WorldWideScience

Sample records for tissue stem cells

  1. Stem Cells and Tissue Engineering

    CERN Document Server

    Pavlovic, Mirjana

    2013-01-01

    Stem cells are the building blocks for all other cells in an organism. The human body has about 200 different types of cells and any of those cells can be produced by a stem cell. This fact emphasizes the significance of stem cells in transplantational medicine, regenerative therapy and bioengineering. Whether embryonic or adult, these cells can be used for the successful treatment of a wide range of diseases that were not treatable before, such as osteogenesis imperfecta in children, different forms of leukemias, acute myocardial infarction, some neural damages and diseases, etc. Bioengineering, e.g. successful manipulation of these cells with multipotential capacity of differentiation toward appropriate patterns and precise quantity, are the prerequisites for successful outcome and treatment. By combining in vivo and in vitro techniques, it is now possible to manage the wide spectrum of tissue damages and organ diseases. Although the stem-cell therapy is not a response to all the questions, it provides more...

  2. Hardwiring Stem Cell Communication through Tissue Structure.

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-03-10

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function, but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Hardwiring stem cell communication through tissue structure

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-01-01

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. PMID:26967287

  4. Stem cells in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jeong Min [Department of Preventive and Social Dentistry and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Mantalaris, Anathathios, E-mail: yshwang@khu.ac.k [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-12-15

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  5. Stem cells in bone tissue engineering

    International Nuclear Information System (INIS)

    Seong, Jeong Min; Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik; Mantalaris, Anathathios

    2010-01-01

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  6. Nano scaffolds and stem cell therapy in liver tissue engineering

    Science.gov (United States)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  7. Tissue-specific designs of stem cell hierarchies

    NARCIS (Netherlands)

    Visvader, Jane E.; Clevers, Hans

    2016-01-01

    Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in

  8. Tissue-specific designs of stem cell hierarchies

    NARCIS (Netherlands)

    Visvader, Jane E; Clevers, Hans

    Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in

  9. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue

  10. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2016-06-01

    Full Text Available Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous. The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells, early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium, using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration, timing for cell therapy (immediate vs. a few days after injury, single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

  11. [Differentiation of mesenchymal stem cells of adipose tissue].

    Science.gov (United States)

    Salyutin, R V; Zapohlska, K M; Palyanytsya, S S; Sirman, V M; Sokolov, M F

    2015-03-01

    Experimental investigation were conducted with the objective to determine a stem cells, capacity to differentiate in adipogenic direction, if they were obtained from adipose tissue. The investigation results have witnessed, that the cells, obtained from adipose tissue, are capable for a tissue-speciphic differentiation in osteogenic, chondrogenic, and, principally--in adipogenic direction, what confirms a multypotent nature of mesenchymal stem cells of adipose tissue. Adipose tissue constitutes an alternative to the bone marrow, as a source of multipotent mesenchymal stem cells, which may be applied in further investigations, concerning determination of their defense possibility for the transplanted autologous adipose tissue from the tissue resorption, made in a lipophiling way.

  12. Mesenchymal Stem Cells in Tissue Repair

    Directory of Open Access Journals (Sweden)

    Amy M DiMarino

    2013-09-01

    Full Text Available The advent of mesenchymal stem cell (MSC based therapies for clinical therapeutics has been an exciting and new innovation for the treatment of a variety of diseases associated with inflammation, tissue damage and subsequent regeneration and repair. Application-based ability to measure MSC potency and fate of the cells post-MSC therapy are the variables that confound the use of MSCs therapeutics in human diseases. An evaluation of MSC function and applications with attention to detail in the preparation as well as quality control (QC and quality assurance (QA are only as good as the assays that are developed. In vivo measures of efficacy and potency require an appreciation of the overall pathophysiology of the model and standardization of outcome measures. The new concepts of how MSC’s participate in the tissue regeneration and wound repair process and further, how this is impacted by estimates of efficacy and potency Are important new topics. In this regard,,, this chapter will review some of the in vitro and in vivo assays for MSC function and activity and their application to the clinical arena.

  13. Dental Tissue — New Source for Stem Cells

    Directory of Open Access Journals (Sweden)

    Vladimir Petrovic

    2009-01-01

    Full Text Available Stem cells have been isolated from many tissues and organs, including dental tissue. Five types of dental stem cells have been established: dental pulp stem cells, stem cells from exfoliated deciduous teeth, stem cells from apical papilla, periodontal ligament stem cells, and dental follicle progenitor cells. The main characteristics of dental stem cells are their potential for multilineage differentiation and self-renewal capacity. Dental stem cells can differentiate into odontoblasts, adipocytes, neuronal-like cells, glial cells, osteoblasts, chondrocytes, melanocytes, myotubes, and endothelial cells. Possible application of these cells in various fields of medicine makes them good candidates for future research as a new, powerful tool for therapy. Although the possible use of these cells in therapeutic purposes and tooth tissue engineering is still in the beginning stages, the results are promising. The efforts made in the research of dental stem cells have clarified many mechanisms underlying the biological processes in which these cells are involved. This review will focus on the new findings in the field of dental stem cell research and on their potential use in the therapy of various disorders.

  14. Designing the stem cell microenvironment for guided connective tissue regeneration.

    Science.gov (United States)

    Bogdanowicz, Danielle R; Lu, Helen H

    2017-12-01

    Adult mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because of their ability to self-renew and their capacity for multilineage differentiation and tissue regeneration. For connective tissues, such as ligaments or tendons, MSCs are vital to the modulation of the inflammatory response following acute injury while also interacting with resident fibroblasts to promote cell proliferation and matrix synthesis. To date, MSC injection for connective tissue repair has yielded mixed results in vivo, likely due to a lack of appropriate environmental cues to effectively control MSC response and promote tissue healing instead of scar formation. In healthy tissues, stem cells reside within a complex microenvironment comprising cellular, structural, and signaling cues that collectively maintain stemness and modulate tissue homeostasis. Changes to the microenvironment following injury regulate stem cell differentiation, trophic signaling, and tissue healing. Here, we focus on models of the stem cell microenvironment that are used to elucidate the mechanisms of stem cell regulation and inspire functional approaches to tissue regeneration. Recent studies in this frontier area are highlighted, focusing on how microenvironmental cues modulate MSC response following connective tissue injury and, more importantly, how this unique cell environment can be programmed for stem cell-guided tissue regeneration. © 2017 New York Academy of Sciences.

  15. Mesenchymal Stem Cells: Application for Immunomodulation and Tissue Repair

    DEFF Research Database (Denmark)

    Horwood, Nicole J.; Dazzi, Francesco; Zaher, Walid

    2012-01-01

    Mesenchymal stem cells (MSC) are stem cell populations present among the bone marrow stroma and a number of other tissues that are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. MSC provide supportive stroma for growth and diffe......Mesenchymal stem cells (MSC) are stem cell populations present among the bone marrow stroma and a number of other tissues that are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. MSC provide supportive stroma for growth...

  16. Stem cell homing-based tissue engineering using bioactive materials

    Science.gov (United States)

    Yu, Yinxian; Sun, Binbin; Yi, Chengqing; Mo, Xiumei

    2017-06-01

    Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitro studies and animal tests, there is still a long way before clinical application.

  17. STEM CELL ORIGIN DIFFERENTLY AFFECTS BONE TISSUE ENGINEERING STRATEGIES.

    Directory of Open Access Journals (Sweden)

    Monica eMattioli-Belmonte

    2015-09-01

    Full Text Available Bone tissue engineering is a promising research area for the improvement of traditional bone grafting procedure drawbacks. Thanks to the capability of self-renewal and multi-lineage differentiation, stem cells are one of the major actors in tissue engineering approaches, and adult mesenchymal stem cells (MSCs are considered to be appropriate for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs are the earliest- discovered and well-known stem cell population used in bone tissue engineering. However, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The successful identification and combination of tissue engineering, scaffold, progenitor cells, and physiologic signalling molecules enabled the surgeon to design, recreate the missing tissue in its near natural form. On the basis of these considerations, we analysed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e. periodontal ligament, maxillary periosteum as well as adipose-derived stem cells, in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, considering their peculiar features, they may alternatively represent interesting cell sources in different stem cell-based bone/periodontal tissue regeneration approaches.

  18. Adipose-derived stem cells and periodontal tissue engineering.

    Science.gov (United States)

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  19. Imaging stem cell differentiation for cell-based tissue repair.

    Science.gov (United States)

    Lee, Zhenghong; Dennis, James; Alsberg, Eben; Krebs, Melissa D; Welter, Jean; Caplan, Arnold

    2012-01-01

    Mesenchymal stem cells (MSCs) can differentiate into a number of tissue lineages and possess great potential in tissue regeneration and cell-based therapy. For bone fracture or cartilage wear and tear, stem cells need to be delivered to the injury site for repair. Assessing engraftment of the delivered cells and their differentiation status is crucial for the optimization of novel cell-based therapy. A longitudinal and quantitative method is needed to track stem cells transplanted/implanted to advance our understanding of their therapeutic effects and facilitate improvements in cell-based therapy. Currently, there are very few effective noninvasive ways to track the differentiation of infused stem cells. A brief review of a few existing approaches, mostly using transgenic animals, is given first, followed by newly developed in vivo imaging strategies that are intended to track implanted MSCs using a reporter gene system. Specifically, marker genes are selected to track whether MSCs differentiate along the osteogenic lineage for bone regeneration or the chondrogenic lineage for cartilage repair. The general strategy is to use the promoter of a differentiation-specific marker gene to drive the expression of an established reporter gene for noninvasive and repeated imaging of stem cell differentiation. The reporter gene system is introduced into MSCs by way of a lenti-viral vector, which allows the use of human cells and thus offers more flexibility than the transgenic animal approach. Imaging osteogenic differentiation of implanted MSCs is used as a demonstration of the proof-of-principle of this differentiation-specific reporter gene approach. This framework can be easily extended to other cell types and for differentiation into any other cell lineage for which a specific marker gene (promoter) can be identified. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Pulp tissue from primary teeth: new source of stem cells

    Directory of Open Access Journals (Sweden)

    Paloma Dias Telles

    2011-06-01

    Full Text Available SHED (stem cells from human exfoliated deciduous teeth represent a population of postnatal stem cells capable of extensive proliferation and multipotential differentiation. Primary teeth may be an ideal source of postnatal stem cells to regenerate tooth structures and bone, and possibly to treat neural tissue injury or degenerative diseases. SHED are highly proliferative cells derived from an accessible tissue source, and therefore hold potential for providing enough cells for clinical applications. In this review, we describe the current knowledge about dental pulp stem cells and discuss tissue engineering approaches that use SHED to replace irreversibly inflamed or necrotic pulps with a healthy and functionally competent tissue that is capable of forming new dentin.

  1. Isolation of Mesenchymal Stem Cells from Adipose Tissue

    OpenAIRE

    Islam, Andi Asadul

    2015-01-01

    BACKGROUND: In searching for the best source of stem cells, researcher found adipose stem cells as one of the ideal source due to its easiness in harvesting and its potential for differentiating into other cell lineage. METHODS: We isolated stem cells from adipose tissue, cultured and confirmed its immunophenotype using polymerase chain reaction. RESULTS: Cluster of differentiation (CD)44, CD73, CD90, CD105 were expressed, which represent immunophenotype of mesenchymal stem cells.  CONCLUSION...

  2. Skin Tissue Engineering: Application of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Klar, Agnes S; Zimoch, Jakub; Biedermann, Thomas

    2017-01-01

    Perception of the adipose tissue has changed dramatically over the last few decades. Identification of adipose-derived stem cells (ASCs) ultimately transformed paradigm of this tissue from a passive energy depot into a promising stem cell source with properties of self-renewal and multipotential differentiation. As compared to bone marrow-derived stem cells (BMSCs), ASCs are more easily accessible and their isolation yields higher amount of stem cells. Therefore, the ASCs are of high interest for stem cell-based therapies and skin tissue engineering. Currently, freshly isolated stromal vascular fraction (SVF), which may be used directly without any expansion, was also assessed to be highly effective in treating skin radiation injuries, burns, or nonhealing wounds such as diabetic ulcers. In this paper, we review the characteristics of SVF and ASCs and the efficacy of their treatment for skin injuries and disorders.

  3. Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering.

    Science.gov (United States)

    Neuss, Sabine; Apel, Christian; Buttler, Patricia; Denecke, Bernd; Dhanasingh, Anandhan; Ding, Xiaolei; Grafahrend, Dirk; Groger, Andreas; Hemmrich, Karsten; Herr, Alexander; Jahnen-Dechent, Willi; Mastitskaya, Svetlana; Perez-Bouza, Alberto; Rosewick, Stephanie; Salber, Jochen; Wöltje, Michael; Zenke, Martin

    2008-01-01

    Biomaterials are used in tissue engineering with the aim to repair or reconstruct tissues and organs. Frequently, the identification and development of biomaterials is an iterative process with biomaterials being designed and then individually tested for their properties in combination with one specific cell type. However, recent efforts have been devoted to systematic, combinatorial and parallel approaches to identify biomaterials, suitable for specific applications. Embryonic and adult stem cells represent an ideal cell source for tissue engineering. Since stem cells can be readily isolated, expanded and transplanted, their application in cell-based therapies has become a major focus of research. Biomaterials can potentially influence e.g. stem cell proliferation and differentiation in both, positive or negative ways and biomaterial characteristics have been applied to repel or attract stem cells in a niche-like microenvironment. Our consortium has now established a grid-based platform to investigate stem cell/biomaterial interactions. So far, we have assessed 140 combinations of seven different stem cell types and 19 different polymers performing systematic screening assays to analyse parameters such as morphology, vitality, cytotoxicity, apoptosis, and proliferation. We thus can suggest and advise for and against special combinations for stem cell-based tissue engineering.

  4. HPV-Induced Field Cancerisation: Transformation of Adult Tissue Stem Cell Into Cancer Stem Cell.

    Science.gov (United States)

    Olivero, Carlotta; Lanfredini, Simone; Borgogna, Cinzia; Gariglio, Marisa; Patel, Girish K

    2018-01-01

    Field cancerisation was originally described as a basis for multiple head and neck squamous cell carcinoma (HNSCC) and is a pre-malignant phenomenon that is frequently attributable to oncogenic human papillomavirus (HPV) infection. Our work on β-HPV-induced cutaneous squamous cell carcinomas identified a novel Lrig1+ hair follicle junctional zone keratinocyte stem cell population as the basis for field cancerisation. Herein, we describe the ability for HPV to infect adult tissue stem cells in order to establish persistent infection and induce their proliferation and displacement resulting in field cancerisation. By review of the HPV literature, we reveal how this mechanism is conserved as the basis of field cancerisation across many tissues. New insights have identified the capacity for HPV early region genes to dysregulate adult tissue stem cell self-renewal pathways ensuring that the expanded population preserve its stem cell characteristics beyond the stem cell niche. HPV-infected cells acquire additional transforming mutations that can give rise to intraepithelial neoplasia (IEN), from environmental factors such as sunlight or tobacco induced mutations in skin and oral cavity, respectively. With establishment of IEN, HPV viral replication is sacrificed with loss of the episome, and the tissue is predisposed to multiple cancer stem cell-driven carcinomas.

  5. Myocardial regeneration potential of adipose tissue-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  6. Adipose tissue-derived stem cells in oral mucosa tissue engineering ...

    African Journals Online (AJOL)

    Jane

    2011-10-10

    Oct 10, 2011 ... urethral reconstruction. Specifically, tissue-engineered oral mucosa holds great prospect for urethroplasty. Mesenchymal stem cells within the stromal-vascular fraction of subcutaneous adipose tissue, that is, adipose tissue-derived stem cells (ADSCs), have been used in skin repair with satisfactory results.

  7. Isolation of Stromal Stem Cells from Adipose Tissue.

    Science.gov (United States)

    Prat, Maria; Oltolina, Francesca; Antonini, Silvia; Zamperone, Andrea

    2017-01-01

    Adipose tissue has been shown to be particularly advantageous as source of mesenchymal stem cells (MSCs), because of its easy accessibility, and the possibility of obtaining stem cells in high yields. MSCs are obtained from the so-called Stromal Vascular Fraction, (SVF), exploiting their property of adhering to plastic surfaces and can be further purified by positive or negative immunomagnetic selection with appropriately chosen antibodies. These cells (Stromal Stem Cells, SSCs) can then be directly analyzed, frozen in liquid nitrogen, or expanded for further applications, e.g., for tissue engineering and regenerative medicine. The methodology described here in detail for SSCs isolated from mouse subcutaneous adipose tissue can be applied to human tissues, such as epicardium.

  8. Stem Cell Therapy in Wound Healing and Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2016-08-01

    a novel approach to many diseases. SUMMARY: Wound healing therapies continue to rapidly evolve, with advances in basic science and engineering research heralding the development of new therapies, as well as ways to modify existing treatments. Stem cell-based therapy is one of the most promising therapeutic concepts for wound healing. Advances in stem cell biology have enabled researchers and clinicians alike with access to cells capable of actively modulating the healing response.  KEYWORDS: wound healing, tissue regeneration, stem cells therapy

  9. Periodontal tissue engineering strategies based on nonoral stem cells.

    Science.gov (United States)

    Requicha, João Filipe; Viegas, Carlos Alberto; Muñoz, Fernando; Reis, Rui Luís; Gomes, Manuela Estima

    2014-01-01

    Periodontal disease is an inflammatory disease which constitutes an important health problem in humans due to its enormous prevalence and life threatening implications on systemic health. Routine standard periodontal treatments include gingival flaps, root planning, application of growth/differentiation factors or filler materials and guided tissue regeneration. However, these treatments have come short on achieving regeneration ad integrum of the periodontium, mainly due to the presence of tissues from different embryonic origins and their complex interactions along the regenerative process. Tissue engineering (TE) aims to regenerate damaged tissue by providing the repair site with a suitable scaffold seeded with sufficient undifferentiated cells and, thus, constitutes a valuable alternative to current therapies for the treatment of periodontal defects. Stem cells from oral and dental origin are known to have potential to regenerate these tissues. Nevertheless, harvesting cells from these sites implies a significant local tissue morbidity and low cell yield, as compared to other anatomical sources of adult multipotent stem cells. This manuscript reviews studies describing the use of non-oral stem cells in tissue engineering strategies, highlighting the importance and potential of these alternative stem cells sources in the development of advanced therapies for periodontal regeneration. Copyright © 2013 Wiley Periodicals, Inc.

  10. Utilizing stem cells for three-dimensional neural tissue engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Cho, Yongku; Li, Xue-Jun; Khademhosseini, Ali; Tasoglu, Savas

    2016-05-26

    Three-dimensional neural tissue engineering has made great strides in developing neural disease models and replacement tissues for patients. However, the need for biomimetic tissue models and effective patient therapies remains unmet. The recent push to expand 2D neural tissue engineering into the third dimension shows great potential to advance the field. Another area which has much to offer to neural tissue engineering is stem cell research. Stem cells are well known for their self-renewal and differentiation potential and have been shown to give rise to tissues with structural and functional properties mimicking natural organs. Application of these capabilities to 3D neural tissue engineering may be highly useful for basic research on neural tissue structure and function, engineering disease models, designing tissues for drug development, and generating replacement tissues with a patient's genetic makeup. Here, we discuss the vast potential, as well as the current challenges, unique to integration of 3D fabrication strategies and stem cells into neural tissue engineering. We also present some of the most significant recent achievements, including nerve guidance conduits to facilitate better healing of nerve injuries, functional 3D biomimetic neural tissue models, physiologically relevant disease models for research purposes, and rapid and effective screening of potential drugs.

  11. Stem cell signaling. An integral program for tissue renewal and regeneration : Wnt signaling and stem cell control

    NARCIS (Netherlands)

    Clevers, Hans; Loh, Kyle M; Nusse, Roel

    2014-01-01

    Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified,

  12. Generation of stomach tissue from mouse embryonic stem cells.

    Science.gov (United States)

    Noguchi, Taka-aki K; Ninomiya, Naoto; Sekine, Mari; Komazaki, Shinji; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira

    2015-08-01

    Successful pluripotent stem cell differentiation methods have been developed for several endoderm-derived cells, including hepatocytes, β-cells and intestinal cells. However, stomach lineage commitment from pluripotent stem cells has remained a challenge, and only antrum specification has been demonstrated. We established a method for stomach differentiation from embryonic stem cells by inducing mesenchymal Barx1, an essential gene for in vivo stomach specification from gut endoderm. Barx1-inducing culture conditions generated stomach primordium-like spheroids, which differentiated into mature stomach tissue cells in both the corpus and antrum by three-dimensional culture. This embryonic stem cell-derived stomach tissue (e-ST) shared a similar gene expression profile with adult stomach, and secreted pepsinogen as well as gastric acid. Furthermore, TGFA overexpression in e-ST caused hypertrophic mucus and gastric anacidity, which mimicked Ménétrier disease in vitro. Thus, in vitro stomach tissue derived from pluripotent stem cells mimics in vivo development and can be used for stomach disease models.

  13. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    Science.gov (United States)

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  14. Comparison of chondrocytes produced from adipose tissue-derived stem cells and cartilage tissue.

    Science.gov (United States)

    Meric, Aysenur; Yenigun, Alper; Yenigun, Vildan Betul; Dogan, Remzi; Ozturan, Orhan

    2013-05-01

    Spontaneous cartilage regeneration is poor after a cartilage defect occurs by trauma, surgical, and other reasons. Importance of producing chondrocytes from stem cells and using tissues to repair a defect is getting popular. The aim of this study was to compare the effects of injectable cartilage produced by chondrocytes differentiated from adipose tissue-derived mesenchymal stem cells and chondrocyte cells isolated directly from cartilage tissue. Mesenchymal stem cells were isolated from rat adipose tissue and characterized by cell-surface markers. Then, they were differentiated to chondrocyte cells. The function of differentiated chondrocyte cells was compared with chondrocyte cells directly isolated from cartilage tissue in terms of collagen and glycosaminoglycan secretion. Then, both chondrocyte cell types were injected to rats' left ears in liquid and gel form, and histologic evaluation was done 3 weeks after the injection. Adipose-derived stem cells were strongly positive for the CD44 and CD73 mesenchymal markers. Differentiated chondrocyte cells and chondrocyte cells directly isolated from cartilage tissue had relative collagen and glycosaminoglycan secretion results. However, histologic evaluations did not show any cartilage formation after both chondrocyte cell types were injected to rats. Strong CD44- and CD73-positive expression indicated that adipose-derived cells had the stem cell characters. Collagen and glycosaminoglycan secretion results demonstrated that adipose-derived stem cells were successfully differentiated to chondrocyte cells.

  15. Modulating the stem cell niche for tissue regeneration

    Science.gov (United States)

    Lane, Steven W; Williams, David A; Watt, Fiona M

    2015-01-01

    The field of regenerative medicine holds considerable promise for treating diseases that are currently intractable. Although many researchers are adopting the strategy of cell transplantation for tissue repair, an alternative approach to therapy is to manipulate the stem cell microenvironment, or niche, to facilitate repair by endogenous stem cells. The niche is highly dynamic, with multiple opportunities for intervention. These include administration of small molecules, biologics or biomaterials that target specific aspects of the niche, such as cell-cell and cell–extracellular matrix interactions, to stimulate expansion or differentiation of stem cells, or to cause reversion of differentiated cells to stem cells. Nevertheless, there are several challenges in targeting the niche therapeutically, not least that of achieving specificity of delivery and responses. We envisage that successful treatments in regenerative medicine will involve different combinations of factors to target stem cells and niche cells, applied at different times to effect recovery according to the dynamics of stem cell–niche interactions. PMID:25093887

  16. Advancing cartilage tissue engineering: the application of stem cell technology.

    Science.gov (United States)

    Raghunath, Joanne; Salacinski, Henryk J; Sales, Kevin M; Butler, Peter E; Seifalian, Alexander M

    2005-10-01

    The treatment of cartilage pathology and trauma face the challenges of poor regenerative potential and inferior repair. Nevertheless, recent advances in tissue engineering indicate that adult stem cells could provide a source of chondrocytes for tissue engineering that the isolation of mature chondrocytes has failed to achieve. Various adjuncts to their propagation and differentiation have been explored, such as biomaterials, bioreactors and growth hormones. To date, all tissue engineered cartilage has been significantly mechanically inferior to its natural counterparts and further problems in vivo relate to poor integration and deterioration of tissue quality over time. However, adult stem cells--with their high rate of proliferation and ease of isolation--are expected to greatly further the development and usefulness of tissue engineered cartilage.

  17. Application of stem cells in tissue engineering for defense medicine.

    Science.gov (United States)

    Ude, Chinedu Cletus; Miskon, Azizi; Idrus, Ruszymah Bt Hj; Abu Bakar, Muhamad Bin

    2018-02-26

    The dynamic nature of modern warfare, including threats and injuries faced by soldiers, necessitates the development of countermeasures that address a wide variety of injuries. Tissue engineering has emerged as a field with the potential to provide contemporary solutions. In this review, discussions focus on the applications of stem cells in tissue engineering to address health risks frequently faced by combatants at war. Human development depends intimately on stem cells, the mysterious precursor to every kind of cell in the body that, with proper instruction, can grow and differentiate into any new tissue or organ. Recent reports have suggested the greater therapeutic effects of the anti-inflammatory, trophic, paracrine and immune-modulatory functions associated with these cells, which induce them to restore normal healing and tissue regeneration by modulating immune reactions, regulating inflammation, and suppressing fibrosis. Therefore, the use of stem cells holds significant promise for the treatment of many battlefield injuries and their complications. These applications include the treatment of injuries to the skin, sensory organs, nervous system tissues, the musculoskeletal system, circulatory/pulmonary tissues and genitals/testicles and of acute radiation syndrome and the development of novel biosensors. The new research developments in these areas suggest that solutions are being developed to reduce critical consequences of wounds and exposures suffered in warfare. Current military applications of stem cell-based therapies are already saving the lives of soldiers who would have died in previous conflicts. Injuries that would have resulted in deaths previously now result in wounds today; similarly, today's permanent wounds may be reduced to tomorrow's bad memories with further advances in stem cell-based therapies.

  18. Adipose Tissue-Derived Stem Cells in Regenerative Medicine.

    Science.gov (United States)

    Frese, Laura; Dijkman, Petra E; Hoerstrup, Simon P

    2016-07-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  19. Mechanoresponsive musculoskeletal tissue differentiation of adipose-derived stem cells.

    Science.gov (United States)

    Trumbull, Andrew; Subramanian, Gayathri; Yildirim-Ayan, Eda

    2016-04-22

    Musculoskeletal tissues are constantly under mechanical strains within their microenvironment. Yet, little is understood about the effect of in vivo mechanical milieu strains on cell development and function. Thus, this review article outlines the in vivo mechanical environment of bone, muscle, cartilage, tendon, and ligaments, and tabulates the mechanical strain and stress in these tissues during physiological condition, vigorous, and moderate activities. This review article further discusses the principles of mechanical loading platforms to create physiologically relevant mechanical milieu in vitro for musculoskeletal tissue regeneration. A special emphasis is placed on adipose-derived stem cells (ADSCs) as an emerging valuable tool for regenerative musculoskeletal tissue engineering, as they are easily isolated, expanded, and able to differentiate into any musculoskeletal tissue. Finally, it highlights the current state-of-the art in ADSCs-guided musculoskeletal tissue regeneration under mechanical loading.

  20. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment.

    Science.gov (United States)

    Vanden Berg-Foels, Wendy S

    2014-02-01

    Tissue engineering uses cells, signaling molecules, and/or biomaterials to regenerate injured or diseased tissues. Ex vivo expanded mesenchymal stem cells (MSC) have long been a cornerstone of regeneration therapies; however, drawbacks that include altered signaling responses and reduced homing capacity have prompted investigation of regeneration based on endogenous MSC recruitment. Recent successful proof-of-concept studies have further motivated endogenous MSC recruitment-based approaches. Stem cell migration is required for morphogenesis and organogenesis during development and for tissue maintenance and injury repair in adults. A biomimetic approach to in situ tissue regeneration by endogenous MSC requires the orchestration of three main stages: MSC recruitment, MSC differentiation, and neotissue maturation. The first stage must result in recruitment of a sufficient number of MSC, capable of effecting regeneration, to the injured or diseased tissue. One of the challenges for engineering endogenous MSC recruitment is the selection of effective chemoattractant(s). The objective of this review is to synthesize and evaluate evidence of recruitment efficacy by reported chemoattractants, including growth factors, chemokines, and other more recently appreciated MSC chemoattractants. The influence of MSC tissue sources, cell culture methods, and the in vitro and in vivo environments is discussed. This growing body of knowledge will serve as a basis for the rational design of regenerative therapies based on endogenous MSC recruitment. Successful endogenous MSC recruitment is the first step of successful tissue regeneration.

  1. Human Intestinal Tissue with Adult Stem Cell Properties Derived from Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Ryan Forster

    2014-06-01

    Full Text Available Genetically engineered human pluripotent stem cells (hPSCs have been proposed as a source for transplantation therapies and are rapidly becoming valuable tools for human disease modeling. However, many applications are limited due to the lack of robust differentiation paradigms that allow for the isolation of defined functional tissues. Here, using an endogenous LGR5-GFP reporter, we derived adult stem cells from hPSCs that gave rise to functional human intestinal tissue comprising all major cell types of the intestine. Histological and functional analyses revealed that such human organoid cultures could be derived with high purity and with a composition and morphology similar to those of cultures obtained from human biopsies. Importantly, hPSC-derived organoids responded to the canonical signaling pathways that control self-renewal and differentiation in the adult human intestinal stem cell compartment. This adult stem cell system provides a platform for studying human intestinal disease in vitro using genetically engineered hPSCs.

  2. Dental Stem Cells and their Applications in Dental Tissue Engineering.

    Science.gov (United States)

    Lymperi, S; Ligoudistianou, C; Taraslia, V; Kontakiotis, E; Anastasiadou, E

    2013-01-01

    Tooth loss or absence is a common condition that can be caused by various pathological circumstances. The replacement of the missing tooth is important for medical and aesthetic reasons. Recently, scientists focus on tooth tissue engineering, as a potential treatment, beyond the existing prosthetic methods. Tooth engineering is a promising new therapeutic approach that seeks to replace the missing tooth with a bioengineered one or to restore the damaged dental tissue. Its main tool is the stem cells that are seeded on the surface of biomaterials (scaffolds), in order to create a biocomplex. Several populations of mesenchymal stem cells are found in the tooth. These different cell types are categorized according to their location in the tooth and they demonstrate slightly different features. It appears that the dental stem cells isolated from the dental pulp and the periodontal ligament are the most powerful cells for tooth engineering. Additional research needs to be performed in order to address the problem of finding a suitable source of epithelial stem cells, which are important for the regeneration of the enamel. Nevertheless, the results of the existing studies are encouraging and strongly support the belief that tooth engineering can offer hope to people suffering from dental problems or tooth loss.

  3. Metabolically active human brown adipose tissue derived stem cells.

    Science.gov (United States)

    Silva, Francisco J; Holt, Dolly J; Vargas, Vanessa; Yockman, James; Boudina, Sihem; Atkinson, Donald; Grainger, David W; Revelo, Monica P; Sherman, Warren; Bull, David A; Patel, Amit N

    2014-02-01

    Brown adipose tissue (BAT) plays a key role in the evolutionarily conserved mechanisms underlying energy homeostasis in mammals. It is characterized by fat vacuoles 5-10 µm in diameter and expression of uncoupling protein one, central to the regulation of thermogenesis. In the human newborn, BAT depots are typically grouped around the vasculature and solid organs. These depots maintain body temperature during cold exposure by warming the blood before its distribution to the periphery. They also ensure an optimal temperature for biochemical reactions within solid organs. BAT had been thought to involute throughout childhood and adolescence. Recent studies, however, have confirmed the presence of active BAT in adult humans with depots residing in cervical, supraclavicular, mediastinal, paravertebral, and suprarenal regions. While human pluripotent stem cells have been differentiated into functional brown adipocytes in vitro and brown adipocyte progenitor cells have been identified in murine skeletal muscle and white adipose tissue, multipotent metabolically active BAT-derived stem cells from a single depot have not been identified in adult humans to date. Here, we demonstrate a clonogenic population of metabolically active BAT stem cells residing in adult humans that can: (a) be expanded in vitro; (b) exhibit multilineage differentiation potential; and (c) functionally differentiate into metabolically active brown adipocytes. Our study defines a new target stem cell population that can be activated to restore energy homeostasis in vivo for the treatment of obesity and related metabolic disorders. © 2013 AlphaMed Press.

  4. Cell supermarket: Adipose tissue as a source of stem cells

    Science.gov (United States)

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  5. Brain tissue banking for stem cells for our future.

    Science.gov (United States)

    Palmero, Emily; Palmero, Sheryl; Murrell, Wayne

    2016-12-19

    In our lab we study neurogenesis and the development of brain tumors. We work towards treatment strategies for glioblastoma and towards using autologous neural stem cells for tissue regeneration strategies for brain damage and neurodegenerative disorders. It has been our policy to try to establish living cell cultures from all human biopsy material that we obtain. We hypothesized that small pieces of brain tissue could be cryopreserved and that live neural stem cells could be recovered at a later time. DMSO has been shown to possess a remarkable ability to diffuse through cell membranes and pass into cell interiors. Its chemical properties prevent the formation of damaging ice crystals thus allowing cell storage at or below -180 C. We report here a protocol for successful freezing of small pieces of tissue derived from human brain and human brain tumours. Virtually all specimens could be successfully revived. Assays of phenotype and behaviour show that the cell cultures derived were equivalent to those cultures previously derived from fresh tissue.

  6. Wound healing potential of adipose tissue stem cell extract.

    Science.gov (United States)

    Na, You Kyung; Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2017-03-25

    Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed was examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Local stem cell depletion model for normal tissue damage

    International Nuclear Information System (INIS)

    Yaes, R.J.; Keland, A.

    1987-01-01

    The hypothesis that radiation causes normal tissue damage by completely depleting local regions of tissue of viable stem cells leads to a simple mathematical model for such damage. In organs like skin and spinal cord where destruction of a small volume of tissue leads to a clinically apparent complication, the complication probability is expressed as a function of dose, volume and stem cell number by a simple triple negative exponential function analogous to the double exponential function of Munro and Gilbert for tumor control. The steep dose response curves for radiation myelitis that are obtained with our model are compared with the experimental data for radiation myelitis in laboratory rats. The model can be generalized to include other types or organs, high LET radiation, fractionated courses of radiation, and cases where an organ with a heterogeneous stem cell population receives an inhomogeneous dose of radiation. In principle it would thus be possible to determine the probability of tumor control and of damage to any organ within the radiation field if the dose distribution in three dimensional space within a patient is known

  8. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  9. Advantages of Sheep Infrapatellar Fat Pad Adipose Tissue Derived Stem Cells in Tissue Engineering.

    Science.gov (United States)

    Vahedi, Parviz; Soleimanirad, Jafar; Roshangar, Leila; Shafaei, Hajar; Jarolmasjed, Seyedhosein; Nozad Charoudeh, Hojjatollah

    2016-03-01

    The goal of this study has been to evaluate adipose tissue derived stem cells (ADSCs) from infrapatellar fat pad and characterize their cell surface markers using anti-human antibodies, as adipose tissue derived stem cells (ADSCs) have great potential for cellular therapies to restore injured tissues. Adipose tissue was obtained from infrapatellar fat pad of sheep. Surface markers evaluated by flow cytometry. In order to evaluate cell adhesion, the Polycaprolactone (PCL) was sterilized under Ultraviolet (UV) light and about 1×10(5) cells were seeded on PCL. Then, ASCs- PCL construct were evaluated by Scanning Electron Microscopy (Mira3 Te Scan, Czech Republic). We showed that adipose tissue derived stem cells (ADSCs) maintain their fibroblastic-like morphology during different subcultures and cell adhesion. They were positive for CD44 and CD90 markers and negative for CD31 and Cd45 markers by human antibodies. Our results suggest that ASCs surface markers can be characterized by anti-human antibodies in sheep. As stem cells, they can be used in tissue engineering.

  10. Adult stem cell lineage tracing and deep tissue imaging

    Science.gov (United States)

    Fink, Juergen; Andersson-Rolf, Amanda; Koo, Bon-Kyoung

    2015-01-01

    Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging. [BMB Reports 2015; 48(12): 655-667] PMID:26634741

  11. Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans

    Science.gov (United States)

    Arora, Pooja; Sindhu, Annu; Dilbaghi, Neeraj; Chaudhury, Ashok; Rajakumar, Govindasamy; Rahuman, Abdul Abdul

    2012-01-01

    Nanotechnology is a fast growing area of research that aims to create nanomaterials or nanostructures development in stem cell and tissue-based therapies. Concepts and discoveries from the fields of bio nano research provide exciting opportunities of using stem cells for regeneration of tissues and organs. The application of nanotechnology to stem-cell biology would be able to address the challenges of disease therapeutics. This review covers the potential of nanotechnology approaches towards regenerative medicine. Furthermore, it focuses on current aspects of stem- and tissue-cell engineering. The magnetic nanoparticles-based applications in stem-cell research open new frontiers in cell and tissue engineering. PMID:22260258

  12. Long live the stem cell: the use of stem cells isolated from post mortem tissues for translational strategies.

    Science.gov (United States)

    Hodgetts, Stuart I; Stagg, Kelda; Sturm, Marian; Edel, Michael; Blancafort, Pilar

    2014-11-01

    The "stem cell" has become arguably one of the most important biological tools in the arsenal of translational research directed at regeneration and repair. It remains to be seen whether every tissue has its own stem cell niche, although relatively recently a large amount of research has focused on isolating and characterizing tissue-specific stem cell populations, as well as those that are able to be directed to transdifferentiate into a variety of different lineages. Traditionally, stem cells are isolated from the viable tissue of embryonic, fetal, or adult living hosts; from "fresh" donated tissues that have been surgically or otherwise removed (biopsies), or obtained directly from tissues within minutes to several hours post mortem (PM). These human progenitor/stem cell sources remain potentially highly controversial, since they are accompanied by various still-unresolved ethical, social, moral and legal challenges. Due to the limited number of "live" donors, the small amount of material obtained from biopsies and difficulties during purification processes, harvesting from cadaveric material presents itself as an alternative strategy that could provide a hitherto untapped source of stem cells. However, PM stem cells are not without their own unique set of limitations including difficulty of obtaining samples, limited supply of material, variations in delay between death and sample collection, possible lack of medication history and suboptimal retrospective assignment of diagnostic and demographic data. This article is part of a Directed Issue entitled: Regenerative Medicine: The challenge of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Tissue Factor promotes breast cancer stem cell activity in vitro.

    Science.gov (United States)

    Shaker, Hudhaifah; Harrison, Hannah; Clarke, Robert; Landberg, Goran; Bundred, Nigel J; Versteeg, Henri H; Kirwan, Cliona C

    2017-04-18

    Cancer stem cells (CSCs) are a subpopulation of cells that can self-renew and initiate tumours. The clotting-initiating protein Tissue Factor (TF) promotes metastasis and may be overexpressed in cancer cells with increased CSC activity. We sought to determine whether TF promotes breast CSC activity in vitro using human breast cancer cell lines. TF expression was compared in anoikis-resistant (CSC-enriched) and unselected cells. In cells sorted into of TF-expressing and TF-negative (FACS), and in cells transfected to knockdown TF (siRNA) and overexpress TF (cDNA), CSC activity was compared by (i) mammosphere forming efficiency (MFE) (ii) holoclone colony formation (Hc) and (iii) ALDH1 activity. TF expression was increased in anoikis-resistant and high ALDH1-activity T47D cells compared to unselected cells. FACS sorted TF-expressing T47Ds and TF-overexpressing MCF7s had increased CSC activity compared to TF-low cells. TF siRNA cells (MDAMB231,T47D) had reduced CSC activity compared to control cells. FVIIa increased MFE and ALDH1 in a dose-dependent manner (MDAMB231, T47D). The effects of FVIIa on MFE were abrogated by TF siRNA (T47D). Breast CSCs (in vitro) demonstrate increased activity when selected for high TF expression, when induced to overexpress TF, and when stimulated (with FVIIa). Targeting the TF pathway in vivo may abrogate CSC activity.

  14. Hair Follicle: A Novel Source of Multipotent Stem Cells for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Mistriotis, Panagiotis

    2013-01-01

    The adult body harbors powerful reservoirs of stem cells that enable tissue regeneration under homeostatic conditions or in response to disease or injury. The hair follicle (HF) is a readily accessible mini organ within the skin and contains stem cells from diverse developmental origins that were shown to have surprisingly broad differentiation potential. In this review, we discuss the biology of the HF with particular emphasis on the various stem cell populations residing within the tissue. We summarize the existing knowledge on putative HF stem cell markers, the differentiation potential, and technologies to isolate and expand distinct stem cell populations. We also discuss the potential of HF stem cells for drug and gene delivery, tissue engineering, and regenerative medicine. We propose that the abundance of stem cells with broad differentiation potential and the ease of accessibility makes the HF an ideal source of stem cells for gene and cell therapies. PMID:23157470

  15. Characteristics of mouse adipose tissue-derived stem cells and therapeutic comparisons between syngeneic and allogeneic adipose tissue-derived stem cell transplantation in experimental autoimmune thyroiditis.

    Science.gov (United States)

    Choi, Eun Wha; Shin, Il Seob; Park, So Young; Yoon, Eun Ji; Kang, Sung Keun; Ra, Jeong Chan; Hong, Sung Hwa

    2014-01-01

    Previously, we found that the intravenous administration of human adipose tissue-derived mesenchymal stem cells was a promising therapeutic option for autoimmune thyroiditis even when the cells were transplanted into a xenogeneic model without an immunosuppressant. Therefore, we explored the comparison between the therapeutic effects of syngeneic and allogeneic adipose tissue-derived stem cells on an experimental autoimmune thyroiditis mouse model. Experimental autoimmune thyroiditis was induced in C57BL/6 mice by immunization with porcine thyroglobulin. Adipose tissue-derived stem cells derived from C57BL/6 mice (syngeneic) or BALB/c mice (allogeneic) or saline as a vehicle control were administered intravenously four times weekly. Blood and tissue samples were collected 1 week after the last transplantation. Adipose tissue-derived stem cells from mice were able to differentiate into multiple lineages in vitro; however, mouse adipose tissue-derived stem cells did not have immunophenotypes identical to those from humans. Syngeneic and allogeneic administrations of adipose tissue-derived stem cells reduced thyroglobulin autoantibodies and the inflammatory immune response, protected against lymphocyte infiltration into the thyroid, and restored the Th1/Th2 balance without any adverse effects. However, different humoral immune responses were observed for infused cells from different stem cell sources. The strongest humoral immune response was induced by xenogeneic transplantation, followed by allogeneic and syngeneic administration, in that order. The stem cells were mostly found in the spleen, not the thyroid. This migration might be because the stem cells primarily function in systemic immune modulation, due to being given prior to disease induction. In this study, we confirmed that there were equal effects of adipose tissue-derived stem cells in treating autoimmune thyroiditis between syngeneic and allogeneic transplantations.

  16. The effect of diabetes on the wound healing potential of adipose-tissue derived stem cells.

    Science.gov (United States)

    Kim, Sue Min; Kim, Yun Ho; Jun, Young Joon; Yoo, Gyeol; Rhie, Jong Won

    2016-03-01

    To investigate whether diabetes mellitus affects the wound-healing-promoting potential of adipose tissue-derived stem cells, we designed a wound-healing model using diabetic mice. We compared the degree of wound healing between wounds treated with normal adipose tissue-derived stem cells and wounds treated with diabetic adipose tissue-derived stem cells. We evaluated the wound-healing rate, the epithelial tongue distance, the area of granulation tissue, the number of capillary and the number of Ki-67-stained cells. The wound-healing rate was significantly higher in the normal adipose tissue-derived stem cells group than in the diabetic adipose tissue-derived stem cells group; it was also significantly higher in the normal adipose tissue-derived stem cells group than in the control group. Although the diabetic adipose tissue-derived stem cells group showed a better wound-healing rate than the control group, the difference was not statistically significant. Similar trends were observed for the other parameters examined: re-epithelisation and keratinocyte proliferation; granulation tissue formation; and dermal regeneration. However, with regard to the number of capillary, diabetic adipose tissue-derived stem cells retained their ability to promote neovasculisation and angiogenesis. These results reflect the general impairment of the therapeutic potential of diabetic adipose tissue-derived stem cells in vivo. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  17. Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation

    Science.gov (United States)

    2012-02-01

    10-1-0927 TITLE: Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation...immunosuppression. Bone Marrow Derived Mesenchymal stem cells (BM-MSCs) are pluripotent cells, capable of differentiation along multiple mesenchymal lineages into...As part of implemented transition from University of Pittsburgh to Johns Hopkins University, we optimized our mesenchymal stem cell (MSC) isolation

  18. Banking of Adipose- and Cord Tissue-Derived Stem Cells: Technical and Regulatory Issues.

    Science.gov (United States)

    Harris, David T

    2016-01-01

    Stem cells are found in all multicellular organisms and are defined as cells that can differentiate into specialized mature cells as well as divide to produce more stem cells. Mesenchymal stem cells (MSC) were among the first stem cell types to be utilized for regenerative medicine. Although initially isolated from bone marrow, based on ease and costs of procurement, MSC derived from adipose tissue (AT-MSC) and umbilical cord tissue (CT-MSC) are now preferred stem cell sources for these applications. Both adipose tissues and cord tissue present unique problems for biobanking however, in that these are whole tissues, not cellular suspensions. Although the tissues could be processed to facilitate the biobanking process, by doing so additional regulatory issues arise that must be addressed. This review will discuss the technical issues associated with biobanking of these tissues, as well as regulatory concerns when banking of utilizing MSC derived from these sources in the clinic.

  19. Strategies for homeostatic stem cell self-renewal in adult tissues

    NARCIS (Netherlands)

    Simons, B.D.; Clevers, H.

    2011-01-01

    In adult tissues, an exquisite balance exists between stem cell proliferation and the generation of differentiated offspring. Classically, it has been argued that this balance is obtained at the level of a single stem cell, which divides strictly into a new stem cell and a progenitor. However,

  20. The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering

    Science.gov (United States)

    Ratajczak, Jessica; Bronckaers, Annelies; Dillen, Yörg; Gervois, Pascal; Vangansewinkel, Tim; Driesen, Ronald B.; Wolfs, Esther; Lambrichts, Ivo

    2016-01-01

    Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs) have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair. PMID:27688777

  1. The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Jessica Ratajczak

    2016-01-01

    Full Text Available Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair.

  2. Dental Stem Cells in Bone Tissue Engineering: Current Overview and Challenges.

    Science.gov (United States)

    Ercal, Pinar; Pekozer, Gorke Gurel; Kose, Gamze Torun

    2018-03-02

    The treatment of bone that is impaired due to disease, trauma or tumor resection creates a challenge for both clinicians and researchers. Critical size bone defects are conventionally treated with autografts which are associated with risks such as donor site morbidity and limitations like donor shortage. Bone tissue engineering has become a promising area for the management of critical size bone defects by the employment of biocompatible materials and the discovery of novel stem cell sources. Mesenchymal stem cells (MSCs) can be isolated with ease from various dental tissues including dental pulp stem cells, stem cells from apical papilla, dental follicle stem cells, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, gingival stem cells and tooth germ derived stem cells. Outcomes of dental MSC mediated bone tissue engineering is explored in various in vivo and in vitro preclinical studies. However, there are still obscurities regarding the mechanisms underlying in MSC mediated bone regeneration and challenges in applications of dental stem cells. In this review, we summarized dental stem cell sources and their characterizations, along with currently used biomaterials for cell delivery and future perspectives for dental MSCs in the field of bone tissue engineering. Further efforts are necessary before moving to clinical trials for future applications.

  3. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    OpenAIRE

    Yunfan He; Feng Lu

    2016-01-01

    Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and recon...

  4. Adipose Tissue-Derived Mesenchymal Stem Cells as a New Host Cell in Latent Leishmaniasis

    Science.gov (United States)

    Allahverdiyev, Adil M.; Bagirova, Melahat; Elcicek, Serhat; Koc, Rabia Cakir; Baydar, Serap Yesilkir; Findikli, Necati; Oztel, Olga N.

    2011-01-01

    Some protozoan infections such as Toxoplasma, Cryptosporidium, and Plasmodium can be transmitted through stem cell transplantations. To our knowledge, so far, there is no study about transmission of Leishmania parasites in stem cell transplantation and interactions between parasites and stem cells in vitro. Therefore, the aim of this study was to investigate the interaction between different species of Leishmania parasites and adipose tissue-derived mesenchymal stem cells (ADMSCs). ADMSCs have been isolated, cultured, characterized, and infected with different species of Leishmania parasites (L. donovani, L. major, L. tropica, and L. infantum). Infectivity was examined by Giemsa staining, microculture, and polymerase chain reaction methods. As a result, infectivity of ADMSCs by Leishmania parasites has been determined for the first time in this study. According to our findings, it is very important that donors are screened for Leishmania parasites before stem cell transplantations in regions where leishmaniasis is endemic. PMID:21896818

  5. Wnt and BMP Signaling Crosstalk in Regulating Dental Stem Cells: Implications in Dental Tissue Engineering.

    Science.gov (United States)

    Zhang, Fugui; Song, Jinglin; Zhang, Hongmei; Huang, Enyi; Song, Dongzhe; Tollemar, Viktor; Wang, Jing; Wang, Jinhua; Mohammed, Maryam; Wei, Qiang; Fan, Jiaming; Liao, Junyi; Zou, Yulong; Liu, Feng; Hu, Xue; Qu, Xiangyang; Chen, Liqun; Yu, Xinyi; Luu, Hue H; Lee, Michael J; He, Tong-Chuan; Ji, Ping

    2016-12-01

    Tooth is a complex hard tissue organ and consists of multiple cell types that are regulated by important signaling pathways such as Wnt and BMP signaling. Serious injuries and/or loss of tooth or periodontal tissues may significantly impact aesthetic appearance, essential oral functions and the quality of life. Regenerative dentistry holds great promise in treating oral/dental disorders. The past decade has witnessed a rapid expansion of our understanding of the biological features of dental stem cells, along with the signaling mechanisms governing stem cell self-renewal and differentiation. In this review, we first summarize the biological characteristics of seven types of dental stem cells, including dental pulp stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, periodontal ligament stem cells, alveolar bone-derived mesenchymal stem cells (MSCs), and MSCs from gingiva. We then focus on how these stem cells are regulated by bone morphogenetic protein (BMP) and/or Wnt signaling by examining the interplays between these pathways. Lastly, we analyze the current status of dental tissue engineering strategies that utilize oral/dental stem cells by harnessing the interplays between BMP and Wnt pathways. We also highlight the challenges that must be addressed before the dental stem cells may reach any clinical applications. Thus, we can expect to witness significant progresses to be made in regenerative dentistry in the coming decade.

  6. Wnt and BMP signaling crosstalk in regulating dental stem cells: Implications in dental tissue engineering

    Directory of Open Access Journals (Sweden)

    Fugui Zhang

    2016-12-01

    Full Text Available Tooth is a complex hard tissue organ and consists of multiple cell types that are regulated by important signaling pathways such as Wnt and BMP signaling. Serious injuries and/or loss of tooth or periodontal tissues may significantly impact aesthetic appearance, essential oral functions and the quality of life. Regenerative dentistry holds great promise in treating oral/dental disorders. The past decade has witnessed a rapid expansion of our understanding of the biological features of dental stem cells, along with the signaling mechanisms governing stem cell self-renewal and differentiation. In this review, we first summarize the biological characteristics of seven types of dental stem cells, including dental pulp stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, periodontal ligament stem cells, alveolar bone-derived mesenchymal stem cells (MSCs, and MSCs from gingiva. We then focus on how these stem cells are regulated by bone morphogenetic protein (BMP and/or Wnt signaling by examining the interplays between these pathways. Lastly, we analyze the current status of dental tissue engineering strategies that utilize oral/dental stem cells by harnessing the interplays between BMP and Wnt pathways. We also highlight the challenges that must be addressed before the dental stem cells may reach any clinical applications. Thus, we can expect to witness significant progresses to be made in regenerative dentistry in the coming decade.

  7. Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration

    Science.gov (United States)

    2016-12-01

    Invited) • “Genetics, Epigenetics, and Stem Cell Based Therapies for Blinding Eye Diseases”, Dept. of Bioengineering, UC San Diego, May 1, 2015...Precision Tissue Models”, Distinguished Seminar, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of...AWARD NUMBER: W81XWH-14-1-0522 TITLE: Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration PRINCIPAL INVESTIGATOR

  8. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  9. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    M Pei

    2011-11-01

    Full Text Available Cell-based therapy is a promising biological approach for the treatment of cartilage defects. Due to the small size of autologous cartilage samples available for cell transplantation in patients, cells need to be expanded to yield a sufficient cell number for cartilage repair. However, chondrocytes and adult stem cells tend to become replicatively senescent once they are expanded on conventional plastic flasks. Many studies demonstrate that the loss of cell properties is concomitant with the decreased cell proliferation capacity. This is a significant challenge for cartilage tissue engineering and regeneration. Despite much progress having been made in cell expansion, there are still concerns over expanded cell size and quality for cell transplantation applications. Recently, in vivo investigations in stem cell niches have suggested the importance of developing an in vitro stem cell microenvironment for cell expansion and tissue-specific differentiation. Our and other investigators’ work indicates that a decellularized stem cell matrix (DSCM may provide such an expansion system to yield large-quantity and high-quality cells for cartilage tissue engineering and regeneration. This review briefly introduces key parameters in an in vivo stem cell niche and focuses on our recent work on DSCM for its rejuvenating or reprograming effect on various adult stem cells and chondrocytes. Since research in DSCM is still in its infancy, we are only able to discuss some potential mechanisms of DSCM on cell proliferation and chondrogenic potential. Further investigations of the underlying mechanism and in vivo regeneration capacity will allow this approach to be used in clinics.

  10. Concise reviews: Characteristics and potential applications of human dental tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Liu, Junjun; Yu, Fang; Sun, Yao; Jiang, Beizhan; Zhang, Wenjun; Yang, Jianhua; Xu, Guo-Tong; Liang, Aibin; Liu, Shangfeng

    2015-03-01

    Recently, numerous types of human dental tissue-derived mesenchymal stem cells (MSCs) have been isolated and characterized, including dental pulp stem cells, stem cells from exfoliated deciduous teeth, periodontal ligament stem cells, dental follicle progenitor cells, alveolar bone-derived MSCs, stem cells from apical papilla, tooth germ progenitor cells, and gingival MSCs. All these MSC-like cells exhibit self-renewal, multilineage differentiation potential, and immunomodulatory properties. Several studies have demonstrated the potential advantages of dental stem cell-based approaches for regenerative treatments and immunotherapies. This review outlines the properties of various dental MSC-like populations and the progress toward their use in regenerative therapy. Several dental stem cell banks worldwide are also introduced, with a view toward future clinical application. © 2014 AlphaMed Press.

  11. Mesenchymal stem cells as a therapeutic tool in tissue and organ regeneration

    Directory of Open Access Journals (Sweden)

    Anna Bajek

    2011-01-01

    Full Text Available Tissue engineering is an interdisciplinary field that offers new opportunities for regeneration of diseased and damaged tissue with the use of many different cell types,including adult stem cells. In tissue engineering and regenerative medicine the most popular are mesenchymal stem cells (MSCs isolated from bone marrow. Bone marrow mesenchymal stem cells are a potential source of progenitor cells for osteoblasts, chondroblasts, adipocytes, skeletal muscles and cardiomyocytes. It has also been shown that these cells can differentiate into ecto- and endodermal cells, e.g. neuronal cells, glial cells, keratinocytes and hepatocytes. The availability of autologous MSCs, their proliferative potential and multilineage differentiation capacity make them an excellent tool for tissue engineering and regenerative medicine. The aim of this publication is to present characteristic and biological properties of mesenchymal stem cells isolated from bone marrow.

  12. Interleukin-6 blockade attenuates lung cancer tissue construction integrated by cancer stem cells

    OpenAIRE

    Ogawa, Hiroyuki; Koyanagi-Aoi, Michiyo; Otani, Kyoko; Zen, Yoh; Maniwa, Yoshimasa; Aoi, Takashi

    2017-01-01

    In the present study, we successfully generated lung cancer stem cell (CSC)-like cells by introducing a small set of transcription factors into a lung cancer cell line. In addition to properties that are conventionally referred to as CSC properties, the lung induced CSCs exhibited the ability to form lung cancer-like tissues in vitro with vascular cells and mesenchymal stem cells, which showed structures and immunohistological patterns that were similar to human lung cancer tissues. We named ...

