and mortar & pestle methods were sufficiently effective for activity-based profiling of deubiquitinases in tissue and focused ultrasonication had also the fastest pr...

  14. Tissue artifact removal from respiratory signals based on empirical mode decomposition.

    Science.gov (United States)

    Liu, Shaopeng; Gao, Robert X; John, Dinesh; Staudenmayer, John; Freedson, Patty

    2013-05-01

    On-line measurement of respiration plays an important role in monitoring human physical activities. Such measurement commonly employs sensing belts secured around the rib cage and abdomen of the test object. Affected by the movement of body tissues, respiratory signals typically have a low signal-to-noise ratio. Removing tissue artifacts therefore is critical to ensuring effective respiration analysis. This paper presents a signal decomposition technique for tissue artifact removal from respiratory signals, based on the empirical mode decomposition (EMD). An algorithm based on the mutual information and power criteria was devised to automatically select appropriate intrinsic mode functions for tissue artifact removal and respiratory signal reconstruction. Performance of the EMD-algorithm was evaluated through simulations and real-life experiments (N = 105). Comparison with low-pass filtering that has been conventionally applied confirmed the effectiveness of the technique in tissue artifacts removal.

  15. Conservative treatment of bone tissue metabolic disorders among patients with vitamin D-dependent rickets type II with genetic abnormality of type I collagen formation

    Directory of Open Access Journals (Sweden)

    S.M. Martsyniak

    2017-08-01

    Full Text Available Background. The purpose of the article is to determine the effect of conservative therapy on genetically caused disorders of bone tissue metabolism in patients with vitamin D-dependent rickets type II and genetic abnormality of type I collagen formation (VDDR(COL1. Materials and methods. At the premises of consulting and outpatient department of SI “Institute of Traumatology and Orthopaedics of the NAMS of Ukraine”, 13 patients having VDDR type II and genetic damage of type I collagen formation were examined and treated. The medical treatment was conducted in four stages. The first stage included full examination of patients (calcium and phosphorus levels in the blood serum and their urinary excretion, as well as determination of calcidiol and calcitriol serum levels, indicators of parathyroid hormone and osteocalcin, and a marker of bone formation P1NP and osteoresorption b-CTx. At this stage, children were obligated to undergo a genetic test to detect changes (polymorphism in alleles of receptors to vitamin D and type I collagen. Besides genetic tests, examinations at the other stages were conducted in full. Results. The study has shown the following. The genetically caused abnormality of reception to vitamin D results into substantial accumulation of vitamin D active metabolite in the blood serum. When combined with gene­tic abnormality of type I collagen formation, it significantly affected bone formation and destruction processes that causes development of osteomalacia (parathormone — vitamin D — osteocalcin system. The comprehensive study of vitamin D metabolism and biochemical vitals of bone tissue in patients having VDDR (COL1 brought us to understanding of some issues related to pathogenesis and nature of osteomalacia and, in future, osteoporotic changes on different levels, ensured us to express these changes by corresponding indices in the biochemical research and, finally, to develop appropriate schemes for the treatment of

  16. Tissues viability and blood flow sensing based on a new nanophotonics method

    Science.gov (United States)

    Yariv, Inbar; Haddad, Menashe; Duadi, Hamootal; Motiei, Menachem; Fixler, Dror

    2018-02-01

    Extracting optical parameters of turbid medium (e.g. tissue) by light reflectance signals is of great interest and has many applications in the medical world, life science, material analysis and biomedical optics. The reemitted light from an irradiated tissue is affected by the light's interaction with the tissue components and contains the information about the tissue structure and physiological state. In this research we present a novel noninvasive nanophotonics technique, i.e., iterative multi-plane optical property extraction (IMOPE) based on reflectance measurements. The reflectance based IMOPE was applied for tissue viability examination, detection of gold nanorods (GNRs) within the blood circulation as well as blood flow detection using the GNRs presence within the blood vessels. The basics of the IMOPE combine a simple experimental setup for recording light intensity images with an iterative Gerchberg-Saxton (G-S) algorithm for reconstructing the reflected light phase and computing its standard deviation (STD). Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. This work presents reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography) to low quantities of GNRs (<3 mg).

  17. Terahertz pulsed imaging of freshly excised human colonic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Caroline B; Gibson, Adam P [Department of Medical Physics and Bioengineering, University College London, London, WC1E 6BT (United Kingdom); Fitzgerald, Anthony; Wallace, Vincent P [School of Physics, University of Western Australia, Crawley 6009 (Australia); Reese, George; Tekkis, Paris [Division of Surgery, Chelsea and Westminster Campus, Imperial College London, London (United Kingdom); Goldin, Robert [Centre for Pathology, Imperial College London, St Mary' s Campus, London (United Kingdom); O' Kelly, P S [TeraView Ltd, Platinum Building, St John' s Innovation Park, Cowley Road, Cambridge, CB4 0WS (United Kingdom); Pickwell-MacPherson, Emma, E-mail: c.reid@medphys.ucl.ac.uk [Department of Electronic Engineering, Chinese University of Hong Kong, Shatin, NT (Hong Kong)

    2011-07-21

    We present the results from a feasibility study which measures properties in the terahertz frequency range of excised cancerous, dysplastic and healthy colonic tissues from 30 patients. We compare their absorption and refractive index spectra to identify trends which may enable different tissue types to be distinguished. In addition, we present statistical models based on variations between up to 17 parameters calculated from the reflected time and frequency domain signals of all the measured tissues. These models produce a sensitivity of 82% and a specificity of 77% in distinguishing between healthy and all diseased tissues and a sensitivity of 89% and a specificity of 71% in distinguishing between dysplastic and healthy tissues. The contrast between the tissue types was supported by histological staining studies which showed an increased vascularity in regions of increased terahertz absorption.

  18. Terahertz pulsed imaging of freshly excised human colonic tissues

    International Nuclear Information System (INIS)

    Reid, Caroline B; Gibson, Adam P; Fitzgerald, Anthony; Wallace, Vincent P; Reese, George; Tekkis, Paris; Goldin, Robert; O'Kelly, P S; Pickwell-MacPherson, Emma

    2011-01-01

    We present the results from a feasibility study which measures properties in the terahertz frequency range of excised cancerous, dysplastic and healthy colonic tissues from 30 patients. We compare their absorption and refractive index spectra to identify trends which may enable different tissue types to be distinguished. In addition, we present statistical models based on variations between up to 17 parameters calculated from the reflected time and frequency domain signals of all the measured tissues. These models produce a sensitivity of 82% and a specificity of 77% in distinguishing between healthy and all diseased tissues and a sensitivity of 89% and a specificity of 71% in distinguishing between dysplastic and healthy tissues. The contrast between the tissue types was supported by histological staining studies which showed an increased vascularity in regions of increased terahertz absorption.

  19. Development and Tissue Origins of the Mammalian Cranial Base

    Science.gov (United States)

    Iseki, S.; Bamforth, S. D.; Olsen, B. R.; Morriss-Kay, G. M.

    2008-01-01

    The vertebrate cranial base is a complex structure composed of bone, cartilage and other connective tissues underlying the brain; it is intimately connected with development of the face and cranial vault. Despite its central importance in craniofacial development, morphogenesis and tissue origins of the cranial base have not been studied in detail in the mouse, an important model organism. We describe here the location and time of appearance of the cartilages of the chondrocranium. We also examine the tissue origins of the mouse cranial base using a neural crest cell lineage cell marker, Wnt1-Cre/R26R, and a mesoderm lineage cell marker, Mesp1-Cre/R26R. The chondrocranium develops between E11 and E16 in the mouse, beginning with development of the caudal (occipital) chondrocranium, followed by chondrogenesis rostrally to form the nasal capsule, and finally fusion of these two parts via the midline central stem and the lateral struts of the vault cartilages. X-Gal staining of transgenic mice from E8.0 to 10 days post-natal showed that neural crest cells contribute to all of the cartilages that form the ethmoid, presphenoid, and basisphenoid bones with the exception of the hypochiasmatic cartilages. The basioccipital bone and non-squamous parts of the temporal bones are mesoderm derived. Therefore the prechordal head is mostly composed of neural crest-derived tissues, as predicted by the New Head Hypothesis. However, the anterior location of the mesoderm-derived hypochiasmatic cartilages, which are closely linked with the extra-ocular muscles, suggests that some tissues associated with the visual apparatus may have evolved independently of the rest of the “New Head”. PMID:18680740

  20. Heavy Metal Content in Chilean Fish Related to Habitat Use, Tissue Type and River of Origin.

    Science.gov (United States)

    Copaja, S V; Pérez, C A; Vega-Retter, C; Véliz, D

    2017-12-01

    In this study, we analyze the concentration of ten metals in two freshwater fish-the benthic catfish Trichomycterus areolatus and the limnetic silverside Basilichthys microlepidotus-in order to detect possible accumulation differences related to fish habitat (benthic or pelagic), tissue type (gill, liver and muscle), and the river of origin (four different rivers) in central Chile. The MANOVA performed with all variables and metals, revealed independent effects of fish, tissue and river. In the case of the fish factor, Cu, Cr, Mo and Zn showed statistically higher concentrations in catfish compared with silverside for all tissues and in all rivers (p food sources and respiration.

  1. Simulation of electrochemical processes in cardiac tissue based on cellular automaton

    International Nuclear Information System (INIS)

    Avdeev, S A; Bogatov, N M

    2014-01-01

    A new class of cellular automata using special accumulative function for nonuniformity distribution is presented. Usage of this automata type for simulation of excitable media applied to electrochemical processes in human cardiac tissue is shown

  2. Increased p50/p50 NF-κB Activation in Human Papillomavirus Type 6- or Type 11-Induced Laryngeal Papilloma Tissue

    Science.gov (United States)

    Vancurova, Ivana; Wu, Rong; Miskolci, Veronika; Sun, Shishinn

    2002-01-01

    We have observed elevated NF-κB DNA-binding activity in nuclear extracts from human papillomavirus type 6- and 11-infected laryngeal papilloma tissues. The predominant DNA-binding species is the p50/p50 homodimer. The elevated NF-κB activity could be correlated with a reduced level of cytoplasmic IκBβ and could be associated with the overexpression of p21CIP1/WAF1 in papilloma cells. Increased NF-κB activity and cytoplasmic accumulation of p21CIP1/WAF1 might counteract death-promoting effects elicited by overexpressed PTEN and reduced activation of Akt and STAT3 previously noted in these tissues. PMID:11773428

  3. Dental hard tissue characterization using laser-based ultrasonics

    Science.gov (United States)

    Blodgett, David W.; Massey, Ward L.

    2003-07-01

    Dental health care and research workers require a means of imaging the structures within teeth in vivo. One critical need is the detection of tooth decay in its early stages. If decay can be detected early enough, the process can be monitored and interventional procedures, such as fluoride washes and controlled diet, can be initiated to help re-mineralize the tooth. Currently employed x-ray imaging is limited in its ability to visualize interfaces and incapable of detecting decay at a stage early enough to avoid invasive cavity preparation followed by a restoration. To this end, non-destructive and non-contact in vitro measurements on extracted human molars using laser-based ultrasonics are presented. Broadband ultrasonic waves are excited in the extracted sections by using a pulsed carbon-dioxide (CO2) laser operating in a region of high optical absorption in the dental hard tissues. Optical interferometric detection of the ultrasonic wave surface displacements in accomplished with a path-stabilized Michelson-type interferometer. Results for bulk and surface in-vitro characterization of caries are presented on extracted molars with pre-existing caries.

  4. Pulp and periodontal tissue repair - regeneration or tissue metaplasia after dental trauma. A review

    DEFF Research Database (Denmark)

    Andreasen, Jens O

    2012-01-01

    Healing subsequent to dental trauma is known to be very complex, a result explained by the variability of the types of dental trauma (six luxations, nine fracture types, and their combinations). On top of that, at least 16 different cellular systems get involved in more severe trauma types each o...... of tissue replaces the injured). In this study, a review is given of the impact of trauma to various dental tissues such as alveolar bone, periodontal ligament, cementum, Hertvigs epithelial root sheath, and the pulp....... of them with a different potential for healing with repair, i.e. (re-establishment of tissue continuity without functional restitution) and regeneration (where the injured or lost tissue is replaced with new tissue with identical tissue anatomy and function) and finally metaplasia (where a new type...

  5. Hydrogel-laden paper scaffold system for origami-based tissue engineering.

    Science.gov (United States)

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S

    2015-12-15

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs.

  6. Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers

    Science.gov (United States)

    Kamphuis, Lars G; Hane, James K; Nelson, Matthew N; Gao, Lingling; Atkins, Craig A; Singh, Karam B

    2015-01-01

    Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is an important grain legume crop that is valuable for sustainable farming and is becoming recognized as a human health food. NLL breeding is directed at improving grain production, disease resistance, drought tolerance and health benefits. However, genetic and genomic studies have been hindered by a lack of extensive genomic resources for the species. Here, the generation, de novo assembly and annotation of transcriptome datasets derived from five different NLL tissue types of the reference accession cv. Tanjil are described. The Tanjil transcriptome was compared to transcriptomes of an early domesticated cv. Unicrop, a wild accession P27255, as well as accession 83A:476, together being the founding parents of two recombinant inbred line (RIL) populations. In silico predictions for transcriptome-derived gene-based length and SNP polymorphic markers were conducted and corroborated using a survey assembly sequence for NLL cv. Tanjil. This yielded extensive indel and SNP polymorphic markers for the two RIL populations. A total of 335 transcriptome-derived markers and 66 BAC-end sequence-derived markers were evaluated, and 275 polymorphic markers were selected to genotype the reference NLL 83A:476 × P27255 RIL population. This significantly improved the completeness, marker density and quality of the reference NLL genetic map. PMID:25060816

  7. Quantification of petroleum-type hydrocarbons in avian tissue

    Energy Technology Data Exchange (ETDEWEB)

    Gay, M.L.; Belisle, A.A.; Patton, J.F.

    1980-01-04

    Methods were developed for the analysis of 16 hydrocarbons in avian tissue. Mechanical extraction with pentane was followed by clean-up on Florisil and Silicar. Residues were determined by gas-liquid chromatography and gas-liquid, chromatography-mass spectrometry. The method was applied to the analysis of liver, kidney, fat, and brain tissue of mallard ducks (Anas platyrhynchos) fed a mixture of hydrocarbons. Measurable concentrations of all compounds analyzed were present in all tissues except brain. Highest concentrations were in fat.

  8. Comparison of Species and Cell-Type Differences in Fraction Unbound of Liver Tissues, Hepatocytes, and Cell Lines.

    Science.gov (United States)

    Riccardi, Keith; Ryu, Sangwoo; Lin, Jian; Yates, Phillip; Tess, David; Li, Rui; Singh, Dhirender; Holder, Brian R; Kapinos, Brendon; Chang, George; Di, Li

    2018-04-01

    Fraction unbound ( f u ) of liver tissue, hepatocytes, and other cell types is an essential parameter used to estimate unbound liver drug concentration and intracellular free drug concentration. f u,liver and f u,cell are frequently measured in multiple species and cell types in drug discovery and development for various applications. A comparison study of 12 matrices for f u,liver and f u,cell of hepatocytes in five different species (mouse, rat, dog, monkey, and human), as well as f u,cell of Huh7 and human embryonic kidney 293 cell lines, was conducted for 22 structurally diverse compounds with the equilibrium dialysis method. Using an average bioequivalence approach, our results show that the average difference in binding to liver tissue, hepatocytes, or different cell types was within 2-fold of that of the rat f u,liver Therefore, we recommend using rat f u,liver as a surrogate for liver binding in other species and cell types in drug discovery. This strategy offers the potential to simplify binding studies and reduce cost, thereby enabling a more effective and practical determination of f u for liver tissues, hepatocytes, and other cell types. In addition, f u under hepatocyte stability incubation conditions should not be confused with f u,cell , as one is a diluted f u and the other is an undiluted f u Cell density also plays a critical role in the accurate measurement of f u,cell . Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Porosity, Mineralization, Tissue Type and Morphology Interactions at the Human Tibial Cortex

    Science.gov (United States)

    Hampson, Naomi A.

    Prior research has shown a relationship between tibia robustness (ratio of cross-sectional area to bone length) and stress fracture risk, with less robust bones having a higher risk, which may indicate a compensatory increase in elastic modulus to increase bending strength. Previous studies of human tibiae have shown higher ash content in slender bones. In this study, the relationships between variations in volumetric porosity, ash content, tissue mineral density, secondary bone tissue, and cross sectional geometry, were investigated in order to better understand the tissue level adaptations that may occur in the establishment of cross-sectional properties. In this research, significant differences were found between porosity, ash content, and tissue type around the cortex between robust and slender bones, suggesting that there was a level of co-adaption occurring. Variation in porosity correlated with robustness, and explained large parts of the variation in tissue mineral density. The nonlinear relationship between porosity and ash content may support that slender bones compensate for poor geometry by increasing ash content through reduced remodeling, while robust individuals increase porosity to decrease mass, but only to a point. These results suggest that tissue level organization plays a compensatory role in the establishment of adult bone mass, and may contribute to differences in bone aging between different bone phenotypes. The results suggest that slender individuals have significantly less remodeled bone, however the proportion of remodeled bone was not uniform around the tibia. In the complex results of the study of 38% vs. 66% sites the distal site was subject to higher strains than the 66% site, indicating both local and global regulators may be affecting overall remodeling rates and need to be teased apart in future studies. This research has broad clinical implications on the diagnosis and treatment of fragility fractures. The relationships that

  10. Multilayer scaffolds in orthopaedic tissue engineering.

    Science.gov (United States)

    Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A

    2016-07-01

    The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.

  11. Relationships of mercury concentrations across tissue types, muscle regions and fins for two shark species

    KAUST Repository

    O'Bryhim, Jason R.

    2017-01-31

    Mercury (Hg) exposure poses a threat to both fish and human health. Sharks are known to bioaccumulate Hg, however, little is known regarding how Hg is distributed between different tissue groups (e.g. muscle regions, organs). Here we evaluated total mercury (THg) concentrations from eight muscle regions, four fins (first dorsal, left and right pectorals, caudal-from both the inner core and trailing margin of each fin), and five internal organs (liver, kidney, spleen, heart, epigonal organ) from two different shark species, bonnethead (Sphyrna tiburo) and silky shark (Carcharhinus falciformis) to determine the relationships of THg concentrations between and within tissue groups. Total Hg concentrations were highest in the eight muscle regions with no significant differences in THg concentrations between the different muscle regions and muscle types (red and white). Results from tissue collected from any muscle region would be representative of all muscle sample locations. Total Hg concentrations were lowest in samples taken from the fin inner core of the first dorsal, pectoral, and caudal (lower lobe) fins. Mercury concentrations for samples taken from the trailing margin of the dorsal, pectoral, and caudal fins (upper and lower lobe) were also not significantly different from each other for both species. Significant relationships were found between THg concentrations in dorsal axial muscle tissue and the fin inner core, liver, kidney, spleen and heart for both species as well as the THg concentrations between the dorsal fin trailing margin and the heart for the silky shark and all other sampled tissue types for the bonnethead shark. Our results suggest that biopsy sampling of dorsal muscle can provide data that can effectively estimate THg concentrations in specific organs without using more invasive, or lethal methods.

  12. ¹H NMR-based metabolic profiling of human rectal cancer tissue

    Science.gov (United States)

    2013-01-01

    Background Rectal cancer is one of the most prevalent tumor types. Understanding the metabolic profile of rectal cancer is important for developing therapeutic approaches and molecular diagnosis. Methods Here, we report a metabonomics profiling of tissue samples on a large cohort of human rectal cancer subjects (n = 127) and normal controls (n = 43) using 1H nuclear magnetic resonance (1H NMR) based metabonomics assay, which is a highly sensitive and non-destructive method for the biomarker identification in biological systems. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal projection to latent structure with discriminant analysis (OPLS-DA) were applied to analyze the 1H-NMR profiling data to identify the distinguishing metabolites of rectal cancer. Results Excellent separation was obtained and distinguishing metabolites were observed among the different stages of rectal cancer tissues (stage I = 35; stage II = 37; stage III = 37 and stage IV = 18) and normal controls. A total of 38 differential metabolites were identified, 16 of which were closely correlated with the stage of rectal cancer. The up-regulation of 10 metabolites, including lactate, threonine, acetate, glutathione, uracil, succinate, serine, formate, lysine and tyrosine, were detected in the cancer tissues. On the other hand, 6 metabolites, including myo-inositol, taurine, phosphocreatine, creatine, betaine and dimethylglycine were decreased in cancer tissues. These modified metabolites revealed disturbance of energy, amino acids, ketone body and choline metabolism, which may be correlated with the progression of human rectal cancer. Conclusion Our findings firstly identify the distinguishing metabolites in different stages of rectal cancer tissues, indicating possibility of the attribution of metabolites disturbance to the progression of rectal cancer. The altered metabolites may be as potential biomarkers, which would

  13. Engineering dextran-based scaffolds for drug delivery and tissue repair

    Science.gov (United States)

    Sun, Guoming; Mao, Jeremy J

    2015-01-01

    Owing to its chemically reactive hydroxyl groups, dextran can be modified with different functional groups to form spherical, tubular and 3D network structures. The development of novel functional scaffolds for efficient controlled release and tissue regeneration has been a major research interest, and offers promising therapeutics for many diseases. Dextran-based scaffolds are naturally biodegradable and can serve as bioactive carriers for many protein biomolecules. The reconstruction of the in vitro microenvironment with proper signaling cues for large-scale tissue regenerative scaffolds has yet to be fully developed, and remains a significant challenge in regenerative medicine. This paper will describe recent advances in dextran-based polymers and scaffolds for controlled release and tissue engineering. Special attention is given to the development of dextran-based hydrogels that are precisely manipulated with desired structural properties and encapsulated with defined angiogenic growth factors for therapeutic neovascularization, as well as their potential for wound repair. PMID:23210716

  14. Type 3 innate lymphoid cell depletion is mediated by TLRs in lymphoid tissues of simian immunodeficiency virus–infected macaques

    Science.gov (United States)

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A.; Veazey, Ronald S.

    2015-01-01

    Innate lymphoid cells (ILCs) type 3, also known as lymphoid tissue inducer cells, plays a major role in both the development and remodeling of organized lymphoid tissues and the maintenance of adaptive immune responses. HIV/simian immunodeficiency virus (SIV) infection causes breakdown of intestinal barriers resulting in microbial translocation, leading to systemic immune activation and disease progression. However, the effects of HIV/SIV infection on ILC3 are unknown. Here, we analyzed ILC3 from mucosal and systemic lymphoid tissues in chronically SIV-infected macaques and uninfected controls. ILC3 cells were defined and identified in macaque lymphoid tissues as non-T, non-B (lineage-negative), c-Kit+IL-7Rα+ (CD117+CD127+) cells. These ILC3 cells highly expressed CD90 (∼63%) and aryl hydrocarbon receptor and produced IL-17 (∼63%), IL-22 (∼36%), and TNF-α (∼72%) but did not coexpress CD4 or NK cell markers. The intestinal ILC3 cell loss correlated with the reduction of total CD4+ T cells and T helper (Th)17 and Th22 cells in the gut during SIV infection (P lymphoid tissues in SIV-infected macaques, further contributing to the HIV-induced impairment of gut-associated lymphoid tissue structure and function, especially in mucosal tissues.—Xu, H., Wang, X., Lackner, A. A., Veazey, R. S. Type 3 innate lymphoid cell depletion is mediated by TLRs in lymphoid tissues of simian immunodeficiency virus–infected macaques. PMID:26283536

  15. IMPACTS OF TISSUE-TYPE PLASMINOGEN ACTIVATOR (TPA ON NEURONAL SURVIVAL

    Directory of Open Access Journals (Sweden)

    Arnaud eChevilley

    2015-10-01

    Full Text Available Tissue-type plasminogen activator (tPA a serine protease is constituted of five functional domains through which it interacts with different substrates, binding proteins and receptors. In the last years, great interest has been given to the clinical relevance of targeting tPA in different diseases of the central nervous system, in particular stroke. Among its reported functions in the central nervous system, tPA displays both neurotrophic and neurotoxic effects. How can the protease mediate such opposite functions remain unclear but several hypotheses have been proposed. These include an influence of the degree of maturity and/or the type of neurons, of the level of tPA, of its origin (endogenous or exogenous or of its form (single chain tPA versus two chain tPA. In this review, we will provide a synthetic snapshot of our current knowledge regarding the natural history of tPA and discuss how it sustains its pleiotropic functions with focus on excitotoxic/ischemic neuronal death and neuronal survival.

  16. Review: Polymeric-Based 3D Printing for Tissue Engineering.

    Science.gov (United States)

    Wu, Geng-Hsi; Hsu, Shan-Hui

    Three-dimensional (3D) printing, also referred to as additive manufacturing, is a technology that allows for customized fabrication through computer-aided design. 3D printing has many advantages in the fabrication of tissue engineering scaffolds, including fast fabrication, high precision, and customized production. Suitable scaffolds can be designed and custom-made based on medical images such as those obtained from computed tomography. Many 3D printing methods have been employed for tissue engineering. There are advantages and limitations for each method. Future areas of interest and progress are the development of new 3D printing platforms, scaffold design software, and materials for tissue engineering applications.

  17. Laser tissue welding in ophthalmic surgery.

    Science.gov (United States)

    Rossi, Francesca; Matteini, Paolo; Ratto, Fulvio; Menabuoni, Luca; Lenzetti, Ivo; Pini, Roberto

    2008-09-01

    Laser welding of ocular tissues is an alternative technique or adjunct to conventional suturing in ophthalmic surgery. It is based on the photothermal interaction of laser light with the main components of the extracellular matrix of connective tissues. The advantages of the welding procedure with respect to standard suturing and stapling are reduced operation times, lesser inflammation, faster healing and increased ability to induce tissue regeneration. The procedure we set up is based on the use of an infrared diode laser in association with the topical application of the chromophore Indocyanine Green. Laser light may be delivered either continuously or in pulses, thus identifying two different techniques that have been applied clinically in various types of transplants of the cornea.

  18. Molecular cloning and tissue-specific expression analysis of mouse spinesin, a type II transmembrane serine protease 5

    International Nuclear Information System (INIS)

    Watanabe, Yoshihisa; Okui, Akira; Mitsui, Shinichi; Kawarabuki, Kentaro; Yamaguchi, Tatsuyuki; Uemura, Hidetoshi; Yamaguchi, Nozomi

    2004-01-01

    We have previously reported novel serine proteases isolated from cDNA libraries of the human and mouse central nervous system (CNS) by PCR using degenerate oligodeoxyribonucleotide primers designed on the basis of the serine protease motifs, AAHC and DSGGP. Here we report a newly isolated serine protease from the mouse CNS. This protease is homologous (77.9% identical) to human spinesin type II transmembrane serine protease 5. Mouse spinesin (m-spinesin) is also composed of (from the N-terminus) a short cytoplasmic domain, a transmembrane domain, a stem region containing a scavenger-receptor-like domain, and a serine protease domain, as is h-spinesin. We also isolated type 1, type 2, and type 3 variant cDNAs of m-spinesin. Full-length spinesin (type 4) and type 3 contain all the domains, whereas type 1 and type 2 variants lack the cytoplasmic, transmembrane, and scavenger-receptor-like domains. Subcellular localization of the variant forms was analyzed using enhanced green fluorescent protein (EGFP) fusion proteins. EGFP-type 4 fusion protein was predominantly localized to the ER, Golgi apparatus, and plasma membrane, whereas EGFP-type 1 was localized to the cytoplasm, reflecting differential classification of m-spinesin variants into transmembrane and cytoplasmic types. We analyzed the distribution of m-spinesin variants in mouse tissues, using RT-PCR with variant-specific primer sets. Interestingly, transmembrane-type spinesin, types 3 and 4, was specifically expressed in the spinal cord, whereas cytoplasmic type, type 1, was expressed in multiple tissues, including the cerebrum and cerebellum. Therefore, m-spinesin variants may have distinct biological functions arising from organ-specific variant expression

  19. Tissue distribution and developmental expression of type XVI collagen in the mouse.

    Science.gov (United States)

    Lai, C H; Chu, M L

    1996-04-01

    The expression of a recently identified collagen, alpha 1 (XVI), in adult mouse tissue and developing mouse embryo was examined by immunohistochemistry and in situ hybridization. A polyclonal antiserum was raised against a recombinant fusion protein, which contained a segment of 161 amino acids in the N-terminal noncollagenous domain of the human alpha 1 (XVI) collagen. Immunoprecipitation of metabolically labelled human or mouse fibroblast cell lysates with this antibody revealed a major, bacterial collagenase sensitive polypeptide of approximately 210 kDa. The size agrees with the prediction from the full-length cDNA. Immunofluorescence examination of adult mouse tissues using the affinity purified antibody revealed a rather broad distribution of the protein. The heart, kidney, intestine, ovary, testis, eye, arterial walls and smooth muscles all exhibited significant levels of expression, while the skeletal muscle, lung and brain showed very restricted and low signals. During development, no significant expression of the mRNA or protein was observed in embryo of day 8 of gestation, but strong signals was detected in placental trophoblasts. Expression in embryos was detectable first after day 11 of gestation with weak positive signals appearing in the heart. In later stages of development, stronger RNA hybridizations were observed in a variety of tissues, particularly in atrial and ventricular walls of the developing heart, spinal root neural fibers and skin. These data demonstrate that type XVI collagen represents another collagenous component widely distributed in the extracellular matrix and may contribute to the structural integrity of various tissues.

  20. Dynamic culture induces a cell type-dependent response impacting on the thickness of engineered connective tissues.

    Science.gov (United States)

    Fortier, Guillaume Marceau; Gauvin, Robert; Proulx, Maryse; Vallée, Maud; Fradette, Julie

    2013-04-01

    Mesenchymal cells are central to connective tissue homeostasis and are widely used for tissue-engineering applications. Dermal fibroblasts and adipose-derived stromal cells (ASCs) allow successful tissue reconstruction by the self-assembly approach of tissue engineering. This method leads to the production of multilayered tissues, devoid of exogenous biomaterials, that can be used as stromal compartments for skin or vesical reconstruction. These tissues are formed by combining cell sheets, generated through cell stimulation with ascorbic acid, which favours the cell-derived production/organization of matrix components. Since media motion can impact on cell behaviour, we investigated the effect of dynamic culture on mesenchymal cells during tissue reconstruction, using the self-assembly method. Tissues produced using ASCs in the presence of a wave-like movement were nearly twice thicker than under standard conditions, while no difference was observed for tissues produced from dermal fibroblasts. The increased matrix deposition was not correlated with an increased proliferation of ASCs, or by higher transcript levels of fibronectin or collagens I and III. A 30% increase of type V collagen mRNA was observed. Interestingly, tissues engineered from dermal fibroblasts featured a four-fold higher level of MMP-1 transcripts under dynamic conditions. Mechanical properties were similar for tissues reconstructed using dynamic or static conditions. Finally, cell sheets produced using ASCs under dynamic conditions could readily be manipulated, resulting in a 2 week reduction of the production time (from 5 to 3 weeks). Our results describe a distinctive property of ASCs' response to media motion, indicating that their culture under dynamic conditions leads to optimized tissue engineering. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Tissues Use Resident Dendritic Cells and Macrophages to Maintain Homeostasis and to Regain Homeostasis upon Tissue Injury: The Immunoregulatory Role of Changing Tissue Environments

    Science.gov (United States)

    Lech, Maciej; Gröbmayr, Regina; Weidenbusch, Marc; Anders, Hans-Joachim

    2012-01-01

    Most tissues harbor resident mononuclear phagocytes, that is, dendritic cells and macrophages. A classification that sufficiently covers their phenotypic heterogeneity and plasticity during homeostasis and disease does not yet exist because cell culture-based phenotypes often do not match those found in vivo. The plasticity of mononuclear phagocytes becomes obvious during dynamic or complex disease processes. Different data interpretation also originates from different conceptual perspectives. An immune-centric view assumes that a particular priming of phagocytes then causes a particular type of pathology in target tissues, conceptually similar to antigen-specific T-cell priming. A tissue-centric view assumes that changing tissue microenvironments shape the phenotypes of their resident and infiltrating mononuclear phagocytes to fulfill the tissue's need to maintain or regain homeostasis. Here we discuss the latter concept, for example, why different organs host different types of mononuclear phagocytes during homeostasis. We further discuss how injuries alter tissue environments and how this primes mononuclear phagocytes to enforce this particular environment, for example, to support host defense and pathogen clearance, to support the resolution of inflammation, to support epithelial and mesenchymal healing, and to support the resolution of fibrosis to the smallest possible scar. Thus, organ- and disease phase-specific microenvironments determine macrophage and dendritic cell heterogeneity in a temporal and spatial manner, which assures their support to maintain and regain homeostasis in whatever condition. Mononuclear phagocytes contributions to tissue pathologies relate to their central roles in orchestrating all stages of host defense and wound healing, which often become maladaptive processes, especially in sterile and/or diffuse tissue injuries. PMID:23251037

  2. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.

    Science.gov (United States)

    Sorkio, Anni; Koch, Lothar; Koivusalo, Laura; Deiwick, Andrea; Miettinen, Susanna; Chichkov, Boris; Skottman, Heli

    2018-07-01

    There is a high demand for developing methods to produce more native-like 3D corneal structures. In the present study, we produced 3D cornea-mimicking tissues using human stem cells and laser-assisted bioprinting (LaBP). Human embryonic stem cell derived limbal epithelial stem cells (hESC-LESC) were used as a cell source for printing epithelium-mimicking structures, whereas human adipose tissue derived stem cells (hASCs) were used for constructing layered stroma-mimicking structures. The development and optimization of functional bioinks was a crucial step towards successful bioprinting of 3D corneal structures. Recombinant human laminin and human sourced collagen I served as the bases for the functional bioinks. We used two previously established LaBP setups based on laser induced forward transfer, with different laser wavelengths and appropriate absorption layers. We bioprinted three types of corneal structures: stratified corneal epithelium using hESC-LESCs, lamellar corneal stroma using alternating acellular layers of bioink and layers with hASCs, and finally structures with both a stromal and epithelial part. The printed constructs were evaluated for their microstructure, cell viability and proliferation, and key protein expression (Ki67, p63α, p40, CK3, CK15, collagen type I, VWF). The 3D printed stromal constructs were also implanted into porcine corneal organ cultures. Both cell types maintained good viability after printing. Laser-printed hESC-LESCs showed epithelial cell morphology, expression of Ki67 proliferation marker and co-expression of corneal progenitor markers p63α and p40. Importantly, the printed hESC-LESCs formed a stratified epithelium with apical expression of CK3 and basal expression of the progenitor markers. The structure of the 3D bioprinted stroma demonstrated that the hASCs had organized horizontally as in the native corneal stroma and showed positive labeling for collagen I. After 7 days in porcine organ cultures, the 3D bioprinted

  3. Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography.

    Science.gov (United States)

    Oh, Junghwan; Feldman, Marc D; Kim, Jihoon; Kang, Hyun Wook; Sanghi, Pramod; Milner, Thomas E

    2007-03-01

    A novel method to detect tissue-based macrophages using a combination of superparamagnetic iron oxide (SPIO) nanoparticles and differential phase optical coherence tomography (DP-OCT) with an external oscillating magnetic field is reported. Magnetic force acting on iron-laden tissue-based macrophages was varied by applying a sinusoidal current to a solenoid containing a conical iron core that substantially focused and increased magnetic flux density. Nanoparticle motion was detected with DP-OCT, which can detect tissue movement with nanometer resolution. Frequency response of iron-laden tissue movement was twice the modulation frequency since the magnetic force is proportional to the product of magnetic flux density and gradient. Results of our experiments indicate that DP-OCT can be used to identify tissue-based macrophage when excited by an external focused oscillating magnetic field. (c) 2007 Wiley-Liss, Inc

  4. The application of Silver nanoparticle based SERS in diagnosing thyroid tissue

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zufang; Chen Rong; Chen Guannan; Lin Duo; Xi Gangqin; Chen Yongjian; Lin Hongxin; Lei Jinping [Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007 (China); Li Zuanfang, E-mail: chenr@fjnu.edu.cn [Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350108 (China)

    2011-01-01

    Surface-enhanced Raman scattering (SERS) is proved to be a powerful analytical tool for investigation of biological tissue. In this study, SERS based on Ag nanoparticles was used to investigate the normal and cancerous thyroid tissue. Preliminary results indicated that Raman peaks and the spectra profile from both normal and cancerous tissues showed a basic similarity, obvious differences are that, first, Raman peaks 563cm{sup -1}, 1449cm{sup -1} and 1587cm{sup -1} in cancerous tissue decreased obviously compared with the normal thyroid tissue. Besides, Raman peaks 1004cm{sup -1} and 1128cm{sup -1} might be specific peaks for normal thyroid tissue, whereas 1294cm{sup -1} might attribute to specific peak for cancerous thyroid tissue. In addition, some peaks in normal thyroid tissue appeared to have shifted in cancerous tissue. Intensity ratio of 656cm{sup -1} vs. 725cm{sup -1} in normal tissue are significantly different from cancerous tissue (P<0.005), and it can be a reference for spectroscopic diagnostics of thyroid tissue. This study demonstrates that SERS can be used to monitor the changes at molecular level as well as a complementary tool in thyroid histopathology.

  5. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies

    NARCIS (Netherlands)

    Jurgens, W.J.F.M.; Oedayrajsingh-Varma, M.J.; Helder, M.N.; Zandieh Doulabi, B.; Schouten, T.E.; Kuik, D.J.; Ritt, M.J.P.F.; van Milligen-Kummer, F.J.

    2008-01-01

    The stromal vascular fraction (SVF) of adipose tissue contains an abundant population of multipotent adipose-tissue-derived stem cells (ASCs) that possess the capacity to differentiate into cells of the mesodermal lineage in vitro. For cell-based therapies, an advantageous approach would be to

  6. Use of focused ultrasonication in activity-based profiling of deubiquitinating enzymes in tissue.

    Science.gov (United States)

    Nanduri, Bindu; Shack, Leslie A; Rai, Aswathy N; Epperson, William B; Baumgartner, Wes; Schmidt, Ty B; Edelmann, Mariola J

    2016-12-15

    To develop a reproducible tissue lysis method that retains enzyme function for activity-based protein profiling, we compared four different methods to obtain protein extracts from bovine lung tissue: focused ultrasonication, standard sonication, mortar & pestle method, and homogenization combined with standard sonication. Focused ultrasonication and mortar & pestle methods were sufficiently effective for activity-based profiling of deubiquitinases in tissue, and focused ultrasonication also had the fastest processing time. We used focused-ultrasonicator for subsequent activity-based proteomic analysis of deubiquitinases to test the compatibility of this method in sample preparation for activity-based chemical proteomics. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Tissue Engineering Bionanocomposites Based on Poly(propylene fumarate

    Directory of Open Access Journals (Sweden)

    Ana M. Diez-Pascual

    2017-06-01

    Full Text Available Poly(propylene fumarate (PPF is a linear and unsaturated copolyester based on fumaric acid that has been widely investigated for tissue engineering applications in recent years due to its tailorable mechanical performance, adjustable biodegradability and exceptional biocompatibility. In order to improve its mechanical properties and spread its range of practical applications, novel approaches need to be developed such as the incorporation of fillers or polymer blending. Thus, PPF-based bionanocomposites reinforced with different amounts of single-walled carbon nanotubes (SWCNT, multi-walled carbon nanotubes (MWCNT, graphene oxide nanoribbons (GONR, graphite oxide nanoplatelets (GONP, polyethylene glycol-functionalized graphene oxide (PEG-GO, polyethylene glycol-grafted boron nitride nanotubes (PEG-g-BNNTs and hydroxyapatite (HA nanoparticles were synthesized via sonication and thermal curing, and their morphology, biodegradability, cytotoxicity, thermal, rheological, mechanical and antibacterial properties were investigated. An increase in the level of hydrophilicity, biodegradation rate, stiffness and strength was found upon increasing nanofiller loading. The nanocomposites retained enough rigidity and strength under physiological conditions to provide effective support for bone tissue formation, showed antibacterial activity against Gram-positive and Gram-negative bacteria, and did not induce toxicity on human dermal fibroblasts. These novel biomaterials demonstrate great potential to be used for bone tissue engineering applications.

  8. Discordant gene expression in skeletal muscle and adipose tissue of patients with type 2 diabetes: effect of interleukin-6 infusion

    DEFF Research Database (Denmark)

    Carey, A.; Wolsk, Emil; Bruce, C.

    2006-01-01

    Aims/hypothesis  We compared metabolic gene expression in adipose tissue and skeletal muscle from patients with type 2 diabetes and from well-matched healthy control subjects. We hypothesised that gene expression would be discordantly regulated when comparing the two groups. Our secondary aim...... was to determine the effect of Interleukin-6 (IL6) infusion on circulating adipokines and on gene expression in human adipose tissue. To do this we used real-time RT-PCR. Methods  Both diabetic and control subjects underwent basal skeletal muscle and subcutaneous adipose tissue biopsies. A subset...... necrosis factor alpha, adiponectin and resistin were all unaffected by IL6 infusion, but plasma resistin was lower in the diabetic subjects than in control subjects. Conclusions/interpretation  The observation that PPARGC1A and the PPARs were upregulated in the adipose tissue of type 2 diabetic patients...

  9. Tissue Discrimination by Uncorrected Autofluorescence Spectra: A Proof-of-Principle Study for Tissue-Specific Laser Surgery

    Directory of Open Access Journals (Sweden)

    Katja Tangermann-Gerk

    2013-10-01

    Full Text Available Laser surgery provides a number of advantages over conventional surgery. However, it implies large risks for sensitive tissue structures due to its characteristic non-tissue-specific ablation. The present study investigates the discrimination of nine different ex vivo tissue types by using uncorrected (raw autofluorescence spectra for the development of a remote feedback control system for tissue-selective laser surgery. Autofluorescence spectra (excitation wavelength 377 ± 50 nm were measured from nine different ex vivo tissue types, obtained from 15 domestic pig cadavers. For data analysis, a wavelength range between 450 nm and 650 nm was investigated. Principal Component Analysis (PCA and Quadratic Discriminant Analysis (QDA were used to discriminate the tissue types. ROC analysis showed that PCA, followed by QDA, could differentiate all investigated tissue types with AUC results between 1.00 and 0.97. Sensitivity reached values between 93% and 100% and specificity values between 94% and 100%. This ex vivo study shows a high differentiation potential for physiological tissue types when performing autofluorescence spectroscopy followed by PCA and QDA. The uncorrected autofluorescence spectra are suitable for reliable tissue discrimination and have a high potential to meet the challenges necessary for an optical feedback system for tissue-specific laser surgery.

  10. Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Zhang Lu; Spector, Myron

    2009-01-01

    The objective of this study was to compare the chondrogenesis in type I and II collagen scaffolds seeded with chondrocytes from three types of cartilage, after four weeks of culture: auricular (AU), articular (AR) and meniscal (ME). Related aims were to investigate the expression of a contractile muscle actin isoform, α-smooth muscle actin (SMA), in the cells in the scaffold and to determine the presence of a lubricating glycoprotein, lubricin, in the constructs. Adult goat AU, AR and ME chondrocytes were seeded into two types of collagen scaffolds: type II collagen and type I/III collagen. After four weeks of culture, the constructs were prepared for histochemical and immunohistochemical analysis of the distribution of glycosaminoglycan (GAG), types I and II collagen, elastin, SM and lubricin. AU constructs contained substantially more tissue than the AR and ME samples. The AU constructs exhibited neocartilage, but no elastin. There were no notable differences between the type I and II collagen scaffolds. Novel findings were the expression of SMA by the AU cells in the scaffolds and the presence of lubricin in the AR and AU constructs. AU cells have the capability to produce cartilage in collagen scaffolds under conditions in which there is little histogenesis by AR and ME cells.

  11. Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lu [Department of Plastic and Reconstructive Surgery, Shanghai Tissue Engineering Center, Shanghai 9th People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Spector, Myron, E-mail: luzhangmd@gmail.co [Tissue Engineering, VA Boston Healthcare System, Boston, MA (United States)

    2009-08-15

    The objective of this study was to compare the chondrogenesis in type I and II collagen scaffolds seeded with chondrocytes from three types of cartilage, after four weeks of culture: auricular (AU), articular (AR) and meniscal (ME). Related aims were to investigate the expression of a contractile muscle actin isoform, alpha-smooth muscle actin (SMA), in the cells in the scaffold and to determine the presence of a lubricating glycoprotein, lubricin, in the constructs. Adult goat AU, AR and ME chondrocytes were seeded into two types of collagen scaffolds: type II collagen and type I/III collagen. After four weeks of culture, the constructs were prepared for histochemical and immunohistochemical analysis of the distribution of glycosaminoglycan (GAG), types I and II collagen, elastin, SM and lubricin. AU constructs contained substantially more tissue than the AR and ME samples. The AU constructs exhibited neocartilage, but no elastin. There were no notable differences between the type I and II collagen scaffolds. Novel findings were the expression of SMA by the AU cells in the scaffolds and the presence of lubricin in the AR and AU constructs. AU cells have the capability to produce cartilage in collagen scaffolds under conditions in which there is little histogenesis by AR and ME cells.

  12. Alginate based scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valente, J.F.A.; Valente, T.A.M. [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal); Alves, P.; Ferreira, P. [CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra (Portugal); Silva, A. [Centro de Ciencia e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilha (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2012-12-01

    The design and production of scaffolds for bone tissue regeneration is yet unable to completely reproduce the native bone properties. In the present study new alginate microparticle and microfiber aggregated scaffolds were produced to be applied in this area of regenerative medicine. The scaffolds' mechanical properties were characterized by thermo mechanical assays. Their morphological characteristics were evaluated by isothermal nitrogen adsorption and scanning electron microscopy. The density of both types of scaffolds was determined by helium pycnometry and mercury intrusion porosimetry. Furthermore, scaffolds' cytotoxic profiles were evaluated in vitro by seeding human osteoblast cells in their presence. The results obtained showed that scaffolds have good mechanical and morphological properties compatible with their application as bone substitutes. Moreover, scaffold's biocompatibility was confirmed by the observation of cell adhesion and proliferation after 5 days of being seeded in their presence and by non-radioactive assays. - Highlights: Black-Right-Pointing-Pointer Design and production of scaffolds for bone tissue regeneration. Black-Right-Pointing-Pointer Microparticle and microfiber alginate scaffolds were produced through a particle aggregation technique; Black-Right-Pointing-Pointer Scaffolds' mechanically and biologically properties were characterized through in vitro studies;.

  13. Porous magnesium-based scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Moharamzadeh, Keyvan; Boccaccini, Aldo R.; Tayebi, Lobat

    2017-01-01

    Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. - Highlights: • A porous 3D material provides the required pathways for cells to grow, proliferate, and differentiate • Porous magnesium and Mg alloys could be used as load-bearing scaffolds • Porous magnesium and Mg alloys are good

  14. Porous magnesium-based scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yazdimamaghani, Mostafa [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Razavi, Mehdi [Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304 (United States); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Moharamzadeh, Keyvan [School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield (United Kingdom); Marquette University School of Dentistry, Milwaukee, WI 53233 (United States); Boccaccini, Aldo R. [Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen (Germany); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [Marquette University School of Dentistry, Milwaukee, WI 53233 (United States)

    2017-02-01

    Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. - Highlights: • A porous 3D material provides the required pathways for cells to grow, proliferate, and differentiate • Porous magnesium and Mg alloys could be used as load-bearing scaffolds • Porous magnesium and Mg alloys are good

  15. Using endografts from superelastic titanium-nickelid-based alloy singular tissue plural tissues in organ-preserving surgery of laryngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kulbakin, D. E., E-mail: kulbakin-d@mail.ru [Tomsk Cancer Research Institute, 5 Kooperativny Street, Tomsk, 634050 (Russian Federation); Tomsk State University, 36, Lenin Avenue, Tomsk, 634050 (Russian Federation); Mukhamedov, M. R., E-mail: muhamedov@oncology.tomsk.ru [Tomsk Cancer Research Institute, 5 Kooperativny Street, Tomsk, 634050 (Russian Federation); Siberian State Medical University, 2, Moscow Highway, Tomsk, 634050 (Russian Federation); Choynzonov, E. L., E-mail: choynzonov@gmail.com [Tomsk Cancer Research Institute, 5 Kooperativny Street, Tomsk, 634050 (Russian Federation); Siberian State Medical University, 2, Moscow Highway, Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, 634050 (Russian Federation); Gynter, V. E., E-mail: tc77@rec.tsu.ru [Tomsk State University, 36, Lenin Avenue, Tomsk, 634050 (Russian Federation); Research Institute of Medical Materials, 17, 19 Gv. Divizii, Tomsk, 634034 (Russian Federation)

    2015-11-17

    Our study has demonstrated feasibility of performing larynx preservation surgeries in patients with recurrent laryngeal cancer after failure of radiotherapy. The technique of combined laryngeal reconstruction with endografts from superelastic titanium-nickelid-based alloy Singular tissue Plural tissues results in improvement of life quality by preserving laryngeal functions.

  16. Tissue-specific increases in 11beta-hydroxysteroid dehydrogenase type 1 in normal weight postmenopausal women.

    Directory of Open Access Journals (Sweden)

    Therése Andersson

    Full Text Available With age and menopause there is a shift in adipose distribution from gluteo-femoral to abdominal depots in women. Associated with this redistribution of fat are increased risks of type 2 diabetes and cardiovascular disease. Glucocorticoids influence body composition, and 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1 which converts inert cortisone to active cortisol is a putative key mediator of metabolic complications in obesity. Increased 11betaHSD1 in adipose tissue may contribute to postmenopausal central obesity. We hypothesized that tissue-specific 11betaHSD1 gene expression and activity are up-regulated in the older, postmenopausal women compared to young, premenopausal women. Twenty-three pre- and 23 postmenopausal, healthy, normal weight women were recruited. The participants underwent a urine collection, a subcutaneous adipose tissue biopsy and the hepatic 11betaHSD1 activity was estimated by the serum cortisol response after an oral dose of cortisone. Urinary (5alpha-tetrahydrocortisol+5beta-tetrahydrocortisol/tetrahydrocortisone ratios were higher in postmenopausal women versus premenopausal women in luteal phase (P<0.05, indicating an increased whole-body 11betaHSD1 activity. Postmenopausal women had higher 11betaHSD1 gene expression in subcutaneous fat (P<0.05. Hepatic first pass conversion of oral cortisone to cortisol was also increased in postmenopausal women versus premenopausal women in follicular phase of the menstrual cycle (P<0.01, at 30 min post cortisone ingestion, suggesting higher hepatic 11betaHSD1 activity. In conclusion, our results indicate that postmenopausal normal weight women have increased 11betaHSD1 activity in adipose tissue and liver. This may contribute to metabolic dysfunctions with menopause and ageing in women.

  17. Type 2 diabetes-related proteins derived from an in vitro model of inflamed fat tissue

    NARCIS (Netherlands)

    Klooster, ten Jean Paul; Sotiriou, Alexandros; Boeren, Sjef; Vaessen, Stefan; Vervoort, Jacques; Pieters, Raymond

    2018-01-01

    Currently, there is a worldwide increase of patients with type 2 diabetes (T2D). During the progression of healthy obese to T2D status, there is an influx of immune cells, in particular macrophages, into visceral adipose tissue, accompanied by an increase of inflammatory cytokines, such as, IL6,

  18. Role of TGF-beta1 in relation to exercise-induced type I collagen synthesis in human tendinous tissue

    DEFF Research Database (Denmark)

    Heinemeier, Katja; Langberg, Henning; Olesen, Jens L

    2003-01-01

    synthesis, is released from cultured tendon fibroblasts in response to mechanical loading. Thus TGF-beta1 could link mechanical loading and collagen synthesis in tendon tissue in vivo. Tissue levels of TGF-beta1 and type I collagen metabolism markers [procollagen I COOH-terminal propeptide (PICP) and COOH...... exercise (P insertion was markedly delayed by exercise compared with the decay seen in resting subjects...

  19. Differential diagnosis and diagnostic flow chart of joint hypermobility syndrome/ehlers-danlos syndrome hypermobility type compared to other heritable connective tissue disorders.

    Science.gov (United States)

    Colombi, Marina; Dordoni, Chiara; Chiarelli, Nicola; Ritelli, Marco

    2015-03-01

    Joint hypermobility syndrome/Ehlers-Danlos syndrome hypermobility type (JHS/EDS-HT) is an evolving and protean disorder mostly recognized by generalized joint hypermobility and without a defined molecular basis. JHS/EDS-HT also presents with other connective tissue features affecting a variety of structures and organs, such as skin, eye, bone, and internal organs. However, most of these signs are present in variable combinations and severity in many other heritable connective tissue disorders. Accordingly, JHS/EDS-HT is an "exclusion" diagnosis which needs the absence of any consistent feature indicative of other partially overlapping connective tissue disorders. While both Villefranche and Brighton criteria include such an exclusion as a mandatory item, a systematic approach for reaching a stringent clinical diagnosis of JHS/EDS-HT is still lacking. The absence of a consensus on the diagnostic approach to JHS/EDS-HT concerning its clinical boundaries with similar conditions contribute to limit our actual understanding of the pathologic and molecular bases of this disorder. In this review, we revise the differential diagnosis of JHS/EDS-HT with those heritable connective tissue disorders which show a significant overlap with the former and mostly include EDS classic, vascular and kyphoscoliotic types, osteogenesis imperfecta, Marfan syndrome, Loeys-Dietz syndrome, arterial tortuosity syndrome, and lateral meningocele syndrome. A diagnostic flow chart is also offered with the attempt to support the less experienced clinician in stringently recognizing JHS/EDS-HT and stimulate the debate in the scientific community for both management and research purposes. © 2015 Wiley Periodicals, Inc.

  20. Dextran and gelatin based photocrosslinkable tissue adhesive.

    Science.gov (United States)

    Wang, Tao; Nie, Jun; Yang, Dongzhi

    2012-11-06

    A two-component tissue adhesive based on biocompatible and bio-degradable polymers (oxidized urethane dextran (Dex-U-AD) and gelatin) was prepared and photocrosslinked under the ultraviolet (UV) irradiation. The adhesive could adhere to surface of gelatin, which simulated the human tissue steadily. The structures of above Dex-U-AD were characterized by FTIR, (1)H NMR spectroscopy and XRD. The adhesion property of result products was evaluated by lap-shear test. The maximum adhesion strength could reach to 4.16±0.72 MPa which was significantly higher than that of fibrin glue. The photopolymerization process of Dex-U-AD/gelatin was monitored by real time infrared spectroscopy (RTIR). It took less than 5 min to complete the curing process. The cytotoxicity of Dex-U-AD/gelatin also was evaluated which indicated that Dex-U-AD/gelatin gels were nontoxic to L929 cell. The relationship between all the above-mentioned properties and degree of oxidization of Dex-U-AD was assessed. The obtained products have the potential to serve as tissue adhesive in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering.

    Science.gov (United States)

    Gautam, Sneh; Chou, Chia-Fu; Dinda, Amit K; Potdar, Pravin D; Mishra, Narayan C

    2014-01-01

    In the present study, a tri-polymer polycaprolactone (PCL)/gelatin/collagen type I composite nanofibrous scaffold has been fabricated by electrospinning for skin tissue engineering and wound healing applications. Firstly, PCL/gelatin nanofibrous scaffold was fabricated by electrospinning using a low cost solvent mixture [chloroform/methanol for PCL and acetic acid (80% v/v) for gelatin], and then the nanofibrous PCL/gelatin scaffold was modified by collagen type I (0.2-1.5wt.%) grafting. Morphology of the collagen type I-modified PCL/gelatin composite scaffold that was analyzed by field emission scanning electron microscopy (FE-SEM), showed that the fiber diameter was increased and pore size was decreased by increasing the concentration of collagen type I. Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric (TG) analysis indicated the surface modification of PCL/gelatin scaffold by collagen type I immobilization on the surface of the scaffold. MTT assay demonstrated the viability and high proliferation rate of L929 mouse fibroblast cells on the collagen type I-modified composite scaffold. FE-SEM analysis of cell-scaffold construct illustrated the cell adhesion of L929 mouse fibroblasts on the surface of scaffold. Characteristic cell morphology of L929 was also observed on the nanofiber mesh of the collagen type I-modified scaffold. Above results suggest that the collagen type I-modified PCL/gelatin scaffold was successful in maintaining characteristic shape of fibroblasts, besides good cell proliferation. Therefore, the fibroblast seeded PCL/gelatin/collagen type I composite nanofibrous scaffold might be a potential candidate for wound healing and skin tissue engineering applications. © 2013.