  13. Mature adipocytes may be a source of stem cells for tissue engineering

    International Nuclear Information System (INIS)

    Fernyhough, M.E.; Hausman, G.J.; Guan, L.L.; Okine, E.; Moore, S.S.; Dodson, M.V.

    2008-01-01

    Adipose tissue contains a large portion of stem cells. These cells appear morphologically like fibroblasts and are primarily derived from the stromal cell fraction. Mature (lipid-filled) adipocytes possess the ability to become proliferative cells and have been shown to produce progeny cells that possess the same morphological (fibroblast-like) appearance as the stem cells from the stromal fraction. A closer examination of mature adipocyte-derived progeny cells may prove to be an emerging area of growth/metabolic physiology that may modify present thinking about adipose tissue renewal capabilities. Knowledge of these cells may also prove beneficial in cell-based therapies for tissue repair, regeneration, or engineering

  14. Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells.

    Science.gov (United States)

    Salehi, Paria Motamen; Foroutan, Tahereh; Javeri, Arash; Taha, Masoumeh Fakhr

    2017-11-01

    In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Human ADSCs were isolated from subcutaneous abdominal adipose tissue and characterized by flow cytometric analysis for the expression of some mesenchymal stem cell markers and adipogenic and osteogenic differentiation. Frequent freeze-thaw technique was used to prepare cytoplasmic extract of ESCs. Plasma membranes of the ADSCs were reversibly permeabilized by streptolysin-O (SLO). Then the permeabilized ADSCs were incubated with the ESC extract and cultured in resealing medium. After reprogramming, the expression of some pluripotency genes was evaluated by RT-PCR and quantitative real-time PCR (qPCR) analyses. Third-passaged ADSCs showed a fibroblast-like morphology and expressed mesenchymal stem cell markers. They also showed adipogenic and osteogenic differentiation potential. QPCR analysis revealed a significant upregulation in the expression of some pluripotency genes including OCT4 , SOX2 , NANOG , REX1 and ESG1 in the reprogrammed ADSCs compared to the control group. These findings showed that mouse ESC extract can be used to induce reprogramming of human ADSCs. In fact, this method is applicable for reprogramming of human adult stem cells to a more pluripotent sate and may have a potential in regenerative medicine.

  15. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure

    NARCIS (Netherlands)

    Oedayrajsingh-Varma, M. J.; van Ham, S. M.; Knippenberg, M.; Helder, M. N.; Klein-Nulend, J.; Schouten, T. E.; Ritt, M. J. P. F.; van Milligen, F. J.

    2006-01-01

    Adipose tissue contains a stromal vascular fraction that can be easily isolated and provides a rich source of adipose tissue-derived mesenchymal stem cells (ASC). These ASC are a potential source of cells for tissue engineering. We studied whether the yield and growth characteristics of ASC were

  16. Advances in tissue engineering through stem cell-based co-culture.

    Science.gov (United States)

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Culture Environment-Induced Pluripotency of SACK-Expanded Tissue Stem Cells

    Directory of Open Access Journals (Sweden)

    Jean-François Paré

    2011-01-01

    Full Text Available Previous efforts to improve the efficiency of cellular reprogramming for the generation of induced pluripotent stem cells (iPSCs have focused mainly on transcription factors and small molecule combinations. Here, we report the results of our focus instead on the phenotype of the cells targeted for reprogramming. We find that adult mouse pancreatic tissue stem cells derived by the method of suppression of asymmetric cell kinetics (SACK acquire increased potency simply by culture under conditions for the production and maintenance of pluripotent stem cells. Moreover, supplementation with the SACK agent xanthine, which promotes symmetric self-renewal, significantly increases the efficiency and degree of acquisition of pluripotency properties. In transplantation analyses, clonal reprogrammed pancreatic stem cells produce slow-growing tumors with tissue derivative of all three embryonic germ layers. This acquisition of pluripotency, without transduction with exogenous transcription factors, supports the concept that tissue stem cells are predisposed to cellular reprogramming, particularly when symmetrically self-renewing.

  18. Parthenogenesis-derived Multipotent Stem Cells Adapted for Tissue Engineering Applications

    Science.gov (United States)

    Koh, Chester J.; Delo, Dawn M.; Lee, Jang Won; Siddiqui, M. Minhaj; Lanza, Robert P.; Soker, Shay; Yoo, James J.; Atala, Anthony

    2009-01-01

    Embryonic stem cells are envisioned as a viable source of pluripotent cells for use in regenerative medicine applications when donor tissue is not available. However, most current harvest techniques for embryonic stem cells require the destruction of embryos, which has led to significant political and ethical limitations on their usage. Parthenogenesis, the process by which an egg can develop into an embryo in the absence of sperm, may be a potential source of embryonic stem cells that may avoid some of the political and ethical concerns surrounding embryonic stem cells. Here we provide the technical aspects of embryonic stem cell isolation and expansion from the parthenogenetic activation of oocytes. These cells were characterized for their stem-cell properties. In addition, these cells were induced to differentiate to the myogenic, osteogenic, adipogenic, and endothelial lineages, and were able to form muscle-like and bony-like tissue in vivo. Furthermore, parthenogenetic stem cells were able to integrate into injured muscle tissue. Together, these results demonstrate that parthenogenetic stem cells can be successfully isolated and utilized for various tissue engineering applications. PMID:18799133

  19. [The emerging technology of tissue engineering : Focus on stem cell niche].

    Science.gov (United States)

    Schlötzer-Schrehardt, U; Freudenberg, U; Kruse, F E

    2017-04-01

    Limbal stem cells reside in a highly specialized complex microenvironment that is known as the stem cell niche, an anatomically protected region at the bottom of the Palisades of Vogt, where the stem cells are located and where their quiescence, proliferation and differentiation are maintained in balance. Besides the epithelial stem and progenitor cell clusters, the limbal niche comprises several types of supporting niche cells and a specific extracellular matrix mediating biochemical and biophysical signals. Stem cell-based tissue engineering aims to mimic the native stem cell niche and to present appropriate microenvironmental cues in a controlled and reproducible fashion in order to maintain stem cell function within the graft. Current therapeutic approaches for ex vivo expansion of limbal stem cells only take advantage of surrogate niches. However, new insights into the molecular composition of the limbal niche and innovative biosynthetic scaffolds have stimulated novel strategies for niche-driven stem cell cultivation. Promising experimental approaches include collagen-based organotypic coculture systems of limbal epithelial stem cells with their niche cells and biomimetic hydrogel platforms prefunctionalized with appropriate biomolecular and biophysical signals. Future translation of these novel regenerative strategies into clinical application is expected to improve long-term outcomes of limbal stem cell transplantation for ocular surface reconstruction.

  20. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    Science.gov (United States)

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation. Copyright © 2012 Wiley Periodicals, Inc.

  1. Hypoxia Enhances Differentiation of Adipose Tissue-Derived Stem Cells toward the Smooth Muscle Phenotype.

    Science.gov (United States)

    Wang, Fang; Zachar, Vladimir; Pennisi, Cristian Pablo; Fink, Trine; Maeda, Yasuko; Emmersen, Jeppe

    2018-02-08

    Smooth muscle differentiated adipose tissue-derived stem cells are a valuable resource for regeneration of gastrointestinal tissues, such as the gut and sphincters. Hypoxia has been shown to promote adipose tissue-derived stem cells proliferation and maintenance of pluripotency, but the influence of hypoxia on their smooth myogenic differentiation remains unexplored. This study investigated the phenotype and contractility of adipose-derived stem cells differentiated toward the smooth myogenic lineage under hypoxic conditions. Oxygen concentrations of 2%, 5%, 10%, and 20% were used during differentiation of adipose tissue-derived stem cells. Real time reverse transcription polymerase chain reaction and immunofluorescence staining were used to detect the expression of smooth muscle cells-specific markers, including early marker smooth muscle alpha actin, middle markers calponin, caldesmon, and late marker smooth muscle myosin heavy chain. The specific contractile properties of cells were verified with both a single cell contraction assay and a gel contraction assay. Five percent oxygen concentration significantly increased the expression levels of α-smooth muscle actin, calponin, and myosin heavy chain in adipose-derived stem cell cultures after 2 weeks of induction ( p Cells differentiated in 5% oxygen conditions showed greater contraction effect ( p cells from adipose stem cells and 5% oxygen was the optimal condition to generate smooth muscle cells that contract from adipose stem cells.

  2. Skeletal tissue engineering using mesenchymal or embryonic stem cells: clinical and experimental data.

    Science.gov (United States)

    Gamie, Zakareya; MacFarlane, Robert J; Tomkinson, Alicia; Moniakis, Alexandros; Tran, Gui Tong; Gamie, Yehya; Mantalaris, Athanasios; Tsiridis, Eleftherios

    2014-11-01

    Mesenchymal stem cells (MSCs) can be obtained from a wide variety of tissues for bone tissue engineering such as bone marrow, adipose, birth-associated, peripheral blood, periosteum, dental and muscle. MSCs from human fetal bone marrow and embryonic stem cells (ESCs) are also promising cell sources. In vitro, in vivo and clinical evidence was collected using MEDLINE® (1950 to January 2014), EMBASE (1980 to January 2014) and Google Scholar (1980 to January 2014) databases. Enhanced results have been found when combining bone marrow-derived mesenchymal stem cells (BMMSCs) with recently developed scaffolds such as glass ceramics and starch-based polymeric scaffolds. Preclinical studies investigating adipose tissue-derived stem cells and umbilical cord tissue-derived stem cells suggest that they are likely to become promising alternatives. Stem cells derived from periosteum and dental tissues such as the periodontal ligament have an osteogenic potential similar to BMMSCs. Stem cells from human fetal bone marrow have demonstrated superior proliferation and osteogenic differentiation than perinatal and postnatal tissues. Despite ethical concerns and potential for teratoma formation, developments have also been made for the use of ESCs in terms of culture and ideal scaffold.

  3. Influence of collagen type II and nucleus pulposus cells on aggregation and differentiation of adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Lu, Z.F.; Zandieh Doulabi, B.; Wuisman, P.I.; Bank, R.A.; Helder, M.N.

    2008-01-01

    Tissue microenvironment plays a critical role in guiding local stem cell differentiation. Within the intervertebral disc, collagen type II and nucleus pulposus (NP) cells are two major components. This study aimed to investigate how collagen type II and NP cells affect adipose tissue-derived stem

  4. Engineering complex tissue-like microgel arrays for evaluating stem cell differentiation

    DEFF Research Database (Denmark)

    Guermani, Enrico; Shaki, Hossein; Mohanty, Soumyaranjan

    2016-01-01

    Development of tissue engineering scaffolds with native-like biology and microarchitectures is a prerequisite for stem cell mediated generation of off-the-shelf-tissues. So far, the field of tissue engineering has not full-filled its grand potential of engineering such combinatorial scaffolds...... for engineering functional tissues. This is primarily due to the many challenges associated with finding the right microarchitectures and ECM compositions for optimal tissue regeneration. Here, we have developed a new microgel array to address this grand challenge through robotic printing of complex stem cell...... platform will be used for high-throughput identification of combinatorial and native-like scaffolds for tissue engineering of functional organs....

  5. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells.

    Science.gov (United States)

    He, Yunfan; Lu, Feng

    2016-01-01

    Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  6. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    Directory of Open Access Journals (Sweden)

    Yunfan He

    2016-01-01

    Full Text Available Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  7. Regenerative medicine in dental and oral tissues: Dental pulp mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Janti Sudiono

    2017-08-01

    Full Text Available Background. Regenerative medicine is a new therapeutic modality using cell, stem cell and tissue engineering technologies. Purpose. To describe the regenerative capacity of dental pulp mesenchymal stem cell. Review. In dentistry, stem cell and tissue engineering technologies develop incredibly and attract great interest, due to the capacity to facilitate innovation in dental material and regeneration of dental and oral tissues. Mesenchymal stem cells derived from dental pulp, periodontal ligament and dental follicle, can be isolated, cultured and differentiated into various cells, so that can be useful for regeneration of dental, nerves, periodontal and bone tissues. Tissue engineering is a technology in reconstructive biology, which utilizes mechanical, cellular, or biological mediators to facilitate regeneration or reconstruction of a particular tissue. The multipotency, high proliferation rates and accessibility, make dental pulp as an attractive source of mesenchymal stem cells for tissue regeneration. Revitalized dental pulp and continued root development is the focus of regenerative endodontic while biological techniques that can restore lost alveolar bone, periodontal ligament, and root cementum is the focus of regenerative periodontic. Conclucion. Dentin-derived morphogens such as BMP are known to be involved in the regulation of odontogenesis. The multipotency and angiogenic capacity of DPSCs as the regenerative capacity of human dentin / pulp complex indicated that dental pulp may contain progenitors that are responsible for dentin repair. The human periodontal ligament is a viable alternative source for possible primitive precursors to be used in stem cell therapy.

  8. Evolution of normal and neoplastic tissue stem cells: progress after Robert Hooke.

    Science.gov (United States)

    Weissman, Irving

    2015-10-19

    The appearance of stem cells coincides with the transition from single-celled organisms to metazoans. Stem cells are capable of self-renewal as well as differentiation. Each tissue is maintained by self-renewing tissue-specific stem cells. The accumulation of mutations that lead to preleukaemia are in the blood-forming stem cell, while the transition to leukaemia stem cells occurs in the clone at a progenitor stage. All leukaemia and cancer cells escape being removed by scavenger macrophages by expressing the 'don't eat me' signal CD47. Blocking antibodies to CD47 are therapeutics for all cancers, and are currently being tested in clinical trials in the US and UK. © 2015 The Author(s).

  9. Tissue distribution and engraftment of human mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene

    DEFF Research Database (Denmark)

    Bentzon, J.F.; Stenderup, K.; Hansen, F.D.

    2005-01-01

    Engraftment of mesenchymal stem cells (MSC) in peripheral tissues for replenishing of local stem cell function has been proposed as a therapeutic approach to degenerative diseases. We have previously reported the development of an immortalized human telomerase reverse transcriptase transduced MSC...

  10. Stem Cell Therapy to Reduce Radiation-Induced Normal Tissue Damage

    NARCIS (Netherlands)

    Coppes, Rob P.; van der Goot, Annemieke; Lombaert, Isabelle M. A.

    Normal tissue damage after radiotherapy is still a major problem in cancer treatment. Stem cell therapy may provide a means to reduce radiation-induced side effects and improve the quality of life of patients. This review discusses the current status in stem cell research with respect to their

  11. Hard tissue formation of STRO-1-selected rat dental pulp stem cells in vivo.

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Beucken, J.J.J.P van den; Bian, Z.; Fan, M.; Jansen, J.A.

    2009-01-01

    The objective of this study was to examine hard tissue formation of STRO-1-selected rat dental pulp-derived stem cells, seeded into a calcium phosphate ceramic scaffold, and implanted subcutaneously in mice. Previously, STRO-1 selection was used to obtain a mesenchymal stem cell progenitor

  12. Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells

    OpenAIRE

    Jung-Hwan Lee; Seog-Jin Seo

    2016-01-01

    The academic researches and clinical applications in recent years found interest in induced pluripotent stem cells (iPSCs-) based regenerative medicine due to their pluripotency able to differentiate into any cell types in the body without using embryo. However, it is limited in generating iPSCs from adult somatic cells and use of these cells due to the low stem cell potency and donor site morbidity. In biomedical applications, particularly, dental tissue-derived iPSCs have been getting atten...

  13. The regenerative potential of epithelial stem cells in tissue repair.

    Science.gov (United States)

    Arandjelovic, Philip; Kaur, Pritinder

    2014-11-01

    Acute and chronic wounds encompass devastating injuries with significant physical, emotional and economic costs at both the individual and societal level. The pathogenesis of chronic wounds is as varied as the potential causes; however, contributing factors include repetitive ischaemia/reperfusion injury coupled with bacterial infection, inflammation and matrix degradation at the wound site. Similarly, the acute physical damage of burns may leave patients vulnerable to dehydration and infection, and in certain cases this may be followed by a body-wide systemic response with debilitating consequences. Epithelial stem cells provide a promising avenue for the treatment of burns and chronic wounds. This is exemplified by recent achievements such as the restoration of corneal epithelium using limbal stem cells, and the treatment of epidermolysis bullosa via a gene therapy approach. Nevertheless, many technical and regulatory challenges remain to be addressed. This article is part of a Directed Issue entitled: Regenerative Medicine: the challenge of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Development of decellularized scaffolds for stem cell-driven tissue engineering.

    Science.gov (United States)

    Rana, Deepti; Zreiqat, Hala; Benkirane-Jessel, Nadia; Ramakrishna, Seeram; Ramalingam, Murugan

    2017-04-01

    Organ transplantation is an effective treatment for chronic organ dysfunctioning conditions. However, a dearth of available donor organs for transplantation leads to the death of numerous patients waiting for a suitable organ donor. The potential of decellularized scaffolds, derived from native tissues or organs in the form of scaffolds has been evolved as a promising approach in tissue-regenerative medicine for translating functional organ replacements. In recent years, donor organs, such as heart, liver, lung and kidneys, have been reported to provide acellular extracellular matrix (ECM)-based scaffolds through the process called 'decellularization' and proved to show the potential of recellularization with selected cell populations, particularly with stem cells. In fact, decellularized stem cell matrix (DSCM) has also emerged as a potent biological scaffold for controlling stem cell fate and function during tissue organization. Despite the proven potential of decellularized scaffolds in tissue engineering, the molecular mechanism responsible for stem cell interactions with decellularized scaffolds is still unclear. Stem cells interact with, and respond to, various signals/cues emanating from their ECM. The ability to harness the regenerative potential of stem cells via decellularized ECM-based scaffolds has promising implications for tissue-regenerative medicine. Keeping these points in view, this article reviews the current status of decellularized scaffolds for stem cells, with particular focus on: (a) concept and various methods of decellularization; (b) interaction of stem cells with decellularized scaffolds; (c) current recellularization strategies, with associated challenges; and (iv) applications of the decellularized scaffolds in stem cell-driven tissue engineering and regenerative medicine. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Stem Cell Therapies for the Treatment of Radiation-Induced Normal Tissue Side Effects

    NARCIS (Netherlands)

    Benderitter, Marc; Caviggioli, Fabio; Chapel, Alain; Coppes, Robert P.; Guha, Chandan; Klinger, Marco; Malard, Olivier; Stewart, Fiona; Tamarat, Radia; Van Luijk, Peter; Limoli, Charles L.

    2014-01-01

    Significance: Targeted irradiation is an effective cancer therapy but damage inflicted to normal tissues surrounding the tumor may cause severe complications. While certain pharmacologic strategies can temper the adverse effects of irradiation, stem cell therapies provide unique opportunities for

  16. Stem Cell Therapy for Healing Wounded Skin and Soft Tissues

    Science.gov (United States)

    2012-07-01

    as ASC and wounds on the contralateral ear were treated with 3 x ta4 ASC. Wounds with I x las ASC (n= l1) bad similar epithelial gaps (4.35 ± a.42 mm...41. Altman AM, Matthias N, Yan Y, et al. Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells. Biomaterials . 2008;29

  17. Linking chromatin dynamics, cell fate plasticity, and tissue homeostasis in adult mouse hair follicle stem cells.

    Science.gov (United States)

    Lee, Jayhun; Tumbar, Tudorita

    2017-07-01

    Cellular plasticity for fate acquisition is associated with distinct chromatin states, which include histone modifications, dynamic association of chromatin factors with the DNA, and global chromatin compaction and nuclear organization. While embryonic stem cell (ESC) plasticity in vitro and its link with chromatin states have been characterized in depth, little is known about tissue stem cell plasticity in vivo , during adult tissue homeostasis. Recently, we reported a distinct globally low level of histone H3 K4/9/27me3 in mouse hair follicle stem cells (HFSCs) during quiescence. This occurred at the stage preceding fate acquisition, when HFSC fate plasticity must be at its highest. This hypomethylated state was required for proper skin homeostasis and timely hair cycle. Here, we show both in the live tissue and in cell culture that at quiescence HFSCs have higher exchange rates for core histone H2B when compared with proliferative or differentiated cells. This denoted a hyperdynamic chromatin state, which was previously associated with high cell fate plasticity in ESCs. Moreover, we find that quiescent HFSCs display a higher propensity for de-differentiation in response to Yamanaka's reprogramming factors in vivo . These results further support our recent model in which HFSCs render their chromatin into a specific state at quiescence, which is attuned to higher cell fate plasticity.

  18. Mesenchymal stem cell therapy in osteoarthritis: advanced tissue repair or intervention with smouldering synovial activation?

    OpenAIRE

    van Lent, Peter LEM; van den Berg, Wim B

    2013-01-01

    Although it is generally accepted that osteoarthritis is a degenerative condition of the cartilage, other tissues such as synovium in which immunological and inflammatory reactions occur contribute to the development of joint pathology. This sheds new light on the potential mechanism of action of mesenchymal stem cell therapy in osteoarthritis. Rather than tissue repair due to local transformation of injected mesenchymal stem cells to chondrocytes and filling defects in cartilage, such treatm...

  19. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Varma, Maikel J. Oedayrajsingh; Breuls, Roel G. M.; Schouten, Tabitha E.; Jurgens, Wouter J. F. M.; Bontkes, Hetty J.; Schuurhuis, Gerrit J.; van Ham, S. Marieke; van Milligen, Florine J.

    2007-01-01

    Adipose tissue contains a stromal vascular fraction (SVF) that is a rich source of adipose tissue-derived stem cells (ASCs). ASCs are multipotent and in vitro-expanded ASCs have the capacity to differentiate, into amongst others, adipocytes, chondrocytes, osteoblasts, and myocytes. For tissue

  20. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell.

    Directory of Open Access Journals (Sweden)

    Luciano Conti

    2005-09-01

    Full Text Available Pluripotent mouse embryonic stem (ES cells multiply in simple monoculture by symmetrical divisions. In vivo, however, stem cells are generally thought to depend on specialised cellular microenvironments and to undergo predominantly asymmetric divisions. Ex vivo expansion of pure populations of tissue stem cells has proven elusive. Neural progenitor cells are propagated in combination with differentiating progeny in floating clusters called neurospheres. The proportion of stem cells in neurospheres is low, however, and they cannot be directly observed or interrogated. Here we demonstrate that the complex neurosphere environment is dispensable for stem cell maintenance, and that the combination of fibroblast growth factor 2 (FGF-2 and epidermal growth factor (EGF is sufficient for derivation and continuous expansion by symmetrical division of pure cultures of neural stem (NS cells. NS cells were derived first from mouse ES cells. Neural lineage induction was followed by growth factor addition in basal culture media. In the presence of only EGF and FGF-2, resulting NS cells proliferate continuously, are diploid, and clonogenic. After prolonged expansion, they remain able to differentiate efficiently into neurons and astrocytes in vitro and upon transplantation into the adult brain. Colonies generated from single NS cells all produce neurons upon growth factor withdrawal. NS cells uniformly express morphological, cell biological, and molecular features of radial glia, developmental precursors of neurons and glia. Consistent with this profile, adherent NS cell lines can readily be established from foetal mouse brain. Similar NS cells can be generated from human ES cells and human foetal brain. The extrinsic factors EGF plus FGF-2 are sufficient to sustain pure symmetrical self-renewing divisions of NS cells. The resultant cultures constitute the first known example of tissue-specific stem cells that can be propagated without accompanying

  1. Activation and regulation of the granulation tissue derived cells with stemness-related properties.

    Science.gov (United States)

    Chen, Zelin; Dai, Tingyu; Chen, Xia; Tan, Li; Shi, Chunmeng

    2015-04-29

    Skin as the largest and easily accessible organ of the body represents an abundant source of adult stem cells. Among them, dermal stem cells hold great promise in tissue repair and the skin granulation tissue has been recently proposed as a promising source of dermal stem cells, but their biological characteristics have not been well investigated. The 5-bromo-2'-deoxyuridine (BrdU) lineage tracing approach was employed to chase dermal stem cells in vivo. Granulation tissue derived cells (GTCs) were isolated and their in vitro proliferation, self-renewing, migration, and multi-differentiation capabilities were assessed. Combined radiation and skin wound model was used to investigate the therapeutic effects of GTCs. MicroRNA-21 (miR-21) antagomir was used to antagonize miR-21 expression. Reactive oxygen species (ROS) were scavenged by N-acetyl cysteine (NAC). The quiescent dermal stem/progenitor cells were activated to proliferate upon injury and enriched in granulation tissues. GTCs exhibited enhanced proliferation, colony formation and multi-differentiation capacities. Topical transplantation of GTCs into the combined radiation and skin wound mice accelerated wound healing and reduced tissue fibrosis. Blockade of the miR-21 expression in GTCs inhibited cell migration and differentiation, but promoted cell proliferation and self-renewing at least partially via a ROS dependent pathway. The granulation tissue may represent an alternative adult stem cell source in tissue replacement therapy and miR-21 mediated ROS generation negatively regulates the stemness-related properties of granulation tissue derived cells.

  2. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.

    Science.gov (United States)

    Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya

    2016-07-01

    Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Engineering pancreatic tissues from stem cells towards therapy

    Directory of Open Access Journals (Sweden)

    Yoshinobu Takahashi

    2016-03-01

    Full Text Available Pancreatic islet transplantation is performed as a potential treatment for type 1 diabetes mellitus. However, this approach is significantly limited due to the critical shortage of islet sources. Recently, a number of publications have developed protocols for directed β-cell differentiation of pluripotent cells, such as embryonic stem (ES or induced pluripotent stem (iPS cells. Decades of studies have led to the development of modified protocols that recapitulate molecular developmental cues by combining various growth factors and small molecules with improved efficiency. However, the later step of pancreatic differentiation into functional β-cells has yet to be satisfactory in vitro, highlighting alternative approach by recapitulating spatiotemporal multicellular interaction in three-dimensional (3D culture. Here, we summarize recent progress in the directed differentiation into pancreatic β-cells with a focus on both two-dimensional (2D and 3D differentiation settings. We also discuss the potential transplantation strategies in combination with current bioengineering approaches towards diabetes therapy.

  4. Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Lee

    2016-01-01

    Full Text Available The academic researches and clinical applications in recent years found interest in induced pluripotent stem cells (iPSCs- based regenerative medicine due to their pluripotency able to differentiate into any cell types in the body without using embryo. However, it is limited in generating iPSCs from adult somatic cells and use of these cells due to the low stem cell potency and donor site morbidity. In biomedical applications, particularly, dental tissue-derived iPSCs have been getting attention as a type of alternative sources for regenerating damaged tissues due to high potential of stem cell characteristics, easy accessibility and attainment, and their ectomesenchymal origin, which allow them to have potential for nerve, vessel, and dental tissue regeneration. This paper will cover the overview of dental tissue-derived iPSCs and their application with their advantages and drawbacks.

  5. Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lee, Jung-Hwan; Seo, Seog-Jin

    2016-01-01

    The academic researches and clinical applications in recent years found interest in induced pluripotent stem cells (iPSCs-) based regenerative medicine due to their pluripotency able to differentiate into any cell types in the body without using embryo. However, it is limited in generating iPSCs from adult somatic cells and use of these cells due to the low stem cell potency and donor site morbidity. In biomedical applications, particularly, dental tissue-derived iPSCs have been getting attention as a type of alternative sources for regenerating damaged tissues due to high potential of stem cell characteristics, easy accessibility and attainment, and their ectomesenchymal origin, which allow them to have potential for nerve, vessel, and dental tissue regeneration. This paper will cover the overview of dental tissue-derived iPSCs and their application with their advantages and drawbacks.

  6. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications

    Directory of Open Access Journals (Sweden)

    Ru Dai

    2016-01-01

    Full Text Available Adipose-derived stem cells (ASCs are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs, ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D tissue engineering scaffolds are better able to mimic the in vivo cellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs are recognized as an attractive substitute for tissue and organ transplantation. In this paper, we review the characteristics of ASCs, as well as the biomaterials and tissue engineering methods used to proliferate and differentiate ASCs in a 3D environment. Clinical applications of tissue-engineered ASCs are also discussed to reveal the potential and feasibility of using tissue-engineered ASCs in regenerative medicine.

  7. Expanding the Tissue Toolbox : Deriving Colon Tissue from Human Pluripotent Stem Cells

    NARCIS (Netherlands)

    Bruens, Lotte; Snippert, Hugo J.G.

    2017-01-01

    Organoid technology holds great potential for disease modeling and regenerative medicine. In this issue of Cell Stem Cell, Múnera et al. (2017) establish the generation of pluripotent stem cell-derived colon organoids that upon transplantation in mice, resembling human colon to a large extent,

  8. TOPICAL REVIEW: Stem cell technology using bioceramics: hard tissue regeneration towards clinical application

    Science.gov (United States)

    Ohnishi, Hiroe; Oda, Yasuaki; Ohgushi, Hajime

    2010-02-01

    Mesenchymal stem cells (MSCs) are adult stem cells which show differentiation capabilities toward various cell lineages. We have already used MSCs for treatments of osteoarthritis, bone necrosis and bone tumor. For this purpose, culture expanded MSCs were combined with various ceramics and then implanted. Because of rejection response to allogeneic MSC implantation, we have utilized patients' own MSCs for the treatment. Bone marrow is a good cell source of MSCs, although the MSCs also exist in adipose tissue. When comparing osteogenic differentiation of these MSCs, bone marrow MSCs show more extensive bone forming capability than adipose MSCs. Thus, the bone marrow MSCs are useful for bone tissue regeneration. However, the MSCs show limited proliferation and differentiation capabilities that hindered clinical applications in some cases. Recent advances reveal that transduction of plural transcription factors into human adult cells results in generation of new type of stem cells called induced pluripotent stem cells (iPS cells). A drawback of the iPS cells for clinical applications is tumor formation after their in vivo implantation; therefore it is difficult to use iPS cells for the treatment. To circumvent the problem, we transduced a single factor of either SOX2 or NANOG into the MSCs and found high proliferation as well as osteogenic differentiation capabilities of the MSCs. The stem cells could be combined with bioceramics for clinical applications. Here, we summarize our recent technologies using adult stem cells in viewpoints of bone tissue regeneration.

  9. Use of magnetic forces to promote stem cell aggregation during differentiation, and cartilage tissue modeling.

    Science.gov (United States)

    Fayol, D; Frasca, G; Le Visage, C; Gazeau, F; Luciani, N; Wilhelm, C

    2013-05-14

    Magnetic forces induce cell condensation necessary for stem cell differentiation into cartilage and elicit the formation of a tissue-like structure: Magnetically driven fusion of aggregates assembled by micromagnets results in the formation of a continuous tissue layer containing abundant cartilage matrix. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Characterization of adipose tissue macrophages and adipose-derived stem cells in critical wounds

    Directory of Open Access Journals (Sweden)

    Bong-Sung Kim

    2017-01-01

    Full Text Available Background Subcutaneous adipose tissue is a rich source of adipose tissue macrophages and adipose-derived stem cells which both play a key role in wound repair. While macrophages can be divided into the classically-activated M1 and the alternatively-activated M2 phenotype, ASCs are characterized by the expression of specific stem cell markers. Methods In the present study, we have investigated the expression of common macrophage polarization and stem cell markers in acutely inflamed adipose tissue. Subcutaneous adipose tissue adjacent to acutely inflamed wounds of 20 patients and 20 healthy subjects were harvested and underwent qPCR and flow cytometry analysis. Results Expression levels of the M1-specific markers CD80, iNOS, and IL-1b were significantly elevated in inflammatory adipose tissue when compared to healthy adipose tissue, whereas the M2-specific markers CD163 and TGF-β were decreased. By flow cytometry, a significant shift of adipose tissue macrophage populations towards the M1 phenotype was confirmed. Furthermore, a decrease in the mesenchymal stem cell markers CD29, CD34, and CD105 was observed whereas CD73 and CD90 remained unchanged. Discussion This is the first report describing the predominance of M1 adipose tissue macrophages and the reduction of stem cell marker expression in acutely inflamed, non-healing wounds.

  11. Characterization of adipose tissue macrophages and adipose-derived stem cells in critical wounds.

    Science.gov (United States)

    Kim, Bong-Sung; Tilstam, Pathricia V; Springenberg-Jung, Katrin; Boecker, Arne Hendrick; Schmitz, Corinna; Heinrichs, Daniel; Hwang, Soo Seok; Stromps, Jan Philipp; Ganse, Bergita; Kopp, Ruedger; Knobe, Matthias; Bernhagen, Juergen; Pallua, Norbert; Bucala, Richard

    2017-01-01

    Subcutaneous adipose tissue is a rich source of adipose tissue macrophages and adipose-derived stem cells which both play a key role in wound repair. While macrophages can be divided into the classically-activated M1 and the alternatively-activated M2 phenotype, ASCs are characterized by the expression of specific stem cell markers. In the present study, we have investigated the expression of common macrophage polarization and stem cell markers in acutely inflamed adipose tissue. Subcutaneous adipose tissue adjacent to acutely inflamed wounds of 20 patients and 20 healthy subjects were harvested and underwent qPCR and flow cytometry analysis. Expression levels of the M1-specific markers CD80, iNOS, and IL-1b were significantly elevated in inflammatory adipose tissue when compared to healthy adipose tissue, whereas the M2-specific markers CD163 and TGF- β were decreased. By flow cytometry, a significant shift of adipose tissue macrophage populations towards the M1 phenotype was confirmed. Furthermore, a decrease in the mesenchymal stem cell markers CD29, CD34, and CD105 was observed whereas CD73 and CD90 remained unchanged. This is the first report describing the predominance of M1 adipose tissue macrophages and the reduction of stem cell marker expression in acutely inflamed, non-healing wounds.

  12. Bioreactor systems for tissue engineering II. Strategies for the expansion and directed differentiation of stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, Cornelia [Hannover Univ. (Germany). Inst. fuer Technische Chemie; Griensven, Martijn van [Ludwig Boltzmann Institut fuer Klinische und Experimentelle Traumatologie, Wien (Austria); Poertner, Ralf (eds.) [Technische Univ. Hamburg-Harburg (Germany). Inst. Biotechnologie und Verfahrenstechnik

    2010-07-01

    Alternative Sources of Adult Stem Cells: Human Amniotic Membrane, by S. Wolbank, M. van Griensven, R. Grillari-Voglauer, and A. Peterbauer-Scherb; - Mesenchymal Stromal Cells Derived from Human Umbilical Cord Tissues: Primitive Cells with Potential for Clinical and Tissue Engineering Applications, by P. Moretti, T. Hatlapatka, D. Marten, A. Lavrentieva, I. Majore, R. Hass and C. Kasper; - Isolation, Characterization, Differentiation, and Application of Adipose-Derived Stem Cells, by J. W. Kuhbier, B. Weyand, C. Radtke, P. M. Vogt, C. Kasper and K. Reimers; - Induced Pluripotent Stem Cells: Characteristics and Perspectives, by T. Cantz and U. Martin; - Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology, by D. Pei, J. Xu, Q. Zhuang, H.-F. Tse and M. A. Esteban; - Production Process for Stem Cell Based Therapeutic Implants: Expansion of the Production Cell Line and Cultivation of Encapsulated Cells, by C. Weber, S. Pohl, R. Poertner, P. Pino-Grace, D. Freimark, C. Wallrapp, P. Geigle and P. Czermak; - Cartilage Engineering from Mesenchymal Stem Cells, by C. Goepfert, A. Slobodianski, A.F. Schilling, P. Adamietz and R. Poertner; - Outgrowth Endothelial Cells: Sources, Characteristics and Potential Applications in Tissue Engineering and Regenerative Medicine, by S. Fuchs, E. Dohle, M. Kolbe, C. J. Kirkpatrick; - Basic Science and Clinical Application of Stem Cells in Veterinary Medicine, by I. Ribitsch, J. Burk, U. Delling, C. Geissler, C. Gittel, H. Juelke, W. Brehm; - Bone Marrow Stem Cells in Clinical Application: Harnessing Paracrine Roles and Niche Mechanisms, by R. M. El Backly, R. Cancedda; - Clinical Application of Stem Cells in the Cardiovascular System, C. Stamm, K. Klose, Y.-H. Choi. (orig.)

  13. Dental pulp stem cells. Biology and use for periodontal tissue engineering.

    Science.gov (United States)

    Ashri, Nahid Y; Ajlan, Sumaiah A; Aldahmash, Abdullah M

    2015-12-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  14. Dental pulp stem cells. Biology and use for periodontal tissue engineering

    Directory of Open Access Journals (Sweden)

    Nahid Y. Ashri

    2015-12-01

    Full Text Available Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  15. Establishment and molecular characterization of mesenchymal stem cell lines derived from human visceral & subcutaneous adipose tissues.

    Science.gov (United States)

    Potdar, Pd; Sutar, Jp

    2010-01-01

    Mesenchymal stem cells (MSCs), are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, myocytes and adipocytes. We utilized adipose tissue as our primary source, since it is a rich source of MSCs as well as it can be harvested using a minimally invasive surgical procedure. Both visceral and subcutaneous adipose tissue (VSAT, SCAT respectively) samples were cultured using growth medium without using any substratum for their attachment. We observed growth of mesenchymal like cells within 15 days of culturing. In spite of the absence of any substratum, the cells adhered to the bottom of the petri dish, and spread out within 2 hours. Presently VSAT cells have reached at passage 10 whereas; SCAT cells have reached at passage 14. Morphologically MSCs obtained from visceral adipose tissue were larger in shape than subcutaneous adipose tissue. We checked these cells for presence or absence of specific stem cell molecular markers. We found that VSAT and SCAT cells confirmed their MSC phenotype by expression of specific MSC markers CD 105 and CD 13 and absence of CD34 and CD 45 markers which are specific for haematopoietic stem cells. These cells also expressed SOX2 gene confirming their ability of self-renewal as well as expressed OCT4, LIF and NANOG for their properties for pluripotency & plasticity. Overall, it was shown that adipose tissue is a good source of mesenchymal stem cells. It was also shown that MSCs, isolated from adipose tissue are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, cardiomyocytes, adipocytes and liver cells which may open a new era for cell based regenerative therapies for bone, cardiac and liver disorders.

  16. Establishment and Molecular Characterization of Mesenchymal Stem Cell Lines Derived From Human Visceral & Subcutaneous Adipose Tissues

    Directory of Open Access Journals (Sweden)

    Jyoti Prakash Sutar

    2010-01-01

    Full Text Available Mesenchymal stem cells (MSCs, are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, myocytes and adipocytes. We utilized adipose tissue as our primary source, since it is a rich source of MSCs as well as it can be harvested using a minimally invasive surgical procedure. Both visceral and subcutaneous adipose tissue (VSAT, SCAT respectively samples were cultured using growth medium without using any substratum for their attachment. We observed growth of mesenchymal like cells within 15 days of culturing. In spite of the absence of any substratum, the cells adhered to the bottom of the petri dish, and spread out within 2 hours. Presently VSAT cells have reached at passage 10 whereas; SCAT cells have reached at passage 14. Morphologically MSCs obtained from visceral adipose tissue were larger in shape than subcutaneous adipose tissue. We checked these cells for presence or absence of specific stem cell molecular markers. We found that VSAT and SCAT cells confirmed their MSC phenotype by expression of specific MSC markers CD 105 and CD13 and absence of CD34 and CD 45 markers which are specific for haematopoietic stem cells. These cells also expressed SOX2 gene confirming their ability of self-renewal as well as expressed OCT4, LIF and NANOG for their properties for pluripotency & plasticity. Overall, it was shown that adipose tissue is a good source of mesenchymal stem cells. It was also shown that MSCs, isolated from adipose tissue are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, cardiomyocytes, adipocytes and liver cells which may open a new era for cell based regenerative therapies for bone, cardiac and liver disorders.

  17. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Bing Song

    2016-01-01

    Full Text Available Dental pulp stem cells (DPSCs are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1. After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering.

  18. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering.

    Science.gov (United States)

    Song, Bing; Jiang, Wenkai; Alraies, Amr; Liu, Qian; Gudla, Vijay; Oni, Julia; Wei, Xiaoqing; Sloan, Alastair; Ni, Longxing; Agarwal, Meena

    2016-01-01

    Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering.

  19. Human dental pulp stem cell is a promising autologous seed cell for bone tissue engineering.

    Science.gov (United States)

    Li, Jing-Hui; Liu, Da-Yong; Zhang, Fang-Ming; Wang, Fan; Zhang, Wen-Kui; Zhang, Zhen-Ting

    2011-12-01

    The seed cell is a core problem in bone tissue engineering research. Recent research indicates that human dental pulp stem cells (hDPSCs) can differentiate into osteoblasts in vitro, which suggests that they may become a new kind of seed cells for bone tissue engineering. The aim of this study was to evaluate the osteogenic differentiation of hDPSCs in vitro and bone-like tissue formation when transplanted with three-dimensional gelatin scaffolds in vivo, and hDPSCs may become appropriate seed cells for bone tissue engineering. We have utilized enzymatic digestion to obtain hDPSCs from dental pulp tissue extracted during orthodontic treatment. After culturing and expansion to three passages, the cells were seeded in 6-well plates or on three-dimensional gelatin scaffolds and cultured in osteogenic medium. After 14 days in culture, the three-dimensional gelatin scaffolds were implanted subcutaneously in nude mice for 4 weeks. In 6-well plate culture, osteogenesis was assessed by alkaline phosphatase staining, Von Kossa staining, and reverse transcription-polymerase chain reaction (RT-PCR) analysis of the osteogenesis-specific genes type I collagen (COL I), bone sialoprotein (BSP), osteocalcin (OCN), RUNX2, and osterix (OSX). In three-dimensional gelatin scaffold culture, X-rays, hematoxylin/eosin staining, and immunohistochemical staining were used to examine bone formation. In vitro studies revealed that hDPSCs do possess osteogenic differentiation potential. In vivo studies revealed that hDPSCs seeded on gelatin scaffolds can form bone structures in heterotopic sites of nude mice. These findings suggested that hDPSCs may be valuable as seed cells for bone tissue engineering. As a special stem cell source, hDPSCs may blaze a new path for bone tissue engineering.

  20. Concise Review: Quiescence in Adult Stem Cells: Biological Significance and Relevance to Tissue Regeneration.

    Science.gov (United States)

    Rumman, Mohammad; Dhawan, Jyotsna; Kassem, Moustapha

    2015-10-01

    Adult stem cells (ASCs) are tissue resident stem cells responsible for tissue homeostasis and regeneration following injury. In uninjured tissues, ASCs exist in a nonproliferating, reversibly cell cycle-arrested state known as quiescence or G0. A key function of the quiescent state is to preserve stemness in ASCs by preventing precocious differentiation, and thus maintaining a pool of undifferentiated ASCs. Recent evidences suggest that quiescence is an actively maintained state and that excessive or defective quiescence may lead to compromised tissue regeneration or tumorigenesis. The aim of this review is to provide an update regarding the biological mechanisms of ASC quiescence and their role in tissue regeneration. © 2015 AlphaMed Press.

  1. Ethanol production using Saccharomyces cerevisiae cells immobilised on corn stem ground tissue

    Directory of Open Access Journals (Sweden)

    Vučurović Vesna M.

    2009-01-01

    Full Text Available Cell immobilisation in alcoholic fermentation has been extensively studied during the past few decades because of its technical and economical advantages over those of free cell systems. A biocatalyst was prepared by immobilising a commercial Saccharomyces cerevisiae strain (baker yeast on corn stem ground tissue for use in alcoholic fermentation. For this purpose, the yeast cells were submitted to the batch tests 'in situ' adsorption onto pieces of the corn stem ground tissue. Cells immobilisation was analysed by optical microscopy. It was determined that the addition of the corn stem ground tissue led to an increase of the pH value, total dissolved salts content, and sugar content in fermentation medium. The addition of 5 and 10g of the corn stem ground tissue per liter of medium, increased ethanol yield, decreased amount of residual sugar and the cells immobilisation was effective. Corn stem is one of the abundant, available, inexpensive, stable, reusable, nontoxic celulosic biomaterial with high porosity, which facilitates the transmission of substrates and products between carrier and medium. The prepared immobilised biocatalyst showed higher fermentation activity than free cells. The results indicate that corn stem might be an interesting support for yeast cell immobilisation, and also a cheap alternative recourse of mineral components with possibility of application for improving ethanol productivities.

  2. A mystery unraveled: nontumorigenic pluripotent stem cells in human adult tissues.

    Science.gov (United States)

    Simerman, Ariel A; Perone, Marcelo J; Gimeno, María L; Dumesic, Daniel A; Chazenbalk, Gregorio D

    2014-07-01

    Embryonic stem cells and induced pluripotent stem cells have emerged as the gold standard of pluripotent stem cells and the class of stem cell with the highest potential for contribution to regenerative and therapeutic application; however, their translational use is often impeded by teratoma formation, commonly associated with pluripotency. We discuss a population of nontumorigenic pluripotent stem cells, termed Multilineage Differentiating Stress Enduring (Muse) cells, which offer an innovative and exciting avenue of exploration for the potential treatment of various human diseases. This review discusses the origin of Muse cells, describes in detail their various unique characteristics, and considers future avenues of their application and investigation with respect to what is currently known of adult pluripotent stem cells in scientific literature. We begin by defining cell potency, then discuss both mesenchymal and various reported populations of pluripotent stem cells, and finally delve into Muse cells and the characteristics that set them apart from their contemporaries. Muse cells derived from adipose tissue (Muse-AT) are efficiently, routinely and painlessly isolated from human lipoaspirate material, exhibit tripoblastic differentiation both spontaneously and under media-specific induction, and do not form teratomas. We describe qualities specific to Muse-AT cells and their potential impact on the field of regenerative medicine and cell therapy.

  3. Dental and Nondental Stem Cell Based Regeneration of the Craniofacial Region: A Tissue Based Approach

    Directory of Open Access Journals (Sweden)

    Declan Hughes

    2016-01-01

    Full Text Available Craniofacial reconstruction may be a necessary treatment for those who have been affected by trauma, disease, or pathological developmental conditions. The use of stem cell therapy and tissue engineering shows massive potential as a future treatment modality. Currently in the literature, there is a wide variety of published experimental studies utilising the different stem cell types available and the plethora of available scaffold materials. This review investigates different stem cell sources and their unique characteristics to suggest an ideal cell source for regeneration of individual craniofacial tissues. At present, understanding and clinical applications of stem cell therapy remain in their infancy with numerous challenges to overcome. In spite of this, the field displays immense capacity and will no doubt be utilised in future clinical treatments of craniofacial regeneration.

  4. [Origins and selection of epidermal progenitors and stem cells: a challenge for tissue engineering].

    Science.gov (United States)

    Deshayes, Nathalie; Rathman-Josserand, Michelle

    2008-01-01

    The use of epidermal stem cells and their progeny for tissue engineering and cell therapy represents a source of hope and major interest in view of applications such as replacing the loss of functionality in failing tissues or obtaining physiologic skin equivalents for skin grafting. The use of such cells necessitates the isolation and purification of rare populations of keratinocytes and then increasing their numbers by mass culture. This is not currently possible since part of the specific phenotype of these cells is lost once the cells are placed in culture. Furthermore, few techniques are available to unequivocally detect the presence of skin stem cells and/or their progeny in culture and thus quantify them. Two different sources of stem cells are currently being studied for skin research and clinical applications: skin progenitors either obtained from embryonic stem cells (ESC) or from selection from adult skin tissue. It has been shown that "keratinocyte-like" cells can be derived from ESC; however, the culturing processes must still be optimized to allow for the mass culture of homogeneous populations at a controlled stage of differentiation. The functional characterization of such populations must also be more thoroughly achieved. In order to use stem cells from adult tissues, improvements must be made in order to obtain a satisfactory degree of purification and characterization of this rare population. Distinguishing stem cells from progenitor cells at the molecular level also remains a challenge. Furthermore, stem cell research inevitably requires cultivating these cells outside their physiological environment or niche. It will thus be necessary to better understand the impact of this specific environmental niche on the preservation of the cellular phenotypes of interest.

  5. Three-dimensional tissues using human pluripotent stem cell spheroids as biofabrication building blocks.

    Science.gov (United States)

    Lin, Haishuang; Li, Qiang; Lei, Yuguo

    2017-04-24

    A recently emerged approach for tissue engineering is to biofabricate tissues using cellular spheroids as building blocks. Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), can be cultured to generate large numbers of cells and can presumably be differentiated into all the cell types of the human body in vitro, thus are an ideal cell source for biofabrication. We previously developed a hydrogel-based cell culture system that can economically produce large numbers of hPSC spheroids. With hPSCs and this culture system, there are two potential methods to biofabricate a desired tissue. In Method 1, hPSC spheroids are first utilized to biofabricate an hPSC tissue that is subsequently differentiated into the desired tissue. In Method 2, hPSC spheroids are first converted into tissue spheroids in the hydrogel-based culture system and the tissue spheroids are then utilized to biofabricate the desired tissue. In this paper, we systematically measured the fusion rates of hPSC spheroids without and with differentiation toward cortical and midbrain dopaminergic neurons and found spheroids' fusion rates dropped sharply as differentiation progressed. We found Method 1 was appropriate for biofabricating neural tissues.

  6. Osteochondral tissue engineering: scaffolds, stem cells and applications

    Science.gov (United States)

    Nooeaid, Patcharakamon; Salih, Vehid; Beier, Justus P; Boccaccini, Aldo R

    2012-01-01

    Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment. PMID:22452848

  7. Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering

    Science.gov (United States)

    Wu, Jun; Zeng, Faquan; Weisel, Richard D.; Li, Ren-Ke

    Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.

  8. Analysis of type II diabetes mellitus adipose-derived stem cells for tissue engineering applications.

    Science.gov (United States)

    Minteer, Danielle Marie; Young, Matthew T; Lin, Yen-Chih; Over, Patrick J; Rubin, J Peter; Gerlach, Jorg C; Marra, Kacey G

    2015-01-01

    To address the functionality of diabetic adipose-derived stem cells in tissue engineering applications, adipose-derived stem cells isolated from patients with and without type II diabetes mellitus were cultured in bioreactor culture systems. The adipose-derived stem cells were differentiated into adipocytes and maintained as functional adipocytes. The bioreactor system utilizes a hollow fiber-based technology for three-dimensional perfusion of tissues in vitro, creating a model in which long-term culture of adipocytes is feasible, and providing a potential tool useful for drug discovery. Daily metabolic activity of the adipose-derived stem cells was analyzed within the medium recirculating throughout the bioreactor system. At experiment termination, tissues were extracted from bioreactors for immunohistological analyses in addition to gene and protein expression. Type II diabetic adipose-derived stem cells did not exhibit significantly different glucose consumption compared to adipose-derived stem cells from patients without type II diabetes (p > 0.05, N = 3). Expression of mature adipocyte genes was not significantly different between diabetic/non-diabetic groups (p > 0.05, N = 3). Protein expression of adipose tissue grown within all bioreactors was verified by Western blotting.The results from this small-scale study reveal adipose-derived stem cells from patients with type II diabetes when removed from diabetic environments behave metabolically similar to the same cells of non-diabetic patients when cultured in a three-dimensional perfusion bioreactor, suggesting that glucose transport across the adipocyte cell membrane, the hindrance of which being characteristic of type II diabetes, is dependent on environment. The presented observation describes a tissue-engineered tool for long-term cell culture and, following future adjustments to the culture environment and increased sample sizes, potentially for anti-diabetic drug testing.

  9. Extracellular matrix of dental pulp stem cells: applications in pulp tissue engineering using somatic MSCs.

    Science.gov (United States)

    Ravindran, Sriram; Huang, Chun-Chieh; George, Anne

    2014-01-06

    Dental Caries affects approximately 90% of the world's population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs) have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinical translation. We have investigated the possibility of using somatic mesenchymal stem cells (MSCs) from other sources for dental pulp tissue regeneration using a biomimetic dental pulp extracellular matrix (ECM) incorporated scaffold. Human periodontal ligament stem cells (PDLSCs) and human bone marrow stromal cells (HMSCs) were investigated for their ability to differentiate toward an odontogenic lineage. In vitro real-time PCR results coupled with histological and immunohistochemical examination of the explanted tissues confirmed the ability of PDLSCs and HMSCs to form a vascularized pulp-like tissue. These findings indicate that the dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of PDLSCs and HMSCs without the need for exogenous addition of growth and differentiation factors. This study represents a translational perspective toward possible therapeutic application of using a combination of somatic stem cells and extracellular matrix for pulp regeneration.

  10. Treatment of FGF-2 on stem cells from inflamed dental pulp tissue from human deciduous teeth.

    Science.gov (United States)

    Kim, Jc; Park, J C; Kim, S H; Im, G I; Kim, B S; Lee, J B; Choi, E Y; Song, J S; Cho, K S; Kim, C S

    2014-03-01

    The purposes of this study were to isolate and characterize stem cells from inflamed pulp tissue of human functional deciduous teeth (iSHFD) and to evaluate the influence of fibroblastic growth factor-2 (FGF-2) on the regenerative potential. We successfully isolated mesenchymal stem cells (MSCs) from the inflamed dental pulp tissue of human deciduous teeth and demonstrated that their regenerative potential could be enhanced by the application of FGF-2 (20 ng ml(-1)) during ex vivo expansion. Isolated stem cells expanded in FGF-2 were characterized using a colony-forming assay, proliferation, migration, in vitro differentiation, in vivo ectopic transplantation assay, and gene expression profiling. MSCs isolated from the inflamed pulp tissue of functional deciduous teeth potentially possess the qualities of those from human exfoliated deciduous teeth. FGF-2 applied to iSHFD during expansion enhanced the colony-forming efficiency of these cells, increased their proliferation and migration potential, and reduced their differentiation potential in vitro. However, the ectopic transplantation of iSHFD/FGF-2 in vivo increased the formation of dentin-like material. FGF-2 expansion of stem cells from inflamed pulp tissues of human deciduous teeth can be a good source of stem cells for future clinical applications and a novel way of using discarded inflamed tissues. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Extracellular matrix of dental pulp stem cells: Applications in pulp tissue engineering using somatic MSCs

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2014-01-01

    Full Text Available Dental Caries affects approximately 90% of the world’s population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinical translation. We have investigated the possibility of using somatic mesenchymal stem cells from other sources for dental pulp tissue regeneration using a biomimetic dental pulp extracellular matrix (ECM incorporated scaffold. Human periodontal ligament stem cells (PDLSCs and human bone marrow stromal cells (HMSCs were investigated for their ability to differentiate towards an odontogenic lineage. In vitro real-time PCR results coupled with histological and immunohistochemical examination of the explanted tissues confirmed the ability of PDLSCs and HMSCs to form a vascularized pulp-like tissue. These findings indicate that the dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of PDLSCs and HMSCs without the need for exogenous addition of growth and differentiation factors. This study represents a translational perspective toward possible therapeutic application of using a combination of somatic stem cells and extracellular matrix for pulp regeneration.

  12. In vitro evaluation of isolation possibility of stem cells from intra oral soft tissue and comparison of them with bone mar-row stem cells

    Directory of Open Access Journals (Sweden)

    P. Torkzaban

    2012-01-01

    Full Text Available Objective: Stem cells are of great interest for regenerating disturbed tissues and organs. These cells are commonly isolated from the bone marrow, but there has been interest in other tissues in the recent years. In this study, we evaluated the possibility of isolation of stem cells from oral connective tissue and investigated their characteristics.Materials and Methods: In this experimental study, sampling from the bone marrow and oral connective tissue of a beagle dog was performed under general anesthesia. Bone marrow stem cell isolation was performed according to the established protocols. The samples obtained from oral soft tissue were broken to small pieces and after adding collagenase I, the samples were incubated for 45 minutes in 37°C. Other processes were similar to the processes which were carried out on bone marrow cells. Then cell properties were compared to evaluate if the cells from the connective tissue were stem cells.Results: The cells from the bone marrow and connective tissue had the same morphology. The result of colony forming unit assay was relatively similar. Population doubling time was similar too. In addition, both cell groups differentiated to osteoblasts in osteogenic media.Conclusion: The cells isolated from the oral connective tissue had the characteristics of stem cells, including fibroblastoid morphology, self renewal properties, high proliferation rate and differentiation potential.

  13. Characterization and osteogenic potential of equine muscle tissue- and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow- and adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Radtke, Catherine L; Nino-Fong, Rodolfo; Esparza Gonzalez, Blanca P; Stryhn, Henrik; McDuffee, Laurie A

    2013-05-01

    To characterize equine muscle tissue- and periosteal tissue-derived cells as mesenchymal stem cells (MSCs) and assess their proliferation capacity and osteogenic potential in comparison with bone marrow- and adipose tissue-derived MSCs. Tissues from 10 equine cadavers. Cells were isolated from left semitendinosus muscle tissue, periosteal tissue from the distomedial aspect of the right tibia, bone marrow aspirates from the fourth and fifth sternebrae, and adipose tissue from the left subcutaneous region. Mesenchymal stem cells were characterized on the basis of morphology, adherence to plastic, trilineage differentiation, and detection of stem cell surface markers via immunofluorescence and flow cytometry. Mesenchymal stem cells were tested for osteogenic potential with osteocalcin gene expression via real-time PCR assay. Mesenchymal stem cell cultures were counted at 24, 48, 72, and 96 hours to determine tissue-specific MSC proliferative capacity. Equine muscle tissue- and periosteal tissue-derived cells were characterized as MSCs on the basis of spindle-shaped morphology, adherence to plastic, trilineage differentiation, presence of CD44 and CD90 cell surface markers, and nearly complete absence of CD45 and CD34 cell surface markers. Muscle tissue-, periosteal tissue-, and adipose tissue-derived MSCs proliferated significantly faster than did bone marrow-derived MSCs at 72 and 96 hours. Equine muscle and periosteum are sources of MSCs. Equine muscle- and periosteal-derived MSCs have osteogenic potential comparable to that of equine adipose- and bone marrow-derived MSCs, which could make them useful for tissue engineering applications in equine medicine.

  14. Update on cryopreservation of adipose tissue and adipose-derived stem cells.

    Science.gov (United States)

    Shu, Zhiquan; Gao, Dayong; Pu, Lee L Q

    2015-04-01

    This article first discusses some fundamentals of cryobiology and challenges for cell and tissue cryopreservation. Then, the results of cryopreservation of adipose cells and tissues, including adipose-derived stem cells, in the last decade are reviewed. In addition, from the viewpoint of cryobiology, some desired future work in fat cryopreservation is proposed that would benefit the optimization, standardization, and better application of such techniques. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Corneal stem cells and tissue engineering: Current advances and future perspectives.

    Science.gov (United States)

    de Araujo, Aline Lütz; Gomes, José Álvaro Pereira

    2015-06-26

    Major advances are currently being made in regenerative medicine for cornea. Stem cell-based therapies represent a novel strategy that may substitute conventional corneal transplantation, albeit there are many challenges ahead given the singularities of each cellular layer of the cornea. This review recapitulates the current data on corneal epithelial stem cells, corneal stromal stem cells and corneal endothelial cell progenitors. Corneal limbal autografts containing epithelial stem cells have been transplanted in humans for more than 20 years with great successful rates, and researchers now focus on ex vivo cultures and other cell lineages to transplant to the ocular surface. A small population of cells in the corneal endothelium was recently reported to have self-renewal capacity, although they do not proliferate in vivo. Two main obstacles have hindered endothelial cell transplantation to date: culture protocols and cell delivery methods to the posterior cornea in vivo. Human corneal stromal stem cells have been identified shortly after the recognition of precursors of endothelial cells. Stromal stem cells may have the potential to provide a direct cell-based therapeutic approach when injected to corneal scars. Furthermore, they exhibit the ability to deposit organized connective tissue in vitro and may be useful in corneal stroma engineering in the future. Recent advances and future perspectives in the field are discussed.

  16. Mesenchymal Stem and Progenitor Cells in Regeneration: Tissue Specificity and Regenerative Potential.

    Science.gov (United States)

    Rohban, Rokhsareh; Pieber, Thomas Rudolf

    2017-01-01

    It has always been an ambitious goal in medicine to repair or replace morbid tissues for regaining the organ functionality. This challenge has recently gained momentum through considerable progress in understanding the biological concept of the regenerative potential of stem cells. Routine therapeutic procedures are about to shift towards the use of biological and molecular armamentarium. The potential use of embryonic stem cells and invention of induced pluripotent stem cells raised hope for clinical regenerative purposes; however, the use of these interventions for regenerative therapy showed its dark side, as many health concerns and ethical issues arose in terms of using these cells in clinical applications. In this regard, adult stem cells climbed up to the top list of regenerative tools and mesenchymal stem cells (MSC) showed promise for regenerative cell therapy with a rather limited level of risk. MSC have been successfully isolated from various human tissues and they have been shown to offer the possibility to establish novel therapeutic interventions for a variety of hard-to-noncurable diseases. There have been many elegant studies investigating the impact of MSC in regenerative medicine. This review provides compact information on the role of stem cells, in particular, MSC in regeneration.

  17. CXCL5 secreted from adipose tissue-derived stem cells promotes cancer cell proliferation.

    Science.gov (United States)

    Zhao, Yuying; Zhang, Xiaosan; Zhao, Hong; Wang, Jingxuan; Zhang, Qingyuan

    2018-02-01

    Accumulating data suggest that adipose tissue facilitates breast tumor initiation and progression through paracrine and endocrine pathways, and that adipose tissue-derived stem cell (ASC) is likely the major cell type responsible for tumorigenesis and tumor development. However, it remains unknown how ASCs exert their effects. In the present study, in cultured breast cancer cell lines, including estrogen receptor (ER)-positive MCF-7 cells and ER-negative MDA-MB-231 cells, the effects on tumor proliferation of isolated ASCs from human breasts were examined. The expression of 174 cytokines was additionally identified in this medium. With an anti-human C-X-C motif ligand 5 (CXCL5) monoclonal antibody, the effects of neutralization of CXCL5 on the actions of ASCs in a co-culture medium of ASCs and tumor cells were studied The results demonstrated that ASCs significantly increased the number of breast cancer cells compared with controls. Similarly, the co-culture medium of ASCs with breast cancer cells exhibited potent effects on tumor cell proliferation. In the co-culture medium of ASCs with breast cancer cells, CXCL5 levels were significantly increased. In addition, depletion of CXCL5 with its specific antibody in ASC-conditioned medium blocked the stimulatory effect of ASCs on the proliferation of breast cancer cells. To the best of our knowledge, these results indicate for the first time that ASC-secreted CXCL5 is a key factor promoting breast tumor cell proliferation.

  18. Tissue Engineering Stem Cells - An e-Governance Strategy.

    Science.gov (United States)

    Grange, Simon

    2011-01-01

    The rules of governance are changing. They are necessarily becoming more stringent as interventions offered to treat conditions carry unpredictable side effects, often associated with novel therapeutic vectors. The clinical relevance of this relates to the obligations of those involved in research, to ensure the best protection for subjects whilst encouraging the development of the field. Existing evidence supports the concept of e-Governance both in operational health research and more broadly in the strategic domain of policy formation. Building on the impact of the UK Comprehensive Research Network and recent EU Directives, it is now possible to focus on the issues of regulation for cell therapies in musculoskeletal science through the development of the Advanced Therapeutic Medicinal Products (ATMP) category of research products. This article reviews the framework that has borne this and the need for more detailed Virtual Research Integration and Collaboration (VRIC) systems to ensure regulatory compliance. Technology research and development plans must develop in close association between tissue engineering and treating clinicians. The scope of this strategy relates to the handling of human tissues the transport and storage of specimens in accordance with current EU directives and the Human Tissue Authority (HTA) regulations.

  19. Tissue Engineering Stem Cells – An e-Governance Strategy

    Science.gov (United States)

    Grange, Simon

    2011-01-01

    The rules of governance are changing. They are necessarily becoming more stringent as interventions offered to treat conditions carry unpredictable side effects, often associated with novel therapeutic vectors. The clinical relevance of this relates to the obligations of those involved in research, to ensure the best protection for subjects whilst encouraging the development of the field. Existing evidence supports the concept of e-Governance both in operational health research and more broadly in the strategic domain of policy formation. Building on the impact of the UK Comprehensive Research Network and recent EU Directives, it is now possible to focus on the issues of regulation for cell therapies in musculoskeletal science through the development of the Advanced Therapeutic Medicinal Products (ATMP) category of research products. This article reviews the framework that has borne this and the need for more detailed Virtual Research Integration and Collaboration (VRIC) systems to ensure regulatory compliance. Technology research and development plans must develop in close association between tissue engineering and treating clinicians. The scope of this strategy relates to the handling of human tissues the transport and storage of specimens in accordance with current EU directives and the Human Tissue Authority (HTA) regulations. PMID:21886693

  20. Tracking adult stem cells

    NARCIS (Netherlands)

    Snippert, H.J.G.; Clevers, H.

    2011-01-01

    The maintenance of stem-cell-driven tissue homeostasis requires a balance between the generation and loss of cell mass. Adult stem cells have a close relationship with the surrounding tissue--known as their niche--and thus, stem-cell studies should preferably be performed in a physiological context,

  1. Impact of Age on Human Adipose Stem Cells for Bone Tissue Engineering.

    Science.gov (United States)

    Dufrane, Denis

    2017-09-01

    Bone nonunion is a pathological condition in which all bone healing processes have stopped, resulting in abnormal mobility between 2 bone segments. The incidence of bone-related injuries will increase in an aging population, leading to such injuries reaching epidemic proportions. Tissue engineering and cell therapy using mesenchymal stem cells (MSCs) have raised the possibility of implanting living tissue for bone reconstruction. Bone marrow was first proposed as the source of stem cells for bone regeneration. However, as the quantity of MSCs in the bone marrow decreases, the capacity of osteogenic differentiation of bone marrow stem cells is also impaired by the donor's age in terms of reduced MSC replicative capacity; an increased number of apoptotic cells; formation of colonies positive for alkaline phosphatase; and decreases in the availability, growth potential, and temporal mobilization of MSCs for bone formation in case of fracture. Adipose-derived stem cells (ASCs) demonstrate several advantages over those from bone marrow, including a less invasive harvesting procedure, a higher number of stem cell progenitors from an equivalent amount of tissue harvested, increased proliferation and differentiation capacities, and better angiogenic and osteogenic properties in vivo. Subcutaneous native adipose tissue was not affected by the donor's age in terms of cellular senescence and yield of ASC isolation. In addition, a constant mRNA level of osteocalcin and alkaline phosphatase with a similar level of matrix mineralization of ASCs remained unaffected by donor age after osteogenic differentiation. The secretome of ASCs was also unaffected by age when aiming to promote angiogenesis by vascular endothelial growth factor (VEGF) release in hypoxic conditions. Therefore, the use of adipose cells for bone tissue engineering is not limited by the donor's age from the isolation of stem cells up to the manufacturing of a complex osteogenic graft.

  2. Adipogenic Differentiation of Mesenchymal Stem Cells Alters Their Immunomodulatory Properties in a Tissue-Specific Manner.

    Science.gov (United States)

    Munir, Hafsa; Ward, Lewis S C; Sheriff, Lozan; Kemble, Samuel; Nayar, Saba; Barone, Francesca; Nash, Gerard B; McGettrick, Helen M

    2017-06-01

    Chronic inflammation is associated with formation of ectopic fat deposits that might represent damage-induced aberrant mesenchymal stem cell (MSC) differentiation. Such deposits are associated with increased levels of inflammatory infiltrate and poor prognosis. Here we tested the hypothesis that differentiation from MSC to adipocytes in inflamed tissue might contribute to chronicity through loss of immunomodulatory function. We assessed the effects of adipogenic differentiation of MSC isolated from bone marrow or adipose tissue on their capacity to regulate neutrophil recruitment by endothelial cells and compared the differentiated cells to primary adipocytes from adipose tissue. Bone marrow derived MSC were immunosuppressive, inhibiting neutrophil recruitment to TNFα-treated endothelial cells (EC), but MSC-derived adipocytes were no longer able to suppress neutrophil adhesion. Changes in IL-6 and TGFβ1 signalling appeared critical for the loss of the immunosuppressive phenotype. In contrast, native stromal cells, adipocytes derived from them, and mature adipocytes from adipose tissue were all immunoprotective. Thus disruption of normal tissue stroma homeostasis, as occurs in chronic inflammatory diseases, might drive "abnormal" adipogenesis which adversely influences the behavior of MSC and contributes to pathogenic recruitment of leukocytes. Interestingly, stromal cells programmed in native fat tissue retain an immunoprotective phenotype. Stem Cells 2017;35:1636-1646. © 2017 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  3. Wnt ligand presentation and reception: from the stem cell niche to tissue engineering.

    Science.gov (United States)

    Mills, Kate M; Szczerkowski, James L A; Habib, Shukry J

    2017-08-01

    Stem cells reside in niches where spatially restricted signals maintain a delicate balance between stem cell self-renewal and differentiation. Wnt family proteins are particularly suited for this role as they are modified by lipids, which constrain and spatially regulate their signalling range. In recent years, Wnt/β-catenin signalling has been shown to be essential for the self-renewal of a variety of mammalian stem cells. In this review, we discuss Wnt-responsive stem cells in their niche, and mechanisms by which Wnt ligands are presented to responsive cells. We also highlight recent progress in molecular visualization that has allowed for the monitoring of Wnt signalling within the stem cell compartment and new approaches to recapitulate this niche signalling in vitro Indeed, new technologies that present Wnt in a localized manner and mimic the three-dimensional microenvironment of stem cells will advance our understanding of Wnt signalling in the stem cell niche. These advances will expand current horizons to exploit Wnt ligands in the rapidly evolving fields of tissue engineering and regenerative medicine. © 2017 The Authors.

  4. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering

    NARCIS (Netherlands)

    Björninen, M.; Gilmore, K.; Pelto, J.; Seppänen-Kaijansinkko, R.; Kellomäki, M.; Miettinen, S.; Wallace, G.; Grijpma, Dirk W.; Haimi, Suvi

    2016-01-01

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a

  5. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues.

    Science.gov (United States)

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Mersmann, Harry J; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-03-31

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. The dorsal white fat depot of porcine subcutaneous adipose tissues is sliced, minced and collagenase digested. These pADSC exhibit strong potential to differentiate into adipocytes. Moreover, the pADSC also possess multipotency, assessed by selective stem cell markers, to differentiate into various mesenchymal cell types including adipocytes, osteocytes, and chondrocytes. These pADSC can be used for clarification of molecular switches in regulating classical adipocyte differentiation or in direction to other mesenchymal cell types of mesodermal origin. Furthermore, extended lineages into cells of ectodermal and endodermal origin have recently been achieved. Therefore, pADSC derived in this protocol provide an abundant and assessable source of adult mesenchymal stem cells with full multipotency for studying adipose development and application to tissue engineering of regenerative medicine.

  6. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering

    NARCIS (Netherlands)

    Bjorninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppanen-Kaijansinkko, Riitta; Kellomaki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a

  7. Tissue engineering and the use of stem/progenitor cells for airway epithelium repair

    Directory of Open Access Journals (Sweden)

    GM Roomans

    2010-06-01

    Full Text Available Stem/progenitor cells can be used to repair defects in the airway wall, resulting from e.g., tumors, trauma, tissue reactions following long-time intubations, or diseases that are associated with epithelial damage. Several potential sources of cells for airway epithelium have been identified. These can be divided into two groups. The first group consists of endogenous progenitor cells present in the respiratory tract. This group can be subdivided according to location into (a a ductal cell type in the submucosal glands of the proximal trachea, (b basal cells in the intercartilaginous zones of the lower trachea and bronchi, (c variant Clara cells (Clarav-cells in the bronchioles and (d at the junctions between the bronchioles and the alveolar ducts, and (e alveolar type II cells. This classification of progenitor cell niches is, however, controversial. The second group consists of exogenous stem cells derived from other tissues in the body. This second group can be subdivided into: (a embryonic stem (ES cells, induced pluripotent stem (iPS cells, or amniotic fluid stem cells, (b side-population cells from bone marrow or epithelial stem cells present in bone marrow or circulation and (c fat-derived mesenchymal cells. Airway epithelial cells can be co-cultured in a system that includes a basal lamina equivalent, extracellular factors from mesenchymal fibroblasts, and in an air-liquid interface system. Recently, spheroid-based culture systems have been developed. Several clinical applications have been suggested: cystic fibrosis, acute respiratory distress syndrome, chronic obstructive lung disease, pulmonary fibrosis, pulmonary edema, and pulmonary hypertension. Clinical applications so far are few, but include subglottic stenosis, tracheomalacia, bronchiomalacia, and emphysema.

  8. Strategies to Enhance Implantation and Survival of Stem Cells After Their Injection in Ischemic Neural Tissue.

    Science.gov (United States)

    Sandvig, Ioanna; Gadjanski, Ivana; Vlaski-Lafarge, Marija; Buzanska, Leonora; Loncaric, Darija; Sarnowska, Ana; Rodriguez, Laura; Sandvig, Axel; Ivanovic, Zoran

    2017-04-15

    High post-transplantation cell mortality is the main limitation of various approaches that are aimed at improving regeneration of injured neural tissue by an injection of neural stem cells (NSCs) and mesenchymal stromal cells (MStroCs) in and/or around the lesion. Therefore, it is of paramount importance to identify efficient ways to increase cell transplant viability. We have previously proposed the "evolutionary stem cell paradigm," which explains the association between stem cell anaerobic/microaerophilic metabolic set-up and stem cell self-renewal and inhibition of differentiation. Applying these principles, we have identified the main critical point in the collection and preparation of these cells for experimental therapy: exposure of the cells to atmospheric O 2 , that is, to oxygen concentrations that are several times higher than the physiologically relevant ones. In this way, the primitive anaerobic cells become either inactivated or adapted, through commitment and differentiation, to highly aerobic conditions (20%-21% O 2 in atmospheric air). This inadvertently compromises the cells' survival once they are transplanted into normal tissue, especially in the hypoxic/anoxic/ischemic environment, which is typical of central nervous system (CNS) lesions. In addition to the findings suggesting that stem cells can shift to glycolysis and can proliferate in anoxia, recent studies also propose that stem cells may be able to proliferate in completely anaerobic or ischemic conditions by relying on anaerobic mitochondrial respiration. In this systematic review, we propose strategies to enhance the survival of NSCs and MStroCs that are implanted in hypoxic/ischemic neural tissue by harnessing their anaerobic nature and maintaining as well as enhancing their anaerobic properties via appropriate ex vivo conditioning.

  9. iPS Cells Reprogrammed From Human Mesenchymal-Like Stem/Progenitor Cells of Dental Tissue Origin

    Science.gov (United States)

    2010-01-01

    Generation of induced pluripotent stem (iPS) cells holds a great promise for regenerative medicine and other aspects of clinical applications. Many types of cells have been successfully reprogrammed into iPS cells in the mouse system; however, reprogramming human cells have been more difficult. To date, human dermal fibroblasts are the most accessible and feasible cell source for iPS generation. Dental tissues derived from ectomesenchyme harbor mesenchymal-like stem/progenitor cells and some of the tissues have been treated as biomedical wastes, for example, exfoliated primary teeth and extracted third molars. We asked whether stem/progenitor cells from discarded dental tissues can be reprogrammed into iPS cells. The 4 factors Lin28/Nanog/Oct4/Sox2 or c-Myc/Klf4/Oct4/Sox2 carried by viral vectors were used to reprogram 3 different dental stem/progenitor cells: stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), and dental pulp stem cells (DPSCs). We showed that all 3 can be reprogrammed into iPS cells and appeared to be at a higher rate than fibroblasts. They exhibited a morphology indistinguishable from human embryonic stem (hES) cells in cultures and expressed hES cell markers SSEA-4, TRA-1-60, TRA-1-80, TRA-2-49, Nanog, Oct4, and Sox2. They formed embryoid bodies in vitro and teratomas in vivo containing tissues of all 3 germ layers. We conclude that cells of ectomesenchymal origin serve as an excellent alternative source for generating iPS cells. PMID:19795982

  10. Different Tissue-Derived Stem Cells: A Comparison of Neural Differentiation Capability

    Science.gov (United States)

    Bonaventura, Gabriele; Chamayou, Sandrine; Liprino, Annalisa; Guglielmino, Antonino; Fichera, Michele; Caruso, Massimo; Barcellona, Maria Luisa

    2015-01-01

    Background Stem cells are capable of self-renewal and differentiation into a wide range of cell types with multiple clinical and therapeutic applications. Stem cells are providing hope for many diseases that currently lack effective therapeutic methods, including strokes, Huntington's disease, Alzheimer's and Parkinson's disease. However, the paucity of suitable cell types for cell replacement therapy in patients suffering from neurological disorders has hampered the development of this promising therapeutic approach. Aim The innovative aspect of this study has been to evaluate the neural differentiation capability of different tissue-derived stem cells coming from different tissue sources such as bone marrow, umbilical cord blood, human endometrium and amniotic fluid, cultured under the same supplemented media neuro-transcription factor conditions, testing the expression of neural markers such as GFAP, Nestin and Neurofilaments using the immunofluorescence staining assay and some typical clusters of differentiation such as CD34, CD90, CD105 and CD133 by using the cytofluorimetric test assay. Results Amniotic fluid derived stem cells showed a more primitive phenotype compared to the differentiating potential demonstrated by the other stem cell sources, representing a realistic possibility in the field of regenerative cell therapy suitable for neurodegenerative diseases. PMID:26517263

  11. Different Tissue-Derived Stem Cells: A Comparison of Neural Differentiation Capability.

    Directory of Open Access Journals (Sweden)

    Gabriele Bonaventura

    Full Text Available Stem cells are capable of self-renewal and differentiation into a wide range of cell types with multiple clinical and therapeutic applications. Stem cells are providing hope for many diseases that currently lack effective therapeutic methods, including strokes, Huntington's disease, Alzheimer's and Parkinson's disease. However, the paucity of suitable cell types for cell replacement therapy in patients suffering from neurological disorders has hampered the development of this promising therapeutic approach.The innovative aspect of this study has been to evaluate the neural differentiation capability of different tissue-derived stem cells coming from different tissue sources such as bone marrow, umbilical cord blood, human endometrium and amniotic fluid, cultured under the same supplemented media neuro-transcription factor conditions, testing the expression of neural markers such as GFAP, Nestin and Neurofilaments using the immunofluorescence staining assay and some typical clusters of differentiation such as CD34, CD90, CD105 and CD133 by using the cytofluorimetric test assay.Amniotic fluid derived stem cells showed a more primitive phenotype compared to the differentiating potential demonstrated by the other stem cell sources, representing a realistic possibility in the field of regenerative cell therapy suitable for neurodegenerative diseases.

  12. Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration.

    Science.gov (United States)

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world's population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues.

  13. Biomimetic Extracellular Matrix Mediated Somatic Stem Cell Differentiation: Applications in Dental Pulp Tissue Regeneration.

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2015-04-01

    Full Text Available Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world’s population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues.

  14. Hydrogel fibers encapsulating human stem cells in an injectable calcium phosphate scaffold for bone tissue engineering.

    Science.gov (United States)

    Wang, Lin; Wang, Ping; Weir, Michael D; Reynolds, Mark A; Zhao, Liang; Xu, Hockin H K

    2016-11-04

    Human induced pluripotent stem cells (hiPSCs), human embryonic stem cells (hESCs) and human umbilical cord mesenchymal stem cells (hUCMSCs) are exciting cell sources for use in regenerative medicine. There have been no reports on long hydrogel fibers encapsulating stem cells inside an injectable calcium phosphate cement (CPC) scaffold for bone tissue engineering. The objectives of this study were: (1) to develop a novel injectable CPC construct containing hydrogel fibers encapsulating cells for bone engineering, and (2) to investigate and compare cell viability, proliferation and osteogenic differentiation of hiPSC-MSCs, hESC-MSCs and hUCMSCs in injectable CPC. The pastes encapsulating the stem cells were fully injectable under a small injection force, and the injection did not harm the cells, compared with non-injected cells (p  >  0.1). The mechanical properties of the stem cell-CPC construct were much better than those of previous injectable polymers and hydrogels for cell delivery. The hiPSC-MSCs, hESC-MSCs and hUCMSCs in hydrogel fibers in CPC had excellent proliferation and osteogenic differentiation. All three cell types yielded high alkaline phosphatase, runt-related transcription factor, collagen I and osteocalcin expression (mean  ±  SD; n  =  6). Cell-synthesized minerals increased substantially with time (p    0.1). Mineralization by hiPSC-MSCs, hESC-MSCs and hUCMSCs in CPC at 14 d was 13-fold that at 1 d. In conclusion, all three types of cells (hiPSC-MSCs, hESC-MSCs and hUCMSCs) in a CPC scaffold showed high potential for bone tissue engineering, and the novel injectable CPC construct with cell-encapsulating hydrogel fibers is promising for enhancing bone regeneration in dental, craniofacial and orthopedic applications.

  15. Mesenchymal Stem Cells from Adipose Tissue in Clinical Applications for Dermatological Indications and Skin Aging

    Directory of Open Access Journals (Sweden)

    Meenakshi Gaur

    2017-01-01

    Full Text Available Operating at multiple levels of control, mesenchymal stem cells from adipose tissue (ADSCs communicate with organ systems to adjust immune response, provide signals for differentiation, migration, enzymatic reactions, and to equilibrate the regenerative demands of balanced tissue homeostasis. The identification of the mechanisms by which ADSCs accomplish these functions for dermatological rejuvenation and wound healing has great potential to identify novel targets for the treatment of disorders and combat aging. Herein, we review new insights into the role of adipose-derived stem cells in the maintenance of dermal and epidermal homeostasis, and recent advances in clinical applications of ADSCs related to dermatology.

  16. Extracellular matrix of dental pulp stem cells: applications in pulp tissue engineering using somatic MSCs

    OpenAIRE

    Ravindran, Sriram; Huang, Chun-Chieh; George, Anne

    2014-01-01

    Dental Caries affects approximately 90% of the world’s population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs) have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinica...

  17. Auricular Tissue Engineering Using Osteogenic Differentiation of Adipose Stem Cells with Small Intestine Submucosa.

    Science.gov (United States)

    Lin, Chih-Hsun; Yang, I-Chen; Tsai, Chi-Han; Fang, Hsu-Wei; Ma, Hsu

    2017-08-01

    Ear reconstruction remains a challenge for plastic surgeons. A tissue-engineering approach could provide another route for obtaining shape maintenance in neoauricular tissue. The authors designed a novel tissue-engineering auricular construct by culturing human adipose stem cells, which differentiated into osteocytes but not chondrocytes, in small intestine submucosa scaffolds. The authors evaluated cell growth potential and mechanical properties. An ear-shaped construct was created in vitro and then implanted in the backs of nude mice. The histology, cellularity, neovascularization, mechanical properties, and ear shape maintenance were investigated. In vitro, human adipose stem cells could be successfully seeded in the small intestine submucosa and differentiated toward osteogenesis. The ear-shaped human adipose stem cell/small intestine submucosa construct could maintain its shape in vivo up to 1 year. Alizarin Red S staining confirmed osteogenic differentiation. CD31 stain showed prominent angiogenesis in the human adipose stem cell/small intestine submucosa construct at 6 months and persistence up to 1 year. h-MHC stain revealed the maintenance of cellularity at 6 months and persistence up to 1 year. The mechanical properties were similar to those of native ear cartilage. The authors' study found that the combination of human adipose stem cells and small intestine submucosa could provide a more durable ear-shaped construct in vivo. The mechanical properties, shape, and cellularity were maintained in the constructs for up to 12 months. Therapeutic, V.

  18. Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering.

    Science.gov (United States)

    Ardeshirylajimi, Abdolreza

    2017-10-01

    Due to increasing of the orthopedic lesions and fractures in the world and limitation of current treatment methods, researchers, and surgeons paid attention to the new treatment ways especially to tissue engineering and regenerative medicine. Innovation in stem cells and biomaterials accelerate during the last decade as two main important parts of the tissue engineering. Recently, induced pluripotent stem cells (iPSCs) introduced as cells with highly proliferation and differentiation potentials that hold great promising features for used in tissue engineering and regenerative medicine. As another main part of tissue engineering, synthetic, and natural polymers have been shown daily grow up in number to increase and improve the grade of biopolymers that could be used as scaffold with or without stem cells for implantation. One of the developed areas of tissue engineering is bone tissue engineering; the aim of this review is present studies were done in the field of bone tissue engineering while used iPSCs in combination with natural and synthetic biomaterials. J. Cell. Biochem. 118: 3034-3042, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Aging of tissue-resident adult stem/progenitor cells and their pathological consequences.

    Science.gov (United States)

    Mimeault, M; Batra, S K

    2009-06-01

    The fascinating discovery of tissue-resident adult stem/progenitor cells in recent years led to an explosion of interest in the development of novel stem cell-based therapies for improving the regenerative capacity of these endogenous immature cells or transplanted cells for the repair of damaged and diseased tissues. In counterbalance, a growing body of evidence has revealed that the changes in phenotypic and functional properties of human adult stem/progenitor cells may occur during chronological aging and have severe pathological consequences. Especially, intense oxidative and metabolic stress and chronic inflammation, enhanced telomere attrition and defects in DNA repair mechanisms may lead to severe DNA damages and genomic instability in adult stem/progenitor cells with advancing age that may in turn trigger their replicative senescence and/or programmed cell death. Moreover, the changes in the intrinsic and extrinsic factors involved in the stringent control of self-renewal and multilineage differentiation capacities of these regenerative cells, including deregulated signals from the aged niche, may also contribute to their dysfunctions or loss during chronological aging. This age-associated decline in the regenerative capacity and number of functional adult stem/progenitor cells may increase the risk to develop certain diseases. At opposed end, the telomerase reactivation and accumulation of genetic alterations leading to a down-regulation of numerous tumor suppressor genes concomitant with the enhanced expression of diverse oncogenic products may result in their malignant transformation into cancer-initiating cells. Therefore, the rescue or replacement of aged and dysfunctional endogenous adult stem/progenitor cells or molecular targeting of their malignant counterpart, cancer stem/progenitor cells may constitute potential anti-aging and cancer therapies. These therapeutic strategies could be used for treating diverse devastating premature aging and age

  20. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    Science.gov (United States)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; hide

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, pcell homing to injured myocardium and suggest a strategy for directed stem-cell engraftment into injured tissues. Our findings also indicate that therapeutic strategies focused on stem-cell mobilisation for regeneration of myocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  1. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies

    NARCIS (Netherlands)

    Jurgens, W.J.F.M.; Oedayrajsingh-Varma, M.J.; Helder, M.N.; Zandieh Doulabi, B.; Schouten, T.E.; Kuik, D.J.; Ritt, M.J.P.F.; van Milligen-Kummer, F.J.

    2008-01-01

    The stromal vascular fraction (SVF) of adipose tissue contains an abundant population of multipotent adipose-tissue-derived stem cells (ASCs) that possess the capacity to differentiate into cells of the mesodermal lineage in vitro. For cell-based therapies, an advantageous approach would be to

  2. Significance of adipose tissue-derived stem cells regulate CD4+ T cell immune in the treatment of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Yong-lin XIE

    2014-10-01

    Full Text Available Adipose tissue-derived stem cells (ADSCs are genetically engineered seed cells with immunomodulatory effects, widely used in the treatment of autoimmune diseases. This article focuses on the immunomodulatory effects of adipose tissue-derived stem cells on CD4+ T cell subsets, including T helper cell (Th 1, 2, 17 and regulatory T cell (Treg, and its clinical significance in the treatment of multiple sclerosis. doi: 10.3969/j.issn.1672-6731.2014.10.005

  3. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    Science.gov (United States)

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  4. Effect of Cell Seeding Density and Inflammatory Cytokines on Adipose Tissue-Derived Stem Cells : an in Vitro Study

    NARCIS (Netherlands)

    Sukho, Panithi; Kirpensteijn, Jolle; Hesselink, Jan Willem; van Osch, Gerjo J V M; Verseijden, Femke; Bastiaansen-Jenniskens, Yvonne M

    Adipose tissue-derived stem cells (ASCs) are known to be able to promote repair of injured tissue via paracrine factors. However, the effect of cell density and inflammatory cytokines on the paracrine ability of ASCs remains largely unknown. To investigate these effects, ASCs were cultured in 8000

  5. Effect of Cell Seeding Density and Inflammatory Cytokines on Adipose Tissue-Derived Stem Cells: an in Vitro Study

    NARCIS (Netherlands)

    Sukho, P. (Panithi); J. Kirpensteijn (Jolle); Hesselink, J.W. (Jan Willem); G.J.V.M. van Osch (Gerjo); F. Verseijden (Femke); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2017-01-01

    textabstractAdipose tissue-derived stem cells (ASCs) are known to be able to promote repair of injured tissue via paracrine factors. However, the effect of cell density and inflammatory cytokines on the paracrine ability of ASCs remains largely unknown. To investigate these effects, ASCs were

  6. Isolation of autologous adipose tissue-derived mesenchymal stem cells for bone repair.

    Science.gov (United States)

    Raposio, E; Bonomini, S; Calderazzi, F

    2016-11-01

    Adipose tissue represents an abundant and accessible source of adult stem cells that can differentiate into cells and tissues of mesodermal origin, including osteogenic cells. This paper describes the procedure to obtain a 5-cm 3 saline sample, containing the adipose-derived stem cells (ASCs) pellet, starting from lipoaspirate obtained from a conventional abdominal liposuction. A mean of 2.5×10 6  cells is isolated for each procedure; 35% (875000) of these are CD34+/CD45- cells, which express a subset of both positive (CD10, CD13, CD44, CD59, CD73, CD90, HLAABC) and negative (CD33, CD39, CD102, CD106, CD146, HLADR) cell-associated surface antigens, characterizing them as ASCs. This procedure is easy, effective, economic and safe. It allows the harvesting of a significant number of ASCs that are ready for one-step bony regenerative surgical procedures. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Vascularization mediated by mesenchymal stem cells from bone marrow and adipose tissue: a comparison

    Directory of Open Access Journals (Sweden)

    Karoline Pill

    2015-01-01

    Full Text Available Tissue-engineered constructs are promising to overcome shortage of organ donors and to reconstruct at least parts of injured or diseased tissues or organs. However, oxygen and nutrient supply are limiting factors in many tissues, especially after implantation into the host. Therefore, the development of a vascular system prior to implantation appears crucial. To develop a functional vascular system, different cell types that interact with each other need to be co-cultured to simulate a physiological environment in vitro. This review provides an overview and a comparison of the current knowledge of co-cultures of human endothelial cells (ECs with human adipose tissue-derived stem/stromal cells (ASCs or bone marrow-mesenchymal stem cells (BMSCs in three dimensional (3D hydrogel matrices. Mesenchymal stem cells (MSCs, BMSCs or ASCs, have been shown to enhance vascular tube formation of ECs and to provide a stabilizing function in addition to growth factor delivery and permeability control for ECs. Although phenotypically similar, MSCs from different tissues promote tubulogenesis through distinct mechanisms. In this report, we describe differences and similarities regarding molecular interactions in order to investigate which of these two cell types displays more favorable characteristics to be used in clinical applications. Our comparative study shows that ASCs as well as BMSCs are both promising cell types to induce vascularization with ECs in vitro and consequently are promising candidates to support in vivo vascularization.

  8. Exosomes as biomimetic tools for stem cell differentiation: Applications in dental pulp tissue regeneration.

    Science.gov (United States)

    Huang, Chun-Chieh; Narayanan, Raghuvaran; Alapati, Satish; Ravindran, Sriram

    2016-12-01

    Achieving and maintaining safe and reliable lineage specific differentiation of stem cells is important for clinical translation of tissue engineering strategies. In an effort to circumvent the multitude of problems arising from the usage of growth factors and growth factor delivery systems, we have explored the use of exosomes as biomimetic tools to induce stem cell differentiation. Working on the hypothesis that cell-type specific exosomes can trigger lineage-specific differentiation of stem cells, we have evaluated the potential of exosomes derived from dental pulp cells cultured on under growth and odontogenic differentiation conditions to induce odontogenic differentiation of naïve human dental pulp stem cells (DPSCs) and human bone marrow derived stromal cells (HMSCs) in vitro and in vivo. Results indicate that the exosomes can bind to matrix proteins such as type I collagen and fibronectin enabling them to be tethered to biomaterials. The exosomes are endocytosed by both DPSCs and HMSCs in a dose-dependent and saturable manner via the caveolar endocytic mechanism and trigger the P38 mitogen activated protein kinase (MAPK) pathway. In addition, the exosomes also trigger the increased expression of genes required for odontogenic differentiation. When tested in vivo in a tooth root slice model with DPSCs, the exosomes triggered regeneration of dental pulp-like tissue. However, our results indicate that exosomes isolated under odontogenic conditions are better inducers of stem cell differentiation and tissue regeneration. Overall, our results highlight the potential exosomes as biomimetic tools to induce lineage specific differentiation of stem cells. Our results also show the importance of considering the source and state of exosome donor cells before a choice is made for therapeutic applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of Human Adipose Tissue Mesenchymal Stem Cells on the Regeneration of Ovine Articular Cartilage.

    Science.gov (United States)

    Zorzi, Alessandro R; Amstalden, Eliane M I; Plepis, Ana Maria G; Martins, Virginia C A; Ferretti, Mario; Antonioli, Eliane; Duarte, Adriana S S; Luzo, Angela C M; Miranda, João B

    2015-11-09

    Cell therapy is a promising approach to improve cartilage healing. Adipose tissue is an abundant and readily accessible cell source. Previous studies have demonstrated good cartilage repair results with adipose tissue mesenchymal stem cells in small animal experiments. This study aimed to examine these cells in a large animal model. Thirty knees of adult sheep were randomly allocated to three treatment groups: CELLS (scaffold seeded with human adipose tissue mesenchymal stem cells), SCAFFOLD (scaffold without cells), or EMPTY (untreated lesions). A partial thickness defect was created in the medial femoral condyle. After six months, the knees were examined according to an adaptation of the International Cartilage Repair Society (ICRS 1) score, in addition to a new Partial Thickness Model scale and the ICRS macroscopic score. All of the animals completed the follow-up period. The CELLS group presented with the highest ICRS 1 score (8.3 ± 3.1), followed by the SCAFFOLD group (5.6 ± 2.2) and the EMPTY group (5.2 ± 2.4) (p = 0.033). Other scores were not significantly different. These results suggest that human adipose tissue mesenchymal stem cells promoted satisfactory cartilage repair in the ovine model.

  10. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Ji, S.Q.; Cao, J.; Zhang, Q.Y.; Li, Y.Y.; Yan, Y.Q.; Yu, F.X.

    2013-01-01

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis

  11. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  12. Thermogelling 3D Systems towards Stem Cell-Based Tissue Regeneration Therapies

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Wang

    2018-03-01

    Full Text Available Stem cell culturing and differentiation is a very important research direction for tissue engineering. Thermogels are well suited for encapsulating cells because of their non-biotoxic nature and mild sol-gel transition as temperature increases. In particular, thermogels provide a 3D growth environment for stem cell growth, which is more similar to the extracellular matrix than flat substrates, so thermogels as a medium can overcome many of the cell abnormalities caused by 2D cell growth. In this review, we summarize the applications of thermogels in cell and stem cell culture in recent years. We also elaborate on the methods to induce stem cell differentiation by using thermogel-based 3D scaffolds. In particular, thermogels, encapsulating specific differentiation-inducing factor and having specific structures and moduli, can induce the differentiation into the desired tissue cells. Three dimensional thermogel scaffolds that control the growth and differentiation of cells will undoubtedly have a bright future in regenerative medicine.

  13. Ability of stem and progenitor cells in the dental pulp to form hard tissue

    Directory of Open Access Journals (Sweden)

    Akihiro Hosoya, DDS, PhD

    2015-08-01

    Full Text Available Dental pulp has an important ability to form mineralized hard tissue in response to a variety of external stimuli. The formation of mineralized tissue within the pulp cavity has been widely examined in both clinical and animal studies. Despite these studies focusing on the phenomena of reparative dentin and dentin bridge formation, the mechanisms of their induction remain unknown. Recently, several morphological studies revealed that the source of cells for hard tissue formation is the dental pulp itself, even after pulp injury. This finding indicates that the dental pulp tissue contains undifferentiated cells participating in dentin and pulp regeneration. Additionally, stem and progenitor cells isolated from the dental pulp were found to differentiate into odontoblasts as well as osteoblasts. This review presents current evidences for the multipotent ability of dental pulp cells and their usefulness in tissue engineering applications as a cell resource.

  14. Human umbilical cord mesenchymal stem cells: osteogenesis in vivo as seed cells for bone tissue engineering.

    Science.gov (United States)

    Diao, Yinze; Ma, Qingjun; Cui, Fuzhai; Zhong, Yanfeng

    2009-10-01

    Mesenchymal stem cells (MSCs) are ideal seed cells for bone tissue engineering. However, intrinsic deficiencies exist for the autologous transplantation strategy of constructing artificial bone with MSCs derived from bone marrow of patients. In this study, MSCs-like cells were isolated from human umbilical cords and were expanded in vitro. Flow cytometric analysis revealed that cells from the fourth passage were positive for CD29, CD44, CD71, CD73, CD90, and CD105 whereas they were negative for CD14, CD34, CD45, and CD117. Furthermore, these cells expressed HLA-A, B, C (MHC-I), but not HLA-DP, DQ, DR (MHC-II), or costimulatory molecules such as CD80 and CD86. Following incubation in specific inductive media for 3 weeks, cultured cells were shown to possess potential to differentiate into adipogenic, osteogenic or chondrogenic lineages in vitro. The umbilical cord-derived MSCs (UC-MSCs) were loaded with a biomimetic artificial bone scaffold material before being implanted subcutaneously in the back of Balb/c nude mice for four to twelve weeks. Our results revealed that UC-MSCs loaded with the scaffold displayed capacity of osteogenic differentiation leading to osteogenesis with human origin in vivo. As a readily available source of seed cells for bone tissue engineering, UC-MSCs should have broad application prospects.

  15. The Effects of Environmental Factors on Smooth Muscle Cells Differentiation from Adipose-Derived Stem Cells and Esophagus Tissues Engineering

    DEFF Research Database (Denmark)

    Wang, Fang

    Adipose-derived stem cells (ASCs) are increasingly being used for regenerative medicine and tissue engineering. Smooth muscle cells (SMCs) can be differentiated from ASCs. Oxygen is a key factor influencing the stem cell differentiation. Tissue engineered esophagus has been a preferred solution...... of esophagus was studied. Our results showed that both SMCs and ASCs could attach on the porcine esophageal acellular matrix (EAM) scaffold in vitro after 24 hours and survive until 7 days. Thus ASCs might be a substitute for SMCs in the construction of tissue engineered esophageal muscle layer....

  16. The changes in redox status of ascorbate in stem tissue cells during Scots pine tree growth

    Directory of Open Access Journals (Sweden)

    G. F. Antonova

    2017-02-01

    Full Text Available The contents of ascorbate (AsA and dehydroascorbate (DHA and their ratio, showing cellular redox state of AsA, were studied in the cells of the separate tissues at different levels of Pinus sylvestris L. stem during early- and latewood formation. Morphological status of the cells in the tissues and the content of soluble carbohydrates were also estimated. The cellular redox potential of AsA has been found to depend on the type of tissue, cell development degree, the level of stem and the type of forming wood. The content of AsA and AsA/DHA ratio in the cells of non-conducting phloem along the stem were higher than in mature xylem and less during earlywood than latewood formation. The cells of conducting phloem and forming xylem, as the principal tissues taking part in annual ring wood formation, differed in the content of acids in the course of early and late xylem formation. Along the stem, the content of AsA decreased in conducting phloem cells and increased in the cells of forming xylem during both early- and latewood formation. The AsA/DHA of conducting phloem during earlywood formation was greatest below the stem and diminished to the top of the tree, while in the course of latewood development it was similar at all levels. In forming xylem AsA/DHA increased to the top of tree during the early xylem formation and decreased in late xylem that indicates the differences in oxidation-reduction reactions into the cells of two type of forming wood. The data are discussed according to morphological development of cells and the content of carbohydrates.

  17. Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy.

    Science.gov (United States)

    Ostrovidov, Serge; Shi, Xuetao; Sadeghian, Ramin Banan; Salehi, Sahar; Fujie, Toshinori; Bae, Hojae; Ramalingam, Murugan; Khademhosseini, Ali

    2015-12-01

    Skeletal muscle tissue engineering is one of the important ways for regenerating functionally defective muscles. Among the myopathies, the Duchenne muscular dystrophy (DMD) is a progressive disease due to mutations of the dystrophin gene leading to progressive myofiber degeneration with severe symptoms. Although current therapies in muscular dystrophy are still very challenging, important progress has been made in materials science and in cellular technologies with the use of stem cells. It is therefore useful to review these advances and the results obtained in a clinical point of view. This article focuses on the differentiation of stem cells into myoblasts, and their application in muscular dystrophy. After an overview of the different stem cells that can be induced to differentiate into the myogenic lineage, we introduce scaffolding materials used for muscular tissue engineering. We then described some widely used methods to differentiate different types of stem cell into myoblasts. We highlight recent insights obtained in therapies for muscular dystrophy. Finally, we conclude with a discussion on stem cell technology. We discussed in parallel the benefits brought by the evolution of the materials and by the expansion of cell sources which can differentiate into myoblasts. We also discussed on future challenges for clinical applications and how to accelerate the translation from the research to the clinic in the frame of DMD.

  18. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues.

    Directory of Open Access Journals (Sweden)

    Eduardo K Moioli

    Full Text Available Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs and mesenchymal stem/progenitor cells (MSCs were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP scaffolds, followed by infusion of gel-suspended CD34(+ hematopoietic cells. Co-transplantation of CD34(+ HSCs and CD34(- MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+ and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+ cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+ cells. Based on additional in vitro results of endothelial differentiation of CD34(+ cells by vascular endothelial growth factor (VEGF, we adsorbed VEGF with co-transplanted CD34(+ and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+ cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone

  19. β-Catenin activation regulates tissue growth non-cell autonomously in the hair stem cell niche.

    Science.gov (United States)

    Deschene, Elizabeth R; Myung, Peggy; Rompolas, Panteleimon; Zito, Giovanni; Sun, Thomas Yang; Taketo, Makoto M; Saotome, Ichiko; Greco, Valentina

    2014-03-21

    Wnt/β-catenin signaling is critical for tissue regeneration. However, it is unclear how β-catenin controls stem cell behaviors to coordinate organized growth. Using live imaging, we show that activation of β-catenin specifically within mouse hair follicle stem cells generates new hair growth through oriented cell divisions and cellular displacement. β-Catenin activation is sufficient to induce hair growth independently of mesenchymal dermal papilla niche signals normally required for hair regeneration. Wild-type cells are co-opted into new hair growths by β-catenin mutant cells, which non-cell autonomously activate Wnt signaling within the neighboring wild-type cells via Wnt ligands. This study demonstrates a mechanism by which Wnt/β-catenin signaling controls stem cell-dependent tissue growth non-cell autonomously and advances our understanding of the mechanisms that drive coordinated regeneration.

  20. Platelet-Rich Blood Derivatives for Stem Cell-Based Tissue Engineering and Regeneration

    NARCIS (Netherlands)

    Masoudi, E.A.; Ribas, J.; Kaushik, G.; Leijten, Jeroen Christianus Hermanus; Khademhosseini, A.

    2016-01-01

    Platelet-rich blood derivatives have been widely used in different fields of medicine and stem cell-based tissue engineering. They represent natural cocktails of autologous growth factors, which could provide an alternative for recombinant protein-based approaches. Platelet-rich blood derivatives,

  1. Assessment of Energy Metabolic Changes in Adipose Tissue-Derived Stem Cells

    NARCIS (Netherlands)

    Hajmousa, Ghazaleh; Harmsen, Martin C; Di Nardo, Paolo; Dhingra, Sanjiv; Singla, Dinender K.

    2017-01-01

    Adipose tissue-derived stem cells (ADSC) are promising candidates for therapeutic applications in cardiovascular regenerative medicine. By definition, the phenotype ADSCs, e.g., the ubiquitous secretion of growth factors, cytokines, and extracellular matrix components is not met in vivo, which

  2. Identification of Multipotent Stem Cells in Human Brain Tissue Following Stroke.

    Science.gov (United States)

    Tatebayashi, Kotaro; Tanaka, Yasue; Nakano-Doi, Akiko; Sakuma, Rika; Kamachi, Saeko; Shirakawa, Manabu; Uchida, Kazutaka; Kageyama, Hiroto; Takagi, Toshinori; Yoshimura, Shinichi; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-06-01

    Perivascular regions of the brain harbor multipotent stem cells. We previously demonstrated that brain pericytes near blood vessels also develop multipotency following experimental ischemia in mice and these ischemia-induced multipotent stem cells (iSCs) can contribute to neurogenesis. However, it is essential to understand the traits of iSCs in the poststroke human brain for possible applications in stem cell-based therapies for stroke patients. In this study, we report for the first time that iSCs can be isolated from the poststroke human brain. Putative iSCs were derived from poststroke brain tissue obtained from elderly stroke patients requiring decompressive craniectomy and partial lobectomy for diffuse cerebral infarction. Immunohistochemistry showed that these iSCs were localized near blood vessels within poststroke areas containing apoptotic/necrotic neurons and expressed both the stem cell marker nestin and several pericytic markers. Isolated iSCs expressed these same markers and demonstrated high proliferative potential without loss of stemness. Furthermore, isolated iSCs expressed other stem cell markers, such as Sox2, c-myc, and Klf4, and differentiated into multiple cells in vitro, including neurons. These results show that iSCs, which are likely brain pericyte derivatives, are present within the poststroke human brain. This study suggests that iSCs can contribute to neural repair in patients with stroke.

  3. The Regulatory Effects of Long Noncoding RNA-ANCR on Dental Tissue-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Qian Jia

    2016-01-01

    Full Text Available Long noncoding RNAs (lncRNA have been recognized as important regulators in diverse biological processes, such as transcriptional regulation, stem cell proliferation, and differentiation. Previous study has demonstrated that lncRNA-ANCR (antidifferentiation ncRNA plays a key role in regulating the proliferation and osteogenic differentiation of periodontal ligament stem cells (PDLSCs. However, little is known about the role of ANCR in regulating other types of dental tissue-derived stem cells (DTSCs behaviours (including proliferation and multiple-potential of differentiation. In this study, we investigated the regulatory effects of lncRNA-ANCR on the proliferation and differentiation (including osteogenic, adipogenic, and neurogenic differentiation of DTSCs, including dental pulp stem cells (DPSCs, PDLSCs, and stem cells from the apical papilla (SCAP by downregulation of lncRNA-ANCR. We found that downregulation of ANCR exerted little effect on proliferation of DPSCs and SCAP but promoted the osteogenic, adipogenic, and neurogenic differentiation of DTSCs. These data provide an insight into the regulatory effects of long noncoding RNA-ANCR on DTSCs and indicate that ANCR is a very important regulatory factor in stem cell differentiation.

  4. Mechanical Activation of Adipose Tissue and Derived Mesenchymal Stem Cells: Novel Anti-Inflammatory Properties.

    Science.gov (United States)

    Carelli, Stephana; Colli, Mattia; Vinci, Valeriano; Caviggioli, Fabio; Klinger, Marco; Gorio, Alfredo

    2018-01-16

    The adipose tissue is a source of inflammatory proteins, such as TNF, IL-6, and CXCL8. Most of their production occurs in macrophages that act as scavengers of dying adipocytes. The application of an orbital mechanical force for 6-10 min at 97 g to the adipose tissue, lipoaspirated and treated according to Coleman procedures, abolishes the expression of TNF-α and stimulates the expression of the anti-inflammatory protein TNF-stimulated gene-6 (TSG-6). This protein had protective and anti-inflammatory effects when applied to animal models of rheumatic diseases. We examined biopsy, lipoaspirate, and mechanically activated fat and observed that in addition to the increased TSG-6, Sox2, Nanog, and Oct4 were also strongly augmented by mechanical activation, suggesting an effect on stromal cell stemness. Human adipose tissue-derived mesenchymal stem cells (hADSCs), produced from activated fat, grow and differentiate normally with proper cell surface markers and chromosomal integrity, but their anti-inflammatory action is far superior compared to those mesenchymal stem cells (MSCs) obtained from lipoaspirate. The expression and release of inflammatory cytokines from THP-1 cells was totally abolished in mechanically activated adipose tissue-derived hADSCs. In conclusion, we report that the orbital shaking of adipose tissue enhances its anti-inflammatory properties, and derived MSCs maintain such enhanced activity.

  5. Cardiovascular tissue engineering and regeneration based on adipose tissue-derived stem/stromal cells

    NARCIS (Netherlands)

    Parvizi, Mojtaba

    2016-01-01

    Currently, the pre-clinical field is rapidly progressing in search of new therapeutic modalities that replace or complement current medication to treat cardiovascular disease. Among these are the single or combined use of stem cells, biomaterials and instructive factors, which together form the

  6. PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells

    Science.gov (United States)

    Chandrakanthan, Vashe; Yeola, Avani; Kwan, Jair C.; Oliver, Rema A.; Qiao, Qiao; Kang, Young Chan; Zarzour, Peter; Beck, Dominik; Boelen, Lies; Unnikrishnan, Ashwin; Villanueva, Jeanette E.; Nunez, Andrea C.; Knezevic, Kathy; Palu, Cintia; Nasrallah, Rabab; Carnell, Michael; Macmillan, Alex; Whan, Renee; Yu, Yan; Hardy, Philip; Grey, Shane T.; Gladbach, Amadeus; Delerue, Fabien; Ittner, Lars; Mobbs, Ralph; Walkley, Carl R.; Purton, Louise E.; Ward, Robyn L.; Wong, Jason W. H.; Hesson, Luke B.; Walsh, William; Pimanda, John E.

    2016-01-01

    Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor–AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration. PMID:27044077

  7. Structural Analysis of Three-dimensional Human Neural Tissue derived from Induced Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Terrence Brooks, Patrick; Rasmussen, Mikkel Aabech; Hyttel, Poul

    2016-01-01

    Objective: The present study aimed at establishing a method for production of a three-dimensional (3D) human neural tissue derived from induced pluripotent stem cells (iPSCs) and analyzing the outcome by a combination of tissue ultrastructure and expression of neural markers. Methods: A two......-step cell culture procedure was implemented by subjecting human iPSCs to a 3D scaffoldbased neural differentiation protocol. First, neural fate-inducing small molecules were used to create a neuroepithelial monolayer. Second, the monolayer was trypsinized into single cells and seeded into a porous...... polystyrene scaffold and further cultured to produce a 3D neural tissue. The neural tissue was characterized by a combination of immunohistochemistry and transmission electron microscopy (TEM). Results: iPSCs developed into a 3D neural tissue expressing markers for neural progenitor cells, early neural...

  8. The importance of drug transporters in human pluripotent stem cells and in early tissue differentiation.

    Science.gov (United States)

    Apáti, Ágota; Szebényi, Kornélia; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I; Sarkadi, Balázs

    2016-01-01

    Drug transporters are large transmembrane proteins which catalyse the movement of a wide variety of chemicals, including drugs as well as xeno- and endobiotics through cellular membranes. The major groups of these proteins include the ATP-binding cassette transporters which in eukaryotes work as ATP-fuelled drug 'exporters' and the Solute Carrier transporters, with various transport directions and mechanisms. In this review, we discuss the key ATP-binding cassette and Solute Carrier drug transporters which have been reported to contribute to the function and/or protection of undifferentiated human stem cells and during tissue differentiation. We review the various techniques for studying transporter expression and function in stem cells, and the role of drug transporters in foetal and placental tissues is also discussed. We especially focus on the regulation of transporter expression by factors modulating cell differentiation properties and on the function of the transporters in adjustment to environmental challenges. The relatively new and as yet unexplored territory of transporters in stem cell biology may rapidly expand and bring important new information regarding the metabolic and epigenetic regulation of 'stemness' and the early differentiation properties. Drug transporters are clearly important protective and regulatory components in stem cells and differentiation.