  2. Inference of Cell Mechanics in Heterogeneous Epithelial Tissue Based on Multivariate Clone Shape Quantification

    Science.gov (United States)

    Tsuboi, Alice; Umetsu, Daiki; Kuranaga, Erina; Fujimoto, Koichi

    2017-01-01

    Cell populations in multicellular organisms show genetic and non-genetic heterogeneity, even in undifferentiated tissues of multipotent cells during development and tumorigenesis. The heterogeneity causes difference of mechanical properties, such as, cell bond tension or adhesion, at the cell–cell interface, which determine the shape of clonal population boundaries via cell sorting or mixing. The boundary shape could alter the degree of cell–cell contacts and thus influence the physiological consequences of sorting or mixing at the boundary (e.g., tumor suppression or progression), suggesting that the cell mechanics could help clarify the physiology of heterogeneous tissues. While precise inference of mechanical tension loaded at each cell–cell contacts has been extensively developed, there has been little progress on how to distinguish the population-boundary geometry and identify the cause of geometry in heterogeneous tissues. We developed a pipeline by combining multivariate analysis of clone shape with tissue mechanical simulations. We examined clones with four different genotypes within Drosophila wing imaginal discs: wild-type, tartan (trn) overexpression, hibris (hbs) overexpression, and Eph RNAi. Although the clones were previously known to exhibit smoothed or convoluted morphologies, their mechanical properties were unknown. By applying a multivariate analysis to multiple criteria used to quantify the clone shapes based on individual cell shapes, we found the optimal criteria to distinguish not only among the four genotypes, but also non-genetic heterogeneity from genetic one. The efficient segregation of clone shape enabled us to quantitatively compare experimental data with tissue mechanical simulations. As a result, we identified the mechanical basis contributed to clone shape of distinct genotypes. The present pipeline will promote the understanding of the functions of mechanical interactions in heterogeneous tissue in a non-invasive manner. PMID

  3. Visceral adipose tissue macrophage-targeted TACE silencing to treat obesity-induced type 2 diabetes.

    Science.gov (United States)

    Yong, Seok-Beom; Song, Yoonsung; Kim, Yong-Hee

    2017-12-01

    Obesity is an increasingly prevalent global health problem. Due to its close relations with metabolic diseases and cancer, new therapeutic approaches for treating obesity and obesity-induced metabolic diseases are required. Visceral white adipose tissue (WAT) has been closely associated with obesity-induced inflammation and adipose tissue macrophages (ATMs) are responsible for obesity-induced inflammation by releasing inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6. TNF-α converting enzyme (TACE) is a transmembrane enzyme that induces the enzymatic cleavage and release of inflammatory cytokines. In this study, we developed a nonviral gene delivery system consisting of an oligopeptide (ATS-9R) that can selectively target visceral ATMs. In here we shows visceral adipose tissue-dominant inflammatory gene over-expressions in obese mouse and our strategy enabled the preferential delivery of therapeutic genes to visceral ATMs and successfully achieved ATM-targeted gene silencing. Finally, ATS-9R-mediated TACE gene silencing in visceral ATMs alleviated visceral fat inflammation and improved type 2 diabetes by reducing whole body inflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A navigation system for percutaneous needle interventions based on PET/CT images: design, workflow and error analysis of soft tissue and bone punctures.

    Science.gov (United States)

    Oliveira-Santos, Thiago; Klaeser, Bernd; Weitzel, Thilo; Krause, Thomas; Nolte, Lutz-Peter; Peterhans, Matthias; Weber, Stefan

    2011-01-01

    Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well

  5. Natural Polymer-Cell Bioconstructs for Bone Tissue Engineering.

    Science.gov (United States)

    Titorencu, Irina; Albu, Madalina Georgiana; Nemecz, Miruna; Jinga, Victor V

    2017-01-01

    The major goal of bone tissue engineering is to develop bioconstructs which substitute the functionality of damaged natural bone structures as much as possible if critical-sized defects occur. Scaffolds that mimic the structure and composition of bone tissue and cells play a pivotal role in bone tissue engineering applications. First, composition, properties and in vivo synthesis of bone tissue are presented for the understanding of bone formation. Second, potential sources of osteoprogenitor cells have been investigated for their capacity to induce bone repair and regeneration. Third, taking into account that the main property to qualify one scaffold as a future bioconstruct for bone tissue engineering is the biocompatibility, the assessments which prove it are reviewed in this paper. Forth, various types of natural polymer- based scaffolds consisting in proteins, polysaccharides, minerals, growth factors etc, are discussed, and interaction between scaffolds and cells which proved bone tissue engineering concept are highlighted. Finally, the future perspectives of natural polymer-based scaffolds for bone tissue engineering are considered. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Four patients with Sillence type I osteogenesis imperfecta and mild bone fragility, complicated by left ventricular cardiac valvular disease and cardiac tissue fragility caused by type I collagen mutations

    DEFF Research Database (Denmark)

    Vandersteen, Anthony M; Lund, Allan M; Ferguson, David J P

    2014-01-01

    Osteogenesis imperfecta (OI) type I is a hereditary disorder of connective tissue (HDCT) characterized by blue or gray sclerae, variable short stature, dentinogenesis imperfecta, hearing loss, and recurrent fractures from infancy. We present four examples of OI type I complicated by valvular heart...

  7. Self-degradation of tissue adhesive based on oxidized dextran and poly-L-lysine.

    Science.gov (United States)

    Matsumura, Kazuaki; Nakajima, Naoki; Sugai, Hajime; Hyon, Suong-Hyu

    2014-11-26

    We have developed a low-toxicity bioadhesive based on oxidized dextran and poly-L-lysine. Here, we report that the mechanical properties and degradation of this novel hydrogel bioadhesive can be controlled by changing the extent of oxidation of the dextran and the type or concentration of the anhydride species in the acylated poly-L-lysine. The dynamic moduli of the hydrogels can be controlled from 120 Pa to 20 kPa, suggesting that they would have mechanical compatibility with various tissues, and could have applications as tissue adhesives. Development of the hydrogel color from clear to brown indicates that the reaction between the dextran aldehyde groups and the poly-L-lysine amino groups may be induced by a Maillard reaction via Schiff base formation. Degradation of the aldehyde dextran may begin by reaction of the amino groups in the poly-L-lysine. The gel degradation can be ascribed to degradation of the aldehyde dextran in the hydrogel, although the aldehyde dextran itself is relatively stable in water. The oxidized dextran and poly-L-lysine, and the degraded hydrogel showed low cytotoxicities. These findings indicate that a hydrogel consisting of oxidized dextran and poly-L-lysine has low toxicity and a well-controlled degradation rate, and has potential clinical applications as a bioadhesive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Exercise-dependent IGF-I, IGFBPs, and type I collagen changes in human peritendinous connective tissue determined by microdialysis

    DEFF Research Database (Denmark)

    Olesen, Jens L; Heinemeier, Katja M; Gemmer, Carsten

    2007-01-01

    Microdialysis studies indicate that mechanical loading of human tendon during exercise elevates type I collagen production in tendon. However, the possibility that the insertion of microdialysis fibers per se may increase the local collagen production due to trauma has not been explored. Insulin......-terminal propeptide (PICP) and COOH-terminal telopeptide of type I collagen] were measured by microdialysis in peritendinous tissue of the human Achilles tendon in an exercise group (performing a 36-km run, n = 6) and a control group (no intervention, n = 6). An increase in local PICP concentration was seen in both...... and exercise groups after 48 h (P human peritendinous tissue in response to prolonged mechanical loading with part of the increase due to trauma from the sampling...

  9. Effect of pore architecture and stacking direction on mechanical properties of solid freeform fabrication-based scaffold for bone tissue engineering.

    Science.gov (United States)

    Lee, Jung-Seob; Cha, Hwang Do; Shim, Jin-Hyung; Jung, Jin Woo; Kim, Jong Young; Cho, Dong-Woo

    2012-07-01

    Fabrication of a three-dimensional (3D) scaffold with increased mechanical strength may be an essential requirement for more advanced bone tissue engineering scaffolds. Various material- and chemical-based approaches have been explored to enhance the mechanical properties of engineered bone tissue scaffolds. In this study, the effects of pore architecture and stacking direction on the mechanical and cell proliferation properties of a scaffold were investigated. The 3D scaffold was prepared using solid freeform fabrication technology with a multihead deposition system. Various types of scaffolds with different pore architectures (lattice, stagger, and triangle types) and stacking directions (horizontal and vertical directions) were fabricated with a blend of polycaprolactone and poly lactic-co-glycolic acid. In compression tests, the triangle-type scaffold was the strongest among the experimental groups. Stacking direction affected the mechanical properties of scaffolds. An in vitro cell counting kit-8 assay showed no significant differences in optical density depending on the different pore architectures and stacking directions. In conclusion, mechanical properties of scaffolds can be enhanced by controlling pore architecture and stacking direction. Copyright © 2012 Wiley Periodicals, Inc.

  10. Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy

    DEFF Research Database (Denmark)

    Nguyen, T.Q.; Tarnow, L.; Jorsal, A.

    2008-01-01

    OBJECTIVE: We evaluated the predictive value of baseline plasma connective tissue growth factor (CTGF) in a prospective study of patients with type 1 diabetes. RESEARCH DESIGN AND METHODS: Subjects were 198 type 1 diabetic patients with established diabetic nephropathy and 188 type 1 diabetic...

  11. Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy

    DEFF Research Database (Denmark)

    Nguyen, Tri Q; Tarnow, Lise; Jorsal, Anders

    2008-01-01

    OBJECTIVE: We evaluated the predictive value of baseline plasma connective tissue growth factor (CTGF) in a prospective study of patients with type 1 diabetes. RESEARCH DESIGN AND METHODS: Subjects were 198 type 1 diabetic patients with established diabetic nephropathy and 188 type 1 diabetic pat...

  12. [Application of silk-based tissue engineering scaffold for tendon / ligament regeneration].

    Science.gov (United States)

    Hu, Yejun; Le, Huihui; Jin, Zhangchu; Chen, Xiao; Yin, Zi; Shen, Weiliang; Ouyang, Hongwei

    2016-03-01

    Tendon/ligament injury is one of the most common impairments in sports medicine. The traditional treatments of damaged tissue repair are unsatisfactory, especially for athletes, due to lack of donor and immune rejection. The strategy of tissue engineering may break through these limitations, and bring new hopes to tendon/ligament repair, even regeneration. Silk is a kind of natural biomaterials, which has good biocompatibility, wide range of mechanical properties and tunable physical structures; so it could be applied as tendon/ligament tissue engineering scaffolds. The silk-based scaffold has robust mechanical properties; combined with other biological ingredients, it could increase the surface area, promote more cell adhesion and improve the biocompatibility. The potential clinical application of silk-based scaffold has been confirmed by in vivo studies on tendon/ligament repairing, such as anterior cruciate ligament, medial collateral ligament, achilles tendon and rotator cuff. To develop novel biomechanically stable and host integrated tissue engineered tendon/ligament needs more further micro and macro studies, combined with product development and clinical application, which will give new hope to patients with tendon/ligament injury.

  13. Radiosterilization of Tissues Preserved for Clinical Purposes: Effect on Tissue Antigenicity

    International Nuclear Information System (INIS)

    Ostrowski, K.; Kossowska, B.; Moskalewski, S.; Komender, A.; Kurnatowski, W.

    1967-01-01

    The first part of the paper contains practical considerations on the radiosterilization of preserved human bone, human and calf cartilage, cow’s fascia and aponeurosis, based on material from the Tissue Bank which produces about 2500 transplants yearly. The method of preservation and packing of each type of tissue is mentioned briefly. The preserved tissues are irradiated in a cobalt bomb or in a nuclear reactor. The conditions of irradiation and the control of sterility are described. The advantages and disadvantages of radiosterilization are discussed on the basis of the authors’ own experience and clinical reports of surgeons using radiosterilized tissues in practice. In the second part of the paper, experimental studies on the influence of freezing, lyophilization and radiosterilization on tissue antigenicity are reported. The regional lymph node reacts to an antigenic stimulus by an increased production of large, pyroninophylic cells, so-called ''blast'' cells. The rabbits used as recipients received grafts of allogeneic cancellous bone, fresh or subjected to different experimental procedures. Smears from lymph node cell suspension were prepared and the percentage of blast cells was estimated. On the basis of the lymph node response, it appears that freezing and lyophilization, as well as radiosterilization, may abolish the antigenicity of cancellous bone. The practical implication of these results for methods of preservation of tissues for clinical purposes is discussed. (author)

  14. A Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics.

    Science.gov (United States)

    Ashok, Praveen C; Giardini, Mario E; Dholakia, Kishan; Sibbett, Wilson

    2014-01-01

    We report the development of a fiber-based Raman sensor to be used in tumour margin identification during endoluminal robotic surgery. Although this is a generic platform, the sensor we describe was adapted for the ARAKNES (Array of Robots Augmenting the KiNematics of Endoluminal Surgery) robotic platform. On such a platform, the Raman sensor is intended to identify ambiguous tissue margins during robot-assisted surgeries. To maintain sterility of the probe during surgical intervention, a disposable sleeve was specially designed. A straightforward user-compatible interface was implemented where a supervised multivariate classification algorithm was used to classify different tissue types based on specific Raman fingerprints so that it could be used without prior knowledge of spectroscopic data analysis. The protocol avoids inter-patient variability in data and the sensor system is not restricted for use in the classification of a particular tissue type. Representative tissue classification assessments were performed using this system on excised tissue. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue

    DEFF Research Database (Denmark)

    Hanrieder, Jørg; Wicher, Grzegorz; Bergquist, Jonas

    2011-01-01

    . Complementary proteomic experiments revealed the identity of these signature proteins that were predominantly expressed in the different glial cell types, including histone H4 for oligodendrocytes and S100-A10 for astrocytes. MALDI imaging MS was performed, and signature masses were employed as molecular...... tracers for prediction of oligodendroglial and astroglial localization in brain tissue. The different cell type specific protein distributions in tissue were validated using immunohistochemistry. ICMS of intact neuroglia is a simple and straightforward approach for characterization and discrimination...

  16. Pulp regeneration after non-infected and infected necrosis, what type of tissue do we want?

    DEFF Research Database (Denmark)

    Andreasen, Jens O; Bakland, Leif K

    2012-01-01

    Regeneration (revitalization) of infected necrotic pulp tissue has been an important issue in endodontics for more than a decade. Based on a series of case reports, there appears to be evidence that new soft tissue can enter the root canal with a potential for subsequent hard tissue deposition...... that such events may take place in four variants: (i) Revascularization of the pulp with accelerated dentin formation leading to pulp canal obliteration. This event has a good long-term prognosis. (ii) Ingrowth of cementum and periodontal ligament (PDL). The long-term prognosis for this event is not known. (iii...

  17. The Role of Recipient T Cells in Mesenchymal Stem Cell-Based Tissue Regeneration

    OpenAIRE

    Liu, Yi; Wang, Songlin; Shi, Songtao

    2012-01-01

    Significant progress has been made in stem cell biology, regenerative medicine, and stem cell-based tissue engineering. Such scientific strides highlight the potential of replacing or repairing damaged tissues in congenital abnormalities, diseases, or injuries, as well as constructing functional tissue or organs in vivo. Since mesenchymal stem cells (MSCs) are capable of differentiating into bone-forming cells, they constitute an appropriate cell source to repair damaged bone tissues. In addi...

  18. Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients.

    Science.gov (United States)

    Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat

    2015-01-01

    Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.

  19. Injectable silk-based biomaterials for cervical tissue augmentation: an in vitro study.

    Science.gov (United States)

    Brown, Joseph E; Partlow, Benjamin P; Berman, Alison M; House, Michael D; Kaplan, David L

    2016-01-01

    Cerclage therapy is an important treatment option for preterm birth prevention. Several patient populations benefit from cerclage therapy including patients with a classic history of cervical insufficiency; patients who present with advanced cervical dilation prior to viability; and patients with a history of preterm birth and cervical shortening. Although cerclage is an effective treatment option in some patients, it can be associated with limited efficacy and procedure complications. Development of an alternative to cerclage therapy would be an important clinical development. Here we report on an injectable, silk protein-based biomaterial for cervical tissue augmentation. The rationale for the development of an injectable biomaterial is to restore the native properties of cervical tissue. While cerclage provides support to the tissue, it does not address excessive tissue softening, which is a central feature of the pathogenesis of cervical insufficiency. Silk protein-based hydrogels, which are biocompatible and naturally degrade in vivo, are suggested as a platform for restoring the native properties of cervical tissue and improving cervical function. We sought to study the properties of an injectable, silk-based biomaterial for potential use as an alternative treatment for cervical insufficiency. These biomaterials were evaluated for mechanical tunability, biocompatibility, facile injection, and in vitro degradation. Silk protein solutions were cross-linked by an enzyme catalyzed reaction to form elastic biomaterials. Biomaterials were formulated to match the native physical properties of cervical tissue during pregnancy. The cell compatibility of the materials was assessed in vitro using cervical fibroblasts, and biodegradation was evaluated using concentrated protease solution. Tissue augmentation or bulking was demonstrated using human cervical tissue from nonpregnant hysterectomy specimens. Mechanical compression tests measured the tissue stiffness as a

  20. Engineering spinal fusion: evaluating ceramic materials for cell based tissue engineered approaches

    NARCIS (Netherlands)

    Wilson, C.E.

    2011-01-01

    The principal aim of this thesis was to advance the development of tissue engineered posterolateral spinal fusion by investigating the potential of calcium phosphate ceramic materials to support cell based tissue engineered bone formation. This was accomplished by developing several novel model

  1. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues

    International Nuclear Information System (INIS)

    Gabriel, S.; Lau, R.W.; Gabriel, C.

    1996-01-01

    A parametric model was developed to describe the variation of dielectric properties of tissues as a function of frequency. The experimental spectrum from 10 Hz to 100 GHz was modelled with four dispersion regions. The development of the model was based on recently acquired data, complemented by data surveyed from the literature. The purpose is to enable the prediction of dielectric data that are in line with those contained in the vast body of literature on the subject. The analysis was carried out on a Microsoft Excel spreadsheet. Parameters are given for 17 tissue types. (author)

  2. A simple model for cell type recognition using 2D-correlation analysis of FTIR images from breast cancer tissue

    Science.gov (United States)

    Ali, Mohamed H.; Rakib, Fazle; Al-Saad, Khalid; Al-Saady, Rafif; Lyng, Fiona M.; Goormaghtigh, Erik

    2018-07-01

    Breast cancer is the second most common cancer after lung cancer. So far, in clinical practice, most cancer parameters originating from histopathology rely on the visualization by a pathologist of microscopic structures observed in stained tissue sections, including immunohistochemistry markers. Fourier transform infrared spectroscopy (FTIR) spectroscopy provides a biochemical fingerprint of a biopsy sample and, together with advanced data analysis techniques, can accurately classify cell types. Yet, one of the challenges when dealing with FTIR imaging is the slow recording of the data. One cm2 tissue section requires several hours of image recording. We show in the present paper that 2D covariance analysis singles out only a few wavenumbers where both variance and covariance are large. Simple models could be built using 4 wavenumbers to identify the 4 main cell types present in breast cancer tissue sections. Decision trees provide particularly simple models to reach discrimination between the 4 cell types. The robustness of these simple decision-tree models were challenged with FTIR spectral data obtained using different recording conditions. One test set was recorded by transflection on tissue sections in the presence of paraffin while the training set was obtained on dewaxed tissue sections by transmission. Furthermore, the test set was collected with a different brand of FTIR microscope and a different pixel size. Despite the different recording conditions, separating extracellular matrix (ECM) from carcinoma spectra was 100% successful, underlying the robustness of this univariate model and the utility of covariance analysis for revealing efficient wavenumbers. We suggest that 2D covariance maps using the full spectral range could be most useful to select the interesting wavenumbers and achieve very fast data acquisition on quantum cascade laser infrared imaging microscopes.

  3. A method to obtain reference images for evaluation of ultrasonic tissue characterization techniques

    DEFF Research Database (Denmark)

    Jensen, M.S.; Wilhjelm, Jens E.; Sahl, B.

    2002-01-01

    of the macroscopic photograph, due to the histological preparation process. The histological information was "mapped back" into the format of the ultrasound images the following way: On the macroscopic images, outlines were drawn manually which defined the border of the tissue. These outlines were superimposed...... of the various tissue types. Specifically, the macroscopic image revealed the borders between the different tissues, while the histological image identified the four tissue types. A set of 12 reference images based on modified macroscopic outlines was created. The overlap between the ultrasound images...... and the macroscopic images-which are the geometrical basis for the final reference images-was between 77% and 93%. A set of 12 reference images spaced 2.5 mm, identifying spatial location of four different tissue types in porcine muscle has been created. With the reference images, it is possible to quantitatively...

  4. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype.

    Science.gov (United States)

    Zhang, Yuanyuan; He, Yujiang; Bharadwaj, Shantaram; Hammam, Nevin; Carnagey, Kristen; Myers, Regina; Atala, Anthony; Van Dyke, Mark

    2009-08-01

    Recent studies have shown that extracellular matrix (ECM) substitutes can have a dramatic impact on cell growth, differentiation and function. However, these ECMs are often applied generically and have yet to be developed for specific cell types. In this study, we developed tissue-specific ECM-based coating substrates for skin, skeletal muscle and liver cell cultures. Cellular components were removed from adult skin, skeletal muscle, and liver tissues, and the resulting acellular matrices were homogenized and dissolved. The ECM solutions were used to coat culture dishes. Tissue matched and non-tissue matched cell types were grown on these coatings to assess adhesion, proliferation, maintenance of phenotype and cell function at several time points. Each cell type showed better proliferation and differentiation in cultures containing ECM from their tissue of origin. Although subtle compositional differences in the three ECM types were not investigated in this study, these results suggest that tissue-specific ECMs provide a culture microenvironment that is similar to the in vivo environment when used as coating substrates, and this new culture technique has the potential for use in drug development and the development of cell-based therapies.

  5. The tissue microarray data exchange specification: A document type definition to validate and enhance XML data

    Science.gov (United States)

    Nohle, David G; Ayers, Leona W

    2005-01-01

    Background The Association for Pathology Informatics (API) Extensible Mark-up Language (XML) TMA Data Exchange Specification (TMA DES) proposed in April 2003 provides a community-based, open source tool for sharing tissue microarray (TMA) data in a common format. Each tissue core within an array has separate data including digital images; therefore an organized, common approach to produce, navigate and publish such data facilitates viewing, sharing and merging TMA data from different laboratories. The AIDS and Cancer Specimen Resource (ACSR) is a HIV/AIDS tissue bank consortium sponsored by the National Cancer Institute (NCI) Division of Cancer Treatment and Diagnosis (DCTD). The ACSR offers HIV-related malignancies and uninfected control tissues in microarrays (TMA) accompanied by de-identified clinical data to approved researchers. Exporting our TMA data into the proposed API specified format offers an opportunity to evaluate the API specification in an applied setting and to explore its usefulness. Results A document type definition (DTD) that governs the allowed common data elements (CDE) in TMA DES export XML files was written, tested and evolved and is in routine use by the ACSR. This DTD defines TMA DES CDEs which are implemented in an external file that can be supplemented by internal DTD extensions for locally defined TMA data elements (LDE). Conclusion ACSR implementation of the TMA DES demonstrated the utility of the specification and allowed application of a DTD to validate the language of the API specified XML elements and to identify possible enhancements within our TMA data management application. Improvements to the specification have additionally been suggested by our experience in importing other institution's exported TMA data. Enhancements to TMA DES to remove ambiguous situations and clarify the data should be considered. Better specified identifiers and hierarchical relationships will make automatic use of the data possible. Our tool can be

  6. Activity deprivation induces neuronal cell death: mediation by tissue-type plasminogen activator.

    Directory of Open Access Journals (Sweden)

    Eldi Schonfeld-Dado

    Full Text Available Spontaneous activity is an essential attribute of neuronal networks and plays a critical role in their development and maintenance. Upon blockade of activity with tetrodotoxin (TTX, neurons degenerate slowly and die in a manner resembling neurodegenerative diseases-induced neuronal cell death. The molecular cascade leading to this type of slow cell death is not entirely clear. Primary post-natal cortical neurons were exposed to TTX for up to two weeks, followed by molecular, biochemical and immunefluorescence analysis. The expression of the neuronal marker, neuron specific enolase (NSE, was down-regulated, as expected, but surprisingly, there was a concomitant and striking elevation in expression of tissue-type plasminogen activator (tPA. Immunofluorescence analysis indicated that tPA was highly elevated inside affected neurons. Transfection of an endogenous tPA inhibitor, plasminogen activator inhibitor-1 (PAI-1, protected the TTX-exposed neurons from dying. These results indicate that tPA is a pivotal player in slowly progressing activity deprivation-induced neurodegeneration.

  7. In vivo labelling in several rat tissues of 'peripheral type' benzodiazepine binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Benavides, J.; Guilloux, F.; Rufat, P.; Uzan, A.; Renault, C.; Dubroeucq, M.C.; Gueremy, C.; Le Fur, G. (Pharmuka Laboratoires, 92 - Gennevilliers (France))

    1984-03-16

    'Peripheral type' benzodiazepine binding sites in several rat tissues were labelled by intravenous injection of (/sup 3/H)PK 11195 and (/sup 3/H)RO5-4864. Binding was saturable in all tissues studied and regional distribution paralleled the in vitro binding. A similar potency order of displacing compounds was found in vivo and in vitro PK 11195 > PK 11211 > RO5-4864 > diazepam > dipyridamole > clonazepam. These results demonstrate the feasibility of using this technique to examine the effects of pharmacological manipulation on the binding sites in their native state. However, some properties (broader maximum during time course, higher percentage of particulate binding in the brain and independence of temperature) make (/sup 3/H)PK 11195 the most suitable ligand for this kind of studies.

  8. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    Science.gov (United States)

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  9. Cell-type specific DNA-protein interactions at the tissue-type plasminogen activator promoter in human endothelial and HeLa cells in vivo and in vitro

    NARCIS (Netherlands)

    Arts, J.; Herr, I.; Lansink, M.; Angel, P.; Kooistra, T.

    1997-01-01

    Tissue-type plasminogen activator (t-PA) gene expression in human endothelial cells and HeLa cells is stimulated by the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) at the level of transcription. To study the mechanism of transcriptional regulation, we have characterized a

  10. Histone modification profiles are predictive for tissue/cell-type specific expression of both protein-coding and microRNA genes

    Directory of Open Access Journals (Sweden)

    Zhang Michael Q

    2011-05-01

    Full Text Available Abstract Background Gene expression is regulated at both the DNA sequence level and through modification of chromatin. However, the effect of chromatin on tissue/cell-type specific gene regulation (TCSR is largely unknown. In this paper, we present a method to elucidate the relationship between histone modification/variation (HMV and TCSR. Results A classifier for differentiating CD4+ T cell-specific genes from housekeeping genes using HMV data was built. We found HMV in both promoter and gene body regions to be predictive of genes which are targets of TCSR. For example, the histone modification types H3K4me3 and H3K27ac were identified as the most predictive for CpG-related promoters, whereas H3K4me3 and H3K79me3 were the most predictive for nonCpG-related promoters. However, genes targeted by TCSR can be predicted using other type of HMVs as well. Such redundancy implies that multiple type of underlying regulatory elements, such as enhancers or intragenic alternative promoters, which can regulate gene expression in a tissue/cell-type specific fashion, may be marked by the HMVs. Finally, we show that the predictive power of HMV for TCSR is not limited to protein-coding genes in CD4+ T cells, as we successfully predicted TCSR targeted genes in muscle cells, as well as microRNA genes with expression specific to CD4+ T cells, by the same classifier which was trained on HMV data of protein-coding genes in CD4+ T cells. Conclusion We have begun to understand the HMV patterns that guide gene expression in both tissue/cell-type specific and ubiquitous manner.

  11. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Directory of Open Access Journals (Sweden)

    Debasish Paul

    2013-01-01

    Full Text Available Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches.

  12. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Science.gov (United States)

    Paul, Debasish; Kumar, Avinash; Gajbhiye, Akshada; Santra, Manas K.; Srikanth, Rapole

    2013-01-01

    Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA) were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches. PMID:23586059

  13. Observer Performance in the Use of Digital and Optical Microscopy for the Interpretation of Tissue-Based Biomarkers

    Directory of Open Access Journals (Sweden)

    Marios A. Gavrielides

    2014-01-01

    Full Text Available Background. We conducted a validation study of digital pathology for the quantitative assessment of tissue-based biomarkers with immunohistochemistry. Objective.\tTo examine observer agreement as a function of viewing modality (digital versus optical microscopy, whole slide versus tissue microarray (TMA review, biomarker type (HER2 incorporating membranous staining and Ki-67 with nuclear staining, and data type (continuous and categorical. Methods.\tEight pathologists reviewed 50 breast cancer whole slides (25 stained with HER2 and 25 with Ki-67 and 2 TMAs (1 stained with HER2, 1 with Ki-67, each containing 97 cores, using digital and optical microscopy. Results. Results showed relatively high overall interobserver and intermodality agreement, with different patterns specific to biomarker type. For HER2, there was better interobserver agreement for optical compared to digital microscopy for whole slides as well as better interobserver and intermodality agreement for TMAs. For Ki-67, those patterns were not observed. Conclusions. The differences in agreement patterns when examining different biomarkers and different scoring methods and reviewing whole slides compared to TMA stress the need for validation studies focused on specific pathology tasks to eliminate sources of variability that might dilute findings. The statistical uncertainty observed in our analyses calls for adequate sampling for each individual task rather than pooling cases.

  14. Analysis of feature stability for laser-based determination of tissue thickness

    Science.gov (United States)

    Ernst, Floris; Schweikard, Achim; Stüber, Patrick; Bruder, Ralf; Wagner, Benjamin; Wissel, Tobias

    2015-03-01

    Localisation of the cranium is necessary for accurate stereotactic radiotherapy of malign lesions in the brain. This is achieved by immobilizing the patient's head (typically by using thermoplastic masks, bite blocks or combinations thereof) and x-ray imaging to determine the actual position of the patient with respect to the treatment device. In previous work we have developed a novel method for marker-less and non-invasive tracking of the skull using a combination of laser-based surface triangulation and the analysis of backscattered feature patterns of a tightly collimated NIR laser beam scanned over the patient's forehead. An HDR camera is coupled into the beam path of the laser scanning system to acquire one image per projected laser point. We have demonstrated that this setup is capable of accurately determining the tissue thickness for each triangulation point and consequently allows detecting the surface of the cranial bone with sub-millimetre accuracy. Typical clinical settings (treatment times of 15-90 min) require feature stability over time, since the determination of tissue thickness is achieved by machine learning methods trained on initial feature scans. We have collected initial scans of the forehead as well as long-term backscatter data (20 images per seconds over 30 min) from five subjects and extracted the relevant tissue features from the image streams. Based on the knowledge of the relationship between the tissue feature values and the tissue thickness, the analysis of the long-term data showed that the noise level is low enough to allow robust discrimination of tissue thicknesses of 0.5 mm.

  15. Fabrication of myogenic engineered tissue constructs.

    Science.gov (United States)

    Pacak, Christina A; Cowan, Douglas B

    2009-05-01

    Despite the fact that electronic pacemakers are life-saving medical devices, their long-term performance in pediatric patients can be problematic owing to the restrictions imposed by a child's small size and their inevitable growth. Consequently, there is a genuine need for innovative therapies designed specifically for pediatric patients with cardiac rhythm disorders. We propose that a conductive biological alternative consisting of a collagen-based matrix containing autologously-derived cells could better adapt to growth, reduce the need for recurrent surgeries, and greatly improve the quality of life for these patients. In the present study, we describe a procedure for incorporating primary skeletal myoblast cell cultures within a hydrogel matrix to fashion a surgically-implantable tissue construct that will serve as an electrical conduit between the upper and lower chambers of the heart. Ultimately, we anticipate using this type of engineered tissue to restore atrioventricular electrical conduction in children with complete heart block. In view of that, we isolate myoblasts from the skeletal muscles of neonatal Lewis rats and plate them onto laminin-coated tissue culture dishes using a modified version of established protocols. After one to two days, cultured cells are collected and mixed with antibiotics, type 1 collagen, Matrigel, and NaHCO(3). The result is a viscous, uniform solution that can be cast into a mold of nearly any shape and size. For our tissue constructs, we employ type 1 collagen isolated from fetal lamb skin using standard procedures. Once the tissue has solidified at 37 degrees C, culture media is carefully added to the plate until the construct is submerged. The engineered tissue is then allowed to further condense through dehydration for 2 more days, at which point it is ready for in vitro assessment or surgical-implantation.

  16. Pulse frequency in pulsed brachytherapy based on tissue repair kinetics

    International Nuclear Information System (INIS)

    Sminia, Peter; Schneider, Christoph J.; Koedooder, Kees; Tienhoven, Geertjan van; Blank, Leo E.C.M.; Gonzalez Gonzalez, Dionisio

    1998-01-01

    Purpose: Investigation of normal tissue sparing in pulsed brachytherapy (PB) relative to continuous low-dose rate irradiation (CLDR) by adjusting pulse frequency based on tissue repair characteristics. Method: Using the linear quadratic model, the relative effectiveness (RE) of a 20 Gy boost was calculated for tissue with an α/β ratio ranging from 2 to 10 Gy and a half-time of sublethal damage repair between 0.1 and 3 h. The boost dose was considered to be delivered either in a number of pulses varying from 2 to 25, or continuously at a dose rate of 0.50, 0.80, or 1.20 Gy/h. Results: The RE of 20 Gy was found to be identical for PB in 25 pulses of 0.80 Gy each h and CLDR delivered at 0.80 Gy/h for any α/β value and for a repair half-time > 0.75 h. When normal tissue repair half-times are assumed to be longer than tumor repair half-times, normal tissue sparing can be obtained, within the restriction of a fixed overall treatment time, with higher dose per pulse and longer period time (time elapsed between start of pulse n and start of pulse n + 1). An optimum relative normal tissue sparing larger than 10% was found with 4 pulses of 5 Gy every 8 h. Hence, a therapeutic gain might be obtained when changing from CLDR to PB by adjusting the physical dose in such a way that the biological dose on the tumor is maintained. The normal tissue-sparing phenomenon can be explained by an increase in RE with longer period time for tissue with high α/β ratio and fast or intermediate repair half-time, and the RE for tissue with low α/β ratio and long repair half-time remains almost constant. Conclusion: Within the benchmark of the LQ model, advantage in normal tissue-sparing is expected when matching the pulse frequency to the repair kinetics of the normal tissue exposed. A period time longer than 1 h may lead to a reduction of late normal tissue complications. This theoretical advantage emphasizes the need for better knowledge of human tissue-repair kinetics

  17. Adipocytokines, neuropeptide Y and insulin resistance in overweight women with gynoid and android type of adipose tissue distribution.

    Science.gov (United States)

    Orbetzova, Maria M; Koleva, Daniela I; Mitkov, Mitko D; Atanassova, Iliana B; Nikolova, Julia G; Atanassova, Pepa K; Genchev, Gencho D

    2012-01-01

    The AIM of the study was to compare the levels of certain adipose tissue hormones in women with the two main morphological types of obesity - android and gynoid obesity. The study included 2 groups of age- and weight-matched women with android (n = 32) and gynoid (n = 27) type of obesity, and a group of age-matched healthy women (n = 24) with normal weight and body constitution. Leptin, resistin, tumour necrosis factor alpha (TNFalpha), neuropeptide Y (NPY), glucose and insulin were measured. HOMA index was calculated. Leptin levels in the women with gynoid obesity did not differ significantly from those in the controls and the women with android obesity. The controls had significantly lower leptin levels compared with the android obesity women. NPY was significantly higher in the control women compared to the women with android obesity and did not differ significantly between the two groups of obese women. TNFalpha levels in all groups were very similar. Resistin did not show significant differences between all groups but tended to have the lowest levels in the controls. In the women with android obesity, insulin was significantly higher than that in the women with gynoid obesity and the controls. Insulin resistance was found in the women with android obesity only. Basal insulin and HOMA index in the women with gynoid obesity did not differ significantly from the values in the control group. The results from this study contribute to understanding the association of adipose tissue hormones and insulin resistance in obesity. When adipose tissue is predominantly distributed in the abdominal area at similar amount and percentage of body fats, leptin production is higher and insulin resistance develops. In the gynoid type of adipose tissue predisposition, overt insulin resistance is not found, leptin levels does not differ significantly from those in the control group.

  18. Computational cell quantification in the human brain tissues based on hard x-ray phase-contrast tomograms

    Science.gov (United States)

    Hieber, Simone E.; Bikis, Christos; Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Chicherova, Natalia; Rack, Alexander; Zdora, Marie-Christine; Zanette, Irene; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert

    2016-10-01

    Cell visualization and counting plays a crucial role in biological and medical research including the study of neurodegenerative diseases. The neuronal cell loss is typically determined to measure the extent of the disease. Its characterization is challenging because the cell density and size already differs by more than three orders of magnitude in a healthy cerebellum. Cell visualization is commonly performed by histology and fluorescence microscopy. These techniques are limited to resolve complex microstructures in the third dimension. Phase- contrast tomography has been proven to provide sufficient contrast in the three-dimensional imaging of soft tissue down to the cell level and, therefore, offers the basis for the three-dimensional segmentation. Within this context, a human cerebellum sample was embedded in paraffin and measured in local phase-contrast mode at the beamline ID19 (ESRF, Grenoble, France) and the Diamond Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK). After the application of Frangi-based filtering the data showed sufficient contrast to automatically identify the Purkinje cells and to quantify their density to 177 cells per mm3 within the volume of interest. Moreover, brain layers were segmented in a region of interest based on edge detection. Subsequently performed histological analysis validated the presence of the cells, which required a mapping from the two- dimensional histological slices to the three-dimensional tomogram. The methodology can also be applied to further tissue types and shows potential for the computational tissue analysis in health and disease.

  19. Identification and prognostic value of anterior gradient protein 2 expression in breast cancer based on tissue microarray.

    Science.gov (United States)

    Guo, Jilong; Gong, Guohua; Zhang, Bin

    2017-07-01

    Breast cancer has attracted substantial attention as one of the major cancers causing death in women. It is crucial to find potential biomarkers of prognostic value in breast cancer. In this study, the expression pattern of anterior gradient protein 2 in breast cancer was identified based on the main molecular subgroups. Through analysis of 69 samples from the Gene Expression Omnibus database, we found that anterior gradient protein 2 expression was significantly higher in non-triple-negative breast cancer tissues compared with normal tissues and triple-negative breast cancer tissues (p gradient protein 2 expression pattern. Furthermore, we performed immunohistochemical analysis. The quantification results revealed that anterior gradient protein 2 is highly expressed in non-triple-negative breast cancer (grade 3 excluded) and grade 1 + 2 (triple-negative breast cancer excluded) tumours compared with normal tissues. Anterior gradient protein 2 was significantly highly expressed in non-triple-negative breast cancer (grade 3 excluded) and non-triple-negative breast cancer tissues compared with triple-negative breast cancer tissues (p gradient protein 2 was significantly highly expressed in grade 1 + 2 (triple-negative breast cancer excluded) and grade 1 + 2 tissues compared with grade 3 tissues (p gradient protein 2 expression was significantly associated with histologic type, histological grade, oestrogen status and progesterone status. Univariate analysis of clinicopathological variables showed that anterior gradient protein 2 expression, tumour size and lymph node status were significantly correlated with overall survival in patients with grade 1 and 2 tumours. Cox multivariate analysis revealed anterior gradient protein 2 as a putative independent indicator of unfavourable outcomes (p = 0.031). All these data clearly showed that anterior gradient protein 2 is highly expressed in breast cancer and can be regarded as a putative biomarker for

  20. Urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and epidermal growth factor receptor (EGFR)

    DEFF Research Database (Denmark)

    Christensen, Anders; Kiss, Katalin; Lelkaitis, Giedrius

    2017-01-01

    Background: Tumor-specific biomarkers are a prerequisite for the development of targeted imaging and therapy in oral squamous cell carcinoma (OSCC). urokinase-type Plasminogen Activator Receptor (uPAR), Tissue Factor (TF) and Epidermal Growth Factor Receptor (EGFR) are three biomarkers that exhib...... with a reduced survival. uPAR seems to be a prognostic biomarker in oral cancer....

  1. A structure-based extracellular matrix expansion mechanism of fibrous tissue growth.

    Science.gov (United States)

    Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E

    2015-05-20

    Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis.

  2. Phase-Contrast Hounsfield Units of Fixated and Non-Fixated Soft-Tissue Samples

    Science.gov (United States)

    Willner, Marian; Fior, Gabriel; Marschner, Mathias; Birnbacher, Lorenz; Schock, Jonathan; Braun, Christian; Fingerle, Alexander A.; Noël, Peter B.; Rummeny, Ernst J.; Pfeiffer, Franz; Herzen, Julia

    2015-01-01

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissue specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. Furthermore, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results. PMID:26322638

  3. Meal fat storage in subcutaneous adipose tissue: comparison of pioglitazone and glipizide treatment of type 2 diabetes.

    Science.gov (United States)

    Basu, Ananda; Basu, Rita; Pattan, Vishwanath; Rizza, Robert A; Jensen, Michael D

    2010-10-01

    Treatment of type 2 diabetes (T2DM) with pioglitazone changes abdominal fat in the opposite direction as treatment with glipizide. To determine whether these two medications affect adipose tissue meal fatty acid storage differently we studied 19 T2DM treated with either pioglitazone (n = 8) or glipizide (n = 11) and 11 non-DM control subjects matched for age, BMI, abdominal and leg fat. A breakfast mixed meal containing [1-(14)C]triolein was given and abdominal and femoral subcutaneous (sc) adipose tissue biopsies were collected 6 and 24 h later to measure meal fatty acid storage. The portion of meal fatty acids stored in upper body sc and lower body sc adipose tissue did not differ between non-DM and T2DM subjects either at 6 or 24 h. Likewise, meal fatty acid storage did not differ between the T2DM participants treated with pioglitazone or glipizide. We conclude that meal fatty acid storage in upper body and lower body sc adipose tissue is not abnormal in T2DM patients treated with pioglitazone or glipizide.

  4. Advanced cell culture technology for generation of in vivo-like tissue models

    OpenAIRE

    Przyborski, Stefan

    2017-01-01

    Human tissues are mostly composed of different cell types, that are often highly organised in relation to each other. Often cells are arranged in distinct layers that enable signalling and cell-to-cell interactions. Here we describe the application of scaffold-based technology, that can be used to create advanced organotypic 3D models of various tissue types that more closely resemble in vivo-like conditions (Knight et al., 2011). The scaffold comprises a highly porous polystyrene material, e...

  5. Tissue-type-specific transcriptome analysis identifies developing xylem-specific promoters in poplar.

    Science.gov (United States)

    Ko, Jae-Heung; Kim, Hyun-Tae; Hwang, Ildoo; Han, Kyung-Hwan

    2012-06-01

    Plant biotechnology offers a means to create novel phenotypes. However, commercial application of biotechnology in crop improvement programmes is severely hindered by the lack of utility promoters (or freedom to operate the existing ones) that can drive gene expression in a tissue-specific or temporally controlled manner. Woody biomass is gaining popularity as a source of fermentable sugars for liquid fuel production. To improve the quantity and quality of woody biomass, developing xylem (DX)-specific modification of the feedstock is highly desirable. To develop utility promoters that can drive transgene expression in a DX-specific manner, we used the Affymetrix Poplar Genome Arrays to obtain tissue-type-specific transcriptomes from poplar stems. Subsequent bioinformatics analysis identified 37 transcripts that are specifically or strongly expressed in DX cells of poplar. After further confirmation of their DX-specific expression using semi-quantitative PCR, we selected four genes (DX5, DX8, DX11 and DX15) for in vivo confirmation of their tissue-specific expression in transgenic poplars. The promoter regions of the selected DX genes were isolated and fused to a β-glucuronidase (GUS)-reported gene in a binary vector. This construct was used to produce transgenic poplars via Agrobacterium-mediated transformation. The GUS expression patterns of the resulting transgenic plants showed that these promoters were active in the xylem cells at early seedling growth and had strongest expression in the developing xylem cells at later growth stages of poplar. We conclude that these DX promoters can be used as a utility promoter for DX-specific biomass engineering. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  6. MR Histoanatomical Distribution of 290 Soft-tissue Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Tae Yong; Lee, In Sook; Lee, Gee Won; Kim, Jeung Il; Choi, Kyung Un; Kim, Won Taek [Pusan National University Hospital, Busan (Korea, Republic of)

    2008-12-15

    This study was designed too identify the MR histoanatomical distribution of soft-tissue tumors. A total of 290 soft-tissue tumors of 281 patients were analyzed by the use of MR imaging and were pathologically confirmed after surgical resection or a biopsy. There were 120 malignant soft-tissue tumors including tumors of an intermediate malignancy and 170 benign tumors. The histoanatomical locations were divided into three types: 'type I' with superficial layer tumors that involved the cutaneous and subcutaneous tissue, 'type II' with deep layer tumors that involved the muscle or tendon and 'type III' with soft tissue tumors that involved both the superficial and deep layers. Soft-tissue tumors with more than three cases with a frequency of more than 75% included dermatofibrosarcoma protuberans, glomus tumor, angiolipoma, leiomyosarcoma and lymphoma as 'type I' tumors. 'Type II' tumors with more than three cases with a frequency of more than 75% included liposarcoma, fibromatosis, papillary endothelial hyperplasia and rhabdomyosarcoma. 'Type III' tumors with more than three cases with a frequency of more than 50% included neurofibromatosis. The MR histoanatomical distributions of soft tissue tumors are useful in the differential pathological diagnosis when a soft-tissue tumor has a nonspecific MR appearance.

  7. Effects of glucose and insulin levels on adipose tissue glucose measurement by microdialysis probes retained for three weeks in Type 1 diabetic patients

    NARCIS (Netherlands)

    Hullegie, LM; Lutgers, HL; Dullaart, RPF; Sluiter, WJ; Wientjes, KJ; Schoonen, AJM; Hoogenberg, K

    Background: To evaluate the effects of acute hyperglycaemia and hyperinsulinaemia on adipose tissue glucose measurements by microdialysis probes inserted for a 3-week period. Methods: Microdialysis probes were implanted pairwise in abdominal adipose tissue in seven Type 1 diabetic patients and

  8. Liver fat content is linked to inflammatory changes in subcutaneous adipose tissue in type 2 diabetes patients.

    Science.gov (United States)

    Jansen, Henry J; Vervoort, Gerald M; van der Graaf, Marinette; Stienstra, Rinke; Tack, Cees J

    2013-11-01

    Patients with type 2 diabetes mellitus (T2DM) are typically overweight and have an increased liver fat content (LFAT). High LFAT may be explained by an increased efflux of free fatty acids from the adipose tissue, which is partly instigated by inflammatory changes. This would imply an association between inflammatory features of the adipose tissue and liver fat content. To analyse associations between inflammatory features of the adipose tissue and liver fat content. A cross-sectional study. Twenty-seven obese patients with insulin-treated T2DM were studied. LFAT content was measured by proton magnetic resonance spectroscopy. A subcutaneous (sc) fat biopsy was obtained to determine morphology and protein levels within adipose tissue. In addition to fat cell size, the percentage of macrophages and the presence of crown-like structures (CLSs) within sc fat were assessed by CD68-immunohistochemical staining. Mean LFAT percentage was 11·1 ± 1·7% (range: 0·75-32·9%); 63% of the patients were diagnosed with an elevated LFAT (upper range of normal ≤5·5%). Whereas adipocyte size did not correlate with LFAT, 3 of 4 subjects with CLSs in sc fat had elevated LFAT and the percentage of macrophages present in sc adipose tissue was positively associated with LFAT. Protein concentrations of adiponectin within adipose tissue negatively correlated with LFAT. Adipose tissue protein levels of the key inflammatory adipokine plasminogen activator inhibitor-1 (PAI-1) were positively associated with LFAT. Several pro-inflammatory changes in sc adipose tissue associate with increased LFAT content in obese insulin-treated patients with T2DM. These findings suggest that inflammatory changes at the level of the adipose tissue may drive liver fat accumulation. © 2012 John Wiley & Sons Ltd.

  9. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT (Conference Presentation)

    Science.gov (United States)

    Yao, Xinwen; Gan, Yu; Chang, Ernest W.; Hibshoosh, Hanina; Feldman, Sheldon; Hendon, Christine P.

    2017-02-01

    We employed a home-built ultrahigh resolution (UHR) OCT system at 800nm to image human breast cancer sample ex vivo. The system has an axial resolution of 2.72µm and a lateral resolution of 5.52µm with an extended imaging range of 1.78mm. Over 900 UHR OCT volumes were generated on specimens from 23 breast cancer cases. With better spatial resolution, detailed structures in the breast tissue were better defined. Different types of breast cancer as well as healthy breast tissue can be well delineated from the UHR OCT images. To quantitatively evaluate the advantages of UHR OCT imaging of breast cancer, features derived from OCT intensity images were used as inputs to a machine learning model, the relevance vector machine. A trained machine learning model was employed to evaluate the performance of tissue classification based on UHR OCT images for differentiating tissue types in the breast samples, including adipose tissue, healthy stroma and cancerous region. For adipose tissue, grid-based local features were extracted from OCT intensity data, including standard deviation, entropy, and homogeneity. We showed that it was possible to enhance the classification performance on distinguishing fat tissue from non-fat tissue by using the UHR images when compared with the results based on OCT images from a commercial 1300 nm OCT system. For invasive ductal carcinoma (IDC) and normal stroma differentiation, the classification was based on frame-based features that portray signal penetration depth and tissue reflectivity. The confusing matrix indicated a sensitivity of 97.5% and a sensitivity of 77.8%.

  10. Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes.

    Science.gov (United States)

    Jones, D A; Prior, S L; Barry, J D; Caplin, S; Baxter, J N; Stephens, J W

    2014-12-01

    In the past 30 years, prevalence of obesity has almost trebled resulting in an increased incidence of type 2 diabetes mellitus and other co-morbidities. Visceral adipose tissue is believed to play a vital role, but underlying mechanisms remain unclear. Our aim was to investigate changes in markers of oxidative damage in human visceral adipose tissue to determine levels of oxidative burden that may be attributed to obesity and/or diabetes. Visceral adipose tissue samples from 61 subjects undergoing abdominal surgery grouped as lean, obese and obese with type 2 diabetes mellitus, were examined using 3 different markers of oxidative stress. Malondialdehyde (MDA) concentration was measured as a marker of lipid peroxidation, telomere length and Comet assay as markers of oxidative DNA damage. No significant difference in MDA concentration, telomere length and DNA damage was observed between groups, although longer telomere lengths were seen in the obese with diabetes group compared to the obese group (Pstress and DNA damage was observed in samples from subjects with type 2 diabetes mellitus. Further work is required to investigate this further, however this phenomenon may be due to an up regulation of antioxidant defences in adipose tissue. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Monitoring sinew contraction during formation of tissue-engineered fibrin-based ligament constructs.

    Science.gov (United States)

    Paxton, Jennifer Z; Wudebwe, Uchena N G; Wang, Anqi; Woods, Daniel; Grover, Liam M

    2012-08-01

    The ability to study the gross morphological changes occurring during tissue formation is vital to producing tissue-engineered structures of clinically relevant dimensions in vitro. Here, we have used nondestructive methods of digital imaging and optical coherence tomography to monitor the early-stage formation and subsequent maturation of fibrin-based tissue-engineered ligament constructs. In addition, the effect of supplementation with essential promoters of collagen synthesis, ascorbic acid (AA) and proline (P), has been assessed. Contraction of the cell-seeded fibrin gel occurs unevenly within the first 5 days of culture around two fixed anchor points before forming a longitudinal ligament-like construct. AA+P supplementation accelerates gel contraction in the maturation phase of development, producing ligament-like constructs with a higher collagen content and distinct morphology to that of unsupplemented constructs. These studies highlight the importance of being able to control the methods of tissue formation and maturation in vitro to enable the production of tissue-engineered constructs with suitable replacement tissue characteristics for repair of clinical soft-tissue injuries.

  12. A portrait of tissue phosphoprotein stability in the clinical tissue procurement process.

    Science.gov (United States)

    Espina, Virginia; Edmiston, Kirsten H; Heiby, Michael; Pierobon, Mariaelena; Sciro, Manuela; Merritt, Barbara; Banks, Stacey; Deng, Jianghong; VanMeter, Amy J; Geho, David H; Pastore, Lucia; Sennesh, Joel; Petricoin, Emanuel F; Liotta, Lance A

    2008-10-01

    Little is known about the preanalytical fluctuations of phosphoproteins during tissue procurement for molecular profiling. This information is crucial to establish guidelines for the reliable measurement of these analytes. To develop phosphoprotein profiles of tissue subjected to the trauma of excision, we measured the fidelity of 53 signal pathway phosphoproteins over time in tissue specimens procured in a community clinical practice. This information provides strategies for potential surrogate markers of stability and the design of phosphoprotein preservative/fixation solutions. Eleven different specimen collection time course experiments revealed augmentation (+/-20% from the time 0 sample) of signal pathway phosphoprotein levels as well as decreases over time independent of tissue type, post-translational modification, and protein subcellular location (tissues included breast, colon, lung, ovary, and uterus (endometrium/myometrium) and metastatic melanoma). Comparison across tissue specimens showed an >20% decrease of protein kinase B (AKT) Ser-473 (p 20% increases within 90-min postprocurement. Endothelial nitric-oxide synthase Ser-1177 did not change over the time period evaluated with breast or leiomyoma tissue. Treatment with phosphatase or kinase inhibitors alone revealed that tissue kinase pathways are active ex vivo. Combinations of kinase and phosphatase inhibitors appeared to stabilize proteins that exhibited increases in the presence of phosphatase inhibitors alone (ATF-2 Thr-71, SAPK/JNK Thr-183/Tyr-185, STAT1 Tyr-701, JAK1 Tyr-1022/1023, and PAK1/PAK2 Ser-199/204/192/197). This time course study 1) establishes the dynamic nature of specific phosphoproteins in excised tissue, 2) demonstrates augmented phosphorylation in the presence of phosphatase inhibitors, 3) shows that kinase inhibitors block the upsurge in phosphorylation of phosphoproteins, 4) provides a rational strategy for room temperature preservation of proteins, and 5) constitutes a

  13. Radiosensitivity of soft tissue sarcomas

    International Nuclear Information System (INIS)

    Hirano, Toru; Iwasaki, Katsuro; Suzuki, Ryohei; Monzen, Yoshio; Hombo, Zenichiro

    1989-01-01

    The correlation between the effectiveness of radiation therapy and the histology of soft tissue sarcomas was investigated. Of 31 cases with a soft tissue sarcoma of an extremity treated by conservative surgery and postoperative radiation of 3,000-6,000 cGy, local recurrence occurred in 12; 5 out of 7 synovial sarcomas, 4 of 9 MFH, one of 8 liposarcomas, none of 4 rhabdomyosarcomas and 2 of 3 others. As for the histological subtyping, the 31 soft tissue sarcomas were divided into spindle cell, pleomorphic cell, myxoid and round cell type, and recurrence rates were 75%, 33.3%, 16.7% and 0%, respectively. From the remarkable difference in recurrent rate, it was suggested that round cell and myxoid type of soft tissue sarcomas showed a high radiosensitivity compared to the spindle cell type with low sensitivity. Clarifying the degree of radiosensitivity is helpful in deciding on the management of limb salvage in soft tissue sarcomas of an extremity. (author)

  14. Alteration of gene expression profile in Niemann-Pick type C mice correlates with tissue damage and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mary C Vázquez

    Full Text Available BACKGROUND: Niemann-Pick type C disease (NPC is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1(+/+; WT and homozygous-mutant (Npc1(-/-; NPC mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice. CONCLUSIONS/SIGNIFICANCE: In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress

  15. Propolis Modifies Collagen Types I and III Accumulation in the Matrix of Burnt Tissue

    Directory of Open Access Journals (Sweden)

    Pawel Olczyk

    2013-01-01

    Full Text Available Wound healing represents an interactive process which requires highly organized activity of various cells, synthesizing cytokines, growth factors, and collagen. Collagen types I and III, serving as structural and regulatory molecules, play pivotal roles during wound healing. The aim of this study was to compare the propolis and silver sulfadiazine therapeutic efficacy throughout the quantitative and qualitative assessment of collagen types I and III accumulation in the matrix of burnt tissues. Burn wounds were inflicted on pigs, chosen for the evaluation of wound repair because of many similarities between pig and human skin. Isolated collagen types I and III were estimated by the surface plasmon resonance method with a subsequent collagenous quantification using electrophoretic and densitometric analyses. Propolis burn treatment led to enhanced collagens and its components expression, especially during the initial stage of the study. Less expressed changes were observed after silver sulfadiazine (AgSD application. AgSD and, with a smaller intensity, propolis stimulated accumulation of collagenous degradation products. The assessed propolis therapeutic efficacy, throughout quantitatively and qualitatively analyses of collagen types I and III expression and degradation in wounds matrix, may indicate that apitherapeutic agent can generate favorable biochemical environment supporting reepithelization.