  9. Hydrostatic pressure acts to stabilise a chondrogenic phenotype in porcine joint tissue derived stem cells

    Directory of Open Access Journals (Sweden)

    T Vinardell

    2012-02-01

    Full Text Available Hydrostatic pressure (HP is a key component of the in vivo joint environment and has been shown to enhance chondrogenesis of stem cells. The objective of this study was to investigate the interaction between HP and TGF-β3 on both the initiation and maintenance of a chondrogenic phenotype for joint tissue derived stem cells. Pellets generated from porcine chondrocytes (CCs, synovial membrane derived stem cells (SDSCs and infrapatellar fat pad derived stem cells (FPSCs were subjected to 10 MPa of cyclic HP (4 h/day and different concentrations of TGF-β3 (0, 1 and 10 ng/mL for 14 days. CCs and stem cells were observed to respond differentially to both HP and TGF-β3 stimulation. HP in the absence of TGF-β3 did not induce robust chondrogenic differentiation of stem cells. At low concentrations of TGF-β3 (1 ng/mL, HP acted to enhance chondrogenesis of both SDSCs and FPSCs, as evident by a 3-fold increase in Sox9 expression and a significant increase in glycosaminoglycan accumulation. In contrast, HP had no effect on cartilage-specific matrix synthesis at higher concentrations of TGF-β3 (10 ng/mL. Critically, HP appears to play a key role in the maintenance of a chondrogenic phenotype, as evident by a down-regulation of the hypertrophic markers type X collagen and Indian hedgehog in SDSCs irrespective of the cytokine concentration. In the context of stem cell based therapies for cartilage repair, this study demonstrates the importance of considering how joint specific environmental factors interact to regulate not only the initiation of chondrogenesis, but also the development of a stable hyaline-like repair tissue.

  10. Dental pulp stem cells express tendon markers under mechanical loading and are a potential cell source for tissue engineering of tendon-like tissue.

    Science.gov (United States)

    Chen, Yu-Ying; He, Sheng-Teng; Yan, Fu-Hua; Zhou, Peng-Fei; Luo, Kai; Zhang, Yan-Ding; Xiao, Yin; Lin, Min-Kui

    2016-12-16

    Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engineering. The expression of tendon-related markers such as scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagens I and VI was detected in dental pulp tissue. Interestingly, under mechanical stimulation, these tendon-related markers were significantly enhanced when DPSCs were seeded in aligned polyglycolic acid (PGA) fibre scaffolds. Furthermore, mature tendon-like tissue was formed after transplantation of DPSC-PGA constructs under mechanical loading conditions in a mouse model. This study demonstrates that DPSCs could be a potential stem cell source for tissue engineering of tendon-like tissue.

  11. Stem cell therapy and tissue engineering for correction of congenital heart disease

    Science.gov (United States)

    Avolio, Elisa; Caputo, Massimo; Madeddu, Paolo

    2015-01-01

    This review article reports on the new field of stem cell therapy and tissue engineering and its potential on the management of congenital heart disease. To date, stem cell therapy has mainly focused on treatment of ischemic heart disease and heart failure, with initial indication of safety and mild-to-moderate efficacy. Preclinical studies and initial clinical trials suggest that the approach could be uniquely suited for the correction of congenital defects of the heart. The basic concept is to create living material made by cellularized grafts that, once implanted into the heart, grows and remodels in parallel with the recipient organ. This would make a substantial improvement in current clinical management, which often requires repeated surgical corrections for failure of implanted grafts. Different types of stem cells have been considered and the identification of specific cardiac stem cells within the heterogeneous population of mesenchymal and stromal cells offers opportunities for de novo cardiomyogenesis. In addition, endothelial cells and vascular progenitors, including cells with pericyte characteristics, may be necessary to generate efficiently perfused grafts. The implementation of current surgical grafts by stem cell engineering could address the unmet clinical needs of patients with congenital heart defects. PMID:26176009

  12. Stem Cell Metabolism in Cancer and Healthy Tissues: Pyruvate in the Limelight

    Directory of Open Access Journals (Sweden)

    Cyril Corbet

    2018-01-01

    Full Text Available Normal and cancer stem cells (CSCs share the remarkable potential to self-renew and differentiate into many distinct cell types. Although most of the stem cells remain under quiescence to maintain their undifferentiated state, they can also undergo cell divisions as required to regulate tissue homeostasis. There is now a growing evidence that cell fate determination from stem cells implies a fine-tuned regulation of their energy balance and metabolic status. Stem cells can shift their metabolic substrate utilization, between glycolysis and mitochondrial oxidative metabolism, during specification and/or differentiation, as well as in order to adapt their microenvironmental niche. Pyruvate appears as a key metabolite since it is at the crossroads of cytoplasmic glycolysis and mitochondrial oxidative phosphorylation. This Review describes how metabolic reprogramming, focusing on pyruvate utilization, drives the fate of normal and CSCs by modulating their capacity for self-renewal, clonal expansion/differentiation, as well as metastatic potential and treatment resistance in cancer. This Review also explores potential therapeutic strategies to restore or manipulate stem cell function through the use of small molecules targeting the pyruvate metabolism.

  13. Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression.

    Science.gov (United States)

    Stanko, Peter; Kaiserova, Katarina; Altanerova, Veronika; Altaner, Cestmir

    2014-09-01

    Our aims were to characterize human mesenchymal stem cells isolated from various tissues by pluripotent stem cells gene expression profile. Four strains of dental pulp stem cells (DP-MSCs) were isolated from dental pulp tissue fragments adhered to plastic tissue culture dishes. Mesenchymal stem cells derived from umbilical cord tissue (UBC-MSCs) were isolated with the same technique. Bone marrow derived mesenchymal stem cells (BM-MSCs) were isolated from nucleated cells of bone marrow obtained by density gradient centrifugation. Human mesenchymal stem cells from adipose tissue (AT-MSCs) were isolated by collagenase digestion. All kinds of MSCs used in this study were cultivated in low glucose DMEM containing 5% or human platelet extract. All stem cell manipulation was performed in GMP conditions. Expression of 15 pluripotent stem cells genes on the level of proteins was measured by Proteome Profiler Human Pluripotent Stem Cell Array. Induction of MSCs to in vitro differentiation to adipocytes, osteoblasts, chondroblasts was achieved by cultivation of cells in appropriate differentiation medium. All MSCs tested were phenotypically similar and of fibroblastoid morphology. DP-MSCs and UBC-MSCs were more proliferative than bone marrow BM-MSCs and AT-MSCs. Protein expression of 15 genes typical for pluripotent stem cells distinguished them into two groups. While the gene expression profiles of BM-MSC, AT-MSCs and UBC-MSCs were similar, DP-MSCS differed in relative gene expression on the level of their products in several genes. Dental pulp mesenchymal stem cells cultivated in vitro under the same conditions as MSCs from bone marrow, adipose tissue and umbilical cord tissue can be distinguished by pluripotent stem cell gene expression profile.

  14. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair.

    Science.gov (United States)

    Shafiq, Muhammad; Jung, Youngmee; Kim, Soo Hyun

    2016-06-01

    Stem cells are a promising solution for the treatment of a variety of diseases. However, the limited survival and engraftment of transplanted cells due to a hostile ischemic environment is a bottleneck for effective utilization and commercialization. Within this environment, the majority of transplanted cells undergo apoptosis prior to participating in lineage differentiation and cellular integration. Therefore, in order to maximize the clinical utility of stem/progenitor cells, strategies must be employed to increase their adhesion, retention, and engraftment in vivo. Here, we reviewed key strategies that are being adopted to enhance the survival, retention, and engraftment of transplanted stem cells through the manipulation of both the stem cells and the surrounding environment. We describe how preconditioning of cells or cell manipulations strategies can enhance stem cell survival and engraftment after transplantation. We also discuss how biomaterials can enhance the function of stem cells for effective tissue regeneration. Biomaterials can incorporate or mimic extracellular function (ECM) function and enhance survival or differentiation of transplanted cells in vivo. Biomaterials can also promote angiogenesis, enhance engraftment and differentiation, and accelerate electromechanical integration of transplanted stem cells. Insight gained from this review may direct the development of future investigations and clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Stem Cells from Cryopreserved Human Dental Pulp Tissues Sequentially Differentiate into Definitive Endoderm and Hepatocyte-Like Cells in vitro.

    Science.gov (United States)

    Han, Young-Jin; Kang, Young-Hoon; Shivakumar, Sarath Belame; Bharti, Dinesh; Son, Young-Bum; Choi, Yong-Ho; Park, Won-Uk; Byun, June-Ho; Rho, Gyu-Jin; Park, Bong-Wook

    2017-01-01

    We previously described a novel tissue cryopreservation protocol to enable the safe preservation of various autologous stem cell sources. The present study characterized the stem cells derived from long-term cryopreserved dental pulp tissues (hDPSCs-cryo) and analyzed their differentiation into definitive endoderm (DE) and hepatocyte-like cells (HLCs) in vitro . Human dental pulp tissues from extracted wisdom teeth were cryopreserved as per a slow freezing tissue cryopreservation protocol for at least a year. Characteristics of hDPSCs-cryo were compared to those of stem cells from fresh dental pulps (hDPSCs-fresh). hDPSCs-cryo were differentiated into DE cells in vitro with Activin A as per the Wnt3a protocol for 6 days. These cells were further differentiated into HLCs in the presence of growth factors until day 30. hDPSCs-fresh and hDPSCs-cryo displayed similar cell growth morphology, cell proliferation rates, and mesenchymal stem cell character. During differentiation into DE and HLCs in vitro , the cells flattened and became polygonal in shape, and finally adopted a hepatocyte-like shape. The differentiated DE cells at day 6 and HLCs at day 30 displayed significantly increased DE- and hepatocyte-specific markers at the mRNA and protein level, respectively. In addition, the differentiated HLCs showed detoxification and glycogen storage capacities, indicating they could share multiple functions with real hepatocytes. These data conclusively show that hPDSCs-cryo derived from long-term cryopreserved dental pulp tissues can be successfully differentiated into DE and functional hepatocytes in vitro . Thus, preservation of dental tissues could provide a valuable source of autologous stem cells for tissue engineering.

  16. Engineering three-dimensional stem cell morphogenesis for the development of tissue models and scalable regenerative therapeutics.

    Science.gov (United States)

    Kinney, Melissa A; Hookway, Tracy A; Wang, Yun; McDevitt, Todd C

    2014-02-01

    The physiochemical stem cell microenvironment regulates the delicate balance between self-renewal and differentiation. The three-dimensional assembly of stem cells facilitates cellular interactions that promote morphogenesis, analogous to the multicellular, heterotypic tissue organization that accompanies embryogenesis. Therefore, expansion and differentiation of stem cells as multicellular aggregates provides a controlled platform for studying the biological and engineering principles underlying spatiotemporal morphogenesis and tissue patterning. Moreover, three-dimensional stem cell cultures are amenable to translational screening applications and therapies, which underscores the broad utility of scalable suspension cultures across laboratory and clinical scales. In this review, we discuss stem cell morphogenesis in the context of fundamental biophysical principles, including the three-dimensional modulation of adhesions, mechanics, and molecular transport and highlight the opportunities to employ stem cell spheroids for tissue modeling, bioprocessing, and regenerative therapies.

  17. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue

  18. Autologous adipose tissue-derived stem cells induce persistent bone-like tissue in osteonecrotic femoral heads.

    Science.gov (United States)

    Pak, Jaewoo

    2012-01-01

    Osteonecrosis, also known as avascular necrosis, of the femoral head is a debilitating disorder that commonly affects 30- to 50-year-old individuals. Currently, definitive treatment is limited to total hip replacement. However, recent studies have demonstrated bone regeneration in the femoral head after the infusion of bone marrow-derived mesenchymal stem cells. In addition, local injection of adipose tissue-derived stem cells has been shown to regenerate medullary bone-like tissue 3 months after treatment. However, there have been no long-term follow-up studies on humans treated with adipose tissue-derived stem cells for osteonecrosis. To determine if treatment with adipose tissue-derived stem cells and platelet-rich plasma leads to the regeneration of medullary bone-like tissue and long-term reduction of hip pain in patients with femoral head osteonecrosis. This report of two clinical cases was in compliance with the Declaration of Helsinki. Also, the Korean Food and Drug Administration has allowed the use of adipose tissue-derived stem cells (ADSCs) in medical treatments since 2009. To obtain ADSCs, lipoaspirates were obtained from lower abdominal subcutaneous adipose tissue. The stromal vascular fraction was separated from the lipoaspirates by centrifugation after treatment with collagenase. The stem-cell-containing stromal vascular fraction was mixed with calcium chloride-activated platelet rich plasma and hyaluronic acid, and this mixture was then injected into the diseased hip. The affected hip was reinjected with calcium chloride-activated platelet rich plasma weekly for 4 weeks. Patients were subjected to pre- and post-treatment magnetic resonance imaging (MRI) scans. Two patients (34- and 39-year-old men) with femoral head osteonecrosis and severe hip pain were treated with adipose-derived stem cells. The MRI scans of the affected hip in both patients showed segmental areas of low signal intensity (T1 axial views) in the subchondral bones with a "double

  19. Stem cell therapy for the treatment of radiation-induced normal tissue damage

    International Nuclear Information System (INIS)

    Chapel, A.; Benderitter, M.; Gourmelon, P.; Lataillade, J.J.; Gorin, N.C.

    2013-01-01

    Radiotherapy may induce irreversible damage on healthy tissues surrounding the tumour. In Europe, per year, 1.5 million patients undergo external radiotherapy. Acute adverse effect concern 80% of patients. The late adverse effect of radiotherapy concern 5 to 10% of them, which could be life threatening. Eradication of these manifestations is crucial. The French Institute of Radioprotection and Nuclear Safety (IRSN) contribute to understand effect of radiation on healthy tissue. IRSN is strongly implicated in the field of regeneration of healthy tissue after radiotherapy or radiological accident and in the clinical use of cell therapy in the treatment of irradiated patients. Our first success in cell therapy was the correction of deficient hematopoiesis in two patients. The intravenous injection of Mesenchymal Stem Cells (MSC) has restored bone marrow micro-environment after total body irradiation necessary to sustain hematopoiesis. Cutaneous radiation reactions play an important role in radiation accidents, but also as a limitation in radiotherapy and radio-oncology. We have evidenced for the first time, the efficiency of MSC therapy in the context of acute cutaneous and muscle damage following irradiation in five patients. Concerning the medical management of gastrointestinal disorder after irradiation, we have demonstrated the promising approach of the MSC treatment. We have shown that MSC migrate to damaged tissues and restore gut functions after radiation damage. The evaluation of stem cell therapy combining different sources of adult stem cells is under investigation

  20. Stem cells and tissue niche: two faces of the same coin of muscle regeneration

    Directory of Open Access Journals (Sweden)

    Bianca Maria Scicchitano

    2016-11-01

    Full Text Available Capacity of adult muscle to regenerate in response to injury stimuli represents an important homeostatic process. Regeneration is a highly coordinated program that partially recapitulates the embryonic developmental program. However, muscle regeneration is severely compromised in several pathological conditions. It is likely that the restricted tissue repair program under pathological conditions is due to either progressive loss of stem cell populations or to missing signals that limit the damaged tissues to efficiently activate a regenerative program. It is therefore plausible that loss of control over these cell fates might lead to a pathological cell transdifferentiation, limiting the ability of a pathological muscle to sustain an efficient regenerative process. The critical role of microenvironment on stem cells activity and muscle regeneration is discussed.

  1. Therapeutic efficacy of amniotic membrane stem cells and adipose tissue stem cells in rats with chemically induced ovarian failure

    Science.gov (United States)

    Fouad, Hanan; Sabry, Dina; Elsetohy, Khaled; Fathy, Naglaa

    2015-01-01

    The present study was conducted to compare between the therapeutic efficacies of human amniotic membrane-derived stem cells (hAM-MSCs) vs. adipose tissue derived stem cells (AD-MSCs) in cyclophosphamide (CTX)-induced ovarian failure in rats. Forty-eight adult female rats were included in the study; 10 rats were used as control group. Thirty-eight rats were injected with CTX to induce ovarian failure and divided into four groups: ovarian failure (IOF) (IOF group), IOF + phosphate buffer saline (PBS group), IOF + hAM-MSCs group and IOF + AD-MSCs group. Serum levels of FSH and estradiol (E2) were assessed. Histopathological examination of the ovarian tissues was performed and quantitative gene expressions of Oct-4, Stra8 and integrin beta-1 genes were conducted by quantitative real time PCR. Results showed that IOF and IOF + PBS rat groups exhibited decreased ovarian follicles, increased interstitial fibrosis with significant decrease of serum E2, significant increase serum FSH level and significant down-regulation of Stra8 and integrin beta-1. In hAM-MSCs and AD-MSCs rat groups, there were increased follicles and corpora with evident the presence of oocytes, significant increase in serum E2, significant decrease in serum FSH levels (in hAM-MSCs treated group only) and significant up-regulation of the three studied genes with higher levels in hAM-MSCs treated rats group when compared to AD-MSCs treated rats group. In Conclusion, administration of either hAM-derived MSCs or AD-MSCs exerts a significant therapeutic efficacy in chemotherapy induced ovarian insult in rats. hAM-MSCs exert higher therapeutic efficacy as compared to AD-MSCs. PMID:26966564

  2. Human tissue legislation in South Africa: Focus on stem cell ...

    African Journals Online (AJOL)

    The control and use of human tissue in South Africa is primarily governed by the National Health Act and relevant regulations, although other national acts, in differing degrees, are also relevant to this complex field. These include, among others, the Medicines and Related Substances Act, the Consumer Protection Act, the ...

  3. Human tissue legislation in South Africa: Focus on stem cell ...

    African Journals Online (AJOL)

    2015-08-04

    Aug 4, 2015 ... Human tissue legislation is complex. It is characterised by an ever-changing landscape in which advances in science and medicine need to be accommodated. A high degree of technical expertise is required to ensure that the legislation is accurate, appropriate and unambiguous. However, it is generally ...

  4. Formation of Stomach Tissue by Organoid Culture Using Mouse Embryonic Stem Cells.

    Science.gov (United States)

    Noguchi, Taka-Aki K; Kurisaki, Akira

    2017-01-01

    In this chapter, we describe a method for the induction of stomach organoids from mouse embryonic stem (ES) cells. We used an embryoid body-based differentiation method to induce gastric primordial epithelium covered with mesenchyme and further differentiate it in Matrigel by 3D culture. The differentiated organoid contains both corpus- and antrum-specific mature gastric tissue cells. This protocol may be useful for a variety of studies in developmental biology and disease modeling of the stomach.

  5. Adipose tissue as mesenchymal stem cells source in equine tendinitis treatment

    Directory of Open Access Journals (Sweden)

    Armando de Mattos Carvalho

    2016-12-01

    Full Text Available Tendinitis is an important high-relapse-rate disease, which compromises equine performance and may result in early athletic life end to affected animals. Many therapies have been set to treat equine tendinitis; however, just few result in improved relapse rates, quality of extracellular matrix (ECM and increased biomechanical resistance of the treated tissue. Due to advances in the regenerative medicine, promising results were initially obtained through the implantation of mesenchymal stem cells (MSC derived from the bone marrow in the equine tendon injury. Since then, many studies have been using MSCs from different sources for therapeutic means in equine. The adipose tissue has appeared as feasible MSC source. There are promising results involving equine tendinitis therapy using mesenchymal stem cells from adipose tissue (AdMSCs.

  6. Transit-amplifying cells orchestrate stem cell activity and tissue regeneration.

    Science.gov (United States)

    Hsu, Ya-Chieh; Li, Lishi; Fuchs, Elaine

    2014-05-08

    Transit-amplifying cells (TACs) are an early intermediate in tissue regeneration. Here, using hair follicles (HFs) as a paradigm, we show that emerging TACs constitute a signaling center that orchestrates tissue growth. Whereas primed stem cells (SCs) generate TACs, quiescent SCs only proliferate after TACs form and begin expressing Sonic Hedgehog (SHH). TAC generation is independent of autocrine SHH, but the TAC pool wanes if they can't produce SHH. We trace this paradox to two direct actions of SHH: promoting quiescent-SC proliferation and regulating dermal factors that stoke TAC expansion. Ingrained within quiescent SCs' special sensitivity to SHH signaling is their high expression of GAS1. Without sufficient input from quiescent SCs, replenishment of primed SCs for the next hair cycle is compromised, delaying regeneration and eventually leading to regeneration failure. Our findings unveil TACs as transient but indispensable integrators of SC niche components and reveal an intriguing interdependency of primed and quiescent SC populations on tissue regeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Seung Taek Ji

    2017-01-01

    Full Text Available The primary cause of death among chronic diseases worldwide is ischemic cardiovascular diseases, such as stroke and myocardial infarction. Recent evidence indicates that adult stem cell therapies involving cardiovascular regeneration represent promising strategies to treat cardiovascular diseases. Owing to their immunomodulatory properties and vascular repair capabilities, mesenchymal stem cells (MSCs are strong candidate therapeutic stem cells for use in cardiovascular regeneration. However, major limitations must be overcome, including their very low survival rate in ischemic lesion. Various attempts have been made to improve the poor survival and longevity of engrafted MSCs. In order to develop novel therapeutic strategies, it is necessary to first identify stem cell modulators for intracellular signal triggering or niche activation. One promising therapeutic strategy is the priming of therapeutic MSCs with stem cell modulators before transplantation. Another is a tissue engineering-based therapeutic strategy involving a cell scaffold, a cell-protein-scaffold architecture made of biomaterials such as ECM or hydrogel, and cell patch- and 3D printing-based tissue engineering. This review focuses on the current clinical applications of MSCs for treating cardiovascular diseases and highlights several therapeutic strategies for promoting the therapeutic efficacy of MSCs in vitro or in vivo from cell priming to tissue engineering strategies, for use in cardiovascular regeneration.

  8. Generation of Dopamine-Secreting Cells from Human Adipose Tissue-Derived Stem Cells In Vitro.

    Science.gov (United States)

    Soheilifar, Mohammad Hasan; Javeri, Arash; Amini, Hossein; Taha, Masoumeh Fakhr

    2018-03-12

    Several studies have demonstrated the differentiation of human adipose tissue-derived stem cells (hADSCs) to neuronal and glial phenotypes, but directing the fate of these cells toward dopaminergic neurons has not been frequently reported. The aim of this study was to investigate dopaminergic specification of hADSCs in vitro. ADSCs were isolated from subcutaneous abdominal adipose tissue and were characterized. For dopaminergic differentiation, a cocktail of sonic hedgehog, fibroblast growth factor 8, basic fibroblast growth factor, and brain-derived neurotrophic factor were used under a low serum condition. As the control group, the ADSCs were cultured under the same low serum condition without the dopaminergic cocktail. At the end of differentiation period, the cells expressed neuron-specific markers, NES, NSE, and NEFL, and dopaminergic markers, EN1, NURR1, PITX3, VMAT2, TH, and GIRK2 genes. TH, NURR1, and EN1 mRNAs were upregulated in the dopaminergic group compared with the control group. NEFL and TH proteins were also expressed in the differentiated cells. A total of 27.9% of the cells differentiated in dopaminergic induction medium showed positive staining for TH protein. Based on reversed-phase high-performance liquid chromatography analysis, the differentiated cells released a significant amount of dopamine in response to KCl-induced depolarization. In conclusion, results of this study indicate that hADSCs can be induced by a growth factor cocktail to produce dopamine secreting cells with possible applications for future cell replacement therapy of Parkinson's disease.

  9. Regulation of Breast Cancer Stem Cell by Tissue Rigidity

    Science.gov (United States)

    2014-06-01

    received 1 wk of preoperative chemotherapy prior to surgery resection displayed a more mesenchymal gene signature compared with prechemotherapy biopsy...regulates proliferation, migration and invasiveness of MDA-MB-231 breast cancer cells. Cell Signal 2012; 24: 1276–1286. 87 Yeatman TJ. A renaissance

  10. The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity

    Science.gov (United States)

    Plikus, Maksim V.; Van Spyk, Elyse Noelani; Pham, Kim; Geyfman, Mikhail; Kumar, Vivek; Takahashi, Joseph S.; Andersen, Bogi

    2015-01-01

    Historically work on peripheral circadian clocks has been focused on organs and tissues that have prominent metabolic functions, such as liver, fat and muscle. In recent years, skin is emerging as a model for studying circadian clock regulation of cell proliferation, stem cell functions, tissue regeneration, aging and carcinogenesis. Morphologically skin is complex, containing multiple cell types and structures, and there is evidence for a functional circadian clock in most, if not all, of its cell types. Despite the complexity, skin stem cell populations are well defined, experimentally tractable and exhibit prominent daily cell proliferation cycles. Hair follicle stem cells also participate in recurrent, long-lasting cycles of regeneration -- the hair growth cycles. Among other advantages of skin is a broad repertoire of available genetic tools enabling the creation of cell-type specific circadian mutants. Also, due to the accessibility of the skin, in vivo imaging techniques can be readily applied to study the circadian clock and its outputs in real time, even at the single-cell level. Skin provides the first line of defense against many environmental and stress factors that exhibit dramatic diurnal variations such as solar UV radiation and temperature. Studies have already linked the circadian clock to the control of UVB-induced DNA damage and skin cancers. Due to the important role that skin plays in the defense against microorganisms, it represents a promising model system to further explore the role of the clock in the regulation of the body's immune functions. To that end, recent studies have already linked the circadian clock to psoriasis, one of the most common immune-mediated skin disorders. The skin also provides opportunities to interrogate clock regulation of tissue metabolism in the context of stem cells and regeneration. Furthermore, many animal species feature prominent seasonal hair molt cycles, offering an attractive model for investigating the

  11. Adipose-derived stem cell differentiation as a basic tool for vascularized adipose tissue engineering.

    Science.gov (United States)

    Volz, Ann-Cathrin; Huber, Birgit; Kluger, Petra J

    2016-01-01

    The development of in vitro adipose tissue constructs is highly desired to cope with the increased demand for substitutes to replace damaged soft tissue after high graded burns, deformities or tumor removal. To achieve clinically relevant dimensions, vascularization of soft tissue constructs becomes inevitable but still poses a challenge. Adipose-derived stem cells (ASCs) represent a promising cell source for the setup of vascularized fatty tissue constructs as they can be differentiated into adipocytes and endothelial cells in vitro and are thereby available in sufficiently high cell numbers. This review summarizes the currently known characteristics of ASCs and achievements in adipogenic and endothelial differentiation in vitro. Further, the interdependency of adipogenesis and angiogenesis based on the crosstalk of endothelial cells, stem cells and adipocytes is addressed at the molecular level. Finally, achievements and limitations of current co-culture conditions for the construction of vascularized adipose tissue are evaluated. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  12. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    NARCIS (Netherlands)

    P. Aparicio-Domingo (Patricia); M. Romera-Hernandez (Monica); J.J. Karrich (Julien J.); F.H.J. Cornelissen (Ferry); N. Papazian (Natalie); D.J. Lindenbergh-Kortleve (Dicky); J.A. Butler (James A.); L. Boon (Louis); M. Coles (Mark); J.N. Samsom (Janneke); T. Cupedo (Tom)

    2015-01-01

    textabstractDisruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence

  13. Vanillin attenuates negative effects of ultraviolet A on the stemness of human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Lee, Sang Yeol; Park, See-Hyoung; Kim, Mi Ok; Lim, Inhwan; Kang, Mingyeong; Oh, Sae Woong; Jung, Kwangseon; Jo, Dong Gyu; Cho, Il-Hoon; Lee, Jongsung

    2016-10-01

    Ultraviolet A (UVA) irradiation induces various changes in cell biology. The objective of this study was to determine the effect of vanillin on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). UVA-antagonizing mechanisms of vanillin were also examined. The results revealed that vanillin attenuated UVA-induced reduction of the proliferative potential and stemness of hAMSCs evidenced by increased proliferative activity in BrdU incorporation assay and upregulation of stemness-related genes (OCT4, NANOG and SOX2) in response to vanillin treatment. UVA-induced reduction in mRNA level of hypoxia-inducible factor (HIF)-1α was significantly recovered by vanillin. In addition, the antagonizing effect of vanillin on UVA was found to be mediated by reduced production of PGE2 through inhibiting JNK and p38 MAPK. Taken together, these findings showed that vanillin could improve the reduced stemness of hAMSCs induced by UVA. The effect of vanillin is mediated by upregulating HIF-1α via inhibiting PGE2-cAMP signaling. Therefore, vanillin might be used as an antagonizing agent to mitigate the effects of UVA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Interleukin-6 blockade attenuates lung cancer tissue construction integrated by cancer stem cells.

    Science.gov (United States)

    Ogawa, Hiroyuki; Koyanagi-Aoi, Michiyo; Otani, Kyoko; Zen, Yoh; Maniwa, Yoshimasa; Aoi, Takashi

    2017-09-26

    In the present study, we successfully generated lung cancer stem cell (CSC)-like cells by introducing a small set of transcription factors into a lung cancer cell line. In addition to properties that are conventionally referred to as CSC properties, the lung induced CSCs exhibited the ability to form lung cancer-like tissues in vitro with vascular cells and mesenchymal stem cells, which showed structures and immunohistological patterns that were similar to human lung cancer tissues. We named them "lung cancer organoids". We found that interleukin-6 (IL-6), which was expressed in the lung induced CSCs, facilitates the formation of lung cancer organoids via the conversion of mesenchymal stem cells into alpha-smooth muscle actin (αSMA)-positive cells. Interestingly, the combination of anti-IL-6 antibody and cisplatin could destroy the lung cancer organoids, while cisplatin alone could not. Furthermore, IL-6 mRNA-positive cancer cells were found in clinical lung cancer samples. These results suggest that IL-6 could be a novel therapeutic target in lung cancer.

  15. Dental pulp stem cells immobilized in alginate microspheres for applications in bone tissue engineering.

    Science.gov (United States)

    Kanafi, M M; Ramesh, A; Gupta, P K; Bhonde, R R

    2014-07-01

    To immobilize dental pulp stem cells (DPSC) in alginate microspheres and to determine cell viability, proliferation, stem cell characteristics and osteogenic potential of the immobilized DPSCs. Human DPSCs isolated from the dental pulp were immobilized in 1% w/v alginate microspheres. Viability and proliferation of immobilized DPSCs were determined by trypan blue and MTT assay, respectively. Stem cell characteristics of DPSCs post immobilization were verified by labelling the cells with CD73 and CD90. Osteogenic potential of immobilized DPSCs was assessed by the presence of osteocalcin. Alizarin red staining and O-cresolphthalein complexone method confirmed and quantified calcium deposition. A final reverse transcriptase PCR evaluated the expression of osteogenic markers - ALP, Runx-2 and OCN. More than 80% of immobilized DPSCs were viable throughout the 3-week study. Proliferation appeared controlled and consistent unlike DPSCs in the control group. Presence of CD73 and CD90 markers confirmed the stem cell nature of immobilized DPSCs. The presence of osteocalcin, an osteoblastic marker, was confirmed in the microspheres on day 21. Mineralization assays showed high calcium deposition indicating elevated osteogenic potential of immobilized DPSCs. Osteogenic genes- ALP, Runx-2 and OCN were also upregulated in immobilized DPSCs. Surprisingly, immobilized DPSCs in the control group cultured in conventional stem cell media showed upregulation of osteogenic genes and expressed osteocalcin. Dental pulp stem cells immobilized in alginate hydrogels exhibit enhanced osteogenic potential while maintaining high cell viability both of which are fundamental for bone tissue regeneration. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  16. Types of Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... stem cells blog from the International Society for Stem Cell Research. Learn About Stem Cells From Lab to You ...

  17. Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds.

    Science.gov (United States)

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L

    2013-07-01

    Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to stem cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to "map the mechanome", defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Ex-Vivo Tissues Engineering Modeling for Reconstructive Surgery Using Human Adult Adipose Stem Cells and Polymeric Nanostructured Matrix.

    Science.gov (United States)

    Morena, Francesco; Argentati, Chiara; Calzoni, Eleonora; Cordellini, Marino; Emiliani, Carla; D'Angelo, Francesco; Martino, Sabata

    2016-03-31

    The major challenge for stem cell translation regenerative medicine is the regeneration of damaged tissues by creating biological substitutes capable of recapitulating the missing function in the recipient host. Therefore, the current paradigm of tissue engineering strategies is the combination of a selected stem cell type, based on their capability to differentiate toward committed cell lineages, and a biomaterial, that, due to own characteristics (e.g., chemical, electric, mechanical property, nano-topography, and nanostructured molecular components), could serve as active scaffold to generate a bio-hybrid tissue/organ. Thus, effort has been made on the generation of in vitro tissue engineering modeling. Here, we present an in vitro model where human adipose stem cells isolated from lipoaspirate adipose tissue and breast adipose tissue, cultured on polymeric INTEGRA ® Meshed Bilayer Wound Matrix (selected based on conventional clinical applications) are evaluated for their potential application for reconstructive surgery toward bone and adipose tissue. We demonstrated that human adipose stem cells isolated from lipoaspirate and breast tissue have similar stemness properties and are suitable for tissue engineering applications. Finally, the overall results highlighted lipoaspirate adipose tissue as a good source for the generation of adult adipose stem cells.

  19. Direct Mechanical Stimulation of Stem Cells: A Beating Electromechanically Active Scaffold for Cardiac Tissue Engineering.

    Science.gov (United States)

    Gelmi, Amy; Cieslar-Pobuda, Artur; de Muinck, Ebo; Los, Marek; Rafat, Mehrdad; Jager, Edwin W H

    2016-06-01

    The combination of stem cell therapy with a supportive scaffold is a promising approach to improving cardiac tissue engineering. Stem cell therapy can be used to repair nonfunctioning heart tissue and achieve myocardial regeneration, and scaffold materials can be utilized in order to successfully deliver and support stem cells in vivo. Current research describes passive scaffold materials; here an electroactive scaffold that provides electrical, mechanical, and topographical cues to induced human pluripotent stem cells (iPS) is presented. The poly(lactic-co-glycolic acid) fiber scaffold coated with conductive polymer polypyrrole (PPy) is capable of delivering direct electrical and mechanical stimulation to the iPS. The electroactive scaffolds demonstrate no cytotoxic effects on the iPS as well as an increased expression of cardiac markers for both stimulated and unstimulated protocols. This study demonstrates the first application of PPy as a supportive electroactive material for iPS and the first development of a fiber scaffold capable of dynamic mechanical actuation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors.

    Science.gov (United States)

    Ansari, Sahar; Chen, Chider; Xu, Xingtian; Annabi, Nasim; Zadeh, Homayoun H; Wu, Benjamin M; Khademhosseini, Ali; Shi, Songtao; Moshaverinia, Alireza

    2016-06-01

    Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering.

  1. Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering.

    Science.gov (United States)

    Wang, Lina; Johnson, Joshua A; Zhang, Qixu; Beahm, Elisabeth K

    2013-11-01

    Repair of soft tissue defects resulting from lumpectomy or mastectomy has become an important rehabilitation process for breast cancer patients. This study aimed to provide an adipose tissue engineering platform for soft tissue defect repair by combining decellularized human adipose tissue extracellular matrix (hDAM) and human adipose-derived stem cells (hASCs). To derive hDAM incised human adipose tissues underwent a decellularization process. Effective cell removal and lipid removal were proved by immunohistochemical analysis and DNA quantification. Scanning electron microscopic examination showed a three-dimensional nanofibrous architecture in hDAM. The hDAM included collagen, sulfated glycosaminoglycan, and vascular endothelial growth factor, but lacked major histocompatibility complex antigen I. hASC viability and proliferation on hDAM were proven in vitro. hDAM implanted subcutaneously in Fischer rats did not cause an immunogenic response, and it underwent remodeling, as indicated by host cell infiltration, neovascularization, and adipose tissue formation. Fresh fat grafts (Coleman technique) and engineered fat grafts (hDAM combined with hASCs) were implanted subcutaneously in nude rats. The implanted engineered fat grafts maintained their volume for 8 weeks, and the hASCs contributed to adipose tissue formation. In summary, the combination of hDAM and hASCs provides not only a clinically translatable platform for adipose tissue engineering, but also a vehicle for elucidating fat grafting mechanisms. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Muse Cells: Nontumorigenic Pluripotent Stem Cells Present in Adult Tissues—A Paradigm Shift in Tissue Regeneration and Evolution

    Directory of Open Access Journals (Sweden)

    Ariel A. Simerman

    2016-01-01

    Full Text Available Muse cells are a novel population of nontumorigenic pluripotent stem cells, highly resistant to cellular stress. These cells are present in every connective tissue and intrinsically express pluripotent stem markers such as Nanog, Oct3/4, Sox2, and TRA1-60. Muse cells are able to differentiate into cells from all three embryonic germ layers both spontaneously and under media-specific induction. Unlike ESCs and iPSCs, Muse cells exhibit low telomerase activity and asymmetric division and do not undergo tumorigenesis or teratoma formation when transplanted into a host organism. Muse cells have a high capacity for homing into damaged tissue and spontaneous differentiation into cells of compatible tissue, leading to tissue repair and functional restoration. The ability of Muse cells to restore tissue function may demonstrate the role of Muse cells in a highly conserved cellular mechanism related to cell survival and regeneration, in response to cellular stress and acute injury. From an evolutionary standpoint, genes pertaining to the regenerative capacity of an organism have been lost in higher mammals from more primitive species. Therefore, Muse cells may offer insight into the molecular and evolutionary bases of autonomous tissue regeneration and elucidate the molecular and cellular mechanisms that prevent mammals from regenerating limbs and organs, as planarians, newts, zebrafish, and salamanders do.

  3. Encapsulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering.

    Science.gov (United States)

    Moshaverinia, Alireza; Chen, Chider; Akiyama, Kentaro; Xu, Xingtian; Chee, Winston W L; Schricker, Scott R; Shi, Songtao

    2013-11-01

    Bone grafts are currently the major family of treatment options in modern reconstructive dentistry. As an alternative, stem cell-scaffold constructs seem to hold promise for bone tissue engineering. However, the feasibility of encapsulating dental-derived mesenchymal stem cells in scaffold biomaterials such as alginate hydrogel remains to be tested. The objectives of this study were, therefore, to: (1) develop an injectable scaffold based on oxidized alginate microbeads encapsulating periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs); and (2) investigate the cell viability and osteogenic differentiation of the stem cells in the microbeads both in vitro and in vivo. Microbeads with diameters of 1 ± 0.1 mm were fabricated with 2 × 10(6) stem cells/mL of alginate. Microbeads containing PDLSCs, GMSCs, and human bone marrow mesenchymal stem cells as a positive control were implanted subcutaneously and ectopic bone formation was analyzed by micro CT and histological analysis at 8-weeks postimplantation. The encapsulated stem cells remained viable after 4 weeks of culturing in osteo-differentiating induction medium. Scanning electron microscopy and X-ray diffraction results confirmed that apatitic mineral was deposited by the stem cells. In vivo, ectopic mineralization was observed inside and around the implanted microbeads containing the immobilized stem cells. These findings demonstrate for the first time that immobilization of PDLSCs and GMSCs in alginate microbeads provides a promising strategy for bone tissue engineering. Copyright © 2013 Wiley Periodicals, Inc.

  4. Environmental parameters influence non-viral transfection of human mesenchymal stem cells for tissue engineering applications

    Science.gov (United States)

    King, William J.; Kouris, Nicholas A.; Choi, Siyoung; Ogle, Brenda M.; Murphy, William L.

    2012-01-01

    Non-viral transfection is a promising technique which could be used to increase the therapeutic potential of stem cells. The purpose of this study was to explore practical culture parameters of relevance in potential human mesenchymal stem cell (hMSC) clinical and tissue engineering applications, including type of polycationic transfection reagent, N/P ratio and dose of polycation/pDNA polyplexes, cell passage number, cell density, and cell proliferation. The non-viral transfection efficiency was significantly influenced by N/P ratio, polyplex dose, cell density, and cell passage number. hMSC culture conditions that inhibited cell division also decreased transfection efficiency, suggesting that strategies to promote hMSC proliferation may be useful to enhance transfection efficiency in future tissue engineering studies. Non-viral transfection treatments influenced hMSC phenotype, including the expression level of the hMSC marker CD105, and the ability of hMSCs to differentiate down the osteogenic and adipogenic lineages. The parameters found here to promote hMSC transfection efficiency, minimize toxicity, and influence hMSC phenotype may be instructive in future non-viral transfection studies and tissue engineering applications. PMID:22277991

  5. Stem Cell Therapy for Healing Wounded Skin and Soft Tissues

    Science.gov (United States)

    2014-03-01

    1, CCL4, CXCL2, IL10, IL1A, IL1B, IL6, IL8), as well as growth factors and major signaling molecules ( GMCSF , CTGF, FGF2, HGF, IGF1, TGFβ, WNT & etc...sample and the total mass of the rabbit genome per diploid cell (http://www.cbs.dtu.dk/databases/ DOGS /index.html). For each reaction, 50ng of...A (VEOFA.\\ GMCSF Granulate-macrophage stimulating factor 319.09 ITGA2 Alpha 2 integrin 204.15 IL1B Interleukin 1, beta 161.96 MMP1 Matrix

  6. Neural crest stem cell population in craniomaxillofacial development and tissue repair

    Directory of Open Access Journals (Sweden)

    M La Noce

    2014-10-01

    Full Text Available Neural crest cells, delaminating from the neural tube during migration, undergo an epithelial-mesenchymal transition and differentiate into several cell types strongly reinforcing the mesoderm of the craniofacial body area – giving rise to bone, cartilage and other tissues and cells of this human body area. Recent studies on craniomaxillofacial neural crest-derived cells have provided evidence for the tremendous plasticity of these cells. Actually, neural crest cells can respond and adapt to the environment in which they migrate and the cranial mesoderm plays an important role toward patterning the identity of the migrating neural crest cells. In our experience, neural crest-derived stem cells, such as dental pulp stem cells, can actively proliferate, repair bone and give rise to other tissues and cytotypes, including blood vessels, smooth muscle, adipocytes and melanocytes, highlighting that their use in tissue engineering is successful. In this review, we provide an overview of the main pathways involved in neural crest formation, delamination, migration and differentiation; and, in particular, we concentrate our attention on the translatability of the latest scientific progress. Here we try to suggest new ideas and strategies that are needed to fully develop the clinical use of these cells. This effort should involve both researchers/clinicians and improvements in good manufacturing practice procedures. It is important to address studies towards clinical application or take into consideration that studies must have an effective therapeutic prospect for humans. New approaches and ideas must be concentrated also toward stem cell recruitment and activation within the human body, overcoming the classical grafting.

  7. Adipose stem cells: biology and clinical applications for tissue repair and regeneration.

    Science.gov (United States)

    Kokai, Lauren E; Marra, Kacey; Rubin, J Peter

    2014-04-01

    There is a clear clinical need for cell therapies to repair or regenerate tissue lost to disease or trauma. Adipose tissue is a renewable source of stem cells, called adipose-derived stem cells (ASCs), that release important growth factors for wound healing, modulate the immune system, decrease inflammation, and home in on injured tissues. Therefore, ASCs may offer great clinical utility in regenerative therapies for afflictions such as Parkinson's disease and Alzheimer's disease, spinal cord injury, heart disease, and rheumatoid arthritis, or for replacing lost tissue from trauma or tumor removal. This article discusses the regenerative properties of ASCs that can be harnessed for clinical applications, and explores current and future challenges for ASC clinical use. Such challenges include knowledge-based deficiencies, hurdles for translating research to the clinic, and barriers to establishing a new paradigm of medical care. Clinical experience with ASCs, ASCs as a portion of the heterogeneous stromal cell population extracted enzymatically from adipose tissue, and stromal vascular fraction are also described. Copyright © 2014 Mosby, Inc. All rights reserved.

  8. Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells.

    Science.gov (United States)

    Ritter, Andreas; Friemel, Alexandra; Fornoff, Friderike; Adjan, Mouhib; Solbach, Christine; Yuan, Juping; Louwen, Frank

    2015-10-27

    Adipose-derived stem cells are capable of differentiating into multiple cell types and thus considered useful for regenerative medicine. However, this differentiation feature seems to be associated with tumor initiation and metastasis raising safety concerns, which requires further investigation. In this study, we isolated adipose-derived stem cells from subcutaneous as well as from visceral adipose tissues of the same donor and systematically compared their features. Although being characteristic of mesenchymal stem cells, subcutaneous adipose-derived stem cells tend to be spindle form-like and are more able to home to cancer cells, whereas visceral adipose-derived stem cells incline to be "epithelial"-like and more competent to differentiate. Moreover, compared to subcutaneous adipose-derived stem cells, visceral adipose-derived stem cells are more capable of promoting proliferation, inducing the epithelial-to-mesenchymal transition, enhancing migration and invasion of breast cancer cells by cell-cell contact and by secreting interleukins such as IL-6 and IL-8. Importantly, ASCs affect the low malignant breast cancer cells MCF-7 more than the highly metastatic MDA-MB-231 cells. Induction of the epithelial-to-mesenchymal transition is mediated by the activation of multiple pathways especially the PI3K/AKT signaling in breast cancer cells. BCL6, an important player in B-cell lymphoma and breast cancer progression, is crucial for this transition. Finally, this transition fuels malignant properties of breast cancer cells and render them resistant to ATP competitive Polo-like kinase 1 inhibitors BI 2535 and BI 6727.

  9. Omental adipose tissue is a more suitable source of canine Mesenchymal stem cells.

    Science.gov (United States)

    Bahamondes, Francisca; Flores, Estefania; Cattaneo, Gino; Bruna, Flavia; Conget, Paulette

    2017-06-08

    Mesenchymal Stem Cells (MSCs) are a promising therapeutic tool in veterinary medicine. Currently the subcutaneous adipose tissue is the leading source of MSCs in dogs. MSCs derived from distinct fat depots have shown dissimilarities in their accessibility and therapeutic potential. The aims of our work were to determine the suitability of omental adipose tissue as a source of MSCs, according to sampling success, cell yield and paracrine properties of isolated cells, and compared to subcutaneous adipose tissue. While sampling success of omental adipose tissue was 100% (14 collections from14 donors) for subcutaneous adipose tissue it was 71% (10 collections from 14 donors). MSCs could be isolated from both sources. Cell yield was significantly higher for omental than for subcutaneous adipose tissue (38 ± 1 vs. 30 ± 1 CFU-F/g tissue, p cell proliferation potential (73 ± 1 vs. 74 ± 1 CDPL) and cell senescence (at passage 10, both cultures presented enlarged cells with cytoplasmic vacuoles and cellular debris). Omental- and subcutaneous-derived MSCs expressed at the same level bFGF, PDGF, HGF, VEGF, ANG1 and IL-10. Irrespective of the source, isolated MSCs induced proliferation, migration and vascularization of target cells, and inhibited the activation of T lymphocytes. Compared to subcutaneous adipose tissue, omental adipose tissue is a more suitable source of MSCs in dogs. Since it can be procured from donors with any body condition, its collection procedure is always feasible, its cell yield is high and the MSCs isolated from it have desirable differentiation and paracrine potentials.

  10. Therapeutic Effect of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Experimental Corneal Failure Due to Limbal Stem Cell Niche Damage.

    Science.gov (United States)

    Galindo, Sara; Herreras, José M; López-Paniagua, Marina; Rey, Esther; de la Mata, Ana; Plata-Cordero, María; Calonge, Margarita; Nieto-Miguel, Teresa

    2017-10-01

    Limbal stem cells are responsible for the continuous renewal of the corneal epithelium. The destruction or dysfunction of these stem cells or their niche induces limbal stem cell deficiency (LSCD) leading to visual loss, chronic pain, and inflammation of the ocular surface. To restore the ocular surface in cases of bilateral LSCD, an extraocular source of stem cells is needed to avoid dependence on allogeneic limbal stem cells that are difficult to obtain, isolate, and culture. The aim of this work was to test the tolerance and the efficacy of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) to regenerate the ocular surface in two experimental models of LSCD that closely resemble different severity grades of the human pathology. hAT-MSCs transplanted to the ocular surface of the partial and total LSCD models developed in rabbits were well tolerated, migrated to inflamed tissues, reduced inflammation, and restrained the evolution of corneal neovascularization and corneal opacity. The expression profile of the corneal epithelial cell markers CK3 and E-cadherin, and the limbal epithelial cell markers CK15 and p63 was lost in the LSCD models, but was partially recovered after hAT-MSC transplantation. For the first time, we demonstrated that hAT-MSCs improve corneal and limbal epithelial phenotypes in animal LSCD models. These results support the potential use of hAT-MSCs as a novel treatment of ocular surface failure due to LSCD. hAT-MSCs represent an available, non-immunogenic source of stem cells that may provide therapeutic benefits in addition to reduce health care expenses. Stem Cells 2017;35:2160-2174. © 2017 AlphaMed Press.

  11. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue.

    Science.gov (United States)

    Xu, Liangliang; Liu, Yamei; Sun, Yuxin; Wang, Bin; Xiong, Yunpu; Lin, Weiping; Wei, Qiushi; Wang, Haibin; He, Wei; Wang, Bin; Li, Gang

    2017-12-06

    Mesenchymal stem cells (MSCs) possess intrinsic regeneration capacity as part of the repair process in response to injury, such as fracture or other tissue injury. Bone marrow and adipose tissue are the major sources of MSCs. However, which cell type is more effective and suitable for cell therapy remains to be answered. The intrinsic molecular mechanism supporting the assertion has also been lacking. Human bone marrow-derived MSCs (BMSCs) and adipose tissue-derived MSCs (ATSCs) were isolated from bone marrow and adipose tissue obtained after total hip arthroplasty. ATSCs and BMSCs were incubated in standard growth medium. Trilineage differentiation including osteogenesis, adipogenesis, and chondrogenesis was performed by addition of relevant induction mediums. The expression levels of trilineage differentiation marker genes were evaluated by quantitative RT-PCR. The methylation status of CpG sites of Runx2, PPARγ, and Sox9 promoters were checked by bisulfite sequencing. In addition, ectopic bone formation and calvarial bone critical defect models were used to evaluate the bone regeneration ability of ATSCs and BMSCs in vivo. The results showed that BMSCs possessed stronger osteogenic and lower adipogenic differentiation potentials compared to ATSCs. There was no significant difference in the chondrogenic differentiation potential. The CpG sites of Runx2 promoter in BMSCs were hypomethylated, while in ATSCs they were hypermethylated. The CpG sites of PPARγ promoter in ATSCs were hypomethylated, while in BMSCs they were hypermethylated. The methylation status of Sox9 promoter in BMSCs was only slightly lower than that in ATSCs. The epigenetic memory obtained from either bone marrow or adipose tissue favored MSC differentiation along an osteoblastic or adipocytic lineage. The methylation status of the main transcription factors controlling MSC fate contributes to the differential differentiation capacities of different source-derived MSCs.

  12. In vitro generation of functional insulin-producing cells from lipoaspirated human adipose tissue-derived stem cells.

    Science.gov (United States)

    Mohamad Buang, Mohamad Lizan; Seng, Heng Kien; Chung, Lee Han; Saim, Aminuddin Bin; Idrus, Ruszymah Bt Hj

    2012-01-01

    Tissue engineering strategy has been considered as an alternative treatment for diabetes mellitus due to lack of permanent pharmaceutical treatment and islet donors for transplantation. Various cell lines have been used to generate functional insulin-producing cells (IPCs) including progenitor pancreatic cell lines, embryonic stem cells (ESCs), umbilical cord blood stem cells (UCB-SCs), adult bone marrow stem cells (BMSCs), and adipose tissue-derived stem cells (ADSCs). Human ADSCs from lipoaspirated abdominal fat tissue was differentiated into IPCs following a two-step induction protocol based on a combination of alternating high and low glucose, nicotinamide, activin A and glucagon-like peptide 1 (GLP-1) for a duration of 3 weeks. During differentiation, histomorphological changes of the stem cells towards pancreatic β-islet characteristics were observed via light microscope and transmission electron microscope (TEM). Dithizone (DTZ) staining, which is selective towards IPCs, was used to stain the new islet-like cells. Production of insulin hormone by the cells was analyzed via enzyme-linked immunosorbent assay (ELISA), whereas its hormonal regulation was tested via a glucose challenge test. Histomorphological changes of the differentiated cells were noted to resemble pancreatic β-cells, whereas DTZ staining positively stained the cells. The differentiated cells significantly produced human insulin as compared to the undifferentiated ADSCs, and its production was increased with an increase of glucose concentration in the culture medium. These initial data indicate that human lipoaspirated ADSCs have the potential to differentiate into functional IPCs, and could be used as a therapy to treat diabetes mellitus in the future. Copyright © 2012 IMSS. Published by Elsevier Inc. All rights reserved.

  13. Intracutaneously injected human adipose tissue-derived stem cells in a mouse model stay at the site of injection.

    Science.gov (United States)

    Koellensperger, E; Lampe, K; Beierfuss, A; Gramley, F; Germann, G; Leimer, U

    2014-06-01

    The aim of this study was to evaluate the local behavior of intracutaneously injected human mesenchymal stem cells from adipose tissue and to determine the safety of a cell-based cutaneous therapy in an animal model.Human mesenchymal stem cells from adipose tissue were labeled with red fluorochrome and were injected intradermally in the paravertebral area in immunodeficient BalbC/nude mice (n = 21). As a control, cell culturemedium was injected in the same fashion on the contralateral paravertebral side. Four weeks, 6 months, and 12 months after the injection, seven mice were examined. In addition to the injected areas, the lungs, kidneys,spleens, and brains were excised and processed for histological evaluation. Serial sections of all the tissues excised were evaluated for adipose tissue-derived stem cells by means of emerging red fluorescent signals.The injected stem cells could be detected throughout the follow-up period of 1-year at the injection site within the dermal and subcutaneous layers. Bar these areas, adipose tissue-derived stem cells were not found in any otherexamined tissue at any point in time. The adipose tissue-derived stem cells showed a slow transition to deeper subcutaneous adipose tissue layers and, in part, a differentiation into adipocytes. No ulceration, inflammation, ortumor induction could be detected.The present study shows that intracutaneously injected human mesenchymal stem cells from adipose tissue stay at the site of injection, survive in vivo for up to 1-year, and partly differentiate into adipocytes. This is a new andvery important finding needed to safely apply therapies based on such stem cells in fat transplants in regenerative medicine. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Rouzbeh Taghizadeh

    2010-12-01

    Full Text Available A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+.We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone.The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  15. Optimizing cryopreservation of human spermatogonial stem cells: comparing the effectiveness of testicular tissue and single cell suspension cryopreservation.

    Science.gov (United States)

    Yango, Pamela; Altman, Eran; Smith, James F; Klatsky, Peter C; Tran, Nam D

    2014-11-01

    To determine whether optimal human spermatogonial stem cell (SSC) cryopreservation is best achieved with testicular tissue or single cell suspension cryopreservation. This study compares the effectiveness between these two approaches by using testicular SSEA-4+ cells, a known population containing SSCs. In vitro human testicular tissues. Academic research unit. Adult testicular tissues (n=4) collected from subjects with normal spermatogenesis and normal fetal testicular tissues (n=3). Testicular tissue versus single cell suspension cryopreservation. Cell viability, total cell recovery per milligram of tissue, as well as viable and SSEA-4+ cell recovery. Single cell suspension cryopreservation yielded higher recovery of SSEA-4+ cells enriched in adult SSCs, whereas fetal SSEA-4+ cell recovery was similar between testicular tissue and single cell suspension cryopreservation. Adult and fetal human SSEA-4+ populations exhibited differential sensitivity to cryopreservation based on whether they were cryopreserved in situ as testicular tissues or as single cells. Thus, optimal preservation of human SSCs depends on the patient's age, type of samples cryopreserved, and end points of therapeutic applications. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration.

    Science.gov (United States)

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Ansari, Sahar; Zadeh, Homayoun H; Snead, Malcolm L; Shi, Songtao

    2014-03-01

    Tendon injuries are often associated with significant dysfunction and disability due to tendinous tissue's very limited self-repair capacity and propensity for scar formation. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material present an alternative therapeutic option for tendon repair/regeneration that may be advantageous compared to other current treatment modalities. The MSC delivery vehicle is the principal determinant for successful implementation of MSC-mediated regenerative therapies. In the current study, a co-delivery system based on TGF-β3-loaded RGD-coupled alginate microspheres was developed for encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs). The capacity of encapsulated dental MSCs to differentiate into tendon tissue was investigated in vitro and in vivo. Encapsulated dental-derived MSCs were transplanted subcutaneously into immunocompromised mice. Our results revealed that after 4 weeks of differentiation in vitro, PDLSCs and GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited high levels of mRNA expression for gene markers related to tendon regeneration (Scx, DCn, Tnmd, and Bgy) via qPCR measurement. In a corresponding in vivo animal model, ectopic neo-tendon regeneration was observed in subcutaneous transplanted MSC-alginate constructs, as confirmed by histological and immunohistochemical staining for protein markers specific for tendons. Interestingly, in our quantitative PCR and in vivo histomorphometric analyses, PDLSCs showed significantly greater capacity for tendon regeneration than GMSCs or hBMMSCs (P cell sources for tendon engineering. PDLSCs and GMSCs encapsulated in TGF-β3-loaded RGD-modified alginate microspheres are promising candidates for tendon regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells.

    Science.gov (United States)

    Weinberger, Florian; Breckwoldt, Kaja; Pecha, Simon; Kelly, Allen; Geertz, Birgit; Starbatty, Jutta; Yorgan, Timur; Cheng, Kai-Hung; Lessmann, Katrin; Stolen, Tomas; Scherrer-Crosbie, Marielle; Smith, Godfrey; Reichenspurner, Hermann; Hansen, Arne; Eschenhagen, Thomas

    2016-11-02

    Myocardial injury results in a loss of contractile tissue mass that, in the absence of efficient regeneration, is essentially irreversible. Transplantation of human pluripotent stem cell-derived cardiomyocytes has beneficial but variable effects. We created human engineered heart tissue (hEHT) strips from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and hiPSC-derived endothelial cells. The hEHTs were transplanted onto large defects (22% of the left ventricular wall, 35% decline in left ventricular function) of guinea pig hearts 7 days after cryoinjury, and the results were compared with those obtained with human endothelial cell patches (hEETs) or cell-free patches. Twenty-eight days after transplantation, the hearts repaired with hEHT strips exhibited, within the scar, human heart muscle grafts, which had remuscularized 12% of the infarct area. These grafts showed cardiomyocyte proliferation, vascularization, and evidence for electrical coupling to the intact heart tissue in a subset of engrafted hearts. hEHT strips improved left ventricular function by 31% compared to that before implantation, whereas the hEET or cell-free patches had no effect. Together, our study demonstrates that three-dimensional human heart muscle constructs can repair the injured heart. Copyright © 2016, American Association for the Advancement of Science.

  18. Adult Stem Cell-Derived Kidney Organoids to Model Tissue Physiology and Disease

    NARCIS (Netherlands)

    Schutgens, Frans

    2017-01-01

    “Organoid” is defined as a 3D structure grown from stem cells and consisting of organ-specific cell types that self-organizes through cell sorting and spatially restricted lineage commitment. Organoids can be derived from either adult stem cells (ASCs) or pluripotent stem cells (PSCs). The

  19. An Abundant Perivascular Source of Stem Cells for Bone Tissue Engineering

    Science.gov (United States)

    James, Aaron W.; Zara, Janette N.; Corselli, Mirko; Askarinam, Asal; Zhou, Ann M.; Hourfar, Alireza; Nguyen, Alan; Megerdichian, Silva; Asatrian, Greg; Pang, Shen; Stoker, David; Zhang, Xinli; Wu, Benjamin

    2012-01-01

    Adipose tissue is an ideal mesenchymal stem cell (MSC) source, as it is dispensable and accessible with minimal morbidity. However, the stromal vascular fraction (SVF) of adipose tissue is a heterogeneous cell population, which has disadvantages for tissue regeneration. In the present study, we prospectively purified human perivascular stem cells (PSCs) from n = 60 samples of human lipoaspirate and documented their frequency, viability, and variation with patient demographics. PSCs are a fluorescence-activated cell sorting-sorted population composed of pericytes (CD45−, CD146+, CD34−) and adventitial cells (CD45−, CD146−, CD34+), each of which we have previously reported to have properties of MSCs. Here, we found that PSCs make up, on average, 43.2% of SVF from human lipoaspirate (19.5% pericytes and 23.8% adventitial cells). These numbers were minimally changed by age, gender, or body mass index of the patient or by length of refrigerated storage time between liposuction and processing. In a previous publication, we observed that human PSCs (hPSCs) formed significantly more bone in vivo in comparison with unsorted human SVF (hSVF) in an intramuscular implantation model. We now extend this finding to a bone injury model, observing that purified hPSCs led to significantly greater healing of mouse critical-size calvarial defects than hSVF (60.9% healing as opposed to 15.4% healing at 2 weeks postoperative by microcomputed tomography analysis). These studies suggest that adipose-derived hPSCs are a new cell source for future efforts in skeletal regenerative medicine. Moreover, hPSCs are a stem cell-based therapeutic that is readily approvable by the U.S. Food and Drug Administration, with potentially increased safety, purity, identity, potency, and efficacy. PMID:23197874

  20. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    Science.gov (United States)

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  1. Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells

    NARCIS (Netherlands)

    A.U. Engela (Anja); C.C. Baan (Carla); A. Peeters (Anna); W. Weimar (Willem); M.J. Hoogduijn (Martin)

    2013-01-01

    textabstractMesenchymal stem cells (MSCs) exhibit immunosuppressive capabilities, which have evoked interest in their application as cell therapy in transplant patients. So far it has been unclear whether allogeneic MSCs and host regulatory T-cells (Tregs) functionally influence each other. We

  2. Stem cell research: licit or complicit? Is a medical breakthrough based on embryonic and fetal tissue compatible with Catholic teaching?

    Science.gov (United States)

    Branick, V; Lysaught, M T

    1999-01-01

    In November 1998 biologists announced that they had discovered a way to isolate and preserve human stem cells. Since stem cells are capable of developing into any kind of human tissue or organ, this was a great scientific coup. Researchers envision using the cells to replace damaged organs and to restore tissue destroyed by, for example, Parkinson's disease, diabetes, or even Alzheimer's. But, since stem cells are taken from aborted embryonic and fetal tissue or "leftover" in vitro embryos, their use raises large ethical issues. The National Institutes of Health (NIH) recently decided to fund research employing, not stem cells, but "cell lines" derived from them. The NIH has essentially made an ethical determination, finding sufficient "distance" between cell lines and abortion. Can Catholic universities sponsoring biological research agree with this finding? Probably not. In Catholic teaching, the concept of "complicity" would likely preclude such research. However, Catholic teaching would probably allow research done with stem cells obtained from postpartum placental tissue and from adult bone marrow and tissue. These cells, which lack the pluripotency of embryonic and fetal stem cells, are nevertheless scientifically promising and do not involve the destruction of human life.

  3. Buccal fat pad, an oral access source of human adipose stem cells with potential for osteochondral tissue engineering: an in vitro study

    NARCIS (Netherlands)

    Farre-Guasch, E.; Martí-Pagè, C.; Hernádez-Alfaro, F.; Klein Nulend, J.; Casals, N.

    2010-01-01

    Stem cells offer an interesting tool for tissue engineering, but the clinical applications are limited by donor-site morbidity and low cell number upon harvest. Recent studies have identified an abundant source of stem cells in subcutaneous adipose tissue. Adipose stem cells (ASCs) present in

  4. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation.

    Science.gov (United States)

    Cortiella, Joaquin; Niles, Jean; Cantu, Andrea; Brettler, Andrea; Pham, Anthony; Vargas, Gracie; Winston, Sean; Wang, Jennifer; Walls, Shannon; Nichols, Joan E

    2010-08-01

    We report here the first attempt to produce and use whole acellular (AC) lung as a matrix to support development of engineered lung tissue from murine embryonic stem cells (mESCs). We compared the influence of AC lung, Gelfoam, Matrigel, and a collagen I hydrogel matrix on the mESC attachment, differentiation, and subsequent formation of complex tissue. We found that AC lung allowed for better retention of cells with more differentiation of mESCs into epithelial and endothelial lineages. In constructs produced on whole AC lung, we saw indications of organization of differentiating ESC into three-dimensional structures reminiscent of complex tissues. We also saw expression of thyroid transcription factor-1, an immature lung epithelial cell marker; pro-surfactant protein C, a type II pneumocyte marker; PECAM-1/CD31, an endothelial cell marker; cytokeratin 18; alpha-actin, a smooth muscle marker; CD140a or platelet-derived growth factor receptor-alpha; and Clara cell protein 10. There was also evidence of site-specific differentiation in the trachea with the formation of sheets of cytokeratin-positive cells and Clara cell protein 10-expressing Clara cells. Our findings support the utility of AC lung as a matrix for engineering lung tissue and highlight the critical role played by matrix or scaffold-associated cues in guiding ESC differentiation toward lung-specific lineages.

  5. Ultrasound and photoacoustic imaging to monitor ocular stem cell delivery and tissue regeneration (Conference Presentation)

    Science.gov (United States)

    Kubelick, Kelsey; Snider, Eric; Yoon, Heechul; Ethier, C. Ross; Emelianov, Stanislav Y.

    2017-03-01

    Glaucoma is associated with dysfunction of the trabecular meshwork (TM), a fluid drainage tissue in the anterior eye. A promising treatment involves delivery of stem cells to the TM to restore tissue function. Currently histology is the gold standard for tracking stem cell delivery and differentiation. To expedite clinical translation, non-invasive longitudinal monitoring in vivo is desired. Our current research explores a technique combining ultrasound (US) and photoacoustic (PA) imaging to track mesenchymal stem cells (MSCs) after intraocular injection. Adipose-derived MSCs were incubated with gold nanospheres to label cells (AuNS-MSCs) for PA imaging. Successful labeling was first verified with in vitro phantom studies. Next, MSC delivery was imaged ex vivo in porcine eyes, while intraocular pressure was hydrostatically clamped to maintain a physiological flow rate through the TM. US/PA imaging was performed before, during, and after AuNS-MSC delivery. Additionally, spectroscopic PA imaging was implemented to isolate PA signals from AuNS-MSCs. In vitro cell imaging showed AuNS-MSCs produce strong PA signals, suggesting that MSCs can be tracked using PA imaging. While the cornea, sclera, iris, and TM region can be visualized with US imaging, pigmented tissues also produce PA signals. Both modalities provide valuable anatomical landmarks for MSC localization. During delivery, PA imaging can visualize AuNS-MSC motion and location, creating a unique opportunity to guide ocular cell delivery. Lastly, distinct spectral signatures of AuNS-MSCs allow unmixing, with potential for quantitative PA imaging. In conclusion, results show proof-of-concept for monitoring MSC ocular delivery, raising opportunities for in vivo image-guided cell delivery.

  6. Obesity Determines the Immunophenotypic Profile and Functional Characteristics of Human Mesenchymal Stem Cells From Adipose Tissue.

    Science.gov (United States)

    Pachón-Peña, Gisela; Serena, Carolina; Ejarque, Miriam; Petriz, Jordi; Duran, Xevi; Oliva-Olivera, W; Simó, Rafael; Tinahones, Francisco J; Fernández-Veledo, Sonia; Vendrell, Joan

    2016-04-01

    Adipose tissue is a major source of mesenchymal stem cells (MSCs), which possess a variety of properties that make them ideal candidates for regenerative and immunomodulatory therapies. Here, we compared the immunophenotypic profile of human adipose-derived stem cells (hASCs) from lean and obese individuals, and explored its relationship with the apparent altered plasticity of hASCs. We also hypothesized that persistent hypoxia treatment of cultured hASCs may be necessary but not sufficient to drive significant changes in mature adipocytes. hASCs were obtained from subcutaneous adipose tissue of healthy, adult, female donors undergoing abdominal plastic surgery: lean (n=8; body mass index [BMI]: 23±1 kg/m2) and obese (n=8; BMI: 35±5 kg/m2). Cell surface marker expression, proliferation and migration capacity, and adipogenic differentiation potential of cultured hASCs at two different oxygen conditions were studied. Compared with lean-derived hASCs, obese-derived hASCs demonstrated increased proliferation and migration capacity but decreased lipid droplet accumulation, correlating with a higher expression of human leukocyte antigen (HLA)-II and cluster of differentiation (CD) 106 and lower expression of CD29. Of interest, adipogenic differentiation modified CD106, CD49b, HLA-ABC surface protein expression, which was dependent on the donor's BMI. Additionally, low oxygen tension increased proliferation and migration of lean but not obese hASCs, which correlated with an altered CD36 and CD49b immunophenotypic profile. In summary, the differences observed in proliferation, migration, and differentiation capacity in obese hASCs occurred in parallel with changes in cell surface markers, both under basal conditions and during differentiation. Therefore, obesity is an important determinant of stem cell function independent of oxygen tension. The obesity-related hypoxic environment may have latent effects on human adipose tissue-derived mesenchymal stem cells (hASCs) with

  7. Matrix directed adipogenesis and neurogenesis of mesenchymal stem cells derived from adipose tissue and bone marrow.

    Science.gov (United States)

    Lee, Junmin; Abdeen, Amr A; Tang, Xin; Saif, Taher A; Kilian, Kristopher A

    2016-09-15

    Mesenchymal stem cells (MSCs) can differentiate into multiple lineages through guidance from the biophysical and biochemical properties of the extracellular matrix. In this work we conduct a combinatorial study of matrix properties that influence adipogenesis and neurogenesis including: adhesion proteins, stiffness, and cell geometry, for mesenchymal stem cells derived from adipose tissue (AT-MSCs) and bone marrow (BM-MSCs). We uncover distinct differences in integrin expression, the magnitude of traction stress, and lineage specification to adipocytes and neuron-like cells between cell sources. In the absence of media supplements, adipogenesis in AT-MSCs is not significantly influenced by matrix properties, while the converse is true in BM-MSCs. Both cell types show changes in the expression of neurogenesis markers as matrix cues are varied. When cultured on laminin conjugated microislands of the same adhesive area, BM-MSCs display elevated adipogenesis markers, while AT-MSCs display elevated neurogenesis markers; integrin analysis suggests neurogenesis in AT-MSCs is guided by adhesion through integrin αvβ3. Overall, the properties of the extracellular matrix guides MSC adhesion and lineage specification to different degrees and outcomes, in spite of their similarities in general characteristics. This work will help guide the selection of MSCs and matrix components for applications where high fidelity of differentiation outcome is desired. Mesenchymal stem cells (MSCs) are an attractive cell type for stem cell therapies; however, in order for these cells to be useful in medicine, we need to understand how they respond to the physical and chemical environments of tissue. Here, we explore how two promising sources of MSCs-those derived from bone marrow and from adipose tissue-respond to the compliance and composition of tissue using model extracellular matrices. Our results demonstrate a source-specific propensity to undergo adipogenesis and neurogenesis, and

  8. A cGMP-applicable expansion method for aggregates of human neural stem and progenitor cells derived from pluripotent stem cells or fetal brain tissue.

    Science.gov (United States)

    Shelley, Brandon C; Gowing, Geneviève; Svendsen, Clive N

    2014-06-15

    A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as "chopping" that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.

  9. Ultra-structural morphology of long-term cultivated white adipose tissue-derived stem cells.

    Science.gov (United States)

    Varga, Ivan; Miko, Michal; Oravcová, Lenka; Bačkayová, Tatiana; Koller, Ján; Danišovič, Ľuboš

    2015-12-01

    White adipose tissue was long perceived as a passive lipid storage depot but it is now considered as an active and important endocrine organ. It also harbours not only adipocytes and vascular cells but also a wide array of immunologically active cells, including macrophages and lymphocytes, which may induce obesity-related inflammation. Recently, adipose tissue has been reported as a source of adult mesenchymal stem cells with wide use in regenerative medicine and tissue engineering. Their relatively non-complicated procurement and collection (often performed as liposuction during aesthetic surgery) and grand plasticity support this idea even more. We focused our research on exploring the issues of isolation and long-term cultivation of mesenchymal stem cells obtained from adipose tissue. Ultra-structural morphology of the cells cultivated in vitro has been studied and analysed in several cultivation time periods and following serial passages--up to 30 passages. In the first passages they had ultra-structural characteristics of cells with high proteosynthetic activity. Within the cytoplasm, big number of small lipid droplets and between them, sparsely placed, small and inconspicuous, electron-dense, lamellar bodies, which resembled myelin figures were observed. The cells from the later passages contained high number of lamellar electron-dense structures, which filled out almost the entire cytoplasm. In between, mitochondria were often found. These bodies were sometimes small and resembled myelin figures, but several of them reached huge dimensions (more than 1 µm) and their lamellar structure was not distinguishable. We did not have an answer to the question about their function, but they probably represented the evidence of active metabolism of lipids present in the cytoplasm of these cells or represented residual bodies, which arise after the breakdown of cellular organelles, notably mitochondria during long-term cultivation.

  10. Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues.

    Directory of Open Access Journals (Sweden)

    Nicolas Christoforou

    Full Text Available The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS cells, which once differentiated allow for the enrichment of Nkx2-5(+ cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+ cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors' ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological

  11. Mesenchymal stem cells in tissue repairing and regeneration: Progress and future

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    2013-07-01

    Full Text Available The presence of mesenchymal progenitor cells within bone marrow has been known since the late nineteenth century. To date, mesenchymal stem cells (MSCs have been isolated from several different connective tissues, such as adipose tissue, muscle, placenta, umbilical cord matrix, blood, liver, and dental pulp. Bone marrow, however, is still one of the major sources of MSCs for preclinical and clinical research. MSCs were first evaluated for regenerative applications and have since been shown to directly influence the immune system and to promote neovascularization of ischemic tissues. These observations have prompted a new era of MSC transplantation as a treatment for various diseases. In this review, we summarize the important studies that have investigated the use of MSCs as a therapeutic agent for regenerative medicine, immune disorders, cancer, and gene therapy. Furthermore, we discuss the mechanisms involved in MSC-based therapies and clinical-grade MSC manufacturing.

  12. Dental Pulp Stem Cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues

    Directory of Open Access Journals (Sweden)

    Maitane eAurrekoetxea

    2015-10-01

    Full Text Available Dental pulp stem cells, or DPSC, are neural crest-derived cells with an outstanding capacity to differentiate along multiple cell lineages of interest for cell therapy. In particular, highly efficient osteo/dentinogenic differentiation of DPSC can be achieved using simple in vitro protocols, making these cells a very attractive and promising tool for the future treatment of dental and periodontal diseases. Among craniomaxillofacial organs, the tooth and salivary gland are two such cases in which complete regeneration by tissue engineering using DPSC appears to be possible, as research over the last decade has made substantial progress in experimental models of partial or total regeneration of both organs, by cell recombination technology. Moreover, DPSC seem to be a particularly good choice for the regeneration of nerve tissues, including injured or transected cranial nerves. In this context, the oral cavity appears to be an excellent testing ground for new regenerative therapies using DPSC. However, many issues and challenges need yet to be addressed before these cells can be employed in clinical therapy. In this review, we point out some important aspects on the biology of DPSC with regard to their use for the reconstruction of different craniomaxillofacial tissues and organs, with special emphasis on cranial bones, nerves, teeth, and salivary glands. We suggest new ideas and strategies to fully exploit the capacities of DPSC for bioengineering of the aforementioned tissues.

  13. Characterization of p75{sup +} ectomesenchymal stem cells from rat embryonic facial process tissue

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Zhang, Li; Liu, Rui; Xing, Yongjun; Zhou, Xia [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042 (China); Nie, Xin, E-mail: dr.xinnie@gmail.com [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042 (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Ectomesenchymal stem cells (EMSCs) were found to migrate to rat facial processes at E11.5. Black-Right-Pointing-Pointer We successfully sorted p75NTR positive EMSCs (p75{sup +} EMSCs). Black-Right-Pointing-Pointer p75{sup +} EMSCs up to nine passages showed relative stable proliferative activity. Black-Right-Pointing-Pointer We examined the in vitro multilineage potential of p75{sup +} EMSCs. Black-Right-Pointing-Pointer p75{sup +}EMSCs provide an in vitro model for tooth morphogenesis. -- Abstract: Several populations of stem cells, including those from the dental pulp and periodontal ligament, have been isolated from different parts of the tooth and periodontium. The characteristics of such stem cells have been reported as well. However, as a common progenitor of these cells, ectomesenchymal stem cells (EMSCs), derived from the cranial neural crest have yet to be fully characterized. The aim of this study was to better understand the characteristics of EMSCs isolated from rat embryonic facial processes. Immunohistochemical staining showed that EMSCs had migrated to rat facial processes at E11.5, while the absence of epithelial invagination or tooth-like epithelium suggested that any epithelial-mesenchymal interactions were limited at this stage. The p75 neurotrophin receptor (p75NTR), a typical neural crest marker, was used to select p75NTR-positive EMSCs (p75{sup +} EMSCs), which were found to show a homogeneous fibroblast-like morphology and little change in the growth curve, proliferation capacity, and cell phenotype during cell passage. They also displayed the capacity to differentiate into diverse cell types under chemically defined conditions in vitro. p75{sup +} EMSCs proved to be homogeneous, stable in vitro and potentially capable of multiple lineages, suggesting their potential for application in dental or orofacial tissue engineering.

  14. Tachykinins and hematopoietic stem cell functions: implications in clinical disorders and tissue regeneration.

    Science.gov (United States)

    Murthy, Raghav G; Reddy, Bobby Y; Ruggiero, Jaclyn E; Rameshwar, Pranela

    2007-05-01

    Hematopoiesis is the process by which a limited number of hematopoietic stem cells (HSCs) maintain a functioning blood and immune system. In adults, hematopoiesis occurs in bone marrow and is supported by the microenvironment. The tachykinin family of peptides regulates hematopoiesis. Tachykinins can be released in bone marrow as neurotransmitters from innervating fibers, and from resident bone marrow cells. The hematopoietic effects by tachykinins involve four tachykinin genes, Tac1-Tac4. The latter is the most recently discovered member and encodes hemokinin-1, endokinin A, endokinin B, and two orphan peptides, endokinin C, and endokinin D. The alteration of normal hematopoietic functions by the tachykinins may result in the development of various pathologies. For example, Tac1 is involved in myelofibrosis and in leukemia, both of which are dysfunction of hematopoietic stem cells. A comprehensive understanding of dysfunctions caused by the tachykinins requires further research since other cells, such as stromal cells and factors including cytokines, chemokines, and endopeptidases, are involved in a network in which the tachykinins have critical roles. Studies into the properties and functions of tachykinins, the biology of their receptors, and related molecules would provide insights into the development of aging disorders, hematopoiesis, other dysfunction, and may also lead to the discovery of novel and effective clinical therapies. Controversies on applications for hematopoietic stem cells in regenerative medicine are discussed. Despite these controversies, a detailed understanding on how the bone marrow microenvironment maintains pluripotency of hematopoietic stem cells would be useful to manipulate the system to acquire specialized cells for tissue repair.

  15. Characterization of p75+ ectomesenchymal stem cells from rat embryonic facial process tissue

    International Nuclear Information System (INIS)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Zhang, Li; Liu, Rui; Xing, Yongjun; Zhou, Xia; Nie, Xin

    2012-01-01

    Highlights: ► Ectomesenchymal stem cells (EMSCs) were found to migrate to rat facial processes at E11.5. ► We successfully sorted p75NTR positive EMSCs (p75 + EMSCs). ► p75 + EMSCs up to nine passages showed relative stable proliferative activity. ► We examined the in vitro multilineage potential of p75 + EMSCs. ► p75 + EMSCs provide an in vitro model for tooth morphogenesis. -- Abstract: Several populations of stem cells, including those from the dental pulp and periodontal ligament, have been isolated from different parts of the tooth and periodontium. The characteristics of such stem cells have been reported as well. However, as a common progenitor of these cells, ectomesenchymal stem cells (EMSCs), derived from the cranial neural crest have yet to be fully characterized. The aim of this study was to better understand the characteristics of EMSCs isolated from rat embryonic facial processes. Immunohistochemical staining showed that EMSCs had migrated to rat facial processes at E11.5, while the absence of epithelial invagination or tooth-like epithelium suggested that any epithelial–mesenchymal interactions were limited at this stage. The p75 neurotrophin receptor (p75NTR), a typical neural crest marker, was used to select p75NTR-positive EMSCs (p75 + EMSCs), which were found to show a homogeneous fibroblast-like morphology and little change in the growth curve, proliferation capacity, and cell phenotype during cell passage. They also displayed the capacity to differentiate into diverse cell types under chemically defined conditions in vitro. p75 + EMSCs proved to be homogeneous, stable in vitro and potentially capable of multiple lineages, suggesting their potential for application in dental or orofacial tissue engineering.

  16. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Gabr

    2017-01-01

    Full Text Available The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs and adipose tissue-derived mesenchymal stem cells (AT-MSCs, for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs, was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion. BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  17. The role of immunosuppression of mesenchymal stem cells in tissue repair and tumor growth

    Directory of Open Access Journals (Sweden)

    Han Zhipeng

    2012-03-01

    Full Text Available Abstract Mesenchymal stem cells (MSCs have acquired great interests for their potential use in the clinical therapy of many diseases because of their functions including multiple lineage differentiation, low immunogenicity and immunosuppression. Many studies suggest that MSCs are strongly immunosuppressive in vitro and in vivo. MSCs exert a profound inhibitory effect on the proliferation of T cells, B cells, dendritic cells and natural killer cells. In addition, several soluble factors have been reported to involved in the immunosuppressive effects by MSCs such as TGF-β, HGF, PGE2, IDO and iNOS. These results suggest that MSCs can be used in the therapy of immune disorder diseases, prevention of organ transplantation rejection and tissue injury. In recent study, we demonstrated that MSCs in tumor inflammatory microenvironment might be elicited of immunosuppressive function. Thus, the application of MSCs in cancer therapy might have negative effect by helping tumor cells escaping from the immune surveillance.

  18. In vivo periodontal tissue regeneration by periodontal ligament stem cells and endothelial cells in three-dimensional cell sheet constructs.

    Science.gov (United States)

    Panduwawala, C P; Zhan, X; Dissanayaka, W L; Samaranayake, L P; Jin, L; Zhang, C

    2017-06-01

    Chronic periodontitis causes damage to tooth-supporting tissues, resulting in tooth loss in adults. Recently, cell-sheet-based approaches have been studied to overcome the limitations of conventional cytotherapeutic procedures for periodontal regeneration. The purpose of the present study was to investigate the regenerative potential of periodontal ligament stem cells (PDLSCs) and human umbilical vein endothelial cells (HUVECs) in three-dimensional (3D) cell sheet constructs for periodontal regeneration in vivo. PDLSCs, HUVECs or co-cultures of both cells were seeded onto temperature-responsive culture dishes, and intact cell sheets were fabricated. Cell sheets were wrapped around the prepared human roots in three different combinations and implanted subcutaneously into immunodeficient mice. Histological evaluation revealed that after 2, 4 and 8 wk of implantation, periodontal ligament-like tissue arrangements were observed around the implanted roots in experimental groups compared with controls. Vascular lumens were also observed in periodontal compartments of HUVEC-containing groups. Periodontal ligament regeneration, cementogenesis and osteogenesis were evident in the experimental groups at both weeks 4 and 8, as shown by immunostaining for periostin and bone sialoprotein. Human cells in the transplanted cell sheets were stained by immunohistochemistry for the presence of human mitochondria. The 3D cell sheet-based approach may be potentially beneficial and is thus encouraged for future regenerative periodontal therapy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects.

    Science.gov (United States)

    Sándor, George K; Numminen, Jura; Wolff, Jan; Thesleff, Tuomo; Miettinen, Aimo; Tuovinen, Veikko J; Mannerström, Bettina; Patrikoski, Mimmi; Seppänen, Riitta; Miettinen, Susanna; Rautiainen, Markus; Öhman, Juha

    2014-04-01

    Although isolated reports of hard-tissue reconstruction in the cranio-maxillofacial skeleton exist, multipatient case series are lacking. This study aimed to review the experience with 13 consecutive cases of cranio-maxillofacial hard-tissue defects at four anatomically different sites, namely frontal sinus (3 cases), cranial bone (5 cases), mandible (3 cases), and nasal septum (2 cases). Autologous adipose tissue was harvested from the anterior abdominal wall, and adipose-derived stem cells were cultured, expanded, and then seeded onto resorbable scaffold materials for subsequent reimplantation into hard-tissue defects. The defects were reconstructed with either bioactive glass or β-tricalcium phosphate scaffolds seeded with adipose-derived stem cells (ASCs), and in some cases with the addition of recombinant human bone morphogenetic protein-2. Production and use of ASCs were done according to good manufacturing practice guidelines. Follow-up time ranged from 12 to 52 months. Successful integration of the construct to the surrounding skeleton was noted in 10 of the 13 cases. Two cranial defect cases in which nonrigid resorbable containment meshes were used sustained bone resorption to the point that they required the procedure to be redone. One septal perforation case failed outright at 1 year because of the postsurgical resumption of the patient's uncontrolled nasal picking habit.

  20. Metabolically Active Three-Dimensional Brown Adipose Tissue Engineered from White Adipose-Derived Stem Cells.

    Science.gov (United States)

    Yang, Jessica P; Anderson, Amy E; McCartney, Annemarie; Ory, Xavier; Ma, Garret; Pappalardo, Elisa; Bader, Joel; Elisseeff, Jennifer H

    2017-04-01

    Brown adipose tissue (BAT) has a unique capacity to expend calories by decoupling energy expenditure from ATP production, therefore BAT could realize therapeutic potential to treat metabolic diseases such as obesity and type 2 diabetes. Recent studies have investigated markers and function of native BAT, however, successful therapies will rely on methods that supplement the small existing pool of brown adipocytes in adult humans. In this study, we engineered BAT from both human and rat adipose precursors and determined whether these ex vivo constructs could mimic in vivo tissue form and metabolic function. Adipose-derived stem cells (ASCs) were isolated from several sources, human white adipose tissue (WAT), rat WAT, and rat BAT, then differentiated toward both white and brown adipogenic lineages in two-dimensional and three-dimensional (3D) culture conditions. ASCs derived from WAT were successfully differentiated in 3D poly(ethylene glycol) hydrogels into mature adipocytes with BAT phenotype and function, including high uncoupling protein 1 (UCP1) mRNA and protein expression and increased metabolic activity (basal oxygen consumption, proton leak, and maximum respiration). By utilizing this "browning" process, the abundant and accessible WAT stem cell population can be engineered into 3D tissue constructs with the metabolic capacity of native BAT, ultimately for therapeutic intervention in vivo and as a tool for studying BAT and its metabolic properties.

  1. CD157 Marks Tissue-Resident Endothelial Stem Cells with Homeostatic and Regenerative Properties.

    Science.gov (United States)

    Wakabayashi, Taku; Naito, Hisamichi; Suehiro, Jun-Ichi; Lin, Yang; Kawaji, Hideya; Iba, Tomohiro; Kouno, Tsukasa; Ishikawa-Kato, Sachi; Furuno, Masaaki; Takara, Kazuhiro; Muramatsu, Fumitaka; Weizhen, Jia; Kidoya, Hiroyasu; Ishihara, Katsuhiko; Hayashizaki, Yoshihide; Nishida, Kohji; Yoder, Mervin C; Takakura, Nobuyuki

    2018-02-01

    The generation of new blood vessels via angiogenesis is critical for meeting tissue oxygen demands. A role for adult stem cells in this process remains unclear. Here, we identified CD157 (bst1, bone marrow stromal antigen 1) as a marker of tissue-resident vascular endothelial stem cells (VESCs) in large arteries and veins of numerous mouse organs. Single CD157 + VESCs form colonies in vitro and generate donor-derived portal vein, sinusoids, and central vein endothelial cells upon transplantation in the liver. In response to injury, VESCs expand and regenerate entire vasculature structures, supporting the existence of an endothelial hierarchy within blood vessels. Genetic lineage tracing revealed that VESCs maintain large vessels and sinusoids in the normal liver for more than a year, and transplantation of VESCs rescued bleeding phenotypes in a mouse model of hemophilia. Our findings show that tissue-resident VESCs display self-renewal capacity and that vascular regeneration potential exists in peripheral blood vessels. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Acute myocardial infarction does not affect functional characteristics of adipose-derived stem cells in rats, but reduces the number of stem cells in adipose tissue.

    Science.gov (United States)

    Naaijkens, B A; Krijnen, P A J; Meinster, E; ter Horst, E N; Vo, K; Musters, R J P; Kamp, O; Niessen, H W M; Juffermans, L J M; van Dijk, A

    2015-12-01

    In most pre-clinical animal studies investigating stem cell therapy in acute myocardial infarction (AMI), the administered stem cells are isolated from healthy donors. In clinical practice, however, patients who suffer from AMI will receive autologous cells, for example using adipose-derived stem cells (ASC). During AMI, inflammation is induced and we hypothesized that this might affect characteristics of ASC. To investigate this, ASC were isolated from rat adipose tissue 1 day (1D group, n = 5) or 7 days (7D group, n = 6) post-AMI, and were compared with ASC from healthy control rats (Control group, n = 6) and sham-operated rats (Sham 1D group, n = 5). We found that significantly fewer ASC were present 1 day post-AMI in the stromal vascular fraction (SVF), determined by a colony-forming-unit assay (p cells in SVF of the 1D group. When cultured, no differences were found in proliferation rate and cell size between the groups in the first three passages. Also, no difference in the differentiation capacity of ASC was found. In conclusion, it was shown that significantly fewer stem cells were present in the SVF 1 day post-AMI; however, the stem cells that were present showed no functional differences.

  3. Potential characteristics of stem cells from human exfoliated deciduous teeth compared with bone marrow-derived mesenchymal stem cells for mineralized tissue-forming cell biology.

    Science.gov (United States)

    Hara, Kenji; Yamada, Yoichi; Nakamura, Sayaka; Umemura, Eri; Ito, Kenji; Ueda, Minoru

    2011-12-01

    Tissue engineering and regenerative medicine using stem cell biology has been a promising field for treatment of local and systemic intractable diseases. Recently, stem cells from human exfoliated deciduous teeth (SHED) have been identified as a novel population of stem cells. This study focused on the characterization of SHED as compared with bone marrow-derived mesenchymal stem cells (BMMSCs). We investigated potential characteristics of SHED by using DNA microarray, real-time reverse transcriptase polymerase chain reaction, and immunofluorescence analysis. Multiple gene expression profiles indicated that the expression of 2753 genes in SHED had changed by ≥2.0-fold as compared with that in BMMSCs. One of the most significant pathways that accelerated in SHED was that of bone morphogenetic protein (BMP) receptor signaling, which contains several cascades such as PKA, JNK, and ASK1. When the BMP signaling pathway was stimulated by BMP-2, the expression of BMP-2, BMP-4, Runx2, and DSPP was up-regulated significantly in SHED than that in BMMSCs. Furthermore, the BMP-4 protein was expressed much higher in SHED but not in BMMSCs, as confirmed by immunofluorescence. By using the gene expression profiles, this study indicates that SHED is involved in the BMP signaling pathway and suggests that BMP-4 might play a crucial role in this. These results might be useful for effective cell-based tissue regeneration, including that of bone, pulp, and dentin, by applying the characteristics of SHED. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Mesenchymal stem cells derived from Wharton's jelly: comparative phenotype analysis between tissue and in vitro expansion.

    Science.gov (United States)

    Margossian, Talar; Reppel, Loic; Makdissy, Nehman; Stoltz, Jean-François; Bensoussan, Danièle; Huselstein, Céline

    2012-01-01

    Mesenchymal stem cells (MSCs) are useful multipotent stem cells that are found in many tissues. While MSCs can usually be isolated from adults via bone marrow aspiration (BM-MSCs), MSCs derived from the discarded umbilical cord, more precisely from Wharton's jelly (WJ), offer a low-cost and pain-free collection method of MSCs that may be cryogenically stored, and are considered extremely favorable for tissue engineering purpose. The aim of this study was to analyze the harvested number of cells per centimeter of human umbilical cord (UC) and carry out the phenotype of these WJ-MSCs after explant or enzymatic methods. Fresh UCs were obtained from full-term births, and processed within 6 hours from partum to obtain the WJ-MSCs. UC sections were analyzed in confocal microscopy to analyze cells phenotype in situ. Others UC components were treated either by enzymatic method or by explant method to obtain isolated cells and to analyze cells phenotype until the end of the first passage. We have successfully generated MSCs from UC by using explant and enzymatic methods. Using microscopy confocal, we identified the expression of some MSCs markers in situ of Wharton's jelly tissue as well as in perivascular region. Our comparative study, between explant and enzymatic digestion, indicated, that WJ expressed most of MSCs markers in both conditions, but a remarkable variation of cell phenotype expression was distinguished after primary culture comparing to directly isolated cells by enzymatic digestion. We also studied the expression of CD271, which showed to be weakly expressed in situ on fresh fragment of WJ.

  5. Human Pluripotent Stem Cell Mechanobiology: Manipulating the Biophysical Microenvironment for Regenerative Medicine and Tissue Engineering Applications.

    Science.gov (United States)

    Ireland, Ronald G; Simmons, Craig A

    2015-11-01

    A stem cell in its microenvironment is subjected to a myriad of soluble chemical cues and mechanical forces that act in concert to orchestrate cell fate. Intuitively, many of these soluble and biophysical factors have been the focus of intense study to successfully influence and direct cell differentiation in vitro. Human pluripotent stem cells (hPSCs) have been of considerable interest in these studies due to their great promise for regenerative medicine. Culturing and directing differentiation of hPSCs, however, is currently extremely labor-intensive and lacks the efficiency required to generate large populations of clinical-grade cells. Improved efficiency may come from efforts to understand how the cell biophysical signals can complement biochemical signals to regulate cell pluripotency and direct differentiation. In this concise review, we explore hPSC mechanobiology and how the hPSC biophysical microenvironment can be manipulated to maintain and differentiate hPSCs into functional cell types for regenerative medicine and tissue engineering applications. © 2015 AlphaMed Press.

  6. Arthritic periosteal tissue from joint replacement surgery: a novel, autologous source of stem cells.

    Science.gov (United States)

    Chang, Hana; Docheva, Denitsa; Knothe, Ulf R; Knothe Tate, Melissa L

    2014-03-01

    The overarching aim of this study is to assess the feasibility of using periosteal tissue from the femoral neck of arthritic hip joints, usually discarded in the normal course of hip replacement surgery, as an autologous source of stem cells. In addition, the study aims to characterize intrinsic differences between periosteum-derived cell (PDC) populations, isolated via either enzymatic digestion or a migration assay, including their proliferative capacity, surface marker expression, and multipotency, relative to commercially available human bone marrow-derived stromal cells (BMSCs) cultured under identical conditions. Commercial BMSCs and PDCs were characterized in vitro, using a growth assay, flow cytometry, as well as assay of Oil Red O, alizarin red, and Safranin O/Fast Green staining after respective culture in adipo-, osteo-, and chondrogenic media. Based on these outcome measures, PDCs exhibited proliferation rate, morphology, surface receptor expression, and multipotency similar to those of BMSCs. No significant correlation was observed between outcome measures and donor age or diagnosis (osteoarthritis [OA] and rheumatoid arthritis [RA], respectively), a profound finding given recent rheumatological studies indicating that OA and RA share not only common biomarkers and molecular mechanisms but also common pathophysiology, ultimately resulting in the need for joint replacement. Furthermore, PDCs isolated via enzymatic digestion and migration assay showed subtle differences in surface marker expression but otherwise no significant differences in proliferation or multipotency; the observed differences in surface marker expression may indicate potential effects of isolation method on the population of cells isolated and/or the behavior of the respective isolated cell populations. This study demonstrates, for the first time to our knowledge, the feasibility of using arthritic tissue resected during hip replacement as a source of autologous stem cells. In sum

  7. Human adipose tissue-derived tenomodulin positive subpopulation of stem cells: A promising source of tendon progenitor cells.

    Science.gov (United States)

    Gonçalves, A I; Gershovich, P M; Rodrigues, M T; Reis, R L; Gomes, M E

    2018-03-01

    Cell-based therapies are of particular interest for tendon and ligament regeneration given the low regenerative potential of these tissues. Adipose tissue is an abundant source of stem cells, which may be employed for the healing of tendon lesions. However, human adult multipotent adipose-derived stem cells (hASCs) isolated from the stromal vascular fraction of adipose tissue originate highly heterogeneous cell populations that hinder their use in specific tissue-oriented applications. In this study, distinct subpopulations of hASCs were immunomagnetic separated and their tenogenic differentiation capacity evaluated in the presence of several growth factors (GFs), namely endothelial GF, basic-fibroblast GF, transforming GF-β1 and platelet-derived GF-BB, which are well-known regulators of tendon development, growth and healing. Among the screened hASCs subpopulations, tenomodulin-positive cells were shown to be more promising for tenogenic applications and therefore this subpopulation was further studied, assessing tendon-related markers (scleraxis, tenomodulin, tenascin C and decorin) both at gene and protein level. Additionally, the ability for depositing collagen type I and III forming extracellular matrix structures were weekly assessed up to 28 days. The results obtained indicated that tenomodulin-positive cells exhibit phenotypical features of tendon progenitor cells and can be biochemically induced towards tenogenic lineage, demonstrating that this subset of hASCs can provide a reliable source of progenitor cells for therapies targeting tendon regeneration. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Horwood, Nicole J.; Dazzi, Francesco; Zaher, Walid

    2012-01-01

    Mesenchymal stem cells (MSC) are stem cell populations present among the bone marrow stroma and a number of other tissues that are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. MSC provide supportive stroma for growth...... and differentiation of hematopoietic stem cells (HSC) and hematopoiesis. These cells have been described as important immunoregulators due to their ability to suppress T cells proliferation. MSC can also directly contribute to tissue repair by migrating to sites of injury and providing a source of cells...

  9. Comparative studies of mesenchymal stem cells derived from different cord tissue compartments - The influence of cryopreservation and growth media.

    Science.gov (United States)

    Dulugiac, Magda; Moldovan, Lucia; Zarnescu, Otilia

    2015-10-01

    We have identified some critical aspects concerning umbilical cord tissue mesenchymal stem cells: the lack of standards for cell isolation, expansion and cryopreservation, the lack of unanimous opinions upon their multilineage differentiation potential and the existence of very few results related to the functional characterization of the cells isolated from cryopreserved umbilical cord tissue. Umbilical cord tissue cryopreservation appears to be the optimal solution for umbilical cord tissue mesenchymal stem cells storage for future clinical use. Umbilical cord tissue cryopreservation allows mesenchymal stem cells isolation before expected use, according with the specific clinical applications, by different customized isolation and expansion protocols agreed by cell therapy institutions. Using an optimized protocol for umbilical cord tissue cryopreservation in autologous cord blood plasma, isolation explant method and growth media supplemented with FBS or human serum, we performed comparative studies with respect to the characteristics of mesenchymal stem cells (MSC) isolated from different compartments of the same umbilical cord tissue such as Wharton's jelly, vein, arteries, before cryopreservation (pre freeze) and after cryopreservation (post thaw). Expression of histochemical and immunohistochemical markers as well as electron microscopy observations revealed similar adipogenic, chondrogenic and osteogenic differentiation capacity for cells isolated from pre freeze and corresponding post thaw tissue fragments of Wharton's jelly, vein or arteries of the same umbilical cord tissue, regardless growth media used for cells isolation and expansion. Our efficient umbilical cord tissue cryopreservation protocol is reliable for clinical applicability of mesenchymal stem cells that could next be isolated and expanded in compliance with future accepted standards. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Mechanical Stretching Promotes Skin Tissue Regeneration via Enhancing Mesenchymal Stem Cell Homing and Transdifferentiation.

    Science.gov (United States)

    Liang, Xiao; Huang, Xiaolu; Zhou, Yiwen; Jin, Rui; Li, Qingfeng

    2016-07-01

    Skin tissue expansion is a clinical procedure for skin regeneration to reconstruct cutaneous defects that can be accompanied by severe complications. The transplantation of mesenchymal stem cells (MSCs) has been proven effective in promoting skin expansion and helping to ameliorate complications; however, systematic understanding of its mechanism remains unclear. MSCs from luciferase-Tg Lewis rats were intravenously transplanted into a rat tissue expansion model to identify homing and transdifferentiation. To clarify underlying mechanisms, a systematic approach was used to identify the differentially expressed genes between mechanically stretched human MSCs and controls. The biological significance of these changes was analyzed through bioinformatic methods. We further investigated genes and pathways of interest to disclose their potential role in mechanical stretching-induced skin regeneration. Cross sections of skin samples from the expanded group showed significantly more luciferase(+) and stromal cell-derived factor 1α (SDF-1α)(+), luciferase(+)keratin 14(+), and luciferase(+)CD31(+) cells than the control group, indicating MSC transdifferentiation into epidermal basal cells and endothelial cells after SDF-1α-mediated homing. Microarray analysis suggested upregulation of genes related to hypoxia, vascularization, and cell proliferation in the stretched human MSCs. Further investigation showed that the homing of MSCs was blocked by short interfering RNA targeted against matrix metalloproteinase 2, and that mechanical stretching-induced vascular endothelial growth factor A upregulation was related to the Janus kinase/signal transducer and activator of transcription (Jak-STAT) and Wnt signaling pathways. This study determines that mechanical stretching might promote skin regeneration by upregulating MSC expression of genes related to hypoxia, vascularization, and cell proliferation; enhancing transplanted MSC homing to the expanded skin; and

  11. Novel positively charged nanoparticle labeling for in vivo imaging of adipose tissue-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Hiroshi Yukawa

    Full Text Available Stem cell transplantation has been expected to have various applications for regenerative medicine. However, in order to detect and trace the transplanted stem cells in the body, non-invasive and widely clinically available cell imaging technologies are required. In this paper, we focused on magnetic resonance (MR imaging technology, and investigated whether the trimethylamino dextran-coated magnetic iron oxide nanoparticle -03 (TMADM-03, which was newly developed by our group, could be used for labeling adipose tissue-derived stem cells (ASCs as a contrast agent. No cytotoxicity was observed in ASCs transduced with less than 100 µg-Fe/mL of TMADM-03 after a one hour transduction time. The transduction efficiency of TMADM-03 into ASCs was about four-fold more efficient than that of the alkali-treated dextran-coated magnetic iron oxide nanoparticle (ATDM, which is a major component of commercially available contrast agents such as ferucarbotran (Resovist, and the level of labeling was maintained for at least two weeks. In addition, the differentiation ability of ASCs labeled with TMADM-03 and their ability to produce cytokines such as hepatocyte growth factor (HGF, vascular endothelial growth factor (VEGF and prostaglandin E2 (PGE2, were confirmed to be maintained. The ASCs labeled with TMADM-03 were transplanted into the left kidney capsule of a mouse. The labeled ASCs could be imaged with good contrast using a 1T MR imaging system. These data suggest that TMADM-03 can therefore be utilized as a contrast agent for the MR imaging of stem cells.

  12. Tissue-specific stem cells: Lessons from the skeletal muscle satellite cell

    Science.gov (United States)

    Brack, Andrew S.; Rando, Thomas A.

    2012-01-01

    In 1961, the satellite cell was first identified when electron microscopic examination of skeletal muscle demonstrated a cell wedged between the plasma membrane of the muscle fiber and the basement membrane. In recent years it has been conclusively demonstrated that the satellite cell is the primary cellular source for muscle regeneration and is equipped with the potential to self renew, thus functioning as a bone fide skeletal muscle stem cell (MuSC). As we move past the 50th anniversary of the satellite cell, we take this opportunity to discuss the current state of the art and dissect the unknowns in the MuSC field. PMID:22560074

  13. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    '. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...... and tantalizing than stem cells, in research, in medicine, or as products....

  14. The use of human dental pulp stem cells for in vivo bone tissue engineering: A systematic review.

    Science.gov (United States)

    Leyendecker Junior, Alessander; Gomes Pinheiro, Carla Cristina; Lazzaretti Fernandes, Tiago; Franco Bueno, Daniela

    2018-01-01

    Dental pulp represents a promising and easily accessible source of mesenchymal stem cells for clinical applications. Many studies have investigated the use of human dental pulp stem cells and stem cells isolated from the dental pulp of human exfoliated deciduous teeth for bone tissue engineering in vivo. However, the type of scaffold used to support the proliferation and differentiation of dental stem cells, the animal model, the type of bone defect created, and the methods for evaluation of results were extremely heterogeneous among these studies conducted. With this issue in mind, the main objective of this study is to present and summarize, through a systematic review of the literature, in vivo studies in which the efficacy of human dental pulp stem cells and stem cells from human exfoliated deciduous teeth (SHED) for bone regeneration was evaluated. The article search was conducted in PubMed/MEDLINE and Web of Science databases. Original research articles assessing potential of human dental pulp stem cells and SHED for in vivo bone tissue engineering, published from 1984 to November 2017, were selected and evaluated in this review according to the following eligibility criteria: published in English, assessing dental stem cells of human origin and evaluating in vivo bone tissue formation in animal models or in humans. From the initial 1576 potentially relevant articles identified, 128 were excluded due to the fact that they were duplicates and 1392 were considered ineligible as they did not meet the inclusion criteria. As a result, 56 articles remained and were fully analyzed in this systematic review. The results obtained in this systematic review open new avenues to perform bone tissue engineering for patients with bone defects and emphasize the importance of using human dental pulp stem cells and SHED to repair actual bone defects in an appropriate animal model.

  15. Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments.

    Science.gov (United States)

    Baugé, Catherine; Boumédiene, Karim

    2015-01-01

    Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells.

  16. Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments

    Directory of Open Access Journals (Sweden)

    Catherine Baugé

    2015-01-01

    Full Text Available Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells.

  17. Tissue-engineering strategies to repair chondral and osteochondral tissue in osteoarthritis: use of mesenchymal stem cells.

    Science.gov (United States)

    Grässel, Susanne; Lorenz, Julia

    2014-10-01

    Focal chondral or osteochondral lesions can be painful and disabling because they have insufficient intrinsic repair potential, and constitute one of the major extrinsic risk factors for osteoarthritis (OA). Attention has, therefore, been paid to regenerative therapeutic procedures for the early treatment of cartilaginous defects. Current treatments for OA are not regenerative and have little effect on the progressive degeneration of joint tissue. One major reason for this underrepresentation of regenerative therapy is that approaches to treating OA with cell-based strategies have to take into consideration the larger sizes of the defects, as compared with isolated focal articular-cartilage defects, and the underlying disease process. Here, we review current treatment strategies using mesenchymal stem cells (MSCs) for chondral and osteochondral tissue repair in trauma and OA-affected joints. We discuss tissue-engineering approaches, in preclinical large-animal models and clinical studies in humans, which use crude bone-marrow aspirates and MSCs from different tissue sources in combination with bioactive agents and materials.

  18. Implant for autologous soft tissue reconstruction using an adipose-derived stem cell-colonized alginate scaffold.

    Science.gov (United States)

    Hirsch, Tobias; Laemmle, Christine; Behr, Bjoern; Lehnhardt, Marcus; Jacobsen, Frank; Hoefer, Dirk; Kueckelhaus, Maximilian

    2018-01-01

    Adipose-derived stem cells represent an interesting option for soft tissue replacement as they are easy to procure and can generate their own blood supply through the production of angiogenic factors. We seeded adipose-derived stem cells on a bioresorbable, biocompatible polymer alginate scaffold to generate autologous soft tissue constructs for repair. We built and optimized an alginate scaffold and tested its biocompatibility using the MTT assay and its hydration capacity. We then isolated, characterized, and differentiated murine, porcine, and human adipose-derived stem cells. We characterized their angiogenic potential in vitro by VEGF ELISA and HUVEC tube formation assay in traditional cell culture substrate and in the actual three-dimensional scaffold. We assessed the angiogenic potential of adipose-derived stem cell-colonized scaffolds in ovo by chorion allantois membrane angiogenesis assay. Adipose-derived stem cells differentiated into adipocytes within the alginate scaffolds and demonstrated angiogenic activity. VEGF secretion by adipose-derived stem cells decreased significantly over the 21-day course of adipocyte differentiation in traditional cell culture substrate, but not in scaffolds. Adipose-derived stem cells differentiated for 21 days in scaffolds led to the longest HUVEC tube formation. Scaffolds colonized with adipose-derived stem cells resulted in significantly improved vascularization in ovo. We demonstrate the feasibility of implant production based on adipose-derived stem cell-colonized alginate scaffolds. The implants demonstrate biocompatibility and promote angiogenesis in vitro and in ovo. Therefore, they provide a combination of essential properties for an implant intended for soft tissue replacement. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. L-carnitine significantly decreased aging of rat adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Mobarak, Halimeh; Fathi, Ezzatollah; Farahzadi, Raheleh; Zarghami, Nosratollah; Javanmardi, Sara

    2017-03-01

    Mesenchymal stem cells are undifferentiated cells that have the ability to divide continuously and tissue regeneration potential during the transplantation. Aging and loss of cell survival, is one of the main problems in cell therapy. Since the production of free radicals in the aging process is effective, the use of antioxidant compounds can help in scavenging free radicals and prevent the aging of cells. The aim of this study is evaluate the effects of L-carnitine (LC) on proliferation and aging of rat adipose tissue-derived mesenchymal stem cells (rADSC). rADSCs were isolated from inguinal region of 5 male Rattus rats. Oil red-O, alizarin red-S and toluidine blue staining were performed to evaluate the adipogenic, osteogenic and chondrogenic differentiation of rADSCs, respectively. Flow cytometric analysis was done for investigating the cell surface markers. The methyl thiazol tetrazolium (MTT) method was used to determine the cell proliferation of rADSCs following exposure to different concentrations of LC. rADSCs aging was evaluated by beta-galactosidase staining. The results showed significant proliferation of rADSCs 48 h after treatment with concentrations of 0.2 mM LC. In addition, in the presence of 0.2 mM LC, rADSCs appeared to be growing faster than control group and 0.2 mM LC supplementation could significantly decrease the population doubling time and aging of rADSCs. It seems that LC would be a good antioxidant to improve lifespan of rADSCs due to the decrease in aging.

  20. Current and future regenerative medicine - principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Berg, Lise Charlotte; Betts, Dean H.

    2009-01-01

    This paper provides a bird's-eye perspective of the general principles of stem-cell therapy and tissue engineering; it relates comparative knowledge in this area to the current and future status of equine regenerative medicine.The understanding of equine stem cell biology, biofactors, and scaffolds...... factors, and biomaterials - are increasingly being applied in equine medicine, fuelled by better scaffolds and increased understanding of individual biofactors and cell sources.The effectiveness of stem cell-based therapies and most tissue engineering concepts has not been demonstrated sufficiently...... in controlled clinical trials in equine patients to be regarded as evidence-based medicine. In the meantime, the medical mantra "do no harm" should prevail, and the application of stem cell-based therapies in the horse should be done critically and cautiously, and treatment outcomes (good and bad) should...

  1. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Science.gov (United States)

    Salamon, Achim; van Vlierberghe, Sandra; van Nieuwenhove, Ine; Baudisch, Frank; Graulus, Geert-Jan; Benecke, Verena; Alberti, Kristin; Neumann, Hans-Georg; Rychly, Joachim; Martins, José C.; Dubruel, Peter; Peters, Kirsten

    2014-01-01

    Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies. PMID:28788517

  2. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids.

    Science.gov (United States)

    Finkbeiner, Stacy R; Freeman, Jennifer J; Wieck, Minna M; El-Nachef, Wael; Altheim, Christopher H; Tsai, Yu-Hwai; Huang, Sha; Dyal, Rachel; White, Eric S; Grikscheit, Tracy C; Teitelbaum, Daniel H; Spence, Jason R

    2015-10-12

    Short bowel syndrome (SBS) is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving, such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes, new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs), called human intestinal organoids (HIOs), have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However, given that HIOs are small three-dimensional structures grown in vitro, methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA) scaffolds, and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro, the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast, HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine, which need to be explored further to develop them into fully functional tissue. © 2015. Published by The Company of Biologists Ltd.

  3. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids

    Directory of Open Access Journals (Sweden)

    Stacy R. Finkbeiner

    2015-11-01

    Full Text Available Short bowel syndrome (SBS is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving, such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes, new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs or induced pluripotent stem cells (iPSCs, called human intestinal organoids (HIOs, have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However, given that HIOs are small three-dimensional structures grown in vitro, methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA scaffolds, and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro, the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast, HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine, which need to be explored further to develop them into fully functional tissue.

  4. Big-Data-Driven Stem Cell Science and Tissue Engineering: Vision and Unique Opportunities.

    Science.gov (United States)

    Del Sol, Antonio; Thiesen, Hans J; Imitola, Jaime; Carazo Salas, Rafael E

    2017-02-02

    Achieving the promises of stem cell science to generate precise disease models and designer cell samples for personalized therapeutics will require harnessing pheno-genotypic cell-level data quantitatively and predictively in the lab and clinic. Those requirements could be met by developing a Big-Data-driven stem cell science strategy and community. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused 3D Porous Polymer Scaffold for Liver Tissue Engineering

    DEFF Research Database (Denmark)

    Hemmingsen, Mette; Muhammad, Haseena Bashir; Mohanty, Soumyaranjan

    A huge shortage of liver organs for transplantation has motivated the research field of tissue engineering to develop bioartificial liver tissue and even a whole liver. The goal of NanoBio4Trans is to create a vascularized bioartificial liver tissue, initially as a liver-support system. Due...... to limitations of primary hepatocytes regarding availability and maintenance of functionality, stem cells and especially human induced pluripotent stem cells (hIPS cells) are an attractive cell source for liver tissue engineering. The aim of this part of NanoBio4Trans is to optimize culture and hepatic...... differentiation of hIPS-derived definitive endoderm (DE) cells in a 3D porous polymer scaffold built-in a perfusable bioreactor. The use of a microfluidic bioreactor array enables the culture of 16 independent tissues in one experimental run and thereby an optimization study to be performed....