  16. Magneto-acousto-electrical Measurement Based Electrical Conductivity Reconstruction for Tissues.

    Science.gov (United States)

    Zhou, Yan; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong

    2018-05-01

    Based on the interaction of ultrasonic excitation and magnetoelectrical induction, magneto-acousto-electrical (MAE) technology was demonstrated to have the capability of differentiating conductivity variations along the acoustic transmission. By applying the characteristics of the MAE voltage, a simplified algorithm of MAE measurement based conductivity reconstruction was developed. With the analyses of acoustic vibration, ultrasound propagation, Hall effect, and magnetoelectrical induction, theoretical and experimental studies of MAE measurement and conductivity reconstruction were performed. The formula of MAE voltage was derived and simplified for the transducer with strong directivity. MAE voltage was simulated for a three-layer gel phantom and the conductivity distribution was reconstructed using the modified Wiener inverse filter and Hilbert transform, which was also verified by experimental measurements. The experimental results are basically consistent with the simulations, and demonstrate that the wave packets of MAE voltage are generated at tissue interfaces with the amplitudes and vibration polarities representing the values and directions of conductivity variations. With the proposed algorithm, the amplitude and polarity of conductivity gradient can be restored and the conductivity distribution can also be reconstructed accurately. The favorable results demonstrate the feasibility of accurate conductivity reconstruction with improved spatial resolution using MAE measurement for tissues with conductivity variations, especially suitable for nondispersive tissues with abrupt conductivity changes. This study demonstrates that the MAE measurement based conductivity reconstruction algorithm can be applied as a new strategy for nondestructive real-time monitoring of conductivity variations in biomedical engineering.

  17. Polyurethane as a base for a family of tissue equivalent materials

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1980-01-01

    Recent experience gained in the selection of tissue equivalent materials for the construction of whole body counting phantoms has shown that commercially available polyurethane can be used as a base for a variety of tissue equivalent materials. Tissues simulated include lung, adipose, muscle, cartilage and rib bone. When selecting tissue equivalent materials it is important to understand what tissue properties must be simulated. Materials that simply simulate the linear attenuation of low energy photons for example, are not very likely to simulate neutron interaction properties accurately. With this in mind, we have developed more than one simulation composition for a given tissue, depending on the purpose to which the simulant is to be applied. Simple simulation of linear attenuation can be achieved by addition of carefully measured amounts of higher Z material, such as calcium carbonate to the polyurethane. However, the simulation necessary for medical scanning purposes, or for use in mixed radiation fields requires more complex formulations to yield proper material density, hydrogen and nitrogen content, electron density, and effective atomic number. Though polyurethane has limitations for simulation of tissues that differ markedly from its inherent composition (such as compacted bone), it is safe and easily used in modestly equipped laboratories. The simulants are durable and generally flexible. They can also be easily cast in irregular shapes to simulate specific organ geometries. (author)

  18. Introduction of lysine and clot binding properties in the kringle one domain of tissue-type plasminogen activator

    NARCIS (Netherlands)

    Bakker, A.H.F.; Greef, W. van der; Rehberg, E.F.; Marotti, K.R.; Verheijen, J.H.

    1993-01-01

    Despite the high overall similarity in primary structure between kringle one (K1) and kringle two (K2) of tissue-type plasminogen activator (t-PA) there exists an enormous functional difference. It is thought that, in contrast to K1, K2 mediates lysine binding and fibrin binding and is involved in

  19. Bio-based materials with novel characteristics for tissue engineering applications - A review.

    Science.gov (United States)

    Bedian, Luis; Villalba-Rodríguez, Angel M; Hernández-Vargas, Gustavo; Parra-Saldivar, Roberto; Iqbal, Hafiz M N

    2017-05-01

    Recently, a wider spectrum of bio-based materials and materials-based novel constructs and systems has been engineered with high interests. The key objective is to help for an enhanced/better quality of life in a secure way by avoiding/limiting various adverse effects of some in practice traditional therapies. In this context, different methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, bio-based therapeutic constructs are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable materials-based novel constructs for multipurpose applications is essential and a core demand to tackle many human health related diseases. Bio-based materials possess several complementary functionalities, e.g. unique chemical structure, bioactivity, non-toxicity, biocompatibility, biodegradability, recyclability, etc. that position them well in the modern world's materials sector. In this context, the utilization of biomaterials provides extensive opportunities for experimentation in the field of interdisciplinary and multidisciplinary scientific research. With an aim to address the global dependence on petroleum-based polymers, researchers have been redirecting their interests to the engineering of biological materials for targeted applications in different industries including cosmetics, pharmaceuticals, and other biotechnological or biomedical applications. Herein, we reviewed biotechnological advancements at large and tissue engineering from a biomaterials perspective in particular and envision directions of future developments. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Biocompatibility of a novel cyanoacrylate based tissue adhesive: cytotoxicity and biochemical property evaluation.

    Directory of Open Access Journals (Sweden)

    Young Ju Lee

    Full Text Available Cyanoacrylate (CA is most widely used as a medical and commercial tissue adhesive because of easier wound closure, good cosmetic results and little discomfort. But, CA-based tissue adhesives have some limitations including the release of cytotoxic chemicals during biodegradation. In previous study, we made prepolymerized allyl 2-CA (PACA based tissue adhesive, resulting in longer chain structure. In this study, we investigated a biocompatibility of PACA as alternative tissue adhesive for medical application, comparing with that of Dermabond® as commercial tissue adhesive. The biocompatibility of PACA was evaluated for short-term (24 hr and long-term (3 and 7 days using conventional cytotoxicity (WST, neutral red, LIVE/DEAD and TUNEL assays, hematoxylin-eosin (H&E and Masson trichrome (MT staining. Besides we examined the biochemical changes in cells and DNA induced by PACA and Dermabond® utilizing Raman spectroscopy which could observe the denaturation and conformational changes in protein, as well as disintegration of the DNA/RNA by cell death. In particular, we analyzed Raman spectrum using the multivariate statistical methods including principal component analysis (PCA and support vector machine (SVM. As a result, PACA and Dermabond® tissue adhesive treated cells and tissues showed no difference of the cell viability values, histological analysis and Raman spectral intensity. Also, the classification analysis by means of PCA-SVM classifier could not discriminate the difference between the PACA and Dermabond® treated cells and DNA. Therefore we suggest that novel PACA might be useful as potential tissue adhesive with effective biocompatibility.

  1. Type 3 innate lymphoid cell depletion is mediated by TLRs in lymphoid tissues of simian immunodeficiency virus-infected macaques.

    Science.gov (United States)

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A; Veazey, Ronald S

    2015-12-01

    Innate lymphoid cells (ILCs) type 3, also known as lymphoid tissue inducer cells, plays a major role in both the development and remodeling of organized lymphoid tissues and the maintenance of adaptive immune responses. HIV/simian immunodeficiency virus (SIV) infection causes breakdown of intestinal barriers resulting in microbial translocation, leading to systemic immune activation and disease progression. However, the effects of HIV/SIV infection on ILC3 are unknown. Here, we analyzed ILC3 from mucosal and systemic lymphoid tissues in chronically SIV-infected macaques and uninfected controls. ILC3 cells were defined and identified in macaque lymphoid tissues as non-T, non-B (lineage-negative), c-Kit(+)IL-7Rα(+) (CD117(+)CD127(+)) cells. These ILC3 cells highly expressed CD90 (∼ 63%) and aryl hydrocarbon receptor and produced IL-17 (∼ 63%), IL-22 (∼ 36%), and TNF-α (∼ 72%) but did not coexpress CD4 or NK cell markers. The intestinal ILC3 cell loss correlated with the reduction of total CD4(+) T cells and T helper (Th)17 and Th22 cells in the gut during SIV infection (P lymphoid tissues in SIV-infected macaques, further contributing to the HIV-induced impairment of gut-associated lymphoid tissue structure and function, especially in mucosal tissues. © FASEB.

  2. Functions of tissue-resident eosinophils.

    Science.gov (United States)

    Weller, Peter F; Spencer, Lisa A

    2017-12-01

    Eosinophils are a prominent cell type in particular host responses such as the response to helminth infection and allergic disease. Their effector functions have been attributed to their capacity to release cationic proteins stored in cytoplasmic granules by degranulation. However, eosinophils are now being recognized for more varied functions in previously underappreciated diverse tissue sites, based on the ability of eosinophils to release cytokines (often preformed) that mediate a broad range of activities into the local environment. In this Review, we consider evolving insights into the tissue distribution of eosinophils and their functional immunobiology, which enable eosinophils to secrete in a selective manner cytokines and other mediators that have diverse, 'non-effector' functions in health and disease.

  3. Aging changes in organs - tissue - cells

    Science.gov (United States)

    ... and structure to the skin and internal organs. Epithelial tissue provides a covering for deeper body layers. The ... such as the gastrointestinal system, are made of epithelial tissue. Muscle tissue includes three types of tissue: Striated ...

  4. Reconstruction for Skull Base Defect Using Fat-Containing Perifascial Areolar Tissue.

    Science.gov (United States)

    Choi, Woo Young; Sung, Ki Wook; Kim, Young Seok; Hong, Jong Won; Roh, Tai Suk; Lew, Dae Hyun; Chang, Jong Hee; Lee, Kyu Sung

    2017-06-01

    Skull base reconstruction is a challenging task. The method depends on the anatomical complexity and size of the defect. We obtained tissue by harvesting fat-containing perifascial areolar tissue (PAT) for reconstruction of limited skull base defects and volume augmentation. We demonstrated the effective option for reconstruction of limited skull base defects and volume augmentation. From October 2013 to November 2015, 5 patients underwent operations using fat-containing PAT to fill the defect in skull base and/or perform volume replacement in the forehead. Perifascial areolar tissue with 5- to 10-mm fat thickness was harvested from the inguinal region. The fat-containing PAT was grafted to the defect contacting the vascularized wound bed. Patients were followed up in terms of their clinical symptoms and postoperative magnetic resonance imaging findings. Four patients were treated using fat-containing PAT after tumor resection. One patient was treated for a posttraumatic forehead depression deformity. The fat-containing PAT included 5- to 9-mm fat thickness in all cases. The mean size of grafted PAT was 65.6 cm (28-140 cm). The mean follow-up period was 18.6 months (12-31 months). There was no notable complication. There was no donor site morbidity. We can harvest PAT with fat easily and obtain the sufficient volume to treat the defect. It also could be used with other reconstructive method, such as a free flap or a regional flap to fill the left dead space. Therefore, fat-containing PAT could be additional options to reconstruction of skull base defect.

  5. HYDROGEL-BASED NANOCOMPOSITES OF THERAPEUTIC PROTEINS FOR TISSUE REPAIR.

    Science.gov (United States)

    Zhu, Suwei; Segura, Tatiana

    2014-05-01

    The ability to design artificial extracellular matrices as cell instructive scaffolds has opened the door to technologies capable of studying cell fates in vitro and to guide tissue repair in vivo . One main component of the design of artificial extracellular matrices is the incorporation of protein-based biochemical cues to guide cell phenotypes and multicellular organizations. However, promoting the long-term bioactivity, controlling the bioavailability and understanding how the physical presentations of these proteins impacts cellular fates are among the challenges of the field. Nanotechnolgy has advanced to meet the challenges of protein therapeutics. For example, the approaches to incorporating proteins into tissue repairing scaffolds have ranged from bulk encapsulations to smart nanodepots that protect proteins from degradations and allow opportunities for controlled release.

  6. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.

    Science.gov (United States)

    Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan

    2012-07-01

    In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30  s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.

  7. Identification and tissue distribution of mRNAs encoding salmon-type calcitonins-IV and -V in the rainbow trout.

    Science.gov (United States)

    Hidaka, Yoshie; Suzuki, Masakazu

    2004-06-01

    Four types of calcitonin are produced in salmonid fish, although their functional diversity is almost unknown. To explore the significance of these isoforms, we have characterized salmon-type calcitonin (sCT) mRNAs in the rainbow trout (Oncorhynchus mykiss), and examined their tissue distribution. In addition to the previously isolated sCT-I cDNAs, two new forms of sCT cDNA were cloned from the ultimobranchial gland, and one of them (sCT-IV cDNA) was predicted to encode an N-terminal peptide of 80 amino acid residues, a putative cleavage site Lys-Arg, sCT-IV, a cleavage and amidation sequence Gly-Lys-Lys-Arg, and a C-terminal peptide of 18 amino acids. The sCT-IV precursor was 78% identical with the rainbow trout sCT-I precursors. The other cloned cDNA encoded a precursor for a novel CT, sCT-V. The sCT-V peptide was different from sCT-IV by only one amino acid residue: Val at position 8 in the latter was replaced by Met. The sCT-V precursor had 80 and 90% identity with the sCT-I and -IV precursors respectively. No cDNA clones were obtained for sCTs-II or -III.Tissue distribution of sCT-I, -IV and -V mRNAs was examined by RT-PCR and specific cleavage with restriction enzymes. An amplified fragment from sCT-I mRNA was detected not only in the ultimobranchial gland, but also in the gills, testis and ovary. RT-PCR analysis coupled to restriction digestion further revealed that sCT-IV mRNA was expressed in both the testis and the ultimobranchial gland. The expression sites of sCT-IV mRNA were localized to the Leydig cells of the testis and to the parenchymal cells of the ultimobranchial gland, by in situ hybridization histochemistry. Although the amino acid sequence of sCT-V peptide was nearly the same as that of sCT-IV, the sCT-V gene showed a much wider pattern of expression: the band amplified by RT-PCR was detected in all the tissues examined except the kidney, gills and blood cells. The sCT-V mRNA was shown to be localized in the parenchymal cells of the

  8. Digital design of scaffold for mandibular defect repair based on tissue engineering.

    Science.gov (United States)

    Liu, Yun-feng; Zhu, Fu-dong; Dong, Xing-tao; Peng, Wei

    2011-09-01

    Mandibular defect occurs more frequently in recent years, and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws. Tissue engineering, which is a hot research field of biomedical engineering, provides a new direction for mandibular defect repair. As the basis and key part of tissue engineering, scaffolds have been widely and deeply studied in regards to the basic theory, as well as the principle of biomaterial, structure, design, and fabrication method. However, little research is targeted at tissue regeneration for clinic repair operations. Since mandibular bone has a special structure, rather than uniform and regular structure in existing studies, a methodology based on tissue engineering is proposed for mandibular defect repair in this paper. Key steps regarding scaffold digital design, such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail. By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping, the feasibility and effectiveness of the proposed methodology are properly verified. More works about mechanical and biological improvements need to be done to promote its clinical application in future.

  9. Digital design of scaffold for mandibular defect repair based on tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Yun-feng LIU; Fu-dong ZHU; Xing-tao DONG; Wei PENG

    2011-01-01

    Mandibular defect occurs more frequently in recent years,and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws.Tissue engineering,which is a hot research field of biomedical engineering,provides a new direction for mandibular defect repair.As the basis and key part of tissue engineering,scaffolds have been widely and deeply studied in regards to the basic theory,as well as the principle of biomaterial,structure,design,and fabrication method.However,little research is targeted at tissue regeneration for clinic repair operations.Since mandibular bone has a special structure,rather than uniform and regular structure in existing studies,a methodology based on tissue engineering is proposed for mandibular defect repair in this paper.Key steps regarding scaffold digital design,such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail.By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping,the feasibility and effectiveness of the proposed methodology are properly verified.More works about mechanical and biological improvements need to be done to promote its clinical application in future.

  10. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.

    Science.gov (United States)

    Yang, Jingzhou; Zhang, Yu Shrike; Yue, Kan; Khademhosseini, Ali

    2017-07-15

    Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue

  11. Polyurethane as a base for a family of tissue equivalent materials

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1980-01-01

    Polyurethane was used as a base material for a wide variety of tissue simulating applications. The technique in fabrication is similar to that of epoxy, however, the end products are generally more flexible for use in applications where flexibility is valuable. The material can be fabricated with relatively small laboratory equipment. The use of polyurethane provides the dosimetrist with the capability of making specific, accurate, on-the-spot tissue equivalent formulations to meet situations which require immediate calibration and response

  12. Fibrin Gels Exhibit Improved Biological, Structural, and Mechanical Properties Compared with Collagen Gels in Cell-Based Tendon Tissue-Engineered Constructs

    Science.gov (United States)

    Dyment, Nathaniel A.; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Butler, David L.

    2015-01-01

    The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair. PMID:25266738

  13. The small leucine-rich proteoglycan, biglycan, is highly expressed in adipose tissue of Psammomys obesus and is associated with obesity and type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Bolton K

    2012-04-01

    Full Text Available Kristy Bolton1, David Segal1, Ken Walder1,21Metabolic Research Unit, School of Medicine, 2Institute for Technology, Research and Innovation, Deakin University, Waurn Ponds, Victoria, AustraliaAbstract: We have previously demonstrated that the small leucine-rich proteoglycan decorin may play a role in adipose tissue homeostasis and the pathophysiology of obesity. Biglycan is highly similar in structure to decorin, therefore we hypothesized it would have a similar expression profile and role to decorin in adipose tissue. Real time polymerase chain reaction was used to measure biglycan mRNA levels in adipose tissue from normal glucose tolerant and impaired glucose tolerant and type 2 diabetic (T2D Psammomys obesus. Biglycan mRNA was found to be highly expressed in adipose tissue, and gene expression was significantly higher in visceral compared to subcutaneous adipose tissue, with elevated levels in obese, T2D compared to lean normal glucose tolerant P. obesus (P < 0.04. Biglycan mRNA was predominantly expressed by stromal/vascular cells of fractionated adipose tissue (P = 0.023. Biglycan expression in adipose tissue, particularly in the obese state, was markedly upregulated. Collectively, our data suggest that the small leucine-rich proteoglycan family proteins biglycan and decorin may play a role in the development of obesity and T2D, possibly by facilitating expansion of adipose tissue mass.Keywords: biglycan, small leucine-rich proteoglycan, Psammomys obesus, adipose tissue, obesity, type 2 diabetes

  14. Imaging and differentiation of mouse embryo tissues by ToF-SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Wu, L; Lu, X; Kulp, K; Knize, M; Berman, E; Nelson, E; Felton, J; Wu, K J

    2006-06-16

    Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) equipped with a gold ion gun was used to image mouse embryos and differentiate tissue types (brain, spinal cord, skull, rib, heart and liver). Embryos were paraffin-embedded and then de-paraffinized. The robustness and repeatability of the method was determined by analyzing nine tissue slices from three different embryos over a period of several weeks. Using Principal Component Analysis (PCA) to reduce the spectral data generated by ToF-SIMS, histopathologically identified tissue types of the mouse embryos can be differentiated based on the characteristic differences in their mass spectra. These results demonstrate the ability of ToF-SIMS to determine subtle chemical differences even in fixed histological specimens.

  15. A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue.

    Science.gov (United States)

    Ferroni, Letizia; Gardin, Chiara; Sivolella, Stefano; Brunello, Giulia; Berengo, Mario; Piattelli, Adriano; Bressan, Eriberto; Zavan, Barbara

    2015-03-02

    Dental pulp tissue supports the vitality of the tooth, but it is particularly vulnerable to external insults, such as mechanical trauma, chemical irritation or microbial invasion, which can lead to tissue necrosis. In the present work, we present an endodontic regeneration method based on the use of a tridimensional (3D) hyaluronan scaffold and human dental pulp stem cells (DPSCs) to produce a functional dental pulp-like tissue in vitro. An enriched population of DPSCs was seeded onto hyaluronan-based non-woven meshes in the presence of differentiation factors to induce the commitment of stem cells to neuronal, glial, endothelial and osteogenic phenotypes. In vitro experiments, among which were gene expression profiling and immunofluorescence (IF) staining, proved the commitment of DPSCs to the main components of dental pulp tissue. In particular, the hyaluronan-DPSCs construct showed a dental pulp-like morphology consisting of several specialized cells growing inside the hyaluronan fibers. Furthermore, these constructs were implanted into rat calvarial critical-size defects. Histological analyses and gene expression profiling performed on hyaluronan-DPSCs grafts showed the regeneration of osteodentin-like tissue. Altogether, these data suggest the regenerative potential of the hyaluronan-DPSC engineered tissue.

  16. A Hyaluronan-Based Scaffold for the in Vitro Construction of Dental Pulp-Like Tissue

    Directory of Open Access Journals (Sweden)

    Letizia Ferroni

    2015-03-01

    Full Text Available Dental pulp tissue supports the vitality of the tooth, but it is particularly vulnerable to external insults, such as mechanical trauma, chemical irritation or microbial invasion, which can lead to tissue necrosis. In the present work, we present an endodontic regeneration method based on the use of a tridimensional (3D hyaluronan scaffold and human dental pulp stem cells (DPSCs to produce a functional dental pulp-like tissue in vitro. An enriched population of DPSCs was seeded onto hyaluronan-based non-woven meshes in the presence of differentiation factors to induce the commitment of stem cells to neuronal, glial, endothelial and osteogenic phenotypes. In vitro experiments, among which were gene expression profiling and immunofluorescence (IF staining, proved the commitment of DPSCs to the main components of dental pulp tissue. In particular, the hyaluronan-DPSCs construct showed a dental pulp-like morphology consisting of several specialized cells growing inside the hyaluronan fibers. Furthermore, these constructs were implanted into rat calvarial critical-size defects. Histological analyses and gene expression profiling performed on hyaluronan-DPSCs grafts showed the regeneration of osteodentin-like tissue. Altogether, these data suggest the regenerative potential of the hyaluronan-DPSC engineered tissue.

  17. Three-dimensional assessment of brain tissue morphology

    Science.gov (United States)

    Müller, Bert; Germann, Marco; Jeanmonod, Daniel; Morel, Anne

    2006-08-01

    The microstructure of brain tissues becomes visible using different types of optical microscopy after the tissue sectioning. This preparation procedure introduces stress and strain in the anisotropic and inhomogeneous soft tissue slices, which are several 10 μm thick. Consequently, the three-dimensional dataset, generated out of the two-dimensional images with lateral submicrometer resolution, needs algorithms to correct the deformations, which can be significant for mellow tissue such as brain segments. The spatial resolution perpendicular to the slices is much worse with respect to the lateral sub-micrometer resolution. Therefore, we propose as complementary method the synchrotron-radiation-based micro computed tomography (SRμCT), which avoids any kind of preparation artifacts due to sectioning and histological processing and yields true micrometer resolution in the three orthogonal directions. The visualization of soft matter by the use of SRμCT, however, is often based on elaborate staining protocols, since the tissue exhibits (almost) the same x-ray absorption as the surrounding medium. Therefore, it is unexpected that human tissue from the pons and the medulla oblongata in phosphate buffer show several features such as the blood vessels and the inferior olivary nucleus without staining. The value of these tomograms lies especially in the precise non-rigid registration of the different sets of histological slices. Applications of this method to larger pieces of brain tissue, such as the human thalamus are planned in the context of stereotactic functional neurosurgery.

  18. Tissue classification and segmentation of pressure injuries using convolutional neural networks.

    Science.gov (United States)

    Zahia, Sofia; Sierra-Sosa, Daniel; Garcia-Zapirain, Begonya; Elmaghraby, Adel

    2018-06-01

    This paper presents a new approach for automatic tissue classification in pressure injuries. These wounds are localized skin damages which need frequent diagnosis and treatment. Therefore, a reliable and accurate systems for segmentation and tissue type identification are needed in order to achieve better treatment results. Our proposed system is based on a Convolutional Neural Network (CNN) devoted to performing optimized segmentation of the different tissue types present in pressure injuries (granulation, slough, and necrotic tissues). A preprocessing step removes the flash light and creates a set of 5x5 sub-images which are used as input for the CNN network. The network output will classify every sub-image of the validation set into one of the three classes studied. The metrics used to evaluate our approach show an overall average classification accuracy of 92.01%, an average total weighted Dice Similarity Coefficient of 91.38%, and an average precision per class of 97.31% for granulation tissue, 96.59% for necrotic tissue, and 77.90% for slough tissue. Our system has been proven to make recognition of complicated structures in biomedical images feasible. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Temperature dynamics of soft tissues during diode laser cutting by different types of fiber opto-thermal converters

    Science.gov (United States)

    Belikov, Andrey V.; Skrypnik, Alexei V.; Smirnov, Sergey N.; Semyashkina, Yulia V.

    2017-03-01

    The results of in vitro study of the soft tissue temperature dynamics during 980 nm diode laser cutting by different types (CLEAR, FILM, VOLUMETRIC) of fiber opto-thermal converters (FOTC) are presented. It was found that the use of CLEAR fiber end (tip) at the laser power below 8.5 W doesn't lead to the soft tissue (chicken meat) destruction. The chicken meat destruction (cutting) begins when irradiated by 8.5 W laser radiation for approximately 9.0 s. At the power of 9.0 W this time decreases up to 7.0 s, at 9.5 W - to 6.0 s, at 10.0 W - to 3.5 s. The moment of soft tissue cutting start correlates with the moment of black layer (absorber) formation at the fiber end and appearance of visually identifiable laser cut walls on the photos; the temperature in this case rapidly increases up to 850 °C. It was determined that the FILM FOTC begins to cut the soft tissue immediately after exposure of laser radiation with power of 4.0 W, the temperature in this case reaches 900 °C. It was determined that the VOLUMETRIC FOTC begins to cut the tissue immediately after exposure at the power of 1.0 W, the temperature in this case reaches 600 °C. VOLUMETRIC FOTC can produce more effective cuts of the soft tissue at the laser power of 4.0 W, in this case, the temperature is above 1200 °C.

  20. Estrogen receptor-independent catechol estrogen binding activity: protein binding studies in wild-type, Estrogen receptor-alpha KO, and aromatase KO mice tissues.

    Science.gov (United States)

    Philips, Brian J; Ansell, Pete J; Newton, Leslie G; Harada, Nobuhiro; Honda, Shin-Ichiro; Ganjam, Venkataseshu K; Rottinghaus, George E; Welshons, Wade V; Lubahn, Dennis B

    2004-06-01

    Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.

  1. Effects of initiating moderate wine intake on abdominal adipose tissue in adults with type 2 diabetes: a 2-year randomized controlled trial.

    Science.gov (United States)

    Golan, Rachel; Shelef, Ilan; Shemesh, Elad; Henkin, Yaakov; Schwarzfuchs, Dan; Gepner, Yftach; Harman-Boehm, Ilana; Witkow, Shula; Friger, Michael; Chassidim, Yoash; Liberty, Idit F; Sarusi, Benjamin; Serfaty, Dana; Bril, Nitzan; Rein, Michal; Cohen, Noa; Ben-Avraham, Sivan; Ceglarek, Uta; Stumvoll, Michael; Blüher, Matthias; Thiery, Joachim; Stampfer, Meir J; Rudich, Assaf; Shai, Iris

    2017-02-01

    To generate evidence-based conclusions about the effect of wine consumption on weight gain and abdominal fat accumulation and distribution in patients with type 2 diabetes. In the 2-year randomized controlled CASCADE (CArdiovaSCulAr Diabetes & Ethanol) trial, patients following a Mediterranean diet were randomly assigned to drink 150 ml of mineral water, white wine or red wine with dinner for 2 years. Visceral adiposity and abdominal fat distribution were measured in a subgroup of sixty-five participants, using abdominal MRI. Ben-Gurion University of the Negev, Soroka-Medical Center and the Nuclear Research Center Negev, Israel. Alcohol-abstaining adults with well-controlled type 2 diabetes. Forty-eight participants (red wine, n 27; mineral water, n 21) who completed a second MRI measurement were included in the 2-year analysis. Similar weight losses (sd) were observed: red wine 1·3 (3·9) kg; water 1·0 (4·2) kg (P=0·8 between groups). Changes (95 % CI) in abdominal adipose-tissue distribution were similar: red wine, visceral adipose tissue (VAT) -3·0 (-8·0, 2·0) %, deep subcutaneous adipose tissue (DSAT) +5·2 (-1·1, 11·6) %, superficial subcutaneous adipose tissue (SSAT) -1·9 (-5·0, 1·2) %; water, VAT -3·2 (-8·9, 2·5) %, DSAT +2·9 (-2·8, 8·6) %, SSAT -0·15 (-3·3, 2·9) %. No changes in antidiabetic medication and no substantial changes in energy intake (+126 (sd 2889) kJ/d (+30·2 (sd 690) kcal/d), P=0·8) were recorded. A 2-year decrease in glycated Hb (β=0·28, P=0·05) was associated with a decrease in VAT. Moderate wine consumption, as part of a Mediterranean diet, in persons with controlled diabetes did not promote weight gain or abdominal adiposity.

  2. Tissue engineering in dentistry.

    Science.gov (United States)

    Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Salih, Vehid M; Kim, Hae-Won; Knowles, Jonathan C

    2014-08-01

    of this review is to inform practitioners with the most updated information on tissue engineering and its potential applications in dentistry. The authors used "PUBMED" to find relevant literature written in English and published from the beginning of tissue engineering until today. A combination of keywords was used as the search terms e.g., "tissue engineering", "approaches", "strategies" "dentistry", "dental stem cells", "dentino-pulp complex", "guided tissue regeneration", "whole tooth", "TMJ", "condyle", "salivary glands", and "oral mucosa". Abstracts and full text articles were used to identify causes of craniofacial tissue loss, different approaches for craniofacial reconstructions, how the tissue engineering emerges, different strategies of tissue engineering, biomaterials employed for this purpose, the major attempts to engineer different dental structures, finally challenges and future of tissue engineering in dentistry. Only those articles that dealt with the tissue engineering in dentistry were selected. There have been a recent surge in guided tissue engineering methods to manage periodontal diseases beyond the traditional approaches. However, the predictable reconstruction of the innate organisation and function of whole teeth as well as their periodontal structures remains challenging. Despite some limited progress and minor successes, there remain distinct and important challenges in the development of reproducible and clinically safe approaches for oral tissue repair and regeneration. Clearly, there is a convincing body of evidence which confirms the need for this type of treatment, and public health data worldwide indicates a more than adequate patient resource. The future of these therapies involving more biological approaches and the use of dental tissue stem cells is promising and advancing. Also there may be a significant interest of their application and wider potential to treat disorders beyond the craniofacial region. Considering the

  3. Clinical translation of autologous cell-based tissue engineering techniques as Class III therapeutics in China: Taking cartilage tissue engineering as an example

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-04-01

    Full Text Available Autologous cell-based tissue engineering (TE techniques have been clinically approved for approximately 4 years in China, since the first cartilage TE technique was approved for clinical use by the Zhejiang Health Bureau. TE techniques offer a promising alternative to traditional transplantation surgery, and are different from those for transplanted tissues (biologics or pharmaceutical, the clinical translational procedures are unique and multitasked, and the requirements may differ from those of the target tissues. Thus, the translational procedure is still unfamiliar to most researchers and needs further improvement. This perspectives paper describes the key guidelines and regulations involved in the current translational process, and shares our translational experiences in cartilage TE to provide an example of autologous cell-based TE translation in China. Finally, we discuss the scientific and social challenges and provide some suggestions for future improvements.

  4. Platelet-Rich Blood Derivatives for Stem Cell-Based Tissue Engineering and Regeneration

    NARCIS (Netherlands)

    Masoudi, E.A.; Ribas, J.; Kaushik, G.; Leijten, Jeroen Christianus Hermanus; Khademhosseini, A.

    2016-01-01

    Platelet-rich blood derivatives have been widely used in different fields of medicine and stem cell-based tissue engineering. They represent natural cocktails of autologous growth factors, which could provide an alternative for recombinant protein-based approaches. Platelet-rich blood derivatives,

  5. Advanced cell culture technology for generation of in vivo-like tissue models

    Directory of Open Access Journals (Sweden)

    Stefan Przyborski

    2017-06-01

    Full Text Available Human tissues are mostly composed of different cell types, that are often highly organised in relation to each other. Often cells are arranged in distinct layers that enable signalling and cell-to-cell interactions. Here we describe the application of scaffold-based technology, that can be used to create advanced organotypic 3D models of various tissue types that more closely resemble in vivo-like conditions (Knight et al., 2011. The scaffold comprises a highly porous polystyrene material, engineered into a 200 micron thick membrane that is presented in various ways including multi-welled plates and well inserts, for use with conventional culture plasticware and medium perfusion systems. This technology has been applied to generate numerous unique types of co-culture model. For example: 1 a full thickness human skin construct comprising dermal fibroblasts and keratinocytes, raised to the air-liquid interface to induce cornification of the upper layers (Fig.1 (Hill et al., 2015; 2 a neuron-glial co-culture to enable the study of neurite outgrowth interacting with astroglial cells to model and investigate the glial scar found in spinal cord injury (Clarke et al., 2016; 3 formation of a sub-mucosa consisting of a polarised simple epithelium, layer of ECM proteins simulating the basement membrane, and underlying stromal tissues (e.g. intestinal mucosa. These organotypic models demonstrate the versatility of scaffold membranes and the creation of advanced in vivo-like tissue models. Creating a layered arrangement more closely simulates the true anatomy and organisation of cells within many tissue types. The addition of different cell types in a temporal and spatial fashion can be used to study inter-cellular relationships and create more physiologically relevant in vivo-like cell-based assays. Methods that are relatively straightforward to use and that recreate the organised structure of real tissues will become valuable research tools for use in

  6. Reconstruction of complicated skull base defects utilizing free tissue transfer.

    Science.gov (United States)

    Djalilian, Hamid R; Gapany, Markus; Levine, Samuel C

    2002-11-01

    We managed five patients with large skull base defects complicated by complex infections with microvascular free tissue transfer. The first patient developed an infection, cerebrospinal fluid (CSF) leak, and meningitis after undergoing a translabyrinthine resection of an acoustic neuroma. The second patient had a history of a gunshot wound to the temporal bone, with a large defect and an infected cholesteatoma that caused several episodes of meningitis. The third through the fifth patients had persistent CSF leakage and infection refractory to conventional therapy. In all cases prior attempts of closure with fat grafts or regional flaps had failed. Rectus abdominis myofascial free flap, radial forearm free flap or a gracilis muscle free flap was used after debridement of the infected cavities. The CSF leaks, local infections, and meningitis were controlled within a week. In our experience, microvascular free tissue provides the necessary bulk of viable, well-vascularized tissue, which not only assures a mechanical seal but also helps clear the local infection.

  7. Novel blood protein based scaffolds for cardiovascular tissue engineering

    Directory of Open Access Journals (Sweden)

    Kuhn Antonia I.

    2016-09-01

    Full Text Available A major challenge in cardiovascular tissue engineering is the fabrication of scaffolds, which provide appropriate morphological and mechanical properties while avoiding undesirable immune reactions. In this study electrospinning was used to fabricate scaffolds out of blood proteins for cardiovascular tissue engineering. Lyophilised porcine plasma was dissolved in deionised water at a final concentration of 7.5% m/v and blended with 3.7% m/v PEO. Electrospinning resulted in homogeneous fibre morphologies with a mean fibre diameter of 151 nm, which could be adapted to create macroscopic shapes (mats, tubes. Cross-linking with glutaraldehyde vapour improved the long-term stability of protein based scaffolds in comparison to untreated scaffolds, resulting in a mass loss of 41% and 96% after 28 days of incubation in aqueous solution, respectively.

  8. Peptide-Based Materials for Cartilage Tissue Regeneration.

    Science.gov (United States)

    Hastar, Nurcan; Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2017-01-01

    Cartilaginous tissue requires structural and metabolic support after traumatic or chronic injuries because of its limited capacity for regeneration. However, current techniques for cartilage regeneration are either invasive or ineffective for long-term repair. Developing alternative approaches to regenerate cartilage tissue is needed. Therefore, versatile scaffolds formed by biomaterials are promising tools for cartilage regeneration. Bioactive scaffolds further enhance the utility in a broad range of applications including the treatment of major cartilage defects. This chapter provides an overview of cartilage tissue, tissue defects, and the methods used for regeneration, with emphasis on peptide scaffold materials that can be used to supplement or replace current medical treatment options.

  9. Effects of gadolinium-based MRI contrast agents on liver tissue.

    Science.gov (United States)

    Mercantepe, Tolga; Tümkaya, Levent; Çeliker, Fatma Beyazal; Topal Suzan, Zehra; Çinar, Seda; Akyildiz, Kerimali; Mercantepe, Filiz; Yilmaz, Adnan

    2018-04-01

    MRI with contrast is often used clinically. However, recent studies have reported a high accumulation of gadolinium-based contrast agents (GBCAs) in kidney, liver, and spleen tissues in several mouse models. To compare the effects on liver tissue of gadolinium-based MRI contrast agents in the light of biochemical and histopathological evaluation. Institutional Review Board (IRB)-approved controlled longitudinal study. In all, 32 male Sprague-Dawley rats were divided into a healthy control group subjected to no procedure (Group 1), a sham group (Group 2), a gadodiamide group (Group 3), and a gadoteric acid group (Group 4). Not applicable. Liver tissues removed at the end of the fifth week and evaluated pathologically (scored Knodell's histological activity index [HAI] method by two histopathologists) immunohistochemical (caspase-3 and biochemical tests (AST, ALT, TAS, TOS, and OSI method by Erel et al) were obtained. Differences between groups were analyzed using the nonparametric Kruskal-Wallis test followed by the Tamhane test, and one-way analysis of variance (ANOVA) followed by Turkey's HSD test. An increase was observed in histological activity scores in sections from rats administered gadodiamide and gadoteric acid, and in caspase-3, AST and ALT values (P total antioxidant and antioxidant capacity. 1 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  10. Prediction of disease-related genes based on weighted tissue-specific networks by using DNA methylation.

    Science.gov (United States)

    Li, Min; Zhang, Jiayi; Liu, Qing; Wang, Jianxin; Wu, Fang-Xiang

    2014-01-01

    Predicting disease-related genes is one of the most important tasks in bioinformatics and systems biology. With the advances in high-throughput techniques, a large number of protein-protein interactions are available, which make it possible to identify disease-related genes at the network level. However, network-based identification of disease-related genes is still a challenge as the considerable false-positives are still existed in the current available protein interaction networks (PIN). Considering the fact that the majority of genetic disorders tend to manifest only in a single or a few tissues, we constructed tissue-specific networks (TSN) by integrating PIN and tissue-specific data. We further weighed the constructed tissue-specific network (WTSN) by using DNA methylation as it plays an irreplaceable role in the development of complex diseases. A PageRank-based method was developed to identify disease-related genes from the constructed networks. To validate the effectiveness of the proposed method, we constructed PIN, weighted PIN (WPIN), TSN, WTSN for colon cancer and leukemia, respectively. The experimental results on colon cancer and leukemia show that the combination of tissue-specific data and DNA methylation can help to identify disease-related genes more accurately. Moreover, the PageRank-based method was effective to predict disease-related genes on the case studies of colon cancer and leukemia. Tissue-specific data and DNA methylation are two important factors to the study of human diseases. The same method implemented on the WTSN can achieve better results compared to those being implemented on original PIN, WPIN, or TSN. The PageRank-based method outperforms degree centrality-based method for identifying disease-related genes from WTSN.

  11. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial.

    Science.gov (United States)

    Mumme, Marcus; Barbero, Andrea; Miot, Sylvie; Wixmerten, Anke; Feliciano, Sandra; Wolf, Francine; Asnaghi, Adelaide M; Baumhoer, Daniel; Bieri, Oliver; Kretzschmar, Martin; Pagenstert, Geert; Haug, Martin; Schaefer, Dirk J; Martin, Ivan; Jakob, Marcel

    2016-10-22

    Articular cartilage injuries have poor repair capacity, leading to progressive joint damage, and cannot be restored predictably by either conventional treatments or advanced therapies based on implantation of articular chondrocytes. Compared with articular chondrocytes, chondrocytes derived from the nasal septum have superior and more reproducible capacity to generate hyaline-like cartilage tissues, with the plasticity to adapt to a joint environment. We aimed to assess whether engineered autologous nasal chondrocyte-based cartilage grafts allow safe and functional restoration of knee cartilage defects. In a first-in-human trial, ten patients with symptomatic, post-traumatic, full-thickness cartilage lesions (2-6 cm 2 ) on the femoral condyle or trochlea were treated at University Hospital Basel in Switzerland. Chondrocytes isolated from a 6 mm nasal septum biopsy specimen were expanded and cultured onto collagen membranes to engineer cartilage grafts (30 × 40 × 2 mm). The engineered tissues were implanted into the femoral defects via mini-arthrotomy and assessed up to 24 months after surgery. Primary outcomes were feasibility and safety of the procedure. Secondary outcomes included self-assessed clinical scores and MRI-based estimation of morphological and compositional quality of the repair tissue. This study is registered with ClinicalTrials.gov, number NCT01605201. The study is ongoing, with an approved extension to 25 patients. For every patient, it was feasible to manufacture cartilaginous grafts with nasal chondrocytes embedded in an extracellular matrix rich in glycosaminoglycan and type II collagen. Engineered tissues were stable through handling with forceps and could be secured in the injured joints. No adverse reactions were recorded and self-assessed clinical scores for pain, knee function, and quality of life were improved significantly from before surgery to 24 months after surgery. Radiological assessments indicated variable degrees of

  12. A tool to facilitate clinical biomarker studies - a tissue dictionary based on the Human Protein Atlas

    Directory of Open Access Journals (Sweden)

    Kampf Caroline

    2012-09-01

    Full Text Available Abstract The complexity of tissue and the alterations that distinguish normal from cancer remain a challenge for translating results from tumor biological studies into clinical medicine. This has generated an unmet need to exploit the findings from studies based on cell lines and model organisms to develop, validate and clinically apply novel diagnostic, prognostic and treatment predictive markers. As one step to meet this challenge, the Human Protein Atlas project has been set up to produce antibodies towards human protein targets corresponding to all human protein coding genes and to map protein expression in normal human tissues, cancer and cells. Here, we present a dictionary based on microscopy images created as an amendment to the Human Protein Atlas. The aim of the dictionary is to facilitate the interpretation and use of the image-based data available in the Human Protein Atlas, but also to serve as a tool for training and understanding tissue histology, pathology and cell biology. The dictionary contains three main parts, normal tissues, cancer tissues and cells, and is based on high-resolution images at different magnifications of full tissue sections stained with H & E. The cell atlas is centered on immunofluorescence and confocal microscopy images, using different color channels to highlight the organelle structure of a cell. Here, we explain how this dictionary can be used as a tool to aid clinicians and scientists in understanding the use of tissue histology and cancer pathology in diagnostics and biomarker studies.

  13. Of mice and women: a comparative tissue biology perspective of breast stem cells and differentiation.

    Science.gov (United States)

    Dontu, Gabriela; Ince, Tan A

    2015-06-01

    Tissue based research requires a background in human and veterinary pathology, developmental biology, anatomy, as well as molecular and cellular biology. This type of comparative tissue biology (CTB) expertise is necessary to tackle some of the conceptual challenges in human breast stem cell research. It is our opinion that the scarcity of CTB expertise contributed to some erroneous interpretations in tissue based research, some of which are reviewed here in the context of breast stem cells. In this article we examine the dissimilarities between mouse and human mammary tissue and suggest how these may impact stem cell studies. In addition, we consider the differences between breast ducts vs. lobules and clarify how these affect the interpretation of results in stem cell research. Lastly, we introduce a new elaboration of normal epithelial cell types in human breast and discuss how this provides a clinically useful basis for breast cancer classification.

  14. Toward angiogenesis of implanted bio-artificial liver using scaffolds with type I collagen and adipose tissue-derived stem cells.

    Science.gov (United States)

    Lee, Jae Geun; Bak, Seon Young; Nahm, Ji Hae; Lee, Sang Woo; Min, Seon Ok; Kim, Kyung Sik

    2015-05-01

    Stem cell therapies for liver disease are being studied by many researchers worldwide, but scientific evidence to demonstrate the endocrinologic effects of implanted cells is insufficient, and it is unknown whether implanted cells can function as liver cells. Achieving angiogenesis, arguably the most important characteristic of the liver, is known to be quite difficult, and no practical attempts have been made to achieve this outcome. We carried out this study to observe the possibility of angiogenesis of implanted bio-artificial liver using scaffolds. This study used adipose tissue-derived stem cells that were collected from adult patients with liver diseases with conditions similar to the liver parenchyma. Specifically, microfilaments were used to create an artificial membrane and maintain the structure of an artificial organ. After scratching the stomach surface of severe combined immunocompromised (SCID) mice (n=4), artificial scaffolds with adipose tissue-derived stem cells and type I collagen were implanted. Expression levels of angiogenesis markers including vascular endothelial growth factor (VEGF), CD34, and CD105 were immunohistochemically assessed after 30 days. Grossly, the artificial scaffolds showed adhesion to the stomach and surrounding organs; however, there was no evidence of angiogenesis within the scaffolds; and VEGF, CD34, and CD105 expressions were not detected after 30 days. Although implantation of cells into artificial scaffolds did not facilitate angiogenesis, the artificial scaffolds made with type I collagen helped maintain implanted cells, and surrounding tissue reactions were rare. Our findings indicate that type I collagen artificial scaffolds can be considered as a possible implantable biomaterial.

  15. Tissue engineering and cell-based therapy toward integrated strategy with artificial organs.

    Science.gov (United States)

    Gojo, Satoshi; Toyoda, Masashi; Umezawa, Akihiro

    2011-09-01

    Research in order that artificial organs can supplement or completely replace the functions of impaired or damaged tissues and internal organs has been underway for many years. The recent clinical development of implantable left ventricular assist devices has revolutionized the treatment of patients with heart failure. The emerging field of regenerative medicine, which uses human cells and tissues to regenerate internal organs, is now advancing from basic and clinical research to clinical application. In this review, we focus on the novel biomaterials, i.e., fusion protein, and approaches such as three-dimensional and whole-organ tissue engineering. We also compare induced pluripotent stem cells, directly reprogrammed cardiomyocytes, and somatic stem cells for cell source of future cell-based therapy. Integrated strategy of artificial organ and tissue engineering/regenerative medicine should give rise to a new era of medical treatment to organ failure.

  16. Design of Xylose-Based Semisynthetic Polyurethane Tissue Adhesives with Enhanced Bioactivity Properties.

    Science.gov (United States)

    Balcioglu, Sevgi; Parlakpinar, Hakan; Vardi, Nigar; Denkbas, Emir Baki; Karaaslan, Merve Goksin; Gulgen, Selam; Taslidere, Elif; Koytepe, Suleyman; Ates, Burhan

    2016-02-01

    Developing biocompatible tissue adhesives with high adhesion properties is a highly desired goal of the tissue engineering due to adverse effects of the sutures. Therefore, our work involves synthesis, characterization, adhesion properties, protein adsorption, in vitro biodegradation, in vitro and in vivo biocompatibility properties of xylose-based semisynthetic polyurethane (NPU-PEG-X) bioadhesives. Xylose-based semisynthetic polyurethanes were developed by the reaction among 4,4'-methylenebis(cyclohexyl isocyanate) (MCI), xylose and polyethylene glycol 200 (PEG). Synthesized polyurethanes (PUs) showed good thermal stability and high adhesion strength. The highest values in adhesion strength were measured as 415.0 ± 48.8 and 94.0 ± 2.8 kPa for aluminum substrate and muscle tissue in 15% xylose containing PUs (NPU-PEG-X-15%), respectively. The biodegradation of NPU-PEG-X-15% was also determined as 19.96 ± 1.04% after 8 weeks of incubation. Relative cell viability of xylose containing PU was above 86%. Moreover, 10% xylose containing NPU-PEG-X (NPU-PEG-X-10%) sample has favorable tissue response, and inflammatory reaction between 1 and 6 weeks implantation period. With high adhesiveness and biocompatibility properties, NPU-PEG-X can be used in the medical field as supporting materials for preventing the fluid leakage after abdominal surgery or wound closure.

  17. A Method for Medical Diagnosis Based on Optical Fluence Rate Distribution at Tissue Surface.

    Science.gov (United States)

    Hamdy, Omnia; El-Azab, Jala; Al-Saeed, Tarek A; Hassan, Mahmoud F; Solouma, Nahed H

    2017-09-20

    Optical differentiation is a promising tool in biomedical diagnosis mainly because of its safety. The optical parameters' values of biological tissues differ according to the histopathology of the tissue and hence could be used for differentiation. The optical fluence rate distribution on tissue boundaries depends on the optical parameters. So, providing image displays of such distributions can provide a visual means of biomedical diagnosis. In this work, an experimental setup was implemented to measure the spatially-resolved steady state diffuse reflectance and transmittance of native and coagulated chicken liver and native and boiled breast chicken skin at 635 and 808 nm wavelengths laser irradiation. With the measured values, the optical parameters of the samples were calculated in vitro using a combination of modified Kubelka-Munk model and Bouguer-Beer-Lambert law. The estimated optical parameters values were substituted in the diffusion equation to simulate the fluence rate at the tissue surface using the finite element method. Results were verified with Monte-Carlo simulation. The results obtained showed that the diffuse reflectance curves and fluence rate distribution images can provide discrimination tools between different tissue types and hence can be used for biomedical diagnosis.

  18. A Method for Medical Diagnosis Based on Optical Fluence Rate Distribution at Tissue Surface

    Directory of Open Access Journals (Sweden)

    Omnia Hamdy

    2017-09-01

    Full Text Available Optical differentiation is a promising tool in biomedical diagnosis mainly because of its safety. The optical parameters’ values of biological tissues differ according to the histopathology of the tissue and hence could be used for differentiation. The optical fluence rate distribution on tissue boundaries depends on the optical parameters. So, providing image displays of such distributions can provide a visual means of biomedical diagnosis. In this work, an experimental setup was implemented to measure the spatially-resolved steady state diffuse reflectance and transmittance of native and coagulated chicken liver and native and boiled breast chicken skin at 635 and 808 nm wavelengths laser irradiation. With the measured values, the optical parameters of the samples were calculated in vitro using a combination of modified Kubelka-Munk model and Bouguer-Beer-Lambert law. The estimated optical parameters values were substituted in the diffusion equation to simulate the fluence rate at the tissue surface using the finite element method. Results were verified with Monte-Carlo simulation. The results obtained showed that the diffuse reflectance curves and fluence rate distribution images can provide discrimination tools between different tissue types and hence can be used for biomedical diagnosis.

  19. Connective Tissue Reflex Massage for Type 2 Diabetic Patients with Peripheral Arterial Disease: Randomized Controlled Trial

    Science.gov (United States)

    Castro-Sánchez, Adelaida María; Moreno-Lorenzo, Carmen; Matarán-Peñarrocha, Guillermo A.; Feriche-Fernández-Castanys, Belen; Granados-Gámez, Genoveva; Quesada-Rubio, José Manuel

    2011-01-01

    The objective of this study was to evaluate the efficacy of connective tissue massage to improve blood circulation and intermittent claudication symptoms in type 2 diabetic patients. A randomized, placebo-controlled trial was undertaken. Ninety-eight type 2 diabetes patients with stage I or II-a peripheral arterial disease (PAD) (Leriche-Fontaine classification) were randomly assigned to a massage group or to a placebo group treated using disconnected magnetotherapy equipment. Peripheral arterial circulation was determined by measuring differential segmental arterial pressure, heart rate, skin temperature, oxygen saturation and skin blood flow. Measurements were taken before and at 30 min, 6 months and 1 year after the 15-week treatment. After the 15-week program, the groups differed (P < .05) in differential segmental arterial pressure in right lower limb (lower one-third of thigh, upper and lower one-third of leg) and left lower limb (lower one-third of thigh and upper and lower one-third of leg). A significant difference (P < .05) was also observed in skin blood flow in digits 1 and 4 of right foot and digits 2, 4 and 5 of left foot. ANOVA results were significant (P < .05) for right and left foot oxygen saturation but not for heart rate and temperature. At 6 months and 1 year, the groups differed in differential segmental arterial pressure in upper third of left and right legs. Connective tissue massage improves blood circulation in the lower limbs of type 2 diabetic patients at stage I or II-a and may be useful to slow the progression of PAD. PMID:19933770

  20. Connective Tissue Reflex Massage for Type 2 Diabetic Patients with Peripheral Arterial Disease: Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Adelaida María Castro-Sánchez

    2011-01-01

    Full Text Available The objective of this study was to evaluate the efficacy of connective tissue massage to improve blood circulation and intermittent claudication symptoms in type 2 diabetic patients. A randomized, placebo-controlled trial was undertaken. Ninety-eight type 2 diabetes patients with stage I or II-a peripheral arterial disease (PAD (Leriche-Fontaine classification were randomly assigned to a massage group or to a placebo group treated using disconnected magnetotherapy equipment. Peripheral arterial circulation was determined by measuring differential segmental arterial pressure, heart rate, skin temperature, oxygen saturation and skin blood flow. Measurements were taken before and at 30 min, 6 months and 1 year after the 15-week treatment. After the 15-week program, the groups differed (P<.05 in differential segmental arterial pressure in right lower limb (lower one-third of thigh, upper and lower one-third of leg and left lower limb (lower one-third of thigh and upper and lower one-third of leg. A significant difference (P<.05 was also observed in skin blood flow in digits 1 and 4 of right foot and digits 2, 4 and 5 of left foot. ANOVA results were significant (P<.05 for right and left foot oxygen saturation but not for heart rate and temperature. At 6 months and 1 year, the groups differed in differential segmental arterial pressure in upper third of left and right legs. Connective tissue massage improves blood circulation in the lower limbs of type 2 diabetic patients at stage I or II-a and may be useful to slow the progression of PAD.

  1. A Lindenmayer system-based approach for the design of nutrient delivery networks in tissue constructs

    International Nuclear Information System (INIS)

    Yasar, Ozlem; Starly, Binil; Lan, S-F

    2009-01-01

    Large thick tissue constructs have reported limited success primarily due to the inability of cells to survive deep within the scaffold. Without access to adequate nutrients, cells placed deep within the tissue construct will die out, leading to non-uniform tissue regeneration. Currently, there is a necessity to design nutrient conduit networks within the tissue construct to enable cells to survive in the matrix. However, the design of complex networks within a tissue construct is challenging. In this paper, we present the Lindenmayer system, an elegant fractal-based language algorithm framework, to generate conduit networks in two- and three-dimensional architecture with several degrees of complexity. The conduit network maintains a parent-child relationship between each branch of the network. Several L-system parameters have been studied-branching angle, branch length, ratio of parent to child branch diameter, etc-to simulate several architectures under a given L-system notation. We have also presented a layered manufacturing-based UV-photopolymerization process using the Texas Instruments DLP(TM) system to fabricate the branched structures. This preliminary work showcases the applicability of L-system-based construct designs to drive scaffold fabrication systems.