  6. A special issue on reviews in biomedical applications of nanomaterials, tissue engineering, stem cells, bioimaging, and toxicity.

    Science.gov (United States)

    Nalwa, Hari Singh

    2014-10-01

    This second special issue of the Journal of Biomedical Nanotechnology in a series contains another 30 state-of-the-art reviews focused on the biomedical applications of nanomaterials, biosensors, bone tissue engineering, MRI and bioimaging, single-cell detection, stem cells, endothelial progenitor cells, toxicity and biosafety of nanodrugs, nanoparticle-based new therapeutic approaches for cancer, hepatic and cardiovascular disease.

  7. Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications.

    Science.gov (United States)

    Jia, Jia; Coyle, Robert C; Richards, Dylan J; Berry, Christopher Lloyd; Barrs, Ryan Walker; Biggs, Joshua; James Chou, C; Trusk, Thomas C; Mei, Ying

    2016-11-01

    Synthetic polymer microarray technology holds remarkable promise to rapidly identify suitable biomaterials for stem cell and tissue engineering applications. However, most of previous microarrayed synthetic polymers do not possess biological ligands (e.g., peptides) to directly engage cell surface receptors. Here, we report the development of peptide-functionalized hydrogel microarrays based on light-assisted copolymerization of poly(ethylene glycol) diacrylates (PEGDA) and methacrylated-peptides. Using solid-phase peptide/organic synthesis, we developed an efficient route to synthesize methacrylated-peptides. In parallel, we identified PEG hydrogels that effectively inhibit non-specific cell adhesion by using PEGDA-700 (M. W.=700) as a monomer. The combined use of these chemistries enables the development of a powerful platform to prepare peptide-functionalized PEG hydrogel microarrays. Additionally, we identified a linker composed of 4 glycines to ensure sufficient exposure of the peptide moieties from hydrogel surfaces. Further, we used this system to directly compare cell adhesion abilities of several related RGD peptides: RGD, RGDS, RGDSG and RGDSP. Finally, we combined the peptide-functionalized hydrogel technology with bioinformatics to construct a library composed of 12 different RGD peptides, including 6 unexplored RGD peptides, to develop culture substrates for hiPSC-derived cardiomyocytes (hiPSC-CMs), a cell type known for poor adhesion to synthetic substrates. 2 out of 6 unexplored RGD peptides showed substantial activities to support hiPSC-CMs. Among them, PMQKMRGDVFSP from laminin β4 subunit was found to support the highest adhesion and sarcomere formation of hiPSC-CMs. With bioinformatics, the peptide-functionalized hydrogel microarrays accelerate the discovery of novel biological ligands to develop biomaterials for stem cell and tissue engineering applications. In this manuscript, we described the development of a robust approach to prepare peptide

  8. The Characterization Tool: A knowledge-based stem cell, differentiated cell, and tissue database with a web-based analysis front-end.

    NARCIS (Netherlands)

    I. Wohlers (Inken); H. Stachelscheid; J. Borstlap; K. Zeilinger; J.C. Gerlach

    2009-01-01

    htmlabstractIn the rapidly growing field of stem cell research, there is a need for universal databases and web-based applications that provide a common knowledge base on the characteristics of stem cells, differentiated cells, and tissues by collecting, processing, and making available diverse

  9. Expression of embryonic stem cell markers in keloid-associated lymphoid tissue.

    Science.gov (United States)

    Grant, Chelsea; Chudakova, Daria A; Itinteang, Tinte; Chibnall, Alice M; Brasch, Helen D; Davis, Paul F; Tan, Swee T

    2016-07-01

    To identify, characterise and localise the population of primitive cells in keloid scars (KS). 5-µm-thick formalin-fixed paraffin-embedded sections of KS samples from 10 patients underwent immunohistochemical (IHC) staining for the embryonic stem cell (ESC) markers OCT4, SOX2, pSTAT3 and NANOG, and keloid-associated lymphoid tissue (KALT) markers CD4 and CD20. NanoString gene expression analysis and in situ hybridisation (ISH) were used to determine the abundance and localisation of the mRNA for these ESC markers. IHC staining revealed the expression of the ESC markers OCT4, SOX2, pSTAT3 and NANOG by a population of cells within KS tissue. These are localised to the endothelium of the microvessels within the KALTs. NanoString gene expression analysis confirmed the abundance of the transcriptional expression of the same ESC markers. ISH localised the expression of the ESC transcripts to the primitive endothelium in KS tissue. This report demonstrates the expression of ESC markers OCT4, SOX2, pSTAT3 and NANOG by the endothelium of the microvessels within the KALTs. These findings show a unique niche of primitive cells within KS, expressing ESC markers, revealing a potential therapeutic target in the treatment of KS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Various forms of tissue damage and danger signals following hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Abdulraouf eRamadan

    2015-01-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is the most potent curative therapy for many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT is graft-versus-host disease (GVHD, which is mediated by tissue damage resulting from the conditioning regimens before the transplantation and the alloreaction of dual immune components (activated donor T cells and recipient’s antigen-presenting cells. This tissue damage leads to the release of alarmins and the triggering of pathogen-recognition receptors that activate the innate immune system and subsequently the adaptive immune system. Alarmins, which are of endogenous origin, together with the exogenous pathogen-associated molecular patterns (PAMPs elicit similar responses of danger signals and represent the group of damage-associated molecular patterns (DAMPs. Effector cells of innate and adaptive immunity that are activated by PAMPs or alarmins can secrete other alarmins and amplify the immune responses. These complex interactions and loops between alarmins and PAMPs are particularly potent at inducing and then aggravating the GVHD reaction. In this review, we highlight the role of these tissue damaging molecules and their signaling pathways. Interestingly, some DAMPs and PAMPs are organ specific and GVHD-induced and have been shown to be interesting biomarkers. Some of these molecules even represent potential targets for novel therapeutic approaches.

  11. Ultrasound -Assisted Gene Transfer to Adipose Tissue-Derived Stem/Progenitor Cells (ASCs)

    Science.gov (United States)

    Miyamoto, Yoshitaka; Ueno, Hitomi; Hokari, Rei; Yuan, Wenji; Kuno, Shuichi; Kakimoto, Takashi; Enosawa, Shin; Negishi, Yoichi; Yoshinaka, Kiyoshi; Matsumoto, Yoichiro; Chiba, Toshio; Hayashi, Shuji

    2011-09-01

    In recent years, multilineage adipose tissue-derived stem cells (ASCs) have become increasingly attractive as a promising source for cell transplantation and regenerative medicine. Particular interest has been expressed in the potential to make tissue stem cells, such as ASCs and marrow stromal cells (MSCs), differentiate by gene transfection. Gene transfection using highly efficient viral vectors such as adeno- and sendai viruses have been developed for this purpose. Sonoporation, or ultrasound (US)-assisted gene transfer, is an alternative gene manipulation technique which employs the creation of a jet stream by ultrasonic microbubble cavitation. Sonoporation using non-viral vectors is expected to be a much safer, although less efficient, tool for prospective clinical gene therapy. In this report, we assessed the efficacy of the sonoporation technique for gene transfer to ASCs. We isolated and cultured adipocyets from mouse adipose tissue. ASCs that have the potential to differentiate with transformation into adipocytes or osteoblasts were obtained. Using the US-assisted system, plasmid DNA containing beta-galactosidase (beta-Gal) and green fluorescent protein (GFP) genes were transferred to the ASCs. For this purpose, a Sonopore 4000 (NEPAGENE Co.) and a Sonazoid (Daiichi Sankyo Co.) instrument were used in combination. ASCs were subjected to US (3.1 MHz, 50% duty cycle, burst rate 2.0 Hz, intensity 1.2 W/cm2, exposure time 30 sec). We observed that the gene was more efficiently transferred with increased concentrations of plasmid DNA (5-150 μg/mL). However, further optimization of the US parameters is required, as the gene transfer efficiency was still relatively low. In conclusion, we herein demonstrate that a gene can be transferred to ASCs using our US-assisted system. In regenerative medicine, this system might resolve the current issues surrounding the use of viral vectors for gene transfer.

  12. Leukocyte-Reduced Platelet-Rich Plasma Alters Protein Expression of Adipose Tissue-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Loibl, Markus; Lang, Siegmund; Hanke, Alexander; Herrmann, Marietta; Huber, Michaela; Brockhoff, Gero; Klein, Silvan; Nerlich, Michael; Angele, Peter; Prantl, Lukas; Gehmert, Sebastian

    2016-08-01

    Application of platelet-rich plasma and stem cells has become important in regenerative medicine. Recent literature supports the use of platelet-rich plasma as a cell culture media supplement to stimulate proliferation of adipose tissue-derived mesenchymal stem cells. The underlying mechanism of proliferation stimulation by platelet-rich plasma has not been investigated so far. Adipose tissue-derived mesenchymal stem cells were cultured in α-minimal essential medium supplemented with platelet-rich plasma or fetal calf serum. Cell proliferation was assessed with cell cycle kinetics using flow cytometric analyses after 48 hours. Differences in proteome expression of the adipose tissue-derived mesenchymal stem cells were analyzed using a reverse-phase protein array to quantify 214 proteins. Complementary Ingenuity Pathways Analysis and gene set enrichment analysis were performed using protein data, and confirmed by Western blot analysis. A higher percentage of adipose tissue-derived mesenchymal stem cells in the S phase in the presence of platelet-rich plasma advocates the proliferation stimulation. Ingenuity Pathways Analysis and gene set enrichment analysis confirm the involvement of the selected proteins in the process of cell growth and proliferation. Ingenuity Pathways Analysis revealed a participation in the top-ranked canonical pathways PI3K/AKT, PTEN, ILK, and IGF-1. Gene set enrichment analysis identified the authors' protein set as being part of significantly regulated protein sets with the focus on cell cycle, metabolism, and the Kyoto Encyclopedia of Genes and Genomes transforming growth factor-β signaling pathway. The present study provides evidence that platelet-rich plasma stimulates proliferation and induces a unique change in the proteomic profile of adipose tissue-derived mesenchymal stem cells. The interpretation of altered expression of regulatory proteins represents a step forward toward achieving good manufacturing practice-compliant criteria

  13. Retina tissue engineering by conjunctiva mesenchymal stem cells encapsulated in fibrin gel: Hypotheses on novel approach to retinal diseases treatment.

    Science.gov (United States)

    Soleimannejad, Mostafa; Ebrahimi-Barough, Somayeh; Nadri, Samad; Riazi-Esfahani, Mohammad; Soleimani, Masoud; Tavangar, Seyed Mohammad; Ai, Jafar

    2017-04-01

    Retinitis pigmentosa (RP) and age related macular degeneration (AMD) are two retinal diseases that progress by photoreceptor cells death. In retinal transplantation studies, stem and progenitor cells inject into the sub retinal space or vitreous and then these cells can be migrate to the site of retinal degeneration and locate in the host retina and restitute vision. Our hypothesis suggests that using human conjunctiva stem cells (as the source for increasing the number of human stem cells progenitor cells in retina dysfunction diseases) with fibrin gel and also assessing its relating in vitro (cellular and molecular processes) and in vivo (vision tests and pathology) could be a promising strategy for treatment of AMD and RP disorders. In this idea, we describe a novel approach for retina tissue engineering with differentiation of conjunctiva mesenchymal stem cells (CJMSCs) into photoreceptor-like cells in fibrin gel with induction medium contain taurine. For assessment of differentiation, immunocytochemistry and real time PCR are used for the expression of Rhodopsin, RPE65, Nestin as differentiated photoreceptor cell markers in 2D and 3D culture. The results show that fibrin gel will offer a proper 3D scaffold for CJMSCs derived photoreceptor cell-like cells. Application of immune-privileged, readily available sources of adult stem cells like human conjunctiva stem cells with fibrin gel would be a promising strategy to increase the number of photoreceptor progenitor cells and promote involuntary angiogenesis needed in retina layer repair and regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. CELL TRACKING, SURVIVAL AND DIFFERENTIATION CAPACITY OF ADIPOSE-DERIVED STEM CELLS AFTER ENGRAFTMENT IN RAT TISSUE.

    Science.gov (United States)

    Muñoz, Mario F; Argüelles, Sandro; Guzman-Chozas, Matias; Guillén-Sanz, Remedios; Franco, Jaime M; Pintor-Toro, José A; Cano, Mercedes; Ayala, Antonio

    2018-01-10

    Adipose tissue is an important source of adipose derived stem cells (ADSCs). These cells have the potential of being used for certain therapies, in which the main objective is to recover the function of a tissue/organ affected by a disease. In order to contribute to repair of the tissue, these cells should be able to survive and carry out their functions in unfavorable conditions after being transplanted. This process requires a better understanding of the biology involved: such as the time cells remain in the implant site, how long they stay there, and whether or not they differentiate into host tissue cells. This report focuses on these questions. ADSC were injected into three different tissues (substantia nigra, ventricle, liver) and they were tracked in vivo with a dual GFP-Luc reporter system. The results show that ADSCs were able to survive up to 4 months after the engraftment and some of them started showing resident cell tissue phenotype. These results demonstrate their long-term capacity of survival and differentiation when injected in vivo. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials.

    Science.gov (United States)

    Reddi, A H

    2000-08-01

    Morphogenesis is the developmental cascade of pattern formation, body plan establishment, and the architecture of mirror-image bilateral symmetry of many structures and asymmetry of some, culminating in the adult form. Tissue engineering is the emerging discipline of design and construction of spare parts for the human body to restore function based on principles of molecular developmental biology and morphogenesis governed by bioengineering. The three key ingredients for both morphogenesis and tissue engineering are inductive signals, responding stem cells, and the extracellular matrix. Among the many tissues in the human body, bone has considerable powers for regeneration and is a prototype model for tissue engineering based on morphogenesis. Implantation of demineralized bone matrix into subcutaneous sites results in local bone induction. This model mimics sequential limb morphogenesis and permitted the isolation of bone morphogens. Although it is traditional to study morphogenetic signals in embryos, bone morphogenetic proteins (BMPs), the inductive signals for bone, were isolated from demineralized bone matrix from adults. BMPs and related cartilage-derived morphogenetic proteins (CDMPs) initiate, promote, and maintain chondrogenesis and osteogenesis and have actions beyond bone. The symbiosis of bone inductive and conductive strategies are critical for tissue engineering, and is in turn governed by the context and biomechanics. The context is the microenvironment, consisting of extracellular matrix, which can be duplicated by biomimetic biomaterials such as collagens, hydroxyapatite, proteoglycans, and cell adhesion proteins including fibronectins. Thus, the rules of architecture for tissue engineering are an imitation of the laws of developmental biology and morphogenesis, and thus may be universal for all tissues, including bones and joints.

  16. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering.

    Science.gov (United States)

    Choi, Jane Ru; Yong, Kar Wey; Choi, Jean Yu

    2018-03-01

    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair. © 2017 Wiley Periodicals, Inc.

  17. Transcriptional Networks in Single Perivascular Cells Sorted from Human Adipose Tissue Reveal a Hierarchy of Mesenchymal Stem Cells.

    Science.gov (United States)

    Hardy, W Reef; Moldovan, Nicanor I; Moldovan, Leni; Livak, Kenneth J; Datta, Krishna; Goswami, Chirayu; Corselli, Mirko; Traktuev, Dmitry O; Murray, Iain R; Péault, Bruno; March, Keith

    2017-05-01

    Adipose tissue is a rich source of multipotent mesenchymal stem-like cells, located in the perivascular niche. Based on their surface markers, these have been assigned to two main categories: CD31 - /CD45 - /CD34 + /CD146 - cells (adventitial stromal/stem cells [ASCs]) and CD31 - /CD45 - /CD34 - /CD146 + cells (pericytes [PCs]). These populations display heterogeneity of unknown significance. We hypothesized that aldehyde dehydrogenase (ALDH) activity, a functional marker of primitivity, could help to better define ASC and PC subclasses. To this end, the stromal vascular fraction from a human lipoaspirate was simultaneously stained with fluorescent antibodies to CD31, CD45, CD34, and CD146 antigens and the ALDH substrate Aldefluor, then sorted by fluorescence-activated cell sorting. Individual ASCs (n = 67) and PCs (n = 73) selected from the extremities of the ALDH-staining spectrum were transcriptionally profiled by Fluidigm single-cell quantitative polymerase chain reaction for a predefined set (n = 429) of marker genes. To these single-cell data, we applied differential expression and principal component and clustering analysis, as well as an original gene coexpression network reconstruction algorithm. Despite the stochasticity at the single-cell level, covariation of gene expression analysis yielded multiple network connectivity parameters suggesting that these perivascular progenitor cell subclasses possess the following order of maturity: (a) ALDH br ASC (most primitive); (b) ALDH dim ASC; (c) ALDH br PC; (d) ALDH dim PC (least primitive). This order was independently supported by specific combinations of class-specific expressed genes and further confirmed by the analysis of associated signaling pathways. In conclusion, single-cell transcriptional analysis of four populations isolated from fat by surface markers and enzyme activity suggests a developmental hierarchy among perivascular mesenchymal stem cells supported by markers and coexpression

  18. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering.

    Science.gov (United States)

    Chuenjitkuntaworn, Boontharika; Osathanon, Thanaphum; Nowwarote, Nunthawan; Supaphol, Pitt; Pavasant, Prasit

    2016-01-01

    Major drawbacks of using an autograft are the possibilities of insufficient bony source and patient's morbidity after operation. Bone tissue engineering technology, therefore, has been applied for repairing bony defects. Previous study showed that a novel fabricated 3D-Polycaprolactone/Hydroxyapatite (PCL/HAp) scaffold possessed a good biocompatibility for bone cells. This study aimed to determine the ability of PCL/HAp for supporting cell growth, gene expression, and osteogenic differentiation in three types of mesenchymal stem cells, including bone marrow-derived mesenchymal stem cells (BMSCs), dental pulp stem cells (DPSCs), and adiposed-derived mesenchymal stem cells (ADSCs). These were assessed by cell viability assay (MTT), reverse-transcription polymerase chain reaction (RT-PCR) analysis, alkaline phosphatase activity, and osteogenic differentiation by alizarin red-S staining. The results showed that PCL/HAp scaffold could support growth of all three types of mesenchymal stem cells. In addition, DPSCs with PCL/HAp showed the highest level of calcium deposition compared to other groups. In conclusion, DPSCs exhibited a better compatibility with these scaffolds compared to BMSCs and ADSCs. However, the PCL/HAp could be a good candidate scaffold for all tested mesenchymal stem cells in bone tissue engineering. © 2015 Wiley Periodicals, Inc.

  19. Cancer stem cells revisited

    NARCIS (Netherlands)

    Batlle, Eduard; Clevers, Hans

    2017-01-01

    The cancer stem cell (CSC) concept was proposed four decades ago, and states that tumor growth, analogous to the renewal of healthy tissues, is fueled by small numbers of dedicated stem cells. It has gradually become clear that many tumors harbor CSCs in dedicated niches, and yet their

  20. Learn About Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... ISSCR Get Involved Media © 2015 International Society for Stem Cell Research Terms of Use Disclaimer Privacy Policy

  1. Directing and Potentiating Stem Cell-Mediated Angiogenesis and Tissue Repair by Cell Surface E-Selectin Coating.

    Science.gov (United States)

    Liu, Zhao-Jun; Daftarian, Pirouz; Kovalski, Letícia; Wang, Bo; Tian, Runxia; Castilla, Diego M; Dikici, Emre; Perez, Victor L; Deo, Sapna; Daunert, Sylvia; Velazquez, Omaida C

    2016-01-01

    Stem cell therapy has emerged as a promising approach for treatment of a number of diseases, including delayed and non-healing wounds. However, targeted systemic delivery of therapeutic cells to the dysfunctional tissues remains one formidable challenge. Herein, we present a targeted nanocarrier-mediated cell delivery method by coating the surface of the cell to be delivered with dendrimer nanocarriers modified with adhesion molecules. Infused nanocarrier-coated cells reach to destination via recognition and association with the counterpart adhesion molecules highly or selectively expressed on the activated endothelium in diseased tissues. Once anchored on the activated endothelium, nanocarriers-coated transporting cells undergo transendothelial migration, extravasation and homing to the targeted tissues to execute their therapeutic role. We now demonstrate feasibility, efficacy and safety of our targeted nanocarrier for delivery of bone marrow cells (BMC) to cutaneous wound tissues and grafted corneas and its advantages over conventional BMC transplantation in mouse models for wound healing and neovascularization. This versatile platform is suited for targeted systemic delivery of virtually any type of therapeutic cell.

  2. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine.

    Science.gov (United States)

    Vapniarsky, Natalia; Arzi, Boaz; Hu, Jerry C; Nolta, Jan A; Athanasiou, Kyriacos A

    2015-10-01

    The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it provides

  3. Role of mesenchymal stem cell-derived fibrinolytic factor in tissue regeneration and cancer progression.

    Science.gov (United States)

    Heissig, Beate; Dhahri, Douaa; Eiamboonsert, Salita; Salama, Yousef; Shimazu, Hiroshi; Munakata, Shinya; Hattori, Koichi

    2015-12-01

    Tissue regeneration during wound healing or cancer growth and progression depends on the establishment of a cellular microenvironment. Mesenchymal stem cells (MSC) are part of this cellular microenvironment, where they functionally modulate cell homing, angiogenesis, and immune modulation. MSC recruitment involves detachment of these cells from their niche, and finally MSC migration into their preferred niches; the wounded area, the tumor bed, and the BM, just to name a few. During this recruitment phase, focal proteolysis disrupts the extracellular matrix (ECM) architecture, breaks cell-matrix interactions with receptors, and integrins, and causes the release of bioactive fragments from ECM molecules. MSC produce a broad array of proteases, promoting remodeling of the surrounding ECM through proteolytic mechanisms. The fibrinolytic system, with its main player plasmin, plays a crucial role in cell migration, growth factor bioavailability, and the regulation of other protease systems during inflammation, tissue regeneration, and cancer. Key components of the fibrinolytic cascade, including the urokinase plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1), are expressed in MSC. This review will introduce general functional properties of the fibrinolytic system, which go beyond its known function of fibrin clot dissolution (fibrinolysis). We will focus on the role of the fibrinolytic system for MSC biology, summarizing our current understanding of the role of the fibrinolytic system for MSC recruitment and the functional consequences for tissue regeneration and cancer. Aspects of MSC origin, maintenance, and the mechanisms by which these cells contribute to altered protease activity in the microenvironment under normal and pathological conditions will also be discussed.

  4. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ra Jeong Chan

    2011-10-01

    Full Text Available Abstract Prolonged life expectancy, life style and environmental changes have caused a changing disease pattern in developed countries towards an increase of degenerative and autoimmune diseases. Stem cells have become a promising tool for their treatment by promoting tissue repair and protection from immune-attack associated damage. Patient-derived autologous stem cells present a safe option for this treatment since these will not induce immune rejection and thus multiple treatments are possible without any risk for allogenic sensitization, which may arise from allogenic stem cell transplantations. Here we report the outcome of treatments with culture expanded human adipose-derived mesenchymal stem cells (hAdMSCs of 10 patients with autoimmune associated tissue damage and exhausted therapeutic options, including autoimmune hearing loss, multiple sclerosis, polymyotitis, atopic dermatitis and rheumatoid arthritis. For treatment, we developed a standardized culture-expansion protocol for hAdMSCs from minimal amounts of fat tissue, providing sufficient number of cells for repetitive injections. High expansion efficiencies were routinely achieved from autoimmune patients and from elderly donors without measurable loss in safety profile, genetic stability, vitality and differentiation potency, migration and homing characteristics. Although the conclusions that can be drawn from the compassionate use treatments in terms of therapeutic efficacy are only preliminary, the data provide convincing evidence for safety and therapeutic properties of systemically administered AdMSC in human patients with no other treatment options. The authors believe that ex-vivo-expanded autologous AdMSCs provide a promising alternative for treating autoimmune diseases. Further clinical studies are needed that take into account the results obtained from case studies as those presented here.

  5. Effects of Low Intensity Ultrasound on the Chondrogenic Differentiation of Adult Stem Cells From Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Hajar Shafaei

    2016-05-01

    Full Text Available Background Adult stem cells from adipose tissue can be used in tissue engineering because of their capacity to differentiate into chondrocytes. Low intensity ultrasound (LIUS as a physical chondrogenic inducer differentiates adipose stem cells (ASC into chondrocyte the same as transforming growth factor-β (TGFβ. However the stage of differentiation and hypertrophy of chondrocytes by LIUS have not yet been studied. Objectives The aim of this study was to determine the effect of LIUS on hypertrophic states of differentiated chondrocytes. Materials and Methods In this experimental study, ASCs were cultured in chondrogenic differentiation medium (10 ng/mL of TGFβ with or without LIUS stimulation for two weeks. The ultrasound signal was applied at an intensity of 200 mW/cm2 for 10 min/day. For evaluation, the mRNA expression of collagen type X, alkaline phosphatase, Runx2 and Runx2II, were studied using quantitative gene expression method. Histologic and immunohistochemistry evaluations were performed. The data were analyzed by one way ANOVA (Tukey’s. Results The mRNA expression of collagen type X, and alkaline phosphatase, Runx2 and Runx2II were decreased markedly by the LIUS stimulation, whereas the expression of these genes drastically increased when TGFβ applied alone or with LIUS. LIUS containing cultures showed lower hypertrophic protein expression (alkaline phosphatase and Indian hedgehog as compared with the controls. Conclusions Our results showed that LIUS suppresses hypertrophic chondrocyte formation and that LIUS induced chondrocytes are more suitable than TGFβ induced ones due to low expression of hyperthrophic markers in cartilage tissue engineering for clinical applications.

  6. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells.

    Science.gov (United States)

    Schmidt, Dörthe; Dijkman, Petra E; Driessen-Mol, Anita; Stenger, Rene; Mariani, Christine; Puolakka, Arja; Rissanen, Marja; Deichmann, Thorsten; Odermatt, Bernhard; Weber, Benedikt; Emmert, Maximilian Y; Zund, Gregor; Baaijens, Frank P T; Hoerstrup, Simon P

    2010-08-03

    The aim of this study was to demonstrate the feasibility of combining the novel heart valve replacement technologies of: 1) tissue engineering; and 2) minimally-invasive implantation based on autologous cells and composite self-expandable biodegradable biomaterials. Minimally-invasive valve replacement procedures are rapidly evolving as alternative treatment option for patients with valvular heart disease. However, currently used valve substitutes are bioprosthetic and as such have limited durability. To overcome this limitation, tissue engineering technologies provide living autologous valve replacements with regeneration and growth potential. Trileaflet heart valves fabricated from biodegradable synthetic scaffolds, integrated in self-expanding stents and seeded with autologous vascular or stem cells (bone marrow and peripheral blood), were generated in vitro using dynamic bioreactors. Subsequently, the tissue engineered heart valves (TEHV) were minimally-invasively implanted as pulmonary valve replacements in sheep. In vivo functionality was assessed by echocardiography and angiography up to 8 weeks. The tissue composition of explanted TEHV and corresponding control valves was analyzed. The transapical implantations were successful in all animals. The TEHV demonstrated in vivo functionality with mobile but thickened leaflets. Histology revealed layered neotissues with endothelialized surfaces. Quantitative extracellular matrix analysis at 8 weeks showed higher values for deoxyribonucleic acid, collagen, and glycosaminoglycans compared to native valves. Mechanical profiles demonstrated sufficient tissue strength, but less pliability independent of the cell source. This study demonstrates the principal feasibility of merging tissue engineering and minimally-invasive valve replacement technologies. Using adult stem cells is successful, enabling minimally-invasive cell harvest. Thus, this new technology may enable a valid alternative to current bioprosthetic devices

  7. Regenerative potential of the cartilaginous tissue in mesenchymal stem cells: update, limitations, and challenges.

    Science.gov (United States)

    Cruz, Ivana Beatrice Mânica da; Severo, Antônio Lourenço; Azzolin, Verônica Farina; Garcia, Luiz Filipe Machado; Kuhn, André; Lech, Osvandré

    2017-01-01

    Advances in the studies with adult mesenchymal stem cells (MSCs) have turned tissue regenerative therapy into a promising tool in many areas of medicine. In orthopedics, one of the main challenges has been the regeneration of cartilage tissue, mainly in diarthroses. In the induction of the MSCs, in addition to cytodifferentiation, the microenvironmental context of the tissue to be regenerated and an appropriate spatial arrangement are extremely important factors. Furthermore, it is known that MSC differentiation is fundamentally determined by mechanisms such as cell proliferation (mitosis), biochemical-molecular interactions, movement, cell adhesion, and apoptosis. Although the use of MSCs for cartilage regeneration remains at a research level, there are important questions to be resolved in order to make this therapy efficient and safe. It is known, for instance, that the expansion of chondrocytes in cultivation, needed to increase the number of cells, could end up producing fibrocartilage instead of hyaline cartilage. However, the latest results are promising. In 2014, the first stage I/II clinical trial to evaluate the efficacy and safety of the intra-articular injection of MSCs in femorotibial cartilage regeneration was published, indicating a decrease in injured areas. One issue to be explored is how many modifications in the articulate inflammatory environment could induce differentiation of MSCs already allocated in that region. Such issue arose from studies that suggested that the suppression of the inflammation may increase the efficiency of tissue regeneration. Considering the complexity of the events related to the chondrogenesis and cartilage repair, it can be concluded that the road ahead is still long, and that further studies are needed.

  8. The In Vitro Response of Tissue Stem Cells to Irradiation With Different Linear Energy Transfers

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, Peter W.; Hosper, Nynke A. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Ploeg, Emily M. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Goethem, Marc-Jan van [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); KVI-Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Brandenburg, Sytze [KVI-Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Chiu, Roland K. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P., E-mail: r.p.coppes@umcg.nl [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-05-01

    Purpose: A reduction in the dose, irradiated volume, and sensitivity of, in particular, normal tissue stem cells is needed to advance radiation therapy. This could be obtained with the use of particles for radiation therapy. However, the radiation response of normal tissue stem cells is still an enigma. Therefore, in the present study, we developed a model to investigate the in vitro response of stem cells to particle irradiation. Methods and Materials: We used the immortalized human salivary gland (HSG) cell line resembling salivary gland (SG) cells to translate the radiation response in 2-dimensional (2D) to 3-dimensional (3D) conditions. This response was subsequently translated to the response of SG stem cells (SGSCs). Dispersed single cells were irradiated with photons or carbon ions at different linear energy transfers (LETs; 48.76 ± 2.16, 149.9 ± 10.8, and 189 ± 15 keV/μm). Subsequently, 2D or 3D clonogenicity was determined by counting the colonies or secondary stem cell-derived spheres in Matrigel. γH2AX immunostaining was used to assess DNA double strand break repair. Results: The 2D response of HSG cells showed a similar increase in dose response to increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to increasing LET irradiation was reduced compared with the 2D response. Finally, the response of mouse SGSCs to photons was similar to the 3D response of HSG cells. The response to higher LET irradiation was reduced in the stem cells. Conclusions: Mouse SGSC radiosensitivity seems reduced at higher LET radiation compared with transformed HSG cells. The developed model to assess the radiation response of SGSCs offers novel possibilities to study the radiation response of normal tissue in vitro.

  9. Different Tissue-Derived Stem Cells: A Comparison of Neural Differentiation Capability

    OpenAIRE

    Bonaventura, Gabriele; Chamayou, Sandrine; Liprino, Annalisa; Guglielmino, Antonino; Fichera, Michele; Caruso, Massimo; Barcellona, Maria Luisa

    2015-01-01

    Background Stem cells are capable of self-renewal and differentiation into a wide range of cell types with multiple clinical and therapeutic applications. Stem cells are providing hope for many diseases that currently lack effective therapeutic methods, including strokes, Huntington's disease, Alzheimer's and Parkinson's disease. However, the paucity of suitable cell types for cell replacement therapy in patients suffering from neurological disorders has hampered the development of this promi...

  10. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...

  11. Mesenchymal Stem/Stromal Cells from Discarded Neonatal Sternal Tissue: In Vitro Characterization and Angiogenic Properties

    Directory of Open Access Journals (Sweden)

    Shuyun Wang

    2016-01-01

    Full Text Available Autologous and nonautologous bone marrow mesenchymal stem/stromal cells (MSCs are being evaluated as proangiogenic agents for ischemic and vascular disease in adults but not in children. A significant number of newborns and infants with critical congenital heart disease who undergo cardiac surgery already have or are at risk of developing conditions related to inadequate tissue perfusion. During neonatal cardiac surgery, a small amount of sternal tissue is usually discarded. Here we demonstrate that MSCs can be isolated from human neonatal sternal tissue using a nonenzymatic explant culture method. Neonatal sternal bone MSCs (sbMSCs were clonogenic, had a surface marker expression profile that was characteristic of bone marrow MSCs, were multipotent, and expressed pluripotency-related genes at low levels. Neonatal sbMSCs also demonstrated in vitro proangiogenic properties. Sternal bone MSCs cooperated with human umbilical vein endothelial cells (HUVECs to form 3D networks and tubes in vitro. Conditioned media from sbMSCs cultured in hypoxia also promoted HUVEC survival and migration. Given the neonatal source, ease of isolation, and proangiogenic properties, sbMSCs may have relevance to therapeutic applications.

  12. EMPLOYMENT OF A «SIDE POPULATION» APPROACH TO STEM CELL ISOLATION IN NORMAL AND TUMOR TISSUES

    Directory of Open Access Journals (Sweden)

    O. R. Tsinkalovsky

    2008-01-01

    Full Text Available Abstract. A combination of fluorescent staining with Hoechst 33342 dye, and flow cytometry of murine bone marrow cells may be used for separation of a side population (SP, which is highly enriched for hematopoietic stem cells capable of long-term hematopoietic reconstitution in lethally irradiated recipients. Recently, this approach was also applied to analysis of SP cells in several types of non-hematopoietic tissues, and malignant tumours. In spite of yet poor definition of phenotype and functional potency of SP cells from various tissues, the method of SP isolation may be a useful tool for analysis and pre-enrichment of stem cell-like cells of different origin. Present review article presents a brief description of Hoechst 33342-staining approach, and of recent reports concerning SP studies in various normal and malignant tissues. (Med. Immunol., vol. 10, N 4-5, pp 319-326.

  13. Implantation of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells in Foot Fat Pad in Rats.

    Science.gov (United States)

    Molligan, Jeremy; Mitchell, Reed; Bhasin, Priya; Lakhani, Aliya; Schon, Lew; Zhang, Zijun

    2015-11-01

    The foot fat pad (FFP) bears body weight and may become a source of foot pain during aging. This study investigated the regenerative effects of autologous adipose tissue-derived mesenchymal stem cells (AT-MSCs) in the FFP of rats. Fat tissue was harvested from a total of 30 male Sprague-Dawley rats for isolation of AT-MSCs. The cells were cultured, adipogenic differentiation was induced for 1 week, and the AT-MSCs were labeled with fluorescent dye before injection. AT-MSCs (5 × 10(4) in 50 µL of saline) were injected into the second infradigital pad in the right hindfoot of the rat of origin. Saline only (50 µL) was injected into the corresponding fat pad in the left hind paw of each rat. Rats (n = 10) were euthanized at 1, 2, and 3 weeks, and the second infradigital fat pads were dissected for histologic examination. The fluorescence-labeled AT-MSCs were present in the foot pads throughout the 3-week experimental period. On histologic testing, the area of fat pad units (FPUs) in the fat pads that received AT-MSC injections was greater than that in the control fat pads. Although the thickness of septae was not changed by AT-MSC injections, the density of elastic fibers in the septae was increased in the fat pads with implanted AT-MSCs. In this short-term study, the implanted AT-MSCs largely survived and might have stimulated the expansion of individual FPUs and increased the density of elastic fibers in the FFP in this rat model. These data support the development of stem cell therapies for age-associated degeneration in FFP in humans. © The Author(s) 2015.

  14. Adipose Tissue and Mesenchymal Stem Cells: State of the Art and Lipogems® Technology Development.

    Science.gov (United States)

    Tremolada, Carlo; Colombo, Valeria; Ventura, Carlo

    In the past few years, interest in adipose tissue as an ideal source of mesenchymal stem cells (MSCs) has increased. These cells are multipotent and may differentiate in vitro into several cellular lineages, such as adipocytes, chondrocytes, osteoblasts, and myoblasts. In addition, they secrete many bioactive molecules and thus are considered "mini-drugstores." MSCs are being used increasingly for many clinical applications, such as orthopedic, plastic, and reconstructive surgery. Adipose-derived MSCs are routinely obtained enzymatically from fat lipoaspirate as SVF and/or may undergo prolonged ex vivo expansion, with significant senescence and a decrease in multipotency, leading to unsatisfactory clinical results. Moreover, these techniques are hampered by complex regulatory issues. Therefore, an innovative technique (Lipogems®; Lipogems International SpA, Milan, Italy) was developed to obtain microfragmented adipose tissue with an intact stromal vascular niche and MSCs with a high regenerative capacity. The Lipogems® technology, patented in 2010 and clinically available since 2013, is an easy-to-use system designed to harvest, process, and inject refined fat tissue and is characterized by optimal handling ability and a great regenerative potential based on adipose-derived MSCs. In this novel technology, the adipose tissue is washed, emulsified, and rinsed and adipose cluster dimensions gradually are reduced to about 0.3 to 0.8 mm. In the resulting Lipogems® product, pericytes are retained within an intact stromal vascular niche and are ready to interact with the recipient tissue after transplantation, thereby becoming MSCs and starting the regenerative process. Lipogems® has been used in more than 7000 patients worldwide in aesthetic medicine and surgery, as well as in orthopedic and general surgery, with remarkable and promising results and seemingly no drawbacks. Now, several clinical trials are under way to support the initial encouraging outcomes

  15. Cartilage Regeneration in Human with Adipose Tissue-Derived Stem Cells: Current Status in Clinical Implications

    Directory of Open Access Journals (Sweden)

    Jaewoo Pak

    2016-01-01

    Full Text Available Osteoarthritis (OA is one of the most common debilitating disorders among the elderly population. At present, there is no definite cure for the underlying causes of OA. However, adipose tissue-derived stem cells (ADSCs in the form of stromal vascular fraction (SVF may offer an alternative at this time. ADSCs are one type of mesenchymal stem cells that have been utilized and have demonstrated an ability to regenerate cartilage. ADSCs have been shown to regenerate cartilage in a variety of animal models also. Non-culture-expanded ADSCs, in the form of SVF along with platelet rich plasma (PRP, have recently been used in humans to treat OA and other cartilage abnormalities. These ADSCs have demonstrated effectiveness without any serious side effects. However, due to regulatory issues, only ADSCs in the form of SVF are currently allowed for clinical uses in humans. Culture-expanded ADSCs, although more convenient, require clinical trials for a regulatory approval prior to uses in clinical settings. Here we present a systematic review of currently available clinical studies involving ADSCs in the form of SVF and in the culture-expanded form, with or without PRP, highlighting the clinical effectiveness and safety in treating OA.

  16. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering.

    Science.gov (United States)

    Björninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppänen-Kaijansinkko, Riitta; Kellomäki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi

    2017-04-01

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.

  17. Functional characteristics of mesenchymal stem cells derived from the adipose tissue of a patient with achondroplasia.

    Science.gov (United States)

    Park, Jeong-Ran; Lee, Hanbyeol; Kim, Chung-Hyo; Hong, Seok-Ho; Ha, Kwon-Soo; Yang, Se-Ran

    2016-05-01

    Mesenchymal stem cells (MSCs) can be isolated from various tissues including bone marrow, adipose tissue, skin dermis, and umbilical Wharton's jelly as well as injured tissues. MSCs possess the capacity for self-renewal and the potential for differentiation into adipogenic, osteogenic, and chondrogenic lineages. However, the characteristics of MSCs in injured tissues, such as achondroplasia (ACH), are not well known. In this study, we isolated MSCs from human subcutaneous adipose (ACH-SAMSCs) tissue and circumjacent human adipose tissue of the cartilage (ACH-CAMSCs) from a patient with ACH. We then analyzed the characterization of ACH-SAMSCs and ACH-CAMSCs, compared with normal human dermis-derived MSCs (hDMSCs). In flow cytometry analysis, the isolated ACH-MSCs expressed low levels of CD73, CD90, and CD105, compared with hDMSCs. Moreover, both ACH- SAMSCs and ACH-CAMSCs had constitutionally overactive fibroblast growth factor receptor 3 (FGFR3) and exhibited significantly reduced osteogenic differentiation, compared to enhanced adipogenic differentiation. The activity of extracellular signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen-activated protein kinases (p38 MAPK) was increased in ACH-MSCs. In addition, the efficacy of osteogenic differentiation was slightly restored in osteogenic differentiation medium with MAPKs inhibitors. These results suggest that they play essential roles in MSC differentiation toward adipogenesis in ACH pathology. In conclusion, the identification of the characteristics of ACH-MSCs and the favoring of adipogenic differentiation via the FGFR3/MAPK axis might help to elucidate the pathogenic mechanisms relevant to other skeletal diseases and could provide targets for therapeutic interventions.

  18. Mesoderm Lineage 3D Tissue Constructs Are Produced at Large-Scale in a 3D Stem Cell Bioprocess.

    Science.gov (United States)

    Cha, Jae Min; Mantalaris, Athanasios; Jung, Sunyoung; Ji, Yurim; Bang, Oh Young; Bae, Hojae

    2017-09-01

    Various studies have presented different approaches to direct pluripotent stem cell differentiation such as applying defined sets of exogenous biochemical signals and genetic/epigenetic modifications. Although differentiation to target lineages can be successfully regulated, such conventional methods are often complicated, laborious, and not cost-effective to be employed to the large-scale production of 3D stem cell-based tissue constructs. A 3D-culture platform that could realize the large-scale production of mesoderm lineage tissue constructs from embryonic stem cells (ESCs) is developed. ESCs are cultured using our previously established 3D-bioprocess platform which is amenable to mass-production of 3D ESC-based tissue constructs. Hepatocarcinoma cell line conditioned medium is introduced to the large-scale 3D culture to provide a specific biomolecular microenvironment to mimic in vivo mesoderm formation process. After 5 days of spontaneous differentiation period, the resulting 3D tissue constructs are composed of multipotent mesodermal progenitor cells verified by gene and molecular expression profiles. Subsequently the optimal time points to trigger terminal differentiation towards cardiomyogenesis or osteogenesis from the mesodermal tissue constructs is found. A simple and affordable 3D ESC-bioprocess that can reach the scalable production of mesoderm origin tissues with significantly improved correspondent tissue properties is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Splenectomy enhances the therapeutic effect of adipose tissue-derived mesenchymal stem cell infusion on cirrhosis rats.

    Science.gov (United States)

    Tang, Wei-Ping; Akahoshi, Tomohiko; Piao, Jing-Shu; Narahara, Sayoko; Murata, Masaharu; Kawano, Takahito; Hamano, Nobuhito; Ikeda, Tetsuo; Hashizume, Makoto

    2016-08-01

    Clinical studies suggest that splenectomy improves liver function in cirrhotic patients, but the influence of splenectomy on stem cell transplantation is poorly understood. This study investigated the effect of splenectomy on stem cell infusion and elucidated its mechanism. Rat adipose tissue-derived mesenchymal stem cells were infused into cirrhosis rats with or without splenectomy, followed by the assessment of the in vivo distribution of stem cells and pathological changes. Stromal cell-derived factor-1 and hepatocyte growth factor expression were also investigated in splenectomized cirrhosis patients and rats. Splenectomy, prior to cell infusion, improved liver function and suppressed fibrosis progression more efficiently than cell infusion alone in the experimental cirrhosis model. Stromal cell-derived factor-1 and hepatocyte growth factor levels after splenectomy were increased in patients and rats. These upregulated cytokines significantly facilitated stem cell motility, migration and proliferation in vitro. C-X-C chemokine receptor type 4 neutralization weakened the promotion of cell migration by these cytokines. The infused cells integrated into liver fibrosis septa and participated in regeneration more efficiently in splenectomized rats. Direct coculture with stem cells led to inhibition of hepatic stellate cell proliferation. In addition, hepatocyte growth factor induced hepatic stellate cell apoptosis via the c-jun N-terminal kinase-p53 pathway. Splenectomy prior to cell infusion enhanced the therapeutic effect of stem cells on cirrhosis, which involved upregulation of stromal cell-derived factor-1 and hepatocyte growth factor after splenectomy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Effect of Cell Seeding Density and Inflammatory Cytokines on Adipose Tissue-Derived Stem Cells: an in Vitro Study.

    Science.gov (United States)

    Sukho, Panithi; Kirpensteijn, Jolle; Hesselink, Jan Willem; van Osch, Gerjo J V M; Verseijden, Femke; Bastiaansen-Jenniskens, Yvonne M

    2017-04-01

    Adipose tissue-derived stem cells (ASCs) are known to be able to promote repair of injured tissue via paracrine factors. However, the effect of cell density and inflammatory cytokines on the paracrine ability of ASCs remains largely unknown. To investigate these effects, ASCs were cultured in 8000 cells/cm 2 , 20,000 cells/cm 2 , 50,000 cells/cm 2 , and 400,000 cells/cm 2 with and without 10 or 20 ng/ml tumor necrosis factor alpha (TNFα) and 25 or 50 ng/ml interferon gamma (IFNγ). ASC-sheets formed at 400,000 cells/cm 2 after 48 h of culture. With increasing concentrations of TNFα and IFNγ, ASC-sheets with 400,000 cells/cm 2 had increased production of angiogenic factors Vascular Endothelial Growth Factor and Fibroblast Growth Factor and decreased expression of pro-inflammatory genes TNFA and Prostaglandin Synthase 2 (PTGS2) compared to lower density ASCs. Moreover, the conditioned medium of ASC-sheets with 400,000 cells/cm 2 stimulated with the low concentration of TNFα and IFNγ enhanced endothelial cell proliferation and fibroblast migration. These results suggest that a high cell density enhances ASC paracrine function might beneficial for wound repair, especially in pro-inflammatory conditions.

  1. Stem cell-derived vasculature: A potent and multidimensional technology for basic research, disease modeling, and tissue engineering.

    Science.gov (United States)

    Lowenthal, Justin; Gerecht, Sharon

    2016-05-06

    Proper blood vessel networks are necessary for constructing and re-constructing tissues, promoting wound healing, and delivering metabolic necessities throughout the body. Conversely, an understanding of vascular dysfunction has provided insight into the pathogenesis and progression of diseases both common and rare. Recent advances in stem cell-based regenerative medicine - including advances in stem cell technologies and related progress in bioscaffold design and complex tissue engineering - have allowed rapid advances in the field of vascular biology, leading in turn to more advanced modeling of vascular pathophysiology and improved engineering of vascularized tissue constructs. In this review we examine recent advances in the field of stem cell-derived vasculature, providing an overview of stem cell technologies as a source for vascular cell types and then focusing on their use in three primary areas: studies of vascular development and angiogenesis, improved disease modeling, and the engineering of vascularized constructs for tissue-level modeling and cell-based therapies. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Great expectations: private sector activity in tissue engineering, regenerative medicine, and stem cell therapeutics.

    Science.gov (United States)

    Lysaght, Michael J; Jaklenec, Ana; Deweerd, Elizabeth

    2008-02-01

    This report draws upon data from a variety of sources to provide a detailed estimate of the current scope of private sector development and commercial activity in the aggregate field comprising tissue engineering, regenerative medicine, and stem cell therapeutics. Economic activity has grown a remarkable fivefold in the past 5 years. As of mid-2007 approximately 50 firms or business units with over 3000 employees offered commercial tissue-regenerative products or services with generally profitable annual sales in excess of $1.3 billion. Well over a million patients have been treated with these products. In addition, 110 development-stage companies with over 55 products in FDA-level clinical trials and other preclinical stages employed approximately 2500 scientists or support personnel and spent 850 million development dollars in 2007. These totals represent a remarkable recovery from the downturn of 2000-2002, at which time tissue engineering was in shambles because of disappointing product launches, failed regulatory trials, and the general investment pullback following the dot-com crash. Commercial success has resulted in large measure from identification of products that are achievable with available technology and under existing regulatory guidelines. Development-stage firms have become much more adept at risk management. The resilience of the field, as well as its current breadth and diversity, augurs well for the future of regenerative medicine.

  3. Influence of mesenchymal stem cells on stomach tissue engineering using small intestinal submucosa.

    Science.gov (United States)

    Nakatsu, Hiroki; Ueno, Tomio; Oga, Atsunori; Nakao, Mitsuhiro; Nishimura, Taku; Kobayashi, Sei; Oka, Masaaki

    2015-03-01

    Small intestinal submucosa (SIS) is a biodegradable collagen-rich matrix containing functional growth factors. We have previously reported encouraging outcomes for regeneration of an artificial defect in the rodent stomach using SIS grafts, although the muscular layer was diminutive. In this study, we investigated the feasibility of SIS in conjunction with mesenchymal stem cells (MSCs) for regeneration of the gastrointestinal tract. MSCs from the bone marrow of green fluorescence protein (GFP)-transgenic Sprague-Dawley (SD) rats were isolated and expanded ex vivo. A 1 cm whole-layer stomach defect in SD rats was repaired using: a plain SIS graft without MSCs (group 1, control); a plain SIS graft followed by intravenous injection of MSCs (group 2); a SIS graft co-cultured with MSCs (group 3); or a SIS sandwich containing an MSC sheet (group 4). Pharmacological, electrophysiological and immunohistochemical examination was performed to evaluate the regenerated stomach tissue. Contractility in response to a muscarinic receptor agonist, a nitric oxide precursor or electrical field stimulation was observed in all groups. SIS grafts seeded with MSCs (groups 3 and 4) appeared to support improved regeneration compared with SIS grafts not seeded with MSCs (groups 1 and 2), by enabling the development of well-structured smooth muscle layers of significantly increased length. GFP expression was detected in the regenerated interstitial tissue, with fibroblast-like cells in the seeded-SIS groups. SIS potently induced pharmacological and electrophysiological regeneration of the digestive tract, and seeded MSCs provided an enriched environment that supported tissue regeneration by the SIS graft in the engineered stomach. © 2013 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.

  4. Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Bejoy, Julie; Song, Liqing; Zhou, Yi; Li, Yan

    2018-04-01

    Human induced pluripotent stem cells (hiPSCs) have special ability to self-assemble into neural spheroids or mini-brain-like structures. During the self-assembly process, Wnt signaling plays an important role in regional patterning and establishing positional identity of hiPSC-derived neural progenitors. Recently, the role of Wnt signaling in regulating Yes-associated protein (YAP) expression (nuclear or cytoplasmic), the pivotal regulator during organ growth and tissue generation, has attracted increasing interests. However, the interactions between Wnt and YAP expression for neural lineage commitment of hiPSCs remain poorly explored. The objective of this study is to investigate the effects of Wnt signaling and YAP expression on the cellular population in three-dimensional (3D) neural spheroids derived from hiPSCs. In this study, Wnt signaling was activated using CHIR99021 for 3D neural spheroids derived from human iPSK3 cells through embryoid body formation. Our results indicate that Wnt activation induces nuclear localization of YAP and upregulates the expression of HOXB4, the marker for hindbrain/spinal cord. By contrast, the cells exhibit more rostral forebrain neural identity (expression of TBR1) without Wnt activation. Cytochalasin D was then used to induce cytoplasmic YAP and the results showed the decreased HOXB4 expression. In addition, the incorporation of microparticles in the neural spheroids was investigated for the perturbation of neural patterning. This study may indicate the bidirectional interactions of Wnt signaling and YAP expression during neural tissue patterning, which have the significance in neurological disease modeling, drug screening, and neural tissue regeneration.

  5. Human Adipose Tissue Derived Stem Cells Promote Liver Regeneration in a Rat Model of Toxic Injury

    Directory of Open Access Journals (Sweden)

    Eva Koellensperger

    2013-01-01

    Full Text Available In the light of the persisting lack of donor organs and the risks of allotransplantations, the possibility of liver regeneration with autologous stem cells from adipose tissue (ADSC is an intriguing alternative. Using a model of a toxic liver damage in Sprague Dawley rats, generated by repetitive intraperitoneal application of retrorsine and allyl alcohol, the ability of human ADSC to support the restoration of liver function was investigated. A two-thirds hepatectomy was performed, and human ADSC were injected into one remaining liver lobe in group 1 (n = 20. Injection of cell culture medium performed in group 2 (n = 20 served as control. Cyclosporine was applied to achieve immunotolerance. Blood samples were drawn weekly after surgery to determine liver-correlated blood values. Six and twelve weeks after surgery, animals were sacrificed and histological sections were analyzed. ADSC significantly raised postoperative albumin (P < 0.017, total protein (P < 0.031, glutamic oxaloacetic transaminase (P < 0.001, and lactate dehydrogenase (P < 0.04 levels compared to injection of cell culture medium alone. Transplanted cells could be found up to twelve weeks after surgery in histological sections. This study points towards ADSC being a promising alternative to hepatocyte or liver organ transplantation in patients with severe liver failure.

  6. Platelet-Derived Growth Factor Receptor-Positive Pericytic Cells of White Adipose Tissue from Critical Limb Ischemia Patients Display Mesenchymal Stem Cell-Like Properties.

    Science.gov (United States)

    Kim, Eo Jin; Seo, Sang Gyo; Shin, Hyuk Soo; Lee, Doo Jae; Kim, Ji Hye; Lee, Dong Yeon

    2017-06-01

    The pericytes in the blood vessel wall have recently been identified to be important in regulating vascular formation, stabilization, remodeling, and function. We isolated and identified pericyte-like platelet-derived growth factor receptor beta-positive (PDGFRβ+) cells from the stromal vascular fraction (SVF) of adipose tissue from critical limb ischemia (CLI) patients and investigated their potential as a reliable source of stem cells for cell-based therapy. De-identified subcutaneous fat tissues were harvested after amputation in CLI patients. Freshly isolated SVF cells and culture-expanded adipose-derived stem cells (ADSCs) were quantified using flow cytometry. A matrigel tube formation assay and multi-lineage differentiation were performed to assess pericytic and mesenchymal stem cell (MSC)-like characteristics of PDGFRβ+ ADSCs. PDGFRβ+ cells were located in the pericytic area of various sizes of blood vessels and coexpressed mesenchymal stem cell markers. PDGFRβ+ cells in freshly isolated SVF cells expressed a higher level of stem cell markers (CD34 and CXCR4) and mesenchymal markers (CD13, CD44, CD54, and CD90) than PDGFRβ- cells. In vitro expansion of PDGFRβ+ cells resulted in enrichment of the perivascular mesenchymal stem-like (PDGFRβ+/CD90+/CD45-/CD31-) cell fractions. The Matrigel tube formation assay revealed that PDGFRβ+ cells were located in the peritubular area. PDGFRβ+ ADSCs cells demonstrated a good multilineage differentiation potential. Pericyte-like PDGFRβ+ cells from the SVF of adipose tissue from CLI patients had MSC-like characteristics and could be amplified by in vitro culture with preservation of their cell characteristics. We believe PDGFRβ+ cells in the SVF of adipose tissue can be used as a reliable source of stem cells even in CLI patients.

  7. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Vikash Chandra

    Full Text Available BACKGROUND: Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs to differentiate into functional islet like cell aggregates (ICAs. Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17 and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3-4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. CONCLUSIONS: h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.

  8. Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gruene, M; Deiwick, A; Koch, L; Schlie, S; Unger, C; Chichkov, B N [Nanotechnology Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Pflaum, M; Wilhelmi, M; Haverich, A, E-mail: m.gruene@lzh.de [Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover (Germany)

    2011-03-15

    Laser-assisted bioprinting (LaBP) allows the realization of computer-generated 3D tissue grafts consisting of cells embedded in a hydrogel environment. In this study, human adipose-derived stem cells (hASCs) were printed in a free-scalable 3D grid pattern by means of LaBP. We demonstrate that neither the proliferation ability nor the differentiation behaviour of the stem cells was affected by the LaBP procedure. Furthermore, the 3D grafts were differentiated down the adipogenic lineage pathway for 10 days. We verify by quantitative assessments of adipogenic markers that the 3D grafts resemble cell lineages present in natural adipose tissue. Additionally, we provide the proof that even pre-differentiated hASCs could be utilized for the generation of 3D tissue grafts. These results indicate that the biofabrication of living grafts resembling their complex native origin is within reach.

  9. Tissue-resident adult stem cell populations of rapidly self-renewing organs

    NARCIS (Netherlands)

    Barker, N.; Bartfeld, S.; Clevers, H.

    2010-01-01

    The epithelial lining of the intestine, stomach, and skin is continuously exposed to environmental assault, imposing a requirement for regular self-renewal. Resident adult stem cell populations drive this renewal, and much effort has been invested in revealing their identity. Reliable adult stem

  10. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Götz Pilarczyk

    2016-01-01

    Full Text Available The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds.

  11. Cryopreserved Dental Pulp Tissues of Exfoliated Deciduous Teeth Is a Feasible Stem Cell Resource for Regenerative Medicine

    Science.gov (United States)

    Yamaza, Haruyoshi; Akiyama, Kentaro; Hoshino, Yoshihiro; Song, Guangtai; Kukita, Toshio; Nonaka, Kazuaki; Shi, Songtao; Yamaza, Takayoshi

    2012-01-01

    Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25–30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine. PMID:23251621

  12. Immuno-metabolism and adipose tissue: The key role of hematopoietic stem cells.

    Science.gov (United States)

    Cousin, B; Casteilla, L; Laharrague, P; Luche, E; Lorsignol, A; Cuminetti, V; Paupert, J

    2016-05-01

    The field of immunometabolism has come a long way in the past decade, leading to the emergence of a new role for white adipose tissue (WAT) that is now recognized to stand at the junction of immune and metabolic regulations. Interestingly, a crucial role of the abundant and heterogeneous immune population present in WAT has been proposed in the induction and development of metabolic diseases. Although a large body of data focused on mature immune cells, only few scattered studies are dedicated to leukocyte production, and the activity of hematopoietic stem cells (HSC) in these pathological states. Considering that blood cell production and the differentiation of HSCs and their progeny is orchestrated, in part, by complex interacting signals emanating from their microenvironment, it thus seems worth to better understand the relationships between metabolism and HSC. This review discusses the alterations of hematopoietic process described in metabolic diseases and focused on the emerging data concerning HSC present in WAT. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  13. New tissue dissociation protocol for scaled-up production of neural stem cells in suspension bioreactors.

    Science.gov (United States)

    Sen, Arindom; Kallos, Michael S; Behie, Leo A

    2004-01-01

    The successful dissociation of mammalian neural stem cell (NSC) aggregates (neurospheres) into a single-cell suspension is an important procedure when expanding NSCs for clinical use, or when performing important assays such as clonal analyses. Until now, researchers have had to rely primarily on destructive mechanical methods such as trituration with a pipette tip to break apart the aggregates. In this study we report on a new chemical dissociation procedure that is efficient, cost effective, reproducible, and much less harmful to murine NSCs than both mechanical and enzymatic techniques. This method, involving the manipulation of environmental pH levels, resulted in 40% higher measured cell densities and 15-20% higher viabilities compared with mechanical dissociation. Moreover, chemical dissociation resulted in the production of significantly less cellular debris. Chemical dissociation was found to have no adverse effects on the long-term proliferation of the NSCs, which retained the ability to proliferate, form neurospheres, self-renew, and exhibit multipotentiality. This chemical method represents a new approach for the dissociation of tissues.

  14. Comparison of TGF-β1 and NO production by mesenchymal stem cells isolated from murine lung and adipose tissues.

    Science.gov (United States)

    Hosseinpur, Zahra; Hashemi, Seyed Mahmoud; Salehi, Eisa; Ghazanfari, Tooba

    2016-06-01

    Mesenchymal stem cells (MSCs) are cell sources for tissues regeneration. By secretion of soluble factors including transforming growth factor-β (TGF-β1) and nitric oxide (NO), MSCs are also able to regulate the immune system. MSCs have been disclosed in lung and adipose tissues with insufficient comparison between the tissues. In this study, specific differentiation and the expression of surface antigens as well as TGF-β1 and NO productive levels were compared in murine lung-derived MSCs (LMSCs) and adipose tissue-derived MSCs (ADMSCs). MSCs were isolated from murine lung and adipose tissues and cultured. Both cell populations were characterized using multilineage potential and the expression of surface antigenic proteins, CD73, CD105, CD34, CD45, and CD11b. Finally, levels of TGF-β1 and NO were evaluated and compared in ADMSCs and LMSCs. Expression of CD73 and CD105; lack of the expression of CD34, CD45, and CD11b markers; as well as adipocyte and osteocyte differentiations were detected in both adult stem cells. No significant difference was found in TGF-β1 and NO production between two stem cell populations. Our data showed that LMSCs and ADMSCs have comparable phenotype and TGF-β1 and NO production.

  15. Non-invasive in-vivo imaging of stem cells after transplantation in cardiovascular tissue

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Kastrup, Jens

    2013-01-01

    Stem cell therapy for degenerative diseases, including ischemic heart disease is now a clinical reality. In the search for the optimal cell type for each patient category, many different stem cell subpopulations have been used. In addition, different cell processing procedures and delivery methods......, migration and efficacy of the transplanted cells. Great effort is being made in finding new and better imaging techniques for different imaging modalities, and much have already been learned. But there are still many unanswered questions. In this review, we give an overview of the imaging modalities used...

  16. Serially Transplanted Nonpericytic CD146(-) Adipose Stromal/Stem Cells in Silk Bioscaffolds Regenerate Adipose Tissue In Vivo.

    Science.gov (United States)

    Frazier, Trivia P; Bowles, Annie; Lee, Stephen; Abbott, Rosalyn; Tucker, Hugh A; Kaplan, David; Wang, Mei; Strong, Amy; Brown, Quincy; He, Jibao; Bunnell, Bruce A; Gimble, Jeffrey M

    2016-04-01

    Progenitors derived from the stromal vascular fraction (SVF) of white adipose tissue (WAT) possess the ability to form clonal populations and differentiate along multiple lineage pathways. However, the literature continues to vacillate between defining adipocyte progenitors as "stromal" or "stem" cells. Recent studies have demonstrated that a nonpericytic subpopulation of adipose stromal cells, which possess the phenotype, CD45(-) /CD31(-) /CD146(-) /CD34(+) , are mesenchymal, and suggest this may be an endogenous progenitor subpopulation within adipose tissue. We hypothesized that an adipose progenitor could be sorted based on the expression of CD146, CD34, and/or CD29 and when implanted in vivo these cells can persist, proliferate, and regenerate a functional fat pad over serial transplants. SVF cells and culture expanded adipose stromal/stem cells (ASC) ubiquitously expressing the green fluorescent protein transgene (GFP-Tg) were fractionated by flow cytometry. Both freshly isolated SVF and culture expanded ASC were seeded in three-dimensional silk scaffolds, implanted subcutaneously in wild-type hosts, and serially transplanted. Six-week WAT constructs were removed and evaluated for the presence of GFP-Tg adipocytes and stem cells. Flow cytometry, quantitative polymerase chain reaction, and confocal microscopy demonstrated GFP-Tg cell persistence, proliferation, and expansion, respectively. Glycerol secretion and glucose uptake assays revealed GFP-Tg adipose was metabolically functional. Constructs seeded with GFP-Tg SVF cells or GFP-Tg ASC exhibited higher SVF yields from digested tissue, and higher construct weights, compared to nonseeded controls. Constructs derived from CD146(-) CD34(+) -enriched GFP-Tg ASC populations exhibited higher hemoglobin saturation, and higher frequency of GFP-Tg cells than unsorted or CD29(+) GFP-Tg ASC counterparts. These data demonstrated successful serial transplantation of nonpericytic adipose-derived progenitors that can

  17. Stem Cells

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 3. Stem Cells: A Dormant Volcano Within Our Body? Devaveena Dey Annapoorni Rangarajan. General Article Volume 12 Issue 3 March 2007 pp 27-34. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Horwood, Nicole J.; Dazzi, Francesco; Zaher, Walid

    2012-01-01

    and differentiation of hematopoietic stem cells (HSC) and hematopoiesis. These cells have been described as important immunoregulators due to their ability to suppress T cells proliferation. MSC can also directly contribute to tissue repair by migrating to sites of injury and providing a source of cells......Mesenchymal stem cells (MSC) are stem cell populations present among the bone marrow stroma and a number of other tissues that are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. MSC provide supportive stroma for growth...... for differentiation and/or providing bystander support for resident stromal cells. This chapter discusses the cellular and molecular properties of MSC, the mechanisms by which they can modulate immune responses and the clinical applications of MSC in disorders such as graft-versus-host disease and aplastic anaemia...

  19. Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue

    Directory of Open Access Journals (Sweden)

    Ranera Beatriz

    2012-08-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs derived from bone marrow (BM-MSCs and adipose tissue (AT-MSCs are being applied to equine cell therapy. The physiological environment in which MSCs reside is hypoxic and does not resemble the oxygen level typically used in in vitro culture (20% O2. This work compares the growth kinetics, viability, cell cycle, phenotype and expression of pluripotency markers in both equine BM-MSCs and AT-MSCs at 5% and 20% O2. Results At the conclusion of culture, fewer BM-MSCs were obtained in hypoxia than in normoxia as a result of significantly reduced cell division. Hypoxic AT-MSCs proliferated less than normoxic AT-MSCs because of a significantly higher presence of non-viable cells during culture. Flow cytometry analysis revealed that the immunophenotype of both MSCs was maintained in both oxygen conditions. Gene expression analysis using RT-qPCR showed that statistically significant differences were only found for CD49d in BM-MSCs and CD44 in AT-MSCs. Similar gene expression patterns were observed at both 5% and 20% O2 for the remaining surface markers. Equine MSCs expressed the embryonic markers NANOG, OCT4 and SOX2 in both oxygen conditions. Additionally, hypoxic cells tended to display higher expression, which might indicate that hypoxia retains equine MSCs in an undifferentiated state. Conclusions Hypoxia attenuates the proliferative capacity of equine MSCs, but does not affect the phenotype and seems to keep them more undifferentiated than normoxic MSCs.

  20. Transport phenomena during freezing of adipose tissue derived adult stem cells.

    Science.gov (United States)

    Thirumala, Sreedhar; Gimble, Jeffrey M; Devireddy, Ram V

    2005-11-05

    In the present study a well-established differential scanning calorimeter (DSC) technique is used to measure the water transport phenomena during freezing of stromal vascular fraction (SVF) and adipose tissue derived adult stem (ADAS) cells at different passages (Passages 0 and 2). Volumetric shrinkage during freezing of adipose derived cells was obtained at a cooling rate of 20 degrees C/min in the presence of extracellular ice and two different, commonly used, cryoprotective agents, CPAs (10% DMSO and 10% Glycerol). The adipose derived cells were modeled as spheres of 50 microm diameter with an osmotically inactive volume (Vb) of 0.6Vo, where Vo is the isotonic cell volume. By fitting a model of water transport to the experimentally obtained volumetric shrinkage data, the "best-fit" membrane permeability parameters (reference membrane permeability to water, Lpg or Lpg[cpa] and the activation energy, ELp or ELp[cpa]) were determined. The "best-fit" membrane permeability parameters for adipose derived cells in the absence and presence of CPAs ranged from: Lpg=23.1-111.5x10(-15) m3/Ns (0.135-0.652 microm/min-atm) and ELp=43.1-168.8 kJ/mol (9.7-40.4 kcal/mol). Numerical simulations of water transport were then performed under a variety of cooling rates (5-100 degrees C/min) using the experimentally determined membrane permeability parameters. And finally, the simulation results were analyzed to predict the optimal rates of freezing adipose derived cells in the presence and absence of CPAs. Copyright (c) 2005 Wiley Periodicals, Inc.

  1. Calcium Phosphate Scaffolds Combined with Bone Morphogenetic Proteins or Mesenchymal Stem Cells in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Han Sun

    2015-01-01

    Full Text Available Objective: The purpose of this study was to review the current status of calcium phosphate (CaP scaffolds combined with bone morphogenetic proteins (BMPs or mesenchymal stem cells (MSCs in the field of bone tissue engineering (BTE. Date Sources: Data cited in this review were obtained primarily from PubMed and Medline in publications from 1979 to 2014, with highly regarded older publications also included. The terms BTE, CaP, BMPs, and MSC were used for the literature search. Study Selection: Reviews focused on relevant aspects and original articles reporting in vitro and/or in vivo results concerning the efficiency of CaP/BMPs or CaP/MSCs composites were retrieved, reviewed, analyzed, and summarized. Results: An ideal BTE product contains three elements: Scaffold, growth factors, and stem cells. CaP-based scaffolds are popular because of their outstanding biocompatibility, bioactivity, and osteoconductivity. However, they lack stiffness and osteoinductivity. To solve this problem, composite scaffolds of CaP with BMPs have been developed. New bone formation by CaP/BMP composites can reach levels similar to those of autografts. CaP scaffolds are compatible with MSCs and CaP/MSC composites exhibit excellent osteogenesis and stiffness. In addition, a CaP/MSC/BMP scaffold can repair bone defects more effectively than an autograft. Conclusions: Novel BTE products possess remarkable osteoconduction and osteoinduction capacities, and exhibit balanced degradation with osteogenesis. Further work should yield safe, viable, and efficient materials for the repair of bone lesions.

  2. Canine adipose tissue-derived mesenchymal stem cells ameliorate severe acute pancreatitis by regulating T cells in rats.

    Science.gov (United States)

    Kim, Hyun-Wook; Song, Woo-Jin; Li, Qiang; Han, Sei-Myoung; Jeon, Kee-Ok; Park, Sang-Chul; Ryu, Min-Ok; Chae, Hyung-Kyu; Kyeong, Kweon; Youn, Hwa-Young

    2016-12-30

    Severe acute pancreatitis (SAP) is associated with systemic complications and high mortality rate in dogs. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential in several inflammation models. In the present study, the effects of canine adipose tissue-derived (cAT)-MSCs in a rat model of SAP induced by retrograde injection of 3% sodium taurocholate solution into the pancreatic duct were investigated. cAT-MSCs labeled with dioctadecyl-3,3,3'-tetramethylindo-carbocyanine perchlorate (1 × 10⁷ cells/kg) were systemically administered to rats and pancreatic tissue was collected three days later for histopathological, quantitative real-time polymerase chain reaction, and immunocytochemical analyses. Greater numbers of infused cAT-MSCs were detected in the pancreas of SAP relative to sham-operated rats. cAT-MSC infusion reduced pancreatic edema, inflammatory cell infiltration, and acinar cell necrosis, and decreased pancreatic expression of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1β, -6, -12, -17, and -23 and interferon-γ, while stimulating expression of the anti-inflammatory cytokines IL-4 and IL-10 in SAP rats. Moreover, cAT-MSCs decreased the number of clusters of differentiation 3-positive T cells and increased that of forkhead box P3-positive T cells in the injured pancreas. These results indicate that cAT-MSCs can be effective as a cell-based therapeutic strategy for treatment of SAP in dogs.

  3. YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage.

    Science.gov (United States)

    Elbediwy, Ahmed; Vincent-Mistiaen, Zoé I; Thompson, Barry J

    2016-07-01

    The YAP/TAZ family of transcriptional co-activators drives cell proliferation in epithelial tissues and cancers. Yet, how YAP and TAZ are physiologically regulated remains unclear. Here we review recent reports that YAP and TAZ act primarily as sensors of epithelial cell polarity, being inhibited when cells differentiate an apical membrane domain, and being activated when cells contact the extracellular matrix via their basal membrane domain. Apical signalling occurs via the canonical Crumbs/CRB-Hippo/MST-Warts/LATS kinase cascade to phosphorylate and inhibit YAP/TAZ. Basal signalling occurs via Integrins and Src family kinases to phosphorylate and activate YAP/TAZ. Thus, YAP/TAZ is localised to the nucleus in basal stem/progenitor cells and cytoplasm in differentiated squamous cells or columnar cells. In addition, other signals such as mechanical forces, tissue damage and possibly receptor tyrosine kinases (RTKs) can influence MST-LATS or Src family kinase activity to modulate YAP/TAZ activity. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  4. Honey can repairing damage of liver tissue due to protein energy malnutrition through induction of endogenous stem cells.

    Science.gov (United States)

    Prasetyo, R Heru; Hestianah, Eka Pramyrtha

    2017-06-01

    This study was to evaluate effect of honey in repairing damage of liver tissue due to energy protein malnutrition and in mobilization of endogenous stem cells. Male mice model of degenerative liver was obtained through food fasting but still have drinking water for 5 days. It caused energy protein malnutrition and damage of liver tissue. The administration of 50% (v/v) honey was performed for 10 consecutive days, while the positive control group was fasted and not given honey and the negative control not fasted and without honey. Observations of regeneration the liver tissue based on histologically examination, observation of Hsp70 expression, and homing signal based on vascular endothelial growth factor-1 (VEGF-1) expression using immunohistochemistry technique. Observation on expression of CD34 and CD45 as the marker of auto mobilization of hematopoietic stem cells using flow cytometry technique. There is regeneration of the liver tissue due to protein energy malnutrition, decrease of Hsp70 expression, increase of VEGF-1 expression, and high expression of CD34 and CD45. Honey can improve the liver tissue based on: (1) Mobilization of endogenous stem cells (CD34 and CD45); (2) Hsp70 and VEGF-1 expressions as regeneration marker of improvement, and (3) regeneration histologically of liver tissue.

  5. What are Stem Cells?

    Directory of Open Access Journals (Sweden)

    Ahmadshah Farhat

    2014-05-01

    Full Text Available   Stem cells are undifferentiated self regenerating multi potential cells. There are three types of stem cells categories by the ability to form after cells and correlated with the body’s development process. Totipotent: these stem cells can form an entire organism such as fertilized egg. Ploripotent: ploripotent cells are those that can form any cell in the body but cannot form an entire organism such as developing embryo’s totipotent cells become ploripotent  Multipotent: Multi potent stem cells are those that can only form specific cells in the body such as blood cells based. Based on the sources of stem cells we have three types of these cells: Autologous: Sources of the patient own cells are (Autologous either the cells from patient own body or his or her cord blood. For this type of transplant the physician now usually collects the periphery rather than morrow because the procedure is easier on like a bane morrow harvest it take place outside of an operating room, and the patient does not to be under general unsetting . Allogenic: Sources of stem cells from another donore are primarily relatives (familial allogenic or completely unrelated donors. Xenogenic: In these stem cells from different species are transplanted e .g striatal porcine fetal mesan cephalic (FVM xenotransplants for Parkinson’s disease. On sites of isolation such as embryo, umbilical cord and other body tissues stem cells are named embnyonic, cord blood, and adult stem cells. The scope of results and clinical application of stem cells are such as: Neurodegenerative conditions (MS,ALS, Parkinson’s, Stroke, Ocular disorders- Glaucoma, retinitis Pigmentosa (RP, Auto Immune Conditions (Lupus, MS,R. arthritis, Diabetes, etc, Viral Conditions (Hepatitis C and AIDS, Heart Disease, Adrenal Disorders, Injury(Nerve, Brain, etc, Anti aging (hair, skin, weight control, overall well being/preventive, Emotional disorders, Organ / Tissue Cancers, Blood cancers, Blood diseases

  6. Identification of very small embryonic/epiblast-like stem cells (VSELs) circulating in peripheral blood during organ/tissue injuries.

    Science.gov (United States)

    Ratajczak, Mariusz Z; Liu, Rui; Marlicz, Wojciech; Blogowski, Wojciech; Starzynska, Teresa; Wojakowski, Wojciech; Zuba-Surma, Ewa

    2011-01-01

    We have identified in adult tissues a population of pluripotent very small embryonic/epiblast-like stem cells (VSELs) that we hypothesize are deposited at onset of gastrulation in developing tissues and play an important role as backup population of tissue-specific/committed stem cells. We envision that during steady-state conditions these cells may be involved in tissue rejuvenation and in processes of regeneration/repair after organ injuries. VSELs similarly as epiblast-derived migrating primordial germ cells change the epigenetic signature of some of the imprinted genes and therefore remain quiescent in adult tissues. These epigenetic changes in methylation status of imprinted genes prevent them also from teratoma formation. Mounting evidence indicates that VSELs are mobilized into peripheral blood during tissue/organ injuries and enumeration of these cells may be of prognostic value (e.g., in stroke or heart infarct). In this chapter, we will present FACS-based strategies to detect and enumerate these cells in human peripheral blood and umbilical cord blood. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology.

    Directory of Open Access Journals (Sweden)

    Jonathan J Campbell

    Full Text Available Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM in three dimensional (3D space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.

  8. Dual Functions of Natural Killer Cells in Selection and Differentiation of Stem Cells; Role in Regulation of Inflammation and Regeneration of Tissues

    Directory of Open Access Journals (Sweden)

    Anahid Jewett, Yan-Gao Man, Han-Ching Tseng

    2013-01-01

    Full Text Available Accumulated evidence from our laboratory indicates that conditioned or anergized NK cells have the ability to induce resistance of healthy stem cells and transformed cancer stem cells through both secreted factors and direct cell-cell contact by inducing differentiation. Cytotoxic function of NK cells is suppressed in the tumor microenvironment by a number of distinct effectors and their secreted factors. Furthermore, decreased peripheral blood NK cell function has been documented in many cancer patients. We have previously shown that NK cells mediate significant cytotoxicity against primary oral squamous carcinoma stem cells (OSCSCs as compared to their more differentiated oral squamous carcinoma cells (OSCCs. In addition, human embryonic stem cells (hESCs, human mesenchymal stem cells (hMSCs, human dental pulp stem cells (hDPSCs and induced human pluripotent stem cells (hiPSCs were all significantly more susceptible to NK cell mediated cytotoxicity than their differentiated counterparts or parental cells from which they were derived. We have also reported that inhibition of differentiation or reversion of cells to a less-differentiated phenotype by blocking NFκB or gene deletion of COX2 significantly augmented NK cell function. Furthermore, the induction of resistance of the stem cells to NK cell mediated cytotoxicity and their subsequent differentiation is amplified when either the stem cells or the NK cells were cultured in the presence of monocytes. Therefore, we propose that the two stages of NK cell maturation namely CD16+CD56dimCD69- NK cells are important for the lysis of stem cells or poorly differentiated cells whereas the CD16dim/-CD56dim/+CD69+NK cells are important for differentiation and eventual regeneration of the tissues and the resolution of inflammation, thus functionally serving as regulatory NK cells (NKreg. CD16 receptor on the NK cells were found to be the receptor with significant potential to induce NK cell anergy

  9. Dental Pulp Stem Cell Recruitment Signals within Injured Dental Pulp Tissue

    Science.gov (United States)

    Rombouts, Charlotte; Jeanneau, Charlotte; Bakopoulou, Athina; About, Imad

    2016-01-01

    The recruitment of dental pulp stem cells (DPSC) is a prerequisite for the regeneration of dentin damaged by severe caries and/or mechanical injury. Understanding the complex process of DPSC recruitment will benefit future in situ tissue engineering applications based on the stimulation of endogenous DPSC for dentin pulp regeneration. The current known mobilization signals and subsequent migration of DPSC towards the lesion site, which is influenced by the pulp inflammatory state and the application of pulp capping materials, are reviewed. The research outcome of migration studies may be affected by the applied methodology, which should thus be chosen with care. Both the advantages and disadvantages of commonly used assays for investigating DPSC migration are discussed. This review highlights the fact that DPSC recruitment is dependent not only on the soluble chemotactic signals, but also on their interaction with neighboring cells and the extracellular matrix, which can be modified under pathological conditions. These are discussed to explain how these modifications lead to the stimulation of DPSC recruitment. PMID:29563450

  10. Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow.

    Science.gov (United States)

    Meinel, Lorenz; Karageorgiou, Vassilis; Fajardo, Robert; Snyder, Brian; Shinde-Patil, Vivek; Zichner, Ludwig; Kaplan, David; Langer, Robert; Vunjak-Novakovic, Gordana

    2004-01-01

    We report studies of bone tissue engineering using human mesenchymal stem cells (MSCs), a protein substrate (film or scaffold; fast degrading unmodified collagen, or slowly degrading cross-linked collagen and silk), and a bioreactor (static culture, spinner flask, or perfused cartridge). MSCs were isolated from human bone marrow, characterized for the expression of cell surface markers and the ability to undergo chondrogenesis and osteogenesis in vitro, and cultured for 5 weeks. MSCs were positive for CD105/endoglin, and had a potential for chondrogenic and osteogenic differentiation. In static culture, calcium deposition was similar for MSC grown on collagen scaffolds and films. Under medium flow, MSC on collagen scaffolds deposited more calcium and had a higher alcaline phosphatase (AP) activity than MSC on collagen films. The amounts of DNA were markedly higher in constructs based on slowly degrading (modified collagen and silk) scaffolds than on fast degrading (unmodified collagen) scaffolds. In spinner flasks, medium flow around constructs resulted in the formation of bone rods within the peripheral region, that were interconnected and perpendicular to the construct surface, whereas in perfused constructs, individual bone rods oriented in the direction of fluid flow formed throughout the construct volume. These results suggest that osteogenesis in cultured MSC can be modulated by scaffold properties and flow environment.

  11. Dental Pulp Stem Cell Recruitment Signals within Injured Dental Pulp Tissue

    Directory of Open Access Journals (Sweden)

    Charlotte Rombouts

    2016-03-01

    Full Text Available The recruitment of dental pulp stem cells (DPSC is a prerequisite for the regeneration of dentin damaged by severe caries and/or mechanical injury. Understanding the complex process of DPSC recruitment will benefit future in situ tissue engineering applications based on the stimulation of endogenous DPSC for dentin pulp regeneration. The current known mobilization signals and subsequent migration of DPSC towards the lesion site, which is influenced by the pulp inflammatory state and the application of pulp capping materials, are reviewed. The research outcome of migration studies may be affected by the applied methodology, which should thus be chosen with care. Both the advantages and disadvantages of commonly used assays for investigating DPSC migration are discussed. This review highlights the fact that DPSC recruitment is dependent not only on the soluble chemotactic signals, but also on their interaction with neighboring cells and the extracellular matrix, which can be modified under pathological conditions. These are discussed to explain how these modifications lead to the stimulation of DPSC recruitment.

  12. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering.

    Science.gov (United States)

    Ambre, Avinash H; Katti, Dinesh R; Katti, Kalpana S

    2015-06-01

    Nanoclay modified with unnatural amino acid was used to design a nanoclay-hydroxyapatite (HAP) hybrid by mineralizing HAP in the nanoclay galleries mimicking biomineralization. This hybrid (in situ HAPclay) was used to fabricate polycaprolactone (PCL)/in situ HAPclay films and scaffolds for bone regeneration. Cell culture assays and imaging were used to study interactions between human mesenchymal stem cells (hMSCs) and PCL/in situ HAPclay composites (films and scaffolds). SEM imaging indicated MSC attachment, formation of mineralized extracellular (ECM) on PCL/in situ HAPclay films, and infiltration of MSCs to the interior of PCL/in situ HAPclay scaffolds. Mineralized ECM was formed by MSCs without use of osteogenic supplements. AFM imaging performed on this in vitro generated mineralized ECM on PCL/in situ HAPclay films revealed presence of components (collagen and mineral) of hierarchical organization reminiscent of natural bone. Cellular events observed during two-stage seeding experiments on PCL/in situ HAPclay films indicated similarities with events occurring during in vivo bone formation. PCL/in situ HAPclay films showed significantly increased (100-595% increase in elastic moduli) nanomechanical properties and PCL/in situ HAPclay scaffolds showed increased degradation. This work puts forth PCL/in situ HAPclay composites as viable biomaterials for bone tissue engineering. © 2014 Wiley Periodicals, Inc.

  13. Articular cartilage tissue engineering with plasma-rich in growth factors and stem cells with nano scaffolds

    Science.gov (United States)

    Montaser, Laila M.; Abbassy, Hadeer A.; Fawzy, Sherin M.

    2016-09-01

    The ability to heal soft tissue injuries and regenerate cartilage is the Holy Grail of musculoskeletal medicine. Articular cartilage repair and regeneration is considered to be largely intractable due to the poor regenerative properties of this tissue. Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or continue hypertrophic cartilage. The lack of efficient modalities of treatment has prompted research into tissue engineering combining stem cells, scaffold materials and environmental factors. The field of articular cartilage tissue engineering, which aims to repair, regenerate, and/or improve injured or diseased cartilage functionality, has evoked intense interest and holds great potential for improving cartilage therapy. Plasma-rich in growth factors (PRGF) and/or stem cells may be effective for tissue repair as well as cartilage regenerative processes. There is a great promise to advance current cartilage therapies toward achieving a consistently successful approach for addressing cartilage afflictions. Tissue engineering may be the best way to reach this objective via the use of stem cells, novel biologically inspired scaffolds and, emerging nanotechnology. In this paper, current and emergent approach in the field of cartilage tissue engineering is presented for specific application. In the next years, the development of new strategies using stem cells, in scaffolds, with supplementation of culture medium could improve the quality of new formed cartilage.

  14. Local angiotensin II promotes adipogenic differentiation of human adipose tissue mesenchymal stem cells through type 2 angiotensin receptor

    Directory of Open Access Journals (Sweden)

    Veronika Y. Sysoeva

    2017-12-01

    Full Text Available Obesity is often associated with high systemic and local activity of renin-angiotensin system (RAS. Mesenchymal stem cells of adipose tissue are the main source of adipocytes. The aim of this study was to clarify how local RAS could control adipose differentiation of human adipose tissue derived mesenchymal stem cells (ADSCs. We examined the distribution of angiotensin receptor expressing cells in human adipose tissue and found that type 1 and type 2 receptors are co-expressed in its stromal compartment, which is known to contain mesenchymal stem cells. To study the expression of receptors specifically in ADSCs we have isolated them from adipose tissue. Up to 99% of cultured ADSCs expressed angiotensin II (AngII receptor type 1 (AT1. Using the analysis of Ca2+ mobilization in single cells we found that only 5.2 ± 2.7% of ADSCs specifically respond to serial Ang II applications via AT1 receptor and expressed this receptor constantly. This AT1const ADSCs subpopulation exhibited increased adipose competency, which was triggered by endogenous AngII. Inhibitory and expression analyses showed that AT1const ADSCs highly co-express AngII type 2 receptor (AT2, which was responsible for increased adipose competency of this ADSC subpopulation.

  15. Effects of Hypoxia on the Immunomodulatory properties of Adipose tissue-derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    M eRoemeling-Van Rhijn

    2013-07-01

    Full Text Available Adipose tissue-derived mesenchymal stem cells (ASC are of great interest as a cellular therapeutic agent for regenerative and immunomodulatory purposes. The function of ASC adapts to environmental conditions, such as oxygen tension. Oxygen levels within tissues are typically much lower than under standard culture conditions and ASC used for therapy therefore encounter a change from normoxic to hypoxic conditions. The effect of hypoxia on the regenerative potential of ASC has been investigated in a number of studies. The effect of hypoxia on the immunomodulatory function of ASC, however, remains to be determined. In the present study the effect of hypoxic (1% oxygen culture conditions on human ASC was examined. ASC showed no signs of toxicity under low oxygen levels and no major immunophenotypical changes were observed, apart from a down regulation of the marker CD105. Oxygen tension had no effect on the proliferation of ASC and colony forming unit (CFU efficiency remained the same under 1% and 20% oxygen. Under both oxygen levels ASC were capable of strong upregulation of the immunomodulatory molecules indolamine 2,3-dioxygenase (IDO and programmed death ligand-1 (PD-L1 upon stimulation with IFN- and TNF-, and, in addition, IDO activity as measured by the accumulation of L-kynurenine was not affected under hypoxia. The ability of ASC to inhibit anti-CD3/CD28 stimulated CD4+ and CD8+ T cell proliferation was enhanced under hypoxic conditions.The results of the present study demonstrate that the immunosuppressive capacity of ASC is maintained under hypoxic conditions. These findings are important for the therapeutic use of ASC and may be applied for the in vitro generation of ASC with improved functionality for therapeutic use.

  16. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering.

    Science.gov (United States)

    Fahy, Niamh; Alini, Mauro; Stoddart, Martin J

    2018-01-01

    Articular cartilage is a load-bearing tissue playing a crucial mechanical role in diarthrodial joints, facilitating joint articulation, and minimizing wear. The significance of biomechanical stimuli in the development of cartilage and maintenance of chondrocyte phenotype in adult tissues has been well documented. Furthermore, dysregulated loading is associated with cartilage pathology highlighting the importance of mechanical cues in cartilage homeostasis. The repair of damaged articular cartilage resulting from trauma or degenerative joint disease poses a major challenge due to a low intrinsic capacity of cartilage for self-renewal, attributable to its avascular nature. Bone marrow-derived mesenchymal stem cells (MSCs) are considered a promising cell type for cartilage replacement strategies due to their chondrogenic differentiation potential. Chondrogenesis of MSCs is influenced not only by biological factors but also by the environment itself, and various efforts to date have focused on harnessing biomechanics to enhance chondrogenic differentiation of MSCs. Furthermore, recapitulating mechanical cues associated with cartilage development and homeostasis in vivo, may facilitate the development of a cellular phenotype resembling native articular cartilage. The goal of this review is to summarize current literature examining the effect of mechanical cues on cartilage homeostasis, disease, and MSC chondrogenesis. The role of biological factors produced by MSCs in response to mechanical loading will also be examined. An in-depth understanding of the impact of mechanical stimulation on the chondrogenic differentiation of MSCs in terms of endogenous bioactive factor production and signaling pathways involved, may identify therapeutic targets and facilitate the development of more robust strategies for cartilage replacement using MSCs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:52-63, 2018. © 2017 Orthopaedic Research

  17. Stem cells in dentistry--part I: stem cell sources.

    Science.gov (United States)

    Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro

    2012-07-01

    Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  18. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  19. Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitro

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Kornacker, Martin; Mehlhorn, Alexander

    2007-01-01

    T cells in vitro. Therefore, BMSCs are said to be available for allogenic cell therapy. Although the immunological characteristics of BMSCs have been the subject of various investigations, those of stem cells isolated from adipose tissue (ASCs) have not been adequately described. In addition......Mesenchymal stem cells (MSCs) can be isolated from various tissues and represent an attractive cell population for tissue-engineering purposes. MSCs from bone marrow (bone marrow stromal cells [BMSCs]) are negative for immunologically relevant surface markers and inhibit proliferation of allogenic...... were sought. The pattern of surface antigen expression of BMSCs is the same as that of ASCs. Analogous to BMSCs, undifferentiated cells isolated from adipose tissue lack expression of MHC-II; this is not lost in the course of the osteogenic differentiation process. In co-culture with allogenic PBMCs...

  20. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Silva Meirelles, Lindolfo da, E-mail: lindolfomeirelles@gmail.com [Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); Laboratory for Stem Cells and Tissue Engineering, PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS (Brazil); Deus Wagatsuma, Virgínia Mara de; Malta, Tathiane Maistro; Bonini Palma, Patrícia Viana [Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); Araújo, Amélia Goes; Panepucci, Rodrigo Alexandre [Laboratory of Large-Scale Functional Biology (LLSFBio), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); and others

    2016-12-10

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with an AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. - Highlights: • Non-cultured adipose tissue-derived human pericytes (ncATPCs) exhibit a distinctive gene expression signature. • ncATPCs express key adipose tissue stem cell genes previously described in vivo in mice. • ncATPCs express message for anti-proliferative and antiangiogenic molecules. • Most ncATPC-specific transcripts are absent in culture-expanded pericytes or ATMSCs • Gene expression changes ncATPCs undergo as they acquire a cultured ATMSC phenotype are pointed out.

  1. Analysis and manipulation of hematopoietic progenitor and stem cells from murine embryonic tissues

    NARCIS (Netherlands)

    A. Medvinsky (Alexander); S. Taoudi (Samir); S.C. Mendes (Sandra); E.A. Dzierzak (Elaine)

    2008-01-01

    textabstractHematopoietic development begins in several locations in the mammalian embryo: yolk sac, aorta-gonad-mesonephros region (AGM), and the chorio-allantoic placenta. Generation of the most potent cells, adult definitive hematopoietic stem cells (HSCs), occurs within the body of the mouse

  2. PTEN, Stem Cells, and Cancer Stem Cells*S⃞

    OpenAIRE

    Hill, Reginald; Wu, Hong

    2009-01-01

    Like normal stem cells, “cancer stem cells” have the capacity for indefinite proliferation and generation of new cancerous tissues through self-renewal and differentiation. Among the major intracellular signaling pathways, WNT, SHH, and NOTCH are known to be important in regulating normal stem cell activities, and their alterations are associated with tumorigenesis. It has become clear recently that PTEN (phosphatase and tensin homologue) is also critical for stem cell...

  3. Stem Cell Information: Glossary

    Science.gov (United States)

    ... Long-term self-renewal Meiosis Mesenchymal stem cells Mesoderm Microenvironment Mitosis Multipotent Neural stem cell Neurons Oligodendrocyte ... layers. The three layers are the ectoderm , the mesoderm , and the endoderm . Hematopoietic stem cell - A stem ...

  4. Basic fibroblast growth factor-treated adipose tissue-derived mesenchymal stem cell infusion to ameliorate liver cirrhosis via paracrine hepatocyte growth factor.

    Science.gov (United States)

    Tang, Wei-Ping; Akahoshi, Tomohiko; Piao, Jing-Shu; Narahara, Sayoko; Murata, Masaharu; Kawano, Takahito; Hamano, Nobuhito; Ikeda, Tetsuo; Hashizume, Makoto

    2015-06-01

    Recent studies show that adipose tissue-derived mesenchymal stem cells have potential clinical applications. However, the mechanism has not been fully elucidated yet. Here, we investigated the effect of basic fibroblast growth factor-treated adipose tissue-derived mesenchymal stem cells infusion on a liver fibrosis rat model and elucidated the underlying mechanism. Adipose tissue-derived mesenchymal stem cells were infused into carbon tetrachloride-induced hepatic fibrosis rats through caudal vein. Liver functions and pathological changes were assessed. A co-culture model was used to clarify the potential mechanism. Basic fibroblast growth factor treatment markedly improved the proliferation, differentiation, and hepatocyte growth factor expression ability of adipose tissue-derived mesenchymal stem cells. Although adipose tissue-derived mesenchymal stem cells infusion alone slightly ameliorated liver functions and suppressed fibrosis progression, basic fibroblast growth factor-treatment significantly enhanced the therapeutic effect in association with elevated hepatocyte growth factor expression. Moreover, double immunofluorescence staining confirmed that the infused cells located in fibrosis area. Furthermore, co-culture with adipose tissue-derived mesenchymal stem cell led to induction of hepatic stellate cell apoptosis and enhanced hepatocyte proliferation. However, these effects were significantly weakened by knockdown of hepatocyte growth factor. Mechanism investigation revealed that co-culture with adipose tissue-derived mesenchymal stem cells activated c-jun N-terminal kinase-p53 signaling in hepatic stellate cell and promoted apoptosis. Basic fibroblast growth factor treatment enhanced the therapeutic effect of adipose tissue-derived mesenchymal stem cells, and secretion of hepatocyte growth factor from adipose tissue-derived mesenchymal stem cells plays a critical role in amelioration of liver injury and regression of fibrosis. © 2015 Journal of

  5. The potentials of human adipose tissue derived mesenchymal stem cells in targeted therapy of experimental glioma

    Directory of Open Access Journals (Sweden)

    FAN Cun-gang

    2012-12-01

    Full Text Available Glioblastoma is the most common primary malignant brain tumor in adults. With current standard therapy which includes extensive microsurgical resection along with concurrent chemoradiotherapy and adjuvant temozolomide (TMZ, the median survival of glioblastoma patients is only 14.60 months nowadays. Recent studies demonstrated that human adipose tissue derived mesenchymal stem cells (hAT-MSCs possessed the glioma-trophic migratory capacity. The engineered hAT-MSCs expressing herpes simplex virus-thymidine kinase (HSV-tk, yeast cytosine deaminase::uracil phosphoribosyltransferase (CDy:: UPRT, and rabbit carboxylesterase (rCE could exert inhibitory effects on glioma when combined with prodrugs, such as ganciclovir (GCV, 5-fluorocytosine (5-FC and irinotecan (CPT-11, respectively. hAT-MSCs carrying the oncolytic virus or expressing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL also could inhibit the growth of glioma. This paper summarizes the recent progress in this field to pave the way for hAT-MSCs based targeted therapy of glioma in future.

  6. Proliferation of human mesenchymal stem cells derived from adipose tissue on polyurethanes with tunable biodegradability

    Directory of Open Access Journals (Sweden)

    Iaci M. Pereira

    2010-01-01

    Full Text Available Polyurethanes (PUs have been considered good candidates to be used in biomedical temporary devices that require mechanical properties comparable to soft tissues. However, toxicity of some PUs is still a concern, since these polyurethanes can contain potential toxic components and residual organic solvents derived from their synthesis. In this work, in vitro tests to measure viability and proliferation of human mesenchymal stem cells (hMSCs in contact with PUs with tunable biodegradability were performed by employing MTT, alkaline phosphatase and collagen secretion assays. PUs were produced in an aqueous environment by employing isophorone diisocyanate/hydrazine (hard segment and poly(caprolactone diol/2,2-bis (hydroxymethyl propionic acid (soft segment as the main reagents. Three series of PUs having different soft segment contents were synthesized. These PUs had their chemical structure, morphology and hydrolytic degradation investigated. The rate of hydrolysis of the obtained PUs was tailored by modifying the soft segment content of the polymers. In vitro results showed that PUs can provide a satisfactory environment for the adhesion and proliferation of hMSCs.

  7. Monitoring Bone Tissue Engineered (BTE) Constructs Based on the Shifting Metabolism of Differentiating Stem Cells.

    Science.gov (United States)

    Simmons, Aaron D; Sikavitsas, Vassilios I

    2018-01-01

    Ever-increasing demand for bone grafts necessitates the realization of clinical implementation of bone tissue engineered constructs. The predominant hurdle to implementation remains to be securing FDA approval, based on the lack of viable methods for the rigorous monitoring of said constructs. The study presented herein details a method for such monitoring based on the shifting metabolism of mesenchymal stem cells (MSCs) as they differentiate into osteoblasts. To that end, rat MSCs seeded on 85% porous spunbonded poly(L-lactic acid) scaffolds were cultured in flow perfusion bioreactors with baseline or osteoinductive media, and levels of key physio-metabolic markers (oxygen, glucose, osteoprotegerin, and osteocalcin) were monitored throughout culture. Comparison of these non-destructively obtained values and current standard destructive analyses demonstrated key trends useful for the concurrent real-time monitoring of construct cellularity and maturation. Principle among these is the elucidation of the ratio of the rates of oxygen uptake to glucose consumption as a powerful quality marker. This ratio, supported on a physiological basis, has been shown herein to be reliable in the determination of both construct maturation (defined as osteoblastic differentiation and accompanying mineralization) and construct cellularity. Supplementary monitoring of OPG and OCN are shown to provide further validation of such metrics.

  8. Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues.

    Science.gov (United States)

    Ghahrizjani, Fatemeh Ahmadi; Ghaedi, Kamran; Salamian, Ahmad; Tanhaei, Somayeh; Nejati, Alireza Shoaraye; Salehi, Hossein; Nabiuni, Mohammad; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2015-02-25

    Availability of human embryonic stem cells (hESCs) has enhanced the capability of basic and clinical research in the context of human neural differentiation. Derivation of neural progenitor (NP) cells from hESCs facilitates the process of human embryonic development through the generation of neuronal subtypes. We have recently indicated that fibronectin type III domain containing 5 protein (FNDC5) expression is required for appropriate neural differentiation of mouse embryonic stem cells (mESCs). Bioinformatics analyses have shown the presence of three isoforms for human FNDC5 mRNA. To differentiate which isoform of FNDC5 is involved in the process of human neural differentiation, we have used hESCs as an in vitro model for neural differentiation by retinoic acid (RA) induction. The hESC line, Royan H5, was differentiated into a neural lineage in defined adherent culture treated by RA and basic fibroblast growth factor (bFGF). We collected all cell types that included hESCs, rosette structures, and neural cells in an attempt to assess the expression of FNDC5 isoforms. There was a contiguous increase in all three FNDC5 isoforms during the neural differentiation process. Furthermore, the highest level of expression of the isoforms was significantly observed in neural cells compared to hESCs and the rosette structures known as neural precursor cells (NPCs). High expression levels of FNDC5 in human fetal brain and spinal cord tissues have suggested the involvement of this gene in neural tube development. Additional research is necessary to determine the major function of FDNC5 in this process. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Isolation and characterization of mesenchymal stem cells derived from dental pulp and follicle tissue of human third molar tooth

    Directory of Open Access Journals (Sweden)

    Yadegary Z

    2011-04-01

    Full Text Available "nBackground and Aims: In the last decade, several studies have reported the isolation of stem cell population from different dental sources, while their mesenchymal nature is still controversial. The aim of this study was to isolate stem cells from mature human dental pulp and follicle and to determine their mesenchymal nature before differentiation based on the ISCT (International Society for Cellular Therapy criteria."nMaterials and Methods: In this experimental study, intact human third molars extracted due to prophylactic or orthodontic reasons were collected from patients aged 18-25. After tooth extraction, dental pulp and follicle were stored at 4°C in RPMI 1640 medium containing antibiotics. Dental pulp and follicle were prepared in a sterile condition and digested using an enzyme solution containing 4mg/ml collagenase I and dispase (ratio: 1:1. The cells were then cultivated in α-MEM medium. Passage-3 cells were analyzed by flow cytometry for the expression of CD34, CD45, CD 73, CD90 and CD105 surface markers."nResults: Dental pulp and follicle were observed to grow in colony forming units, mainly composed of a fibroblast-like cell population. Flow cytometry results showed that dental pulp and follicle are highly positive for CD73, CD90 and CD105 (mesenchymal stem cell markers and are negative for hematopoietic markers such as CD34 and CD 45."nConclusion: In this study we were able to successfully confirm that dental pulp and follicle stem cells isolated from permanent third molars have a mesenchymal nature before differentiation. Therefore, these two sources can be considered as an easy accessible source of mesenchymal stem cells for stem cell research and tissue engineering.

  10. An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering

    Science.gov (United States)

    Zhao, Liang; Weir, Michael D.; Xu, Hockin H. K.

    2010-01-01

    The need for bone repair has increased as the population ages. Stem cell-scaffold approaches hold immense promise for bone tissue engineering. However, currently, preformed scaffolds for cell delivery have drawbacks including the difficulty to seed cells deep into the scaffold, and inability for injection in minimally invasive surgeries. Current injectable polymeric carriers and hydrogels are too weak for load-bearing orthopedic application. The objective of this study was to develop an injectable and mechanically-strong stem cell construct for bone tissue engineering. Calcium phosphate cement (CPC) paste was combined with hydrogel microbeads encapsulating human umbilical cord mesenchymal stem cells (hUCMSCs). The hUCMSC-encapsulating composite paste was fully injectable under small injection forces. Cell viability after injection matched that in hydrogel without CPC and without injection. Mechanical properties of the construct matched the reported values of cancellous bone, and were much higher than previous injectable polymeric and hydrogel carriers. hUCMSCs in the injectable constructs osteodifferentiated, yielding high alkaline phosphatase, osteocalcin, collagen type I, and osterix gene expressions at 7 d, which were 50–70 fold higher than those at 1 d. Mineralization by the hUCMSCs at 14 d was 100-fold that at 1 d. In conclusion, a fully-injectable, mechanically-strong, stem cell-CPC scaffold construct was developed. The encapsulated hUCMSCs remained viable, osteodifferentiated, and synthesized bone minerals. The new injectable stem cell construct with load-bearing capability may enhance bone regeneration in minimally-invasive and other orthopedic surgeries. PMID:20570346

  11. [Perinatal sources of stem cells].

    Science.gov (United States)

    Piskorska-Jasiulewicz, Magdalena Maria; Witkowska-Zimny, Małgorzata

    2015-03-08

    Recently, stem cell biology has become an interesting topic. Several varieties of human stem cells have been isolated and identified in vivo and in vitro. Successful application of hematopoietic stem cells in hematology has led to the search for other sources of stem cells and expanding the scale of their application. Perinatal stem cells are a versatile cell population, and they are interesting for both scientific and practical objectives. Stem cells from perinatal tissue may be particularly useful in the clinic for autologous transplantation for fetuses and newborns, and after banking in later stages of life, as well as for in utero transplantation in the case of genetic disorders. In this review paper we focus on the extraction and therapeutic potential of stem cells derived from perinatal tissues such as the placenta, the amnion, amniotic fluid, umbilical cord blood and Wharton's jelly.

  12. Perinatal sources of stem cells

    Directory of Open Access Journals (Sweden)

    Magdalena Maria Piskorska-Jasiulewicz

    2015-03-01

    Full Text Available Recently, stem cell biology has become an interesting topic. Several varieties of human stem cells have been isolated and identified in vivo and in vitro. Successful application of hematopoietic stem cells in hematology has led to the search for other sources of stem cells and expanding the scale of their application. Perinatal stem cells are a versatile cell population, and they are interesting for both scientific and practical objectives. Stem cells from perinatal tissue may be particularly useful in the clinic for autologous transplantation for fetuses and newborns, and after banking in later stages of life, as well as for in utero transplantation in the case of genetic disorders. In this review paper we focus on the extraction and therapeutic potential of stem cells derived from perinatal tissues such as the placenta, the amnion, amniotic fluid, umbilical cord blood and Wharton’s jelly.

  13. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue.

    Science.gov (United States)

    da Silva Meirelles, Lindolfo; de Deus Wagatsuma, Virgínia Mara; Malta, Tathiane Maistro; Bonini Palma, Patrícia Viana; Araújo, Amélia Goes; Panepucci, Rodrigo Alexandre; Silva, Wilson Araújo; Kashima, Simone; Covas, Dimas Tadeu

    2016-12-10

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with an AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Human Stromal (Mesenchymal) Stem Cells from Bone Marrow, Adipose Tissue and Skin Exhibit Differences in Molecular Phenotype and Differentiation Potential

    DEFF Research Database (Denmark)

    Al-Nbaheen, May; Vishnubalaji, Radhakrishnan; Ali, Dalia

    2013-01-01

    , but the number of cells obtained is limited. Here, we compared the MSC-like cell populations, obtained from alternative sources for MSC: adipose tissue and skin, with the standard phenotype of human bone marrow MSC (BM-MSCs). MSC from human adipose tissue (human adipose stromal cells (hATSCs)) and human skin...... (human adult skin stromal cells, (hASSCs) and human new-born skin stromal cells (hNSSCs)) grew readily in culture and the growth rate was highest in hNSSCs and lowest in hATSCs. Compared with phenotype of hBM-MSC, all cell populations were CD34(-), CD45(-), CD14(-), CD31(-), HLA-DR(-), CD13(+), CD29......Human stromal (mesenchymal) stem cells (hMSCs) are multipotent stem cells with ability to differentiate into mesoderm-type cells e.g. osteoblasts and adipocytes and thus they are being introduced into clinical trials for tissue regeneration. Traditionally, hMSCs have been isolated from bone marrow...

  15. Is there a role for mammary stem cells in inflammatory breast carcinoma?: a review of evidence from cell line, animal model, and human tissue sample experiments.

    Science.gov (United States)

    Van Laere, Steven; Limame, Ridha; Van Marck, Eric A; Vermeulen, Peter B; Dirix, Luc Y

    2010-06-01

    Stem cells are pluripotent cells, with a large replicative potential, which perform normal physiological functions such as tissue renewal and damage repair. However, because of their long lifespan and high replicative potential, stem cells are ideal targets to accumulate multiple mutations. Therefore, they can be regarded as being responsible for the initiation of tumor formation. In the past, numerous studies have shown that the presence of an elaborate stem cell compartment within a tumor is associated with aggressive tumor cell behavior, frequent formation of metastases, resistance to therapy, and poor patient survival. From this perspective, tumors from patients with inflammatory breast cancer (IBC), an aggressive breast cancer subtype with a dismal clinical course, are most likely to be associated with stem cell biology. To date, this hypothesis is corroborated by evidence resulting from in vitro and in vivo experiments. Both gene and microRNA expression profiles highlighted several stem cell-specific signal transduction pathways that are hyperactivated in IBC. Also, these stem cell-specific signal transduction pathways seem to converge in the activation of nuclear factor-kappa B, a molecular hallmark of IBC, and induction of epithelial-to-mesenchymal transition. Recently, the latter mechanism was identified as a prerequisite for the induction of stem cell characteristics in breast cancer cells. Copyright 2010 American Cancer Society.

  16. Adipose-Derived Stem Cells in Novel Approaches to Breast Reconstruction: Their Suitability for Tissue Engineering and Oncological Safety

    Directory of Open Access Journals (Sweden)

    Niamh O’Halloran

    2017-08-01

    Full Text Available Adipose-derived stem cells (ADSCs are rapidly becoming the gold standard cell source for tissue engineering strategies and hold great potential for novel breast reconstruction strategies. However, their use in patients with breast cancer is controversial and their oncological safety, particularly in relation to local disease recurrence, has been questioned. In vitro, in vivo, and clinical studies using ADSCs report conflicting data on their suitability for adipose tissue regeneration in patients with cancer. This review aims to provide an overview of the potential role for ADSCs in breast reconstruction and to examine the evidence relating to the oncologic safety of their use in patients with breast cancer.

  17. Mycoplasma detection and elimination are necessary for the application of stem cell from human dental apical papilla to tissue engineering and regenerative medicine.

    Science.gov (United States)

    Kim, Byung-Chul; Kim, So Yeon; Kwon, Yong-Dae; Choe, Sung Chul; Han, Dong-Wook; Hwang, Yu-Shik

    2015-01-01

    Recently, postnatal stem cells from dental papilla with neural crest origin have been considered as one of potent stem cell sources in regenerative medicine regarding their multi-differentiation capacity and relatively easy access. However, almost human oral tissues have been reported to be infected by mycoplasma which gives rise to oral cavity in teeth, and mycoplasma contamination of ex-vivo cultured stem cells from such dental tissues and its effect on stem cell culture has received little attention. In this study, mycoplama contamination was evaluated with stem cells from apical papilla which were isolated from human third molar and premolars from various aged patients undergoing orthodontic therapy. The ex-vivo expanded stem cells from apical papilla were found to express stem cell markers such as Stro-1, CD44, nestin and CD133, but mycoplama contamination was detected in almost all cell cultures of the tested 20 samples, which was confirmed by mycoplasma-specific gene expression and fluorescence staining. Such contaminated mycoplasma could be successfully eliminated using elimination kit, and proliferation test showed decreased proliferation activity in mycoplasma-contaminated cells. After elimination of contaminated mycoplasma, stem cells from apical papilla showed osteogenic and neural lineage differentiation under certain culture conditions. Our study proposes that the evaluation of mycoplasma contamination and elimination process might be required in the use of stem cells from apical papilla for their potent applications to tissue engineering and regenerative medicine.

  18. Radiosensitivity of hematopoietic stem cells in diffusion chamber cultures of the murine yolk sac and adult medullary tissue

    International Nuclear Information System (INIS)

    Weinberg, S.R.; Stohlman, F. Jr.