  2. A Lindenmayer system-based approach for the design of nutrient delivery networks in tissue constructs

    Energy Technology Data Exchange (ETDEWEB)

    Yasar, Ozlem; Starly, Binil [School of Industrial Engineering, University of Oklahoma, Norman, OK 73019 (United States); Lan, S-F [University of Oklahoma Bioengineering Center, University of Oklahoma, Norman, OK 73019 (United States)

    2009-12-15

    Large thick tissue constructs have reported limited success primarily due to the inability of cells to survive deep within the scaffold. Without access to adequate nutrients, cells placed deep within the tissue construct will die out, leading to non-uniform tissue regeneration. Currently, there is a necessity to design nutrient conduit networks within the tissue construct to enable cells to survive in the matrix. However, the design of complex networks within a tissue construct is challenging. In this paper, we present the Lindenmayer system, an elegant fractal-based language algorithm framework, to generate conduit networks in two- and three-dimensional architecture with several degrees of complexity. The conduit network maintains a parent-child relationship between each branch of the network. Several L-system parameters have been studied-branching angle, branch length, ratio of parent to child branch diameter, etc-to simulate several architectures under a given L-system notation. We have also presented a layered manufacturing-based UV-photopolymerization process using the Texas Instruments DLP(TM) system to fabricate the branched structures. This preliminary work showcases the applicability of L-system-based construct designs to drive scaffold fabrication systems.

  3. Variability in Immunohistochemical Detection of Programmed Death Ligand 1 (PD-L1) in Cancer Tissue Types

    Science.gov (United States)

    Scognamiglio, Giosuè; De Chiara, Anna; Di Bonito, Maurizio; Tatangelo, Fabiana; Losito, Nunzia Simona; Anniciello, Annamaria; De Cecio, Rossella; D’Alterio, Crescenzo; Scala, Stefania; Cantile, Monica; Botti, Gerardo

    2016-01-01

    In normal cell physiology, programmed death 1 (PD-1) and its ligand, PD-L1, play an immunoregulatory role in T-cell activation, tolerance, and immune-mediated tissue damage. The PD-1/PD-L1 pathway also plays a critical role in immune escape of tumor cells and has been demonstrated to correlate with a poor prognosis of patients with several types of cancer. However, recent reports have revealed that the immunohistochemical (IHC) expression of the PD-L1 in tumor cells is not uniform for the use of different antibodies clones, with variable specificity, often doubtful topographical localization, and with a score not uniquely defined. The purpose of this study was to analyze the IHC expression of PD-L1 on a large series of several human tumors to correctly define its staining in different tumor tissues. PMID:27213372

  4. Web-based depression treatment for type 1 and type 2 diabetic patients

    DEFF Research Database (Denmark)

    van Bastelaar, Kim M P; Pouwer, Francois; Cuijpers, Pim

    2011-01-01

    intervention on a large scale at relatively low costs. This study evaluated the effectiveness of Web-based CBT for depression treatment in adults with type 1 or type 2 diabetes, with minimal guidance. RESEARCH DESIGN AND METHODS: A randomized controlled trial was conducted in the Netherlands in 255 adult...... no beneficial effect on glycemic control (P > 0.05). CONCLUSIONS: Web-based CBT depression treatment is effective in reducing depressive symptoms in adults with type 1 and type 2 diabetes. In addition, the intervention reduces diabetes-specific emotional distress in depressed patients.......OBJECTIVE: Comorbid depression is common in patients with type 1 and type 2 diabetes, adversely affecting quality of life, diabetes outcomes, and mortality. Depression can be effectively treated with cognitive behavior therapy (CBT). The Internet is a new and attractive method for delivering CBT...

  5. Measurement of human tissue-type plasminogen activator by a two-site immunoradiometric assay

    International Nuclear Information System (INIS)

    Rijken, D.C.; Juhan-Vague, I.; De Cock, F.; Collen, D.

    1983-01-01

    A two-site immunoradiometric assay for human extrinsic (tissue-type) plasminogen activator was developed by using rabbit antibodies raised against plasminogen activator purified from human melanoma cell culture fluid. Samples of 100 μl containing 1 to 100 ng/ml plasminogen activator were incubated in the wells of polyvinyl chloride microtiter plates coated with antibody. The amount of bound extrinsic plasminogen activator was quantitated by the subsequent binding of 125 I-labeled affinospecific antibody. The mean level of plasma samples taken at rest was 6.6 +/- 2.9 ng/ml (n = 54). This level increased approximately threefold by exhaustive physical exercise, venous occlusion, or infusion of DDAVP. Extrinsic plasminogen activator in plasma is composed of a fibrin-adsorbable and active component (1.9 +/- 1.1 ng/ml, n = 54, in resting conditions) and an inactive component that does not bind to a fibrin clot (probably extrinsic plasminogen activator-proteinase inhibitor complexes). The fibrin-adsorbable fraction increased approximately fivefold to eightfold after physical exercise, venous occlusion, or DDAVP injections. Potential applications of the immunoradiometric assay are illustrated by the measurement of extrinsic plasminogen activator in different tissue extracts, body fluids, and cell culture fluids and in oocyte translation products after injection with mRNA for plasminogen activator

  6. 3D printing facilitated scaffold-free tissue unit fabrication

    International Nuclear Information System (INIS)

    Tan, Yu; Richards, Dylan J; Mei, Ying; Trusk, Thomas C; Visconti, Richard P; Yost, Michael J; Drake, Christopher J; Argraves, William Scott; Markwald, Roger R; Kindy, Mark S

    2014-01-01

    Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing microdroplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit microdroplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell–cell adhesion, tissue formation and maturation. (paper)

  7. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity

    Directory of Open Access Journals (Sweden)

    Dae Woo Park

    2016-01-01

    Full Text Available Shear wave elasticity imaging (SWEI can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE- based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard tumor and surrounding tissue (soft. The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.

  8. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity.

    Science.gov (United States)

    Park, Dae Woo

    2015-01-01

    Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.

  9. Subcutaneous adipose tissue classification

    Directory of Open Access Journals (Sweden)

    A. Sbarbati

    2010-11-01

    Full Text Available The developments in the technologies based on the use of autologous adipose tissue attracted attention to minor depots as possible sampling areas. Some of those depots have never been studied in detail. The present study was performed on subcutaneous adipose depots sampled in different areas with the aim of explaining their morphology, particularly as far as regards stem niches. The results demonstrated that three different types of white adipose tissue (WAT can be differentiated on the basis of structural and ultrastructural features: deposit WAT (dWAT, structural WAT (sWAT and fibrous WAT (fWAT. dWAT can be found essentially in large fatty depots in the abdominal area (periumbilical. In the dWAT, cells are tightly packed and linked by a weak net of isolated collagen fibers. Collagenic components are very poor, cells are large and few blood vessels are present. The deep portion appears more fibrous then the superficial one. The microcirculation is formed by thin walled capillaries with rare stem niches. Reinforcement pericyte elements are rarely evident. The sWAT is more stromal; it is located in some areas in the limbs and in the hips. The stroma is fairly well represented, with a good vascularity and adequate staminality. Cells are wrapped by a basket of collagen fibers. The fatty depots of the knees and of the trochanteric areas have quite loose meshes. The fWAT has a noteworthy fibrous component and can be found in areas where a severe mechanic stress occurs. Adipocytes have an individual thick fibrous shell. In conclusion, the present study demonstrates evident differences among subcutaneous WAT deposits, thus suggesting that in regenerative procedures based on autologous adipose tissues the sampling area should not be randomly chosen, but it should be oriented by evidence based evaluations. The structural peculiarities of the sWAT, and particularly of its microcirculation, suggest that it could represent a privileged source for

  10. Soft Tissue Sarcomas In Children And Adolescents

    International Nuclear Information System (INIS)

    Bajciova, V.

    2008-01-01

    Soft tissue sarcomas are rare tumors, they may occur at any age. It is heterogenous group of different histology types, different biology and different clinical behavior. Different treatment strategy is used for children and adults. Adolescents with sarcomas could be managed by both pediatric and medical oncologists. Decision regarding location of treatment should be based on the best patient interest. (author)

  11. Assessment of three types of spaceflight hardware for tissue culture studies: Comparison of skeletal tissue growth and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Klement, B.J. [Space Medicine and Life Sciences Research Center Department of Anatomy Morehouse School of Medicine 720 Westview Dr. SW Atlanta, Georgia30310-1495 (United States); Spooner, B.S. [NASA Specialized Center of Research and Training Division of Biology Ackert Hall Kansas State University Manhattan, Kansas66506 (United States)

    1997-01-01

    Three different types of spaceflight hardware, the BioProcessing Module (BPM), the Materials Dispersion Apparatus (MDA), and the Fluid Processing Apparatus (FPA), were assessed for their ability to support pre-metatarsal growth and differentiation in experiments conducted on five space shuttle flights. BPM-cultured pre-metatarsal tissue showed no difference in flight and ground control lengths. Flight and ground controls cultured in the MDA grew 135 {mu}m and 141 {mu}m, respectively, in an 11 day experiment. Only five control rods and three flight rods mineralized. In another MDA experiment, pre-metatarsals were cultured at 4{degree}C (277K) or 20{degree}C (293K) for the 16 day mission, then cultured an additional 16 days in laboratory dishes at 37{degree}C (310K). The 20{degree}C (293K) cultures died post-flight. The 4{degree}C (277K) flight pre-metatarsals grew 417 {mu}m more than the 4{degree}C (277K) ground controls post-flight. In 5 and 6 day experiments done in FPAs, flight rods grew longer than ground control rods. In a 14 day experiment, ground control and flight rods also expanded in length, but there was no difference between them. The pre-metatarsals cultured in the FPAs did not mineralize, or terminally differentiate. These experiments demonstrate, that while supporting pre-metatarsal growth in length, the three types of hardware are not suitable to support routine differentiation. {copyright} {ital 1997 American Institute of Physics.}

  12. hSAGEing: an improved SAGE-based software for identification of human tissue-specific or common tumor markers and suppressors.

    Science.gov (United States)

    Yang, Cheng-Hong; Chuang, Li-Yeh; Shih, Tsung-Mu; Chang, Hsueh-Wei

    2010-12-17

    SAGE (serial analysis of gene expression) is a powerful method of analyzing gene expression for the entire transcriptome. There are currently many well-developed SAGE tools. However, the cross-comparison of different tissues is seldom addressed, thus limiting the identification of common- and tissue-specific tumor markers. To improve the SAGE mining methods, we propose a novel function for cross-tissue comparison of SAGE data by combining the mathematical set theory and logic with a unique "multi-pool method" that analyzes multiple pools of pair-wise case controls individually. When all the settings are in "inclusion", the common SAGE tag sequences are mined. When one tissue type is in "inclusion" and the other types of tissues are not in "inclusion", the selected tissue-specific SAGE tag sequences are generated. They are displayed in tags-per-million (TPM) and fold values, as well as visually displayed in four kinds of scales in a color gradient pattern. In the fold visualization display, the top scores of the SAGE tag sequences are provided, along with cluster plots. A user-defined matrix file is designed for cross-tissue comparison by selecting libraries from publically available databases or user-defined libraries. The hSAGEing tool provides a combination of friendly cross-tissue analysis and an interface for comparing SAGE libraries for the first time. Some up- or down-regulated genes with tissue-specific or common tumor markers and suppressors are identified computationally. The tool is useful and convenient for in silico cancer transcriptomic studies and is freely available at http://bio.kuas.edu.tw/hSAGEing.

  13. Unit cell-based computer-aided manufacturing system for tissue engineering

    International Nuclear Information System (INIS)

    Kang, Hyun-Wook; Park, Jeong Hun; Kang, Tae-Yun; Seol, Young-Joon; Cho, Dong-Woo

    2012-01-01

    Scaffolds play an important role in the regeneration of artificial tissues or organs. A scaffold is a porous structure with a micro-scale inner architecture in the range of several to several hundreds of micrometers. Therefore, computer-aided construction of scaffolds should provide sophisticated functionality for porous structure design and a tool path generation strategy that can achieve micro-scale architecture. In this study, a new unit cell-based computer-aided manufacturing (CAM) system was developed for the automated design and fabrication of a porous structure with micro-scale inner architecture that can be applied to composite tissue regeneration. The CAM system was developed by first defining a data structure for the computing process of a unit cell representing a single pore structure. Next, an algorithm and software were developed and applied to construct porous structures with a single or multiple pore design using solid freeform fabrication technology and a 3D tooth/spine computer-aided design model. We showed that this system is quite feasible for the design and fabrication of a scaffold for tissue engineering. (paper)

  14. Unit cell-based computer-aided manufacturing system for tissue engineering.

    Science.gov (United States)

    Kang, Hyun-Wook; Park, Jeong Hun; Kang, Tae-Yun; Seol, Young-Joon; Cho, Dong-Woo

    2012-03-01

    Scaffolds play an important role in the regeneration of artificial tissues or organs. A scaffold is a porous structure with a micro-scale inner architecture in the range of several to several hundreds of micrometers. Therefore, computer-aided construction of scaffolds should provide sophisticated functionality for porous structure design and a tool path generation strategy that can achieve micro-scale architecture. In this study, a new unit cell-based computer-aided manufacturing (CAM) system was developed for the automated design and fabrication of a porous structure with micro-scale inner architecture that can be applied to composite tissue regeneration. The CAM system was developed by first defining a data structure for the computing process of a unit cell representing a single pore structure. Next, an algorithm and software were developed and applied to construct porous structures with a single or multiple pore design using solid freeform fabrication technology and a 3D tooth/spine computer-aided design model. We showed that this system is quite feasible for the design and fabrication of a scaffold for tissue engineering.

  15. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review.

    Science.gov (United States)

    Chaudhari, Atul A; Vig, Komal; Baganizi, Dieudonné Radé; Sahu, Rajnish; Dixit, Saurabh; Dennis, Vida; Singh, Shree Ram; Pillai, Shreekumar R

    2016-11-25

    Over centuries, the field of regenerative skin tissue engineering has had several advancements to facilitate faster wound healing and thereby restoration of skin. Skin tissue regeneration is mainly based on the use of suitable scaffold matrices. There are several scaffold types, such as porous, fibrous, microsphere, hydrogel, composite and acellular, etc., with discrete advantages and disadvantages. These scaffolds are either made up of highly biocompatible natural biomaterials, such as collagen, chitosan, etc., or synthetic materials, such as polycaprolactone (PCL), and poly-ethylene-glycol (PEG), etc. Composite scaffolds, which are a combination of natural or synthetic biomaterials, are highly biocompatible with improved tensile strength for effective skin tissue regeneration. Appropriate knowledge of the properties, advantages and disadvantages of various biomaterials and scaffolds will accelerate the production of suitable scaffolds for skin tissue regeneration applications. At the same time, emphasis on some of the leading challenges in the field of skin tissue engineering, such as cell interaction with scaffolds, faster cellular proliferation/differentiation, and vascularization of engineered tissues, is inevitable. In this review, we discuss various types of scaffolding approaches and biomaterials used in the field of skin tissue engineering and more importantly their future prospects in skin tissue regeneration efforts.

  16. Influence of different types of light on the response of the pulp tissue in dental bleaching: a systematic review.

    Science.gov (United States)

    Benetti, Francine; Lemos, Cleidiel Aparecido Araújo; de Oliveira Gallinari, Marjorie; Terayama, Amanda Miyuki; Briso, André Luiz Fraga; de Castilho Jacinto, Rogério; Sivieri-Araújo, Gustavo; Cintra, Luciano Tavares Angelo

    2018-05-01

    This systematic review (PROSPERO register: CRD42016053140) investigated the influence of different types of light on the pulp tissue during dental bleaching. Two independent authors conducted a systematic search and risk of bias evaluations. An electronic search was undertaken (PubMed/Medline, Embase, The Cochrane Library, and other databases) until May 2017. The population, intervention, comparison, outcomes (PICO) question was: "Does the light in dental bleaching change the response of the pulp to the bleaching procedure?" The intervention involved pulp tissue/cells after bleaching with light, while the comparison involved pulp tissue/cells after bleaching without light. The primary outcome was the inflammation/cytotoxicity observed in pulp after bleaching. Out of 2210 articles found, 12 articles were included in the review; four were in vivo studies (one study in dogs/others in human), and eight were in vitro studies (cell culture/with artificial pulp chamber or not). The light source used was halogen, light-emitting diode (LED), and laser. Only one in vivo study that used heat to simulate light effects showed significant pulp inflammation. Only two in vitro studies demonstrated that light influenced cell metabolism; one using halogen light indicated negative effects, and the other using laser therapy indicated positive effects. Given that animal and in vitro studies have been identified, there remain some limitations for extrapolation to the human situation. Furthermore, different light parameters were used. The effects of dental bleaching on the pulp are not influenced by different types of light, but different light parameters can influence these properties. There is insufficient evidence about the influence of different types of light on inflammation/cytotoxicity of the pulp.

  17. POLARIZATION IMAGING AND SCATTERING MODEL OF CANCEROUS LIVER TISSUES

    Directory of Open Access Journals (Sweden)

    DONGZHI LI

    2013-07-01

    Full Text Available We apply different polarization imaging techniques for cancerous liver tissues, and compare the relative contrasts for difference polarization imaging (DPI, degree of polarization imaging (DOPI and rotating linear polarization imaging (RLPI. Experimental results show that a number of polarization imaging parameters are capable of differentiating cancerous cells in isotropic liver tissues. To analyze the contrast mechanism of the cancer-sensitive polarization imaging parameters, we propose a scattering model containing two types of spherical scatterers and carry on Monte Carlo simulations based on this bi-component model. Both the experimental and Monte Carlo simulated results show that the RLPI technique can provide a good imaging contrast of cancerous tissues. The bi-component scattering model provides a useful tool to analyze the contrast mechanism of polarization imaging of cancerous tissues.

  18. Structural requirements of research tissue banks derived from standardized project surveillance.

    Science.gov (United States)

    Herpel, E; Koleganova, N; Schreiber, B; Walter, B; Kalle, C V; Schirmacher, P

    2012-07-01

    sections), 137 providing tissue micro-array (TMA)-based sections and 199 providing immunohistochemical services. Project tracking demonstrated that all projects had started within 90 days after reception of the material by the PIs, and PI satisfaction with provided material exceeded 97 %. Standardized registration and tracking provides valuable structural information for planning and financing of tissue banks and allocation of resources. The high number of completed projects as well as high user satisfaction demonstrates that structuring of tissue banks should be preferably research-oriented and highly efficient. The comparable number of requests for FFPE and fresh frozen tissue as well as TMA-based services underpins the need for a broad approach in terms of methods and material types in order to fulfil research needs.

  19. Determination of piroxicam from rat articular tissue and plasma based on LC-MS/MS.

    Science.gov (United States)

    Kim, Han Sol; Cho, Ha Ra; Ho, Myoung Jin; Kang, Myung Joo; Choi, Yong Seok

    2016-12-01

    Osteoarthritis (OA) is the most common type of arthritis. To manage OA, in general, oral administration of non-steroidal anti-inflammatory drugs (NSAIDs) is used. Recently, the analgesic and anti-inflammatory efficacy of piroxicam (PX), a long-acting NSAID, by intra-articular (IA) administration in OA was reported, and the possibility that PX is distributed in articular tissues at a certain concentration was raised. Thus, herein, novel LC-MS/MS methods to detect PX in rat articular tissue and plasma are presented. For articular tissue, solvent extraction with acetonitrile for 12 h was employed and a protein precipitation method was used for the preparation of a plasma sample. The developed methods were validated by following the FDA guidelines, and the validated methods were successfully applied to a PK study of IA PX. The present study presents, to our knowledge, the first method of determining a drug in articular tissue. Additionally, the level of PX in articular tissue after IA PX administration was experimentally confirmed for the first time using the present methods. Therefore, the present methods provide a new direction for in vivo evaluation for IA PX formulations and contribute to the development of alternative IA PX formulations with better effects for the treatment of OA.

  20. Tissue- and Cell Type-Specific Expression of the Long Noncoding RNA Klhl14-AS in Mouse

    Directory of Open Access Journals (Sweden)

    Sara Carmela Credendino

    2017-01-01

    Full Text Available lncRNAs are acquiring increasing relevance as regulators in a wide spectrum of biological processes. The extreme heterogeneity in the mechanisms of action of these molecules, however, makes them very difficult to study, especially regarding their molecular function. A novel lncRNA has been recently identified as the most enriched transcript in mouse developing thyroid. Due to its genomic localization antisense to the protein-encoding Klhl14 gene, we named it Klhl14-AS. In this paper, we highlight that mouse Klhl14-AS produces at least five splicing variants, some of which have not been previously described. Klhl14-AS is expressed with a peculiar pattern, characterized by diverse relative abundance of its isoforms in different mouse tissues. We examine the whole expression level of Klhl14-AS in a panel of adult mouse tissues, showing that it is expressed in the thyroid, lung, kidney, testis, ovary, brain, and spleen, although at different levels. In situ hybridization analysis reveals that, in the context of each organ, Klhl14-AS shows a cell type-specific expression. Interestingly, databases report a similar expression profile for human Klhl14-AS. Our observations suggest that this lncRNA could play cell type-specific roles in several organs and pave the way for functional characterization of this gene in appropriate biological contexts.

  1. Spexin peptide is expressed in human endocrine and epithelial tissues and reduced after glucose load in type 2 diabetes.

    Science.gov (United States)

    Gu, Liping; Ma, Yuhang; Gu, Mingyu; Zhang, Ying; Yan, Shuai; Li, Na; Wang, Yufan; Ding, Xiaoying; Yin, Jiajing; Fan, Nengguang; Peng, Yongde

    2015-09-01

    Spexin mRNA and protein are widely expressed in rat tissues and associate with weight loss in rodents of diet-induced obesity. Its location in endocrine and epithelial cells has also been suggested. Spexin is a novel peptide that involves weight loss in rodents of diet-induced obesity. Therefore, we aimed to examine its expression in human tissues and test whether spexin could have a role in glucose and lipid metabolism in type 2 diabetes mellitus (T2DM). The expression of the spexin gene and immunoreactivity in the adrenal gland, skin, stomach, small intestine, liver, thyroid, pancreatic islets, visceral fat, lung, colon, and kidney was higher than that in the muscle and connective tissue. Immunoreactive serum spexin levels were reduced in T2DM patients and correlated with fasting blood glucose (FBG, r=-0.686, Pepithelial tissues, indicating that spexin may be involved in physiological functions of endocrine and in several other tissues. Circulating spexin levels are low in T2DM patients and negatively related to blood glucose and lipids suggesting that the peptide may play a role in glucose and lipid metabolism in T2DM. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Excitation-scanning hyperspectral imaging as a means to discriminate various tissues types

    Science.gov (United States)

    Deal, Joshua; Favreau, Peter F.; Lopez, Carmen; Lall, Malvika; Weber, David S.; Rich, Thomas C.; Leavesley, Silas J.

    2017-02-01

    Little is currently known about the fluorescence excitation spectra of disparate tissues and how these spectra change with pathological state. Current imaging diagnostic techniques have limited capacity to investigate fluorescence excitation spectral characteristics. This study utilized excitation-scanning hyperspectral imaging to perform a comprehensive assessment of fluorescence spectral signatures of various tissues. Immediately following tissue harvest, a custom inverted microscope (TE-2000, Nikon Instruments) with Xe arc lamp and thin film tunable filter array (VersaChrome, Semrock, Inc.) were used to acquire hyperspectral image data from each sample. Scans utilized excitation wavelengths from 340 nm to 550 nm in 5 nm increments. Hyperspectral images were analyzed with custom Matlab scripts including linear spectral unmixing (LSU), principal component analysis (PCA), and Gaussian mixture modeling (GMM). Spectra were examined for potential characteristic features such as consistent intensity peaks at specific wavelengths or intensity ratios among significant wavelengths. The resultant spectral features were conserved among tissues of similar molecular composition. Additionally, excitation spectra appear to be a mixture of pure endmembers with commonalities across tissues of varied molecular composition, potentially identifiable through GMM. These results suggest the presence of common autofluorescent molecules in most tissues and that excitationscanning hyperspectral imaging may serve as an approach for characterizing tissue composition as well as pathologic state. Future work will test the feasibility of excitation-scanning hyperspectral imaging as a contrast mode for discriminating normal and pathological tissues.

  3. Tissue refractometry using Hilbert phase microscopy.

    Science.gov (United States)

    Lue, Niyom; Bewersdorf, Joerg; Lessard, Mark D; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S; Popescu, Gabriel

    2007-12-15

    We present, for the first time to our knowledge, quantitative phase images associated with unstained 5 mum thick tissue slices of mouse brain, spleen, and liver. The refractive properties of the tissue are retrieved in terms of the average refractive index and its spatial variation. We find that the average refractive index varies significantly with tissue type, such that the brain is characterized by the lowest value and the liver by the highest. The spatial power spectra of the phase images reveal power law behavior with different exponents for each tissue type. This approach opens a new possibility for stain-free characterization of tissues, where the diagnostic power is provided by the intrinsic refractive properties of the biological structure. We present results obtained for liver tissue affected by a lysosomal storage disease and show that our technique can quantify structural changes during this disease development.

  4. Region-Specific Effect of the Decellularized Meniscus Extracellular Matrix on Mesenchymal Stem Cell-Based Meniscus Tissue Engineering.

    Science.gov (United States)

    Shimomura, Kazunori; Rothrauff, Benjamin B; Tuan, Rocky S

    2017-03-01

    The meniscus is the most commonly injured knee structure, and surgical repair is often ineffective. Tissue engineering-based repair or regeneration may provide a needed solution. Decellularized, tissue-derived extracellular matrices (ECMs) have received attention for their potential use as tissue-engineered scaffolds. In considering meniscus-derived ECMs (mECMs) for meniscus tissue engineering, it is noteworthy that the inner and outer regions of the meniscus have different structural and biochemical features, potentially directing the differentiation of cells toward region-specific phenotypes. To investigate the applicability of mECMs for meniscus tissue engineering by specifically comparing region-dependent effects of mECMs on 3-dimensional constructs seeded with human bone marrow mesenchymal stem cells (hBMSCs). Controlled laboratory study. Bovine menisci were divided into inner and outer halves and were minced, treated with Triton X-100 and DNase, and extracted with urea. Then, hBMSCs (1 × 10 6 cells/mL) were encapsulated in a photo-cross-linked 10% polyethylene glycol diacrylate scaffold containing mECMs (60 μg/mL) derived from either the inner or outer meniscus, with an ECM-free scaffold as a control. The cell-seeded constructs were cultured with chondrogenic medium containing recombinant human transforming growth factor β3 (TGF-β3) and were analyzed for expression of meniscus-associated genes as well as for the collagen (hydroxyproline) and glycosaminoglycan content as a function of time. Decellularization was verified by the absence of 4',6-diamidino-2-phenylindole (DAPI)-stained cell nuclei and a reduction in the DNA content. Quantitative real-time polymerase chain reaction showed that collagen type I expression was significantly higher in the outer mECM group than in the other groups, while collagen type II and aggrecan expression was highest in the inner mECM group. The collagen (hydroxyproline) content was highest in the outer mECM group, while the

  5. ROMP-Derived cyclooctene-based monolithic polymeric materials reinforced with inorganic nanoparticles for applications in tissue engineering

    Directory of Open Access Journals (Sweden)

    Franziska Weichelt

    2010-12-01

    Full Text Available Porous monolithic inorganic/polymeric hybrid materials have been prepared via ring-opening metathesis copolymerization starting from a highly polar monomer, i.e., cis-5-cyclooctene-trans-1,2-diol and a 7-oxanorborn-2-ene-derived cross-linker in the presence of porogenic solvents and two types of inorganic nanoparticles (i.e., CaCO3 and calcium hydroxyapatite, respectively using the third-generation Grubbs initiator RuCl2(Py2(IMesH2(CHPh. The physico-chemical properties of the monolithic materials, such as pore size distribution and microhardness were studied with regard to the nanoparticle type and content. Moreover, the reinforced monoliths were tested for the possible use as scaffold materials in tissue engineering, by carrying out cell cultivation experiments with human adipose tissue-derived stromal cells.

  6. Silver nanoparticle based surface enhanced Raman scattering spectroscopy of diabetic and normal rat pancreatic tissue under near-infrared laser excitation

    International Nuclear Information System (INIS)

    Huang, H; Shi, H; Chen, W; Yu, Y; Lin, D; Xu, Q; Feng, S; Lin, J; Huang, Z; Li, Y; Chen, R

    2013-01-01

    This paper presents the use of high spatial resolution silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) from rat pancreatic tissue to obtain biochrmical information about the tissue. A high quality SERS signal from a mixture of pancreatic tissues and silver nanoparticles can be obtained within 10 s using a Renishaw micro-Raman system. Prominent SERS bands of pancreatic tissue were assigned to known molecular vibrations, such as the vibrations of DNA bases, RNA bases, proteins and lipids. Different tissue structures of diabetic and normal rat pancreatic tissues have characteristic features in SERS spectra. This exploratory study demonstrated great potential for using SERS imaging to distinguish diabetic and normal pancreatic tissues on frozen sections without using dye labeling of functionalized binding sites. (letter)

  7. Reduction of /sup 51/Cr-permeability of tissue culture cells by infection with herpes simplex virus type 1

    Energy Technology Data Exchange (ETDEWEB)

    Schlehofer, J.R.; Habermehl, K.O.; Diefenthal, W.; Hampl, H.

    1979-01-01

    Infection of different strains of tissue culture cells with herpes simplex virus type 1(HSV-1) resulted in a reduced /sup 51/Cr-permeability. A stability of the cellular membrane to Triton X-100, toxic sera and HSV-specific complement-mediated immune-cytolysis could be observed simultaneously. The results differed with respect to the cell strain used in the experiments.

  8. Characterization of the omega-conotoxin target. Evidence for tissue-specific heterogeneity in calcium channel types

    International Nuclear Information System (INIS)

    Cruz, L.J.; Johnson, D.S.; Olivera, B.M.

    1987-01-01

    Omega-Conotoxin GVIA (omega-CgTx-VIA) is a 27 amino acid peptide from the venom of the fish-hunting snail, Conus geographus, that blocks voltage-activated Ca channels. The characterization of a biologically active, homogeneous 125 I-labeled monoiodinated Tyr 22 derivative of omega-conotoxin GVIA and its use in binding and cross-linking studies are described. The 125 I-labeled toxin is specifically cross-linked to a receptor protein with an apparent M/sub r/ of 135,000. The stoichiometry between omega-conotoxin and nitrendipine binding sites in different chick tissues was determined. Skeletal muscle has a high concentration of [ 3 H]nitrendipine binding sites but no detectable omega-conotoxin sites. Brain microsomes have both binding sites, but omega-conotoxin targets are in excess. These results, combined with recent electrophysiological studies define four types of Ca channels in chick tissues, N, T, L/sub n/ (omega sensitive), and L/sub m/ (omega insensitive), and are consistent with the hypothesis that the α-subunits of certain neuronal Ca 2+ channels (L/sub n/, N) are the molecular targets of omega-conotoxin GVIA

  9. Classification of cardiovascular tissues using LBP based descriptors and a cascade SVM.

    Science.gov (United States)

    Mazo, Claudia; Alegre, Enrique; Trujillo, Maria

    2017-08-01

    Histological images have characteristics, such as texture, shape, colour and spatial structure, that permit the differentiation of each fundamental tissue and organ. Texture is one of the most discriminative features. The automatic classification of tissues and organs based on histology images is an open problem, due to the lack of automatic solutions when treating tissues without pathologies. In this paper, we demonstrate that it is possible to automatically classify cardiovascular tissues using texture information and Support Vector Machines (SVM). Additionally, we realised that it is feasible to recognise several cardiovascular organs following the same process. The texture of histological images was described using Local Binary Patterns (LBP), LBP Rotation Invariant (LBPri), Haralick features and different concatenations between them, representing in this way its content. Using a SVM with linear kernel, we selected the more appropriate descriptor that, for this problem, was a concatenation of LBP and LBPri. Due to the small number of the images available, we could not follow an approach based on deep learning, but we selected the classifier who yielded the higher performance by comparing SVM with Random Forest and Linear Discriminant Analysis. Once SVM was selected as the classifier with a higher area under the curve that represents both higher recall and precision, we tuned it evaluating different kernels, finding that a linear SVM allowed us to accurately separate four classes of tissues: (i) cardiac muscle of the heart, (ii) smooth muscle of the muscular artery, (iii) loose connective tissue, and (iv) smooth muscle of the large vein and the elastic artery. The experimental validation was conducted using 3000 blocks of 100 × 100 sized pixels, with 600 blocks per class and the classification was assessed using a 10-fold cross-validation. using LBP as the descriptor, concatenated with LBPri and a SVM with linear kernel, the main four classes of tissues were

  10. A DIC Based Technique to Measure the Contraction of a Skeletal Muscle Engineered Tissue

    Directory of Open Access Journals (Sweden)

    Emanuele Rizzuto

    2016-01-01

    Full Text Available Tissue engineering is a multidisciplinary science based on the application of engineering approaches to biologic tissue formation. Engineered tissue internal organization represents a key aspect to increase biofunctionality before transplant and, as regarding skeletal muscles, the potential of generating contractile forces is dependent on the internal fiber organization and is reflected by some macroscopic parameters, such as the spontaneous contraction. Here we propose the application of digital image correlation (DIC as an independent tool for an accurate and noninvasive measurement of engineered muscle tissue spontaneous contraction. To validate the proposed technique we referred to the X-MET, a promising 3-dimensional model of skeletal muscle. The images acquired through a high speed camera were correlated with a custom-made algorithm and the longitudinal strain predictions were employed for measuring the spontaneous contraction. The spontaneous contraction reference values were obtained by studying the force response. The relative error between the spontaneous contraction frequencies computed in both ways was always lower than 0.15%. In conclusion, the use of a DIC based system allows for an accurate and noninvasive measurement of biological tissues’ spontaneous contraction, in addition to the measurement of tissue strain field on any desired region of interest during electrical stimulation.

  11. Tissue Equivalent Phantom Design for Characterization of a Coherent Scatter X-ray Imaging System

    Science.gov (United States)

    Albanese, Kathryn Elizabeth

    Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung. The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future

  12. hSAGEing: an improved SAGE-based software for identification of human tissue-specific or common tumor markers and suppressors.

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    Full Text Available BACKGROUND: SAGE (serial analysis of gene expression is a powerful method of analyzing gene expression for the entire transcriptome. There are currently many well-developed SAGE tools. However, the cross-comparison of different tissues is seldom addressed, thus limiting the identification of common- and tissue-specific tumor markers. METHODOLOGY/PRINCIPAL FINDINGS: To improve the SAGE mining methods, we propose a novel function for cross-tissue comparison of SAGE data by combining the mathematical set theory and logic with a unique "multi-pool method" that analyzes multiple pools of pair-wise case controls individually. When all the settings are in "inclusion", the common SAGE tag sequences are mined. When one tissue type is in "inclusion" and the other types of tissues are not in "inclusion", the selected tissue-specific SAGE tag sequences are generated. They are displayed in tags-per-million (TPM and fold values, as well as visually displayed in four kinds of scales in a color gradient pattern. In the fold visualization display, the top scores of the SAGE tag sequences are provided, along with cluster plots. A user-defined matrix file is designed for cross-tissue comparison by selecting libraries from publically available databases or user-defined libraries. CONCLUSIONS/SIGNIFICANCE: The hSAGEing tool provides a combination of friendly cross-tissue analysis and an interface for comparing SAGE libraries for the first time. Some up- or down-regulated genes with tissue-specific or common tumor markers and suppressors are identified computationally. The tool is useful and convenient for in silico cancer transcriptomic studies and is freely available at http://bio.kuas.edu.tw/hSAGEing.

  13. Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections.

    Science.gov (United States)

    Kuepper, Claus; Kallenbach-Thieltges, Angela; Juette, Hendrik; Tannapfel, Andrea; Großerueschkamp, Frederik; Gerwert, Klaus

    2018-05-16

    A feasibility study using a quantum cascade laser-based infrared microscope for the rapid and label-free classification of colorectal cancer tissues is presented. Infrared imaging is a reliable, robust, automated, and operator-independent tissue classification method that has been used for differential classification of tissue thin sections identifying tumorous regions. However, long acquisition time by the so far used FT-IR-based microscopes hampered the clinical translation of this technique. Here, the used quantum cascade laser-based microscope provides now infrared images for precise tissue classification within few minutes. We analyzed 110 patients with UICC-Stage II and III colorectal cancer, showing 96% sensitivity and 100% specificity of this label-free method as compared to histopathology, the gold standard in routine clinical diagnostics. The main hurdle for the clinical translation of IR-Imaging is overcome now by the short acquisition time for high quality diagnostic images, which is in the same time range as frozen sections by pathologists.

  14. Degradation of tissue-type plasminogen activator by human monocyte- derived macrophages is mediated by the mannose receptor and by the low- density lipoprotein receptor-related protein

    NARCIS (Netherlands)

    Noorman, F.; Braat, E.A.M.; Rijken, D.C.

    1995-01-01

    The balance of tissue-type plasminogen activator (t-PA) production and degradation determines its concentration in blood and tissues. Disturbance of this balance may result in either increased or decreased proteolysis. In the present study, we identified the receptor systems involved in the

  15. An Error Analysis of Structured Light Scanning of Biological Tissue

    DEFF Research Database (Denmark)

    Jensen, Sebastian Hoppe Nesgaard; Wilm, Jakob; Aanæs, Henrik

    2017-01-01

    This paper presents an error analysis and correction model for four structured light methods applied to three common types of biological tissue; skin, fat and muscle. Despite its many advantages, structured light is based on the assumption of direct reflection at the object surface only......, statistical linear model based on the scan geometry. As such, scans can be corrected without introducing any specially designed pattern strategy or hardware. We can effectively reduce the error in a structured light scanner applied to biological tissue by as much as factor of two or three........ This assumption is violated by most biological material e.g. human skin, which exhibits subsurface scattering. In this study, we find that in general, structured light scans of biological tissue deviate significantly from the ground truth. We show that a large portion of this error can be predicted with a simple...

  16. The significance of accurate dielectric tissue data for hyperthermia treatment planning

    NARCIS (Netherlands)

    van de Kamer, J. B.; van Wieringen, N.; de Leeuw, A. A.; Lagendijk, J. J.

    2001-01-01

    For hyperthermia treatment planning, dielectric properties of several tissue types are required. Since it is difficult to perform patient specific dielectric imaging, default values based on literature data are used. However, these show a large spread (approximately 50%). Consequently, it is

  17. Tissue distribution of histo-blood group antigens

    DEFF Research Database (Denmark)

    Ravn, V; Dabelsteen, Erik

    2000-01-01

    carrier carbohydrate chains. Histo-blood group antigens are found in most epithelial tissues. Meanwhile, several factors influence the type, the amount, and the histological distribution of histoblood group antigens, i.e. the ABO, Lewis, and saliva-secretor type of the individual, and the cell- and tissue......The introduction of immunohistochemical techniques and monoclonal antibodies to specific carbohydrate epitopes has made it possible to study in detail the tissue distribution of histo-blood group antigens and related carbohydrate structures. The present paper summarizes the available data...... concerning the histological distribution of histo-blood group antigens and their precursor structures in normal human tissues. Studies performed have concentrated on carbohydrate antigens related to the ABO, Lewis, and TTn blood group systems, i.e. histo-blood group antigens carried by type 1, 2, and 3 chain...

  18. Assessing the Functional Limitations of Lipids and Fatty Acids for Diet Determination: The Importance of Tissue Type, Quantity, and Quality

    Directory of Open Access Journals (Sweden)

    Lauren Meyer

    2017-11-01

    Full Text Available Lipid and fatty acid (FA analysis is commonly used to describe the trophic ecology of an increasing number of taxa. However, the applicability of these analyses is contingent upon the collection and storage of sufficient high quality tissue, the limitations of which are previously unexplored in elasmobranchs. Using samples from 110 white sharks, Carcharodon carcharias, collected throughout Australia, we investigated the importance of tissue type, sample quantity, and quality for reliable lipid class and FA analysis. We determined that muscle and sub-dermal tissue contain distinct lipid class and FA profiles, and were not directly comparable. Muscle samples as small as 12 mg dry weight (49 mg wet weight, provided reliable and consistent FA profiles, while sub-dermal tissue samples of 40 mg dry weight (186 mg wet weight or greater were required to yield consistent profiles. This validates the suitability of minimally invasive sampling methods such as punch biopsies. The integrity of FA profiles in muscle was compromised after 24 h at ambient temperature (~20°C, making these degraded samples unreliable for accurate determination of dietary sources, yet sub-dermal tissue retained stable FA profiles under the same conditions, suggesting it may be a more robust tissue for trophic ecology work with potentially degraded samples. However, muscle samples archived for up to 16 years in −20°C retain their FA profiles, highlighting that tissue from museum or private collections can yield valid insights into the trophic ecology of marine elasmobranchs.

  19. Image-based characterization of foamed polymeric tissue scaffolds

    International Nuclear Information System (INIS)

    Mather, Melissa L; Morgan, Stephen P; Crowe, John A; White, Lisa J; Shakesheff, Kevin M; Tai, Hongyun; Howdle, Steven M; Kockenberger, Walter

    2008-01-01

    Tissue scaffolds are integral to many regenerative medicine therapies, providing suitable environments for tissue regeneration. In order to assess their suitability, methods to routinely and reproducibly characterize scaffolds are needed. Scaffold structures are typically complex, and thus their characterization is far from trivial. The work presented in this paper is centred on the application of the principles of scaffold characterization outlined in guidelines developed by ASTM International. Specifically, this work demonstrates the capabilities of different imaging modalities and analysis techniques used to characterize scaffolds fabricated from poly(lactic-co-glycolic acid) using supercritical carbon dioxide. Three structurally different scaffolds were used. The scaffolds were imaged using: scanning electron microscopy, micro x-ray computed tomography, magnetic resonance imaging and terahertz pulsed imaging. In each case two-dimensional images were obtained from which scaffold properties were determined using image processing. The findings of this work highlight how the chosen imaging modality and image-processing technique can influence the results of scaffold characterization. It is concluded that in order to obtain useful results from image-based scaffold characterization, an imaging methodology providing sufficient contrast and resolution must be used along with robust image segmentation methods to allow intercomparison of results

  20. Detection of apoptosis in paraffin embedded tissues: the influence of tissue type and fixation

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Dubská, L.; Míšek, Ivan

    2002-01-01

    Roč. 71, č. 4 (2002), s. 529-533 ISSN 0001-7213 R&D Projects: GA ČR GP204/02/P112; GA AV ČR KSK6005114 Keywords : apoptosis * TUNEL test * paraffin embedded tissues Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.370, year: 2002

  1. Discriminating between Interstitial and Circulating Leukocytes in Tissues of the Murine Oral Mucosa Avoiding Nasal-Associated Lymphoid Tissue Contamination.

    Science.gov (United States)

    Bittner-Eddy, Peter D; Fischer, Lori A; Tu, Andy A; Allman, Daniel A; Costalonga, Massimo

    2017-01-01

    Periodontitis is a chronic inflammatory response to a microbial biofilm that destroys bone and soft tissues supporting the teeth. Murine models of periodontitis based on Porphyromonas gingivalis ( Pg ) colonization have shown that extravasation of leukocytes into oral tissue is critical to driving alveolar bone destruction. Identifying interstitial leukocytes is key to understanding the immunopathogenesis of periodontitis. Here, we describe a robust flow cytometry assay based on intravenous FITC-conjugated anti-mouse CD45 mAb that distinguishes interstitial leukocytes in the oral mucosa of mice from those circulating within the vasculature or in post-dissection contaminating blood. Unaccounted circulating leukocytes skewed the relative frequency of B cells and granulocytes and inflated the numbers of all leukocyte cell types. We also describe a dissection technique that avoids contamination of oral mucosal tissues with nasal-associated lymphoid tissues (NALT), a B cell rich organ that can inflate leukocyte numbers at least 10-fold and skew the assessment of interstitial CD4 T cell phenotypes. Unlike circulating CD4 T cells, interstitial CD4 T cells were almost exclusively antigen-experienced cells (CD44 hi ). We report for the first time the presence of antigen-experienced Pg -specific CD4 T cells in NALT following oral feeding of mice with Pg . This new combined flow cytometry and dissection approach allows identification of leukocytes infiltrating the connective tissues of the murine oral mucosa and avoids confounding analyses of leukocytes not recruited to inflamed oral mucosal tissues in disease conditions like periodontitis, candidiasis, or sialadenitis.

  2. Implementation of biological tissue Mueller matrix for polarization-sensitive optical coherence tomography based on LabVIEW

    Science.gov (United States)

    Lin, Yongping; Zhang, Xiyang; He, Youwu; Cai, Jianyong; Li, Hui

    2018-02-01

    The Jones matrix and the Mueller matrix are main tools to study polarization devices. The Mueller matrix can also be used for biological tissue research to get complete tissue properties, while the commercial optical coherence tomography system does not give relevant analysis function. Based on the LabVIEW, a near real time display method of Mueller matrix image of biological tissue is developed and it gives the corresponding phase retardant image simultaneously. A quarter-wave plate was placed at 45 in the sample arm. Experimental results of the two orthogonal channels show that the phase retardance based on incident light vector fixed mode and the Mueller matrix based on incident light vector dynamic mode can provide an effective analysis method of the existing system.

  3. A novel C-type lectin identified by EST analysis in tissue migratory larvae of Ascaris suum.

    Science.gov (United States)

    Yoshida, Ayako; Nagayasu, Eiji; Horii, Yoichiro; Maruyama, Haruhiko

    2012-04-01

    C-type lectins (CTLs) are a group of proteins which bind to carbohydrate epitopes in the presence of Ca(2+), which have been described in a wide range of species. In this study, a cDNA sequence coding a putative CTL has been identified from the cDNA library constructed from the pig round worm Ascaris suum lung L3 (LL3) larvae, which was designated as A. suum C-type lectin-1 (As-CTL-1). The 510 nucleotide open reading frame of As-CTL-1 cDNA encoded the predicted 169 amino acid protein including a putative signal peptide of 23 residues and C-type lectin/C-type lectin-like domain (CLECT) at residue 26 to 167. As-CTL-1 was most similar to Toxocara canis C-type lectin-1 and 4 (Tc-CTL-1 and 4), and highly homologous to namatode CTLs and mammalian CTLs as well, such as human C-type lectin domain family 4 member G (CLECG4). In addition, As-CTL-1 was strongly expressed in tissue migrating LL3 and the L4 larvae, which were developmental larvae stages within the mammalian host. These results suggest that A. suum larvae might utilize As-CTL-1 to avoid pathogen recognition mechanisms in mammalian hosts due to it is similarity to host immune cell receptors.

  4. In defense of types in knowledge-based CAAD

    DEFF Research Database (Denmark)

    Galle, Per

    1997-01-01

    There are two basic approaches to representation of design knowledge in knowledge-based CAAD systems, the type-based approach which has a long tradition, and the more recent typeless approach. Proponents of the latter have offered a number of arguments against the type-based approach which...

  5. Silk-based biomaterials functionalized with fibronectin type II promotes cell adhesion.

    Science.gov (United States)

    Pereira, Ana Margarida; Machado, Raul; da Costa, André; Ribeiro, Artur; Collins, Tony; Gomes, Andreia C; Leonor, Isabel B; Kaplan, David L; Reis, Rui L; Casal, Margarida

    2017-01-01

    The objective of this work was to exploit the fibronectin type II (FNII) module from human matrix metalloproteinase-2 as a functional domain for the development of silk-based biopolymer blends that display enhanced cell adhesion properties. The DNA sequence of spider dragline silk protein (6mer) was genetically fused with the FNII coding sequence and expressed in Escherichia coli. The chimeric protein 6mer+FNII was purified by non-chromatographic methods. Films prepared from 6mer+FNII by solvent casting promoted only limited cell adhesion of human skin fibroblasts. However, the performance of the material in terms of cell adhesion was significantly improved when 6mer+FNII was combined with a silk-elastin-like protein in a concentration-dependent behavior. With this work we describe a novel class of biopolymer that promote cell adhesion and potentially useful as biomaterials for tissue engineering and regenerative medicine. This work reports the development of biocompatible silk-based composites with enhanced cell adhesion properties suitable for biomedical applications in regenerative medicine. The biocomposites were produced by combining a genetically engineered silk-elastin-like protein with a genetically engineered spider-silk-based polypeptide carrying the three domains of the fibronectin type II module from human metalloproteinase-2. These composites were processed into free-standing films by solvent casting and characterized for their biological behavior. To our knowledge this is the first report of the exploitation of all three FNII domains as a functional domain for the development of bioinspired materials with improved biological performance. The present study highlights the potential of using genetically engineered protein-based composites as a platform for the development of new bioinspired biomaterials. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Tissue

    Directory of Open Access Journals (Sweden)

    David Morrissey

    2012-01-01

    Full Text Available Purpose. In vivo gene therapy directed at tissues of mesenchymal origin could potentially augment healing. We aimed to assess the duration and magnitude of transene expression in vivo in mice and ex vivo in human tissues. Methods. Using bioluminescence imaging, plasmid and adenoviral vector-based transgene expression in murine quadriceps in vivo was examined. Temporal control was assessed using a doxycycline-inducible system. An ex vivo model was developed and optimised using murine tissue, and applied in ex vivo human tissue. Results. In vivo plasmid-based transgene expression did not silence in murine muscle, unlike in liver. Although maximum luciferase expression was higher in muscle with adenoviral delivery compared with plasmid, expression reduced over time. The inducible promoter cassette successfully regulated gene expression with maximum levels a factor of 11 greater than baseline. Expression was re-induced to a similar level on a temporal basis. Luciferase expression was readily detected ex vivo in human muscle and tendon. Conclusions. Plasmid constructs resulted in long-term in vivo gene expression in skeletal muscle, in a controllable fashion utilising an inducible promoter in combination with oral agents. Successful plasmid gene transfection in human ex vivo mesenchymal tissue was demonstrated for the first time.

  7. FUN-LDA: A Latent Dirichlet Allocation Model for Predicting Tissue-Specific Functional Effects of Noncoding Variation: Methods and Applications.

    Science.gov (United States)

    Backenroth, Daniel; He, Zihuai; Kiryluk, Krzysztof; Boeva, Valentina; Pethukova, Lynn; Khurana, Ekta; Christiano, Angela; Buxbaum, Joseph D; Ionita-Laza, Iuliana

    2018-05-03

    We describe a method based on a latent Dirichlet allocation model for predicting functional effects of noncoding genetic variants in a cell-type- and/or tissue-specific way (FUN-LDA). Using this unsupervised approach, we predict tissue-specific functional effects for every position in the human genome in 127 different tissues and cell types. We demonstrate the usefulness of our predictions by using several validation experiments. Using eQTL data from several sources, including the GTEx project, Geuvadis project, and TwinsUK cohort, we show that eQTLs in specific tissues tend to be most enriched among the predicted functional variants in relevant tissues in Roadmap. We further show how these integrated functional scores can be used for (1) deriving the most likely cell or tissue type causally implicated for a complex trait by using summary statistics from genome-wide association studies and (2) estimating a tissue-based correlation matrix of various complex traits. We found large enrichment of heritability in functional components of relevant tissues for various complex traits, and FUN-LDA yielded higher enrichment estimates than existing methods. Finally, using experimentally validated functional variants from the literature and variants possibly implicated in disease by previous studies, we rigorously compare FUN-LDA with state-of-the-art functional annotation methods and show that FUN-LDA has better prediction accuracy and higher resolution than these methods. In particular, our results suggest that tissue- and cell-type-specific functional prediction methods tend to have substantially better prediction accuracy than organism-level prediction methods. Scores for each position in the human genome and for each ENCODE and Roadmap tissue are available online (see Web Resources). Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. Simulation on scattering features of biological tissue based on generated refractive-index model

    International Nuclear Information System (INIS)

    Wang Baoyong; Ding Zhihua

    2011-01-01

    Important information on morphology of biological tissue can be deduced from elastic scattering spectra, and their analyses are based on the known refractive-index model of tissue. In this paper, a new numerical refractive-index model is put forward, and its scattering properties are intensively studied. Spectral decomposition [1] is a widely used method to generate random medium in geology, but it is never used in biology. Biological tissue is different from geology in the sense of random medium. Autocorrelation function describe almost all of features in geology, but biological tissue is not as random as geology, its structure is regular in the sense of fractal geometry [2] , and fractal dimension can be used to describe its regularity under random. Firstly scattering theories of this fractal media are reviewed. Secondly the detailed generation process of refractive-index is presented. Finally the scattering features are simulated in FDTD (Finite Difference Time Domain) Solutions software. From the simulation results, we find that autocorrelation length and fractal dimension controls scattering feature of biological tissue.

  9. Aspects of Quantitation in Mass Spectrometry Imaging Investigated on Cryo-Sections of Spiked Tissue Homogenates.

    Science.gov (United States)

    Hansen, Heidi Toft; Janfelt, Christian

    2016-12-06

    Internal standards have been introduced in quantitative mass spectrometry imaging in order to compensate for differences in intensities throughout an image caused by, for example, difference in ion suppression or analyte extraction efficiency. To test how well the internal standards compensate for differences in tissue types in, for example, whole-body imaging, a set of tissue homogenates of different tissue types (lung, liver, kidney, heart, and brain) from rabbit was spiked to the same concentration with the drug amitriptyline and imaged in the same experiment using isotope labeled amitriptyline as internal standard. The results showed, even after correction with internal standard, significantly lower intensities from brain and to some extent also lung tissue, differences which may be ascribed to binding of the drug to proteins or lipids as known from traditional bioanalysis. The differences, which for these results range approximately within a factor of 3 (but for other compounds in other tissues could be higher), underscore the importance of preparing the standard curve in the same matrix as the unknown sample whenever possible. In, for example, whole-body imaging where a diversity of tissue types are present, this variation across tissue types will therefore add to the overall uncertainty in quantitation. The tissue homogenates were also used in a characterization of various phenomena in quantitative MSI, such as to study how the signal depends of the thickness of the cryo-section, and to assess the accuracy of calibration by droplet deposition. For experiments on liver tissue, calibration by spiked tissue homogenates and droplet deposition was found to provide highly similar results and in both cases linearity with R 2 values of 0.99. In the process, a new method was developed for preparation of standard curves of spiked tissue homogenates, based on the drilling of holes in a block of frozen liver homogenate, providing easy cryo-slicing and good quantitative

  10. ClusType: Effective Entity Recognition and Typing by Relation Phrase-Based Clustering

    Science.gov (United States)

    Ren, Xiang; El-Kishky, Ahmed; Wang, Chi; Tao, Fangbo; Voss, Clare R.; Ji, Heng; Han, Jiawei

    2015-01-01

    Entity recognition is an important but challenging research problem. In reality, many text collections are from specific, dynamic, or emerging domains, which poses significant new challenges for entity recognition with increase in name ambiguity and context sparsity, requiring entity detection without domain restriction. In this paper, we investigate entity recognition (ER) with distant-supervision and propose a novel relation phrase-based ER framework, called ClusType, that runs data-driven phrase mining to generate entity mention candidates and relation phrases, and enforces the principle that relation phrases should be softly clustered when propagating type information between their argument entities. Then we predict the type of each entity mention based on the type signatures of its co-occurring relation phrases and the type indicators of its surface name, as computed over the corpus. Specifically, we formulate a joint optimization problem for two tasks, type propagation with relation phrases and multi-view relation phrase clustering. Our experiments on multiple genres—news, Yelp reviews and tweets—demonstrate the effectiveness and robustness of ClusType, with an average of 37% improvement in F1 score over the best compared method. PMID:26705503

  11. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review

    Directory of Open Access Journals (Sweden)

    Atul A. Chaudhari

    2016-11-01

    Full Text Available Over centuries, the field of regenerative skin tissue engineering has had several advancements to facilitate faster wound healing and thereby restoration of skin. Skin tissue regeneration is mainly based on the use of suitable scaffold matrices. There are several scaffold types, such as porous, fibrous, microsphere, hydrogel, composite and acellular, etc., with discrete advantages and disadvantages. These scaffolds are either made up of highly biocompatible natural biomaterials, such as collagen, chitosan, etc., or synthetic materials, such as polycaprolactone (PCL, and poly-ethylene-glycol (PEG, etc. Composite scaffolds, which are a combination of natural or synthetic biomaterials, are highly biocompatible with improved tensile strength for effective skin tissue regeneration. Appropriate knowledge of the properties, advantages and disadvantages of various biomaterials and scaffolds will accelerate the production of suitable scaffolds for skin tissue regeneration applications. At the same time, emphasis on some of the leading challenges in the field of skin tissue engineering, such as cell interaction with scaffolds, faster cellular proliferation/differentiation, and vascularization of engineered tissues, is inevitable. In this review, we discuss various types of scaffolding approaches and biomaterials used in the field of skin tissue engineering and more importantly their future prospects in skin tissue regeneration efforts.

  12. The significance of accurate dielectric tissue data for hyperthermia treatment planning

    NARCIS (Netherlands)

    van de Kamer, JB; van Wieringen, N; de Leeuw, AAC; Lagendijk, JJW

    2001-01-01

    For hyperthermia treatment planning, dielectric properties of several tissue types are required. Since it is difficult to perform patient specific dielectric imaging, default values based on literature data are used. However, these show a large spread (approximate to 50%). Consequently, it is

  13. Tissue engineering applications: cartilage lesions repair by the use of autologous chondrocytes

    Directory of Open Access Journals (Sweden)

    L. De Franceschi

    2011-09-01

    Full Text Available Promising new therapies based on tissue engineering have been recently developed for cartilage repair. The association of biomaterials with autologous chondrocytes expanded in vitro can represent a useful tool to regenerate this tissue. The scaffolds utilised in such therapeutical applications should provide a pre-formed three-dimensional shape, prevent cells from floating out of the defect, have sufficient mechanical strength, facilitate uniform spread of cells and stimulate the phenotype of transplanted cells. Hyaff®-11 is a hyaluronic-acid based biodegradable polymer, that has been shown to provide successful cell carrier for tissue-engineered repair. From our findings we can state that human chondrocytes seeded on Hyaff®-11 are able to maintain in vitro the characteristic of differentiated cells, expressing and producing collagen type II and aggrecan which are the main markers of cartilage phenotype, down-regulating collagen type I. Moreover, it seems to be a useful scaffold for cartilage repair both in animal models and clinical trials in humans, favouring the formation of a hyaline-like tissue. In the light of these data, we can hypothesise, for the future, the use of autologous chondrocyte transplantation together with gene therapy as a treatment for rheumatic diseases such as osteoarthritis.

  14. Predicting tissue-specific expressions based on sequence characteristics

    KAUST Repository

    Paik, Hyojung; Ryu, Tae Woo; Heo, Hyoungsam; Seo, Seungwon; Lee, Doheon; Hur, Cheolgoo

    2011-01-01

    In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.

  15. Predicting tissue-specific expressions based on sequence characteristics

    KAUST Repository

    Paik, Hyojung

    2011-04-30

    In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.

  16. Body fat of stock-type horses predicted by rump fat thickness and deuterium oxide dilution and validated by near-infrared spectroscopy of dissected tissues.

    Science.gov (United States)

    Ferjak, E N; Cavinder, C A; Burnett, D D; Argo, C Mc; Dinh, T T N

    2017-10-01

    Body condition score and percent body fat (BF; %) of horses are positively correlated with reproductive efficiency and are indicative of metabolic issues. However, BF in horses may be poorly predicted because current procedures are either subjective or dependent on one anatomical location. Therefore, the objectives of the current study were to compare 2 methods of predicting BF using rump fat thickness (RFT) and deuterium oxide (DO) dilution with actual tissue fat analysis by near-infrared spectroscopy (NIRS) in stock-type horses and to identify the relationship between BF and BCS. Twenty-four stock-type horses were selected to be humanely euthanized based on 3 primary criteria: geriatric, crippled, and/or unsafe. Approximately 20 h before slaughter, horses were weighed and BCS assessed to be 1 ( = 1; 433 kg), 2 ( = 1; 415 kg), 3 ( = 1; 376 kg), 4 ( = 7; 468 ± 13 kg), 5 ( = 10; 455 ± 11 kg), and 6 ( = 4; 493 ± 12 kg) and RFT was measured using ultrasonography. Blood samples were collected immediately before and 4 h after DO infusion (0.12 g/kg BW). Deuterium oxide concentration of plasma was determined by gas isotope ratio mass spectrometry. Horses were housed in a dry lot overnight before being individually sedated (1.1 mg xylazine/kg BW) and anesthetized using a jugular venipuncture (2.2 mg ketamine/kg BW), and potassium chloride (KCl) solution was administered to cease cardiac function before exsanguination. After euthanasia, horse carcasses were processed and dissected and tissues were collected for NIRS analysis. Body fat predicted by DO dilution was correlated with BF measured by NIRS analysis on various weight bases ( = 0.76 to 0.81, horses.

  17. Necrotizing Soft Tissue Infection

    Directory of Open Access Journals (Sweden)

    Sahil Aggarwal, BS

    2018-04-01

    Full Text Available History of present illness: A 71-year-old woman with a history of metastatic ovarian cancer presented with sudden onset, rapidly progressing painful rash in the genital region and lower abdominal wall. She was febrile to 103°F, heart rate was 114 beats per minute, and respiratory rate was 24 per minute. Her exam was notable for a toxic-appearing female with extensive areas of erythema, tenderness, and induration to her lower abdomen, intertriginous areas, and perineum with intermittent segments of crepitus without hemorrhagic bullae or skin breakdown. Significant findings: Computed tomography (CT of the abdominal and pelvis with intravenous (IV contrast revealed inflammatory changes, including gas and fluid collections within the ventral abdominal wall extending to the vulva, consistent with a necrotizing soft tissue infection. Discussion: Necrotizing fasciitis is a serious infection of the skin and soft tissues that requires an early diagnosis to reduce morbidity and mortality. Classified into several subtypes based on the type of microbial infection, necrotizing fasciitis can rapidly progress to septic shock or death if left untreated.1 Diagnosing necrotizing fasciitis requires a high index of suspicion based on patient risk factors, presentation, and exam findings. Definitive treatment involves prompt surgical exploration and debridement coupled with IV antibiotics.2,3 Clinical characteristics such as swelling, disproportionate pain, erythema, crepitus, and necrotic tissue should be a guide to further diagnostic tests.4 Unfortunately, lab values such as white blood cell count and lactate imaging studies have high sensitivity but low specificity, making the diagnosis of necrotizing fasciitis still largely a clinical one.4,5 CT is a reliable method to exclude the diagnosis of necrotizing soft tissue infections (sensitivity of 100%, but is only moderately reliable in correctly identifying such infections (specificity of 81%.5 Given the emergent

  18. Skeletal muscle connective tissue

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline

    in the structure of fibrous collagen and myofibers at high-resolution. The results demonstrate that the collagen composition in the extra cellular matrix of Gadus morhua fish muscle is much more complex than previously anticipated, as it contains type III, IV, V  and VI collagen in addition to type I. The vascular....... Consequently, functional structures, ensuring "tissue maintenance" must form a major role of connective tissue, in addition that is to the force transmitting structures one typically finds in muscle. Vascular structures have also been shown to change their mechanical properties with age and it has been shown...

  19. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    Directory of Open Access Journals (Sweden)

    Wan Nurlina Wan Yahya

    2014-07-01

    Full Text Available Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration.

  20. Photoplethysmographic sensors for perfusion measurements in spinal cord tissue

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Kyriacou, P A, E-mail: Justin.Phillips.1@city.ac.uk [School of Engineering and Mathematical Sciences, City University London, EC1V 0HB (United Kingdom)

    2011-08-17

    Sensors for recording photoplethysmographic signals from the nervous tissue of the spinal cord are described. The purpose of these sensors is to establish whether perfusion is compromised in various states of injury which occur in certain animal models of spinal cord injury, for example compression injury. Various measures of perfusion are applicable such as the amplitude of the photoplethysmograph signal and the oxygen saturation, measured using a dual wavelength configuration. Signals are usually compared to baseline measurements made in uninjured subjects. This paper describes two types of probe, one based on optical fibres, and one in which optotes are placed in direct contact with the tissue surface. Results from a study based on a compression model utilising a fibreoptic sensor are presented.

  1. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink

    Science.gov (United States)

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D.; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-01-01

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types. PMID:27166839

  2. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink.

    Science.gov (United States)

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-04-21

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types.

  3. Lung Cancer Signature Biomarkers: tissue specific semantic similarity based clustering of Digital Differential Display (DDD data

    Directory of Open Access Journals (Sweden)

    Srivastava Mousami

    2012-11-01

    Full Text Available Abstract Background The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used ‘Gene Ontology semantic similarity score’ to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal and disease (cancer sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Results Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95 identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1–4. Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1, chemotherapy/drug resistance biomarkers (panel 2, hypoxia regulated biomarkers (panel 3 and lung extra cellular matrix biomarkers (panel 4. Conclusions Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3, HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1

  4. Tissue distribution, core biosynthesis and diversification of pyrrolizidine alkaloids of the lycopsamine type in three Boraginaceae species.

    Science.gov (United States)

    Frölich, Cordula; Ober, Dietrich; Hartmann, Thomas

    2007-04-01

    Three species of the Boraginaceae were studied: greenhouse-grown plants of Heliotropium indicum and Agrobacterium rhizogenes transformed roots cultures (hairy roots) of Cynoglossum officinale and Symphytum officinale. The species-specific pyrrolizidine alkaloid (PA) profiles of the three systems were established by GC-MS. All PAs are genuinely present as N-oxides. In H. indicum the tissue-specific PA distribution revealed the presence of PAs in all tissues with the highest levels in the inflorescences which in a flowering plant may account for more than 70% of total plant alkaloid. The sites of PA biosynthesis vary among species. In H. indicum PAs are synthesized in the shoot but not roots whereas they are only made in shoots for C. officinale and in roots of S. officinale. Classical tracer studies with radioactively labelled precursor amines (e.g., putrescine, spermidine and homospermidine) and various necine bases (trachelanthamidine, supinidine, retronecine, heliotridine) and potential ester alkaloid intermediates (e.g., trachelanthamine, supinine) were performed to evaluate the biosynthetic sequences. It was relevant to perform these comparative studies since the key enzyme of the core pathway, homospermidine synthase, evolved independently in the Boraginaceae and, for instance, in the Asteraceae [Reimann, A., Nurhayati, N., Backenkohler, A., Ober, D., 2004. Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 16, 2772-2784.]. These studies showed that the core pathway for the formation of trachelanthamidine from putrescine and spermidine via homospermidine is common to the pathway in Senecio ssp. (Asteraceae). In both pathways homospermidine is further processed by a beta-hydroxyethylhydrazine sensitive diamine oxidase. Further steps of PA biosynthesis starting with trachelanthamidine as common precursor occur in two successive stages. Firstly, the necine bases are structurally modified and either

  5. Incorporation of lysosomal sequestration in the mechanistic model for prediction of tissue distribution of basic drugs.

    Science.gov (United States)

    Assmus, Frauke; Houston, J Brian; Galetin, Aleksandra

    2017-11-15

    The prediction of tissue-to-plasma water partition coefficients (Kpu) from in vitro and in silico data using the tissue-composition based model (Rodgers & Rowland, J Pharm Sci. 2005, 94(6):1237-48.) is well established. However, distribution of basic drugs, in particular into lysosome-rich lung tissue, tends to be under-predicted by this approach. The aim of this study was to develop an extended mechanistic model for the prediction of Kpu which accounts for lysosomal sequestration and the contribution of different cell types in the tissue of interest. The extended model is based on compound-specific physicochemical properties and tissue composition data to describe drug ionization, distribution into tissue water and drug binding to neutral lipids, neutral phospholipids and acidic phospholipids in tissues, including lysosomes. Physiological data on the types of cells contributing to lung, kidney and liver, their lysosomal content and lysosomal pH were collated from the literature. The predictive power of the extended mechanistic model was evaluated using a dataset of 28 basic drugs (pK a ≥7.8, 17 β-blockers, 11 structurally diverse drugs) for which experimentally determined Kpu data in rat tissue have been reported. Accounting for the lysosomal sequestration in the extended mechanistic model improved the accuracy of Kpu predictions in lung compared to the original Rodgers model (56% drugs within 2-fold or 88% within 3-fold of observed values). Reduction in the extent of Kpu under-prediction was also evident in liver and kidney. However, consideration of lysosomal sequestration increased the occurrence of over-predictions, yielding overall comparable model performances for kidney and liver, with 68% and 54% of Kpu values within 2-fold error, respectively. High lysosomal concentration ratios relative to cytosol (>1000-fold) were predicted for the drugs investigated; the extent differed depending on the lysosomal pH and concentration of acidic phospholipids among

  6. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    International Nuclear Information System (INIS)

    Morrow, Natalya V.; Lawton, Colleen A.; Qi, X. Sharon; Li, X. Allen

    2012-01-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  7. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Natalya V.; Lawton, Colleen A. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Qi, X. Sharon [Department of Radiation Oncology, University of Colorado Denver, Denver, Colorado (United States); Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2012-04-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  8. TiGER: a database for tissue-specific gene expression and regulation.

    Science.gov (United States)

    Liu, Xiong; Yu, Xueping; Zack, Donald J; Zhu, Heng; Qian, Jiang

    2008-06-09

    Understanding how genes are expressed and regulated in different tissues is a fundamental and challenging question. However, most of currently available biological databases do not focus on tissue-specific gene regulation. The recent development of computational methods for tissue-specific combinational gene regulation, based on transcription factor binding sites, enables us to perform a large-scale analysis of tissue-specific gene regulation in human tissues. The results are stored in a web database called TiGER (Tissue-specific Gene Expression and Regulation). The database contains three types of data including tissue-specific gene expression profiles, combinatorial gene regulations, and cis-regulatory module (CRM) detections. At present the database contains expression profiles for 19,526 UniGene genes, combinatorial regulations for 7,341 transcription factor pairs and 6,232 putative CRMs for 2,130 RefSeq genes. We have developed and made publicly available a database, TiGER, which summarizes and provides large scale data sets for tissue-specific gene expression and regulation in a variety of human tissues. This resource is available at 1.

  9. TiGER: A database for tissue-specific gene expression and regulation

    Directory of Open Access Journals (Sweden)

    Zack Donald J

    2008-06-01

    Full Text Available Abstract Background Understanding how genes are expressed and regulated in different tissues is a fundamental and challenging question. However, most of currently available biological databases do not focus on tissue-specific gene regulation. Results The recent development of computational methods for tissue-specific combinational gene regulation, based on transcription factor binding sites, enables us to perform a large-scale analysis of tissue-specific gene regulation in human tissues. The results are stored in a web database called TiGER (Tissue-specific Gene Expression and Regulation. The database contains three types of data including tissue-specific gene expression profiles, combinatorial gene regulations, and cis-regulatory module (CRM detections. At present the database contains expression profiles for 19,526 UniGene genes, combinatorial regulations for 7,341 transcription factor pairs and 6,232 putative CRMs for 2,130 RefSeq genes. Conclusion We have developed and made publicly available a database, TiGER, which summarizes and provides large scale data sets for tissue-specific gene expression and regulation in a variety of human tissues. This resource is available at 1.

  10. Human endothelial colony-forming cells expanded with an improved protocol are a useful endothelial cell source for scaffold-based tissue engineering.

    Science.gov (United States)

    Denecke, Bernd; Horsch, Liska D; Radtke, Stefan; Fischer, Johannes C; Horn, Peter A; Giebel, Bernd

    2015-11-01

    One of the major challenges in tissue engineering is to supply larger three-dimensional (3D) bioengineered tissue transplants with sufficient amounts of nutrients and oxygen and to allow metabolite removal. Consequently, artificial vascularization strategies of such transplants are desired. One strategy focuses on endothelial cells capable of initiating new vessel formation, which are settled on scaffolds commonly used in tissue engineering. A bottleneck in this strategy is to obtain sufficient amounts of endothelial cells, as they can be harvested only in small quantities directly from human tissues. Thus, protocols are required to expand appropriate cells in sufficient amounts without interfering with their capability to settle on scaffold materials and to initiate vessel formation. Here, we analysed whether umbilical cord blood (CB)-derived endothelial colony-forming cells (ECFCs) fulfil these requirements. In a first set of experiments, we showed that marginally expanded ECFCs settle and survive on different scaffold biomaterials. Next, we improved ECFC culture conditions and developed a protocol for ECFC expansion compatible with 'Good Manufacturing Practice' (GMP) standards. We replaced animal sera with human platelet lysates and used a novel type of tissue-culture ware. ECFCs cultured under the new conditions revealed significantly lower apoptosis and increased proliferation rates. Simultaneously, their viability was increased. Since extensively expanded ECFCs could still settle on scaffold biomaterials and were able to form tubular structures in Matrigel assays, we conclude that these ex vivo-expanded ECFCs are a novel, very potent cell source for scaffold-based tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Cellular automata and integrodifferential equation models for cell renewal in mosaic tissues

    Science.gov (United States)

    Bloomfield, J. M.; Sherratt, J. A.; Painter, K. J.; Landini, G.

    2010-01-01

    Mosaic tissues are composed of two or more genetically distinct cell types. They occur naturally, and are also a useful experimental method for exploring tissue growth and maintenance. By marking the different cell types, one can study the patterns formed by proliferation, renewal and migration. Here, we present mathematical modelling suggesting that small changes in the type of interaction that cells have with their local cellular environment can lead to very different outcomes for the composition of mosaics. In cell renewal, proliferation of each cell type may depend linearly or nonlinearly on the local proportion of cells of that type, and these two possibilities produce very different patterns. We study two variations of a cellular automaton model based on simple rules for renewal. We then propose an integrodifferential equation model, and again consider two different forms of cellular interaction. The results of the continuous and cellular automata models are qualitatively the same, and we observe that changes in local environment interaction affect the dynamics for both. Furthermore, we demonstrate that the models reproduce some of the patterns seen in actual mosaic tissues. In particular, our results suggest that the differing patterns seen in organ parenchymas may be driven purely by the process of cell replacement under different interaction scenarios. PMID:20375040

  12. Quantitative Segmentation of Fluorescence Microscopy Images of Heterogeneous Tissue: Application to the Detection of Residual Disease in Tumor Margins.

    Science.gov (United States)

    Mueller, Jenna L; Harmany, Zachary T; Mito, Jeffrey K; Kennedy, Stephanie A; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G; Willett, Rebecca M; Brown, J Quincy; Ramanujam, Nimmi

    2013-01-01

    To develop a robust tool for quantitative in situ pathology that allows visualization of heterogeneous tissue morphology and segmentation and quantification of image features. TISSUE EXCISED FROM A GENETICALLY ENGINEERED MOUSE MODEL OF SARCOMA WAS IMAGED USING A SUBCELLULAR RESOLUTION MICROENDOSCOPE AFTER TOPICAL APPLICATION OF A FLUORESCENT ANATOMICAL CONTRAST AGENT: acriflavine. An algorithm based on sparse component analysis (SCA) and the circle transform (CT) was developed for image segmentation and quantification of distinct tissue types. The accuracy of our approach was quantified through simulations of tumor and muscle images. Specifically, tumor, muscle, and tumor+muscle tissue images were simulated because these tissue types were most commonly observed in sarcoma margins. Simulations were based on tissue characteristics observed in pathology slides. The potential clinical utility of our approach was evaluated by imaging excised margins and the tumor bed in a cohort of mice after surgical resection of sarcoma. Simulation experiments revealed that SCA+CT achieved the lowest errors for larger nuclear sizes and for higher contrast ratios (nuclei intensity/background intensity). For imaging of tumor margins, SCA+CT effectively isolated nuclei from tumor, muscle, adipose, and tumor+muscle tissue types. Differences in density were correctly identified with SCA+CT in a cohort of ex vivo and in vivo images, thus illustrating the diagnostic potential of our approach. The combination of a subcellular-resolution microendoscope, acriflavine staining, and SCA+CT can be used to accurately isolate nuclei and quantify their density in anatomical images of heterogeneous tissue.

  13. Quality assurance and auditing for tissue banking

    International Nuclear Information System (INIS)

    Strong, M.; Tayo, E.

    1999-01-01

    Implementation of quality systems can provide many benefits and have a direct impact on the cost of tissue banking. These benefits are achieved by reducing redundancies, streamlining work processes, reducing and waste, and implementing of a process of continuous monitoring and quality improvement, There have been various models written for the use of quality systems in tissue banking but most can be indexed and correlated with the universal ISO 9000 Quality Management System used world-wide in all types of businesses and services since 1986. These standards contain 20 system elements that define the broad-based quality system. Within these elements are included audited systems. The auditing system includes internal assessment and external assessment. An audit is a planned, independent and documented assessment to determine whether agreed upon requirements are being met. Audits are performed by qualified individuals with knowledge of procedures, regulations and associated standards with the primary intention of improving processes. Internal and external assessments are the primary types of audits performed at the tissue center. Internal assessment is performed by the employees of the organization to determine whether activities and -the results of the activities comply with requirements and procedures. External assessment is carried out by independent examinations performed by an external agency. This presentation will describe procedures for internal quality auditing and results of external assessment of tissue banking in North America, as performed by the American Association of Tissue Banks (AATB). The AATB system for external auditing will be described. Examples will be given of the most common errors found by such auditing assessments and procedures for establishing internal quality auditing

  14. Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array.

    Science.gov (United States)

    Kuo, Ching-Te; Wang, Jong-Yueh; Lin, Yu-Fen; Wo, Andrew M; Chen, Benjamin P C; Lee, Hsinyu

    2017-06-29

    Biomaterial-based tissue culture platforms have emerged as useful tools to mimic in vivo physiological microenvironments in experimental cell biology and clinical studies. We describe herein a three-dimensional (3D) tissue culture platform using a polydimethylsiloxane (PDMS)-based hanging drop array (PDMS-HDA) methodology. Multicellular spheroids can be achieved within 24 h and further boosted by incorporating collagen fibrils in PDMS-HDA. In addition, the spheroids generated from different human tumor cells exhibited distinct sensitivities toward drug chemotherapeutic agents and radiation as compared with two-dimensional (2D) cultures that often lack in vivo-like biological insights. We also demonstrated that multicellular spheroids may enable key hallmarks of tissue-based bioassays, including drug screening, tumor dissemination, cell co-culture, and tumor invasion. Taken together, these results offer new opportunities not only to achieve the active control of 3D multicellular spheroids on demand, but also to establish a rapid and cost-effective platform to study anti-cancer therapeutics and tumor microenvironments.

  15. Perforator based rectus free tissue transfer for head and neck reconstruction: New reconstructive advantages from an old friend.

    Science.gov (United States)

    Kang, Stephen Y; Spector, Matthew E; Chepeha, Douglas B

    2017-11-01

    To demonstrate three reconstructive advantages of the perforator based rectus free tissue transfer: long pedicle, customizable adipose tissue, and volume reconstruction without muscle atrophy within a contained space. Thirty patients with defects of the head and neck were reconstructed with the perforator based rectus free tissue transfer. Transplant success was 93%. Mean pedicle length was 13.4cm. Eleven patients (37%) had vessel-poor necks and the long pedicle provided by this transplant avoided the need for vein grafts in these patients. Adipose tissue was molded in 17 patients (57%). Twenty-five patients (83%) had defects within a contained space, such as the orbit, where it was critical to have a transplant that avoided muscle atrophy. The perforator based rectus free tissue transfer provides a long pedicle, moldable fat for flap customization, and is useful in reconstruction of defects within a contained space where volume loss due to muscle atrophy is prevented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Novel joint TOA/RSSI-based WCE location tracking method without prior knowledge of biological human body tissues.

    Science.gov (United States)

    Ito, Takahiro; Anzai, Daisuke; Jianqing Wang

    2014-01-01

    This paper proposes a novel joint time of arrival (TOA)/received signal strength indicator (RSSI)-based wireless capsule endoscope (WCE) location tracking method without prior knowledge of biological human tissues. Generally, TOA-based localization can achieve much higher localization accuracy than other radio frequency-based localization techniques, whereas wireless signals transmitted from a WCE pass through various kinds of human body tissues, as a result, the propagation velocity inside a human body should be different from one in free space. Because the variation of propagation velocity is mainly affected by the relative permittivity of human body tissues, instead of pre-measurement for the relative permittivity in advance, we simultaneously estimate not only the WCE location but also the relative permittivity information. For this purpose, this paper first derives the relative permittivity estimation model with measured RSSI information. Then, we pay attention to a particle filter algorithm with the TOA-based localization and the RSSI-based relative permittivity estimation. Our computer simulation results demonstrates that the proposed tracking methods with the particle filter can accomplish an excellent localization accuracy of around 2 mm without prior information of the relative permittivity of the human body tissues.

  17. Tissue Equivalents Based on Cell-Seeded Biodegradable Microfluidic Constructs

    Directory of Open Access Journals (Sweden)

    Sarah L. Tao

    2010-03-01

    Full Text Available One of the principal challenges in the field of tissue engineering and regenerative medicine is the formation of functional microvascular networks capable of sustaining tissue constructs. Complex tissues and vital organs require a means to support oxygen and nutrient transport during the development of constructs both prior to and after host integration, and current approaches have not demonstrated robust solutions to this challenge. Here, we present a technology platform encompassing the design, construction, cell seeding and functional evaluation of tissue equivalents for wound healing and other clinical applications. These tissue equivalents are comprised of biodegradable microfluidic scaffolds lined with microvascular cells and designed to replicate microenvironmental cues necessary to generate and sustain cell populations to replace dermal and/or epidermal tissues lost due to trauma or disease. Initial results demonstrate that these biodegradable microfluidic devices promote cell adherence and support basic cell functions. These systems represent a promising pathway towards highly integrated three-dimensional engineered tissue constructs for a wide range of clinical applications.

  18. The comparative morphology of the muscle tissues and changes in constituents in the pig types.

    Science.gov (United States)

    Fehér, G; Fazekas, S; Sándor, I; Kollár, N

    1990-09-01

    The authors have revealed the main value characteristics of pork production by testing in five different types of pig the volume of contractile and collagen proteins, that of proteoglycans, the constituents of blood and the enzymes of the blood plasma. The contractile proteins of the muscle tissues basically determine the quality of pork. The same applies to the water retention capacity, colloidal characteristics and glycogen content of meat. The amount of contractile proteins has decreased in the best meat producing types of pig. Parallel with the decrease of white meat, and with the increase in the volume of ham, chop and chuck the contractile protein content of muscles decreased. The scientific fact according to which there is a certain correlation among the changes in the volume of contractile proteins, blood sugar level, blood serum CPK and the intensity of activity of the LDH enzymes promotes the qualifying of live animals and the work of the geneticists aiming at the increasing of the contractile protein content of the muscle tissues of pigs by selection. According to tests carried out by us the primary cause of PSE changes is a decreased volume of contractile proteins. Increased stress sensitivity and all the other factors have but a secondary importance and are all consequential. The decrease in the quantity of contractile proteins or--it is better to put it this way--the lack of the proper amount of such proteins characterizing a fully developed pig's organism is caused by the nowadays usual breeding technologies and can be well explained by those selection activities which aim at a one-sided kind of pork production.

  19. Tissue-type plasminogen activator-binding RNA aptamers inhibiting low-density lipoprotein receptor family-mediated internalisation.

    Science.gov (United States)

    Bjerregaard, Nils; Bøtkjær, Kenneth A; Helsen, Nicky; Andreasen, Peter A; Dupont, Daniel M

    2015-07-01

    Recombinant tissue-type plasminogen activator (tPA, trade name Alteplase), currently the only drug approved by the US Food and Drug Administration and the European Medicines Agency for the treatment of cerebral ischaemic stroke, has been implicated in a number of adverse effects reportedly mediated by interactions with the low-density lipoprotein (LDL) family receptors, including neuronal cell death and an increased risk of cerebral haemorrhage. The tissue-type plasminogen activator is the principal initiator of thrombolysis in human physiology, an effect that is mediated directly via localised activation of the plasmin zymogen plasminogen at the surface of fibrin clots in the vascular lumen. Here, we sought to identify a ligand to tPA capable of inhibiting the relevant LDL family receptors without interfering with the fibrinolytic activity of tPA. Systematic evolution of ligands by exponential enrichment (SELEX) was employed to isolate tPA-binding RNA aptamers, which were characterised in biochemical assays of tPA association to low density lipoprotein receptor-related protein-1 (LRP-1, an LDL receptor family member); tPA-mediated in vitro and ex vivo clot lysis; and tPA-mediated plasminogen activation in the absence and presence of a stimulating soluble fibrin fragment. Two aptamers, K18 and K32, had minimal effects on clot lysis, but were able to efficiently inhibit tPA-LRP-1 association and LDL receptor family-mediated endocytosis in human vascular endothelial cells and astrocytes. These observations suggest that coadministration alongside tPA may be a viable strategy to improve the safety of thrombolytic treatment of cerebral ischaemic stroke by restricting tPA activity to the vascular lumen.

  20. Associations between insulin resistance and TNF-alpha in plasma, skeletal muscle and adipose tissue in humans with and without type 2 diabetes

    DEFF Research Database (Denmark)

    Plomgaard, P; Nielsen, A R; Fischer, C P

    2007-01-01

    AIMS/HYPOTHESIS: Clear evidence exists that TNF-alpha inhibits insulin signalling and thereby glucose uptake in myocytes and adipocytes. However, conflicting results exist with regard to the role of TNF-alpha in type 2 diabetes. METHODS: We obtained blood and biopsy samples from skeletal muscle...... and subcutaneous adipose tissue in patients with type 2 diabetes (n = 96) and healthy controls matched for age, sex and BMI (n = 103). RESULTS: Patients with type 2 diabetes had higher plasma levels of fasting insulin (p ...) uptake (VO2/kg) in the diabetes group (p type 2 diabetic patients. Immunohistochemistry revealed more TNF-alpha protein...

  1. Human colon tissue in organ culture: calcium and multi-mineral-induced mucosal differentiation.

    Science.gov (United States)

    Dame, Michael K; Veerapaneni, Indiradevi; Bhagavathula, Narasimharao; Naik, Madhav; Varani, James

    2011-01-01

    We have recently shown that a multi-mineral extract from the marine red algae, Lithothamnion calcareum, suppresses colon polyp formation and inflammation in mice. In the present study, we used intact human colon tissue in organ culture to compare responses initiated by Ca(2+) supplementation versus the multi-mineral extract. Normal human colon tissue was treated for 2 d in culture with various concentrations of calcium or the mineral-rich extract. The tissue was then prepared for histology/immunohistochemistry, and the culture supernatants were assayed for levels of type I procollagen and type I collagen. At higher Ca(2+) concentrations or with the mineral-rich extract, proliferation of epithelial cells at the base and walls of the mucosal crypts was suppressed, as visualized by reduced Ki67 staining. E-cadherin, a marker of differentiation, was more strongly expressed at the upper third of the crypt and at the luminal surface. Treatment with Ca(2+) or with the multi-mineral extract influenced collagen turnover, with decreased procollagen and increased type I collagen. These data suggest that calcium or mineral-rich extract has the capacity to (1) promote differentiation in human colon tissue in organ culture and (2) modulate stromal function as assessed by increased levels of type I collagen. Taken together, these data suggest that human colon tissue in organ culture (supporting in vivo finding in mice) will provide a valuable model for the preclinical assessment of agents that regulate growth and differentiation in the colonic mucosa.

  2. Tissue specific responses to cadmium-based quantum dots in the marine mussel Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Thiago Lopes [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Gomes, Tânia [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo (Norway); Mestre, Nélia C.; Cardoso, Cátia [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Bebianno, Maria João, E-mail: mbebian@ualg.pt [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2015-12-15

    Highlights: • Mussel gills are the main target for oxidative stress induced by Cd-based QDs. • Antioxidants responses induced by Cd-based QDs and dissolved Cd are mediated by different mechanisms. • CdTe QDs are more pro-oxidant Cd form when compared to dissolved Cd. • Differential tissue response indicated nano-specific effects. - Abstract: In recent years, Cd-based quantum dots (QDs) have generated interest from the life sciences community due to their potential applications in nanomedicine, biology and electronics. However, these engineered nanomaterials can be released into the marine environment, where their environmental health hazards remain unclear. This study investigated the tissue-specific responses related to alterations in the antioxidant defense system induced by CdTe QDs, in comparison with its dissolved counterpart, using the marine mussel Mytilus galloprovincialis. Mussels were exposed to CdTe QDs and dissolved Cd for 14 days at 10 μgCd L{sup −1} and biomarkers of oxidative stress [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (total, Se-independent and Se-dependent GPx) and glutathione-S-transferase (GST) activities] were analyzed along with Cd accumulation in the gills and digestive gland of mussels. Results show that both Cd forms changed mussels’ antioxidant responses with distinct modes of action (MoA). There were tissue- and time-dependent differences in the biochemical responses to each Cd form, wherein QDs are more pro-oxidant when compared to dissolved Cd. The gills are the main tissue affected by QDs, with effects related to the increase of SOD, GST and GPx activities, while those of dissolved Cd was associated to the increase of CAT activity, Cd accumulation and exposure time. Digestive gland is a main tissue for accumulation of both Cd forms, but changes in antioxidant enzyme activities are smaller than in gills. A multivariate analysis revealed that the antioxidant patterns are tissue dependent

  3. Functional evaluation of artificial skeletal muscle tissue constructs fabricated by a magnetic force-based tissue engineering technique.

    Science.gov (United States)

    Yamamoto, Yasunori; Ito, Akira; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi

    2011-01-01

    Skeletal muscle tissue engineering is currently applied in a variety of research fields, including regenerative medicine, drug screening, and bioactuator development, all of which require the fabrication of biomimic and functional skeletal muscle tissues. In the present study, magnetite cationic liposomes were used to magnetically label C2C12 myoblast cells for the construction of three-dimensional artificial skeletal muscle tissues by an applied magnetic force. Skeletal muscle functions, such as biochemical and contractile properties, were evaluated for the artificial tissue constructs. Histological studies revealed that elongated and multinucleated myotubes were observed within the tissue. Expression of muscle-specific markers, such as myogenin, myosin heavy chain and tropomyosin, were detected in the tissue constructs by western blot analysis. Further, creatine kinase activity increased during differentiation. In response to electric pulses, the artificial tissue constructs contracted to generate a physical force (the maximum twitch force, 33.2 μN [1.06 mN/mm2]). Rheobase and chronaxie of the tissue were determined as 4.45 V and 0.72 ms, respectively. These results indicate that the artificial skeletal muscle tissue constructs fabricated in this study were physiologically functional and the data obtained for the evaluation of their functional properties may provide useful information for future skeletal muscle tissue engineering studies.

  4. Stem cell-derived angiogenic/vasculogenic cells: Possible therapies for tissue repair and tissue engineering

    NARCIS (Netherlands)

    Zwaginga, J. J.; Doevendans, P.

    2003-01-01

    1. The recent ability to isolate stem cells and study their specific capacity of self-renewal with the formation of different cell types has opened up exciting vistas to help the repair of damaged tissue and even the formation of new tissue. In the present review, we deal with the characteristics

  5. Constructing a Computer Model of the Human Eye Based on Tissue Slice Images

    OpenAIRE

    Dai, Peishan; Wang, Boliang; Bao, Chunbo; Ju, Ying

    2010-01-01

    Computer simulation of the biomechanical and biological heat transfer in ophthalmology greatly relies on having a reliable computer model of the human eye. This paper proposes a novel method on the construction of a geometric model of the human eye based on tissue slice images. Slice images were obtained from an in vitro Chinese human eye through an embryo specimen processing methods. A level set algorithm was used to extract contour points of eye tissues while a principle component analysi...

  6. Surface-enhanced Raman spectroscopy for differentiation between benign and malignant thyroid tissues

    Science.gov (United States)

    Li, Zuanfang; Li, Chao; Lin, Duo; Huang, Zufang; Pan, Jianji; Chen, Guannan; Lin, Juqiang; Liu, Nenrong; Yu, Yun; Feng, Shangyuan; Chen, Rong

    2014-04-01

    The aim of this study was to evaluate the potential of applying silver nano-particle based surface-enhanced Raman scattering (SERS) to discriminate different types of human thyroid tissues. SERS measurements were performed on three groups of tissue samples including thyroid cancers (n = 32), nodular goiters (n = 20) and normal thyroid tissues (n = 25). Tentative assignments of the measured tissue SERS spectra suggest interesting cancer specific biomolecular differences. The principal component analysis (PCA) and linear discriminate analysis (LDA) together with the leave-one-out, cross-validated technique yielded diagnostic sensitivities of 92%, 75% and 87.5%; and specificities of 82.6%, 89.4% and 84.4%, respectively, for differentiation among normal, nodular and malignant thyroid tissue samples. This work demonstrates that tissue SERS spectroscopy associated with multivariate analysis diagnostic algorithms has great potential for detection of thyroid cancer at the molecular level.

  7. Optimising Aesthetic Reconstruction of Scalp Soft Tissue by an Algorithm Based on Defect Size and Location.

    Science.gov (United States)

    Ooi, Adrian Sh; Kanapathy, Muholan; Ong, Yee Siang; Tan, Kok Chai; Tan, Bien Keem

    2015-11-01

    Scalp soft tissue defects are common and result from a variety of causes. Reconstructive methods should maximise cosmetic outcomes by maintaining hair-bearing tissue and aesthetic hairlines. This article outlines an algorithm based on a diverse clinical case series to optimise scalp soft tissue coverage. A retrospective analysis of scalp soft tissue reconstruction cases performed at the Singapore General Hospital between January 2004 and December 2013 was conducted. Forty-one patients were included in this study. The majority of defects aesthetic outcome while minimising complications and repeat procedures.

  8. In Vitro Testing of Scaffolds for Mesenchymal Stem Cell-Based Meniscus Tissue Engineering—Introducing a New Biocompatibility Scoring System

    Directory of Open Access Journals (Sweden)

    Felix P. Achatz

    2016-04-01

    Full Text Available A combination of mesenchymal stem cells (MSCs and scaffolds seems to be a promising approach for meniscus repair. To facilitate the search for an appropriate scaffold material a reliable and objective in vitro testing system is essential. This paper introduces a new scoring for this purpose and analyzes a hyaluronic acid (HA gelatin composite scaffold and a polyurethane scaffold in combination with MSCs for tissue engineering of meniscus. The pore quality and interconnectivity of pores of a HA gelatin composite scaffold and a polyurethane scaffold were analyzed by surface photography and Berliner-Blau-BSA-solution vacuum filling. Further the two scaffold materials were vacuum-filled with human MSCs and analyzed by histology and immunohistochemistry after 21 days in chondrogenic media to determine cell distribution and cell survival as well as proteoglycan production, collagen type I and II content. The polyurethane scaffold showed better results than the hyaluronic acid gelatin composite scaffold, with signs of central necrosis in the HA gelatin composite scaffolds. The polyurethane scaffold showed good porosity, excellent pore interconnectivity, good cell distribution and cell survival, as well as an extensive content of proteoglycans and collagen type II. The polyurethane scaffold seems to be a promising biomaterial for a mesenchymal stem cell-based tissue engineering approach for meniscal repair. The new score could be applied as a new standard for in vitro scaffold testing.

  9. Soft tissue recurrence of giant cell tumor of the bone: Prevalence and radiographic features

    Directory of Open Access Journals (Sweden)

    Leilei Xu

    2017-11-01

    Full Text Available Aim: Recurrence of giant cell tumor of bone (GCTB in the soft tissue is rarely seen in the clinical practice. This study aims to determine the prevalence of soft tissue recurrence of GCTB, and to characterize its radiographic features. Methods: A total of 291 patients treated by intralesional curettage for histologically diagnosed GCTB were reviewed. 6 patients were identified to have the recurrence of GCTB in the soft tissue, all of whom had undergone marginal resection of the lesion. Based on the x-ray, CT and MRI imaging, the radiographic features of soft tissue recurrence were classified into 3 types. Type I was defined as soft tissue recurrence with peripheral ossification, type II was defined as soft tissue recurrence with central ossification, and type III was defined as pure soft tissue recurrence without ossification. Demographic data including period of recurrence and follow-up duration after the second surgery were recorded for these 6 patients. Musculoskeletal Tumor Society (MSTS scoring system was used to evaluate functional outcomes. Results: The overall recurrence rate was 2.1% (6/291. The mean interval between initial surgery and recurrence was 11.3 ± 4.1 months (range, 5–17. The recurrence lesions were located in the thigh of 2 patients, in the forearm of 2 patients and in the leg of the other 2 patients. According to the classification system mentioned above, 2 patients were classified with type I, 1 as type II and 3 as type III. After the marginal excision surgery, all patients were consistently followed up for a mean period of 13.4 ± 5.3 months (range, 6–19, with no recurrence observed at the final visit. All the patients were satisfied with the surgical outcome. According to the MSTS scale, the mean postoperative functional score was 28.0 ± 1.2 (range, 26–29. Conclusions: The classification of soft tissue recurrence of GCTB may be helpful for the surgeon to select the appropriate imaging procedure to

  10. Biopolymer-based hydrogels as injectable materials for tissue repair scaffolds

    International Nuclear Information System (INIS)

    Fiejdasz, Sylwia; Szczubiałka, Krzysztof; Lewandowska-Łańcucka, Joanna; Nowakowska, Maria; Osyczka, Anna M

    2013-01-01

    The progress in tissue regeneration is strongly dependent on the development of biocompatible materials with properties resembling those of a native tissue. Also, the application of noninvasive methods of delivering the scaffold into the tissue defect is of great importance. In this study we present a group of biopolymer-based materials as potential injectable scaffolds. In contrast to other studies involving collagen neutralization or additional incubation of gel in genipin solution, we propose collagen and collagen–chitosan gels crosslinked in situ with genipin. Since some parameters of the cells should be considered in the microscale, the steady-state fluorescence anisotropy was applied to study the microenvironment of the gels. To our knowledge we are the first to report on microrheological properties, such as gel time and microviscosity, for this group of hydrogels. Rapid gelation at physiological temperatures found makes these materials of special interest in applications requiring gel injectability. Physico-chemical investigation showed the influence of the crosslinking agent concentration and chitosan addition on the crosslinking degree, swelling ratio, gel microviscosity, and the degradation rate. Strong correlation was revealed between the surface wettability and the viability of cultured mesenchymal stem cells. Cytotoxicity studies indicated that the collagen–chitosan hydrogels showed the best biocompatibility. (paper)

  11. Towards modeling of cardiac micro-structure with catheter-based confocal microscopy: a novel approach for dye delivery and tissue characterization.

    Science.gov (United States)

    Lasher, Richard A; Hitchcock, Robert W; Sachse, Frank B

    2009-08-01

    This work presents a methodology for modeling of cardiac tissue micro-structure. The approach is based on catheter-based confocal imaging systems, which are emerging as tools for diagnosis in various clinical disciplines. A limitation of these systems is that a fluorescent marker must be available in sufficient concentration in the imaged region. We introduce a novel method for the local delivery of fluorescent markers to cardiac tissue based on a hydro-gel carrier brought into contact with the tissue surface. The method was tested with living rabbit cardiac tissue and applied to acquire three-dimensional image stacks with a standard inverted confocal microscope and two-dimensional images with a catheter-based confocal microscope. We processed these image stacks to obtain spatial models and quantitative data on tissue microstructure. Volumes of atrial and ventricular myocytes were 4901 +/- 1713 and 10 299 +/-3598 mum (3) (mean+/-sd), respectively. Atrial and ventricular myocyte volume fractions were 72.4 +/-4.7% and 79.7 +/- 2.9% (mean +/-sd), respectively. Atrial and ventricular myocyte density was 165 571 +/- 55 836 and 86 957 +/- 32 280 cells/mm (3) (mean+/-sd), respectively. These statistical data and spatial descriptions of tissue microstructure provide important input for modeling studies of cardiac tissue function. We propose that the described methodology can also be used to characterize diseased tissue and allows for personalized modeling of cardiac tissue.

  12. Detection of GAD65 autoantibodies of type-1 diabetes using anti-GAD65-abs reagent produced from bovine brain tissue

    Directory of Open Access Journals (Sweden)

    Djoko W. Soeatmadji

    2005-12-01

    Full Text Available Clinically, type 1 diabetes may presents as type 2 diabetes which sometimes not easily differentiated. Perhaps only autoimmune markers of β-cells destruction could differentiate those two clinical conditions. Due to extremely high cost ( $ 150/test, examination of anti-glutamic acid decarboxylase-65 auto-antibodies (anti-GAD65Abs may not be routinely performed in most, if not all, clinical laboratories in Indonesia. Hence, the production of anti-GAD65 Abs reagent in Indonesia may reduce the cost and improve the quality of diabetes care in Indonesia. We produce reagent to detect anti-GAD65-Abs using bovine brain tissue as source of GAD enzyme in 3 steps. Step 1, isolation, purification of GAD65 from bovine brain tissue and used it as a primary antigen to stimulate the generation of anti-GAD65 antibodies in Wistar rat. Step 2, the purified GAD65 antibodies were than used as a secondary antibody to induce the production of anti-anti-GAD65-antibodies in Wistar rat and rabbit. Step 3. Labeling  anti-anti GAD65-antibodies with alkaline phoshpatase and peroxidase, and detecting anti-GAD65Abs previously detected using commercial kit. The anti-anti-GAD65- antibodies reagent produced in our laboratories  successfully identify anti-GAD65-Abs of type 1 diabetic patients previously detected  with commercial reagent. (Med J Indones 2005; 14: 197-203Keywords: GAD, type-1 Diabetes

  13. Classification between normal and tumor tissues based on the pair-wise gene expression ratio

    International Nuclear Information System (INIS)

    Yap, YeeLeng; Zhang, XueWu; Ling, MT; Wang, XiangHong; Wong, YC; Danchin, Antoine

    2004-01-01

    Precise classification of cancer types is critically important for early cancer diagnosis and treatment. Numerous efforts have been made to use gene expression profiles to improve precision of tumor classification. However, reliable cancer-related signals are generally lacking. Using recent datasets on colon and prostate cancer, a data transformation procedure from single gene expression to pair-wise gene expression ratio is proposed. Making use of the internal consistency of each expression profiling dataset this transformation improves the signal to noise ratio of the dataset and uncovers new relevant cancer-related signals (features). The efficiency in using the transformed dataset to perform normal/tumor classification was investigated using feature partitioning with informative features (gene annotation) as discriminating axes (single gene expression or pair-wise gene expression ratio). Classification results were compared to the original datasets for up to 10-feature model classifiers. 82 and 262 genes that have high correlation to tissue phenotype were selected from the colon and prostate datasets respectively. Remarkably, data transformation of the highly noisy expression data successfully led to lower the coefficient of variation (CV) for the within-class samples as well as improved the correlation with tissue phenotypes. The transformed dataset exhibited lower CV when compared to that of single gene expression. In the colon cancer set, the minimum CV decreased from 45.3% to 16.5%. In prostate cancer, comparable CV was achieved with and without transformation. This improvement in CV, coupled with the improved correlation between the pair-wise gene expression ratio and tissue phenotypes, yielded higher classification efficiency, especially with the colon dataset – from 87.1% to 93.5%. Over 90% of the top ten discriminating axes in both datasets showed significant improvement after data transformation. The high classification efficiency achieved suggested

  14. Tissue-specific mRNA expression profiling in grape berry tissues

    Science.gov (United States)

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and

  15. Tissue-specific mRNA expression profiling in grape berry tissues

    Directory of Open Access Journals (Sweden)

    Cramer Grant R

    2007-06-01

    Full Text Available Abstract Background Berries of grape (Vitis vinifera contain three major tissue types (skin, pulp and seed all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin and mesocarp (pulp, not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell

  16. Distinction of gastric cancer tissue based on surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Ma, Jun; Zhou, Hanjing; Gong, Longjing; Liu, Shu; Zhou, Zhenghua; Mao, Weizheng; Zheng, Rong-er

    2012-12-01

    Gastric cancer is one of the most common malignant tumors with high recurrence rate and mortality rate in China. This study aimed to evaluate the diagnostic capability of Surface-enhanced Raman spectroscopy (SERS) based on gold colloids for distinguishing gastric tissues. Gold colloids were directly mixed with the supernatant of homogenized tissues to heighten the Raman signal of various biomolecule. A total of 56 samples were collected from normal (30) and cancer (26). Raman spectra were obtained with a 785nm excitation in the range of 600-1800 cm-1. Significant spectral differences in SERS mainly belong to nucleic acid, proteins and lipids, particularly in the range of 653, 726, 828, 963, 1004, 1032, 1088, 1130, 1243, 1369, 1474, 1596, 1723 cm-1. PCA-LDA algorithms with leave-one-patient-out cross validation yielded diagnostic sensitivities of 90% (27/30), specificities of 88.5% (23/26), and accuracy of 89.3% (50/56), for classification of normal and cancer tissues. The receiver operating characteristic (ROC) surface is 0.917, illustrating the diagnostic utility of SERS together with PCA-LDA to identify gastric cancer from normal tissue. This work demonstrated the SERS techniques can be useful for gastric cancer detection, and it is also a potential technique for accurately identifying cancerous tumor, which is of considerable clinical importance to real-time diagnosis.

  17. Nanotopography-guided tissue engineering and regenerative medicine☆

    Science.gov (United States)

    Kim, Hong Nam; Jiao, Alex; Hwang, Nathaniel S.; Kim, Min Sung; Kang, Do Hyun; Kim, Deok-Ho; Suh, Kahp-Yang

    2017-01-01

    Human tissues are intricate ensembles of multiple cell types embedded in complex and well-defined structures of the extracellular matrix (ECM). The organization of ECM is frequently hierarchical from nano to macro, with many proteins forming large scale structures with feature sizes up to several hundred microns. Inspired from these natural designs of ECM, nanotopography-guided approaches have been increasingly investigated for the last several decades. Results demonstrate that the nanotopography itself can activate tissue-specific function in vitro as well as promote tissue regeneration in vivo upon transplantation. In this review, we provide an extensive analysis of recent efforts to mimic functional nanostructures in vitro for improved tissue engineering and regeneration of injured and damaged tissues. We first characterize the role of various nanostructures in human tissues with respect to each tissue-specific function. Then, we describe various fabrication methods in terms of patterning principles and material characteristics. Finally, we summarize the applications of nanotopography to various tissues, which are classified into four types depending on their functions: protective, mechano-sensitive, electro-active, and shear stress-sensitive tissues. Some limitations and future challenges are briefly discussed at the end. PMID:22921841

  18. Growth type of vertebral centra and the hard tissue observed by microradiography of the rainbow trout

    International Nuclear Information System (INIS)

    Kubo, Y.; Asano, H.

    1987-01-01

    To clarify the growth feature and the structure of hard tissue, we studied the vertebral centrum of rainbow trout Salmo gairdneri, using three specimens (BL: 21.0, 29.0 and 40.0cm). We examined the ratio of centrum length to centrum diameter in each vertebral centrum and obtained the value of 0.8-1.0 in most centra. This indicates that the vertebral centra of rainbow trout belong to the so-called equivalent type. The hard tissue was observed by microradiography, with the longitudinal and cross sections (about 100 μm)cut through the center of notochordal pore. The microradiograph of thin section of centrurn differentiated serially and changed in pattern, but it is clear to sustain the specific characteristics. In longitudinal sections, the V-shaped part of bone was composed of structure like compact bone through the length of vertebral column. In cross sections, the notochordal pore was enclosed by the radial trabecular bones, the arrangement gradually turning toward the posterior centra like paired fans set opposite each other laterally

  19. Imaging of Homeostatic, Neoplastic, and Injured Tissues by HA-Based Probes

    Science.gov (United States)

    Veiseh, Mandana; Breadner, Daniel; Ma, Jenny; Akentieva, Natalia; Savani, Rashmin C; Harrison, Rene; Mikilus, David; Collis, Lisa; Gustafson, Stefan; Lee, Ting-Yim; Koropatnick, James; Luyt, Leonard G.; Bissell, Mina J.; Turley, Eva A.

    2013-01-01

    An increase in hyaluronan (HA) synthesis, cellular uptake, and metabolism occurs during the remodeling of tissue microenvironments following injury and during disease processes such as cancer. We hypothesized that multimodality HA-based probes selectively target and detectably accumulate at sites of high HA metabolism, thus providing a flexible imaging strategy for monitoring disease and repair processes. Kinetic analyses confirmed favorable available serum levels of the probe following intravenous (i.v.) or subcutaneous (s.c.) injection. Nuclear (technetium-HA, 99mTc-HA, and iodine-HA, 125I-HA), optical (fluorescent Texas Red-HA, TR-HA), and magnetic resonance (gadolinium-HA, Gd-HA) probes imaged liver (99mTc-HA), breast cancer cells/xenografts (TR-HA, Gd-HA), and vascular injury (125I-HA, TR-HA). Targeting of HA probes to these sites appeared to result from selective HA receptor-dependent localization. Our results suggest that HA-based probes, which do not require polysaccharide backbone modification to achieve favorable half-life and distribution, can detect elevated HA metabolism in homeostatic, injured, and diseased tissues. PMID:22066590

  20. Microfluidic 3D cell culture: potential application for tissue-based bioassays

    Science.gov (United States)

    Li, XiuJun (James); Valadez, Alejandra V.; Zuo, Peng; Nie, Zhihong

    2014-01-01

    Current fundamental investigations of human biology and the development of therapeutic drugs, commonly rely on two-dimensional (2D) monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function, physiology of living tissues, as well as highly complex and dynamic three-dimensional (3D) environments in vivo. The microfluidic technology can provide micro-scale complex structures and well-controlled parameters to mimic the in vivo environment of cells. The combination of microfluidic technology with 3D cell culture offers great potential for in vivo-like tissue-based applications, such as the emerging organ-on-a-chip system. This article will review recent advances in microfluidic technology for 3D cell culture and their biological applications. PMID:22793034

  1. Linear-fitting-based similarity coefficient map for tissue dissimilarity analysis in -w magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yu Shao-De; Wu Shi-Bin; Xie Yao-Qin; Wang Hao-Yu; Wei Xin-Hua; Chen Xin; Pan Wan-Long; Hu Jiani

    2015-01-01

    Similarity coefficient mapping (SCM) aims to improve the morphological evaluation of weighted magnetic resonance imaging However, how to interpret the generated SCM map is still pending. Moreover, is it probable to extract tissue dissimilarity messages based on the theory behind SCM? The primary purpose of this paper is to address these two questions. First, the theory of SCM was interpreted from the perspective of linear fitting. Then, a term was embedded for tissue dissimilarity information. Finally, our method was validated with sixteen human brain image series from multi-echo . Generated maps were investigated from signal-to-noise ratio (SNR) and perceived visual quality, and then interpreted from intra- and inter-tissue intensity. Experimental results show that both perceptibility of anatomical structures and tissue contrast are improved. More importantly, tissue similarity or dissimilarity can be quantified and cross-validated from pixel intensity analysis. This method benefits image enhancement, tissue classification, malformation detection and morphological evaluation. (paper)

  2. Image standards in Tissue-Based Diagnosis (Diagnostic Surgical Pathology

    Directory of Open Access Journals (Sweden)

    Vollmer Ekkehard

    2008-04-01

    Full Text Available Abstract Background Progress in automated image analysis, virtual microscopy, hospital information systems, and interdisciplinary data exchange require image standards to be applied in tissue-based diagnosis. Aims To describe the theoretical background, practical experiences and comparable solutions in other medical fields to promote image standards applicable for diagnostic pathology. Theory and experiences Images used in tissue-based diagnosis present with pathology – specific characteristics. It seems appropriate to discuss their characteristics and potential standardization in relation to the levels of hierarchy in which they appear. All levels can be divided into legal, medical, and technological properties. Standards applied to the first level include regulations or aims to be fulfilled. In legal properties, they have to regulate features of privacy, image documentation, transmission, and presentation; in medical properties, features of disease – image combination, human – diagnostics, automated information extraction, archive retrieval and access; and in technological properties features of image acquisition, display, formats, transfer speed, safety, and system dynamics. The next lower second level has to implement the prescriptions of the upper one, i.e. describe how they are implemented. Legal aspects should demand secure encryption for privacy of all patient related data, image archives that include all images used for diagnostics for a period of 10 years at minimum, accurate annotations of dates and viewing, and precise hardware and software information. Medical aspects should demand standardized patients' files such as DICOM 3 or HL 7 including history and previous examinations, information of image display hardware and software, of image resolution and fields of view, of relation between sizes of biological objects and image sizes, and of access to archives and retrieval. Technological aspects should deal with image

  3. Adipose tissue inflammation: feeding the development of type 2 diabetes mellitus.

    Science.gov (United States)

    Richardson, Victoria R; Smith, Kerrie A; Carter, Angela M

    2013-12-01

    The global increase in obesity-induced type 2 diabetes (T2DM) represents a burden for healthcare systems worldwide. Of particular concern is the increased morbidity associated with T2DM, in particular cardiovascular disease (CVD), leading to premature death. Obesity initially leads to the development of insulin resistance in adipose and other tissues. Insulin resistance is initially compensated by increased insulin secretion but ultimately insufficient insulin is produced and this leads to the development of T2DM. Understanding the causal mechanisms underpinning the development of obesity-induced insulin resistance may be beneficial in improving quality of life and life expectancy, with the potential for a major global impact on healthcare systems. There is abundant evidence from animal, human studies and in vitro studies to support functional roles for a number of inflammatory factors in obesity-induced insulin resistance. In this review we provide an overview of the evidence supporting a fundamental role for the fluid phase (in particular the complement system) and the cellular components of the innate immune system in the pathogenesis of obesity-induced insulin resistance and ultimately development of T2DM. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel.

    Science.gov (United States)

    Gao, Guifang; Hubbell, Karen; Schilling, Arndt F; Dai, Guohao; Cui, Xiaofeng

    2017-01-01

    Bioprinting based on thermal inkjet printing is one of the most attractive enabling technologies for tissue engineering and regeneration. During the printing process, cells, scaffolds , and growth factors are rapidly deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations. Ideally, the bioprinted tissues are able to mimic the native anatomic structures in order to restore the biological functions. In this study, a bioprinting platform for 3D cartilage tissue engineering was developed using a commercially available thermal inkjet printer with simultaneous photopolymerization . The engineered cartilage demonstrated native zonal organization, ideal extracellular matrix (ECM ) composition, and proper mechanical properties. Compared to the conventional tissue fabrication approach, which requires extended UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression profile. Therefore, this platform is ideal for anatomic tissue engineering with accurate cell distribution and arrangement.

  5. Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery.

    Science.gov (United States)

    Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Zam, Azhar; Schmidt, Michael; Douplik, Alexandre; Nkenke, Emeka

    2010-04-01

    Laser surgery does not provide haptic feedback for operating layer-by-layer and thereby preserving vulnerable anatomical structures like nerve tissue or blood vessels. Diffuse reflectance spectra can facilitate remote optical tissue differentiation. It is the aim of the study to use this technique on soft tissue samples, to set a technological basis for a remote optical feedback system for tissue-specific laser surgery. Diffuse reflectance spectra (wavelength range: 350-650 nm) of ex vivo types of soft tissue (a total of 10,800 spectra) of the midfacial region of domestic pigs were remotely measured under reduced environmental light conditions and analyzed in order to differentiate between skin, mucosa, muscle, subcutaneous fat, and nerve tissue. We performed a principal components (PC) analysis (PCA) to reduce the number of variables. Linear discriminant analysis (LDA) was utilized for classification. For the tissue differentiation, we calculated the specificity and sensitivity by receiver operating characteristic (ROC) analysis and the area under curve (AUC). Six PCs were found to be adequate for tissue differentiation with diffuse reflectance spectra using LDA. All of the types of soft tissue could be differentiated with high specificity and sensitivity. Only the tissue pairs nervous tissue/fatty tissue and nervous tissue/mucosa showed a decline of differentiation due to bio-structural similarity. However, both of these tissue pairs could still be differentiated with a specificity and sensitivity of more than 90%. Analyzing diffuse reflectance spectroscopy with PCA and LDA allows for remote differentiation of biological tissue. Considering the limitations of the ex vivo conditions, the obtained results are promising and set a basis for the further development of a feedback system for tissue-specific laser surgery. (c) 2010 Wiley-Liss, Inc.

  6. 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue and prospective changes in body weight and insulin resistance

    DEFF Research Database (Denmark)

    Koska, Juraj; de Courten, Barbora; Wake, Deborah J

    2006-01-01

    Increased mRNA and activity levels of 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) in human adipose tissue (AT) are associated with obesity and insulin resistance. The aim of our study was to investigate whether 11betaHSD1 expression or activity in abdominal subcutaneous AT of non-diab......-diabetic subjects are associated with subsequent changes in body weight and insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)]....

  7. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta

    DEFF Research Database (Denmark)

    Yan, Zhen Cheng; Liu, Dao Yan; Zhang, Li Li

    2007-01-01

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow...... or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p...

  8. A boy with developmental delay, malformations, and evidence of a connective tissue disorder: possibly a new type of cutis laxa.

    Science.gov (United States)

    Armstrong, Linlea; Jimenez, Carmencita; Hunter, Alasdair G W

    2003-05-15

    We report a 7.5-year-old boy with loose translucent skin, aortic dilatation, hyperextensible veins, recurrent respiratory problems, pectus excavatum, arthralgias, lax joints, mild epiphyseal dysplasia, and umbilical and inguinal hernias. He also has developmental delay, progressive bilateral sensorineural hearing loss, an unusual facial appearance, terminal digit hypoplasia with unusual radiographic changes in some of the phalanges, glandular hypospadias, shawl scrotum, and undescended testes. Biochemical investigations, including electrophoresis of Types 1 and 3 procollagens and collagens, and quantification of serum copper and ceruloplasmin, are normal. Relative to age-matched control patients the electron micrographs of the boy's dermis show elastin fibers to be decreased in number, and abnormal in appearance, with a low matrix to microfibril ratio. The organ distribution of abnormalities and the nature of the findings suggest a connective tissue disorder. We contrast and compare this boy's phenotype to those of the classic connective tissue disorders. We conclude that he has cutis laxa with features that distinguish him from previously described types of cutis laxa. Copyright 2003 Wiley-Liss, Inc.

  9. A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity.

    Science.gov (United States)

    Cerchiari, Alec E; Garbe, James C; Jee, Noel Y; Todhunter, Michael E; Broaders, Kyle E; Peehl, Donna M; Desai, Tejal A; LaBarge, Mark A; Thomson, Matthew; Gartner, Zev J

    2015-02-17

    Developing tissues contain motile populations of cells that can self-organize into spatially ordered tissues based on differences in their interfacial surface energies. However, it is unclear how self-organization by this mechanism remains robust when interfacial energies become heterogeneous in either time or space. The ducts and acini of the human mammary gland are prototypical heterogeneous and dynamic tissues comprising two concentrically arranged cell types. To investigate the consequences of cellular heterogeneity and plasticity on cell positioning in the mammary gland, we reconstituted its self-organization from aggregates of primary cells in vitro. We find that self-organization is dominated by the interfacial energy of the tissue-ECM boundary, rather than by differential homo- and heterotypic energies of cell-cell interaction. Surprisingly, interactions with the tissue-ECM boundary are binary, in that only one cell type interacts appreciably with the boundary. Using mathematical modeling and cell-type-specific knockdown of key regulators of cell-cell cohesion, we show that this strategy of self-organization is robust to severe perturbations affecting cell-cell contact formation. We also find that this mechanism of self-organization is conserved in the human prostate. Therefore, a binary interfacial interaction with the tissue boundary provides a flexible and generalizable strategy for forming and maintaining the structure of two-component tissues that exhibit abundant heterogeneity and plasticity. Our model also predicts that mutations affecting binary cell-ECM interactions are catastrophic and could contribute to loss of tissue architecture in diseases such as breast cancer.

  10. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing.

    Science.gov (United States)

    Shirazi, Seyed Farid Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Osman, Noor Azuan Abu

    2015-06-01

    Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.

  11. Use of synchrotron-based diffraction-enhanced imaging for visualization of soft tissues in invertebrates

    International Nuclear Information System (INIS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Zhong, Zhong; Akatsuka, Takao; Yuasa, Tetsuya; Takeda, Tohoru; Gigante, Giovanni E.

    2010-01-01

    Images of terrestrial and marine invertebrates (snails and bivalves) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging. Synchrotron X-rays of 20, 30 and 40 keV were used, which penetrate deep enough into animal soft tissues. The phase of X-ray photons shifts slightly as they traverse an object, such as animal soft tissue, and interact with its atoms. Biological features, such as shell morphology and animal physiology, have been visualized. The contrast of the images obtained at 40 keV is the best. This optimum energy provided a clear view of the internal structural organization of the soft tissue with better contrast. The contrast is higher at edges of internal soft-tissue structures. The image improvements achieved with the diffraction-enhanced imaging technique are due to extinction, i.e., elimination of ultra-small-angle scattering. They enabled us to identify a few embedded internal shell features, such as the origin of the apex, which is the firmly attached region of the soft tissue connecting the umbilicus to the external morphology. Diffraction-enhanced imaging can provide high-quality images of soft tissues valuable for biology.

  12. Use of synchrotron-based diffraction-enhanced imaging for visualization of soft tissues in invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Donepudi V., E-mail: donepudi_venkateswararao@rediffmail.co [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Swapna, Medasani, E-mail: medasanisw@gmail.co [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Cesareo, Roberto; Brunetti, Antonio [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Zhong, Zhong [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973 (United States); Akatsuka, Takao; Yuasa, Tetsuya [Department of Bio-System Engineering, Faculty of Engineering, Yamagata University, Yonezawa-shi, Yamagata-992-8510 (Japan); Takeda, Tohoru [Allied Health Science, Kitasato University 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Gigante, Giovanni E. [Dipartimento di Fisica, Universita di Roma, La Sapienza, 00185 Roma (Italy)

    2010-09-15

    Images of terrestrial and marine invertebrates (snails and bivalves) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging. Synchrotron X-rays of 20, 30 and 40 keV were used, which penetrate deep enough into animal soft tissues. The phase of X-ray photons shifts slightly as they traverse an object, such as animal soft tissue, and interact with its atoms. Biological features, such as shell morphology and animal physiology, have been visualized. The contrast of the images obtained at 40 keV is the best. This optimum energy provided a clear view of the internal structural organization of the soft tissue with better contrast. The contrast is higher at edges of internal soft-tissue structures. The image improvements achieved with the diffraction-enhanced imaging technique are due to extinction, i.e., elimination of ultra-small-angle scattering. They enabled us to identify a few embedded internal shell features, such as the origin of the apex, which is the firmly attached region of the soft tissue connecting the umbilicus to the external morphology. Diffraction-enhanced imaging can provide high-quality images of soft tissues valuable for biology.

  13. A novel injectable tissue adhesive based on oxidized dextran and chitosan.

    Science.gov (United States)

    Balakrishnan, Biji; Soman, Dawlee; Payanam, Umashanker; Laurent, Alexandre; Labarre, Denis; Jayakrishnan, Athipettah

    2017-04-15

    A surgical adhesive that can be used in different surgical situations with or without sutures is a surgeons' dream and yet none has been able to fulfill many such demanding requirements. It was therefore a major challenge to develop an adhesive biomaterial that stops bleeding and bond tissues well, which at the same time is non-toxic, biocompatible and yet biodegradable, economically viable and appealing to the surgeon in terms of the simplicity of application in complex surgical situations. With this aim, we developed an in situ setting adhesive based on biopolymers such as chitosan and dextran. Dextran was oxidized using periodate to generate aldehyde functions on the biopolymer and then reacted with chitosan hydrochloride. Gelation occurred instantaneously upon mixing these components and the resulting gel showed good tissue adhesive properties with negligible cytotoxicity and minimal swelling in phosphate buffered saline (PBS). Rheology analysis confirmed the gelation process by demonstrating storage modulus having value higher than loss modulus. Adhesive strength was in the range 200-400gf/cm 2 which is about 4-5 times more than that of fibrin glue at comparable setting times. The adhesive showed burst strength in the range of 400-410mm of Hg which should make the same suitable as a sealant for controlling bleeding in many surgical situations even at high blood pressure. Efficacy of the adhesive as a hemostat was demonstrated in a rabbit liver injury model. Histological features after two weeks were comparable to that of commercially available BioGlue®. The adhesive also demonstrated its efficacy as a drug delivery vehicle. The present adhesive could function without the many toxicity and biocompatibility issues associated with such products. Though there are many tissue adhesives available in market, none are free of shortcomings. The newly developed surgical adhesive is a 2-component adhesive system based on time-tested, naturally occurring polysaccharides

  14. Role of adipose tissue derived stem cells differentiated into insulin producing cells in the treatment of type I diabetes mellitus.

    Science.gov (United States)

    Amer, Mona G; Embaby, Azza S; Karam, Rehab A; Amer, Marwa G

    2018-05-15

    Generation of new β cells is an important approach in the treatment of type 1 diabetes mellitus (type 1 DM). Adipose tissue-derived stem cells (ADSCs) might be one of the best sources for cell replacement therapy for diabetes. Therefore, this work aimed to test the possible role of transplanted insulin-producing cells (IPCs) differentiated from ADSCs in treatment of streptozotocin (STZ) induced type I DM in rats. Type 1 DM was induced by single intra peritoneal injection with STZ (50 mg/kg BW). Half of the diabetic rats were left without treatment and the other half were injected with differentiated IPCs directly into the pancreas. ADSCs were harvested, cultured and identified by testing their phenotypes through flow cytometry. They were further subjected to differentiation into IPCs using differentiation medium. mRNA expression of pancreatic transcription factors (pdx1), insulin and glucose transporter-2 genes by real time PCR was done to detect the cellular differentiation and confirmed by stimulated insulin secretion. The pancreatic tissues from all groups were examined 2 months after IPC transplantation and were subjected to histological, Immunohistochemical and morphometric study. The differentiated IPCs showed significant expression of pancreatic β cell markers and insulin secretion in glucose dependent manner. Treatment with IPCs induced apparent regeneration, diffused proliferated islet cells and significant increase in C-peptide immune reaction. We concluded that transplantation of differentiated IPCs improved function and morphology of Islet cells in diabetic rats. Consequently, this therapy option may be a promising therapeutic approach to patient with type 1 DM if proven to be effective and safe. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment

    Directory of Open Access Journals (Sweden)

    Callard Gloria V

    2008-11-01

    Full Text Available Abstract Background Research using the zebrafish model has experienced a rapid growth in recent years. Although real-time reverse transcription PCR (QPCR, normalized to an internal reference ("housekeeping" gene, is a frequently used method for quantifying gene expression changes in zebrafish, many commonly used housekeeping genes are known to vary with experimental conditions. To identify housekeeping genes that are stably expressed under different experimental conditions, and thus suitable as normalizers for QPCR in zebrafish, the present study evaluated the expression of eight commonly used housekeeping genes as a function of stage and hormone/toxicant exposure during development, and by tissue type and sex in adult fish. Results QPCR analysis was used to quantify mRNA levels of bactin1, tubulin alpha 1(tuba1, glyceraldehyde-3-phosphate dehydrogenase (gapdh, glucose-6-phosphate dehydrogenase (g6pd, TATA-box binding protein (tbp, beta-2-microglobulin (b2m, elongation factor 1 alpha (elfa, and 18s ribosomal RNA (18s during development (2 – 120 hr postfertilization, hpf; in different tissue types (brain, eye, liver, heart, muscle, gonads of adult males and females; and after treatment of embryos/larvae (24 – 96 hpf with commonly used vehicles for administration and agents that represent known environmental endocrine disruptors. All genes were found to have some degree of variability under the conditions tested here. Rank ordering of expression stability using geNorm analysis identified 18s, b2m, and elfa as most stable during development and across tissue types, while gapdh, tuba1, and tpb were the most variable. Following chemical treatment, tuba1, bactin1, and elfa were the most stably expressed whereas tbp, 18s, and b2m were the least stable. Data also revealed sex differences that are gene- and tissue-specific, and treatment effects that are gene-, vehicle- and ligand-specific. When the accuracy of QPCR analysis was tested using

  16. Mechanically driven interface propagation in biological tissues

    International Nuclear Information System (INIS)

    Ranft, Jonas; Joanny, Jean-François; Aliee, Maryam; Jülicher, Frank; Prost, Jacques

    2014-01-01

    Many biological tissues consist of more than one cell type. We study the dynamics of an interface between two different cell populations as it occurs during the growth of a tumor in a healthy host tissue. Recent work suggests that the rates of cell division and cell death are under mechanical control, characterized by a homeostatic pressure. The difference in the homeostatic pressures of two cell types drives the propagation of the interface, corresponding to the invasion of one cell type into the other. We derive a front propagation equation that takes into account the coupling between cell number balance and tissue mechanics. We show that in addition to pulled fronts, pushed-front solutions occur as a result of convection driven by mechanics. (paper)

  17. Biocompatibility of two model elastin-like recombinamer-based hydrogels formed through physical or chemical cross-linking for various applications in tissue engineering and regenerative medicine.

    Science.gov (United States)

    Ibáñez-Fonseca, Arturo; Ramos, Teresa L; González de Torre, Israel; Sánchez-Abarca, Luis Ignacio; Muntión, Sandra; Arias, Francisco Javier; Del Cañizo, María Consuelo; Alonso, Matilde; Sánchez-Guijo, Fermín; Rodríguez-Cabello, José Carlos

    2018-03-01

    Biocompatibility studies, especially innate immunity induction, in vitro and in vivo cytotoxicity, and fibrosis, are often lacking for many novel biomaterials including recombinant protein-based ones, such as elastin-like recombinamers (ELRs), and has not been extensively explored in the scientific literature, in contrast to traditional biomaterials. Herein, we present the results from a set of experiments designed to elucidate the preliminary biocompatibility of 2 types of ELRs that are able to form extracellular matrix-like hydrogels through either physical or chemical cross-linking both of which are intended for different applications in tissue engineering and regenerative medicine. Initially, we present in vitro cytocompatibility results obtained upon culturing human umbilical vein endothelial cells on ELR substrates, showing optimal proliferation up to 9 days. Regarding in vivo cytocompatibility, luciferase-expressing hMSCs were viable for at least 4 weeks in terms of bioluminescence emission when embedded in ELR hydrogels and injected subcutaneously into immunosuppressed mice. Furthermore, both types of ELR-based hydrogels were injected subcutaneously in immunocompetent mice and serum TNFα, IL-1β, IL-4, IL-6, and IL-10 concentrations were measured by enzyme-linked immunosorbent assay, confirming the lack of inflammatory response, as also observed upon macroscopic and histological evaluation. All these findings suggest that both types of ELRs possess broad biocompatibility, thus making them very promising for tissue engineering and regenerative medicine-related applications. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Investigation of the “true” extraction recovery of analytes from multiple types of tissues and its impact on tissue bioanalysis using two model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Long, E-mail: long.yuan@bms.com [Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Ma, Li [Biotransformation, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Dillon, Lisa [Discovery Toxicology, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Fancher, R. Marcus; Sun, Huadong [Metabolism and Pharmacokinetics, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Zhu, Mingshe [Biotransformation, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Lehman-McKeeman, Lois [Discovery Toxicology, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Aubry, Anne-Françoise [Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Ji, Qin C., E-mail: qin.ji@bms.com [Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States)

    2016-11-16

    LC-MS/MS has been widely applied to the quantitative analysis of tissue samples. However, one key remaining issue is that the extraction recovery of analyte from spiked tissue calibration standard and quality control samples (QCs) may not accurately represent the “true” recovery of analyte from incurred tissue samples. This may affect the accuracy of LC-MS/MS tissue bioanalysis. Here, we investigated whether the recovery determined using tissue QCs by LC-MS/MS can accurately represent the “true” recovery from incurred tissue samples using two model compounds: BMS-986104, a S1P{sub 1} receptor modulator drug candidate, and its phosphate metabolite, BMS-986104-P. We first developed a novel acid and surfactant assisted protein precipitation method for the extraction of BMS-986104 and BMS-986104-P from rat tissues, and determined their recoveries using tissue QCs by LC-MS/MS. We then used radioactive incurred samples from rats dosed with {sup 3}H-labeled BMS-986104 to determine the absolute total radioactivity recovery in six different tissues. The recoveries determined using tissue QCs and incurred samples matched with each other very well. The results demonstrated that, in this assay, tissue QCs accurately represented the incurred tissue samples to determine the “true” recovery, and LC-MS/MS assay was accurate for tissue bioanalysis. Another aspect we investigated is how the tissue QCs should be prepared to better represent the incurred tissue samples. We compared two different QC preparation methods (analyte spiked in tissue homogenates or in intact tissues) and demonstrated that the two methods had no significant difference when a good sample preparation was in place. The developed assay showed excellent accuracy and precision, and was successfully applied to the quantitative determination of BMS-986104 and BMS-986104-P in tissues in a rat toxicology study. - Highlights: • Investigated the “true” recovery in six different tissues using incurred

  19. Investigation of the “true” extraction recovery of analytes from multiple types of tissues and its impact on tissue bioanalysis using two model compounds

    International Nuclear Information System (INIS)

    Yuan, Long; Ma, Li; Dillon, Lisa; Fancher, R. Marcus; Sun, Huadong; Zhu, Mingshe; Lehman-McKeeman, Lois; Aubry, Anne-Françoise; Ji, Qin C.

    2016-01-01

    LC-MS/MS has been widely applied to the quantitative analysis of tissue samples. However, one key remaining issue is that the extraction recovery of analyte from spiked tissue calibration standard and quality control samples (QCs) may not accurately represent the “true” recovery of analyte from incurred tissue samples. This may affect the accuracy of LC-MS/MS tissue bioanalysis. Here, we investigated whether the recovery determined using tissue QCs by LC-MS/MS can accurately represent the “true” recovery from incurred tissue samples using two model compounds: BMS-986104, a S1P 1 receptor modulator drug candidate, and its phosphate metabolite, BMS-986104-P. We first developed a novel acid and surfactant assisted protein precipitation method for the extraction of BMS-986104 and BMS-986104-P from rat tissues, and determined their recoveries using tissue QCs by LC-MS/MS. We then used radioactive incurred samples from rats dosed with 3 H-labeled BMS-986104 to determine the absolute total radioactivity recovery in six different tissues. The recoveries determined using tissue QCs and incurred samples matched with each other very well. The results demonstrated that, in this assay, tissue QCs accurately represented the incurred tissue samples to determine the “true” recovery, and LC-MS/MS assay was accurate for tissue bioanalysis. Another aspect we investigated is how the tissue QCs should be prepared to better represent the incurred tissue samples. We compared two different QC preparation methods (analyte spiked in tissue homogenates or in intact tissues) and demonstrated that the two methods had no significant difference when a good sample preparation was in place. The developed assay showed excellent accuracy and precision, and was successfully applied to the quantitative determination of BMS-986104 and BMS-986104-P in tissues in a rat toxicology study. - Highlights: • Investigated the “true” recovery in six different tissues using incurred tissue

  20. Evaluation of Fibrin-Based Interpenetrating Polymer Networks as Potential Biomaterials for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Olfat Gsib

    2017-12-01

    Full Text Available Interpenetrating polymer networks (IPNs have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs combine the biologic properties of a fibrous fibrin network polymerized at the nanoscale and the mechanical stability of polyethylene oxide (PEO. First, we assessed their cytotoxicity in vitro on L929 fibroblasts. We further evaluated their biocompatibility ex vivo with a chick embryo organotypic culture model. Subcutaneous implantations of the matrices were subsequently conducted on nude mice to investigate their biocompatibility in vivo. Our preliminary data highlighted that our biomaterials were non-cytotoxic (viability above 90%. The organotypic culture showed that the IPN matrices induced higher cell adhesion (across all the explanted organ tissues and migration (skin, intestine than the control groups, suggesting the advantages of using a biomimetic, yet mechanically-reinforced IPN-based matrix. We observed no major inflammatory response up to 12 weeks post implantation. All together, these data suggest that these fibrin-based IPNs are promising biomaterials for tissue engineering.

  1. Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics

    Science.gov (United States)

    Huang, Pin-Chieh; Pande, Paritosh; Ahmad, Adeel; Marjanovic, Marina; Spillman, Darold R.; Odintsov, Boris; Boppart, Stephen A.

    2016-01-01

    Magnetic nanoparticles (MNPs) have been used in many diagnostic and therapeutic biomedical applications over the past few decades to enhance imaging contrast, steer drugs to targets, and treat tumors via hyperthermia. Optical coherence tomography (OCT) is an optical biomedical imaging modality that relies on the detection of backscattered light to generate high-resolution cross-sectional images of biological tissue. MNPs have been utilized as imaging contrast and perturbative mechanical agents in OCT in techniques called magnetomotive OCT (MM-OCT) and magnetomotive elastography (MM-OCE), respectively. MNPs have also been independently used for magnetic hyperthermia treatments, enabling therapeutic functions such as killing tumor cells. It is well known that the localized tissue heating during hyperthermia treatments result in a change in the biomechanical properties of the tissue. Therefore, we propose a novel dosimetric technique for hyperthermia treatment based on the viscoelasticity change detected by MM-OCE, further enabling the theranostic function of MNPs. In this paper, we first review the basic principles and applications of MM-OCT, MM-OCE, and magnetic hyperthermia, and present new preliminary results supporting the concept of MM-OCE-based hyperthermia dosimetry. PMID:28163565

  2. The role of the lysyl binding site of tissue-type plasminogen activator in the interaction with a forming fibrin clot

    NARCIS (Netherlands)

    Bakker, A.H.F.; Weening-Verhoeff, E.J.D.; Verheijen, J.H.

    1995-01-01

    To describe the role of the lysyl binding site in the interaction of tissue-type plasminogen activator (t-PA, FGK1K2P) with a forming fibrin clot, we performed binding experiments with domain deletion mutants GK1K2P, K2P, and the corresponding point mutants lacking the lysyl binding site in the

  3. Induction and Analysis of Bronchus-Associated Lymphoid Tissue.

    Science.gov (United States)

    Fleige, Henrike; Förster, Reinhold

    2017-01-01

    Bronchus-associated lymphoid tissue (BALT) forms spontaneously in the lung after pulmonary infection and has been identified as a highly organized lymphoid structure supporting the efficient priming of T cells in the lung. To explore the mechanisms and instructive signals controlling BALT neogenesis we used both, a single dose of vaccinia virus MVA and repeated inhalations of heat-inactivated Pseudomonas aeruginosa (P. aeruginosa). Intranasal administration of both pathogens induces highly organized BALT but distinct pathways and molecules are used to promote the development of BALT. Here, we describe the induction and phenotype of the distinct types of BALT as well as the immunofluorescence microscopy-based analysis of the induced lymphoid tissue in the lung.

  4. Bioactive glass-based scaffolds for bone tissue engineering

    NARCIS (Netherlands)

    Will, J.; Gerhardt, L.C.; Boccaccini, A.R.

    2012-01-01

    Originally developed to fill and restore bone defects, bioactive glasses are currently also being intensively investigated for bone tissue engineering applications. In this chapter, we review and discuss current knowledge on porous bone tissue engineering scaffolds made from bioactive silicate

  5. Quantitative Segmentation of Fluorescence Microscopy Images of Heterogeneous Tissue: Application to the Detection of Residual Disease in Tumor Margins.

    Directory of Open Access Journals (Sweden)

    Jenna L Mueller

    Full Text Available To develop a robust tool for quantitative in situ pathology that allows visualization of heterogeneous tissue morphology and segmentation and quantification of image features.TISSUE EXCISED FROM A GENETICALLY ENGINEERED MOUSE MODEL OF SARCOMA WAS IMAGED USING A SUBCELLULAR RESOLUTION MICROENDOSCOPE AFTER TOPICAL APPLICATION OF A FLUORESCENT ANATOMICAL CONTRAST AGENT: acriflavine. An algorithm based on sparse component analysis (SCA and the circle transform (CT was developed for image segmentation and quantification of distinct tissue types. The accuracy of our approach was quantified through simulations of tumor and muscle images. Specifically, tumor, muscle, and tumor+muscle tissue images were simulated because these tissue types were most commonly observed in sarcoma margins. Simulations were based on tissue characteristics observed in pathology slides. The potential clinical utility of our approach was evaluated by imaging excised margins and the tumor bed in a cohort of mice after surgical resection of sarcoma.Simulation experiments revealed that SCA+CT achieved the lowest errors for larger nuclear sizes and for higher contrast ratios (nuclei intensity/background intensity. For imaging of tumor margins, SCA+CT effectively isolated nuclei from tumor, muscle, adipose, and tumor+muscle tissue types. Differences in density were correctly identified with SCA+CT in a cohort of ex vivo and in vivo images, thus illustrating the diagnostic potential of our approach.The combination of a subcellular-resolution microendoscope, acriflavine staining, and SCA+CT can be used to accurately isolate nuclei and quantify their density in anatomical images of heterogeneous tissue.

  6. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    Science.gov (United States)

    Rogozhnikov, Dmitry; O'Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  7. An image-based skeletal tissue model for the ICRP reference newborn

    Energy Technology Data Exchange (ETDEWEB)

    Pafundi, Deanna; Lee, Choonsik; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Watchman, Christopher; Bourke, Vincent [Department of Radiation Oncology, University of Arizona, Tucson, AZ (United States); Aris, John [Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (United States); Shagina, Natalia [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation); Harrison, John; Fell, Tim [Radiation Protection Division, Health Protection Agency, Chilton (United Kingdom)], E-mail: wbolch@ufl.edu

    2009-07-21

    Hybrid phantoms represent a third generation of computational models of human anatomy needed for dose assessment in both external and internal radiation exposures. Recently, we presented the first whole-body hybrid phantom of the ICRP reference newborn with a skeleton constructed from both non-uniform rational B-spline and polygon-mesh surfaces (Lee et al 2007 Phys. Med. Biol. 52 3309-33). The skeleton in that model included regions of cartilage and fibrous connective tissue, with the remainder given as a homogenous mixture of cortical and trabecular bone, active marrow and miscellaneous skeletal tissues. In the present study, we present a comprehensive skeletal tissue model of the ICRP reference newborn to permit a heterogeneous representation of the skeleton in that hybrid phantom set-both male and female-that explicitly includes a delineation of cortical bone so that marrow shielding effects are correctly modeled for low-energy photons incident upon the newborn skeleton. Data sources for the tissue model were threefold. First, skeletal site-dependent volumes of homogeneous bone were obtained from whole-cadaver CT image analyses. Second, selected newborn bone specimens were acquired at autopsy and subjected to micro-CT image analysis to derive model parameters of the marrow cavity and bone trabecular 3D microarchitecture. Third, data given in ICRP Publications 70 and 89 were selected to match reference values on total skeletal tissue mass. Active marrow distributions were found to be in reasonable agreement with those given previously by the ICRP. However, significant differences were seen in total skeletal and site-specific masses of trabecular and cortical bone between the current and ICRP newborn skeletal tissue models. The latter utilizes an age-independent ratio of 80%/20% cortical and trabecular bone for the reference newborn. In the current study, a ratio closer to 40%/60% is used based upon newborn CT and micro-CT skeletal image analyses. These changes in

  8. Microstructure based hygromechanical modelling of deformation of fruit tissue

    Science.gov (United States)

    Abera, M. K.; Wang, Z.; Verboven, P.; Nicolai, B.

    2017-10-01

    Quality parameters such as firmness and susceptibility to mechanical damage are affected by the mechanical properties of fruit tissue. Fruit tissue is composed of turgid cells that keep cell walls under tension, and intercellular gas spaces where cell walls of neighboring cells have separated. How the structure and properties of these complex microstructures are affecting tissue mechanics is difficult to unravel experimentally. In this contribution, a modelling methodology is presented to calculate the deformation of apple fruit tissue affected by differences in structure and properties of cells and cell walls. The model can be used to perform compression experiments in silico using a hygromechanical model that computes the stress development and water loss during tissue deformation, much like in an actual compression test. The advantage of the model is that properties and structure can be changed to test the influence on the mechanical deformation process. The effect of microstructure, turgor pressure, cell membrane permeability, wall thickness and damping) on the compressibility of the tissue was simulated. Increasing the turgor pressure and thickness of the cell walls results in increased compression resistance of apple tissue increases, as do decreasing cell size and porosity. Geometric variability of the microstructure of tissues plays a major role, affecting results more than other model parameters. Different fruit cultivars were compared, and it was demonstrated, that microstructure variations within a cultivar are so large that interpretation of cultivar-specific effects is difficult.

  9. Pediatric Benign Soft Tissue Oral and Maxillofacial Pathology.

    Science.gov (United States)

    Glickman, Alexandra; Karlis, Vasiliki

    2016-02-01

    Despite the many types of oral pathologic lesions found in infants and children, the most commonly encountered are benign soft tissue lesions. The clinical features, diagnostic criteria, and treatment algorithms of pathologies in the age group from birth to 18 years of age are summarized based on their prevalence in each given age distribution. Treatment modalities include both medical and surgical management. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Association between increased epicardial adipose tissue volume and coronary plaque composition.

    Science.gov (United States)

    Yamashita, Kennosuke; Yamamoto, Myong Hwa; Ebara, Seitarou; Okabe, Toshitaka; Saito, Shigeo; Hoshimoto, Koichi; Yakushiji, Tadayuki; Isomura, Naoei; Araki, Hiroshi; Obara, Chiaki; Ochiai, Masahiko

    2014-09-01

    To assess the relationship between epicardial adipose tissue volume (EATV) and plaque vulnerability in significant coronary stenosis using a 40-MHz intravascular ultrasound (IVUS) imaging system (iMap-IVUS), we analyzed 130 consecutive patients with coronary stenosis who underwent dual-source computed tomography (CT) and cardiac catheterization. Culprit lesions were imaged by iMap-IVUS before stenting. The iMAP-IVUS system classified coronary plaque components as fibrous, lipid, necrotic, or calcified tissue, based on the radiofrequency spectrum. Epicardial adipose tissue was measured as the tissue ranging from -190 to -30 Hounsfield units. EATV, calculated as the sum of the fat areas on short-axis images, was 85.0 ± 34.0 cm(3). There was a positive correlation between EATV and the percentage of necrotic plaque tissue (R (2) = 0.34, P EATV and the percentage of fibrous tissue (R (2) = 0.24, P EATV (β = 0.14, P = 0.02) were independently associated with the percentage of necrotic plaque tissue. An increase in EATV was associated with the development of coronary atherosclerosis and, potentially, with the most dangerous type of plaque.

  11. Periodontal tissue engineering strategies based on nonoral stem cells.

    Science.gov (United States)

    Requicha, João Filipe; Viegas, Carlos Alberto; Muñoz, Fernando; Reis, Rui Luís; Gomes, Manuela Estima

    2014-01-01

    Periodontal disease is an inflammatory disease which constitutes an important health problem in humans due to its enormous prevalence and life threatening implications on systemic health. Routine standard periodontal treatments include gingival flaps, root planning, application of growth/differentiation factors or filler materials and guided tissue regeneration. However, these treatments have come short on achieving regeneration ad integrum of the periodontium, mainly due to the presence of tissues from different embryonic origins and their complex interactions along the regenerative process. Tissue engineering (TE) aims to regenerate damaged tissue by providing the repair site with a suitable scaffold seeded with sufficient undifferentiated cells and, thus, constitutes a valuable alternative to current therapies for the treatment of periodontal defects. Stem cells from oral and dental origin are known to have potential to regenerate these tissues. Nevertheless, harvesting cells from these sites implies a significant local tissue morbidity and low cell yield, as compared to other anatomical sources of adult multipotent stem cells. This manuscript reviews studies describing the use of non-oral stem cells in tissue engineering strategies, highlighting the importance and potential of these alternative stem cells sources in the development of advanced therapies for periodontal regeneration. Copyright © 2013 Wiley Periodicals, Inc.

  12. The Characterization Tool: A knowledge-based stem cell, differentiated cell, and tissue database with a web-based analysis front-end.

    NARCIS (Netherlands)

    I. Wohlers (Inken); H. Stachelscheid; J. Borstlap; K. Zeilinger; J.C. Gerlach

    2009-01-01

    htmlabstractIn the rapidly growing field of stem cell research, there is a need for universal databases and web-based applications that provide a common knowledge base on the characteristics of stem cells, differentiated cells, and tissues by collecting, processing, and making available diverse

  13. Cross-linking of collagen-based materials

    NARCIS (Netherlands)

    Zeeman, R.

    1998-01-01

    An example of a collagen-based tissue is the aortic heart valve. A variety of pathological processes can lead to heart valve malfunction and this is usually associated with degenerative changes of the tissue. The most commonly used types of prosthetic valves are mechanical and tissue valves. One

  14. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2016-06-01

    Full Text Available Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous. The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells, early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium, using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration, timing for cell therapy (immediate vs. a few days after injury, single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

  15. Non-invasive characterization of polyurethane-based tissue constructs in a rat abdominal repair model using high frequency ultrasound elasticity imaging.

    Science.gov (United States)

    Yu, Jiao; Takanari, Keisuke; Hong, Yi; Lee, Kee-Won; Amoroso, Nicholas J; Wang, Yadong; Wagner, William R; Kim, Kang

    2013-04-01

    The evaluation of candidate materials and designs for soft tissue scaffolds would benefit from the ability to monitor the mechanical remodeling of the implant site without the need for periodic animal sacrifice and explant analysis. Toward this end, the ability of non-invasive ultrasound elasticity imaging (UEI) to assess temporal mechanical property changes in three different types of porous, biodegradable polyurethane scaffolds was evaluated in a rat abdominal wall repair model. The polymers utilized were salt-leached scaffolds of poly(carbonate urethane) urea, poly(ester urethane) urea and poly(ether ester urethane) urea at 85% porosity. A total of 60 scaffolds (20 each type) were implanted in a full thickness muscle wall replacement in the abdomens of 30 rats. The constructs were ultrasonically scanned every 2 weeks and harvested at weeks 4, 8 and 12 for compression testing or histological analysis. UEI demonstrated different temporal stiffness trends among the different scaffold types, while the stiffness of the surrounding native tissue remained unchanged. The changes in average normalized strains developed in the constructs from UEI compared well with the changes of mean compliance from compression tests and histology. The average normalized strains and the compliance for the same sample exhibited a strong linear relationship. The ability of UEI to identify herniation and to characterize the distribution of local tissue in-growth with high resolution was also investigated. In summary, the reported data indicate that UEI may allow tissue engineers to sequentially evaluate the progress of tissue construct mechanical behavior in vivo and in some cases may reduce the need for interim time point animal sacrifice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Hyperspectral imaging based on compressive sensing to determine cancer margins in human pancreatic tissue ex vivo

    Science.gov (United States)

    Peller, Joseph; Thompson, Kyle J.; Siddiqui, Imran; Martinie, John; Iannitti, David A.; Trammell, Susan R.

    2017-02-01

    Pancreatic cancer is the fourth leading cause of cancer death in the US. Currently, surgery is the only treatment that offers a chance of cure, however, accurately identifying tumor margins in real-time is difficult. Research has demonstrated that optical spectroscopy can be used to distinguish between healthy and diseased tissue. The design of a single-pixel imaging system for cancer detection is discussed. The system differentiates between healthy and diseased tissue based on differences in the optical reflectance spectra of these regions. In this study, pancreatic tissue samples from 6 patients undergoing Whipple procedures are imaged with the system (total number of tissue sample imaged was N=11). Regions of healthy and unhealthy tissue are determined based on SAM analysis of these spectral images. Hyperspectral imaging results are then compared to white light imaging and histological analysis. Cancerous regions were clearly visible in the hyperspectral images. Margins determined via spectral imaging were in good agreement with margins identified by histology, indicating that hyperspectral imaging system can differentiate between healthy and diseased tissue. After imaging the system was able to detect cancerous regions with a sensitivity of 74.50±5.89% and a specificity of 75.53±10.81%. Possible applications of this imaging system include determination of tumor margins during surgery/biopsy and assistance with cancer diagnosis and staging.

  17. Tissue Classification

    DEFF Research Database (Denmark)

    Van Leemput, Koen; Puonti, Oula

    2015-01-01

    Computational methods for automatically segmenting magnetic resonance images of the brain have seen tremendous advances in recent years. So-called tissue classification techniques, aimed at extracting the three main brain tissue classes (white matter, gray matter, and cerebrospinal fluid), are now...... well established. In their simplest form, these methods classify voxels independently based on their intensity alone, although much more sophisticated models are typically used in practice. This article aims to give an overview of often-used computational techniques for brain tissue classification...

  18. Bioinspired coupled helical coils for soft tissue engineering of tubular structures - Improved mechanical behavior of tubular collagen type I templates.

    Science.gov (United States)

    Janke, H P; Bohlin, J; Lomme, R M L M; Mihaila, S M; Hilborn, J; Feitz, W F J; Oosterwijk, E

    2017-09-01

    The design of constructs for tubular tissue engineering is challenging. Most biomaterials need to be reinforced with supporting structures such as knittings, meshes or electrospun material to comply with the mechanical demands of native tissues. In this study, coupled helical coils (CHCs) were manufactured to mimic collagen fiber orientation as found in nature. Monofilaments of different commercially available biodegradable polymers were wound and subsequently fused, resulting in right-handed and left-handed polymer helices fused together in joints where the filaments cross. CHCs of different polymer composition were tested to determine the tensile strength, strain recovery, hysteresis, compressive strength and degradation of CHCs of different composition. Subsequently, seamless and stable hybrid constructs consisting of PDSII® USP 2-0 CHCs embedded in porous collagen type I were produced. Compared to collagen alone, this hybrid showed superior strain recovery (93.5±0.9% vs 71.1±12.6% in longitudinal direction; 87.1±6.6% vs 57.2±4.6% in circumferential direction) and hysteresis (18.9±2.7% vs 51.1±12.0% in longitudinal direction; 11.5±4.6% vs 46.3±6.3% in circumferential direction). Furthermore, this hybrid construct showed an improved Young's modulus in both longitudinal (0.5±0.1MPavs 0.2±0.1MPa; 2.5-fold) and circumferential (1.65±0.07MPavs (2.9±0.3)×10 -2 MPa; 57-fold) direction, respectively, compared to templates created from collagen alone. Moreover, hybrid template characteristics could be modified by changing the CHC composition and CHCs were produced showing a mechanical behavior similar to the native ureter. CHC-enforced templates, which are easily tunable to meet different demands may be promising for tubular tissue engineering. Most tubular constructs lack sufficient strength and tunability to comply with the mechanical demands of native tissues. Therefore, we embedded coupled helical coils (CHCs) produced from biodegradable polymers - to

  19. Hydrogel based tissue mimicking phantom for in-vitro ultrasound contrast agents studies.

    Science.gov (United States)

    Demitri, Christian; Sannino, Alessandro; Conversano, Francesco; Casciaro, Sergio; Distante, Alessandro; Maffezzoli, Alfonso

    2008-11-01

    Ultrasound medical imaging (UMI) is the most widely used image analysis technique, and often requires advanced in-vitro set up to perform morphological and functional investigations. These studies are based on contrast properties both related to tissue structure and injectable contrast agents (CA). In this work, we present a three-dimensional structure composed of two different hydrogels reassembly the microvascular network of a human tissue. This phantom was particularly suitable for the echocontrastographic measurements in human microvascular system. This phantom has been characterized to present the acoustic properties of an animal liver, that is, acoustic impedance (Z) and attenuation coefficient (AC), in UMI signal analysis in particular; the two different hydrogels have been selected to simulate the target organ and the acoustic properties of the vascular system. The two hydrogels were prepared starting from cellulose derivatives to simulating the target organ parenchyma and using a PEG-diacrylate to reproduce the vascular system. Moreover, harmonic analysis was performed on the hydrogel mimicking the liver parenchyma hydrogel to evaluate the ultrasound (US) distortion during echographic measurement. The phantom was employed in the characterization of an experimental US CA. Perfect agreement was found when comparing the hydrogel acoustical properties materials with the corresponding living reference tissues (i.e., vascular and parenchimal tissue).

  20. Bioprinting for Neural Tissue Engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Association of hexachlorobenzene in the serum and adipose tissue with type 2 diabetes: a systematic review and meta-analysis and meta-regression

    Directory of Open Access Journals (Sweden)

    Zahra Mosallanejad

    2016-09-01

    Full Text Available The prevalence of metabolic disease type 2 diabetes is increasing. Numerous studies have to take into consideration in addition to the factors such as low mobility, nutrition and inheritance, environmental factors such as hexachlorobenzene in creation of type 2 diabetes. Therefore, it was tried in this study to obtain an exact result regarding the association of hexachlorobenzene with type 2 diabetes by doing a systematic review and metaanalysis of the cross-sectional and prospective studies which were received till 2 March 2016. After searching in the databases SID, Irandoc, Pubmed, Scopus, Ovid, Embase, ISI and Cochrane, 10 studies with 19 subgroups were considered in final assessment. Geometric mean concentration of Hexachlorobenzene was 12.7 ng/ml and 64.77 ng/g lipids in serum and adipose tissues, respectively. The heterogeneity index of I2 :25.95% (I2<50% and t2 :0.075 were low and hence fixed model was used for meta-analysis of studies' results. The Pearson correlation coefficient between concentrations of hexachlorobenzene in serum and adipose tissue with the odds ratio of type 2 diabetes were R2 :0.27, P value=0.57 and R2 :0.25, P value=0.18, respectively. The highest and lowest odds ratios of type 2 diabetes was [OR:6.2 (0.6-68.1] and [OR:0.99 (0.3-2.6], respectively. Overall, the odds ratio for type 2 diabetes induced to hexachlorobenzene was OR:2.33 (1.82-2.74 P value<0.001. Results of this study supported the role of hexachlorobenzene significantly as an environmental risk factor in type 2 diabetes (P<0.001.

  2. Design and characterization of a biodegradable composite scaffold for ligament tissue engineering.

    Science.gov (United States)

    Hayami, James W S; Surrao, Denver C; Waldman, Stephen D; Amsden, Brian G

    2010-03-15

    Herein we report on the development and characterization of a biodegradable composite scaffold for ligament tissue engineering based on the fundamental morphological features of the native ligament. An aligned fibrous component was used to mimic the fibrous collagen network and a hydrogel component to mimic the proteoglycan-water matrix of the ligament. The composite scaffold was constructed from cell-adherent, base-etched, electrospun poly(epsilon-caprolactone-co-D,L-lactide) (PCLDLLA) fibers embedded in a noncell-adherent photocrosslinked N-methacrylated glycol chitosan (MGC) hydrogel seeded with primary ligament fibroblasts. Base etching improved cellular adhesion to the PCLDLLA material. Cells within the MGC hydrogel remained viable (72 +/- 4%) during the 4-week culture period. Immunohistochemistry staining revealed ligament ECM markers collagen type I, collagen type III, and decorin organizing and accumulating along the PCLDLLA fibers within the composite scaffolds. On the basis of these results, it was determined that the composite scaffold design was a viable alternative to the current approaches used for ligament tissue engineering and merits further study. (c) 2009 Wiley Periodicals, Inc.

  3. Tissue Engineering Applications of Three-Dimensional Bioprinting.

    Science.gov (United States)

    Zhang, Xiaoying; Zhang, Yangde

    2015-07-01

    Recent advances in tissue engineering have adapted the additive manufacturing technology, also known as three-dimensional printing, which is used in several industrial applications, for the fabrication of bioscaffolds and viable tissue and/or organs to overcome the limitations of other in vitro conventional methods. 3D bioprinting technology has gained enormous attention as it enabled 3D printing of a multitude of biocompatible materials, different types of cells and other supporting growth factors into complex functional living tissues in a 3D format. A major advantage of this technology is its ability for simultaneously 3D printing various cell types in defined spatial locations, which makes this technology applicable to regenerative medicine to meet the need for suitable for transplantation suitable organs and tissues. 3D bioprinting is yet to successfully overcome the many challenges related to building 3D structures that closely resemble native organs and tissues, which are complex structures with defined microarchitecture and a variety of cell types in a confined area. An integrated approach with a combination of technologies from the fields of engineering, biomaterials science, cell biology, physics, and medicine is required to address these complexities. Meeting this challenge is being made possible by directing the 3D bioprinting to manufacture biomimetic-shaped 3D structures, using organ/tissue images, obtained from magnetic resonance imaging and computerized tomography, and employing computer-aided design and manufacturing technologies. Applications of 3D bioprinting include the generation of multilayered skin, bone, vascular grafts, heart valves, etc. The current 3D bioprinting technologies need to be improved with respect to the mechanical strength and integrity in the manufactured constructs as the presently used biomaterials are not of optimal viscosity. A better understanding of the tissue/organ microenvironment, which consists of multiple types of

  4. Species and tissue type regulate long-term decomposition of brackish marsh plants grown under elevated CO2 conditions

    Science.gov (United States)

    Jones, Joshua A; Cherry, Julia A; Mckee, Karen L.

    2016-01-01

    Organic matter accumulation, the net effect of plant production and decomposition, contributes to vertical soil accretion in coastal wetlands, thereby playing a key role in whether they keep pace with sea-level rise. Any factor that affects decomposition may affect wetland accretion, including atmospheric CO2 concentrations. Higher CO2 can influence decomposition rates by altering plant tissue chemistry or by causing shifts in plant species composition or biomass partitioning. A combined greenhouse-field experiment examined how elevated CO2 affected plant tissue chemistry and subsequent decomposition of above- and belowground tissues of two common brackish marsh species, Schoenoplectus americanus (C3) and Spartina patens (C4). Both species were grown in monoculture and in mixture under ambient (350-385 μL L-1) or elevated (ambient + 300 μL L-1) atmospheric CO2 conditions, with all other growth conditions held constant, for one growing season. Above- and belowground tissues produced under these treatments were decomposed under ambient field conditions in a brackish marsh in the Mississippi River Delta, USA. Elevated CO2 significantly reduced nitrogen content of S. americanus, but not sufficiently to affect subsequent decomposition. Instead, long-term decomposition (percent mass remaining after 280 d) was controlled by species composition and tissue type. Shoots of S. patens had more mass remaining (41 ± 2%) than those of S. americanus (12 ± 2 %). Belowground material decomposed more slowly than that placed aboveground (62 ± 1% vs. 23 ± 3% mass remaining), but rates belowground did not differ between species. Increases in atmospheric CO2concentration will likely have a greater effect on overall decomposition in this brackish marsh community through shifts in species dominance or biomass allocation than through effects on tissue chemistry. Consequent changes in organic matter accumulation may alter marsh capacity to accommodate sea-level rise

  5. Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue From Subjects With Type 2 Diabetes

    DEFF Research Database (Denmark)

    Nilsson, Emma; Jansson, Per Anders; Perfilyev, Alexander

    2014-01-01

    Genetics, epigenetics, and environment may together affect the susceptibility for type 2 diabetes (T2D). Our aim was to dissect molecular mechanisms underlying T2D using genome-wide expression and DNA methylation data in adipose tissue from monozygotic twin pairs discordant for T2D and independent...... case-control cohorts. In adipose tissue from diabetic twins, we found decreased expression of genes involved in oxidative phosphorylation; carbohydrate, amino acid, and lipid metabolism; and increased expression of genes involved in inflammation and glycan degradation. The most differentially expressed...... genes included ELOVL6, GYS2, FADS1, SPP1 (OPN), CCL18, and IL1RN. We replicated these results in adipose tissue from an independent case-control cohort. Several candidate genes for obesity and T2D (e.g., IRS1 and VEGFA) were differentially expressed in discordant twins. We found a heritable contribution...

  6. Decubitus Ulcers of Soft Tissues in Patients with Type 2 Diabetes Mellitus: Clinical Strategies, Insulin Resistance Indicators, Comprehensive Treatment Aspects

    Directory of Open Access Journals (Sweden)

    A.R. Vergun

    2016-08-01

    Full Text Available Background. The causes of decubitus ulcers include ischaemia and neurotrophic tissue changes induced by their chronic compression, continuous pathologic moisture and shift of tissues that determine local ishaemia. The aim of the article: to study clinical options and suppurative complications of decubitus ulcers in patients with type 2 diabetes mellitus (DM in terms of insulin resistance (IR in the context of combined treatment optimization. Materials and methods. Total sample of retro- and prospective analyses involved results of comprehensive treatment of 112 patients. Type 2 DM was diagnosed in 37 patients, I comparison group included 27 patients with decubitus ulcers without complications (I–III stages and DM, with decubitus ulcers stage IV — II comparison group; and the control group included other 75 individuals. Results. The patients with type 2 DM (I comparison group had considerable decrease in HOMA index of β-cell function and increased HOMA index of IR (8.31 ± 0.02, р < 0.01. Patients with type 2 DM with complicated decubitus ulcers (II comparison group had more significant increase of circulating insulin indexes (p2 < 0.01, HOMA index of IR (p2 < 0.05, and considerable decrease on HOMA index of β-cell function (p2 < 0.05. The correlation analysis of HOMA-IR indicators and element concentration in the blood revealed the correlation only in patients with type 2 DM (I and II comparison groups: potent negative correlation (r = –0.72; p < 0.001 was revealed between the HOMA-IR and Mg2+ content in erythrocytes; intermediate negative correlation (r = –0.66; p < 0.01 — between HOMA-IR and Zn2+ concentration in the blood serum; and a negative one (r = –0.69; p < 0.01 — between HOMA-IR and Cr3+ level in the blood serum. Conclusions. The advantage of the proposed classification of decubitus ulcers of soft tissue and a sequence of comprehensive treatment is considering the features of

  7. Gas electron multiplier (GEM) operation with tissue-equivalent gases at various pressures

    International Nuclear Information System (INIS)

    Farahmand, M.; Bos, A.J.J.; Eijk, C.W.E. van

    2003-01-01

    We have studied the operation of two different Gas Electron Multiplier (GEM) structures in both methane and propane based Tissue-Equivalent (TE) gases at different pressures varying from 0.1 to 1 atm. This work was motivated to explore the possibility of using a GEM for a new type of Tissue Equivalent Proportional Counter. In methane based TE gas, a maximum safe GEM gain of 1.5x10 3 has been reached while in propane based TE gas this is 6x10 3 . These maxima have been reached at different gas pressures depending on GEM structure and TE gas. Furthermore, we observed a decrease of the GEM gain in time before it becomes stable. Charge up/polarisation effects can explain this

  8. An assay for secologanin in plant tissues based on enzymatic conversion into strictosidine

    DEFF Research Database (Denmark)

    Hallard, Didier; van der Heijden, Robert; Contin, Adriana

    1998-01-01

    strictosidine, a reaction catalysed by the enzyme strictosidine synthase (STR; E.C. 4.3.3.2). Subsequently, the formation of strictosidine is quantified by HPLC. STR was isolated from transgenic Nicotiana tabacum cells expressing a cDNA-derived gene coding for STR from Catharanthus roseus. The high specificity......The secoiridoid glucoside secologanin is the terpenoid building block in the biosynthesis of terpenoid indole alkaloids. A method for its determination in plant tissues and cell suspension cultures has been developed. This assay is based on the condensation of secologanin with tryptamine, yielding...... of STR for secologanin, in combination with a sensitive and selective HPLC system, allows a simple extraction of secologanin from plant tissue. The detection limit of this methos is 15 ng secologanin. Using this assay, secologanin contents were determined in tissues of various plant species; Lonicera...

  9. Simulation studies of optimum energies for DXA: dependence on tissue type, patient size and dose model

    International Nuclear Information System (INIS)

    Michael, G. J.; Henderson, C. J.

    1999-01-01

    Dual-energy x-ray absorptiometry (DXA) is a well established technique for measuring bone mineral density (BMD). However, in recent years DXA is increasingly being used to measure body composition in terms of fat and fat-free mass. DXA scanners must also determine the soft tissue baseline value from soft-tissue-only regions adjacent to bone. The aim of this work is to determine, using computer simulations, the optimum x- ray energies for a number of dose models, different tissues, i.e. bone mineral, average soft tissue, lean soft tissue and fat; and a range of anatomical sites and patient sizes. Three models for patient dose were evaluated total beam energy, entrance exposure and absorbed dose calculated by Monte Carlo modelling. A range of tissue compositions and thicknesses were chosen to cover typical patient variations for the three sites femoral neck, PA spine and lateral spine. In this work, the optimisation of the energies is based on (1) the uncertainty that arises from the quantum statistical nature of the number of x-rays recorded by the detector, and (2) the radiation dose received by the patient. This study has deliberately not considered other parameters such as detector response, electronic noise, x-ray tube heat load etc, because these are technology dependent parameters, not ones that are inherent to the measuring technique. Optimisation of the energies is achieved by minimisation of the product of variance of density measurement and dose which is independent of the absolute intensities of the x-ray beams. The results obtained indicate that if solving for bone density, then E-low in the range 34 to 42 keV, E-high in the range 100 to 200 keV and incident intensity ratio (low energy/high energy) in the range 3 to 10 is a reasonable compromise for the normal range of patient sizes. The choice of energies is complicated by the fact that the DXA unit must also solve for fat and lean soft tissue in soft- tissue-only regions adjacent to the bone. In this

  10. Exercise training does not improve myocardial diastolic tissue velocities in Type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Nenonen Arja

    2007-09-01

    Full Text Available Abstract Background Myocardial diastolic tissue velocities are reduced already in newly onset Type 2 diabetes mellitus (T2D. Poor disease control may lead to left ventricular (LV systolic dysfunction and heart failure. The aim of this study was to assess the effects of exercise training on myocardial diastolic function in T2D patients without ischemic heart disease. Methods 48 men (52.3 ± 5.6 yrs with T2D were randomized to supervised training four times a week and standard therapy (E, or standard treatment alone (C for 12 months. Glycated hemoglobin (HbA1c, oxygen consumption (VO2max, and muscle strength (Sit-up were measured. Tissue Doppler Imaging (TDI was used to determine the average maximal mitral annular early (Ea and late (Aa diastolic as well as systolic (Sa velocities, systolic strain (ε and strain rate (έ from the septum, and an estimation of left ventricular end diastolic pressure (E/Ea. Results Exercise capacity (VO2max, E 32.0 to 34.7 vs. C 32.6 to 31.5 ml/kg/min, p = .001, muscle strength (E 12.7 to 18.3 times vs. C 14.6 to 14.7 times, p 1c (E 8.2 to 7.5% vs. C 8.0 to 8.4%, p = .006 improved significantly in the exercise group compared to the controls (ANOVA. Systolic blood pressure decreased in the E group (E 144 to 138 mmHg vs. C 146 to 144 mmHg, p = .04. Contrary to risk factor changes diastolic long axis relaxation did not improve significantly, early diastolic velocity Ea from 8.1 to 7.9 cm/s for the E group vs. C 7.4 to 7.8 cm/s (p = .85, ANOVA. Likewise, after 12 months the mitral annular systolic velocity, systolic strain and strain rate, as well as E/Ea were unchanged. Conclusion Exercise training improves endurance and muscle fitness in T2D, resulting in better glycemic control and reduced blood pressure. However, myocardial diastolic tissue velocities did not change significantly. Our data suggest that a much longer exercise intervention may be needed in order to reverse diastolic impairment in diabetics, if at all

  11. Advances in tissue engineering through stem cell-based co-culture.

    Science.gov (United States)

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Changes in content and synthesis of collagen types and proteoglycans in osteoarthritis of the knee joint and comparison of quantitative analysis with Photoshop-based image analysis.

    Science.gov (United States)

    Lahm, Andreas; Mrosek, Eike; Spank, Heiko; Erggelet, Christoph; Kasch, Richard; Esser, Jan; Merk, Harry

    2010-04-01

    The different cartilage layers vary in synthesis of proteoglycan and of the distinct types of collagen with the predominant collagen Type II with its associated collagens, e.g. types IX and XI, produced by normal chondrocytes. It was demonstrated that proteoglycan decreases in degenerative tissue and a switch from collagen type II to type I occurs. The aim of this study was to evaluate the correlation of real-time (RT)-PCR and Photoshop-based image analysis in detecting such lesions and find new aspects about their distribution. We performed immunohistochemistry and histology with cartilage tissue samples from 20 patients suffering from osteoarthritis compared with 20 healthy biopsies. Furthermore, we quantified our results on the gene expression of collagen type I and II and aggrecan with the help of real-time (RT)-PCR. Proteoglycan content was measured colorimetrically. Using Adobe Photoshop the digitized images of histology and immunohistochemistry stains of collagen type I and II were stored on an external data storage device. The area occupied by any specific colour range can be specified and compared in a relative manner directly from the histogram using the "magic wand tool" in the select similar menu. In the image grow menu gray levels or luminosity (colour) of all pixels within the selected area, including mean, median and standard deviation, etc. are depicted. Statistical Analysis was performed using the t test. With the help of immunohistochemistry, RT-PCR and quantitative RT- PCR we found that not only collagen type II, but also collagen type I is synthesized by the cells of the diseased cartilage tissue, shown by increasing amounts of collagen type I mRNA especially in the later stages of osteoarthritis. A decrease of collagen type II is visible especially in the upper fibrillated area of the advanced osteoarthritic samples, which leads to an overall decrease. Analysis of proteoglycan showed a loss of the overall content and a quite uniform staining in

  13. Collagen metabolism during wound healing in rats. The aminoterminal propeptide of type III procollagen in serum and wound fluid in relation to formation of granulation tissue

    DEFF Research Database (Denmark)

    Jensen, L T; Garbarsch, C; Hørslev-Petersen, K

    1993-01-01

    The aminoterminal propeptide of type III procollagen (PIIINP) in serum has been shown to correlate with fibrillogenesis, and thus to be a potential direct marker of type III collagen deposition. The aim of the study was to investigate the correlation between changes in serum PIIINP and formation ......, changes in serum PIIINP mirror fibrillogenesis. Furthermore, our study provides experimental evidence consistent with the hypothesis that wound fluid PIIINP directly mirrors the local formation of granulation tissue, independent of weight loss and cyclophosphamide treatment.......The aminoterminal propeptide of type III procollagen (PIIINP) in serum has been shown to correlate with fibrillogenesis, and thus to be a potential direct marker of type III collagen deposition. The aim of the study was to investigate the correlation between changes in serum PIIINP and formation...... loss caused by treatment, weight loss caused by starvation was investigated. In untreated rats, serum PIIINP and wound fluid PIIINP were related to formation of granulation tissue (serum: r = 0.58, p

  14. Effect of metformin therapy on the levels of certain adipose tissue hormones and mediators of nonspecific generalized inflammation in patients with newly diagnosed type 2 diabetes

    Directory of Open Access Journals (Sweden)

    A.M. Urbanovych

    2015-05-01

    Full Text Available The aim of the study was to investigate the influence of the drug metformin on the levels of adipose tissue hormones and generalized nonspecific mediators of inflammation in type 2 diabetes. 38 patients with newly diagnosed type 2 diabetes were followed up before and after 12 months of hypoglycemic monotherapy with glucophage. The results indicate that the normalization of carbohydrate metabolism indices and decreased body weight of patients in the presence of the therapy is due not only to direct effects of metformin in improving glucose uptake by peripheral tissues, but by the ability of the drug to modulate adipocytokine secretion.

  15. Classification of fibroglandular tissue distribution in the breast based on radiotherapy planning CT

    International Nuclear Information System (INIS)

    Juneja, Prabhjot; Evans, Philip; Windridge, David; Harris, Emma

    2016-01-01

    Accurate segmentation of breast tissues is required for a number of applications such as model based deformable registration in breast radiotherapy. The accuracy of breast tissue segmentation is affected by the spatial distribution (or pattern) of fibroglandular tissue (FT). The goal of this study was to develop and evaluate texture features, determined from planning computed tomography (CT) data, to classify the spatial distribution of FT in the breast. Planning CT data of 23 patients were evaluated in this study. Texture features were derived from the radial glandular fraction (RGF), which described the distribution of FT within three breast regions (posterior, middle, and anterior). Using visual assessment, experts grouped patients according to FT spatial distribution: sparse or non-sparse. Differences in the features between the two groups were investigated using the Wilcoxon rank test. Classification performance of the features was evaluated for a range of support vector machine (SVM) classifiers. Experts found eight patients and 15 patients had sparse and non-sparse spatial distribution of FT, respectively. A large proportion of features (>9 of 13) from the individual breast regions had significant differences (p <0.05) between the sparse and non-sparse group. The features from middle region had most significant differences and gave the highest classification accuracy for all the SVM kernels investigated. Overall, the features from middle breast region achieved highest accuracy (91 %) with the linear SVM kernel. This study found that features based on radial glandular fraction provide a means for discriminating between fibroglandular tissue distributions and could achieve a classification accuracy of 91 %

  16. Trace element analysis of wild rodent tissues using the PIXE method

    International Nuclear Information System (INIS)

    Hill, M.W.; Mangelson, N.F.; Ryder, J.F.; Atwood, N.D.; Wood, B.W.

    1980-01-01

    Five species of rodents have been collected in an area near Lake Powell Utah. Common names of the five species are: Long-tailed Mouse, Small Pocket Mouse, Deer Mouse, Antelope Ground Squirrel and Kangaroo Rat. Liver, lung, kidney and hair tissues from each animal were analyzed for trace element content by proton particle-induced x-ray emission (proton PIXE) analysis. Mean concentrations for the following elements were established for the tissues of each animal type: K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb and Pb. Analyses of variance were performed on the set of elements common to all tissues. Some significant differences in element concentrations were found between animal species and between tissue types. These differences lead to the following orders based on element concentration: Long-tailed Mouse greater than or equal to Antelope Ground Squirrel greater than or equal to Kangaroo Rat greater than or equal to Small Pocket Mouse and liver greater than or equal to kidney greater than or equal to lung greater than or equal to hair. Linear regression analyses were also performed on mean elemental concentrations in tissues. These analyses lead to several conclusions. First, the pattern of trace element concentrations in each of the four tissues is the same in all five species. Second, the pattern of trace element concentrations is the same in all four tissues of one species with the exception of Ti and Fe in hair. Third, the variation of an element in the hair cannot predict the variation of that same element in the other three tissues. Only K, Ca, Ti, Mn, Fe, Cu, and Zn were included in the third study

  17. Impaired autoregulation of blood flow in skeletal muscle and subcutaneous tissue in long-term Type 1 (insulin-dependent) diabetic patients with microangiopathy

    DEFF Research Database (Denmark)

    Faris, I; Vagn Nielsen, H; Henriksen, O

    1983-01-01

    Autoregulation of blood flow was studied in skeletal muscle and subcutaneous tissue in seven Type 1 (insulin-dependent) diabetic patients (median age: 36 years) with nephropathy and retinopathy and in eight normal subjects of the same age. Blood flow was measured by the local 133Xe washout...... technique. Reduction in arterial perfusion pressure was produced by elevating the limb 20 and 40 cm above heart level. Blood flow remained within 10% of control values when the limb was elevated in normal subjects. In five of the seven diabetic subjects blood flow fell significantly in both tissues when...

  18. High-risk human papilloma virus in archival tissues of oral pathosis and normal oral mucosa

    Directory of Open Access Journals (Sweden)

    Raghu Dhanapal

    2015-01-01

    Full Text Available Objectives: Oral cancer ranks third among all cancers in the Indian population. Human papilloma virus (HPV plays a significant role in oral carcinogenesis. Population-based subtype variations are present in the HPV prevalence. This study gives an emphasis on the parameters to be considered in formalin fixed paraffin embedded tissues for polymerase chain reaction (PCR-based research work. Materials and Methods: Cross-sectional study on archival paraffin-embedded tissue samples of oral squamous cell carcinoma (OSCC, epithelial dysplasia, and normal oral mucosa surrounding impacted tooth was amplified by PCR for the E6 gene of HPV type 16 and E1 gene of HPV type 18. Results: HPV 18 was positive in three OSCC cases. There was no statistically significant association of the positivity of HPV with the age, gender or habit. The HPV positive patients had a tobacco habit and were of a younger age group. Conclusion: The presence of HPV in carcinomatous tissue highlights the possible role of HPV in carcinogenesis and archival paraffin embedded tissue specimen can be used for this analysis. Recent studies on genomic analyses have highlighted that the HPV positive tumors are a separate subgroup based on genomic sequencing. The results of a larger retrospective study will help further in our understanding of the role of HPV in carcinogenesis, this study could form the baseline for such follow-up studies.

  19. High-risk human papilloma virus in archival tissues of oral pathosis and normal oral mucosa.

    Science.gov (United States)

    Dhanapal, Raghu; Ranganathan, K; Kondaiah, Paturu; Devi, R Uma; Joshua, Elizabeth; Saraswathi, T R

    2015-01-01

    Oral cancer ranks third among all cancers in the Indian population. Human papilloma virus (HPV) plays a significant role in oral carcinogenesis. Population-based subtype variations are present in the HPV prevalence. This study gives an emphasis on the parameters to be considered in formalin fixed paraffin embedded tissues for polymerase chain reaction (PCR)-based research work. Cross-sectional study on archival paraffin-embedded tissue samples of oral squamous cell carcinoma (OSCC), epithelial dysplasia, and normal oral mucosa surrounding impacted tooth was amplified by PCR for the E6 gene of HPV type 16 and E1 gene of HPV type 18. HPV 18 was positive in three OSCC cases. There was no statistically significant association of the positivity of HPV with the age, gender or habit. The HPV positive patients had a tobacco habit and were of a younger age group. The presence of HPV in carcinomatous tissue highlights the possible role of HPV in carcinogenesis and archival paraffin embedded tissue specimen can be used for this analysis. Recent studies on genomic analyses have highlighted that the HPV positive tumors are a separate subgroup based on genomic sequencing. The results of a larger retrospective study will help further in our understanding of the role of HPV in carcinogenesis, this study could form the baseline for such follow-up studies.

  20. Tissue Renin-Angiotensin Systems: A Unifying Hypothesis of Metabolic Disease

    Directory of Open Access Journals (Sweden)

    Jeppe eSkov

    2014-02-01

    Full Text Available The actions of angiotensin peptides are diverse and locally acting tissue renin-angiotensin systems (RAS are present in almost all tissues of the body. An activated RAS strongly correlates to metabolic disease (e.g. diabetes and its complications and blockers of RAS have been demonstrated to prevent diabetes in humans.Hyperglycemia, obesity, hypertension, and cortisol are well-known risk factors of metabolic disease and all stimulate tissue RAS whereas glucagon-like peptide-1, vitamin D, and aerobic exercise are inhibitors of tissue RAS and to some extent can prevent metabolic disease. Furthermore, an activated tissue RAS deteriorates the same risk factors creating a system with several positive feedback pathways. The primary effector hormone of the RAS, angiotensin II, stimulates reactive oxygen species, induces tissue damage, and can be associated to most diabetic complications. Based on these observations we hypothesize that an activated tissue RAS is the principle cause of metabolic syndrome and type 2 diabetes, and additionally is mediating the majority of the metabolic complications. The involvement of positive feedback pathways may create a self-reinforcing state and explain why metabolic disease initiate and progress. The hypothesis plausibly unify the major predictors of metabolic disease and places tissue RAS regulation in the center of metabolic control.

  1. The tissue micro-array data exchange specification: a web based experience browsing imported data

    Science.gov (United States)

    Nohle, David G; Hackman, Barbara A; Ayers, Leona W

    2005-01-01

    Background The AIDS and Cancer Specimen Resource (ACSR) is an HIV/AIDS tissue bank consortium sponsored by the National Cancer Institute (NCI) Division of Cancer Treatment and Diagnosis (DCTD). The ACSR offers to approved researchers HIV infected biologic samples and uninfected control tissues including tissue cores in micro-arrays (TMA) accompanied by de-identified clinical data. Researchers interested in the type and quality of TMA tissue cores and the associated clinical data need an efficient method for viewing available TMA materials. Because each of the tissue samples within a TMA has separate data including a core tissue digital image and clinical data, an organized, standard approach to producing, navigating and publishing such data is necessary. The Association for Pathology Informatics (API) extensible mark-up language (XML) TMA data exchange specification (TMA DES) proposed in April 2003 provides a common format for TMA data. Exporting TMA data into the proposed format offers an opportunity to implement the API TMA DES. Using our public BrowseTMA tool, we created a web site that organizes and cross references TMA lists, digital "virtual slide" images, TMA DES export data, linked legends and clinical details for researchers. Microsoft Excel® and Microsoft Word® are used to convert tabular clinical data and produce an XML file in the TMA DES format. The BrowseTMA tool contains Extensible Stylesheet Language Transformation (XSLT) scripts that convert XML data into Hyper-Text Mark-up Language (HTML) web pages with hyperlinks automatically added to allow rapid navigation. Results Block lists, virtual slide images, legends, clinical details and exports have been placed on the ACSR web site for 14 blocks with 1623 cores of 2.0, 1.0 and 0.6 mm sizes. Our virtual microscope can be used to view and annotate these TMA images. Researchers can readily navigate from TMA block lists to TMA legends and to clinical details for a selected tissue core. Exports for 11

  2. Disrupted G1 to S phase clearance via cyclin signaling impairs liver tissue repair in thioacetamide-treated type 1 diabetic rats

    International Nuclear Information System (INIS)

    Devi, Sachin S.; Mehendale, Harihara M.

    2005-01-01

    Previously we reported that a nonlethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic (DB) rats because of irreversible acute liver injury owing to inhibited hepatic tissue repair, primarily due to blockage of G 0 to S phase progression of cell division cycle. On the other hand, DB rats receiving 30 mg TA/kg exhibited equal initial liver injury and delayed tissue repair compared to nondiabetic (NDB) rats receiving 300 mg TA/kg, resulting in a delay in recovery from liver injury and survival. The objective of the present study was to test the hypothesis that impaired cyclin-regulated progression of G 1 to S phase of the cell cycle may explain inhibited liver tissue repair, hepatic failure, and death, contrasted with delayed liver tissue repair but survival observed in the DB rats receiving 300 in contrast to 30 mg TA/kg. In the TA-treated NDB rats sustained MAPKs and cyclin expression resulted in higher phosphorylation of retinoblastoma (pRb), explaining prompt tissue repair and survival. In contrast, DB rats receiving the same dose of TA (300 mg/kg) exhibited suppressed MAPKs and cyclin expression that led to inhibition of pRb, inhibited tissue repair, and death. On the other hand, DB rats receiving 30 mg TA/kg exhibited delayed up regulation of MAPK signaling that delayed the expression of CD1 and pRb, explaining delayed stimulation of tissue repair observed in this group. In conclusion, the hepatotoxicant TA has a dose-dependent adverse effect on cyclin-regulated pRb signaling: the lower dose causes a recoverable delay, whereas the higher dose inhibits it with corresponding effect on the ultimate outcomes on hepatic tissue repair; this dose-dependent adverse effect is substantially shifted to the left of the dose response curve in diabetes

  3. Detection of HPV-DNA by a PCR-based method in formalin-fixed, paraffin-embedded tissue from rare endocervical carcinoma types.

    Science.gov (United States)

    Nofech-Mozes, Sharon; Khalifa, Mahmoud M; Ismiil, Nadia; Dubé, Valerie; Saad, Reda S; Sun, Peizhu; Seth, Arun; Ghorab, Zeina

    2010-01-01

    High-risk human papilloma virus (HPV) seems to play a role in the pathogenesis of cervical squamous neoplasia and adenocarcinomas of the mucinous and endometrioid cell types. Cervical serous, clear cell, and small cell carcinomas differ from the conventional endocervical adenocarcinoma in their clinical characteristics. The data on the role of HPV in their pathogenesis are limited. In this study, we examined the presence of high-risk HPV-DNA in rare types of cervical carcinoma using polymerase chain reaction-based test. In-house cervical serous, clear cell, and small cell carcinoma cases accessioned between 2000 and 2008 were tested for HPV by polymerase chain reaction amplification of DNA extracted from deparaffinized sections using Roche AMPLICOR HPV Amplification Detection and Control Kits. The kit detects all 13 high-risk HPV-DNA genotypes. The positive cut-off point for AMPLICOR HPV Test was A450 = 0.2. We identified 4 serous, 3 clear cell, 1 mixed clear cell and serous, and 5 small cell carcinomas. High-risk HPV-DNA tested positive in 3 out of 4 serous carcinomas, 2 out of 3 cervical clear cell carcinomas, and all 5 cases of small cell carcinoma and the mixed cell type. Our report documents HPV status in a series of archival unusual types of adenocarcinoma of the uterine cervix. It suggests a robust association between high-risk HPV and these rare subtypes. Despite their unique clinical setting and morphologic appearance, the majority of these tumors likely share a common HPV-mediated carcinogenic pathway. Our observation is particularly significant in cervical cancer prevention as we enter the HPV vaccination era.

  4. Characterisation of connective tissue from the hypertrophic skeletal muscle of myostatin null mice.

    Science.gov (United States)

    Elashry, Mohamed I; Collins-Hooper, Henry; Vaiyapuri, Sakthivel; Patel, Ketan

    2012-06-01

    Myostatin is a potent inhibitor of muscle development. Genetic deletion of myostatin in mice results in muscle mass increase, with muscles often weighing three times their normal values. Contracting muscle transfers tension to skeletal elements through an elaborate connective tissue network. Therefore, the connective tissue of skeletal muscle is an integral component of the contractile apparatus. Here we examine the connective tissue architecture in myostatin null muscle. We show that the hypertrophic muscle has decreased connective tissue content compared with wild-type muscle. Secondly, we show that the hypertrophic muscle fails to show the normal increase in muscle connective tissue content during ageing. Therefore, genetic deletion of myostatin results in an increase in contractile elements but a decrease in connective tissue content. We propose a model based on the contractile profile of muscle fibres that reconciles this apparent incompatible tissue composition phenotype. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  5. Degradation and biocompatibility of a poly(propylene fumarate)-based/alumoxane nanocomposite for bone tissue engineering.

    NARCIS (Netherlands)

    Mistry, A.S.; Mikos, A.G.; Jansen, J.A.

    2007-01-01

    In this work, we evaluated the in vitro cytotoxicity and in vivo biocompatibility of a novel poly(propylene fumarate) (PPF)-based/alumoxane nanocomposite for bone tissue engineering applications. The incorporation of functionalized alumoxane nanoparticles into the PPF-based polymer was previously

  6. Phenolic composition and free radical scavenging activity of different apple varieties in relation to the cultivar, tissue type and storage.

    Science.gov (United States)

    Carbone, K; Giannini, B; Picchi, V; Lo Scalzo, R; Cecchini, F

    2011-07-15

    The aim of this research was to evaluate the influence of genotype, tissue type and cold storage on the bioactive compounds content and on the antiradical activity (AA) of different apple cultivars (Golden cl. B, Fuji cl. Kiku8, Braeburn cl. Hillwell). The content of analysed phyto-compounds depended on the clone, on the part of fruit, and to a minor extent, on the storage. For EC(50) data, the cultivar represented the main source of variation and the interaction with the type of tissue, was significant. The AA of apples, measured by means of the DPPH test, was highly correlated to the flavan-3-ols content, which represents a good predictor of the apple antiradical power. The new Braeburn's clone, the Hillwell, had the worst AA related to a minor phyto-chemical content. Also, its phenolic content was dramatically reduced after cold storage (flesh: -50%; peels: -20%; papples, which is important to improve their quality and consumption benefits, suggesting to the breeders to pay more attention to the potential healthy compounds in the development of new hybrids. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Biomimetically Reinforced Polyvinyl Alcohol-Based Hybrid Scaffolds for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hwan D. Kim

    2017-11-01

    Full Text Available Articular cartilage has a very limited regeneration capacity. Therefore, injury or degeneration of articular cartilage results in an inferior mechanical stability, load-bearing capacity, and lubrication capability. Here, we developed a biomimetic scaffold consisting of macroporous polyvinyl alcohol (PVA sponges as a platform material for the incorporation of cell-embedded photocrosslinkable poly(ethylene glycol diacrylate (PEGDA, PEGDA-methacrylated chondroitin sulfate (PEGDA-MeCS; PCS, or PEGDA-methacrylated hyaluronic acid (PEGDA-MeHA; PHA within its pores to improve in vitro chondrocyte functions and subsequent in vivo ectopic cartilage tissue formation. Our findings demonstrated that chondrocytes encapsulated in PCS or PHA and loaded into macroporous PVA hybrid scaffolds maintained their physiological phenotypes during in vitro culture, as shown by the upregulation of various chondrogenic genes. Further, the cell-secreted extracellular matrix (ECM improved the mechanical properties of the PVA-PCS and PVA-PHA hybrid scaffolds by 83.30% and 73.76%, respectively, compared to their acellular counterparts. After subcutaneous transplantation in vivo, chondrocytes on both PVA-PCS and PVA-PHA hybrid scaffolds significantly promoted ectopic cartilage tissue formation, which was confirmed by detecting cells positively stained with Safranin-O and for type II collagen. Consequently, the mechanical properties of the hybrid scaffolds were biomimetically reinforced by 80.53% and 210.74%, respectively, compared to their acellular counterparts. By enabling the recapitulation of biomimetically relevant structural and functional properties of articular cartilage and the regulation of in vivo mechanical reinforcement mediated by cell–matrix interactions, this biomimetic material offers an opportunity to control the desired mechanical properties of cell-laden scaffolds for cartilage tissue regeneration.

  8. Bone Tissue Collagen Maturity and Mineral Content Increase With Sustained Hyperglycemia in the KK-Ay Murine Model of Type 2 Diabetes.

    Science.gov (United States)

    Hunt, Heather B; Pearl, Jared C; Diaz, David R; King, Karen B; Donnelly, Eve

    2018-05-01

    Type 2 diabetes mellitus (T2DM) increases fracture risk for a given bone mineral density (BMD), which suggests that T2DM changes bone tissue properties independently of bone mass. In this study, we assessed the effects of hyperglycemia on bone tissue compositional properties, enzymatic collagen crosslinks, and advanced glycation end-products (AGEs) in the KK-Ay murine model of T2DM using Fourier transform infrared (FTIR) imaging and high-performance liquid chromatography (HPLC). Compared to KK-aa littermate controls (n = 8), proximal femoral bone tissue of KK-Ay mice (n = 14) exhibited increased collagen maturity, increased mineral content, and less heterogeneous mineral properties. AGE accumulation assessed by the concentration of pentosidine, as well as the concentrations of the nonenzymatic crosslinks hydroxylysylpyridinoline (HP) and lysyl pyridinoline (LP), did not differ in the proximal femurs of KK-Ay mice compared to controls. The observed differences in tissue-level compositional properties in the KK-Ay mice are consistent with bone that is older and echo observations of reduced remodeling in T2DM. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  9. Deep learning for tissue microarray image-based outcome prediction in patients with colorectal cancer

    Science.gov (United States)

    Bychkov, Dmitrii; Turkki, Riku; Haglund, Caj; Linder, Nina; Lundin, Johan

    2016-03-01

    Recent advances in computer vision enable increasingly accurate automated pattern classification. In the current study we evaluate whether a convolutional neural network (CNN) can be trained to predict disease outcome in patients with colorectal cancer based on images of tumor tissue microarray samples. We compare the prognostic accuracy of CNN features extracted from the whole, unsegmented tissue microarray spot image, with that of CNN features extracted from the epithelial and non-epithelial compartments, respectively. The prognostic accuracy of visually assessed histologic grade is used as a reference. The image data set consists of digitized hematoxylin-eosin (H and E) stained tissue microarray samples obtained from 180 patients with colorectal cancer. The patient samples represent a variety of histological grades, have data available on a series of clinicopathological variables including long-term outcome and ground truth annotations performed by experts. The CNN features extracted from images of the epithelial tissue compartment significantly predicted outcome (hazard ratio (HR) 2.08; CI95% 1.04-4.16; area under the curve (AUC) 0.66) in a test set of 60 patients, as compared to the CNN features extracted from unsegmented images (HR 1.67; CI95% 0.84-3.31, AUC 0.57) and visually assessed histologic grade (HR 1.96; CI95% 0.99-3.88, AUC 0.61). As a conclusion, a deep-learning classifier can be trained to predict outcome of colorectal cancer based on images of H and E stained tissue microarray samples and the CNN features extracted from the epithelial compartment only resulted in a prognostic discrimination comparable to that of visually determined histologic grade.

  10. Non-invasive tissue temperature measurements based on quantitative diffuse optical spectroscopy (DOS) of water

    Energy Technology Data Exchange (ETDEWEB)

    Chung, S H [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Cerussi, A E; Tromberg, B J [Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road, Irvine 92612, CA (United States); Merritt, S I [Masimo Corporation, 40 Parker, Irvine, CA 92618 (United States); Ruth, J, E-mail: bjtrombe@uci.ed [Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Room 240, Skirkanich Hall, Philadelphia, PA 19104 (United States)

    2010-07-07

    We describe the development of a non-invasive method for quantitative tissue temperature measurements using Broadband diffuse optical spectroscopy (DOS). Our approach is based on well-characterized opposing shifts in near-infrared (NIR) water absorption spectra that appear with temperature and macromolecular binding state. Unlike conventional reflectance methods, DOS is used to generate scattering-corrected tissue water absorption spectra. This allows us to separate the macromolecular bound water contribution from the thermally induced spectral shift using the temperature isosbestic point at 996 nm. The method was validated in intralipid tissue phantoms by correlating DOS with thermistor measurements (R = 0.96) with a difference of 1.1 {+-} 0.91 {sup 0}C over a range of 28-48 {sup 0}C. Once validated, thermal and hemodynamic (i.e. oxy- and deoxy-hemoglobin concentration) changes were measured simultaneously and continuously in human subjects (forearm) during mild cold stress. DOS-measured arm temperatures were consistent with previously reported invasive deep tissue temperature studies. These results suggest that DOS can be used for non-invasive, co-registered measurements of absolute temperature and hemoglobin parameters in thick tissues, a potentially important approach for optimizing thermal diagnostics and therapeutics.

  11. Optical density measurements on the examination of colon cancer tissues

    International Nuclear Information System (INIS)

    Touati, E.; Ajaal, T.; Hamassi, A.

    2015-01-01

    Automated quantitative image analysis can aid in cancer diagnosis and, in general, mange medical treatments managements and improve routine medical diagnosis. Early diagnosis can make big difference between life and death. Microscopic images from two tissue types forty-four normal and fifty-eight cancers, was evaluated based on their ability to identify abnormalities in colon images. Optical density approach is applied to extract parameters that exhibit cancer behavior on colon tissues images. Using statistical toolbox, a significant result of (p<0.0001) for the mean and the variance of the optical density parameter were detected, and only (p<0.001) for skewness optical density. based on linear discrimination method, the obtained result shows 905 accuracy for both sensitivity and specificity, and with an overall accuracy of 90% (author)

  12. [Rhein promotes the expression of SIRT1 in kidney tissues of type 2 diabetic rat].

    Science.gov (United States)

    Chen, Weidong; Chang, Baochao; Zhang, Yan; Yang, Ping; Liu, Lei

    2015-05-01

    To observe the effect of rhein on the expression of SIRT1(Sirtuin 1) in kidney of diabetic rats, and to explore the role of rhein in protecting rat kidney against diabetic nephropathy and possible mechanism. The type 2 diabetic rats were induced by high-glucose and high-fat diet combined with streptozotocin (35 mg/kg body mass). Seventy-five eight-week-old male SD rats were randomly divided into 6 groups: normal group, diabetic group, low-, medium- and high-dose (50, 100, 150 mg/kg) rhein treatment groups and 10 mg/kg pioglitazone treatment group. The rats were given corresponding substances intragastrically once a day. At the end of the 16th week, the fasting plasma glucose (FPG), fasting insulin (FINS), triglycerides (TG), total cholesterol (TC), serum creatinine (Scr) and 24 hours urine protein (24 h U-PRO) were determined. The renal hypertrophy index (KM/BM), insulin resistance index (HOMA-IR) were calculated. The pathological changes in renal tissues were examined by PAS staining under a light microscopy. The mean glomerular area (MGA) and mean glomerular volume (MGV) were measured by pathological image analysis system. Western blotting and real-time quantitative PCR were used to determine the expression of SIRT1 in renal tissues at protein and mRNA levels, respectively. The expression of SIRT1 was down-regulated in the kidney of diabetic rats. The levels of FPG, FINS, HOMA-IR, TG, TC, Scr, 24 h U-PRO, KM/BM, MGA and MGV significantly decreased and the histopathology of renal tissues were significantly improved in all treatment groups compared with diabetic group. The expression of SIRT1 mRNA and protein markedly increased in rhein treatment groups and pioglitazone treatment group compared with diabetic group. The indicators in high-dose rhein treatment group were improved more significantly than those in the other groups. Correlation analysis showed that the expression of SIRT1 was negatively correlated with 24 h U-PRO and MGV. The expression of SIRT1 was

  13. Generalized Beer-Lambert model for near-infrared light propagation in thick biological tissues

    Science.gov (United States)

    Bhatt, Manish; Ayyalasomayajula, Kalyan R.; Yalavarthy, Phaneendra K.

    2016-07-01

    The attenuation of near-infrared (NIR) light intensity as it propagates in a turbid medium like biological tissue is described by modified the Beer-Lambert law (MBLL). The MBLL is generally used to quantify the changes in tissue chromophore concentrations for NIR spectroscopic data analysis. Even though MBLL is effective in terms of providing qualitative comparison, it suffers from its applicability across tissue types and tissue dimensions. In this work, we introduce Lambert-W function-based modeling for light propagation in biological tissues, which is a generalized version of the Beer-Lambert model. The proposed modeling provides parametrization of tissue properties, which includes two attenuation coefficients μ0 and η. We validated our model against the Monte Carlo simulation, which is the gold standard for modeling NIR light propagation in biological tissue. We included numerous human and animal tissues to validate the proposed empirical model, including an inhomogeneous adult human head model. The proposed model, which has a closed form (analytical), is first of its kind in providing accurate modeling of NIR light propagation in biological tissues.

  14. 3D Printing of Personalized Organs and Tissues

    Science.gov (United States)

    Ye, Kaiming

    2015-03-01

    Authors: Kaiming Ye and Sha Jin, Department of Biomedical Engineering, Watson School of Engineering and Applied Science, Binghamton University, State University of New York, Binghamton, NY 13902-6000 Abstract: Creation of highly organized multicellular constructs, including tissues and organs or organoids, will revolutionize tissue engineering and regenerative medicine. The development of these technologies will enable the production of individualized organs or tissues for patient-tailored organ transplantation or cell-based therapy. For instance, a patient with damaged myocardial tissues due to an ischemic event can receive a myocardial transplant generated using the patient's own induced pluripotent stem cells (iPSCs). Likewise, a type-1 diabetic patient can be treated with lab-generated islets to restore his or her physiological insulin secretion capability. These lab-produced, high order tissues or organs can also serve as disease models for pathophysiological study and drug screening. The remarkable advances in stem cell biology, tissue engineering, microfabrication, and materials science in the last decade suggest the feasibility of generating these tissues and organoids in the laboratory. Nevertheless, major challenges still exist. One of the critical challenges that we still face today is the difficulty in constructing or fabricating multicellular assemblies that recapitulate in vivo microenvironments essential for controlling cell proliferation, migration, differentiation, maturation and assembly into a biologically functional tissue or organoid structure. These challenges can be addressed through developing 3D organ and tissue printing which enables organizing and assembling cells into desired tissue and organ structures. We have shown that human pluripotent stem cells differentiated in 3D environments are mature and possess high degree of biological function necessary for them to function in vivo.

  15. Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues.

    Science.gov (United States)

    Gignac, Paul M; Kley, Nathan J; Clarke, Julia A; Colbert, Matthew W; Morhardt, Ashley C; Cerio, Donald; Cost, Ian N; Cox, Philip G; Daza, Juan D; Early, Catherine M; Echols, M Scott; Henkelman, R Mark; Herdina, A Nele; Holliday, Casey M; Li, Zhiheng; Mahlow, Kristin; Merchant, Samer; Müller, Johannes; Orsbon, Courtney P; Paluh, Daniel J; Thies, Monte L; Tsai, Henry P; Witmer, Lawrence M

    2016-06-01

    Morphologists have historically had to rely on destructive procedures to visualize the three-dimensional (3-D) anatomy of animals. More recently, however, non-destructive techniques have come to the forefront. These include X-ray computed tomography (CT), which has been used most commonly to examine the mineralized, hard-tissue anatomy of living and fossil metazoans. One relatively new and potentially transformative aspect of current CT-based research is the use of chemical agents to render visible, and differentiate between, soft-tissue structures in X-ray images. Specifically, iodine has emerged as one of the most widely used of these contrast agents among animal morphologists due to its ease of handling, cost effectiveness, and differential affinities for major types of soft tissues. The rapid adoption of iodine-based contrast agents has resulted in a proliferation of distinct specimen preparations and scanning parameter choices, as well as an increasing variety of imaging hardware and software preferences. Here we provide a critical review of the recent contributions to iodine-based, contrast-enhanced CT research to enable researchers just beginning to employ contrast enhancement to make sense of this complex new landscape of methodologies. We provide a detailed summary of recent case studies, assess factors that govern success at each step of the specimen storage, preparation, and imaging processes, and make recommendations for standardizing both techniques and reporting practices. Finally, we discuss potential cutting-edge applications of diffusible iodine-based contrast-enhanced computed tomography (diceCT) and the issues that must still be overcome to facilitate the broader adoption of diceCT going forward. © 2016 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  16. Co-culture systems-based strategies for articular cartilage tissue engineering.

    Science.gov (United States)

    Zhang, Yu; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Lu, Liang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Jiang, Peng; Lu, Shibi; Liu, Shuyun; Guo, Quanyi

    2018-03-01

    Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. © 2017 Wiley Periodicals, Inc.

  17. Tissue specificity of the hormonal response in sex accessory tissues is associated with nuclear matrix protein patterns.

    Science.gov (United States)

    Getzenberg, R H; Coffey, D S

    1990-09-01

    The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.

  18. Contextual Multivariate Segmentation of Pork Tissue from Grating-Based Multimodal X-Ray Tomography

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur; Nielsen, Mikkel S.; Ersbøll, Bjarne Kjær

    2013-01-01

    have made novel X-ray image modalities available, where the refraction and scattering of X-rays is obtained simultaneously with the absorption properties, providing enhanced contrast for soft biological tissues. This paper demonstrates how data obtained from grating-based imaging can be segmented...

  19. Connective tissue fibroblasts and Tcf4 regulate myogenesis

    Science.gov (United States)

    Mathew, Sam J.; Hansen, Jody M.; Merrell, Allyson J.; Murphy, Malea M.; Lawson, Jennifer A.; Hutcheson, David A.; Hansen, Mark S.; Angus-Hill, Melinda; Kardon, Gabrielle

    2011-01-01

    Muscle and its connective tissue are intimately linked in the embryo and in the adult, suggesting that interactions between these tissues are crucial for their development. However, the study of muscle connective tissue has been hindered by the lack of molecular markers and genetic reagents to label connective tissue fibroblasts. Here, we show that the transcription factor Tcf4 (transcription factor 7-like 2; Tcf7l2) is strongly expressed in connective tissue fibroblasts and that Tcf4GFPCre mice allow genetic manipulation of these fibroblasts. Using this new reagent, we find that connective tissue fibroblasts critically regulate two aspects of myogenesis: muscle fiber type development and maturation. Fibroblasts promote (via Tcf4-dependent signals) slow myogenesis by stimulating the expression of slow myosin heavy chain. Also, fibroblasts promote the switch from fetal to adult muscle by repressing (via Tcf4-dependent signals) the expression of developmental embryonic myosin and promoting (via a Tcf4-independent mechanism) the formation of large multinucleate myofibers. In addition, our analysis of Tcf4 function unexpectedly reveals a novel mechanism of intrinsic regulation of muscle fiber type development. Unlike other intrinsic regulators of fiber type, low levels of Tcf4 in myogenic cells promote both slow and fast myogenesis, thereby promoting overall maturation of muscle fiber type. Thus, we have identified novel extrinsic and intrinsic mechanisms regulating myogenesis. Most significantly, our data demonstrate for the first time that connective tissue is important not only for adult muscle structure and function, but is a vital component of the niche within which muscle progenitors reside and is a critical regulator of myogenesis. PMID:21177349

  20. Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications.

    Science.gov (United States)

    Madhurakkat Perikamana, Sajeesh Kumar; Lee, Jinkyu; Lee, Yu Bin; Shin, Young Min; Lee, Esther J; Mikos, Antonios G; Shin, Heungsoo

    2015-09-14

    Current advances in biomaterial fabrication techniques have broadened their application in different realms of biomedical engineering, spanning from drug delivery to tissue engineering. The success of biomaterials depends highly on the ability to modulate cell and tissue responses, including cell adhesion, as well as induction of repair and immune processes. Thus, most recent approaches in the field have concentrated on functionalizing biomaterials with different biomolecules intended to evoke cell- and tissue-specific reactions. Marine mussels produce mussel adhesive proteins (MAPs), which help them strongly attach to different surfaces, even under wet conditions in the ocean. Inspired by mussel adhesiveness, scientists discovered that dopamine undergoes self-polymerization at alkaline conditions. This reaction provides a universal coating for metals, polymers, and ceramics, regardless of their chemical and physical properties. Furthermore, this polymerized layer is enriched with catechol groups that enable immobilization of primary amine or thiol-based biomolecules via a simple dipping process. Herein, this review explores the versatile surface modification techniques that have recently been exploited in tissue engineering and summarizes polydopamine polymerization mechanisms, coating process parameters, and effects on substrate properties. A brief discussion of polydopamine-based reactions in the context of engineering various tissue types, including bone, blood vessels, cartilage, nerves, and muscle, is also provided.

  1. 3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading

    Science.gov (United States)

    Cho, Nam-Hoon; Choi, Heung-Kook

    2014-01-01

    One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM) and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system. PMID:25371701

  2. 3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading

    Directory of Open Access Journals (Sweden)

    Tae-Yun Kim

    2014-01-01

    Full Text Available One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system.

  3. Tissue Engineering Based Therapy for Articular Cartilage Defects - A New Approach

    Directory of Open Access Journals (Sweden)

    Abraham S

    2007-01-01

    Full Text Available Background: Articular cartilage, the load-bearing tissue in diarthrodial joints, when damaged due to trauma could lead to osteoarthritis. At present Autologous Cartilage Implantation is an established method in which patients own chondrocytes are isolated and then implanted after in vitro expansion over the affected area with bovine or porcine collagen matrix. This procedure results in more of Collagen Type I during in vitro expansion, which eventually becomes fibrocartilage. Also it requires growth factors. We have in this study tried growing human Chondrocytes without growth factors using synthetic scaffolds to grow more Collagen Type II Materials and Methods: Human cartilage specimens were harvested through arthroscopy from the non-weight bearing area of the knee joint from 13 patients who underwent surgical procedures of the knee joint after getting their informed consent. The tissues were transported in saline taking 1 hour to laboratory and subjected to digestion with Collagenase type II for 16~18 Hrs. The chondrocyte cells obtained after dissociation were divided into two groups for culture. Gr. I were embedded in a Thermogelation polymer (TGP and Gr. II in basal culture media (DMEM + Ascorbic Acid without using any growth factors. The Group II cells were viable only for 4 weeks and then started degenerating. The TGP-Chondrocytes scaffolds were grown for 16 weeks and the specimens were harvested at 4, 8, 12 and 16-week intervals and their morphology and molecular characteristics were studied by H&E staining, S-100 protein analysis and RT-PCR.Results: Human chondrocytes could be cultured in both TGP (group I and Basal culture media (group II. The Gr. I cells were viable upto the 16th week while the Group II chondrocytes started degenerating after the 4 week. Both the groups were proven positive for S-100 protein, a Chondrocyte specific marker protein; Gr. II specimens after 4 weeks, and Gr. I specimens after 4, 8, 12 and 16 weeks. RT

  4. Protocols for the in vitro design of animal articular cartilage based on tissue engineering methods

    Directory of Open Access Journals (Sweden)

    Diego Correa

    2002-01-01

    Full Text Available The articular cartilage is the structure that covers the joint ends. It has some specific tasks crucial to the correct joint physiology. It may experience a large amount of injuries that could generate considerable disabilities. Unfortunately its selfrepair capacity is too limited; therefore, many treatments have been developed with partial success, given the suboptimal biomechanical behavior of the resultant tissue. Given that, Tissue Engineering offers an alternative, based on the design of a new tissue with biological and biomechanical features which resembles the native tissue. In this work, the authors describe the methodologies followed to accomplish that goal, studying the chondrocytes harvesting, the cellular cultures, the scaffold seeding processes, the mechanical stimulation and the structural and biomechanical evaluation. Finally, exposed some of the preliminary results, as a experimental validation of the methods proposed are.

  5. Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications

    International Nuclear Information System (INIS)

    Ramier, Julien; Bouderlique, Thibault; Stoilova, Olya; Manolova, Nevena; Rashkov, Iliya; Langlois, Valérie; Renard, Estelle; Albanese, Patricia; Grande, Daniel

    2014-01-01

    The electrospinning technique combined with the electrospraying process provides a straightforward and versatile approach for the fabrication of novel nanofibrous biocomposite scaffolds with structural, mechanical, and biological properties potentially suitable for bone tissue regeneration. In this comparative investigation, three types of poly(3-hydroxybutyrate) (PHB)-based scaffolds were engineered: (i) PHB mats by electrospinning of a PHB solution, (ii) mats of PHB/hydroxyapatite nanoparticle (nHA) blends by electrospinning of a mixed solution containing PHB and nHAs, and (iii) mats constituted of PHB nanofibers and nHAs by simultaneous electrospinning of a PHB solution and electrospraying of a nHA dispersion. Scaffolds based on PHB/nHA blends displayed improved mechanical properties compared to those of neat PHB mats, due to the incorporation of nHAs within the fibers. The electrospinning/electrospraying approach afforded biocomposite scaffolds with lower mechanical properties, due to their higher porosity, but they displayed slightly better biological properties. In the latter case, the bioceramic, i.e. nHAs, largely covered the fiber surface, thus allowing for a direct exposure to cells. The 21 day-monitoring through the use of MTS assays and SEM analyses demonstrated that human mesenchymal stromal cells (hMSCs) remained viable on PHB/nHA biocomposite scaffolds and proliferated continuously until reaching confluence. - Highlights: • Three different types of PHB-based scaffolds are engineered and thoroughly investigated. • The combination of electrospinning and electrospraying affords original nanofibrous biocomposite scaffolds. • PHB-based scaffolds show a strong capability of supporting viable cell development for 21 days

  6. Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Ramier, Julien [Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS, Université Paris-Est Créteil, 2, rue Henri Dunant, 94320 Thiais (France); Bouderlique, Thibault [Laboratoire “Croissance, Réparation et Régénération Tissulaires”, EAC 7149 CNRS, Université Paris-Est Créteil, 61, avenue du Général de Gaulle, 94010 Créteil (France); Stoilova, Olya; Manolova, Nevena; Rashkov, Iliya [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Langlois, Valérie; Renard, Estelle [Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS, Université Paris-Est Créteil, 2, rue Henri Dunant, 94320 Thiais (France); Albanese, Patricia [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Grande, Daniel, E-mail: grande@icmpe.cnrs.fr [Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS, Université Paris-Est Créteil, 2, rue Henri Dunant, 94320 Thiais (France)

    2014-05-01

    The electrospinning technique combined with the electrospraying process provides a straightforward and versatile approach for the fabrication of novel nanofibrous biocomposite scaffolds with structural, mechanical, and biological properties potentially suitable for bone tissue regeneration. In this comparative investigation, three types of poly(3-hydroxybutyrate) (PHB)-based scaffolds were engineered: (i) PHB mats by electrospinning of a PHB solution, (ii) mats of PHB/hydroxyapatite nanoparticle (nHA) blends by electrospinning of a mixed solution containing PHB and nHAs, and (iii) mats constituted of PHB nanofibers and nHAs by simultaneous electrospinning of a PHB solution and electrospraying of a nHA dispersion. Scaffolds based on PHB/nHA blends displayed improved mechanical properties compared to those of neat PHB mats, due to the incorporation of nHAs within the fibers. The electrospinning/electrospraying approach afforded biocomposite scaffolds with lower mechanical properties, due to their higher porosity, but they displayed slightly better biological properties. In the latter case, the bioceramic, i.e. nHAs, largely covered the fiber surface, thus allowing for a direct exposure to cells. The 21 day-monitoring through the use of MTS assays and SEM analyses demonstrated that human mesenchymal stromal cells (hMSCs) remained viable on PHB/nHA biocomposite scaffolds and proliferated continuously until reaching confluence. - Highlights: • Three different types of PHB-based scaffolds are engineered and thoroughly investigated. • The combination of electrospinning and electrospraying affords original nanofibrous biocomposite scaffolds. • PHB-based scaffolds show a strong capability of supporting viable cell development for 21 days.

  7. [Inconformity between soft tissue defect and bony defect in incomplete cleft palate].

    Science.gov (United States)

    Zhou, Xia; Ma, Lian

    2014-12-01

    To evaluate the inconformity between soft tissue defect and bony defect by observing the cleft extent of palate with complete secondary palate bony cleft in incomplete cleft palate patient. The patients with incomplete cleft palate treated in Hospital of Stomatology Peking University from July 2012 to June 2013 were reviewed, of which 75 cases with complete secondary palate bony cleft were selected in this study. The CT scan and intraoral photograph were taken before operation. The patients were classified as four types according to the extent of soft tissue defect. Type 1: soft tissue defect reached incisive foremen region, Type 2 was hard and soft cleft palate, Type 3 soft cleft palate and Type 4 submucous cleft palate. Type 1 was defined as conformity group (CG). The other three types were defined as inconformity group (ICG) and divided into three subgroups (ICG-I), (ICG-II) and (ICG-III). Fifty-seven patients were in ICG group, and the rate of inconformity was 76% (57/75). The percentage of ICG-I, ICG-II and ICG-III was 47% (27/57), 23% (13/57) and 30% (17/57), respevtively. There are different types of soft tissue deformity with complete secondary palate bony cleft. The inconformity between soft tissue and hard tissue defect exits in 3/4 of isolated cleft palate patients.

  8. The importance of establishing an international network of tissue banks and regional tissue processing centers.

    Science.gov (United States)

    Morales Pedraza, Jorge

    2014-03-01

    During the past four decades, many tissue banks have been established across the world with the aim of supplying sterilized tissues for clinical use and research purposes. Between 1972 and 2005, the International Atomic Energy Agency supported the establishment of more than sixty of these tissue banks in Latin America and the Caribbean, Asia and the Pacific, Africa and Eastern Europe; promoted the use of the ionizing radiation technique for the sterilization of the processed tissues; and encouraged cooperation between the established tissue banks during the implementation of its program on radiation and tissue banking at national, regional and international levels. Taking into account that several of the established tissue banks have gained a rich experience in the procurement, processing, sterilization, storage, and medical use of sterilized tissues, it is time now to strengthen further international and regional cooperation among interested tissue banks located in different countries. The purpose of this cooperation is to share the experience gained by these banks in the procurement, processing, sterilization, storage, and used of different types of tissues in certain medical treatments and research activities. This could be done through the establishment of a network of tissue banks and a limited number of regional tissue processing centers in different regions of the world.

  9. Multiplex coherent anti-Stokes Raman scattering microspectroscopy of brain tissue with higher ranking data classification for biomedical imaging

    Science.gov (United States)

    Pohling, Christoph; Bocklitz, Thomas; Duarte, Alex S.; Emmanuello, Cinzia; Ishikawa, Mariana S.; Dietzeck, Benjamin; Buckup, Tiago; Uckermann, Ortrud; Schackert, Gabriele; Kirsch, Matthias; Schmitt, Michael; Popp, Jürgen; Motzkus, Marcus

    2017-06-01

    Multiplex coherent anti-Stokes Raman scattering (MCARS) microscopy was carried out to map a solid tumor in mouse brain tissue. The border between normal and tumor tissue was visualized using support vector machines (SVM) as a higher ranking type of data classification. Training data were collected separately in both tissue types, and the image contrast is based on class affiliation of the single spectra. Color coding in the image generated by SVM is then related to pathological information instead of single spectral intensities or spectral differences within the data set. The results show good agreement with the H&E stained reference and spontaneous Raman microscopy, proving the validity of the MCARS approach in combination with SVM.

  10. Variation in alternative splicing across human tissues

    OpenAIRE

    Yeo, Gene; Holste, Dirk; Kreiman, Gabriel; Burge, Christopher B

    2004-01-01

    Background: Alternative pre-mRNA splicing (AS) is widely used by higher eukaryotes to generate different protein isoforms in specific cell or tissue types. To compare AS events across human tissues, we analyzed the splicing patterns of genomically aligned expressed sequence tags (ESTs) derived from libraries of cDNAs from different tissues. Results: Controlling for differences in EST coverage among tissues, we found that the brain and testis had the highest levels of exon skipping. The most p...

  11. [Microbiological diagnosis of infections of the skin and soft tissues].

    Science.gov (United States)

    Burillo, Almudena; Moreno, Antonio; Salas, Carlos

    2007-11-01

    Skin and soft tissue infections are often seen in clinical practice, yet their microbiological diagnosis is among the most complex of laboratory tasks. The diagnosis of a skin and a soft tissue infection is generally based on clinical criteria and not microbiological results. A microbiological diagnosis is reserved for cases in which the etiology of infection is required, e.g., when the infection is particularly severe, when less common microorganisms are suspected as the causative agent (e.g. in immunocompromised patients), when response to antimicrobial treatment is poor, or when a longstanding wound does not heal within a reasonable period of time. We report the indications, sampling and processing techniques, and interpretation criteria for various culture types, including quantitative cultures from biopsy or tissue specimens and semiquantitative and qualitative cultures performed on all types of samples. For non-invasive samples taken from open wounds, application of the Q index to Gram stains is a cost-effective way to standardize sample quality assessment and interpretation of the pathogenic involvement of the different microorganisms isolated from cultures. All these issues are covered in the SEIMC microbiological procedure number 22: Diagnóstico microbiológico de las infecciones de piel y tejidos blandos (Microbiological diagnosis of infections of the skin and soft tissues) (2nd ed., 2006, www.seimc.org/protocolos/microbiologia).

  12. Finite-element modelling and preliminary validation of microneedle-based electrodes for enhanced tissue electroporation.

    Science.gov (United States)

    Houlihan, Ruth; Grygoryev, Konstantin; Zhenfei Ning; Williams, John; Moore, Tom; O'Mahony, Conor

    2017-07-01

    This paper investigates the use of microneedle-based electrodes for enhanced testis electroporation, with specific application to the production of transgenic mice. During the design phase, finite-element software has been used to construct a tissue model and to compare the relative performance of electrodes employing a) conventional flat plates, b) microneedle arrays, and c) invasive needles. Results indicate that microneedle-based electrodes can achieve internal tissue field strengths which are an order of magnitude higher than those generated using conventional flat electrodes, and which are comparable to fields produced using invasive needles. Using a double-sided etching process, conductive microneedle arrays were then fabricated and used in prototype electrodes. In a series of mouse model experiments involving injection of a DNA vector expressing Green Fluorescent Protein (GFP), the performance of flat and microneedle electrodes was compared by measuring GFP expression after electroporation. The main finding, supported by experimental and simulated data, is that use of microneedle-based electrodes significantly enhanced electroporation of testis.

  13. A logic programming and statistical systems approach for tissue characterization in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Levy, G.C.; Dudewicz, E.J.; Harner, T.J.

    1989-01-01

    The main research goal has been to evalute significant factors affecting the in vivo magnetic resonance imaging (MRI) parameters R 1 , T 2 , and 1 H density. This approach differs significantly from other such projects in that the experimental data analysis is being performed while concurrently developing automated, computer-aided analysis software for such MRI tissue parameters. In the experimental portion of the project, statistical analyses, and a heuristic minimum/maximum discriminant analysis algorithm have been explored. Both methods have been used to classify tissue types from 1.5 Tesla transaxial MR images of the human brain. The developing program, written in the logic programming language Prolog, similar in a number of ways to many existing expert systems now in use for other medical applications; inclusion of the underlying statistical data base and advanced statistical analyses is the main differentiating feature of the current approach. First results indicate promising classification accuracy of various brain tissues such as gray and white matter, as well as differentiation of different types of gray matter and white matter (e.g.: caudate-nucleus vs. thalamus, both representatives of gray matter; and, cortical white matter vs. internal capsule as representative of white matter). Taking all four tissue types together, the percentage of correct classifications ranges from 73 to 87%. (author)

  14. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2016-07-01

    Full Text Available Materials based on biodegradable polyesters, such as poly(butylene terephthalate (PBT or poly(butylene terephthalate-co-poly(alkylene glycol terephthalate (PBTAT, have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16, that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.

  15. Abnormal Base Excision Repair at Trinucleotide Repeats Associated with Diseases: A Tissue-Selective Mechanism

    Directory of Open Access Journals (Sweden)

    Agathi-Vasiliki Goula

    2013-07-01

    Full Text Available More than fifteen genetic diseases, including Huntington’s disease, myotonic dystrophy 1, fragile X syndrome and Friedreich ataxia, are caused by the aberrant expansion of a trinucleotide repeat. The mutation is unstable and further expands in specific cells or tissues with time, which can accelerate disease progression. DNA damage and base excision repair (BER are involved in repeat instability and might contribute to the tissue selectivity of the process. In this review, we will discuss the mechanisms of trinucleotide repeat instability, focusing more specifically on the role of BER.

  16. Experimental research of ZrO{sub 2}/BCP/PCL scaffold with complex pore pattern for bone tissue

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Min Woo; Shin, Hae Ri; Kim, Jong Young [Dept. of Mechanical Engineering, Andong National University, Andong (Korea, Republic of)

    2015-11-15

    Recently, synthetic biopolymers and bioceramics such as poly (-caprolactone)(PCL), hydroxyapatite, tricalcium phosphate, biphasic calcium phosphate(BCP), and zirconia have been used as substrates to generate various tissues or organs in tissue engineering. Thus, the purpose of this study was the characterization of ZrO{sub 2}/BCP/PCL(ZBP) scaffold for bone tissue regeneration. Based on the result of single-line test, blended 3D ZBP scaffolds with fully interconnected pores and new complex pore pattern of -type and staggered-type were successfully fabricated using a polymer deposition system. Furthermore, the effect of ZBP scaffold on mechanical property was analyzed. In addition, in vitro cell interaction of ZBP scaffold on MG63 cells was evaluated using a cell counting kit-8(CCK-8) assay.

  17. Validation of potential reference genes for qPCR in maize across abiotic stresses, hormone treatments, and tissue types.

    Directory of Open Access Journals (Sweden)

    Yueai Lin

    Full Text Available The reverse transcription quantitative polymerase chain reaction (RT-qPCR is a powerful and widely used technique for the measurement of gene expression. Reference genes, which serve as endogenous controls ensure that the results are accurate and reproducible, are vital for data normalization. To bolster the literature on reference gene selection in maize, ten candidate reference genes, including eight traditionally used internal control genes and two potential candidate genes from our microarray datasets, were evaluated for expression level in maize across abiotic stresses (cold, heat, salinity, and PEG, phytohormone treatments (abscisic acid, salicylic acid, jasmonic acid, ethylene, and gibberellins, and different tissue types. Three analytical software packages, geNorm, NormFinder, and Bestkeeper, were used to assess the stability of reference gene expression. The results revealed that elongation factor 1 alpha (EF1α, tubulin beta (β-TUB, cyclophilin (CYP, and eukaryotic initiation factor 4A (EIF4A were the most reliable reference genes for overall gene expression normalization in maize, while GRP (Glycine-rich RNA-binding protein, GLU1(beta-glucosidase, and UBQ9 (ubiquitin 9 were the least stable and most unsuitable genes. In addition, the suitability of EF1α, β-TUB, and their combination as reference genes was confirmed by validating the expression of WRKY50 in various samples. The current study indicates the appropriate reference genes for the urgent requirement of gene expression normalization in maize across certain abiotic stresses, hormones, and tissue types.

  18. Sucrose acetate isobutyrate-based nanogels as liquid fiducial tissue markers with potential use in image guided radiotherapy

    DEFF Research Database (Denmark)

    Bruun, Linda Maria; Schaarup-Jensen, Henrik; Jølck, Rasmus Irming

    The poster presents the development of a liquid fiducial tissue marker based on sucrose acetate isobutyrate (SAIB) and uniform, coated gold nanoparticles (AuNPs). The PNIPAM-coated AuNP-SAIB gel provided high CT contrast and high in vivo stability and was assessed to be a suitable tissue marker f...

  19. Chitosan-Based Hyaluronic Acid Hybrid Polymer Fibers as a Scaffold Biomaterial for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shintarou Yamane

    2010-12-01

    Full Text Available An ideal scaffold material is one that closely mimics the natural environment in the tissue-specific extracellular matrix (ECM. Therefore, we have applied hyaluronic acid (HA, which is a main component of the cartilage ECM, to chitosan as a fundamental material for cartilage regeneration. To mimic the structural environment of cartilage ECM, the fundamental structure of a scaffold should be a three-dimensional (3D system with adequate mechanical strength. We structurally developed novel polymer chitosan-based HA hybrid fibers as a biomaterial to easily fabricate 3D scaffolds. This review presents the potential of a 3D fabricated scaffold based on these novel hybrid polymer fibers for cartilage tissue engineering.

  20. Bioreactors in tissue engineering - principles, applications and commercial constraints.

    Science.gov (United States)

    Hansmann, Jan; Groeber, Florian; Kahlig, Alexander; Kleinhans, Claudia; Walles, Heike

    2013-03-01

    Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A Review of Hyaluronic Acid and Hyaluronic Acid-based Hydrogels for Vocal Fold Tissue Engineering.

    Science.gov (United States)

    Walimbe, Tanaya; Panitch, Alyssa; Sivasankar, Preeti M

    2017-07-01

    Vocal fold scarring is a common cause of dysphonia. Current treatments involving vocal fold augmentation do not yield satisfactory outcomes in the long term. Tissue engineering and regenerative medicine offer an attractive treatment option for vocal fold scarring, with the aim to restore the native extracellular matrix microenvironment and biomechanical properties of the vocal folds by inhibiting progression of scarring and thus leading to restoration of normal vocal function. Hyaluronic acid is a bioactive glycosaminoglycan responsible for maintaining optimum viscoelastic properties of the vocal folds and hence is widely targeted in tissue engineering applications. This review covers advances in hyaluronic acid-based vocal fold tissue engineering and regeneration strategies. Copyright © 2017. Published by Elsevier Inc.

  2. Tissue-type plasminogen activator contributes to remodeling of the rat ductus arteriosus

    Science.gov (United States)

    Saito, Junichi; Nicho, Naoki; Zheng, Yun-Wen; Ichikawa, Yasuhiro; Ito, Satoko; Umemura, Masanari; Fujita, Takayuki; Ito, Shuichi; Taniguchi, Hideki; Asou, Toshihide; Masuda, Munetaka; Ishikawa, Yoshihiro

    2018-01-01

    Aims The ductus arteriosus (DA) closes after birth to adapt to the robust changes in hemodynamics, which require intimal thickening (IT) to occur. The smooth muscle cells of the DA have been reported to play important roles in IT formation. However, the roles of the endothelial cells (ECs) have not been fully investigated. We herein focused on tissue-type plasminogen activator (t-PA), which is a DA EC dominant gene, and investigated its contribution to IT formation in the DA. Methods and results ECs from the DA and aorta were isolated from fetal rats using fluorescence-activated cell sorting. RT-PCR showed that the t-PA mRNA expression level was 2.7-fold higher in DA ECs than in aortic ECs from full-term rat fetuses (gestational day 21). A strong immunoreaction for t-PA was detected in pre-term and full-term rat DA ECs. t-PA-mediated plasminogen-plasmin conversion activates gelatinase matrix metalloproteinases (MMPs). Gelatin zymography revealed that plasminogen supplementation significantly promoted activation of the elastolytic enzyme MMP-2 in rat DA ECs. In situ zymography demonstrated that marked gelatinase activity was observed at the site of disruption in the internal elastic laminae (IEL) in full-term rat DA. In a three-dimensional vascular model, EC-mediated plasminogen-plasmin conversion augmented the IEL disruption. In vivo administration of plasminogen to pre-term rat fetuses (gestational day 19), in which IT is poorly formed, promoted IEL disruption accompanied by gelatinase activation and enhanced IT formation in the DA. Additionally, experiments using five human DA tissues demonstrated that the t-PA expression level was 3.7-fold higher in the IT area than in the tunica media. t-PA protein expression and gelatinase activity were also detected in the IT area of the human DAs. Conclusion t-PA expressed in ECs may help to form IT of the DA via activation of MMP-2 and disruption of IEL. PMID:29304073

  3. Preservation of Multiple Mammalian Tissues to Maximize Science Return from Ground Based and Spaceflight Experiments.

    Science.gov (United States)

    Choi, Sungshin; Ray, Hami E; Lai, San-Huei; Alwood, Joshua S; Globus, Ruth K

    2016-01-01

    Even with recent scientific advancements, challenges posed by limited resources and capabilities at the time of sample dissection continue to limit the collection of high quality tissues from experiments that can be conducted only infrequently and at high cost, such as in space. The resources and time it takes to harvest tissues post-euthanasia, and the methods and duration of long duration storage, potentially have negative impacts on sample quantity and quality, thereby limiting the scientific outcome that can be achieved. The goals of this study were to optimize methods for both sample recovery and science return from rodent experiments, with possible relevance to both ground based and spaceflight studies. The first objective was to determine the impacts of tissue harvest time post-euthanasia, preservation methods, and storage duration, focusing on RNA quality and enzyme activities in liver and spleen as indices of sample quality. The second objective was to develop methods that will maximize science return by dissecting multiple tissues after long duration storage in situ at -80°C. Tissues of C57Bl/6J mice were dissected and preserved at various time points post-euthanasia and stored at -80°C for up to 11 months. In some experiments, tissues were recovered from frozen carcasses which had been stored at -80°C up to 7 months. RNA quantity and quality was assessed by measuring RNA Integrity Number (RIN) values using an Agilent Bioanalyzer. Additionally, the quality of tissues was assessed by measuring activities of hepatic enzymes (catalase, glutathione reductase and GAPDH). Fresh tissues were collected up to one hour post-euthanasia, and stored up to 11 months at -80°C, with minimal adverse effects on the RNA quality of either livers or RNAlater-preserved spleens. Liver enzyme activities were similar to those of positive controls, with no significant effect observed at any time point. Tissues dissected from frozen carcasses that had been stored for up to 7

  4. A tissue dose-based comparative exposure assessment of manganese using physiologically based pharmacokinetic modeling—The importance of homeostatic control for an essential metal

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, P. Robinan, E-mail: rgentry@ramboll.com [Ramboll Environ US Corporation, 3701 Armand St., Monroe, LA 71201 (United States); Van Landingham, Cynthia; Fuller, William G. [Ramboll Environ US Corporation, 3701 Armand St., Monroe, LA 71201 (United States); Sulsky, Sandra I. [Ramboll Environ US Corporation, Amherst, MA (United States); Greene, Tracy B. [Ramboll Environ US Corporation, 3701 Armand St., Monroe, LA 71201 (United States); Clewell, Harvey J.; Andersen, Melvin E. [ScitoVation, RTP, NC (United States); Roels, Harry A. [Université Catholique de Louvain, Brussels (Belgium); Taylor, Michael D. [NIPERA, Durham, NC (United States); Keene, Athena M. [Afton Chemical Corporation, Richmond, VA (United States)

    2017-05-01

    A physiologically-based pharmacokinetic (PBPK) model (Schroeter et al., 2011) was applied to simulate target tissue manganese (Mn) concentrations following occupational and environmental exposures. These estimates of target tissue Mn concentrations were compared to determine margins of safety (MOS) and to evaluate the biological relevance of applying safety factors to derive acceptable Mn air concentrations. Mn blood concentrations measured in occupational studies permitted verification of the human PBPK models, increasing confidence in the resulting estimates. Mn exposure was determined based on measured ambient air Mn concentrations and dietary data in Canada and the United States (US). Incorporating dietary and inhalation exposures into the models indicated that increases in target tissue concentrations above endogenous levels only begin to occur when humans are exposed to levels of Mn in ambient air (i.e. > 10 μg/m{sup 3}) that are far higher than those currently measured in Canada or the US. A MOS greater than three orders of magnitude was observed, indicating that current Mn air concentrations are far below concentrations that would be required to produce the target tissue Mn concentrations associated with subclinical neurological effects. This application of PBPK modeling for an essential element clearly demonstrates that the conventional application of default factors to “convert” an occupational exposure to an equivalent continuous environmental exposure, followed by the application of safety factors, is not appropriate in the case of Mn. PBPK modeling demonstrates that the relationship between ambient Mn exposures and dose-to-target tissue is not linear due to normal tissue background levels and homeostatic controls. - Highlights: • Manganese is an essential nutrient, adding complexity to its risk assessment. • Nonlinearities in biological processes are important for manganese risk assessment. • A PBPK model was used to estimate target tissue

  5. Polarized spectral features of human breast tissues through wavelet ...

    Indian Academy of Sciences (India)

    Abstract. Fluorescence characteristics of human breast tissues are investigated through wavelet transform and principal component analysis (PCA). Wavelet transform of polar- ized fluorescence spectra of human breast tissues is found to localize spectral features that can reliably differentiate different tissue types.

  6. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function.

    Science.gov (United States)

    Jonker, Jacqueline T; de Mol, Pieter; de Vries, Suzanna T; Widya, Ralph L; Hammer, Sebastiaan; van Schinkel, Linda D; van der Meer, Rutger W; Gans, Rijk O B; Webb, Andrew G; Kan, Hermien E; de Koning, Eelco J P; Bilo, Henk J G; Lamb, Hildo J

    2013-11-01

    To prospectively assess the effects of an exercise intervention on organ-specific fat accumulation and cardiac function in type 2 diabetes mellitus. Written informed consent was obtained from all participants, and the study protocol was approved by the medical ethics committee. The study followed 12 patients with type 2 diabetes mellitus (seven men; mean age, 46 years ± 2 [standard error]) before and after 6 months of moderate-intensity exercise, followed by a high-altitude trekking expedition with exercise of long duration. Abdominal, epicardial, and paracardial fat volume were measured by using magnetic resonance (MR) imaging. Cardiac function was quantified with cardiac MR, and images were analyzed by a researcher who was supervised by a senior researcher (4 and 21 years of respective experience in cardiac MR). Hepatic, myocardial, and intramyocellular triglyceride (TG) content relative to water were measured with proton MR spectroscopy at 1.5 and 7 T. Two-tailed paired t tests were used for statistical analysis. Exercise reduced visceral abdominal fat volume from 348 mL ± 57 to 219 mL ± 33 (P Exercise decreased hepatic TG content from 6.8% ± 2.3 to 4.6% ± 1.6 (P Exercise did not change epicardial fat volume (P = .9), myocardial TG content (P = .9), intramyocellular lipid content (P = .3), or cardiac function (P = .5). A 6-month exercise intervention in type 2 diabetes mellitus decreased hepatic TG content and visceral abdominal and paracardial fat volume, which are associated with increased cardiovascular risk, but cardiac function was unaffected. Tissue-specific exercise-induced changes in body fat distribution in type 2 diabetes mellitus were demonstrated in this study. RSNA, 2013

  7. Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering.

    Science.gov (United States)

    Hardy, John G; Cornelison, R Chase; Sukhavasi, Rushi C; Saballos, Richard J; Vu, Philip; Kaplan, David L; Schmidt, Christine E

    2015-01-14

    Tissues in the body are hierarchically structured composite materials with tissue-specific chemical and topographical properties. Here we report the preparation of tissue scaffolds with macroscopic pores generated via the dissolution of a sacrificial supramolecular polymer-based crystal template (urea) from a biodegradable polymer-based scaffold (polycaprolactone, PCL). Furthermore, we report a method of aligning the supramolecular polymer-based crystals within the PCL, and that the dissolution of the sacrificial urea yields scaffolds with macroscopic pores that are aligned over long, clinically-relevant distances ( i.e ., centimeter scale). The pores act as topographical cues to which rat Schwann cells respond by aligning with the long axis of the pores. Generation of an interpenetrating network of polypyrrole (PPy) and poly(styrene sulfonate) (PSS) in the scaffolds yields electroactive tissue scaffolds that allow the electrical stimulation of Schwann cells cultured on the scaffolds which increases the production of nerve growth factor (NGF).

  8. Bee waxes: a model of characterization for using as base simulator tissue in teletherapy with photons

    International Nuclear Information System (INIS)

    Silva, Rogerio Matias Vidal da; Souza, Divanizia do Nascimento

    2011-01-01

    This paper presents a model of characterization and selection of bee waxes which makes possible to certify the usage viability of that base simulator tissue in the manufacture of appropriated objects for external radiotherapy with mega volt photon beams. The work was divide into three stages, where was evaluated physical and chemical properties besides the aspects related to the capacity of beam attenuation. All the process was carefully accompanied related to the wax origin such as the bee specimen and the flora surrounding the beehives. The chemical composition of the waxes is similar to others simulators usually used in radiotherapy. The behavior of mass attenuation coefficient in the radiotherapeutic energy range is comparable to other simulators, and consequently to the soft tissue. The proposed model is efficient and allows the affirmative that the usage of determined bee wax as base simulator tissue is convenient

  9. Mean Blood Pressure Difference among Adolescents Based on Dyssomnia Types.

    Science.gov (United States)

    Sembiring, Krisnarta; Ramayani, Oke Rina; Lubis, Munar

    2018-02-15

    Dyssomnia is the most frequent sleep disturbance and associated with increased blood pressure. There has been no study determining the difference in mean blood pressure based on dyssomnia types among adolescents. To determine the difference in mean blood pressure among adolescents based on dyssomnia types. Cross-sectional study was conducted in SMP Negeri 1 Muara Batang Gadis in April 2016. Samples were students having sleep disturbance based on Sleep Disturbance Scale for Children (SDSC) questionnaire. Stature and blood pressure data were collected along with demographic data and sleep disorder questionnaire. Analyses were done with Kruskal-Wallis test and logistic regression. P - value blood pressure (DBP) was 111.1 (SD 16.46) mmHg and 70.3 (SD 11.98) mmHg respectively. Mean SDSC score was 49.7 (SD 8.96), and the most frequent dyssomnia type was disorders of initiating and maintaining sleep. Age and sex were not the risk factors of hypertension in dyssomnia. There was a significant difference in mean SBP (P = 0.006) and DBP (P = 0.022) based on dyssomnia types. Combination dyssomnia type had the highest mean blood pressure among dyssomnia types. There is a significant difference in mean blood pressure among adolescents based on dyssomnia types.

  10. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.

    Science.gov (United States)

    Navaei, Ali; Saini, Harpinder; Christenson, Wayne; Sullivan, Ryan Tanner; Ros, Robert; Nikkhah, Mehdi

    2016-09-01

    The development of advanced biomaterials is a crucial step to enhance the efficacy of tissue engineering strategies for treatment of myocardial infarction. Specific characteristics of biomaterials including electrical conductivity, mechanical robustness and structural integrity need to be further enhanced to promote the functionalities of cardiac cells. In this work, we fabricated UV-crosslinkable gold nanorod (GNR)-incorporated gelatin methacrylate (GelMA) hybrid hydrogels with enhanced material and biological properties for cardiac tissue engineering. Embedded GNRs promoted electrical conductivity and mechanical stiffness of the hydrogel matrix. Cardiomyocytes seeded on GelMA-GNR hybrid hydrogels exhibited excellent cell retention, viability, and metabolic activity. The increased cell adhesion resulted in abundance of locally organized F-actin fibers, leading to the formation of an integrated tissue layer on the GNR-embedded hydrogels. Immunostained images of integrin β-1 confirmed improved cell-matrix interaction on the hybrid hydrogels. Notably, homogeneous distribution of cardiac specific markers (sarcomeric α-actinin and connexin 43), were observed on GelMA-GNR hydrogels as a function of GNRs concentration. Furthermore, the GelMA-GNR hybrids supported synchronous tissue-level beating of cardiomyocytes. Similar observations were also noted by, calcium transient assay that demonstrated the rhythmic contraction of the cardiomyocytes on GelMA-GNR hydrogels as compared to pure GelMA. Thus, the findings of this study clearly demonstrated that functional cardiac patches with superior electrical and mechanical properties can be developed using nanoengineered GelMA-GNR hybrid hydrogels. In this work, we developed gold nanorod (GNR) incorporated gelatin-based hydrogels with suitable electrical conductivity and mechanical stiffness for engineering functional cardiac tissue constructs (e.g. cardiac patches). The synthesized conductive hybrid hydrogels properly

  11. MINI REVIEW ARTICLE:Immunohistochemistry of Epithelioid Soft Tissue Sarcomas, Literature Review Based on Case Studies

    Directory of Open Access Journals (Sweden)

    Megha Joshi

    2012-07-01

    Full Text Available Neoplasms with epithelioid histology may be diagnostically challenging. Immunohisto chemistry (IHC can aid in confirming thedifferential diagnosis of mesotheliomas, melanomas, lymphomas, and soft tissue sarcomas, all tumors that can present with an epithelioid histology. Immunohistochemistry can also assist in confirming the type of sarcomas. Using cases diagnosed in acommunity hospital setting over a ten year period, the use of IHC in sarcomas will be illustrated.

  12. Framework of collagen type I - vasoactive vessels structuring invariant geometric attractor in cancer tissues: insight into biological magnetic field.

    Directory of Open Access Journals (Sweden)

    Jairo A Díaz

    Full Text Available In a previous research, we have described and documented self-assembly of geometric triangular chiral hexagon crystal-like complex organizations (GTCHC in human pathological tissues. This article documents and gathers insights into the magnetic field in cancer tissues and also how it generates an invariant functional geometric attractor constituted for collider partners in their entangled environment. The need to identify this hierarquic attractor was born out of the concern to understand how the vascular net of these complexes are organized, and to determine if the spiral vascular subpatterns observed adjacent to GTCHC complexes and their assembly are interrelational. The study focuses on cancer tissues and all the macroscopic and microscopic material in which GTCHC complexes are identified, which have been overlooked so far, and are rigorously revised. This revision follows the same parameters that were established in the initial phase of the investigation, but with a new item: the visualization and documentation of external dorsal serous vascular bed areas in spatial correlation with the localization of GTCHC complexes inside the tumors. Following the standard of the electro-optical collision model, we were able to reproduce and replicate collider patterns, that is, pairs of left and right hand spin-spiraled subpatterns, associated with the orientation of the spinning process that can be an expansion or contraction disposition of light particles. Agreement between this model and tumor data is surprisingly close; electromagnetic spiral patterns generated were identical at the spiral vascular arrangement in connection with GTCHC complexes in malignant tumors. These findings suggest that the framework of collagen type 1 - vasoactive vessels that structure geometric attractors in cancer tissues with invariant morphology sets generate collider partners in their magnetic domain with opposite biological behavior. If these principles are incorporated

  13. Molecular Cloning and Characterization of a New C-type Lysozyme Gene from Yak Mammary Tissue

    Directory of Open Access Journals (Sweden)

    Ming Feng Jiang

    2015-12-01

    Full Text Available Milk lysozyme is the ubiquitous enzyme in milk of mammals. In this study, the cDNA sequence of a new chicken-type (c-type milk lysozyme gene (YML, was cloned from yak mammary gland tissue. A 444 bp open reading frames, which encodes 148 amino acids (16.54 kDa with a signal peptide of 18 amino acids, was sequenced. Further analysis indicated that the nucleic acid and amino acid sequences identities between yak and cow milk lysozyme were 89.04% and 80.41%, respectively. Recombinant yak milk lysozyme (rYML was produced by Escherichia coli BL21 and Pichia pastoris X33. The highest lysozyme activity was detected for heterologous protein rYML5 (M = 1,864.24 U/mg, SD = 25.75 which was expressed in P. pastoris with expression vector pPICZαA and it clearly inhibited growth of Staphylococcus aureus. Result of the YML gene expression using quantitative polymerase chain reaction showed that the YML gene was up-regulated to maximum at 30 day postpartum, that is, comparatively high YML can be found in initial milk production. The phylogenetic tree indicated that the amino acid sequence was similar to cow kidney lysozyme, which implied that the YML may have diverged from a different ancestor gene such as cow mammary glands. In our study, we suggest that YML be a new c-type lysozyme expressed in yak mammary glands that plays a role as host immunity.

  14. Characterization of tissue plasminogen activator binding proteins isolated from endothelial cells and other cell types

    International Nuclear Information System (INIS)

    Beebe, D.P.; Wood, L.L.; Moos, M.

    1990-01-01

    Human tissue plasminogen activator (t-PA) was shown to bind specifically to human osteosarcoma cells (HOS), and human epidermoid carcinoma cells (A-431 cells). Crosslinking studies with DTSSP demonstrated high molecular weight complexes (130,000) between 125 I-t-PA and cell membrane protein on human umbilical vein endothelial cells (HUVEC), HOS, and A-431 cells. A 48-65,000 molecular weight complex was demonstrated after crosslinking t-PA peptide (res. 7-20) to cells. Ligand blotting of cell lysates which had been passed over a t-PA affinity column revealed binding of t-PA to 54,000 and 95,000 molecular weight proteins. Several t-PA binding proteins were identified in immunopurified cell lysates, including tubulin beta chain, plasminogen activator inhibitor type 1 and single chain urokinase

  15. PROSPECTS OF APPLICATION OF TISSUE-ENGINEERED PANCREATIC CONSTRUCTS IN THE TREATMENT OF TYPE 1 DIABETES

    Directory of Open Access Journals (Sweden)

    G. N. Skaletskaya

    2016-01-01

    Full Text Available Allotransplantation of pancreatic islets remains the most effective method of treatment of diabetes mellitus type 1 being capable under combination of favorable conditions (suffi cient number of isolated islets, effective combination of immunosuppressive drugs to reach the recipients’ insulin independence for several years. However, the overwhelming shortage of donor pancreas and limited post-transplantation islet survival do not allow increasing the number of such transplants and their effectiveness. This review presents a critical analysis of the work done by Russian and foreign authors onto creation of tissue-engineered pancreatic constructs that may lead to the resolution of the three main pancreatic islet transplantation issues: 1 lack of donor material; 2 necessity of immunosuppressive therapy; 3 limited survival and functional activity of the islet.

  16. TH-AB-209-12: Tissue Equivalent Phantom with Excised Human Tissue for Assessing Clinical Capabilities of Coherent Scatter Imaging Applications

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, K; Morris, R; Spencer, J [Medical Physics Graduate Program, Duke University, Durham, NC (United States); Greenberg, J [Dept. of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Kapadia, A [Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States)

    2016-06-15

    Purpose: Previously we reported the development of anthropomorphic tissue-equivalent scatter phantoms of the human breast. Here we present the first results from the scatter imaging of the tissue equivalent breast phantoms for breast cancer diagnosis. Methods: A breast phantom was designed to assess the capability of coded aperture coherent x-ray scatter imaging to classify different types of breast tissue (adipose, fibroglandular, tumor). The phantom geometry was obtained from a prone breast geometry scanned on a dedicated breast CT system. The phantom was 3D printed using the segmented DICOM breast CT data. The 3D breast phantom was filled with lard (as a surrogate for adipose tissue) and scanned in different geometries alongside excised human breast tissues (obtained from lumpectomy and mastectomy procedures). The raw data were reconstructed using a model-based reconstruction algorithm and yielded the location and form factor (i.e., momentum transfer (q) spectrum) of the materials that were imaged. The measured material form factors were then compared to the ground truth measurements acquired by x-ray diffraction (XRD) imaging. Results: Our scatter imaging system was able to define the location and composition of the various materials and tissues within the phantom. Cancerous breast tissue was detected and classified through automated spectral matching and an 86% correlation threshold. The total scan time for the sample was approximately 10 minutes and approaches workflow times for clinical use in intra-operative or other diagnostic tasks. Conclusion: This work demonstrates the first results from an anthropomorphic tissue equivalent scatter phantom to characterize a coherent scatter imaging system. The functionality of the system shows promise in applications such as intra-operative margin detection or virtual biopsy in the diagnosis of breast cancer. Future work includes using additional patient-derived tissues (e.g., human fat), and modeling additional organs

  17. Reconstruction of structure and function in tissue engineering of solid organs: Toward simulation of natural development based on decellularization.

    Science.gov (United States)

    Zheng, Chen-Xi; Sui, Bing-Dong; Hu, Cheng-Hu; Qiu, Xin-Yu; Zhao, Pan; Jin, Yan

    2018-04-27

    Failure of solid organs, such as the heart, liver, and kidney, remains a major cause of the world's mortality due to critical shortage of donor organs. Tissue engineering, which uses elements including cells, scaffolds, and growth factors to fabricate functional organs in vitro, is a promising strategy to mitigate the scarcity of transplantable organs. Within recent years, different construction strategies that guide the combination of tissue engineering elements have been applied in solid organ tissue engineering and have achieved much progress. Most attractively, construction strategy based on whole-organ decellularization has become a popular and promising approach, because the overall structure of extracellular matrix can be well preserved. However, despite the preservation of whole structure, the current constructs derived from decellularization-based strategy still perform partial functions of solid organs, due to several challenges, including preservation of functional extracellular matrix structure, implementation of functional recellularization, formation of functional vascular network, and realization of long-term functional integration. This review overviews the status quo of solid organ tissue engineering, including both advances and challenges. We have also put forward a few techniques with potential to solve the challenges, mainly focusing on decellularization-based construction strategy. We propose that the primary concept for constructing tissue-engineered solid organs is fabricating functional organs based on intact structure via simulating the natural development and regeneration processes. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Cancerous tissue mapping from random lasing emission spectra

    International Nuclear Information System (INIS)

    Polson, R C; Vardeny, Z V

    2010-01-01

    Random lasing emission spectra have been collected from both healthy and cancerous tissues. The two types of tissue with optical gain have different light scattering properties as obtained from an average power Fourier transform of their random lasing emission spectra. The difference in the power Fourier transform leads to a contrast between cancerous and benign tissues, which is utilized for tissue mapping of healthy and cancerous regions of patients

  19. The effect of irradiation on function in self-renewing normal tissues with differing proliferative organisation

    International Nuclear Information System (INIS)

    Wheldon, T.E.; Michalowski, A.S.

    1982-01-01

    The primary effect of irradiation on self-renewing normal tissues is sterilisation of their proliferative cells, but how this translates into failure of tissue function depends on the mode of organisation of the tissue concerned. It has recently been suggested (Michalowski, 1981) that proliferative normal tissues may be classed as ''hierarchical'' (like haemopoietic tissues) or as ''flexible'' (like liver parenchyma) and that radiation injury to tissue function develops by different pathways in these tissues. Mathematical model studies confirm the different radiation responses of differently organized tissues. Tissues of the ''flexible'' or ''F-type'' category display a variety of novel radiobiological properties, different from those of the more familiar ''hierarchical'' or ''H-type'' tissues. The ''F-type'' responses are strongly influenced by radiation-sterilised (''doomed'') cells, and is is suggested that the role of ''doomed'' cells has been undervalued relative to that of clonogenic survivors. Since ''F-type'' tissues have characteristically low rates of cell renewal, it is possible that these tissues are preferentially responsible for late effects of irradiation in clinical radiotherapy. (author)

  20. Microscopic histological characteristics of soft tissue sarcomas: analysis of tissue features and electrical resistance.

    Science.gov (United States)

    Tosi, A L; Campana, L G; Dughiero, F; Forzan, M; Rastrelli, M; Sieni, E; Rossi, C R

    2017-07-01

    Tissue electrical conductivity is correlated with tissue characteristics. In this work, some soft tissue sarcomas (STS) excised from patients have been evaluated in terms of histological characteristics (cell size and density) and electrical resistance. The electrical resistance has been measured using the ex vivo study on soft tissue tumors electrical characteristics (ESTTE) protocol proposed by the authors in order to study electrical resistance of surgical samples excised by patients in a fixed measurement setup. The measurement setup includes a voltage pulse generator (700 V, 100 µs long at 5 kHz, period 200 µs) and an electrode with 7 needles, 20 mm-long, with the same distance arranged in a fixed hexagonal geometry. In the ESTTE protocol, the same voltage pulse sequence is applied to each different tumor mass and the corresponding resistance has been evaluated from voltage and current recorded by the equipment. For each tumor mass, a histological sample of the volume treated by means of voltage pulses has been taken for histological analysis. Each mass has been studied in order to identify the sarcoma type. For each histological sample, an image at 20× or 40× of magnification was acquired. In this work, the electrical resistance measured for each tumor has been correlated with tissue characteristics like the type, size and density of cells. This work presents a preliminary study to explore possible correlations between tissue characteristics and electrical resistance of STS. These results can be helpful to adjust the pulse voltage intensity in order to improve the electrochemotherapy efficacy on some histotype of STS.

  1. Leiomyosarcoma: A rare soft tissue cancer arising from multiple organs

    Directory of Open Access Journals (Sweden)

    Zorawar Singh

    2018-03-01

    Full Text Available Leiomyosarcoma (LMS, a smooth muscle connective tissue tumor, is a rare form of cancer which accounts for 5–10% of soft tissue sarcomas. This type of cancer is highly unpredictable. LMS is a resistant type of cancer and can remain in the dormant state for long time. It can recur in the later stages of life. LMS has been reported in different animals including humans. A wide literature search was done. The PubMed database was used to search for journal articles on the occurrence of LMS in different organs from 1950 to 2016. LMS has been reported to be associated with different organs, including esophagus, stomach, intestine, anus and uterus. In this article, an attempt has been made to review the studies based on occurrence of LMS with respect to the organs affected and frequency of publications. Finding the organ-associated occurrence of LMS may be useful in assessing the overall risk and formulating future cancer preventive strategies.

  2. Differential N-glycan patterns identified in lung adenocarcinoma by N-glycan profiling of formalin-fixed paraffin-embedded (FFPE) tissue sections.

    Science.gov (United States)

    Wang, Xiaoning; Deng, Zaian; Huang, Chuncui; Zhu, Tong; Lou, Jiatao; Wang, Lin; Li, Yan

    2018-02-10

    N-glycan profiling is a powerful approach for analyzing the functional relationship between N-glycosylation and cancer. Current methods rely on either serum or fresh tissue samples; however, N-glycan patterns may differ between serum and tissue, as the proteins of serum originate from a variety of tissues. Furthermore, fresh tissue samples are difficult to ship and store. Here, we used a profiling method based on formalin-fixed paraffin-embedded (FFPE) tissue sections from lung adenocarcinoma patients. We found that our method was highly reproducible. We identified 58 N-glycan compositions from lung adenocarcinoma FFPE samples, 51 of which were further used for MS n -based structure prediction. We show that high mannose type N-glycans are upregulated, while sialylated N-glycans are downregulated in our FFPE lung adenocarcinoma samples, compared to the control samples. Our receiver operating characteristic (ROC) curve analysis shows that high mannose type and sialylated N-glycans are useful discriminators to distinguish between lung adenocarcinoma and control tissue. Together, our results indicate that expression levels of specific N-glycans correlate well with lung adenocarcinoma, and strongly suggest that our FFPE-based method will be useful for N-glycan profiling of cancer tissues. Glycosylation is one of the most important post-translational protein modifications, and is associated with several physiopathological processes, including carcinogenesis. In this study, we tested the feasibility of using formalin-fixed paraffin-embedded (FFPE) tissue sections to identify changes in N-glycan patterns and identified the differentially expressed N-glycans of lung adenocarcinoma. Our study shows that the FFPE-based N-glycan profiling method is useful for clinical diagnosis as well as identification of potential biomarkers, and our data expand current knowledge of differential N-glycan patterns of lung adenocarcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering.

    Science.gov (United States)

    Farraro, Kathryn F; Kim, Kwang E; Woo, Savio L-Y; Flowers, Jonquil R; McCullough, Matthew B

    2014-06-27

    In recent years, there has been a surge of interest in magnesium (Mg) and its alloys as biomaterials for orthopaedic applications, as they possess desirable mechanical properties, good biocompatibility, and biodegradability. Also shown to be osteoinductive, Mg-based materials could be particularly advantageous in functional tissue engineering to improve healing and serve as scaffolds for delivery of drugs, cells, and cytokines. In this paper, we will present two examples of Mg-based orthopaedic devices: an interference screw to accelerate ACL graft healing and a ring to aid in the healing of an injured ACL. In vitro tests using a robotic/UFS testing system showed that both devices could restore function of the goat stifle joint. Under a 67-N anterior tibial load, both the ACL graft fixed with the Mg-based interference screw and the Mg-based ring-repaired ACL could restore anterior tibial translation (ATT) to within 2mm and 5mm, respectively, of the intact joint at 30°, 60°, and 90° of flexion. In-situ forces in the replacement graft and Mg-based ring-repaired ACL were also similar to those of the intact ACL. Further, early in vivo data using the Mg-based interference screw showed that after 12 weeks, it was non-toxic and the joint stability and graft function reached similar levels as published data. Following these positive results, we will move forward in incorporating bioactive molecules and ECM bioscaffolds to these Mg-based biomaterials to test their potential for functional tissue engineering of musculoskeletal and other tissues. © 2013 Published by Elsevier Ltd.

  4. Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2015-01-01

    Full Text Available Tissues in the body are hierarchically structured composite materials with tissue-specific chemical and topographical properties. Here we report the preparation of tissue scaffolds with macroscopic pores generated via the dissolution of a sacrificial supramolecular polymer-based crystal template (urea from a biodegradable polymer-based scaffold (polycaprolactone, PCL. Furthermore, we report a method of aligning the supramolecular polymer-based crystals within the PCL, and that the dissolution of the sacrificial urea yields scaffolds with macroscopic pores that are aligned over long, clinically-relevant distances (i.e., centimeter scale. The pores act as topographical cues to which rat Schwann cells respond by aligning with the long axis of the pores. Generation of an interpenetrating network of polypyrrole (PPy and poly(styrene sulfonate (PSS in the scaffolds yields electroactive tissue scaffolds that allow the electrical stimulation of Schwann cells cultured on the scaffolds which increases the production of nerve growth factor (NGF.

  5. Ehlers-Danlos Syndrome, Hypermobility Type: An Underdiagnosed Hereditary Connective Tissue Disorder with Mucocutaneous, Articular, and Systemic Manifestations

    Science.gov (United States)

    Castori, Marco

    2012-01-01

    Ehlers-Danlos syndrome, hypermobility type, constituting a phenotypic continuum with or, perhaps, corresponding to the joint hypermobility syndrome (JHS/EDS-HT), is likely the most common, though the least recognized, heritable connective tissue disorder. Known for decades as a hereditary condition with predominant rheumatologic manifestations, it is now emerging as a multisystemic disorder with widespread manifestations. Nevertheless, the practitioners' awareness of this condition is generally poor and most patients await years or, perhaps, decades before reaching the correct diagnosis. Among the various sites of disease manifestations, skin and mucosae represent a neglected organ where the dermatologist can easily spot diagnostic clues, which consistently integrate joint hypermobility and other orthopedic/neurologic manifestations at physical examination. In this paper, actual knowledge on JHS/EDS-HT is summarized in various sections. Particular attention has been posed on overlooked manifestations, including cutaneous, mucosal, and oropharyngeal features, and early diagnosis techniques, as a major point of interest for the practicing dermatologist. Actual research progresses on JH/EDS-HT envisage an unexpected link between heritable dysfunctions of the connective tissue and a wide range of functional somatic syndromes, most of them commonly diagnosed in the office of various specialists, comprising dermatologists. PMID:23227356

  6. Physically based principles of cell adhesion mechanosensitivity in tissues

    International Nuclear Information System (INIS)

    Ladoux, Benoit; Nicolas, Alice

    2012-01-01

    The minimal structural unit that defines living organisms is a single cell. By proliferating and mechanically interacting with each other, cells can build complex organization such as tissues that ultimately organize into even more complex multicellular living organisms, such as mammals, composed of billions of single cells interacting with each other. As opposed to passive materials, living cells actively respond to the mechanical perturbations occurring in their environment. Tissue cell adhesion to its surrounding extracellular matrix or to neighbors is an example of a biological process that adapts to physical cues. The adhesion of tissue cells to their surrounding medium induces the generation of intracellular contraction forces whose amplitude adapts to the mechanical properties of the environment. In turn, solicitation of adhering cells with physical forces, such as blood flow shearing the layer of endothelial cells in the lumen of arteries, reinforces cell adhesion and impacts cell contractility. In biological terms, the sensing of physical signals is transduced into biochemical signaling events that guide cellular responses such as cell differentiation, cell growth and cell death. Regarding the biological and developmental consequences of cell adaptation to mechanical perturbations, understanding mechanotransduction in tissue cell adhesion appears as an important step in numerous fields of biology, such as cancer, regenerative medicine or tissue bioengineering for instance. Physicists were first tempted to view cell adhesion as the wetting transition of a soft bag having a complex, adhesive interaction with the surface. But surprising responses of tissue cell adhesion to mechanical cues challenged this view. This, however, did not exclude that cell adhesion could be understood in physical terms. It meant that new models and descriptions had to be created specifically for these biological issues, and could not straightforwardly be adapted from dead matter

  7. A glow of HLA typing in organ transplantation

    Science.gov (United States)

    2013-01-01

    The transplant of organs and tissues is one of the greatest curative achievements of this century. In organ transplantation, the adaptive immunity is considered the main response exerted to the transplanted tissue, since the main goal of the immune response is the MHC (major histocompatibility complex) molecules expressed on the surface of donor cells. Cell surface molecules that induce an antigenic stimulus cause the rejection immune response to grafted tissue or organ. A wide variety of transplantation antigens have been described, including the major histocompatibility molecules, minor histocompatibility antigens, ABO blood group antigens and endothelial cell antigens. The sensitization to MHC antigens may be caused by transfusions, pregnancy, or failed previous grafts leading to development of anti-human leukocyte antigen (HLA) antibodies that are important factor responsible for graft rejection in solid organ transplantation and play a role in post-transfusion complication Anti-HLA Abs may be present in healthy individuals. Methods for HLA typing are described, including serological methods, molecular techniques of sequence-specific priming (SSP), sequence-specific oligonucleotide probing (SSOP), Sequence based typing (SBT) and reference strand-based conformation analysis (RSCA) method. Problems with organ transplantation are reservoir of organs and immune suppressive treatments that used to decrease rate of rejection with less side effect and complications. PMID:23432791

  8. Evaluating childhood obesity. Magnetic resonance-based quantification of abdominal adipose tissue and liver fat in children

    International Nuclear Information System (INIS)

    Raschpichler, M.C.; Leipzig Univ. Medical Center; Sorge, I.; Hirsch, W.; Mende, M.; Sergeyev, E.; Koerner, A.; Kruber, D.; Schick, F.

    2012-01-01

    The purpose of this study is to establish and validate a magnetic resonance (MR)-based fat quantification package that provides an accurate assessment of abdominal adipose tissue and liver fat in children. Ex vivo trials with a torso model and water-oil mixtures are conducted. Abdominal adipose tissue (AAT) is covered by magnetic resonance imaging (MRI) using a fat-selective sequence and is analyzed by a plug-in based on the open source software Image. Liver fat (LF) is measured with localized 1 H Magnetic Resonance Spectroscopy ( 1 H MRS) and the jMRUI (java-based Magnetic Resonance User Interface) software package. Evaluation of the clinical methodology involved a study of 10 children in this feasibility study (mean age and body mass index: 13.3 yr; 33.3 kg/m 2 ). To evaluate the method's validity, reference measurements were performed. Ex vivo trials with the torso model showed that adipose tissue was measured appropriately with a systematic underestimation by 9.3 ± 0.2 % (0.32 ± 0.064 kg). Coefficients of variation for both intra- and inter-observer measurements ranged between 0 - 2.7 % and repeated analyses showed significant equivalent results (p 1 H MRS ex vivo revealed significant equivalence with the predefined fat content in water-oil mixtures (p < 0.01). In vivo, the homemade plug-in significantly overestimated the AAT, with the visceral adipose tissue being most affected (+ 15.7 ± 8.4 %). Although an overestimation of the AAT by the presented plug-in should be taken into consideration, this children-friendly package enables the quantification of both LF and AAT within 30 min on a freeware-based platform. (orig.)

  9. Effect of crystallinity and plasticizer on mechanical properties and tissue integration of starch-based materials from two botanical origins.

    Science.gov (United States)

    Velasquez, Diego; Pavon-Djavid, Graciela; Chaunier, Laurent; Meddahi-Pellé, Anne; Lourdin, Denis

    2015-06-25

    The application of starch-based materials for biomedical purposes has attracted significant interest due to their biocompatibility. The physical properties and crystal structure of materials based on potato starch (PS) and amylomaize starch (AMS) were studied under physiological conditions. PS plasticized with 20% glycerol presented the best mechanical properties with an elastic modulus of 1.6MPa and a weak swelling, remaining stable for 30 days. The in vitro cell viability of 3T3 cells after contact with extracts from PS and AMS with 20% glycerol is 72% and 80%, respectively. PS presented good tissue integration and no significant inflammation or foreign body response after 30 days intra-muscular implantation in a rat model, contrary to AMS. It was shown that glycerol plasticization favors a fast B-type crystallization of PS materials, enhancing their mechanical strength and durability, and making them a good candidate for bioresorbable and biocompatible materials for implantable medical devices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Ex-Vivo Tissues Engineering Modeling for Reconstructive Surgery Using Human Adult Adipose Stem Cells and Polymeric Nanostructured Matrix.

    Science.gov (United States)

    Morena, Francesco; Argentati, Chiara; Calzoni, Eleonora; Cordellini, Marino; Emiliani, Carla; D'Angelo, Francesco; Martino, Sabata

    2016-03-31

    The major challenge for stem cell translation regenerative medicine is the regeneration of damaged tissues by creating biological substitutes capable of recapitulating the missing function in the recipient host. Therefore, the current paradigm of tissue engineering strategies is the combination of a selected stem cell type, based on their capability to differentiate toward committed cell lineages, and a biomaterial, that, due to own characteristics (e.g., chemical, electric, mechanical property, nano-topography, and nanostructured molecular components), could serve as active scaffold to generate a bio-hybrid tissue/organ. Thus, effort has been made on the generation of in vitro tissue engineering modeling. Here, we present an in vitro model where human adipose stem cells isolated from lipoaspirate adipose tissue and breast adipose tissue, cultured on polymeric INTEGRA ® Meshed Bilayer Wound Matrix (selected based on conventional clinical applications) are evaluated for their potential application for reconstructive surgery toward bone and adipose tissue. We demonstrated that human adipose stem cells isolated from lipoaspirate and breast tissue have similar stemness properties and are suitable for tissue engineering applications. Finally, the overall results highlighted lipoaspirate adipose tissue as a good source for the generation of adult adipose stem cells.

  11. Technical reproducibility of single-nucleotide and size-based DNA biomarker assessment using DNA extracted from formalin-fixed, paraffin-embedded tissues.

    Science.gov (United States)

    Zhang, Shenli; Tan, Iain B; Sapari, Nur S; Grabsch, Heike I; Okines, Alicia; Smyth, Elizabeth C; Aoyama, Toru; Hewitt, Lindsay C; Inam, Imran; Bottomley, Dan; Nankivell, Matthew; Stenning, Sally P; Cunningham, David; Wotherspoon, Andrew; Tsuburaya, Akira; Yoshikawa, Takaki; Soong, Richie; Tan, Patrick

    2015-05-01

    DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tissues has been used in the past to analyze genetic polymorphisms. We evaluated the technical reproducibility of different types of assays for gene polymorphisms using DNA extracted from FFPE material. By using the MassARRAY iPLEX system, we investigated polymorphisms in DPYD (rs1801159 and rs3918290), UMPS (rs1801019), ERCC1 (rs11615), ERCC1 (rs3212986), and ERCC2 (rs13181) in 56 FFPE DNA samples. By using PCR, followed by size-based gel electrophoresis, we also examined TYMS 5' untranslated region 2R/3R repeats and GSTT1 deletions in 50 FFPE DNA samples and 34 DNAs extracted from fresh-frozen tissues and cell lines. Each polymorphism was analyzed by two independent runs. We found that iPLEX biomarker assays measuring single-nucleotide polymorphisms provided consistent concordant results. However, by using FFPE DNA, size-based PCR biomarkers (GSTT1 and TYMS 5' untranslated region) were discrepant in 32.7% (16/49, with exact 95% CI, 19.9%-47.5%; exact binomial confidence limit test) and 4.2% (2/48, with exact 95% CI, 0.5%-14.3%) of cases, respectively, whereas no discrepancies were observed using intact genomic DNA. Our findings suggest that DNA from FFPE material can be used to reliably test single-nucleotide polymorphisms. However, results based on size-based PCR biomarkers, and particularly GSTT1 deletions, using FFPE DNA need to be interpreted with caution. Independent repeated assays should be performed on all cases to assess potential discrepancies. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  12. Soft Tissue Sarcoma—Health Professional Version

    Science.gov (United States)

    Soft tissue sarcomas are malignant tumors that arise in any of the mesodermal tissues of the extremities, trunk and retroperitoneum, or head and neck. Soft tissue sarcomas may be heterogeneous. Find evidence-based information on soft tissue sarcoma treatment and research.

  13. Molecular Markers for Prostate Cancer in Formalin-Fixed Paraffin-Embedded Tissues

    Directory of Open Access Journals (Sweden)

    Tamara Sequeiros

    2013-01-01

    Full Text Available Prostate cancer (PCa is the most frequently diagnosed type of cancer in developed countries. The decisive method of diagnosis is based on the results of biopsies, morphologically evaluated to determine the presence or absence of cancer. Although this approach leads to a confident diagnosis in most cases, it can be improved by using the molecular markers present in the tissue. Both miRNAs and proteins are considered excellent candidates for biomarkers in formalin-fixed paraffin-embedded (FFPE tissues, due to their stability over long periods of time. In the last few years, a concerted effort has been made to develop the necessary tools for their reliable measurement in these types of samples. Furthermore, the use of these kinds of markers may also help in establishing tumor grade and aggressiveness, as well as predicting the possible outcomes in each particular case for the different treatments available. This would aid clinicians in the decision-making process. In this review, we attempt to summarize and discuss the potential use of microRNA and protein profiles in FFPE tissue samples as markers to better predict PCa diagnosis, progression, and response to therapy.

  14. Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering

    Science.gov (United States)

    Nitta, Sachiko Kaihara; Numata, Keiji

    2013-01-01

    There has been a great interest in application of nanoparticles as biomaterials for delivery of therapeutic molecules such as drugs and genes, and for tissue engineering. In particular, biopolymers are suitable materials as nanoparticles for clinical application due to their versatile traits, including biocompatibility, biodegradability and low immunogenicity. Biopolymers are polymers that are produced from living organisms, which are classified in three groups: polysaccharides, proteins and nucleic acids. It is important to control particle size, charge, morphology of surface and release rate of loaded molecules to use biopolymer-based nanoparticles as drug/gene delivery carriers. To obtain a nano-carrier for therapeutic purposes, a variety of materials and preparation process has been attempted. This review focuses on fabrication of biocompatible nanoparticles consisting of biopolymers such as protein (silk, collagen, gelatin, β-casein, zein and albumin), protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch and heparin). The effects of the nature of the materials and the fabrication process on the characteristics of the nanoparticles are described. In addition, their application as delivery carriers of therapeutic drugs and genes and biomaterials for tissue engineering are also reviewed. PMID:23344060

  15. Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Keiji Numata

    2013-01-01

    Full Text Available There has been a great interest in application of nanoparticles as biomaterials for delivery of therapeutic molecules such as drugs and genes, and for tissue engineering. In particular, biopolymers are suitable materials as nanoparticles for clinical application due to their versatile traits, including biocompatibility, biodegradability and low immunogenicity. Biopolymers are polymers that are produced from living organisms, which are classified in three groups: polysaccharides, proteins and nucleic acids. It is important to control particle size, charge, morphology of surface and release rate of loaded molecules to use biopolymer-based nanoparticles as drug/gene delivery carriers. To obtain a nano-carrier for therapeutic purposes, a variety of materials and preparation process has been attempted. This review focuses on fabrication of biocompatible nanoparticles consisting of biopolymers such as protein (silk, collagen, gelatin, β-casein, zein and albumin, protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch and heparin. The effects of the nature of the materials and the fabrication process on the characteristics of the nanoparticles are described. In addition, their application as delivery carriers of therapeutic drugs and genes and biomaterials for tissue engineering are also reviewed.

  16. Ehlers-Danlos Syndrome—Hypermobility Type and Hemorrhoids

    Directory of Open Access Journals (Sweden)

    Timothy P. Plackett

    2014-01-01

    Full Text Available Ehlers-Danlos syndrome-hypermobility type (EDS-HT is a connective tissue disorder associated with chronic musculoskeletal pain. The diagnosis is based on simple clinical examination, although it is easily overlooked. Herein we present a case of EDS-HT associated with hemorrhoids and suggest that there may be an association between the two conditions.

  17. Adipose Tissues Characteristics of Normal, Obesity, and Type 2 Diabetes in Uygurs Population

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2015-01-01

    Full Text Available Our results showed that, at the same BMI level, Uygurs have greater WHR values, abdominal visceral fat content, and diabetes risks than Kazaks. In addition, values of HDL-C in Uygur subjects were lower than those in Kazak subjects, and values of creatinine, uric acid, diastolic blood pressure, blood glucose, and fructosamine in Uygur male subjects were lower than those in Kazak male subjects. In contrast, systolic blood pressure values in Uygur subjects were greater than those in Kazak subjects, and blood glucose values were greater in Uygur female subjects than in Kazak female subjects. Additionally, in Uygurs, visceral adipose tissue expression levels of TBX1 and TCF21 were greater in obesity group than in normal and T2DM groups and lower in T2DM group than in normal group (P<0.01. The visceral adipose tissue expression levels of APN in normal group was greater than those in obesity and T2DM groups, and visceral adipose tissue expression levels of TNF-α and MCP-1 in normal group were lower than those in obesity and T2DM groups (P<0.01. In conclusion, T2DM in Uygurs was mainly associated with not only distribution of adipose tissue in body, but also change in metabolic activity and adipocytokines secretion of adipose tissue.

  18. Rates of development of immatures of three species of Chrysomya (Diptera: Calliphoridae) reared in different types of animal tissues: implications for estimating the postmortem interval.

    Science.gov (United States)

    Thyssen, Patricia Jacqueline; de Souza, Carina Mara; Shimamoto, Paula Midori; Salewski, Thais de Britto; Moretti, Thiago Carvalho

    2014-09-01

    Blowflies have major medical and sanitary importance because they can be vectors of viruses, bacteria, and helminths and are also causative agents of myiasis. Also, these flies, especially those belonging to the genus Chrysomya, are among the first insects to arrive at carcasses and are therefore valuable in providing data for the estimation of the minimum postmortem interval (PMImin). The PMImin can be calculated by assessing the weight, length, or development stage of blowfly larvae. Lack of information on the variables that might affect these parameters in different fly species can generate inaccuracies in estimating the PMImin. This study evaluated the effects of different types of bovine tissues (the liver, muscle, tongue, and stomach) and chicken heart on the development rates of larvae of Chrysomya albiceps Wiedemann, Chrysomya megacephala Fabricius, and Chrysomya putoria Wiedemann (Diptera: Calliphoridae). The efficiency of each rearing substrate was assessed by maggot weight gain (mg), larval development time (h), larval and pupal survival (%), and emergence interval (h). The development rates of larvae of all blowfly species studied here were directly influenced by the type of food substrate. Tissues that have high contents of protein and fat (muscle and heart) allowed the highest larval weight gain. For bovine liver, all Chrysomya species showed slower growth, by as much as 48 h, compared to the other tissues. Different rates of development are probably associated with specific energy requirements of calliphorids and the nutritional composition of each type of food.

  19. Normal tissue complication probability (NTCP), the clinician,s perspective

    International Nuclear Information System (INIS)

    Yeoh, E.K.

    2011-01-01

    Full text: 3D radiation treatment planning has enabled dose distributions to be related to the volume of normal tissues irradiated. The dose volume histograms thus derived have been utilized to set NTCP dose constraints to facilitate optimization of treatment planning. However, it is not widely appreciated that a number of important variables other than DYH's which determine NTCP in the individual patient. These variables will be discussed under the headings of patient and treatment related as well as tumour related factors. Patient related factors include age, co-morbidities such as connective tissue disease and diabetes mellitus, previous tissue/organ damage, tissue architectural organization (parallel or serial), regional tissue/organ and individual tissue/organ radiosensitivities as well as the development of severe acute toxicity. Treatment related variables which need to be considered include dose per fraction (if not the conventional 1.8012.00 Gy/fraction, particularly for IMRT), number of fractions and total dose, dose rate (particularly if combined with brachytherapy) and concurrent chemotherapy or other biological dose modifiers. Tumour related factors which impact on NTCP include infiltration of normal tissue/organ usually at presentation leading to compromised function but also with recurrent disease after radiation therapy as well as variable tumour radiosensitivities between and within tumour types. Whilst evaluation of DYH data is a useful guide in the choice of treatment plan, the current state of knowledge requires the clinician to make an educated judgement based on a consideration of the other factors.

  20. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    Science.gov (United States)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.