    1976-01-01

    The radiosensitivity of hematopoietic progenitor cells derived from the 10 1 / 2 day murine yolk sac and adult murine bone marrow have been compared. A yolk sac cell suspension was exposed to varying amounts of gamma radiation (0 to 950 R) and the index used for radiosensitivity was the proliferation and differentiation of these cells cultured for 10 days in the millipore diffusion chamber. The data provided evidence that the hematopoietically active embryonic yolk sac is less radiosensitive than the adult mouse tibial marrow cells. A 10 1 / 2 day yolk sac cell suspension (5.182 +- 0.601 x 10 6 cells per yolk sac) contained at least 2.8 +- 1.1 pluripotential stem cells (colony-forming units, CFU) and 242 +- 31 committed stem cells (colony-forming cells, CFC). The results suggest the existence of a hematopoietic stem cell compartment in the yolk sac which is markedly different from that found in adult medullary tissue. Furthermore, there is a difference between the expressions of the differentiation potential of precursor cells of extraembryonic and of adult origin when exposed to similar microenvironments

  19. CRISPR/Cas9 Editing of Murine Induced Pluripotent Stem Cells for Engineering Inflammation-Resistant Tissues.

    Science.gov (United States)

    Brunger, Jonathan M; Zutshi, Ananya; Willard, Vincent P; Gersbach, Charles A; Guilak, Farshid

    2017-05-01

    Proinflammatory cytokines such as interleukin-1 (IL-1) are found in elevated levels in diseased or injured tissues and promote rapid tissue degradation while preventing stem cell differentiation. This study was undertaken to engineer inflammation-resistant murine induced pluripotent stem cells (iPSCs) through deletion of the IL-1 signaling pathway and to demonstrate the utility of these cells for engineering replacements for diseased or damaged tissues. Targeted deletion of the IL-1 receptor type I (IL-1RI) gene in murine iPSCs was achieved using the RNA-guided, site-specific clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome engineering system. Clonal cell populations with homozygous and heterozygous deletions were isolated, and loss of receptor expression and cytokine signaling was confirmed by flow cytometry and transcriptional reporter assays, respectively. Cartilage was engineered from edited iPSCs and tested for its ability to resist IL-1-mediated degradation in gene expression, histologic, and biomechanical assays after a 3-day treatment with 1 ng/ml of IL-1α. Three of 41 clones isolated possessed the IL-1RI +/- genotype. Four clones possessed the IL-1RI -/- genotype, and flow cytometry confirmed loss of IL-1RI on the surface of these cells, which led to an absence of NF-κB transcription activation after IL-1α treatment. Cartilage engineered from homozygous null clones was resistant to cytokine-mediated tissue degradation. In contrast, cartilage derived from wild-type and heterozygous clones exhibited significant degradative responses, highlighting the need for complete IL-1 blockade. This work demonstrates proof-of-concept of the ability to engineer custom-designed stem cells that are immune to proinflammatory cytokines (i.e., IL-1) as a potential cell source for cartilage tissue engineering. © 2016, American College of Rheumatology.

  20. Trophic Effects and Regenerative Potential of Mobilized Mesenchymal Stem Cells From Bone Marrow and Adipose Tissue as Alternative Cell Sources for Pulp/Dentin Regeneration.

    Science.gov (United States)

    Murakami, Masashi; Hayashi, Yuki; Iohara, Koichiro; Osako, Yohei; Hirose, Yujiro; Nakashima, Misako

    2015-01-01

    Dental pulp stem cell (DPSC) subsets mobilized by granulocyte-colony-stimulating factor (G-CSF) are safe and efficacious for complete pulp regeneration. The supply of autologous pulp tissue, however, is very limited in the aged. Therefore, alternative sources of mesenchymal stem/progenitor cells (MSCs) are needed for the cell therapy. In this study, DPSCs, bone marrow (BM), and adipose tissue (AD)-derived stem cells of the same individual dog were isolated using G-CSF-induced mobilization (MDPSCs, MBMSCs, and MADSCs). The positive rates of CXCR4 and G-CSFR in MDPSCs were similar to MADSCs and were significantly higher than those in MBMSCs. Trophic effects of MDPSCs on angiogenesis, neurite extension, migration, and antiapoptosis were higher than those of MBMSCs and MADSCs. Pulp-like loose connective tissues were regenerated in all three MSC transplantations. Significantly higher volume of regenerated pulp and higher density of vascularization and innervation were observed in response to MDPSCs compared to MBMSC and MADSC transplantation. Collagenous matrix containing dentin sialophosphoprotein (DSPP)-positive odontoblast-like cells was the highest in MBMSCs and significantly higher in MADSCs compared to MDPSCs. MBMSCs and MADSCs, therefore, have potential for pulp regeneration, although the volume of regenerated pulp tissue, angiogenesis, and reinnervation, were less. Thus, in conclusion, an alternative cell source for dental pulp/dentin regeneration are stem cells from BM and AD tissue.

  1. Microdosimetry of haemopoietic stem cells irradiated by α particles from the short-lived products of 222Rn decays in fat cells and haemopoietic tissue

    International Nuclear Information System (INIS)

    Charlton, D.E.; Utteridge, T.D.; University of South Australia, Pooraka, SA; Beddoe, A.H.

    1996-01-01

    The Monte Carlo method is used to model fat cells and the nuclei of stem cells in haemopoietic tissue where 222 Rn is dissolved in different amounts in the fat and tissue. Calculations are performed for fat cells of diameters 50 and 100 μm and for stem cell nuclei of 8 and 16 μm diameters for various fractions of fat filling the volume. Average doses (and their distributions) to stem cell nuclei from single passages of α particles are presented. In addition to dose, the relationship between LET and dose is obtained, illustrating the importance of 'stoppers' in the calculations. The annual average dose equivalent for a concentration of 1 Bq/m 3 in air agrees well with other authors at 12 μSv/year. The method also allows the calculation of the fraction of stem cell nuclei hit annually. Here for 1 Bq/m 3 , stem cell nuclei of diameter 8 μm and 100% fat filing 15 x 10 -7 of the stem cell nuclei are hit. (Author)

  2. Evaluation of synovium-derived mesenchymal stem cells and 3D printed nanocomposite scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Pan, Jian-Feng; Li, Shuo; Guo, Chang-An; Zhang, Feng; Yan, Zuo-Qin; Xu, Du-Liang; Mo, Xiu-Mei

    2015-01-01

    Stem cells and scaffolds play a very important role in tissue engineering. Here, we isolated synovium-derived mesenchymal stem cells (SMSCs) from synovial membrane tissue and characterized stem-cell properties. Gelatin nanoparticles (NP) were prepared using a two-step desolvation method and then pre-mixed into different host matrix (silk fibroin (SF), gelatin (Gel), or SF–Gel mixture) to generate various 3D printed nanocomposite scaffolds (NP/SF, NP/SF–Gel, NP/Gel-1, and NP/Gel-2). The microstructure was examined by scanning electron microscopy. Biocompatibility assessment was performed through CCK-8 assay by coculturing with SMSCs at 1, 3, 7 and 14 days. According to the results, SMSCs are similar to other MSCs in their surface epitope expression, which are negative for CD45 and positive for CD44, CD90, and CD105. After incubation in lineage-specific medium, SMSCs could differentiate into chondrocytes, osteocytes and adipocytes. 3D printed nanocomposite scaffolds exhibited a good biocompatibility in the process of coculturing with SMSCs and had no negative effect on cell behavior. The study provides a strategy to obtain SMSCs and fabricate 3D printed nanocomposite scaffolds, the combination of which could be used for practical applications in tissue engineering. (paper)

  3. Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes.

    Science.gov (United States)

    Chen, Da-Chung; Chen, Li-Yu; Ling, Qing-Dong; Wu, Meng-Hsueh; Wang, Ching-Tang; Suresh Kumar, S; Chang, Yung; Munusamy, Murugan A; Alarfajj, Abdullah A; Wang, Han-Chow; Hsu, Shih-Tien; Higuchi, Akon

    2014-05-01

    The purification of human adipose-derived stem cells (hADSCs) from human adipose tissue cells (stromal vascular fraction) was investigated using membrane filtration through poly(lactide-co-glycolic acid)/silk screen hybrid membranes. Membrane filtration methods are attractive in regenerative medicine because they reduce the time required to purify hADSCs (i.e., less than 30 min) compared with conventional culture methods, which require 5-12 days. hADSCs expressing the mesenchymal stem cell markers CD44, CD73, and CD90 were concentrated in the permeation solution from the hybrid membranes. Expression of the surface markers CD44, CD73, and CD99 on the cells in the permeation solution from the hybrid membranes, which were obtained using 18 mL of feed solution containing 50 × 10⁴ cells, was statistically significantly higher than that of the primary adipose tissue cells, indicating that the hADSCs can be purified in the permeation solution by the membrane filtration method. Cells expressing the stem cell-associated marker CD34 could be successfully isolated in the permeation solution, whereas CD34⁺ cells could not be purified by the conventional culture method. The hADSCs in the permeation solution demonstrated a superior capacity for osteogenic differentiation based on their alkali phosphatase activity, their osterix gene expression, and the results of mineralization analysis by Alizarin Red S and von Kossa staining compared with the cells from the suspension of human adipose tissue. These results suggest that the hADSCs capable of osteogenic differentiation preferentially permeate through the hybrid membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Neural stem cells improve neuronal survival in cultured postmortem brain tissue from aged and Alzheimer patients

    NARCIS (Netherlands)

    Wu, L.; Sluiter, A.A.; Guo, Ho Fu; Balesar, R. A.; Swaab, D. F.; Zhou, Jiang Ning; Verwer, R. W H

    Neurodegenerative diseases are progressive and incurable and are becoming ever more prevalent. To study whether neural stem cell can reactivate or rescue functions of impaired neurons in the human aging and neurodegenerating brain, we co-cultured postmortem slices from Alzheimer patients and control

  5. Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue

    NARCIS (Netherlands)

    Quyn, A.J.; Appleton, P.L.; Carey, F.A.; Steele, R.J.; Barker, N.; Clevers, H.; Ridgway, R.A.; Sansom, O.J.; Nathke, I.S.

    2010-01-01

    The importance of asymmetric divisions for stem cell function and maintenance is well established in the developing nervous system and the skin; however, its role in gut epithelium and its importance for tumorigenesis is still debated. We demonstrate alignment of mitotic spindles perpendicular to

  6. Telomeric transgenes are silenced in adult mouse tissues and embryo fibroblasts but are expressed in embryonic stem cells.

    Science.gov (United States)

    Gao, Qing; Reynolds, Gloria E; Innes, Lindsay; Pedram, Mehrdad; Jones, Ella; Junabi, Mustafa; Gao, Dong-wei; Ricoul, Michelle; Sabatier, Laure; Van Brocklin, Henry; Franc, Benjamin L; Murnane, John P

    2007-12-01

    In addition to their role in protecting the ends of chromosomes, telomeres also influence the expression of adjacent genes, a process called telomere-position effect. We previously reported that the neo and HSV-tk transgenes located adjacent to telomeres in mouse embryonic stem cells are initially expressed at low levels and then become gradually silenced upon passage in culture through a process involving DNA methylation. We also reported extensive DNA methylation in these telomeric transgenes in three different tissues isolated from mice generated from one of these embryonic stem cell clones. In the present study, we demonstrate that embryo fibroblasts isolated from two different mouse strains show extensive DNA methylation and silencing of the telomeric transgenes. Consistent with this observation, we also demonstrate little or no detectable expression of the HSV-tk telomeric transgene in somatic tissues using whole body imaging. In contrast, both telomeric transgenes are expressed at low levels and have little DNA methylation in embryonic stem cell lines isolated from these same mouse strains. Our results demonstrate that telomere-position effect in mammalian cells can be observed either as a low level of expression in embryonic stem cells in the preimplantation embryo or as complete silencing and DNA methylation in differentiated cells and somatic tissues. This pattern of expression of the telomeric transgenes demonstrates that subtelomeric regions, like much of the genome, are epigenetically reprogrammed in the preimplantation embryo, a process that has been proposed to be important in early embryonic development. Disclosure of potential conflicts of interest is found at the end of this article.

  7. In Vivo Tracking of Murine Adipose Tissue-Derived Multipotent Adult Stem Cells and Ex Vivo Cross-Validation

    Directory of Open Access Journals (Sweden)

    Chiara Garrovo

    2013-01-01

    Full Text Available Stem cells are characterized by the ability to renew themselves and to differentiate into specialized cell types, while stem cell therapy is believed to treat a number of different human diseases through either cell regeneration or paracrine effects. Herein, an in vivo and ex vivo near infrared time domain (NIR TD optical imaging study was undertaken to evaluate the migratory ability of murine adipose tissue-derived multipotent adult stem cells [mAT-MASC] after intramuscular injection in mice. In vivo NIR TD optical imaging data analysis showed a migration of DiD-labelled mAT-MASC in the leg opposite the injection site, which was confirmed by a fibered confocal microendoscopy system. Ex vivo NIR TD optical imaging results showed a systemic distribution of labelled cells. Considering a potential microenvironmental contamination, a cross-validation study by multimodality approaches was followed: mAT-MASC were isolated from male mice expressing constitutively eGFP, which was detectable using techniques of immunofluorescence and qPCR. Y-chromosome positive cells, injected into wild-type female recipients, were detected by FISH. Cross-validation confirmed the data obtained by in vivo/ex vivo TD optical imaging analysis. In summary, our data demonstrates the usefulness of NIR TD optical imaging in tracking delivered cells, giving insights into the migratory properties of the injected cells.

  8. Regeneration of Skin Surface by Multipotent Mesenchymal Stem Cells of Adipose Tissue in Laboratory Animals with Infected Wounds

    OpenAIRE

    Sahab, A. Haydar; Tretyak, S.; Nedzved, M.K.; Baranov, E.V.; Nadyrov, E.; Lobanok, H.H.; Vasilevich, I.B.; Welcome, M.O.

    2013-01-01

    This paper presents results of experimental studies in laboratory animals with a simulated infected wound, for which mesenchymal stem cells (MSCs) derived from adipose tissue were used in its treatment. The following peculiarities of MSCs for regeneration of skin defects are established: faster arrest of inflammation, accelerated wound healing processes, as well as observed stimulation of growth of skin appendages. The results of this study may serve the basis for further research from develo...

  9. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model.

    Directory of Open Access Journals (Sweden)

    Darren Paul Burke

    Full Text Available Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.

  10. Adult Tissue-Derived Stem Cells and Tolerance Induction in Nonhuman Primates for Vascularized Composite Allograft Transplantation

    Science.gov (United States)

    2017-10-01

    Allograft Transplantation PRINCIPAL INVESTIGATOR: Eric A. Elster, MD RECIPIENT: The Henry M. Jackson Foundation for the Advancement of Military...Medicine Bethesda, MD 20817 REPORT DATE: October 2017 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command...2017 2. REPORT TYPE Annual 3. DATES COVERED 30 Sep 2016 - 29 Sep 2017 4. TITLE AND SUBTITLE Adult Tissue-Derived Stem Cells and Tolerance Induction

  11. Effect of hypothyroidism in the thyroidectomized rats on immunophenotypic characteristics and differentiation capacity of adipose tissue derived stem cells.

    Science.gov (United States)

    Simsek, T; Duruksu, G; Okçu, A; Aksoy, A; Erman, G; Utkan, Z; Cantürk, Z; Karaöz, E

    2014-01-01

    Thyroid hormones influence multiple physiological functions, like growth, differentiation, protein synthesis and metabolic rate. The hypothyroid state is a complex hormonal dysfunction rather than a single hormonal defect. The relation between hypothyroidism after thyroidectomy and stem cells is not clear. This study was designed to investigate the effect of thyroidectomy on the proliferation, telomerase enzyme activities, immunophenotypic properties and differentiation potentials of adipose tissue-derived (AT-) stem cells (SCs). AT-SCs after 60 and 120 days of thyroidectomized (Tx) rats were compared to normal rats by flow cytometry and immunocytochemistry analyses, and their telomerase activities were estimated. The telomerase activity was found to be positive for AT-SCs of Tx rats of both 60 and 120 days used in this study, but a decrease was noticed in the cells with the long-term exposure to hypothyroidism. This might indicate the decrease in the regenerative ability of the AT-SCs after 120 days of Tx compared to cells after 60 days of Tx. Both cell lines were induced to differentiate into adipogenic, osteogenic and neurogenic cell lineages, but osteogenic marker expression was not detected in the undifferentiated AT-SCs of the Tx rats. Osteogenic differentiation was also failed in stem cells derived from Tx rats, shown by Alizarin red S staining and alkaline phosphates enzyme assays. These results suggest that hypothyroidism affected SCs, altered stem cell characteristics, like telomerase activity and loss of in vitro bone formation, but not adipogenic or neurogenic differentiation ability. Hypothyroidism after Tx affects the osteogenic differentiation capacity of stem cells, which might be one of the factors of bone loss due to postnatal hypothyroidism.

  12. [Pretreatment with cyclosporin A nanoparticles emulsion protects apoptosis of swine adipose tissue-derived stem cells].

    Science.gov (United States)

    Yin, Qiao-xiang; Pei, Zhi-yong; Wang, Heng; Zhao, Yu-sheng

    2013-06-01

    To investigate the effect of cyclosporine A-nanoparticles emulsion (CsA-NP) on protecting apoptosis of swine adipose tissue-derived stem cells (ASC ) and related mechanisms. ASC were randomized to six groups: control group,single H2O2 group,CsA or CsA-NP 0.1 mg/ml+H2O2 group,CsA or CsA-NP 1.0 mg/ml+H2O2 group, CsA or CsA-NP 5.0 mg/ml+H2O2 group,CsA or CsA-NP 10.0 mg/ml+H2O2 group. ASC apoptosis was induced by hydrogen peroxide (H2O2100 µmol/L) in vitro. The morphology of apoptotic cells was observed and the number of apoptotic cells was measured. Apoptosis of ASC was detected by flow cytometry using an apoptosis kit. Cell activity was determined by CCK-8 assay. Caspase-3 activity was detected by applying a caspase-3 assay kit. Expression of cytochrome C was investigated by Western blot. H2O2 induced ASC apoptosis was evidenced by morphological and biochemical changes,which could be significantly reduced by pre-treatment with CsA or CsA-NP at concentration of 0.1-10.0 mg/ml, and the best effect was observed at concentration of 5 mg/ml (apoptosis rate: CsA: 10.6% ± 2.8% vs. 25.2% ± 3.8%; CsA-NP: 6.2% ± 2.6% vs. 25.2% ± 3.6% in control group, all P NP pre-treated ASC at concentration of 0.1-10.0 mg/ml than in H2O2 group (P NP (0.1-10.0 mg/ml) significantly down -regulated caspase-3 activity. Furthermore, CsA or CsA-NP (5 mg/ml) completely inhibited the H2O2-induced release of cytochrome C. These results suggest that CsA-NP and CsA could protect the oxidative stress-induced ASC apoptosis through decreasing the activation of caspase-3 and inhibiting the release of cytochrome C.

  13. N-acetyl-L-cysteine protects dental tissue stem cells against oxidative stress in vitro.

    Science.gov (United States)

    Martacic, Jasmina; Filipovic, Milica Kovacevic; Borozan, Suncica; Cvetkovic, Zorica; Popovic, Tamara; Arsic, Aleksandra; Takic, Marija; Vucic, Vesna; Glibetic, Maria

    2018-02-15

    The aim of our study was to investigate whether N-acetyl-L-cysteine (NAC) could protect stem cells from exfoliated deciduous teeth (SHED) against oxidative damage, during in vitro cultivation, to preserve regenerative potential of these cells. Accordingly, we examined the potential of cell culture supplementation with NAC in prevention of lipid peroxidation, unfavorable changes of total lipids fatty acid composition, and the effects on the activity of antioxidant enzymes. We analyzed the extent of oxidative damage in SHED after 48 h treatment with different NAC concentrations. Cellular lipid peroxidation was determined upon reaction with thiobarbituric acid. All enzyme activities were measured spectrophotometrically, based on published methods. Fatty acid methyl esters were analyzed by gas-liquid chromatography. Concentration of 0.1 mM NAC showed the most profound effects on SHED, significantly decreasing levels of lipid peroxidation in comparison to control. This dose also diminished the activities of antioxidant enzymes. Furthermore, NAC treatment significantly changed fatty acid composition of cells, reducing levels of oleic acid and monounsaturated fatty acids and increasing linoleic acid, n-6, and total polyunsaturated fatty acid (PUFA) proportions. Low dose of NAC significantly decreased lipid peroxidation and altered fatty acid composition towards increasing PUFA. The reduced oxidative damage of cellular lipids could be strongly related to improved SHED survival in vitro. Low doses of antioxidants, applied during stem cells culturing and maintenance, could improve cellular characteristics in vitro. This is prerequisite for successful use of stem cells in various clinical applications.

  14. Barium-cross-linked alginate-gelatine microcapsule as a potential platform for stem cell production and modular tissue formation.

    Science.gov (United States)

    Alizadeh Sardroud, Hamed; Nemati, Sorour; Baradar Khoshfetrat, Ali; Nabavinia, Mahbobeh; Beygi Khosrowshahi, Younes

    2017-08-01

    Influence of gelatine concentration and cross-linker ions of Ca 2+ and Ba 2+ was evaluated on characteristics of alginate hydrogels and proliferation behaviours of model adherent and suspendable stem cells of fibroblast and U937 embedded in alginate microcapsules. Increasing gelatine concentration to 2.5% increased extent of swelling to 15% and 25% for barium- and calcium-cross-linked hydrogels, respectively. Mechanical properties also decreased with increasing swelling of hydrogels. Both by increasing gelatine concentration and using barium ions increased considerably the proliferation of encapsulated model stem cells. Barium-cross-linked alginate-gelatine microcapsule tested for bone building block showed a 13.5 ± 1.5-fold expansion for osteoblast cells after 21 days with deposition of bone matrix. The haematopoietic stem cells cultured in the microcapsule after 7 days also showed up to 2-fold increase without adding any growth factor. The study demonstrates that barium-cross-linked alginate-gelatine microcapsule has potential for use as a simple and efficient 3D platform for stem cell production and modular tissue formation.

  15. Age-related changes in the features of porcine adult stem cells isolated from adipose tissue and skeletal muscle.

    Science.gov (United States)

    Perruchot, Marie-Hélène; Lefaucheur, Louis; Barreau, Corinne; Casteilla, Louis; Louveau, Isabelle

    2013-10-01

    A better understanding of the control of body fat distribution and muscle development is of the upmost importance for both human and animal physiology. This requires a better knowledge of the features and physiology of adult stem cells in adipose tissue and skeletal muscle. Thus the objective of the current study was to determine the type and proportion of these cells in growing and adult pigs. The different cell subsets of stromal vascular cells isolated from these tissues were characterized by flow cytometry using cell surface markers (CD11b, CD14, CD31, CD34, CD45, CD56, and CD90). Adipose and muscle cells were predominantly positive for the CD34, CD56, and CD90 markers. The proportion of positive cells changed with age especially in intermuscular adipose tissue and skeletal muscle where the percentage of CD90(+) cells markedly increased in adult animals. Further analysis using coimmunostaining indicates that eight populations with proportions ranging from 12 to 30% were identified in at least one tissue at 7 days of age, i.e., CD90(+)/CD34(+), CD90(+)/CD34(-), CD90(+)/CD56(+), CD90(+)/CD56(-), CD90(-)/CD56(+), CD56(+)/CD34(+), CD56(+)/CD34(-), and CD56(-)/CD34(+). Adipose tissues appeared to be a less heterogeneous tissue than skeletal muscle with two main populations (CD90(+)/CD34(-) and CD90(+)/CD56(-)) compared with five or more in muscle during the studied period. In culture, cells from adipose tissue and muscle differentiated into mature adipocytes in adipogenic medium. In myogenic conditions, only cells from muscle could form mature myofibers. Further studies are now needed to better understand the plasticity of those cell populations throughout life.

  16. Dental Stem Cells and Their Applications.

    Science.gov (United States)

    Har, Alix; Park, Joo Cheol

    2015-01-01

    Stem cells are unspecialised cells that can divide, renew, and differentiate into more specialised cells. Due to their unique properties, stem cells are known for their use in therapies and treatments for missing tissues and damaged parts of the body. However, due to the invasive nature and other ethical issues with the retrieval process and usage of stem cells, stem cells are clinically being used in a limited manner. Furthermore, due to the invasive nature of the retrieval process elsewhere, dental tissues are one of the most preferred sources for stem cells. This review covers all of the characteristics of dental tissue-derived stem cells and their potential future uses.

  17. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.

    Science.gov (United States)

    Heo, June Seok; Choi, Youjeong; Kim, Han-Soo; Kim, Hyun Ok

    2016-01-01

    Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage‑related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator‑activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro tri-lineage differentiation potential, but also gene expression profiles. While there was considerable inter-donor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for

  18. Endometrial stem cell differentiation into smooth muscle cell: a novel approach for bladder tissue engineering in women.

    Science.gov (United States)

    Shoae-Hassani, Alireza; Sharif, Shiva; Seifalian, Alexander M; Mortazavi-Tabatabaei, Seyed Abdolreza; Rezaie, Sassan; Verdi, Javad

    2013-10-01

    To investigate manufacturing smooth muscle cells (SMCs) for regenerative bladder reconstruction from differentiation of endometrial stem cells (EnSCs), as the recent discovery of EnSCs from the lining of women's uteri, opens up the possibility of using these cells for tissue engineering applications, such as building up natural tissue to repair prolapsed pelvic floors as well as building urinary bladder wall. Human EnSCs that were positive for cluster of differentiation 146 (CD146), CD105 and CD90 were isolated and cultured in Dulbecco's modified Eagle/F12 medium supplemented with myogenic growth factors. The myogenic factors included: transforming growth factor β, platelet-derived growth factor, hepatocyte growth factor and vascular endothelial growth factor. Differentiated SMCs on bioabsorbable polyethylene-glycol and collagen hydrogels were checked for SMC markers by real-time reverse-transcriptase polymerase chain reaction (RT-PCR), western blot (WB) and immunocytochemistry (ICC) analyses. Histology confirmed the growth of SMCs in the hydrogel matrices. The myogenic growth factors decreased the proliferation rate of EnSCs, but they differentiated the human EnSCs into SMCs more efficiently on hydrogel matrices and expressed specific SMC markers including α-smooth muscle actin, desmin, vinculin and calponin in RT-PCR, WB and ICC experiments. The survival rate of cultures on the hydrogel-coated matrices was significantly higher than uncoated cultures. Human EnSCs were successfully differentiated into SMCs, using hydrogels as scaffold. EnSCs may be used for autologous bladder wall regeneration without any immunological complications in women. Currently work is in progress using bioabsorbable nanocomposite materials as EnSC scaffolds for developing urinary bladder wall tissue. © 2013 The Authors. BJU International © 2013 BJU International.

  19. Antagonizing Effects of Aspartic Acid against Ultraviolet A-Induced Downregulation of the Stemness of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Kwangseon Jung

    Full Text Available Ultraviolet A (UVA irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate effects of aspartic acid on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs. Furthermore, we elucidated the UVA-antagonizing mechanisms of aspartic acid. The results of this study showed that aspartic acid attenuated the UVA-induced reduction of the proliferative potential and stemness of hAMSCs, as evidenced by increased proliferative activity in the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and upregulation of stemness-related genes OCT4, NANOG, and SOX2 in response to the aspartic acid treatment. UVA-induced reduction in the mRNA level of hypoxia-inducible factor (HIF-1α was also significantly recovered by aspartic acid. In addition, the antagonizing effects of aspartic acid against the UVA effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show that aspartic acid improves reduced stemness of hAMSCs induced by UVA and its effects are mediated by upregulation of HIF-1α via the inhibition of PGE2-cAMP signaling. In addition, aspartic acid may be used as an antagonizing agent to mitigate the effects of UVA.

  20. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Grayson, Warren L.; Zhao, Feng; Bunnell, Bruce; Ma, Teng

    2007-01-01

    Changes in oxygen concentrations affect many of the innate characteristics of stem and progenitor cells. Human mesenchymal stem cells (hMSCs) were maintained under hypoxic atmospheres (2% O 2 ) for up to seven in vitro passages. This resulted in approximately 30-fold higher hMSC expansion over 6 weeks without loss of multi-lineage differentiation capabilities. Under hypoxia, hMSCs maintained their growth-rates even after reaching confluence, resulting in the formation of multiple cell layers. Hypoxic hMSCs also displayed differences in the cell and nuclear morphologies as well as enhanced ECM formation and organization. These changes in cellular characteristics were accompanied by higher mRNA levels of Oct-4 and HIF-2α, as well as increased expression levels of connexin-43, a protein used in gap junction formation. The results from this study demonstrated that oxygen concentrations affected many aspects of stem-cell physiology, including growth and in vitro development, and may be a critical parameter during expansion and differentiation

  1. Conditioned Media From Adipose Tissue Derived Mesenchymal Stem Cells Reverse Insulin Resistance in Cellular Models.

    Science.gov (United States)

    Shree, Nitya; Bhonde, Ramesh R

    2017-08-01

    The link between insulin resistance (IR) and type 2 diabetes has been recognized for a long time. Type 2 diabetes is often associated with basal hyperinsulinemia, reduced sensitivity to insulin, and disturbances in insulin release. There are evidences showing the reversal of IR by mesenchymal stem cells. However, the effect of conditioned media from adipose derived mesenchymal stem cells (ADSCs-CM) in reversal of IR has not been established. We established an insulin resistant model of 3T3L1 and C2C12 cells and treated with ADSCs-CM. 2-NBDG (2-[N-[7-Nitrobenz-2-oxa-1,3-diazol-4-yl]Amino]-2-Deoxyglucose) uptake was performed to assess improvement in glucose uptake. Genes involved in glucose transport and in inflammation were also analysed. Western blot for glucose transporter-4 and Akt was performed to evaluate translocation of Glut4 and insulin signaling respectively. We found that the ADSCs-CM treated cells restored insulin, stimulated glucose uptake as compared to the untreated control indicating the insulin sensitizing effect of the CM. The treated cells also showed inhibition adipogenesis in 3T3L1 cells and significant reduction of intramuscular triglyceride accumulation in C2C12 cells. Gene expressions studies revealed the drastic upregulation of GLUT4 gene and significant reduction in IL6 and PAI1 gene in both 3T3L1 and C2C12 cells, indicating possible mechanism of glucose uptake with concomitant decrease in inflammation. Enhancement of GLUT4 and phospho Akt protein expression seems to be responsible for the increment in glucose uptake and enhanced insulin signaling, respectively. Our study revealed for the first time that ADSCs-CM acts as an alternative insulin sensitizer providing stem cell solution to IR. J. Cell. Biochem. 118: 2037-2043,2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention.

    Directory of Open Access Journals (Sweden)

    Maria E Danoviz

    Full Text Available BACKGROUND: Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI. METHODOLOGY/PRINCIPAL FINDINGS: 99mTc-labeled ASCs (1x10(6 cells isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C, or culture medium (ASC/M as vehicle, and cell body distribution was assessed 24 hours later by gamma-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8+/-2.0 and 26.8+/-2.4% vs. 4.8+/-0.7%, respectively. Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT and control groups (culture medium, fibrin, or collagen alone. Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW, a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. CONCLUSIONS: We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administering co-injection of ASCs with biopolymers.

  3. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue.

    Directory of Open Access Journals (Sweden)

    Saleh Heneidi

    Full Text Available Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT derived pluripotent stem cells, termed Multilineage Differentiating Stress-Enduring (Muse Cells, which are isolated using severe cellular stress conditions, including long-term exposure to the proteolytic enzyme collagenase, serum deprivation, low temperatures and hypoxia. Under these conditions, a highly purified population of Muse-AT cells is isolated without the utilization of cell sorting methods. Muse-AT cells grow in suspension as cell spheres reminiscent of embryonic stem cell clusters. Muse-AT cells are positive for the pluripotency markers SSEA3, TR-1-60, Oct3/4, Nanog and Sox2, and can spontaneously differentiate into mesenchymal, endodermal and ectodermal cell lineages with an efficiency of 23%, 20% and 22%, respectively. When using specific differentiation media, differentiation efficiency is greatly enhanced in Muse-AT cells (82% for mesenchymal, 75% for endodermal and 78% for ectodermal. When compared to adipose stem cells (ASCs, microarray data indicate a substantial up-regulation of Sox2, Oct3/4, and Rex1. Muse-ATs also exhibit gene expression patterns associated with the down-regulation of genes involved in cell death and survival, embryonic development, DNA replication and repair, cell cycle and potential factors related to oncogenecity. Gene expression analysis indicates that Muse-ATs and ASCs are mesenchymal in origin; however, Muse-ATs also express numerous lymphocytic and hematopoietic genes, such as CCR1 and CXCL2, encoding chemokine receptors and ligands involved in stem cell

  4. Tooth Tissue Engineering: The Importance of Blood Products as a Supplement in Tissue Culture Medium for Human Pulp Dental Stem Cells.

    Science.gov (United States)

    Pisciolaro, Ricardo Luiz; Duailibi, Monica Talarico; Novo, Neil Ferreira; Juliano, Yara; Pallos, Debora; Yelick, Pamela Crotty; Vacanti, Joseph Phillip; Ferreira, Lydia Masako; Duailibi, Silvio Eduardo

    2015-11-01

    One of the goals in using cells for tissue engineering (TE) and cell therapy consists of optimizing the medium for cell culture. The present study compares three different blood product supplements for improved cell proliferation and protection against DNA damage in cultured human dental pulp stem cells for tooth TE applications. Human cells from dental pulp were first characterized as adult stem cells (ectomesenchymal mixed origin) by flow cytometry. Next, four different cell culture conditions were tested: I, supplement-free; II, supplemented with fetal bovine serum; III, allogeneic human serum; and IV, autologous human serum. Cultured cells were then characterized for cell proliferation, mineralized nodule formation, and colony-forming units (CFU) capability. After 28 days in culture, the comet assay was performed to assess possible damage in cellular DNA. Our results revealed that Protocol IV achieved higher cell proliferation than Protocol I (p = 0.0112). Protocols II and III resulted in higher cell proliferation than Protocol I, but no statistical differences were found relative to Protocol IV. The comet assay revealed less cell damage in cells cultured using Protocol IV as compared to Protocols II and III. The damage percentage observed on Protocol II was significantly higher than all other protocols. CFUs capability was highest using Protocol IV (p = 0.0018) and III, respectively, and the highest degree of mineralization was observed using Protocol IV as compared to Protocols II and III. Protocol IV resulted in significantly improved cell proliferation, and no cell damage was observed. These results demonstrate that human blood product supplements can be used as feasible supplements for culturing adult human dental stem cells.

  5. Adult Bone Marrow Mesenchymal Stem Cells Primed for fhe Repair of Damaged Cardiac Tissue After Myocardial Infarction

    Science.gov (United States)

    Marks, Edward D.

    The burden of cardiovascular disease around the world is growing, despite improvements in hospital care and time to treatment. As more people survive an initial myocardial infarction (MI), the decompensated heart tissue is strained, leading to heart failure (HF) and an increased risk for a second MI. While extensive progress has been made in treating the symptoms after MI, including HF and angina, little success has come from repairing the damaged heart tissue to alleviate the progression to these end- stage symptoms. One promising area of regenerative research has been the use of adult stem cells, particularly from the bone marrow (BMSCs). These cells can differentiate towards the cardiac cell lineage in vitro while producing trophic factors that can repair damaged tissue. When placed in the heart after MI though, BMSCs have mixed results, producing profound changes in some patients but zero or even negative effects in others. In this report, we used BMSCs as a stem cell base for a regenerative medicine system for the repair of damaged cardiac tissue. These cells are seeded on a polycaprolactone nanoscaffolding support system, which provides a growth substrate for in vitro work, as well as a housing system for protected in vivo delivery. When the nanoscaffold is pre-coated with a novel combination of a cardiac protein, thymosin beta4 (Tbeta4), and a small molecule effector of the WNT protein pathway, IWP-2, BMSCs differentiated towards the cardiac lineage in as little as 24hours. When injected into rat hearts that have been given an ischemic MI, the nanoscaffolding system slowly dissolves, leaving the cells in place of the damaged cardiac tissue. After two weeks of monitoring, BMSCs are present within the damaged hearts, as evidenced by immunofluorescence and nanoparticle tracking. Injections of the nanoscaffolding/cell system led to robust healing of the rat hearts that had been given small- and medium- damage heart attacks, outperforming PBS sham and cell

  6. Label-free identification and characterization of murine hair follicle stem cells located in thin tissue sections with Raman micro-spectroscopy.

    Science.gov (United States)

    Tsai, Tsung-Hua; Short, Michael A; McLean, David I; Zeng, Haishan; McElwee, Kevin; Lui, Harvey

    2014-06-07

    Stem cells offer tremendous opportunities for regenerative medicine. Over the past decade considerable research has taken place to identify and characterize the differentiation states of stem cells in culture. Raman micro-spectroscopy has emerged as an ideal technology since it is fast, nondestructive, and does not require potentially toxic dyes. Raman spectroscopy systems can also be incorporated into confocal microscope imaging systems allowing spectra to be obtained from below the tissue surface. Thus there is significant potential for monitoring stem cells in living tissue. Stem cells that reside in hair follicles are suitable for testing this possibility since they are close to the skin surface, and typically clustered around the bulge area. One of the first steps needed would be to obtain Raman micro-spectra from stem cells located in thin sections of tissue, and then see whether these spectra are clearly different from those of the surrounding differentiated cells. To facilitate this test, standard 5 μm thick sections of murine skin tissue were stained to identify the location of hair follicle stem cells and their progeny. Raman spectra were then obtained from adjacent cells in a subsequent unstained 10 μm thick section. The spectra revealed significant differences in peak intensities associated with nucleic acids, proteins, lipids and amino acids. Statistical analyses of the Raman micro-spectra identified stem cells with 98% sensitivity and 94% specificity, as compared with a CD34 immunostaining gold standard. Furthermore analyses of the spectral variance indicated differences in cellular dynamics between the two cell groups. This study shows that Raman micro-spectroscopy has a potential role in identifying adult follicle stem cells, laying the groundwork for future applications of hair follicle stem cells and other somatic stem cells in situ.

  7. Invited review: Pre- and postnatal adipose tissue development in farm animals: from stem cells to adipocyte physiology.

    Science.gov (United States)

    Louveau, I; Perruchot, M-H; Bonnet, M; Gondret, F

    2016-11-01

    Both white and brown adipose tissues are recognized to be differently involved in energy metabolism and are also able to secrete a variety of factors called adipokines that are involved in a wide range of physiological and metabolic functions. Brown adipose tissue is predominant around birth, except in pigs. Irrespective of species, white adipose tissue has a large capacity to expand postnatally and is able to adapt to a variety of factors. The aim of this review is to update the cellular and molecular mechanisms associated with pre- and postnatal adipose tissue development with a special focus on pigs and ruminants. In contrast to other tissues, the embryonic origin of adipose cells remains the subject of debate. Adipose cells arise from the recruitment of specific multipotent stem cells/progenitors named adipose tissue-derived stromal cells. Recent studies have highlighted the existence of a variety of those cells being able to differentiate into white, brown or brown-like/beige adipocytes. After commitment to the adipocyte lineage, progenitors undergo large changes in the expression of many genes involved in cell cycle arrest, lipid accumulation and secretory functions. Early nutrition can affect these processes during fetal and perinatal periods and can also influence or pre-determinate later growth of adipose tissue. How these changes may be related to adipose tissue functional maturity around birth and can influence newborn survival is discussed. Altogether, a better knowledge of fetal and postnatal adipose tissue development is important for various aspects of animal production, including neonatal survival, postnatal growth efficiency and health.

  8. Abnormal Wnt signaling and stem cell activation in reactive lymphoid tissue and low-grade marginal zone lymphoma.

    Science.gov (United States)

    Zhang, Da; O'neil, Maura F; Cunningham, Mark T; Fan, Fang; Olyaee, Mojtaba; Li, Linheng

    2010-05-01

    The variable natural history of mucosa-associated lymphoid tissue (MALT) lymphoma poses a challenge in predicting clinical outcome. Since Wnt signaling, as indicated by nuclear localization of beta-catenin, is believed to be key in stem cell activation and stem cell self-renewal, we explored the possibility that it might have a predictive value in marginal zone lymphoma. We chose to analyze pbeta-catenin-S552 because its nuclear localization by immunohistochemistry appears to coincide with Wnt signaling-initiated tumorigenesis in intestinal and hematopoietic tissues. Wnt signaling and activation was studied in 22 tissue samples of extranodal marginal zone lymphoma, atypical lymphoid hyperplasia, reactive lymphoid hyperplasia, and normal lymphoid tissue to determine whether Wnt signaling could help distinguish MALT lymphoma from benign lesions. Compared to normal or reactive lymphoid tissue, we found increased nuclear expression of localized pbeta-catenin-S552 in atypical lymphoid hyperplasia and extranodal marginal zone lymphoma. We show that the anti-pbeta-catenin-S552 antibody may be useful in diagnosing and monitoring the progression of or response to therapy of MALT lymphoma.

  9. Expandable and Rapidly Differentiating Human Induced Neural Stem Cell Lines for Multiple Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Dana M. Cairns

    2016-09-01

    Full Text Available Limited availability of human neurons poses a significant barrier to progress in biological and preclinical studies of the human nervous system. Current stem cell-based approaches of neuron generation are still hindered by prolonged culture requirements, protocol complexity, and variability in neuronal differentiation. Here we establish stable human induced neural stem cell (hiNSC lines through the direct reprogramming of neonatal fibroblasts and adult adipose-derived stem cells. These hiNSCs can be passaged indefinitely and cryopreserved as colonies. Independently of media composition, hiNSCs robustly differentiate into TUJ1-positive neurons within 4 days, making them ideal for innervated co-cultures. In vivo, hiNSCs migrate, engraft, and contribute to both central and peripheral nervous systems. Lastly, we demonstrate utility of hiNSCs in a 3D human brain model. This method provides a valuable interdisciplinary tool that could be used to develop drug screening applications as well as patient-specific disease models related to disorders of innervation and the brain.

  10. Nanolayered hybrid mediates synergistic co-delivery of ligand and ligation activator for inducing stem cell differentiation and tissue healing.

    Science.gov (United States)

    Kang, Heemin; Kim, Minkyu; Feng, Qian; Lin, Sien; Wei, Kongchang; Li, Rui; Choi, Chan Ju; Kim, Tae-Hyun; Li, Gang; Oh, Jae-Min; Bian, Liming

    2017-12-01

    Cellular behaviors, such as differentiation, are regulated by complex ligation processes involving cell surface receptors, which can be activated by various divalent metal cations. The design of nanoparticle for co-delivery of ligand and ligation activator can offer a novel strategy to synergistically stimulate ligation processes in vivo. Here, we present a novel layered double hydroxide (LDH)-based nanohybrid (MgFe-Ado-LDH), composed of layered MgFe hydroxide nanocarriers sandwiching the adenosine cargo molecule, maintained through an electrostatic balance, to co-deliver the adenosine (Ado) ligand from the interlayer spacing and the Mg 2+ ion (ligation activator) through the dissolution of the MgFe nanocarrier itself. Our findings demonstrate that the MgFe-Ado-LDH nanohybrid promoted osteogenic differentiation of stem cells through the synergistic activation of adenosine A2b receptor (A2bR) by the dual delivery of adenosine and Mg 2+ ions, outperforming direct supplementation of adenosine alone. Furthermore, the injection of the MgFe-Ado-LDH nanohybrid and stem cells embedded within hydrogels promoted the healing of rat tibial bone defects through the rapid formation of fully integrated neo-bone tissue through the activation of A2bR. The newly formed bone tissue displayed the key features of native bone, including calcification, mature tissue morphology, and vascularization. This study demonstrates a novel and effective strategy of bifunctional nanocarrier-mediated delivery of ligand (cargo molecule) and activation of its ligation to receptor by the nanocarrier itself for synergistically inducing stem cell differentiation and tissue healing in vivo, thus offering novel design of biomaterials for regenerative medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Fascia tissue engineering with human adipose-derived stem cells in a murine model: Implications for pelvic floor reconstruction.

    Science.gov (United States)

    Hung, Man-Jung; Wen, Mei-Chin; Huang, Ying-Ting; Chen, Gin-Den; Chou, Min-Min; Yang, Vivian Cheng

    2014-10-01

    Mesh-augmented vaginal surgery for treatment of pelvic organ prolapse (POP) does not meet patients' needs. This study aims to test the hypothesis that fascia tissue engineering using adipose-derived stem cells (ADSCs) might be a potential therapeutic strategy for reconstructing the pelvic floor. Human ADSCs were isolated, differentiated, and characterized in vitro. Both ADSCs and fibroblastic-differentiated ADSCs were used to fabricate tissue-engineered fascia equivalents, which were then transplanted under the back skin of experimental nude mice. ADSCs prepared in our laboratory were characterized as a group of mesenchymal stem cells. In vitro fibroblastic differentiation of ADSCs showed significantly increased gene expression of cellular collagen type I and elastin (p fascia equivalents could be traced up to 12 weeks after transplantation in the subsequent animal study. Furthermore, the histological outcomes differed with a thin (111.0 ± 19.8 μm) lamellar connective tissue or a thick (414.3 ± 114.9 μm) adhesive fibrous tissue formation between the transplantation of ADSCs and fibroblastic-differentiated ADSCs, respectively. Nonetheless, the implantation of a scaffold without cell seeding (the control group) resulted in a thin (102.0 ± 17.1 μm) fibrotic band and tissue contracture. Our results suggest the ADSC-seeded implant is better than the implant alone in enhancing tissue regeneration after transplantation. ADSCs with or without fibroblastic differentiation might have a potential but different role in fascia tissue engineering to repair POP in the future. Copyright © 2013. Published by Elsevier B.V.

  12. Human Induced Pluripotent Stem Cell-Derived Macrophages Share Ontogeny with MYB-Independent Tissue-Resident Macrophages

    Directory of Open Access Journals (Sweden)

    Julian Buchrieser

    2017-02-01

    Full Text Available Tissue-resident macrophages, such as microglia, Kupffer cells, and Langerhans cells, derive from Myb-independent yolk sac (YS progenitors generated before the emergence of hematopoietic stem cells (HSCs. Myb-independent YS-derived resident macrophages self-renew locally, independently of circulating monocytes and HSCs. In contrast, adult blood monocytes, as well as infiltrating, gut, and dermal macrophages, derive from Myb-dependent HSCs. These findings are derived from the mouse, using gene knockouts and lineage tracing, but their applicability to human development has not been formally demonstrated. Here, we use human induced pluripotent stem cells (iPSCs as a tool to model human hematopoietic development. By using a CRISPR-Cas9 knockout strategy, we show that human iPSC-derived monocytes/macrophages develop in an MYB-independent, RUNX1-, and SPI1 (PU.1-dependent fashion. This result makes human iPSC-derived macrophages developmentally related to and a good model for MYB-independent tissue-resident macrophages, such as alveolar and kidney macrophages, microglia, Kupffer cells, and Langerhans cells.

  13. Concave pit-containing scaffold surfaces improve stem cell-derived osteoblast performance and lead to significant bone tissue formation.

    Directory of Open Access Journals (Sweden)

    Antonio Graziano

    2007-06-01

    Full Text Available Scaffold surface features are thought to be important regulators of stem cell performance and endurance in tissue engineering applications, but details about these fundamental aspects of stem cell biology remain largely unclear.In the present study, smooth clinical-grade lactide-coglyolic acid 85:15 (PLGA scaffolds were carved as membranes and treated with NMP (N-metil-pyrrolidone to create controlled subtractive pits or microcavities. Scanning electron and confocal microscopy revealed that the NMP-treated membranes contained: (i large microcavities of 80-120 microm in diameter and 40-100 microm in depth, which we termed primary; and (ii smaller microcavities of 10-20 microm in diameter and 3-10 microm in depth located within the primary cavities, which we termed secondary. We asked whether a microcavity-rich scaffold had distinct bone-forming capabilities compared to a smooth one. To do so, mesenchymal stem cells derived from human dental pulp were seeded onto the two types of scaffold and monitored over time for cytoarchitectural characteristics, differentiation status and production of important factors, including bone morphogenetic protein-2 (BMP-2 and vascular endothelial growth factor (VEGF. We found that the microcavity-rich scaffold enhanced cell adhesion: the cells created intimate contact with secondary microcavities and were polarized. These cytological responses were not seen with the smooth-surface scaffold. Moreover, cells on the microcavity-rich scaffold released larger amounts of BMP-2 and VEGF into the culture medium and expressed higher alkaline phosphatase activity. When this type of scaffold was transplanted into rats, superior bone formation was elicited compared to cells seeded on the smooth scaffold.In conclusion, surface microcavities appear to support a more vigorous osteogenic response of stem cells and should be used in the design of therapeutic substrates to improve bone repair and bioengineering applications in the

  14. Improvement of In Vitro Osteogenic Potential through Differentiation of Induced Pluripotent Stem Cells from Human Exfoliated Dental Tissue towards Mesenchymal-Like Stem Cells

    Directory of Open Access Journals (Sweden)

    Felipe Augusto Andre Ishiy

    2015-01-01

    Full Text Available Constraints for the application of MSCs for bone reconstruction include restricted self-renewal and limited cell amounts. iPSC technology presents advantages over MSCs, providing homogeneous cellular populations with prolonged self-renewal and higher plasticity. However, it is unknown if the osteogenic potential of iPSCs differs from that of MSCs and if it depends on the iPSCs originating cellular source. Here, we compared the in vitro osteogenesis between stem cells from human deciduous teeth (SHED and MSC-like cells from iPSCs from SHED (iPS-SHED and from human dermal fibroblasts (iPS-FIB. MSC-like cells from iPS-SHED and iPS-FIB displayed fibroblast-like morphology, downregulation of pluripotency markers and upregulation of mesenchymal markers. Comparative in vitro osteogenesis analysis showed higher osteogenic potential in MSC-like cells from iPS-SHED followed by MSC-like cells from iPS-FIB and SHED. CD105 expression, reported to be inversely correlated with osteogenic potential in MSCs, did not display this pattern, considering that SHED presented lower CD105 expression. Higher osteogenic potential of MSC-like cells from iPS-SHED may be due to cellular homogeneity and/or to donor tissue epigenetic memory. Our findings strengthen the rationale for the use of iPSCs in bone bioengineering. Unveiling the molecular basis behind these differences is important for a thorough use of iPSCs in clinical scenarios.

  15. Aging, metabolism and stem cells: Spotlight on muscle stem cells.

    Science.gov (United States)

    García-Prat, Laura; Muñoz-Cánoves, Pura

    2017-04-15

    All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering

    Science.gov (United States)

    Zhou, Hongzhi; Xu, Hockin H. K.

    2011-01-01

    Stem cell-encapsulating hydrogel microbeads of several hundred microns in size suitable for injection, that could quickly degrade to release the cells, are currently unavailable. The objectives of this study were to: (1) develop oxidized alginate-fibrin microbeads encapsulating human umbilical cord mesenchymal stem cells (hUCMSCs); (2) investigate microbead degradation, cell release, and osteogenic differentiation of the released cells for the first time. Three types of microbeads were fabricated to encapsulate hUCMSCs: (1) Alginate microbeads; (2) oxidized alginate microbeads; (3) oxidized alginate-fibrin microbeads. Microbeads with sizes of about 100–500 µm were fabricated with 1×106 hUCMSCs/mL of alginate. For the alginate group, there was little microbead degradation, with very few cells released at 21 d. For oxidized alginate, the microbeads started to slightly degrade at 14 d. In contrast, the oxidized alginate-fibrin microbeads started to degrade at 4 d and released the cells. At 7 d, the number of released cells greatly increased and showed a healthy polygonal morphology. At 21 d, the oxidized alginate-fibrin group had a live cell density that was 4-fold that of the oxidized alginate group, and 15-fold that of the alginate group. The released cells had osteodifferentiation, exhibiting highly elevated bone marker gene expressions of ALP, OC, collagen I, and Runx2. Alizarin staining confirmed the synthesis of bone minerals by hUCMSCs, with the mineral concentration at 21 d being 10-fold that at 7 d. In conclusion, fast-degradable alginate-fibrin microbeads with hUCMSC encapsulation were developed that could start to degrade and release the cells at 4 d. The released hUCMSCs had excellent proliferation, osteodifferentiation, and bone mineral synthesis. The alginate-fibrin microbeads are promising to deliver stem cells inside injectable scaffolds to promote tissue regeneration. PMID:21757229

  17. Human adipose CD34+ CD90+ stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues.

    Science.gov (United States)

    Ferraro, Giuseppe A; De Francesco, Francesco; Nicoletti, Gianfranco; Paino, Francesca; Desiderio, Vincenzo; Tirino, Virginia; D'Andrea, Francesco

    2013-05-01

    Stem cell based therapies for the repair and regeneration of various tissues are of great interest for a high number of diseases. Adult stem cells, instead, are more available, abundant and harvested with minimally invasive procedures. In particular, mesenchymal stem cells (MSCs) are multi-potent progenitors, able to differentiate into bone, cartilage, and adipose tissues. Human adult adipose tissue seems to be the most abundant source of MSCs and, due to its easy accessibility; it is able to give a considerable amount of stem cells. In this study, we selected MSCs co-expressing CD34 and CD90 from adipose tissue. This stem cell population displayed higher proliferative capacity than CD34(-) CD90(-) cells and was able to differentiate in vitro into adipocytes (PPARγ(+) and adiponectin(+)) and endothelial cells (CD31(+) VEGF(+) Flk1(+)). In addition, in methylcellulose without VEGF, it formed a vascular network. The aim of this study was to investigate differentiation potential of human adipose CD34(+) /CD90(+) stem cells loaded onto commercial collagen sponges already used in clinical practice (Gingistat) both in vitro and in vivo. The results of this study clearly demonstrate that human adult adipose and loose connective tissues can be obtained in vivo, highlighting that CD34(+) /CD90 ASCs are extremely useful for regenerative medicine. Copyright © 2012 Wiley Periodicals, Inc.

  18. Potency of Stem Cells

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Potency of Stem Cells. Totipotent Stem Cells (Zygote + first 2 divisions). -Can form placenta, embryo, and any cell of the body. Pluripotent (Embryonic Stem Cells). -Can form any cell of the body but can not form placenta, hence no embryo. Multipotent (Adult stem cells).

  19. Projection Stereolithographic Fabrication of Human Adipose Stem Cell-incorporated Biodegradable Scaffolds for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Aaron X Sun

    2015-08-01

    Full Text Available Poor self-healing ability of cartilage necessitates the development of methods for cartilage regeneration. Scaffold construction with live stem cell incorporation and subsequent differentiation presents a promising route. Projection stereolithography (PSL offers high resolution and processing speed as well as the ability to fabricate scaffolds that precisely fit the anatomy of cartilage defects using medical imaging as the design template. We report here the use of a visible-light based PSL (VL-PSL system to encapsulate human adipose-derived stem cells (hASCs into a biodegradable polymer (poly-D,L-lactic acid/polyethylene glycol/ poly-D,L-lactic acid (PDLLA-PEG/hyaluronic acid (HA matrix to produce live cell constructs with customized architectures. After fabrication, hASCs showed high viability (84% and were uniformly distributed throughout the constructs, which possessed high mechanical property with a compressive modulus of 780 kPa. The hASC-seeded constructs were then cultured in Control or TGF-β3-containing chondrogenic medium for up to 28 days. In chondrogenic medium treated group (TGF-β3 group hASCs maintained 77% viability and expressed chondrogenic genes Sox9, collagen type II, and aggrecan at 11, 232, and 2.29 x 10(5 fold increases, respectively, compared to levels at day 0 in non-chondrogenic medium. The TGF-β3 group also produced a collagen type II and glycosaminoglycan (GAG-rich extracellular matrix, detected by immunohistochemistry, and Alcian blue and Safranin O staining suggesting robust chondrogenesis within the scaffold. Without chondroinductive addition (Control group, cell viability decreased with time (65% at 28 days and showed poor cartilage matrix deposition. After 28 days, mechanical strength of the TGF-β3 group remained high at 240 kPa. Thus, the PSL- and PLLA-PEG/HA based fabrication method using adult stem cells is a promising approach in producing mechanically competent engineered cartilage for joint cartilage

  20. Wnt and BMP signaling crosstalk in regulating dental stem cells: Implications in dental tissue engineering

    OpenAIRE

    Fugui Zhang; Jinlin Song; Hongmei Zhang; Enyi Huang; Dongzhe Song; Viktor Tollemar; Jing Wang; Jinhua Wang; Maryam Mohammed; Qiang Wei; Jiaming Fan; Junyi Liao; Yulong Zou; Feng Liu; Xue Hu

    2016-01-01

    Tooth is a complex hard tissue organ and consists of multiple cell types that are regulated by important signaling pathways such as Wnt and BMP signaling. Serious injuries and/or loss of tooth or periodontal tissues may significantly impact aesthetic appearance, essential oral functions and the quality of life. Regenerative dentistry holds great promise in treating oral/dental disorders. The past decade has witnessed a rapid expansion of our understanding of the biological features of dental ...

  1. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rauner, Gat, E-mail: gat.rauner@mail.huji.ac.il [Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan, 50250 (Israel); The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem (Israel); Barash, Itamar, E-mail: itamar.barash@mail.huji.ac.il [Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan, 50250 (Israel)

    2014-10-15

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth.