WorldWideScience

Sample records for tissue sections prepared

  1. Glycomic profiling of tissue sections by LC-MS.

    Science.gov (United States)

    Hu, Yunli; Zhou, Shiyue; Khalil, Sarah I; Renteria, Calvin L; Mechref, Yehia

    2013-04-16

    Because routine preparation of glycan samples involves multiple reaction and cleaning steps at which sample loss occurs, glycan analysis is typically performed using large tissue samples. This type of analysis yields no detailed molecular spatial information and requires special care to maintain proper storage and shipping conditions. We describe here a new glycan sample preparation protocol using minimized sample preparation steps and optimized procedures. Tissue sections and spotted samples first undergo on-surface enzymatic digestion to release N-glycans. The released glycans are then reduced and permethylated prior to online purification and LC-electrospray ionization (ESI)-MS analysis. The efficiency of this protocol was initially evaluated using model glycoproteins and human blood serum (HBS) spotted on glass or Teflon slides. The new protocol permitted the detection of permethylated N-glycans derived from 10 ng RNase B. On the other hand, 66 N-glycans were identified when injecting the equivalent of permethylated glycans derived from a 0.1-μL aliquot of HBS. On-tissue enzymatic digestion of nude mouse brain tissue permitted the detection of 43 N-glycans. The relative peak areas of these 43 glycans were comparable to those from a C57BL/6 mouse reported by the Consortium for Functional Glycomics (CFG). However, the sample size analyzed in the protocol described here was substantially smaller than for the routine method (submicrogram vs mg). The on-tissue N-glycan profiling method permits high sensitivity and reproducibility and can be widely applied to assess the spatial distribution of glycans associated with tissue sections, and may be correlated with immunoflourescence imaging when adjacent tissue sections are analyzed.

  2. Imaging of tissue sections with very slow electrons

    Energy Technology Data Exchange (ETDEWEB)

    Frank, L., E-mail: ludek@isibrno.cz [Institute of Scientific Instruments AS CR, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); Nebesářová, J.; Vancová, M. [Biology Centre AS CR, v.v.i., Branišovská 31, 37005 České Budějovice (Czech Republic); Paták, A.; Müllerová, I. [Institute of Scientific Instruments AS CR, v.v.i., Královopolská 147, 61264 Brno (Czech Republic)

    2015-01-15

    The examination of thin sections of tissues with electron microscopes is an indispensable tool. Being composed of light elements, samples of living matter illuminated with electrons at the usual high energies of tens or even hundreds of kiloelectronvolts provide very low image contrasts in transmission or scanning transmission electron microscopes. Therefore, heavy metal salts are added to the specimen during preparation procedures (post-fixation with osmium tetroxide or staining). However, these procedures can modify or obscure the ultrastructural details of cells. Here we show that the energy of electrons used for the scanned transmission imaging of tissue sections can be reduced to mere hundreds or even tens of electronvolts and can produce extremely high contrast even for samples free of any metal salts. We found that when biasing a sufficiently thin tissue section sample to a high negative potential in a scanning transmission electron microscope, thereby reducing the energy of the electrons landing on the sample, and collecting the transmitted electrons with a grounded detector, we obtain a high contrast revealing structure details not enhanced by heavy atoms. Moreover, bombardment with slow electrons sensitively depolymerises the resin in which the tissue is embedded, thereby enhancing the transmitted signal with no observable loss of structure details. The use of low-energy electrons requires ultrathin sections of a thickness of less than 10 nm, but their preparation is now possible. Ultralow energy STEM provides a tool enabling the observation of very thin biological samples without any staining. This method should also be advantageous for examination of 2D crystals, thin films of polymers, polymer blends, etc. - Highlights: • Sections of a thickness below 10 nm were imaged in STEM at hundreds and tens of eV. • Image contrast grows steeply with decreasing electron energy in the STEM. • Very slow electrons provide high contrast for samples free of

  3. Improved resolution by mounting of tissue sections for laser microdissection.

    Science.gov (United States)

    van Dijk, M C R F; Rombout, P D M; Dijkman, H B P M; Ruiter, D J; Bernsen, M R

    2003-08-01

    Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. To develop a mounting method that greatly improves the morphological quality of tissue sections for laser microbeam microdissection purposes so that the identification of target cells can be facilitated. Fresh frozen tissue and formalin fixed, paraffin wax embedded tissue specimens were used to test the morphological quality of mounted and unmounted tissue. The mounting solution consisted of an adhesive gum and blue ink diluted in water. Interference of the mounting solution with DNA quality was analysed by the polymerase chain reaction using 10-2000 cells isolated by microdissection from mounted and unmounted tissue. The mounting solution greatly improved the morphology of tissue sections for laser microdissection purposes and had no detrimental effects on the isolation and efficiency of amplification of DNA. One disadvantage was that the mounting solution reduced the cutting efficiency of the ultraviolet laser. To minimise this effect, the mounting solution should be diluted as much as possible. Furthermore, the addition of blue ink to the mounting medium restores the cutting efficiency of the laser. The mounting solution is easy to prepare and apply and can be combined with various staining methods without compromising the quality of the DNA extracted.

  4. Sample Preparation of Corn Seed Tissue to Prevent Analyte Relocations for Mass Spectrometry Imaging

    Science.gov (United States)

    Kim, Shin Hye; Kim, Jeongkwon; Lee, Young Jin; Lee, Tae Geol; Yoon, Sohee

    2017-08-01

    Corn seed tissue sections were prepared by the tape support method using an adhesive tape, and mass spectrometry imaging (MSI) was performed. The effect of heat generated during sample preparation was investigated by time-of-flight secondary mass spectrometry (TOF-SIMS) imaging of corn seed tissue prepared by the tape support and the thaw-mounted methods. Unlike thaw-mounted sample preparation, the tape support method does not cause imaging distortion because of the absence of heat, which can cause migration of the analytes on the sample. By applying the tape-support method, the corn seed tissue was prepared without structural damage and MSI with accurate spatial information of analytes was successfully performed.

  5. Sample Preparation of Corn Seed Tissue to Prevent Analyte Relocations for Mass Spectrometry Imaging.

    Science.gov (United States)

    Kim, Shin Hye; Kim, Jeongkwon; Lee, Young Jin; Lee, Tae Geol; Yoon, Sohee

    2017-08-01

    Corn seed tissue sections were prepared by the tape support method using an adhesive tape, and mass spectrometry imaging (MSI) was performed. The effect of heat generated during sample preparation was investigated by time-of-flight secondary mass spectrometry (TOF-SIMS) imaging of corn seed tissue prepared by the tape support and the thaw-mounted methods. Unlike thaw-mounted sample preparation, the tape support method does not cause imaging distortion because of the absence of heat, which can cause migration of the analytes on the sample. By applying the tape-support method, the corn seed tissue was prepared without structural damage and MSI with accurate spatial information of analytes was successfully performed. Graphical Abstract ᅟ.

  6. Grinding and polishing instead of sectioning for the tissue samples with a graft: Implications for light and electron microscopy.

    Science.gov (United States)

    Mukhamadiyarov, Rinat A; Sevostyanova, Victoria V; Shishkova, Daria K; Nokhrin, Andrey V; Sidorova, Olga D; Kutikhin, Anton G

    2016-06-01

    A broad use of the graft replacement requires a detailed investigation of the host-graft interaction, including both histological examination and electron microscopy. A high quality sectioning of the host tissue with a graft seems to be complicated; in addition, it is difficult to examine the same tissue area by both of the mentioned microscopy techniques. To solve these problems, we developed a new technique of epoxy resin embedding with the further grinding, polishing, and staining. Graft-containing tissues prepared by grinding and polishing preserved their structure; however, sectioning frequently required the explantation of the graft and led to tissue disintegration. Moreover, stained samples prepared by grinding and polishing may then be assessed by both light microscopy and backscattered scanning electron microscopy. Therefore, grinding and polishing outperform sectioning when applied to the tissues with a graft. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Cardiac tissue slices: preparation, handling, and successful optical mapping.

    Science.gov (United States)

    Wang, Ken; Lee, Peter; Mirams, Gary R; Sarathchandra, Padmini; Borg, Thomas K; Gavaghan, David J; Kohl, Peter; Bollensdorff, Christian

    2015-05-01

    Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands ("fibers") in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics. Copyright © 2015 the American Physiological Society.

  8. Final LDRD report : development of sample preparation methods for ChIPMA-based imaging mass spectrometry of tissue samples.

    Energy Technology Data Exchange (ETDEWEB)

    Maharrey, Sean P.; Highley, Aaron M.; Behrens, Richard, Jr.; Wiese-Smith, Deneille

    2007-12-01

    The objective of this short-term LDRD project was to acquire the tools needed to use our chemical imaging precision mass analyzer (ChIPMA) instrument to analyze tissue samples. This effort was an outgrowth of discussions with oncologists on the need to find the cellular origin of signals in mass spectra of serum samples, which provide biomarkers for ovarian cancer. The ultimate goal would be to collect chemical images of biopsy samples allowing the chemical images of diseased and nondiseased sections of a sample to be compared. The equipment needed to prepare tissue samples have been acquired and built. This equipment includes an cyro-ultramicrotome for preparing thin sections of samples and a coating unit. The coating unit uses an electrospray system to deposit small droplets of a UV-photo absorbing compound on the surface of the tissue samples. Both units are operational. The tissue sample must be coated with the organic compound to enable matrix assisted laser desorption/ionization (MALDI) and matrix enhanced secondary ion mass spectrometry (ME-SIMS) measurements with the ChIPMA instrument Initial plans to test the sample preparation using human tissue samples required development of administrative procedures beyond the scope of this LDRD. Hence, it was decided to make two types of measurements: (1) Testing the spatial resolution of ME-SIMS by preparing a substrate coated with a mixture of an organic matrix and a bio standard and etching a defined pattern in the coating using a liquid metal ion beam, and (2) preparing and imaging C. elegans worms. Difficulties arose in sectioning the C. elegans for analysis and funds and time to overcome these difficulties were not available in this project. The facilities are now available for preparing biological samples for analysis with the ChIPMA instrument. Some further investment of time and resources in sample preparation should make this a useful tool for chemical imaging applications.

  9. Preparation and Observation of Fresh-frozen Sections of the Green Fluorescent Protein Transgenic Mouse Head

    International Nuclear Information System (INIS)

    Tada, Masahito; Shinohara, Yoshinori; Kato, Ichiro; Hiraga, Koichi; Aizawa, Tomoyasu; Demura, Makoto; Mori, Yoshihiro; Shinoda, Hiroyuki; Mizuguchi, Mineyuki; Kawano, Keiichi

    2006-01-01

    Hard tissue decalcification can cause variation in the constituent protein characteristics. This paper describes a method of preparating of frozen mouse head sections so as to clearly observe the nature of the constituent proteins. Frozen sections of various green fluorescent protein (GFP) transgenic mouse heads were prepared using the film method developed by Kawamoto and Shimizu. This method made specimen dissection without decalcification possible, wherein GFP was clearly observed in an undamaged state. Conversely, using the same method with decalcification made GFP observation in the transgenic mouse head difficult. This new method is suitable for observing GFP marked cells, enabling us to follow the transplanted GFP marked cells within frozen head sections

  10. Preparation of tissue samples for X-ray fluorescence microscopy

    International Nuclear Information System (INIS)

    Chwiej, Joanna; Szczerbowska-Boruchowska, Magdalena; Lankosz, Marek; Wojcik, Slawomir; Falkenberg, Gerald; Stegowski, Zdzislaw; Setkowicz, Zuzanna

    2005-01-01

    As is well-known, trace elements, especially metals, play an important role in the pathogenesis of many disorders. The topographic and quantitative elemental analysis of pathologically changed tissues may shed some new light on processes leading to the degeneration of cells in the case of selected diseases. An ideal and powerful tool for such purpose is the Synchrotron Microbeam X-ray Fluorescence technique. It enables the carrying out of investigations of the elemental composition of tissues even at the single cell level. The tissue samples for histopathological investigations are routinely fixed and embedded in paraffin. The authors try to verify the usefulness of such prepared tissue sections for elemental analysis with the use of X-ray fluorescence microscopy. Studies were performed on rat brain samples. Changes in elemental composition caused by fixation in formalin or paraformaldehyde and embedding in paraffin were examined. Measurements were carried out at the bending magnet beamline L of the Hamburger Synchrotronstrahlungslabor HASYLAB in Hamburg. The decrease in mass per unit area of K, Br and the increase in P, S, Fe, Cu and Zn in the tissue were observed as a result of the fixation. For the samples embedded in paraffin, a lower level of most elements was observed. Additionally, for these samples, changes in the composition of some elements were not uniform for different analyzed areas of rat brain

  11. Preparation of tissue samples for X-ray fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chwiej, Joanna [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland)]. E-mail: jchwiej@novell.ftj.agh.edu.pl; Szczerbowska-Boruchowska, Magdalena [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Lankosz, Marek [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Wojcik, Slawomir [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Falkenberg, Gerald [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron, Notkestr. 85, Hamburg (Germany); Stegowski, Zdzislaw [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Setkowicz, Zuzanna [Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Cracow (Poland)

    2005-12-15

    As is well-known, trace elements, especially metals, play an important role in the pathogenesis of many disorders. The topographic and quantitative elemental analysis of pathologically changed tissues may shed some new light on processes leading to the degeneration of cells in the case of selected diseases. An ideal and powerful tool for such purpose is the Synchrotron Microbeam X-ray Fluorescence technique. It enables the carrying out of investigations of the elemental composition of tissues even at the single cell level. The tissue samples for histopathological investigations are routinely fixed and embedded in paraffin. The authors try to verify the usefulness of such prepared tissue sections for elemental analysis with the use of X-ray fluorescence microscopy. Studies were performed on rat brain samples. Changes in elemental composition caused by fixation in formalin or paraformaldehyde and embedding in paraffin were examined. Measurements were carried out at the bending magnet beamline L of the Hamburger Synchrotronstrahlungslabor HASYLAB in Hamburg. The decrease in mass per unit area of K, Br and the increase in P, S, Fe, Cu and Zn in the tissue were observed as a result of the fixation. For the samples embedded in paraffin, a lower level of most elements was observed. Additionally, for these samples, changes in the composition of some elements were not uniform for different analyzed areas of rat brain.

  12. Tissue culture of surgically prepared temporalis fascia.

    Science.gov (United States)

    Walby, A P; Kerr, A G; Nevin, N C; Woods, G

    1982-10-01

    Temporalis fascia which is used to graft the tympanic membrane has been shown to be viable in tissue culture by a previous pilot study. This present study reports the effect on the viability of the fascia by scraping loose connective tissue from it and allowing it to dry. Pieces of fascia from 30 patients were each divided in 4 and prepared to give explants, fresh, fresh and scraped, dried, and dried and scraped. The fascia grew from 17 patients when cultured fresh, 5 when fresh and scraped, 1 when dried, and none when dried and scraped. These results are significantly different and show that the fascia is devitilized when prepared by the normal method for use in tympanoplasty.

  13. Rapid in vivo vertical tissue sectioning by multiphoton tomography

    Science.gov (United States)

    Batista, Ana; Breunig, Hans Georg; König, Karsten

    2018-02-01

    A conventional tool in the pathological field is histology which involves the analysis of thin sections of tissue in which specific cellular structures are stained with different dyes. The process to obtain these stained tissue sections is time consuming and invasive as it requires tissue removal, fixation, sectioning, and staining. Moreover, imaging of live tissue is not possible. We demonstrate that multiphoton tomography can provide within seconds, non-invasive, label-free, vertical images of live tissue which are in quality similar to conventional light micrographs of histologic stained specimen. In contrast to conventional setups based on laser scanning which image horizontally sections, the vertical in vivo images are directly recorded by combined line scanning and timed adjustments of the height of the focusing optics. In addition, multiphoton tomography provides autofluorescence lifetimes which can be used to determine the metabolic states of cells.

  14. Aspects of Quantitation in Mass Spectrometry Imaging Investigated on Cryo-Sections of Spiked Tissue Homogenates

    DEFF Research Database (Denmark)

    Hansen, Heidi Toft; Janfelt, Christian

    2016-01-01

    for differences in tissue types in, for example, whole-body imaging, a set of tissue homogenates of different tissue types (lung, liver, kidney, heart, and brain) from rabbit was spiked to the same concentration with the drug amitriptyline and imaged in the same experiment using isotope labeled amitriptyline...... for these results range approximately within a factor of 3 (but for other compounds in other tissues could be higher), underscore the importance of preparing the standard curve in the same matrix as the unknown sample whenever possible. In, for example, whole-body imaging where a diversity of tissue types...... are present, this variation across tissue types will therefore add to the overall uncertainty in quantitation. The tissue homogenates were also used in a characterization of various phenomena in quantitative MSI, such as to study how the signal depends of the thickness of the cryo-section, and to assess...

  15. Aspects of Quantitation in Mass Spectrometry Imaging Investigated on Cryo-Sections of Spiked Tissue Homogenates.

    Science.gov (United States)

    Hansen, Heidi Toft; Janfelt, Christian

    2016-12-06

    Internal standards have been introduced in quantitative mass spectrometry imaging in order to compensate for differences in intensities throughout an image caused by, for example, difference in ion suppression or analyte extraction efficiency. To test how well the internal standards compensate for differences in tissue types in, for example, whole-body imaging, a set of tissue homogenates of different tissue types (lung, liver, kidney, heart, and brain) from rabbit was spiked to the same concentration with the drug amitriptyline and imaged in the same experiment using isotope labeled amitriptyline as internal standard. The results showed, even after correction with internal standard, significantly lower intensities from brain and to some extent also lung tissue, differences which may be ascribed to binding of the drug to proteins or lipids as known from traditional bioanalysis. The differences, which for these results range approximately within a factor of 3 (but for other compounds in other tissues could be higher), underscore the importance of preparing the standard curve in the same matrix as the unknown sample whenever possible. In, for example, whole-body imaging where a diversity of tissue types are present, this variation across tissue types will therefore add to the overall uncertainty in quantitation. The tissue homogenates were also used in a characterization of various phenomena in quantitative MSI, such as to study how the signal depends of the thickness of the cryo-section, and to assess the accuracy of calibration by droplet deposition. For experiments on liver tissue, calibration by spiked tissue homogenates and droplet deposition was found to provide highly similar results and in both cases linearity with R 2 values of 0.99. In the process, a new method was developed for preparation of standard curves of spiked tissue homogenates, based on the drilling of holes in a block of frozen liver homogenate, providing easy cryo-slicing and good quantitative

  16. Analysis of Chloroquine and Metabolites Directly from Whole-body Animal Tissue Sections by Liquid Extraction Surface Analysis (LESA) and Tandem Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Parson, Whitney B [ORNL; Koeniger, Stormy L [Abbott Laboratories; Johnson, Robert W [Abbott Laboratories; Erickson, Jamie [Abbott Laboratories; Tian, Yu [Abbott Laboratories; Stedman, Christopher A. [Abbott Laboratories; Schwartz, Annette [Abbott Laboratories; Tarcsa, Edit [Abbott Laboratories; Cole, Roderic [ORNL; Van Berkel, Gary J [ORNL

    2012-01-01

    The rapid and direct analysis of the amount and spatial distribution of exogenous chloroquine and chloroquine metabolites from tissue sections by liquid extraction surface sampling analysis coupled with tandem mass spectrometry (LESA-MS) was demonstrated. LESA-MS results compared well with previously published chloroquine quantification data collected by organ excision, extraction and fluorescent detection. The ability to directly sample and analyze spatially-resolved exogenous molecules from tissue sections with minimal sample preparation and analytical method development has the potential to facilitate the assessment of target tissue penetration of pharmaceutical compounds, to establish pharmacokinetic/pharmacodynamic (PK/PD) relationships, and to complement established pharmacokinetic methods used in the drug discovery process during tissue distribution assessment.

  17. Direct molecular analysis of whole-body animal tissue sections by MALDI imaging mass spectrometry.

    Science.gov (United States)

    Reyzer, Michelle L; Chaurand, Pierre; Angel, Peggi M; Caprioli, Richard M

    2010-01-01

    The determination of the localization of various compounds in a whole animal is valuable for many applications, including pharmaceutical absorption, distribution, metabolism, and excretion (ADME) studies and biomarker discovery. Imaging mass spectrometry is a powerful tool for localizing compounds of biological interest with molecular specificity and relatively high resolution. Utilizing imaging mass spectrometry for whole-body animal sections offers considerable analytical advantages compared to traditional methods, such as whole-body autoradiography, but the experiment is not straightforward. This chapter addresses the advantages and unique challenges that the application of imaging mass spectrometry to whole-body animal sections entails, including discussions of sample preparation, matrix application, signal normalization, and image generation. Lipid and protein images obtained from whole-body tissue sections of mouse pups are presented along with detailed protocols for the experiments.

  18. Improved resolution by mounting of tissue sections for laser microdissection.

    NARCIS (Netherlands)

    Dijk, M.C.R.F. van; Rombout, P.D.M.; Dijkman, H.B.P.M.; Ruiter, D.J.; Bernsen, M.R.

    2003-01-01

    BACKGROUND: Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. AIMS: To develop a mounting method that greatly

  19. 76 FR 63574 - Tax Return Preparer Penalties Under Section 6695; Correction

    Science.gov (United States)

    2011-10-13

    ... Tax Return Preparer Penalties Under Section 6695; Correction AGENCY: Internal Revenue Service (IRS... to the tax return preparer penalties under section 6695 of the Internal Revenue Code. The proposed regulations are necessary to monitor and to improve compliance with the tax return preparer due to diligence...

  20. Raman molecular imaging of brain frozen tissue sections.

    Science.gov (United States)

    Kast, Rachel E; Auner, Gregory W; Rosenblum, Mark L; Mikkelsen, Tom; Yurgelevic, Sally M; Raghunathan, Aditya; Poisson, Laila M; Kalkanis, Steven N

    2014-10-01

    Raman spectroscopy provides a molecular signature of the region being studied. It is ideal for neurosurgical applications because it is non-destructive, label-free, not impacted by water concentration, and can map an entire region of tissue. The objective of this paper is to demonstrate the meaningful spatial molecular information provided by Raman spectroscopy for identification of regions of normal brain, necrosis, diffusely infiltrating glioma and solid glioblastoma (GBM). Five frozen section tissues (1 normal, 1 necrotic, 1 GBM, and 2 infiltrating glioma) were mapped in their entirety using a 300-µm-square step size. Smaller regions of interest were also mapped using a 25-µm step size. The relative concentrations of relevant biomolecules were mapped across all tissues and compared with adjacent hematoxylin and eosin-stained sections, allowing identification of normal, GBM, and necrotic regions. Raman peaks and peak ratios mapped included 1003, 1313, 1431, 1585, and 1659 cm(-1). Tissue maps identified boundaries of grey and white matter, necrosis, GBM, and infiltrating tumor. Complementary information, including relative concentration of lipids, protein, nucleic acid, and hemoglobin, was presented in a manner which can be easily adapted for in vivo tissue mapping. Raman spectroscopy can successfully provide label-free imaging of tissue characteristics with high accuracy. It can be translated to a surgical or laboratory tool for rapid, non-destructive imaging of tumor margins.

  1. Research on terahertz properties of rat brain tissue sections during dehydration

    Science.gov (United States)

    Cui, Gangqiang; Liang, Jianfeng; Zhao, Hongwei; Zhao, Xianghui; Chang, Chao

    2018-01-01

    Biological tissue sections are always kept in a system purged with dry nitrogen for the measurement of terahertz spectrum. However, the injected nitrogen will cause dehydration of tissue sections, which will affect the accuracy of spectrum measurement. In this paper, terahertz time-domain spectrometer is used to measure the terahertz spectra of rat brain tissue sections during dehydration. The changes of terahertz properties, including terahertz transmittance, refractive index and extinction coefficient during dehydration are also analyzed. The amplitudes of terahertz time-domain spectra increase gradually during the dehydration process. Besides, the terahertz properties show obvious changes during the dehydration process. All the results indicate that the injected dry nitrogen has a significant effect on the terahertz spectra and properties of tissue sections. This study contributes to further research and application of terahertz technology in biomedical field.

  2. Gold internal standard correction for elemental imaging of soft tissue sections by LA-ICP-MS: element distribution in eye microstructures.

    Science.gov (United States)

    Konz, Ioana; Fernández, Beatriz; Fernández, M Luisa; Pereiro, Rosario; González, Héctor; Alvarez, Lydia; Coca-Prados, Miguel; Sanz-Medel, Alfredo

    2013-04-01

    Laser ablation coupled to inductively coupled plasma mass spectrometry has been developed for the elemental imaging of Mg, Fe and Cu distribution in histological tissue sections of fixed eyes, embedded in paraffin, from human donors (cadavers). This work presents the development of a novel internal standard correction methodology based on the deposition of a homogeneous thin gold film on the tissue surface and the use of the (197)Au(+) signal as internal standard. Sample preparation (tissue section thickness) and laser conditions were carefully optimized, and internal normalisation using (197)Au(+) was compared with (13)C(+) correction for imaging applications. (24)Mg(+), (56)Fe(+) and (63)Cu(+) distributions were investigated in histological sections of the anterior segment of the eye (including the iris, ciliary body, cornea and trabecular meshwork) and were shown to be heterogeneously distributed along those tissue structures. Reproducibility was assessed by imaging different human eye sections from the same donor and from ten different eyes from adult normal donors, which showed that similar spatial maps were obtained and therefore demonstrate the analytical potential of using (197)Au(+) as internal standard. The proposed analytical approach could offer a robust tool with great practical interest for clinical studies, e.g. to investigate trace element distribution of metals and their alterations in ocular diseases.

  3. Technical advances in the sectioning of dental tissue and of on-section cross-linked collagen detection in mineralized teeth.

    Science.gov (United States)

    Singhrao, Sim K; Sloan, Alastair J; Smith, Emma L; Archer, Charles W

    2010-08-01

    Immunohistochemical detection of cross-linked fibrillar collagens in mineralized tissues is much desired for exploring the mechanisms of biomineralization in health and disease. Mineralized teeth are impossible to section when embedded in conventional media, thus limiting on-section characterization of matrix proteins by immunohistochemistry. We hypothesized that by using an especially formulated acrylic resin suitable for mineralized dental tissues, not only sectioning of teeth would be possible, but also our recently developed immunofluorescence labeling technique would be amenable to fully calcified tissues for characterization of dentinal fibrillar collagens, which remains elusive. The hypothesis was tested on fixed rodent teeth embedded in Technovit 9100 New. It was possible to cut thin (1 mum) sections of mineralized teeth, and immunofluorescence characterization of cross-linked type I fibrillar collagen was selected due to its abundance in dentine. Decalcified samples of teeth embedded in paraffin wax were also used to compare immunolabeling from either method using the same immunoreagents in equivalent concentrations. In the decalcified tissue sections, type I collagen labeling in the dentine along the tubules was "patchy" and the signal in the predentine was very weak. However, enhanced signal in mineralized samples with type I collagen was detected not only in the predentine but also at the limit between intertubular dentine, within the elements of the enamel organ and subgingival stroma. This report offers advances in sectioning mineralized dental tissues and allows the application of immunofluorescence not only for on-section protein detection but importantly for detecting cross-linked fibrous collagens in both soft and mineralized tissue sections.

  4. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review

    Science.gov (United States)

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites. PMID:26904042

  5. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review.

    Science.gov (United States)

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites.

  6. Conductive carbon tape used for support and mounting of both whole animal and fragile heat-treated tissue sections for MALDI MS imaging and quantitation.

    Science.gov (United States)

    Goodwin, Richard J A; Nilsson, Anna; Borg, Daniel; Langridge-Smith, Pat R R; Harrison, David J; Mackay, C Logan; Iverson, Suzanne L; Andrén, Per E

    2012-08-30

    Analysis of whole animal tissue sections by MALDI MS imaging (MSI) requires effective sample collection and transfer methods to allow the highest quality of in situ analysis of small or hard to dissect tissues. We report on the use of double-sided adhesive conductive carbon tape during whole adult rat tissue sectioning of carboxymethyl cellulose (CMC) embedded animals, with samples mounted onto large format conductive glass and conductive plastic MALDI targets, enabling MSI analysis to be performed on both TOF and FT-ICR MALDI mass spectrometers. We show that mounting does not unduly affect small molecule MSI detection by analyzing tiotropium abundance and distribution in rat lung tissues, with direct on-tissue quantitation achieved. Significantly, we use the adhesive tape to provide support to embedded delicate heat-stabilized tissues, enabling sectioning and mounting to be performed that maintained tissue integrity on samples that had previously been impossible to adequately prepare section for MSI analysis. The mapping of larger peptidomic molecules was not hindered by tape mounting samples and we demonstrate this by mapping the distribution of PEP-19 in both native and heat-stabilized rat brains. Furthermore, we show that without heat stabilization PEP-19 degradation fragments can detected and identified directly by MALDI MSI analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. STEM mode in the SEM for the analysis of cellular sections prepared by ultramicrotome sectioning

    International Nuclear Information System (INIS)

    Hondow, N; Harrington, J; Brydson, R; Brown, A

    2012-01-01

    The use of the dual imaging capabilities of a scanning electron microscope fitted with a transmitted electron detector is highlighted in the analysis of samples with importance in the field of nanotoxicology. Cellular uptake of nanomaterials is often examined by transmission electron microscopy of thin sections prepared by ultramicrotome sectioning. Examination by SEM allows for the detection of artefacts caused by sample preparation (eg. nanomaterial pull-out) and the complementary STEM mode permits study of the interaction between nanomaterials and cells. Thin sections of two nanomaterials of importance in nanotoxicology (cadmium selenide quantum dots and single walled carbon nanotubes) are examined using STEM mode in the SEM.

  8. [PREPARATION OF HUMAN TISSUE PROTEIN EXTRACTS ENRICHED WITH THE SPHINGOMYELIN SYNTHASE 1].

    Science.gov (United States)

    Sudarkina, O Yu; Dergunova, L V

    2015-01-01

    Sphingomyelin synthase 1 (SMS 1) catalyzes sphingomyelin biosynthesis in eukaryotic cells. We previously studied the structure of the human SGMS1 gene, which encodes the enzyme and its numerous transcripts. The tissue-specific expression of the transcripts was also described. Analysis of the SMS1 protein expression in human tissues using immunoblotting of tissue extracts prepared in the RIPA (Radio Immuno-Precipitation Assay) buffer revealed a weak signal in renal cortex, testis, lung, and no signal in placenta and lymphatic node. In this work, a new method of preparation of the tissue protein extracts enriched with SMS1 was suggested. The method based on the consecutive extraction with a buffer containing 0.05 and 1 mg/ml of the Quillaja saponaria saponin allowed SMS1 to be detected in all tissues tested. The SMS1 content in the saponin extract of kidney cortex is about 12-fold higher compared to the RIPA extraction procedure.

  9. A study on preparation of cross sectional anatomy specimen of cadaver

    International Nuclear Information System (INIS)

    Im, C. K.; Choi, B. I.; Park, J. H.; Chang, K. H.; Yeon, K. M.; Han, M. C.; Kim, C. W.

    1984-01-01

    With the advent of cross sectional image of CT, ultrasound and magnetic resonance, the need for knowledge of cross sectional anatomy is stranger than ever. To meet this need, preparation of cross sectional anatomy specimen using cadaver is indispensable, not only because it tis the real cut surface anatomy but also because overt limitations of radiographic image in both contrast and special resolution. Authors prepared cross sectional anatomy specimen using a male cadaver, comprising photographs and slides of the 60 cross cut slices from the head to the pelvis. After photography, each slices was embedded using transparent resin allowing permanent preservation of specimen without altering its original architecture. Author's unique method of preparation is presented and 4 representative specimens are illustrated comparing cadaver's CT image, cross cut surface photography, and photography of resin embedded slice of the same cut surface.

  10. Evaporation process in histological tissue sections for neutron autoradiography.

    Science.gov (United States)

    Espector, Natalia M; Portu, Agustina; Santa Cruz, Gustavo A; Saint Martin, Gisela

    2018-05-01

    The analysis of the distribution and density of nuclear tracks forming an autoradiography in a nuclear track detector (NTD) allows the determination of 10 B atoms concentration and location in tissue samples from Boron Neutron Capture Therapy (BNCT) protocols. This knowledge is of great importance for BNCT dosimetry and treatment planning. Tissue sections studied with this technique are obtained by cryosectioning frozen tissue specimens. After the slicing procedure, the tissue section is put on the NTD and the sample starts drying. The thickness varies from its original value allowing more particles to reach the detector and, as the mass of the sample decreases, the boron concentration in the sample increases. So in order to determine the concentration present in the hydrated tissue, the application of corrective coefficients is required. Evaporation mechanisms as well as various factors that could affect the process of mass variation are outlined in this work. Mass evolution for tissue samples coming from BDIX rats was registered with a semimicro analytical scale and measurements were analyzed with software developed to that end. Ambient conditions were simultaneously recorded, obtaining reproducible evaporation curves. Mathematical models found in the literature were applied for the first time to this type of samples and the best fit of the experimental data was determined. The correlation coefficients and the variability of the parameters were evaluated, pointing to Page's model as the one that best represented the evaporation curves. These studies will contribute to a more precise assessment of boron concentration in tissue samples by the Neutron Autoradiography technique.

  11. Preparation of High-quality Hematoxylin and Eosin-stained Sections from Rodent Mammary Gland Whole Mounts for Histopathologic Review.

    Science.gov (United States)

    Tucker, Deirdre K; Foley, Julie F; Hayes-Bouknight, Schantel A; Fenton, Suzanne E

    2016-10-01

    Identifying environmental exposures that cause adverse mammary gland outcomes in rodents is a first step in disease prevention in humans and domestic pets. "Whole mounts" are an easy and inexpensive tissue preparation method that can elucidate typical or abnormal mammary gland morphology in rodent studies. Here, we propose procedures to facilitate the use of whole mounts for histological identification of grossly noted tissue alterations. We noted lesions in mammary whole mounts from 14-month-old CD-1 mice that were not found in the contralateral gland hematoxylin and eosin (H&E)-stained section. Whole mounts were removed from the slide and carefully processed to produce high-quality histological sections that mirrored the quality of the original H&E-stained section in order to properly diagnose the unidentified gross abnormalities. Incorporation of this method into testing protocols that focus on human relevant chemical and endocrine disruptors exposure will increase the chances of identifying lesions in the gland and reduce the risk of false negative findings. This method can be especially invaluable when lesions are not always palpable during the course of the study or visible at necropsy, or when a single cross section of the mammary gland is otherwise used for detecting lesions. © The Author(s) 2016.

  12. Raman spectroscopic analysis of human skin tissue sections ex-vivo: evaluation of the effects of tissue processing and dewaxing

    Science.gov (United States)

    Ali, Syed M.; Bonnier, Franck; Tfayli, Ali; Lambkin, Helen; Flynn, Kathleen; McDonagh, Vincent; Healy, Claragh; Clive Lee, T.; Lyng, Fiona M.; Byrne, Hugh J.

    2013-06-01

    Raman spectroscopy coupled with K-means clustering analysis (KMCA) is employed to elucidate the biochemical structure of human skin tissue sections and the effects of tissue processing. Both hand and thigh sections of human cadavers were analyzed in their unprocessed and formalin-fixed, paraffin-processed (FFPP), and subsequently dewaxed forms. In unprocessed sections, KMCA reveals clear differentiation of the stratum corneum (SC), intermediate underlying epithelium, and dermal layers for sections from both anatomical sites. The SC is seen to be relatively rich in lipidic content; the spectrum of the subjacent layers is strongly influenced by the presence of melanin, while that of the dermis is dominated by the characteristics of collagen. For a given anatomical site, little difference in layer structure and biochemistry is observed between samples from different cadavers. However, the hand and thigh sections are consistently differentiated for all cadavers, largely based on lipidic profiles. In dewaxed FFPP samples, while the SC, intermediate, and dermal layers are clearly differentiated by KMCA of Raman maps of tissue sections, the lipidic contributions to the spectra are significantly reduced, with the result that respective skin layers from different anatomical sites become indistinguishable. While efficient at removing the fixing wax, the tissue processing also efficiently removes the structurally similar lipidic components of the skin layers. In studies of dermatological processes in which lipids play an important role, such as wound healing, dewaxed samples are therefore not appropriate. Removal of the lipids does however accentuate the spectral features of the cellular and protein components, which may be more appropriate for retrospective analysis of disease progression and biochemical analysis using tissue banks.

  13. Preparation and characterization of alginate microspheres for sustained protein delivery within tissue scaffolds

    International Nuclear Information System (INIS)

    Zhai Peng; Chen, X B; Schreyer, David J

    2013-01-01

    Tissue engineering scaffolds are designed not only to provide structural support for the repair of damaged tissue, but can also serve the function of bioactive protein delivery. Here we present a study on the preparation and characterization of protein-loaded microspheres, either alone or incorporated into mock tissue scaffolds, for sustained protein delivery. Alginate microspheres were prepared by a novel, small-scale water-in-oil emulsion technique and loaded with fluorescently labeled immunoglobulin G (IgG). Microsphere size appears to be influenced by the magnitude and distribution of force generated by mechanical stirring during emulsion. Protein release studies show that sustained IgG release from microspheres could be achieved and that application of a secondary coating of chitosan could further slow the rate of protein release. Preservation of bioactivity of released IgG protein was confirmed using an immunohistochemical assay. When IgG-loaded microspheres were incorporated into mock scaffolds, initial protein release was diminished and the overall time course of release was extended. The present study demonstrates that protein-loaded microspheres can be prepared with a controlled release profile and preserved biological activity, and can be incorporated into scaffolds to achieve sustained and prolonged protein delivery in a tissue engineering application. (paper)

  14. Chitosan-Based Matrices Prepared by Gamma Irradiation for Tissue Regeneration: Structural Properties vs. Preparation Method.

    Science.gov (United States)

    Casimiro, Maria Helena; Lancastre, Joana J H; Rodrigues, Alexandra P; Gomes, Susana R; Rodrigues, Gabriela; Ferreira, Luís M

    2017-02-01

    In the last decade, new generations of biopolymer-based materials have attracted attention, aiming its application as scaffolds for tissue engineering. These engineered three-dimensional scaffolds are designed to improve or replace damaged, missing, or otherwise compromised tissues or organs. Despite the number of promising methods that can be used to generate 3D cell-instructive matrices, the innovative nature of the present work relies on the application of ionizing radiation technology to form and modify surfaces and matrices with advantage over more conventional technologies (room temperature reaction, absence of harmful initiators or solvents, high penetration through the bulk materials, etc.), and the possibility of preparation and sterilization in one single step. The current chapter summarizes the work done by the authors in the gamma radiation processing of biocompatible and biodegradable chitosan-based matrices for skin regeneration. Particular attention is given to the correlation between the different preparation conditions and the final polymeric matrices' properties. We therefore expect to demonstrate that instructive matrices produced and improved by radiation technology bring to the field of skin regenerative medicine a supplemental advantage over more conservative techniques.

  15. GeLC-MS: A Sample Preparation Method for Proteomics Analysis of Minimal Amount of Tissue.

    Science.gov (United States)

    Makridakis, Manousos; Vlahou, Antonia

    2017-10-10

    Application of various proteomics methodologies have been implemented for the global and targeted proteome analysis of many different types of biological samples such as tissue, urine, plasma, serum, blood, and cell lines. Among the aforementioned biological samples, tissue has an exceptional role into clinical research and practice. Disease initiation and progression is usually located at the tissue level of different organs, making the analysis of this material very important for the understanding of the disease pathophysiology. Despite the significant advances in the mass spectrometry instrumentation, tissue proteomics still faces several challenges mainly due to increased sample complexity and heterogeneity. However, the most prominent challenge is attributed to the invasive procedure of tissue sampling which restricts the availability of fresh frozen tissue to minimal amounts and limited number of samples. Application of GeLC-MS sample preparation protocol for tissue proteomics analysis can greatly facilitate making up for these difficulties. In this chapter, a step by step guide for the proteomics analysis of minute amounts of tissue samples using the GeLC-MS sample preparation protocol, as applied by our group in the analysis of multiple different types of tissues (vessels, kidney, bladder, prostate, heart) is provided.

  16. Imaging of tissue sections with very slow electrons

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Nebesářová, Jana; Vancová, Marie; Paták, Aleš; Müllerová, Ilona

    2015-01-01

    Roč. 148, JAN 2015 (2015), s. 146-150 ISSN 0304-3991 R&D Projects: GA TA ČR TE01020118; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 ; RVO:60077344 Keywords : Biological STEM * Ultralow energy STEM * Tissue sections * Cathode lens * Depolymerisation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.874, year: 2015

  17. Preparation of next generation set of group cross sections. 3

    International Nuclear Information System (INIS)

    Kaneko, Kunio

    2002-03-01

    This fiscal year, based on the examination result about the evaluation energy range of heavy element unresolved resonance cross sections, the upper energy limit of the energy range, where ultra-fine group cross sections are produced, was raised to 50 keV, and an improvement of the group cross section processing system was promoted. At the same time, reflecting the result of studies carried out till now, a function producing delayed neutron data was added to the general-purpose group cross section processing system , thus the preparation of general purpose group cross section processing system has been completed. On the other hand, the energy structure, data constitution and data contents of next generation group cross section set were determined, and the specification of a 151 groups next generation group cross section set was defined. Based on the above specification, a concrete library format of the next generation cross section set has been determined. After having carried out the above-described work, using the general-purpose group cross section processing system , which was complete in this study, with use of the JENDL-3. 2 evaluated nuclear data, the 151 groups next generation group cross section of 92 nuclides and the ultra fine group resonance cross section library for 29 nuclides have been prepared. Utilizing the 151 groups next generation group cross section set and the ultra-fine group resonance cross-section library, a bench mark test calculation of fast reactors has been performed by using an advanced lattice calculation code. It was confirmed, by comparing the calculation result with a calculation result of continuous energy Monte Carlo code, that the 151 groups next generation cross section set has sufficient accuracy. (author)

  18. Optimization of specimen preparation of thin cell section for AFM observation

    Energy Technology Data Exchange (ETDEWEB)

    Li Xinhui [Nanobiology Laboratory, Bio-X Life Science Research Center, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240 (China); Ji Tong [Department of Oral and Maxillofacial Surgery, School of Stomatology, Affiliated Ninth People' s Hospital, Medical School, Shanghai Jiao Tong University, Shanghai 200011 (China); Hu Jun [Nanobiology Laboratory, Bio-X Life Science Research Center, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240 (China); Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Sun Jielin [Nanobiology Laboratory, Bio-X Life Science Research Center, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240 (China)], E-mail: jlsun@sjtu.edu.cn

    2008-08-15

    High resolution imaging of intracellular structures of ultrathin cell section samples is critical to the performance of precise manipulation by atomic force microscopy (AFM). Here, we test the effect of multiple factors during section sample preparation on the quality of the AFM image. These factors include the embedding materials, the annealing process of the specimen block, section thickness, and section side. We found that neither the embedding materials nor the temperature and speed of the annealing process has any effect on AFM image resolution. However, the section thickness and section side significantly affect the surface topography and AFM image resolution. By systematically testing the image quality of both sides of cell sections over a wide range of thickness (40-1000 nm), we found that the best resolution was obtained with upper-side sections approximately 50-100 nm thick. With these samples, we could observe precise structure details of the cell, including its membrane, nucleoli, and other organelles. Similar results were obtained for other cell types, including Tca8113, C6, and ECV-304. In brief, by optimizing the condition of ultrathin cell section preparation, we were able to obtain high resolution intracellular AFM images, which provide an essential basis for further AFM manipulation.

  19. Hard dental tissue minimal-invasive preparation using contemporary polymer rotating instruments and laser

    Directory of Open Access Journals (Sweden)

    Beloica Miloš

    2014-01-01

    Full Text Available Goal of contemporary dentistry is to decrease the patient’s discomfort during treatment. Dentists aim to achieve maximum with the newly developed dental materials as well as with new cavity preparation techniques in the shortest time span. Since the development of the first constructed borer (drilling machine for caries removal, the preparation techniques have considerably changed. The progress of dental materials as well as the cavity preparation techniques has led us to contemporary carbide tungsten and diamond borers that are used with obligatory water cooling. The innovation within this field represents newly developed polymer borers that can detect the difference between carious lesions and healthy tooth structure. In this way the cavity preparation may be performed without damaging dental healthy tissue. This is possible owing to their hardness which is lower than the hardness of intact dentin. Polymer borer preparation is painless with less vibration, while the increase in temperature is negligible. Lasers have been used in clinical dentistry since 1980s so it can be said that they represent a new technology. The function of lasers is based on ablation which requires water. Erbium lasers have shown the highest potential with their ability to produce effective ablation of hard dental tissues. Laser application in dentistry requires special training as well as some protective measures. Laser advantages, compared to traditional preparation techniques, involve the absence of vibration, painless preparation, possibility of preparation without anesthetic and easier patient’s adjustment to dental intervention which is of importance, especially in pediatric dentistry. [Projekat Ministarstva nauke Republike Srbije, br. 46009

  20. Challenges of sample preparation for cross sectional EBSD analysis of electrodeposited nickel films

    DEFF Research Database (Denmark)

    Alimadadi, Hossein; Pantleon, Karen

    2009-01-01

    Thorough microstructure and crystallographic orientation analysis of thin films by means of electron backscatter diffraction requires cross section preparation of the film-substrate compound. During careful preparation, changes of the rather non-stable as-deposited microstructure must be avoided....... Different procedures for sample preparation including mechanical grinding and polishing, electropolishing and focused ion beam milling have been applied to a nickel film electrodeposited on top of an amorphous Ni-P layer on a Cu-substrate. Reliable EBSD analysis of the whole cross section can be obtained...

  1. Effect of substrate choice and tissue type on tissue preparation for spectral histopathology by Raman microspectroscopy.

    Science.gov (United States)

    Fullwood, Leanne M; Griffiths, Dave; Ashton, Katherine; Dawson, Timothy; Lea, Robert W; Davis, Charles; Bonnier, Franck; Byrne, Hugh J; Baker, Matthew J

    2014-01-21

    Raman spectroscopy is a non-destructive, non-invasive, rapid and economical technique which has the potential to be an excellent method for the diagnosis of cancer and understanding disease progression through retrospective studies of archived tissue samples. Historically, biobanks are generally comprised of formalin fixed paraffin preserved tissue and as a result these specimens are often used in spectroscopic research. Tissue in this state has to be dewaxed prior to Raman analysis to reduce paraffin contributions in the spectra. However, although the procedures are derived from histopathological clinical practice, the efficacy of the dewaxing procedures that are currently employed is questionable. Ineffective removal of paraffin results in corruption of the spectra and previous experiments have shown that the efficacy can depend on the dewaxing medium and processing time. The aim of this study was to investigate the influence of commonly used spectroscopic substrates (CaF2, Spectrosil quartz and low-E slides) and the influence of different histological tissue types (normal, cancerous and metastatic) on tissue preparation and to assess their use for spectral histopathology. Results show that CaF2 followed by Spectrosil contribute the least to the spectral background. However, both substrates retain paraffin after dewaxing. Low-E substrates, which exhibit the most intense spectral background, do not retain wax and resulting spectra are not affected by paraffin peaks. We also show a disparity in paraffin retention depending upon the histological identity of the tissue with abnormal tissue retaining more paraffin than normal.

  2. [Current status of medical accident prevention in our pathology section].

    Science.gov (United States)

    Uehara, Takeshi; Kobayashi, Yukihiro; Honda, Takayuki

    2010-08-01

    Preventive measures against medical accident should be addressed in the pathology section. Medical accidents occur while preparing tissue specimens and making pathological diagnoses. For the preparation of tissue specimens, we have developed a work manual in consultation with past incident reports and update this manual regularly. We can reduce medical accidents by including a check system for each task. For pathological diagnosis, we perform some of the same checks as for tissue specimen preparation and can make more correct diagnoses by conferring with other departments. It is also important to check each other's work to prevent medical accidents.

  3. Antigen retrieval prior to on-tissue digestion of formalin-fixed paraffin-embedded tumour tissue sections yields oxidation of proline residues.

    Science.gov (United States)

    Djidja, Marie-Claude; Claude, Emmanuelle; Scriven, Peter; Allen, David W; Carolan, Vikki A; Clench, Malcolm R

    2017-07-01

    MALDI-mass spectrometry imaging (MALDI-MSI) has been shown to allow the study of protein distribution and identification directly within formalin-fixed paraffin-embedded (FFPE) tissue sections. However, direct protein identification from tissue sections remains challenging due to signal interferences and/or existing post-translational or other chemical modifications. The use of antigen retrieval (AR) has been demonstrated for unlocking proteins prior to in situ enzymatic digestion and MALDI-MSI analysis of FFPE tissue sections. In the work reported here, the identification of proline oxidation, which may occur when performing the AR protocol, is described. This facilitated and considerably increased the number of identified peptides when adding proline oxidation as a variable modification to the MASCOT search criteria. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A comparison of sample preparation strategies for biological tissues and subsequent trace element analysis using LA-ICP-MS.

    Science.gov (United States)

    Bonta, Maximilian; Török, Szilvia; Hegedus, Balazs; Döme, Balazs; Limbeck, Andreas

    2017-03-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is one of the most commonly applied methods for lateral trace element distribution analysis in medical studies. Many improvements of the technique regarding quantification and achievable lateral resolution have been achieved in the last years. Nevertheless, sample preparation is also of major importance and the optimal sample preparation strategy still has not been defined. While conventional histology knows a number of sample pre-treatment strategies, little is known about the effect of these approaches on the lateral distributions of elements and/or their quantities in tissues. The technique of formalin fixation and paraffin embedding (FFPE) has emerged as the gold standard in tissue preparation. However, the potential use for elemental distribution studies is questionable due to a large number of sample preparation steps. In this work, LA-ICP-MS was used to examine the applicability of the FFPE sample preparation approach for elemental distribution studies. Qualitative elemental distributions as well as quantitative concentrations in cryo-cut tissues as well as FFPE samples were compared. Results showed that some metals (especially Na and K) are severely affected by the FFPE process, whereas others (e.g., Mn, Ni) are less influenced. Based on these results, a general recommendation can be given: FFPE samples are completely unsuitable for the analysis of alkaline metals. When analyzing transition metals, FFPE samples can give comparable results to snap-frozen tissues. Graphical abstract Sample preparation strategies for biological tissues are compared with regard to the elemental distributions and average trace element concentrations.

  5. The importance of fast neutron scattering cross sections for neutron dosimetry in soft tissues

    International Nuclear Information System (INIS)

    Jahr, R.; Brede, H.J.

    1979-05-01

    Tissue equivalent plastic materials are used for the construction of accurate neutron dosemeters. As compared to real tissue, in materials most of the oxygen content is replaced by carbon. In order to determine the dose to human tissue a kerma correction factor has to be used. It is shown that the uncertainty (corresponding to 1 delta) of the correction factor at E = 14.5 MeV amounts to at least 5.2%. An important contribution to the uncertainties results from the lack of experimental data of the 12 C(n, n' 3α), 16 O(n,n'p) and 16 O(n,n'α)-cross-sections. These data are to be calculated by subtracting all other cross sections from the total cross section of ( 16 O + n) and ( 12 C + n). It is shown that the uncertainties of the kerma correction factor can be considerably reduced by an accurate measurement of the scattering cross sections of carbon and oxygen. (orig.) [de

  6. A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology

    Directory of Open Access Journals (Sweden)

    Feifei Yan

    2014-03-01

    Full Text Available The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.

  7. New methods for multimodal MS imaging of histological tissue sections

    NARCIS (Netherlands)

    Amstalden Van Hove, E.R.

    2011-01-01

    The insights derived from spatial localization of molecules in tissue sections are of great value for understanding and treating cancer and other diseases. These insights can relate to molecules linked to a disease as well as to drug molecules distributed across organs of interest. Mass spectrometry

  8. A high-resolution optical imaging system for obtaining the serial transverse section images of biologic tissue

    Science.gov (United States)

    Wu, Li; Zhang, Bin; Wu, Ping; Liu, Qian; Gong, Hui

    2007-05-01

    A high-resolution optical imaging system was designed and developed to obtain the serial transverse section images of the biologic tissue, such as the mouse brain, in which new knife-edge imaging technology, high-speed and high-sensitive line-scan CCD and linear air bearing stages were adopted and incorporated with an OLYMPUS microscope. The section images on the tip of the knife-edge were synchronously captured by the reflection imaging in the microscope while cutting the biologic tissue. The biologic tissue can be sectioned at interval of 250 nm with the same resolution of the transverse section images obtained in x and y plane. And the cutting job can be automatically finished based on the control program wrote specially in advance, so we save the mass labor of the registration of the vast images data. In addition, by using this system a larger sample can be cut than conventional ultramicrotome so as to avoid the loss of the tissue structure information because of splitting the tissue sample to meet the size request of the ultramicrotome.

  9. Preparation of rock samples for measurement of the thermal neutron macroscopic absorption cross-section

    International Nuclear Information System (INIS)

    Czubek, J.A.; Burda, J.; Drozdowicz, K.; Igielski, A.; Kowalik, W.; Krynicka-Drozdowicz, E.; Woznicka, U.

    1986-03-01

    Preparation of rock samples for the measurement of the thermal neutron macroscopic absorption cross-section in small cylindrical two-region systems by a pulsed technique is presented. Requirements which should be fulfilled during the preparation of the samples due to physical assumptions of the method are given. A cylindrical vessel is filled with crushed rock and saturated with a medium strongly absorbing thermal neutrons. Water solutions of boric acid of well-known macroscopic absorption cross-section are used. Mass contributions of the components in the sample are specified. This is necessary for the calculation of the thermal neutron macroscopic absorption cross-section of the rock matrix. The conditions necessary for assuring the required accuracy of the measurement are given and the detailed procedure of preparation of the rock sample is described. (author)

  10. Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  11. Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  12. Preparation of Laponite Bioceramics for Potential Bone Tissue Engineering Applications

    Science.gov (United States)

    Li, Kai; Ju, Yaping; Li, Jipeng; Zhang, Yongxing; Li, Jinhua; Liu, Xuanyong; Shi, Xiangyang; Zhao, Qinghua

    2014-01-01

    We report a facile approach to preparing laponite (LAP) bioceramics via sintering LAP powder compacts for bone tissue engineering applications. The sintering behavior and mechanical properties of LAP compacts under different temperatures, heating rates, and soaking times were investigated. We show that LAP bioceramic with a smooth and porous surface can be formed at 800°C with a heating rate of 5°C/h for 6 h under air. The formed LAP bioceramic was systematically characterized via different methods. Our results reveal that the LAP bioceramic possesses an excellent surface hydrophilicity and serum absorption capacity, and good cytocompatibility and hemocompatibility as demonstrated by resazurin reduction assay of rat mesenchymal stem cells (rMSCs) and hemolytic assay of pig red blood cells, respectively. The potential bone tissue engineering applicability of LAP bioceramic was explored by studying the surface mineralization behavior via soaking in simulated body fluid (SBF), as well as the surface cellular response of rMSCs. Our results suggest that LAP bioceramic is able to induce hydroxyapatite deposition on its surface when soaked in SBF and rMSCs can proliferate well on the LAP bioceramic surface. Most strikingly, alkaline phosphatase activity together with alizarin red staining results reveal that the produced LAP bioceramic is able to induce osteoblast differentiation of rMSCs in growth medium without any inducing factors. Finally, in vivo animal implantation, acute systemic toxicity test and hematoxylin and eosin (H&E)-staining data demonstrate that the prepared LAP bioceramic displays an excellent biosafety and is able to heal the bone defect. Findings from this study suggest that the developed LAP bioceramic holds a great promise for treating bone defects in bone tissue engineering. PMID:24955961

  13. Automatic registration of multi-modal microscopy images for integrative analysis of prostate tissue sections

    International Nuclear Information System (INIS)

    Lippolis, Giuseppe; Edsjö, Anders; Helczynski, Leszek; Bjartell, Anders; Overgaard, Niels Chr

    2013-01-01

    Prostate cancer is one of the leading causes of cancer related deaths. For diagnosis, predicting the outcome of the disease, and for assessing potential new biomarkers, pathologists and researchers routinely analyze histological samples. Morphological and molecular information may be integrated by aligning microscopic histological images in a multiplex fashion. This process is usually time-consuming and results in intra- and inter-user variability. The aim of this study is to investigate the feasibility of using modern image analysis methods for automated alignment of microscopic images from differently stained adjacent paraffin sections from prostatic tissue specimens. Tissue samples, obtained from biopsy or radical prostatectomy, were sectioned and stained with either hematoxylin & eosin (H&E), immunohistochemistry for p63 and AMACR or Time Resolved Fluorescence (TRF) for androgen receptor (AR). Image pairs were aligned allowing for translation, rotation and scaling. The registration was performed automatically by first detecting landmarks in both images, using the scale invariant image transform (SIFT), followed by the well-known RANSAC protocol for finding point correspondences and finally aligned by Procrustes fit. The Registration results were evaluated using both visual and quantitative criteria as defined in the text. Three experiments were carried out. First, images of consecutive tissue sections stained with H&E and p63/AMACR were successfully aligned in 85 of 88 cases (96.6%). The failures occurred in 3 out of 13 cores with highly aggressive cancer (Gleason score ≥ 8). Second, TRF and H&E image pairs were aligned correctly in 103 out of 106 cases (97%). The third experiment considered the alignment of image pairs with the same staining (H&E) coming from a stack of 4 sections. The success rate for alignment dropped from 93.8% in adjacent sections to 22% for sections furthest away. The proposed method is both reliable and fast and therefore well suited

  14. A comparison of tissue preparation methods for protein extraction of cocoa (Theobroma cacao L. pod

    Directory of Open Access Journals (Sweden)

    Ascensión Martínez-Márquez

    2017-04-01

    Full Text Available Cocoa, Theobroma cacao L. is one of the main tropical industrial crops. Cocoa has a very high level of interfering substances, such as polysaccharides and phenolic compounds that could prevent the isolation of suitable protein. Efficient methods of protein extraction are a priority to successfully apply proteomic analyses. We compared and evaluated two methods (A and B of tissue preparation for total protein extract by phenol/SDS extraction protocol. The difference in the application of the two methods was that extensively washed dry powder of pod tissue were made in Method A, whereas that crude extract were prepared Method B. Extracted proteins were examined using one-dimensional electrophoresis (1-D. Results show that each extraction method isolated a unique subset of cocoa pod proteome. Principal component analysis showed little variation in the data obtained using Method A, while that in Methods B showed no low reproducibility, thus demonstrating that Method A is a reliable for preparing cocoa pod proteins. The protocol is expected to be applicable to other recalcitrant plant tissues and to be of interest to laboratories involved in plant proteomics analyses. A combination of extraction approaches is recommended for increasing proteome coverage when using gel-based isolation techniques.

  15. Biocompatible, biodegradable polymer-based, lighter than or light as water scaffolds for tissue engineering and methods for preparation and use thereof

    Science.gov (United States)

    Khan, Mohammed Yusuf (Inventor); Laurencin, Cato T. (Inventor); Lu, Helen H. (Inventor); Botchwey, Edward (Inventor); Pollack, Solomon R. (Inventor); Levine, Elliot (Inventor)

    2012-01-01

    Scaffolds for tissue engineering prepared from biocompatible, biodegradable polymer-based, lighter than or light as water microcarriers and designed for cell culturing in vitro in a rotating bioreactor are provided. Methods for preparation and use of these scaffolds as tissue engineering devices are also provided.

  16. Three-dimensional assessment of brain tissue morphology

    Science.gov (United States)

    Müller, Bert; Germann, Marco; Jeanmonod, Daniel; Morel, Anne

    2006-08-01

    The microstructure of brain tissues becomes visible using different types of optical microscopy after the tissue sectioning. This preparation procedure introduces stress and strain in the anisotropic and inhomogeneous soft tissue slices, which are several 10 μm thick. Consequently, the three-dimensional dataset, generated out of the two-dimensional images with lateral submicrometer resolution, needs algorithms to correct the deformations, which can be significant for mellow tissue such as brain segments. The spatial resolution perpendicular to the slices is much worse with respect to the lateral sub-micrometer resolution. Therefore, we propose as complementary method the synchrotron-radiation-based micro computed tomography (SRμCT), which avoids any kind of preparation artifacts due to sectioning and histological processing and yields true micrometer resolution in the three orthogonal directions. The visualization of soft matter by the use of SRμCT, however, is often based on elaborate staining protocols, since the tissue exhibits (almost) the same x-ray absorption as the surrounding medium. Therefore, it is unexpected that human tissue from the pons and the medulla oblongata in phosphate buffer show several features such as the blood vessels and the inferior olivary nucleus without staining. The value of these tomograms lies especially in the precise non-rigid registration of the different sets of histological slices. Applications of this method to larger pieces of brain tissue, such as the human thalamus are planned in the context of stereotactic functional neurosurgery.

  17. Use of Calcium and Alendronic Acid Preparations in Correction of Structural and Functional Disorders of Bone Tissue in Thyrotoxicosis

    Directory of Open Access Journals (Sweden)

    O.B. Oliynyk

    2012-02-01

    Full Text Available Impact of calcium and alendronic acid preparations on disorders of structural and functional state of bone tissue in experimental animals at exogenic thyrotoxicosis was studied. It was defined that introduction of calcium preparations reduces bone mineral density loss in female rats with drug thyrotoxicosis, and combined use of calcium and alendronic acid prevents bone tissue loss regardless of thyrotoxicosis duration and presence of ovariectomy.

  18. Preparation of hybrid biomaterials for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Vilma Conceição Costa

    2007-03-01

    Full Text Available Tissue engineering has evolved from the use of biomaterials for bone substitution that fulfill the clinical demands of biocompatibility, biodegradability, non-immunogeneity, structural strength and porosity. Porous scaffolds have been developed in many forms and materials, but few reached the need of adequate physical, biological and mechanical properties. In the present paper we report the preparation of hybrid porous polyvinyl alcohol (PVA/bioactive glass through the sol-gel route, using partially and fully hydrolyzed polyvinyl alcohol, and perform structural characterization. Hybrids containing PVA and bioactive glass with composition 58SiO2-33CaO-9P2O5 were synthesized by foaming a mixture of polymer solution and bioactive glass sol-gel precursor solution. Sol-gel solution was prepared from mixing tetraethoxysilane (TEOS, triethylphosphate (TEP, and calcium chloride as chemical precursors. The hybrid composites obtained after aging and drying at low temperature were chemically and morphologically characterized through infrared spectroscopy and scanning electron microscopy. The degree of hydrolysis of PVA, concentration of PVA solution and different PVA-bioglass composition ratios affect the synthesis procedure. Synthesis parameters must be very well combined in order to allow foaming and gelation. The hybrid scaffolds obtained exhibited macroporous structure with pore size varying from 50 to 600 µm.

  19. Affinity imaging mass spectrometry (AIMS): high-throughput screening for specific small molecule interactions with frozen tissue sections.

    Science.gov (United States)

    Yoshimi, T; Kawabata, S; Taira, S; Okuno, A; Mikawa, R; Murayama, S; Tanaka, K; Takikawa, O

    2015-11-07

    A novel screening system, using affinity imaging mass spectrometry (AIMS), has been developed to identify protein aggregates or organ structures in unfixed human tissue. Frozen tissue sections are positioned on small (millimetre-scale) stainless steel chips and incubated with an extensive library of small molecules. Candidate molecules showing specific affinity for the tissue section are identified by imaging mass spectrometry (IMS). As an example application, we screened over a thousand compounds against Alzheimer's disease (AD) brain tissue and identified several compounds with high affinity for AD brain sections containing tau deposits compared to age-matched controls. It should also be possible to use AIMS to isolate chemical compounds with affinity for tissue structures or components that have been extensively modified by events such as oxidation, phosphorylation, acetylation, aggregation, racemization or truncation, for example, due to aging. It may also be applicable to biomarker screening programs.

  20. Time-lapse cinematography in living Drosophila tissues: preparation of material.

    Science.gov (United States)

    Davis, Ilan; Parton, Richard M

    2006-11-01

    The fruit fly, Drosophila melanogaster, has been an extraordinarily successful model organism for studying the genetic basis of development and evolution. It is arguably the best-understood complex multicellular model system, owing its success to many factors. Recent developments in imaging techniques, in particular sophisticated fluorescence microscopy methods and equipment, now allow cellular events to be studied at high resolution in living material. This ability has enabled the study of features that tend to be lost or damaged by fixation, such as transient or dynamic events. Although many of the techniques of live cell imaging in Drosophila are shared with the greater community of cell biologists working on other model systems, studying living fly tissues presents unique difficulties in keeping the cells alive, introducing fluorescent probes, and imaging through thick hazy cytoplasm. This protocol outlines the preparation of major tissue types amenable to study by time-lapse cinematography and different methods for keeping them alive.

  1. Preparation of higher-actinide burnup and cross section samples

    International Nuclear Information System (INIS)

    Adair, H.L.; Kobisk, E.H.; Quinby, T.C.; Thomas, D.K.; Dailey, J.M.

    1981-01-01

    A joint research program involving the United States and the United Kingdom was instigated about four years ago for the purpose of studying burnup of higher actinides using in-core irradiation in the fast reactor at Dounreay, Scotland. Simultaneously, determination of cross sections of a wide variety of higher actinide isotopes was proposed. Coincidental neutron flux and energy spectral measurements were to be made using vanadium encapsulated dosimetry materials in the immediate region of the burnup and cross section samples. The higher actinide samples chosen for the burnup study were 241 Am and 244 Cm in the forms of Am 2 O 3 , Cm 2 O 3 , and Am 6 Cm(RE) 7 O 21 , where (RE) represents a mixture of lanthanide sesquioxides. It is the purpose of this paper to describe technology development and its application in the preparation of the fuel specimens and the cross section specimens that are being used in this cooperative program

  2. Diagnostic utility of melanin production by fungi: Study on tissue sections and culture smears with Masson-Fontana stain

    Directory of Open Access Journals (Sweden)

    Challa Sundaram

    2014-01-01

    Full Text Available Background: Dematiaceous fungi appear brown in tissue section due to melanin in their cell walls. When the brown color is not seen on routine H and E and culture is not available, differentiation of dematiaceous fungi from other fungi is difficult on morphology alone. Aims and Objective: To study if melanin production by dematiaceous fungi can help differentiate them from other types of fungi. Materials and Methods: Fifty tissue sections of various fungal infections and 13 smears from cultures of different species of fungi were stained with Masson Fontana stain to assess melanin production. The tissue sections included biopsies from 26 culture-proven fungi and 24 biopsies of filamentous fungi diagnosed on morphology alone with no culture confirmation. Results: All culture-proven dematiaceous fungi and Zygomycetes showed strong positivity in sections and culture smears. Aspergillus sp showed variable positivity and intensity. Cryptococcus neoformans showed strong positivity in tissue sections and culture smears. Tissue sections of septate filamentous fungi (9/15, Zygomycetes (4/5, and fungi with both hyphal and yeast morphology (4/4 showed positivity for melanin. The septate filamentous fungi negative for melanin were from biopsy samples of fungal sinusitis including both allergic and invasive fungal sinusitis and colonizing fungal balls. Conclusion: Melanin is produced by both dematiaceous and non-dematiaceous fungi. Masson-Fontana stain cannot reliably differentiate dematiaceous fungi from other filamentous fungi like Aspergillus sp; however, absence of melanin in the hyphae may be used to rule out dematiaceous fungi from other filamentous fungi. In the differential diagnosis of yeast fungi, Cryptococcus sp can be differentiated from Candida sp by Masson-Fontana stain in tissue sections.

  3. A reliable Differentiation of Mucor from Aspergillus in Tissue Sections with Ultraviolet Illumination

    OpenAIRE

    Senba, Masachika; Toda, Takayoshi; Toda, Yumiko; Hokama, Seitetsu

    1989-01-01

    In tissue, hyphae of mucor are characteristically broad and infrequently septate. However, it may be difficult to distinguish mucor from aspergillus in tissue sections occasionally, because sometimes aspergillus septa are not detected with hematoxylin-eosin (HE), periodic acid Schiff (PAS ), and Grocott's methenamine silver (GMS). In a case, aspergillus septa can be seen under ultraviolet light. Specifically, structures of these septum were clear cut differences in the histological finding be...

  4. A new technique for Gram staining paraffin-embedded tissue.

    Science.gov (United States)

    Engbaek, K; Johansen, K S; Jensen, M E

    1979-01-01

    Five techniques for Gram staining bacteria in paraffin sections were compared on serial sections of pulmonary tissues from eight bacteriological necropsies. Brown and Hopp's method was the most satisfactory for distinguishing Gram-positive and Gram-negative bacteria. However, this method cannot be recommended as the preparations were frequently overstained, and the Gram-negative bacteria were stained indistinctly. A modification of Brown and Hopps' method was developed which stains larger numbers of Gram-negative bacteria and differentiates well between different cell types and connective tissue, and there is no risk of overstaining. PMID:86548

  5. Immunocytochemistry of formalin-fixed human brain tissues: microwave irradiation of free-floating sections.

    Science.gov (United States)

    Shiurba, R A; Spooner, E T; Ishiguro, K; Takahashi, M; Yoshida, R; Wheelock, T R; Imahori, K; Cataldo, A M; Nixon, R A

    1998-01-01

    Formalin fixation, the chemical process in which formaldehyde binds to cells and tissues, is widely used to preserve human brain specimens from autolytic decomposition. Ultrastructure of cellular and mitochondrial membranes is markedly altered by vesiculation, but this does not interfere with diagnostic evaluation of neurohistology by light microscopy. Serious difficulties are encountered, however, when immunocytochemical staining is attempted. Antigens that are immunoreactive in unfixed frozen sections and protein extracts appear to be concealed or destroyed in formalin-fixed tissues. In dilute aqueous solution, formaldehyde is in equilibrium with methylene glycol and its polymeric hydrates, the balance by far in favor of methylene glyco. Carbonylic formaldehyde is a reactive electrophilic species well known for crosslinking functional groups in tissue proteins, nucleic acids, and polysaccharides. Some of its methylene crosslinks are readily hydrolyzed. Others are stable and irreversible. During immunostaining reactions, intra- and inter-molecular links between macromolecules limit antibody permeation of tissue sections, alter protein secondary structure, and reduce accessibility of antigenic determinants . Accordingly, immunoreactivity is diminished for many antigens. Tissues are rapidly penetrated by methylene glycol, but formaldehyde binding to cellular constituents is relatively slow, increasing progressively until equilibrium is reached. In addition, prolonged storage in formalin may result in acidification of human brain specimens. Low pH favors dissociation of methylene glycol into formaldehyde, further reducing both classical staining and antigen detectability. Various procedures have been devised to counter the antigen masking effects of formaldehyde. Examples include pretreatment of tissue sections with proteases, formic acid, or ultrasound. Recently, heating of mounted sections in ionic salt solution by microwave energy was found to restore many

  6. The autologus graft of epithelial tissue culture

    Directory of Open Access Journals (Sweden)

    Minaee B

    1999-08-01

    Full Text Available With the intention of research about culture and autologus graft of epithelial tissue we used 4 french Albino Rabbits with an average age of 2 months. After reproduction on the support in EMEM (Eagle's Minimum Essential Medium we used this for graft after 4 weeks. This region which grafted total replaced. After fixation of this sample and passing them through various process, histological sections were prepared. These sections were stained with H & E and masson's trichrome and studied by light microscope. We succeeded in graft. We hope in the near future by using the method of epithelium tissue culture improving to treat burned patients.

  7. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis

    Directory of Open Access Journals (Sweden)

    Christian eFalter

    2015-03-01

    Full Text Available The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation and the compatibility to laser microdissection and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.

  8. Preparation of transmission electron microscopy cross-section specimens using focused ion beam milling

    International Nuclear Information System (INIS)

    Langford, R.M.; Petford-Long, A.K.

    2001-01-01

    The preparation of transmission electron microscopy cross-section specimens using focused ion beam milling is outlined. The 'liftout' and 'trench' techniques are both described in detail, and their relative advantages and disadvantages are discussed. Artifacts such as ion damage to the top surface and sidewalls of the cross-section specimens, and methods of reducing them, are addressed

  9. Quantitation of repaglinide and metabolites in mouse whole-body thin tissue sections using droplet-based liquid microjunction surface sampling-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Chen, Weiqi; Wang, Lifei; Van Berkel, Gary J; Kertesz, Vilmos; Gan, Jinping

    2016-03-25

    Herein, quantitation aspects of a fully automated autosampler/HPLC-MS/MS system applied for unattended droplet-based surface sampling of repaglinide dosed thin tissue sections with subsequent HPLC separation and mass spectrometric analysis of parent drug and various drug metabolites were studied. Major organs (brain, lung, liver, kidney and muscle) from whole-body thin tissue sections and corresponding organ homogenates prepared from repaglinide dosed mice were sampled by surface sampling and by bulk extraction, respectively, and analyzed by HPLC-MS/MS. A semi-quantitative agreement between data obtained by surface sampling and that by employing organ homogenate extraction was observed. Drug concentrations obtained by the two methods followed the same patterns for post-dose time points (0.25, 0.5, 1 and 2 h). Drug amounts determined in the specific tissues was typically higher when analyzing extracts from the organ homogenates. In addition, relative comparison of the levels of individual metabolites between the two analytical methods also revealed good semi-quantitative agreement. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. New Tools to Prepare ACE Cross-section Files for MCNP Analytic Test Problems

    International Nuclear Information System (INIS)

    Brown, Forrest B.

    2016-01-01

    Monte Carlo calculations using one-group cross sections, multigroup cross sections, or simple continuous energy cross sections are often used to: (1) verify production codes against known analytical solutions, (2) verify new methods and algorithms that do not involve detailed collision physics, (3) compare Monte Carlo calculation methods with deterministic methods, and (4) teach fundamentals to students. In this work we describe 2 new tools for preparing the ACE cross-section files to be used by MCNP ® for these analytic test problems, simple a ce.pl and simple a ce m g.pl.

  11. Evaluation tissue dissolution property of 2.5 % Sodium Hypochlorite Prepared by Hydrochloric Acid and Sodium Bicarbonate: An in vitro

    Directory of Open Access Journals (Sweden)

    Hamid Razavian

    2016-08-01

    Full Text Available Successful endodontic treatment requires chemical preparation in addition to mechanical preparation. The most common material for chemical preparations is sodium hypochlorite. One way to reduce the effects of pH adjustment is the use of sodium hypochlorite. The present paper was conducted to examine the effect of dilution with hydrochloric acid and sodium bicarbonate and reduce pH on ability of tissue solubility of sodium hypochlorite. The present study was conducted in vitro on bovine muscle tissue. Ability of tissue solubility was conducted in four groups respectively with active ingredient including 1 sodium hypochlorite diluted with distilled water 2 sodium hypochlorite diluted with sodium bicarbonate 3 sodium hypochlorite diluted with hydrochloric acid and finally 4 distilled water (control group. Each sample was firstly weighed and then placed in contact with 10 m/L solution for 60 minutes (five 12 -minute intervals. The sample was weighted every five minutes and solution was renewed. The results were analyzed using SPSS-21 Software based on variance analysis, Tukey and T-test (α=0.05. The findings showed that there was significant difference between first, second and third groups in terms of ability of tissue solubility. However, the tissue solubility in second and third groups was lower than first group and it was similar in second and third groups (P Value <0.001. Reduction of sodium bicarbonate PH using sodium hypochlorite and hydrochloric acid reduces ability of tissue solubility in sodium hypochlorite.

  12. Preparation and Properties of 3D Printed Alginate–Chitosan Polyion Complex Hydrogels for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Qiongqiong Liu

    2018-06-01

    Full Text Available Three-dimensional (3D printing holds great potential for preparing sophisticated scaffolds for tissue engineering. As a result of the shear thinning properties of an alginate solution, it is often used as 3D printing ink. However, it is difficult to prepare scaffolds with complexity structure and high fidelity, because the alginate solution has a low viscosity and alginate hydrogels prepared with Ca2+ crosslinking are mechanically weak. In this work, chitosan powders were dispersed and swelled in an alginate solution, which could effectively improve the viscosity of an alginate solution by 1.5–4 times. With the increase of chitosan content, the shape fidelity of the 3D printed alginate–chitosan polyion complex (AlCh PIC hydrogels were improved. Scanning electron microscope (SEM photographs showed that the lateral pore structure of 3D printed hydrogels was becoming more obvious. As a result of the increased reaction ion pairs in comparison to the alginate hydrogels that were prepared with Ca2+ crosslinking, AlCh PIC hydrogels were mechanically strong, and the compression stress of hydrogels at a 90% strain could achieve 1.4 MPa without breaking. In addition, human adipose derived stem cells (hASCs adhered to the 3D printed AlCh PIC hydrogels and proliferated with time, which indicated that the obtained hydrogels were biocompatible and could potentially be used as scaffolds for tissue engineering.

  13. Electrochemical removal of metallic implants from Technovit 9100 New embedded hard and soft tissues prior to histological sectioning.

    Science.gov (United States)

    Willbold, Elmar; Reebmann, Mattias; Jeffries, Richard; Witte, Frank

    2013-11-01

    Solid metallic implants in soft or hard tissues are serious challenges for histological processing. However, metallic implants are more frequently used in e.g. cardiovascular or orthopaedic therapies. Before clinical use, these devices need to be tested thoroughly in a biological environment and histological analysis of their biocompatibility is a major requirement. To allow the histological analysis of metallic implants in tissues especially in calcified hard tissues, we describe a method for embedding these tissues in the resin Technovit 9100 New and removing the metallic implants by electrochemical dissolution. With the combination of these two processes, we are able to achieve 5 μm thick sections from soft or hard tissues with a superior preservation of tissue architecture and especially the implant-tissue interface. These sections can be stained by classical stainings, immunohistochemical and enzymehistochemical as well as DNA-based staining methods.

  14. From whole-body sections down to cellular level, multiscale imaging of phospholipids by MALDI mass spectrometry.

    Science.gov (United States)

    Chaurand, Pierre; Cornett, Dale S; Angel, Peggi M; Caprioli, Richard M

    2011-02-01

    Significant progress in instrumentation and sample preparation approaches have recently expanded the potential of MALDI imaging mass spectrometry to the analysis of phospholipids and other endogenous metabolites naturally occurring in tissue specimens. Here we explore some of the requirements necessary for the successful analysis and imaging of phospholipids from thin tissue sections of various dimensions by MALDI time-of-flight mass spectrometry. We address methodology issues relative to the imaging of whole-body sections such as those cut from model laboratory animals, sections of intermediate dimensions typically prepared from individual organs, as well as the requirements for imaging areas of interests from these sections at a cellular scale spatial resolution. We also review existing limitations of MALDI imaging MS technology relative to compound identification. Finally, we conclude with a perspective on important issues relative to data exploitation and management that need to be solved to maximize biological understanding of the tissue specimen investigated.

  15. Hair cell counts in a rat model of sound damage: Effects of tissue preparation & identification of regions of hair cell loss.

    Science.gov (United States)

    Neal, Christopher; Kennon-McGill, Stefanie; Freemyer, Andrea; Shum, Axel; Staecker, Hinrich; Durham, Dianne

    2015-10-01

    Exposure to intense sound can damage or kill cochlear hair cells (HC). This loss of input typically manifests as noise induced hearing loss, but it can also be involved in the initiation of other auditory disorders such as tinnitus or hyperacusis. In this study we quantify changes in HC number following exposure to one of four sound damage paradigms. We exposed adult, anesthetized Long-Evans rats to a unilateral 16 kHz pure tone that varied in intensity (114 dB or 118 dB) and duration (1, 2, or 4 h) and sacrificed animals 2-4 weeks later. We compared two different methods of tissue preparation, plastic embedding/sectioning and whole mount dissection, for quantifying hair cell loss as a function of frequency. We found that the two methods of tissue preparation produced largely comparable cochleograms, with whole mount dissections allowing a more rapid evaluation of hair cell number. Both inner and outer hair cell loss was observed throughout the length of the cochlea irrespective of sound damage paradigm. Inner HC loss was either equal to or greater than outer HC loss. Increasing the duration of sound exposures resulted in more severe HC loss, which included all HC lesions observed in an analogous shorter duration exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Correlative light and immuno-electron microscopy of retinal tissue cryostat sections

    Science.gov (United States)

    Burgoyne, Thomas; Lane, Amelia; Laughlin, William E.; Cheetham, Michael E.

    2018-01-01

    Correlative light-electron microscopy (CLEM) is a powerful technique allowing localisation of specific macromolecules within fluorescence microscopy (FM) images to be mapped onto corresponding high-resolution electron microscopy (EM) images. Existing methods are applicable to limited sample types and are technically challenging. Here we describe novel methods to perform CLEM and immuno-electron microscopy (iEM) on cryostat sections utilising the popular FM embedding solution, optimal cutting temperature (OCT) compound. Utilising these approaches, we have (i) identified the same phagosomes by FM and EM in the retinal pigment epithelium (RPE) of retinal tissue (ii) shown the correct localisation of rhodopsin on photoreceptor outer segment disc like-structures in iPSC derived optic cups and (iii) identified a novel interaction between peroxisomes and melanosomes as well as phagosomes in the RPE. These data show that cryostat sections allow easy characterisation of target macromolecule localisation within tissue samples, thus providing a substantial improvement over many conventional methods that are limited to cultured cells. As OCT embedding is routinely used for FM this provides an easily accessible and robust method for further analysis of existing samples by high resolution EM. PMID:29315318

  17. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Chen, Ying; Kawazoe, Naoki; Chen, Guoping

    2018-02-01

    Although bone is regenerative, its regeneration capacity is limited. For bone defects beyond a critical size, further intervention is required. As an attractive strategy, bone tissue engineering (bone TE) has been widely investigated to repair bone defects. However, the rapid and effective bone regeneration of large non-healing defects is still a great challenge. Multifunctional scaffolds having osteoinductivity and osteoconductivity are desirable to fasten functional bone tissue regeneration. In the present study, biomimetic composite scaffolds of collagen and biphasic calcium phosphate nanoparticles (BCP NPs) with a controlled release of dexamethasone (DEX) and the controlled pore structures were prepared for bone TE. DEX was introduced in the BCP NPs during preparation of the BCP NPs and hybridized with collagen scaffolds, which pore structures were controlled by using pre-prepared ice particulates as a porogen material. The composite scaffolds had well controlled and interconnected pore structures, high mechanical strength and a sustained release of DEX. The composite scaffolds showed good biocompatibility and promoted osteogenic differentiation of hMSCs when used for three-dimensional culture of human bone marrow-derived mesenchymal stem cells. Subcutaneous implantation of the composite scaffolds at the dorsa of athymic nude mice demonstrated that they facilitated the ectopic bone tissue regeneration. The results indicated the DEX-loaded BCP NPs/collagen composite scaffolds had high potential for bone TE. Scaffolds play a crucial role for regeneration of large bone defects. Biomimetic scaffolds having the same composition of natural bone and a controlled release of osteoinductive factors are desirable for promotion of bone regeneration. In this study, composite scaffolds of collagen and biphasic CaP nanoparticles (BCP NPs) with a controlled release nature of dexamethasone (DEX) were prepared and their porous structures were controlled by using ice particulates

  18. Sample preparation procedure for PIXE elemental analysis on soft tissues

    International Nuclear Information System (INIS)

    Kubica, B.; Kwiatek, W.M.; Dutkiewicz, E.M.; Lekka, M.

    1997-01-01

    Trace element analysis is one of the most important field in analytical chemistry. There are several instrumental techniques which are applied for determinations of microscopic elemental content. The PIXE (Proton Induced X-ray Emission) technique is one of the nuclear techniques that is commonly applied for such purpose due to its multielemental analysis possibilities. The aim of this study was to establish the optimal conditions for target preparation procedure. In this paper two different approaches to the topic are presented and widely discussed. The first approach was the traditional pellet technique and the second one was mineralization procedure. For the analysis soft tissue such as liver was used. Some results are also presented on water samples. (author)

  19. Brain Slice Staining and Preparation for Three-Dimensional Super-Resolution Microscopy

    Science.gov (United States)

    German, Christopher L.; Gudheti, Manasa V.; Fleckenstein, Annette E.; Jorgensen, Erik M.

    2018-01-01

    Localization microscopy techniques – such as photoactivation localization microscopy (PALM), fluorescent PALM (FPALM), ground state depletion (GSD), and stochastic optical reconstruction microscopy (STORM) – provide the highest precision for single molecule localization currently available. However, localization microscopy has been largely limited to cell cultures due to the difficulties that arise in imaging thicker tissue sections. Sample fixation and antibody staining, background fluorescence, fluorophore photoinstability, light scattering in thick sections, and sample movement create significant challenges for imaging intact tissue. We have developed a sample preparation and image acquisition protocol to address these challenges in rat brain slices. The sample preparation combined multiple fixation steps, saponin permeabilization, and tissue clarification. Together, these preserve intracellular structures, promote antibody penetration, reduce background fluorescence and light scattering, and allow acquisition of images deep in a 30 μm thick slice. Image acquisition challenges were resolved by overlaying samples with a permeable agarose pad and custom-built stainless steel imaging adapter, and sealing the imaging chamber. This approach kept slices flat, immobile, bathed in imaging buffer, and prevented buffer oxidation during imaging. Using this protocol, we consistently obtained single molecule localizations of synaptic vesicle and active zone proteins in three-dimensions within individual synaptic terminals of the striatum in rat brain slices. These techniques may be easily adapted to the preparation and imaging of other tissues, substantially broadening the application of super-resolution imaging. PMID:28924666

  20. Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections.

    Science.gov (United States)

    Kuepper, Claus; Kallenbach-Thieltges, Angela; Juette, Hendrik; Tannapfel, Andrea; Großerueschkamp, Frederik; Gerwert, Klaus

    2018-05-16

    A feasibility study using a quantum cascade laser-based infrared microscope for the rapid and label-free classification of colorectal cancer tissues is presented. Infrared imaging is a reliable, robust, automated, and operator-independent tissue classification method that has been used for differential classification of tissue thin sections identifying tumorous regions. However, long acquisition time by the so far used FT-IR-based microscopes hampered the clinical translation of this technique. Here, the used quantum cascade laser-based microscope provides now infrared images for precise tissue classification within few minutes. We analyzed 110 patients with UICC-Stage II and III colorectal cancer, showing 96% sensitivity and 100% specificity of this label-free method as compared to histopathology, the gold standard in routine clinical diagnostics. The main hurdle for the clinical translation of IR-Imaging is overcome now by the short acquisition time for high quality diagnostic images, which is in the same time range as frozen sections by pathologists.

  1. Preparation and evaluation of enrofloxacin microspheres and tissue distribution in rats.

    Science.gov (United States)

    Yang, Fan; Kang, Jijun; Yang, Fang; Zhao, Zhensheng; Kong, Tao; Zeng, Zhenling

    2015-01-01

    New enrofloxacin microspheres were formulated, and their physical properties, lung-targeting ability, and tissue distribution in rats were examined. The microspheres had a regular and round shape. The mean diameter was 10.06 µm, and the diameter of 89.93% of all microspheres ranged from 7.0 µm to 30.0 µm. Tissue distribution of the microspheres was evaluated along with a conventional enrofloxacin preparation after a single intravenous injection (7.5 mg of enrofloxacin/kg bw). The results showed that the elimination half-life (t1/2β) of enrofloxacin from lung was prolonged from 7.94 h for the conventional enrofloxacin to 13.28 h for the microspheres. Area under the lung concentration versus time curve from 0 h to ∞ (AUC00∞) was increased from 11.66 h·µg/g to 508.00 h·µg/g. The peak concentration (Cmax) in lung was increased from 5.95 µg/g to 93.36 µg/g. Three lung-targeting parameters were further assessed and showed that the microspheres had remarkable lung-targeting capabilities.

  2. DNA Measurement of Overlapping Cell Nuclei in Thick Tissue Sections

    Directory of Open Access Journals (Sweden)

    Liang Ji

    1997-01-01

    Full Text Available The paper describes an improved image analysis procedure for measuring the DNA content of cell nuclei in thick sections of liver tissue by absorption densitometry. Whereas previous methods only permitted the analysis of isolated nuclei, the new technique enables both isolated and overlapping nuclei to be measured. A 3D segmentation procedure determines whether each object is an isolated nucleus or a pair of overlapping nuclei; in the latter case the combined optical density is redistributed to the individual nuclei. A selection procedure ensures that only complete nuclei are measured.

  3. Comparison of ultramicrotomy and focused-ion-beam for the preparation of TEM and STEM cross section of organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Corazza, Michael, E-mail: michael.corazza@gmail.com [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Simonsen, Søren B. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Gnaegi, Helmut [Diatome Ltd., Biel-Bienne (Switzerland); Thydén, Karl T.S.; Krebs, Frederik C.; Gevorgyan, Suren A. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark)

    2016-12-15

    Highlights: • Comparison of flexible solar cell sections prepared by ultramicrotomy and by FIB. • Energy filtered TEM analysis of phase separation in the P3HT:PCBM active layer. • Imaging of aging effects on solar cell cross section prepared by ultramicrotomy. • Ultramicrotomy provides great details while FIB better preserves the structure. - Abstract: The challenge of preparing cross sections of organic photovoltaics (OPV) suitable for transmission electron microscopy (TEM) and scanning TEM (STEM) is addressed. The samples were polymer solar cells fabricated using roll-to-roll (R2R) processing methods on a flexible polyethylene terephthalate (PET) substrate. Focused ion beam (FIB) and ultramicrotomy were used to prepare the cross sections. The differences between the samples prepared by ultramicrotomy and FIB are addressed, focusing on the advantages and disadvantages of each technique. The sample prepared by ultramicrotomy yielded good resolution, enabling further studies of phase separation of P3HT:PCBM by means of energy filtered TEM (EFTEM). The sample prepared by FIB shows good structure preservation, but reduced resolution due to non-optimal thicknesses achieved after treatment. Degradation studies of samples prepared by ultramicrotomy are further discussed, which reveal particular effects of the ISOS-L-3 aging test (85 °C, 50% R.H., 0.7 Sun) onto the sample, especially pronounced in the silver layer.

  4. An integrated sample preparation to determine coccidiostats and emerging Fusarium-mycotoxins in various poultry tissues with LC-MS/MS.

    Science.gov (United States)

    Jestoi, Marika; Rokka, Mervi; Peltonen, Kimmo

    2007-05-01

    The usefulness of an existing sample preparation technique used for ionophoric coccidiostats (lasalocid, monensin, salinomycin and narasin) was applied in the analysis of emerging Fusarium-mycotoxins beauvericin (BEA) and enniatins (ENNs) in poultry tissues (liver and meat). Also, maduramicin and liver as a new sample matrix was introduced. The developed methods were validated and applied for the determination of coccidiostats and BEA/ENNs in Finnish poultry tissues in 2004-2005. The validation parameters demonstrated that the integrated sample preparation technique is applicable to the parallel determination of these contaminants in poultry tissues. Of the samples analysed (276 meat and 43 liver), only trace levels of LAS, MON, SAL, NAR and MAD were detected in 7, 3, 5, 6 and 4% of the samples, respectively. Interestingly, for the first time, traces of BEA and ENNs could also be detected in animal tissues. BEA and ENNs A, A1, B and B1 were found in 2, 0.3, 0.6, 4 and 3% of the samples, respectively. The simultaneous presence of coccidiostats and mycotoxins was detected in three turkey samples in 2004.

  5. Improved histopathological evaluation of gliomas using tissue fragments obtained by ultrasonic aspiration

    DEFF Research Database (Denmark)

    Neckelmann, K; Kristensen, B W; Schrøder, H D

    2004-01-01

    included in the biopsy removed for peroperative frozen section investigation. When the slides with Sonocut tissue fragments were analyzed, the probability of making the most malignant diagnosis increased from 81.3% - 99.1%, when slides from 1 - 5 paraffin blocks were analyzed, respectively. When subgroups...... of small, medium and big tumors were analyzed, it was found that only 2 paraffin blocks from small tumors need to be prepared to reach 98.3% probability of making the most malignant diagnosis, whereas 5 paraffin blocks from big tumors need to be prepared to reach a 96.8% probability. In conclusion......, the study shows that a limited amount of Sonocut ultrasonic tissue fragments improve the diagnostic evaluation of gliomas. These tissue fragments therefore must not be discarded. Only few paraffin blocks need to be prepared to reach close to 100% probability of making the most malignant diagnosis, reducing...

  6. Preparation of degradable porous structures based on 1,3-trimethylene carbonate and D,L-lactide (co)polymers for heart tissue engineering

    NARCIS (Netherlands)

    Pego, AP; Siebum, B; Van Luyn, MJA; Van Seijen, XJGY; Poot, AA; Grijpma, DW; Feijen, J

    2003-01-01

    Biodegradable porous scaffolds for heart tissue engineering were prepared from amorphous elastomeric (co)polymers of 1,3-trimethylene carbonate (TMC) and D,L-lactide (DLLA). Leaching of salt from compression-molded polymer-salt composites allowed the preparation of highly porous structures in a

  7. A new laser reflectance system capable of measuring changing cross-sectional area of soft tissues during tensile testing.

    Science.gov (United States)

    Pokhai, Gabriel G; Oliver, Michele L; Gordon, Karen D

    2009-09-01

    Determination of the biomechanical properties of soft tissues such as tendons and ligaments is dependent on the accurate measurement of their cross-sectional area (CSA). Measurement methods, which involve contact with the specimen, are problematic because soft tissues are easily deformed. Noncontact measurement methods are preferable in this regard, but may experience difficulty in dealing with the complex cross-sectional shapes and glistening surfaces seen in soft tissues. Additionally, existing CSA measurement systems are separated from the materials testing machine, resulting in the inability to measure CSA during testing. Furthermore, CSA measurements are usually made in a different orientation, and with a different preload, prior to testing. To overcome these problems, a noncontact laser reflectance system (LRS) was developed. Designed to fit in an Instron 8872 servohydraulic test machine, the system measures CSA by orbiting a laser transducer in a circular path around a soft tissue specimen held by tissue clamps. CSA measurements can be conducted before and during tensile testing. The system was validated using machined metallic specimens of various shapes and sizes, as well as different sizes of bovine tendons. The metallic specimens could be measured to within 4% accuracy, and the tendons to within an average error of 4.3%. Statistical analyses showed no significant differences between the measurements of the LRS and those of the casting method, an established measurement technique. The LRS was successfully used to measure the changing CSA of bovine tendons during uniaxial tensile testing. The LRS developed in this work represents a simple, quick, and accurate way of reconstructing complex cross-sectional profiles and calculating cross-sectional areas. In addition, the LRS represents the first system capable of automatically measuring changing CSA of soft tissues during tensile testing, facilitating the calculation of more accurate biomechanical properties.

  8. Mounting ground sections of teeth: Cyanoacrylate adhesive versus Canada balsam.

    Science.gov (United States)

    Vangala, Manogna Rl; Rudraraju, Amrutha; Subramanyam, R V

    2016-01-01

    Hard tissues can be studied by either decalcification or by preparing ground sections. Various mounting media have been tried and used for ground sections of teeth. However, there are very few studies on the use of cyanoacrylate adhesive as a mounting medium. The aim of our study was to evaluate the efficacy of cyanoacrylate adhesive (Fevikwik™) as a mounting medium for ground sections of teeth and to compare these ground sections with those mounted with Canada balsam. Ground sections were prepared from twenty extracted teeth. Each section was divided into two halves and mounted on one slide, one with cyanoacrylate adhesive (Fevikwik™) and the other with Canada balsam. Scoring for various features in the ground sections was done by two independent observers. Statistical analysis using Student's t-test (unpaired) of average scores was performed for each feature observed. No statistically significant difference was found between the two for most of the features. However, cyanoacrylate was found to be better than Canada balsam for observing striae of Retzius (P < 0.0205), enamel lamellae (P < 0.036), dentinal tubules (P < 0.0057), interglobular dentin (P < 0.0001), sclerotic dentin - transmitted light (P < 0.00001), sclerotic dentin - polarized light (P < 0.0002) and Sharpey's fibers (P < 0.0004). This initial study shows that cyanoacrylate is better than Canada balsam for observing certain features of ground sections of teeth. However, it remains to be seen whether it will be useful for studying undecalcified sections of carious teeth and for soft tissue sections.

  9. Porous PEOT/PBT scaffolds for bone tissue engineering: preparation, characterization, and in vitro bone marrow cell culturing

    NARCIS (Netherlands)

    Claase, M.B.; Grijpma, Dirk W.; Mendes, S.C.; Mendes, Sandra C.; de Bruijn, Joost Dick; Feijen, Jan

    2003-01-01

    The preparation, characterization, and in vitro bone marrow cell culturing on porous PEOT/PBT copolymer scaffolds are described. These scaffolds are meant for use in bone tissue engineering. Previous research has shown that PEOT/PBT copolymers showed in vivo degradation, calcification, and bone

  10. Preparation of collagen/polyurethane/knitted silk as a composite scaffold for tendon tissue engineering.

    Science.gov (United States)

    Sharifi-Aghdam, Maryam; Faridi-Majidi, Reza; Derakhshan, Mohammad Ali; Chegeni, Arash; Azami, Mahmoud

    2017-07-01

    The main objective of this study was to prepare a hybrid three-dimensional scaffold that mimics natural tendon tissues. It has been found that a knitted silk shows good mechanical strength; however, cell growth on the bare silk is not desirable. Hence, electrospun collagen/polyurethane combination was used to cover knitted silk. A series of collagen and polyurethane solutions (4%-7% w/v) in aqueous acetic acid were prepared and electrospun. According to obtained scanning electron microscopy images from pure collagen and polyurethane nanofibers, concentration was set constant at 5% (w/v) for blend solutions of collagen/polyurethane. Afterward, blend solutions with the weight ratios of 75/25, 50/50 and 25/75 were electrospun. Scanning electron microscopy images demonstrated the smooth and uniform morphology for the optimized nanofibers. The least fibers diameter among three weight ratios was found for collagen/polyurethane (25/75) which was 100.86 ± 40 nm and therefore was selected to be electrospun on the knitted silk. Attenuated total reflectance-Fourier transform infrared spectra confirmed the chemical composition of obtained electrospun nanofibers on the knitted silk. Tensile test of the specimens including blend nanofiber, knitted silk and commercial tendon substitute examined and indicated that collagen/polyurethane-coated knitted silk has appropriate mechanical properties as a scaffold for tendon tissue engineering. Then, Alamar Blue assay of the L929 fibroblast cell line seeded on the prepared scaffolds demonstrated appropriate viability of the cells with a significant proliferation on the scaffold containing more collagen content. The results illustrate that the designed structure would be promising for being used as a temporary substitute for tendon repair.

  11. Preparation of TEM specimen by cross-section technique

    International Nuclear Information System (INIS)

    Hamada, Shozo

    1986-01-01

    Transmission electron microscopy (TEM) is applied to the direct observation of the depth dependent damage structure in ion-irradiated stainless steel by using the cross-section technique; obtaining the TEM specimen from a slice of the irradiated stainless steel with thick Ni plating. Here has been developed the specimen preparation method of cross-section technique without heat treatment, which was necessary in the conventional method to strengthen the bonding between Ni and stainless steel. Nickel plating with good bonding to stainless steel is enabled by the following manner. First, the irradiated stainless steel is immersed in the Wood's nickel solution at room temperature for 60s to activate the surface, followed by the stricking for 300s at a current density of 300 A/m 2 in the solution to make fine and homogeneous nucleation of Ni on the stainless steel. Then, the sample is plated with Ni in the Watt's nickel plating solution at 333 K with current density of 900 ∼ 1,000 A/m 2 . The TEM disc is obtained by mechanical slicing from the specimen with Ni plating of more than 3 mm thickness. Electropolishing is accomplished by using both Ballmann method and jet electropolishing to perforate the disc accurately at the aimed point for the observation of the damage structure. (author)

  12. Preparation of a Carbon Doped Tissue-Mimicking Material with High Dielectric Properties for Microwave Imaging Application

    Directory of Open Access Journals (Sweden)

    Siang-Wen Lan

    2016-07-01

    Full Text Available In this paper, the oil-in-gelatin based tissue-mimicking materials (TMMs doped with carbon based materials including carbon nanotube, graphene ink or lignin were prepared. The volume percent for gelatin based mixtures and oil based mixtures were both around 50%, and the doping amounts were 2 wt %, 4 wt %, and 6 wt %. The effect of doping material and amount on the microwave dielectric properties including dielectric constant and conductivity were investigated over an ultra-wide frequency range from 2 GHz to 20 GHz. The coaxial open-ended reflection technology was used to evaluate the microwave dielectric properties. Six measured values in different locations of each sample were averaged and the standard deviations of all the measured dielectric properties, including dielectric constant and conductivity, were less than one, indicating a good uniformity of the prepared samples. Without doping, the dielectric constant was equal to 23 ± 2 approximately. Results showed with doping of carbon based materials that the dielectric constant and conductivity both increased about 5% to 20%, and the increment was dependent on the doping amount. By proper selection of doping amount of the carbon based materials, the prepared material could map the required dielectric properties of special tissues. The proposed materials were suitable for the phantom used in the microwave medical imaging system.

  13. Estimation of induced secondary metabolites in chickpea tissues in response to elicitor preparation of seaweeds

    International Nuclear Information System (INIS)

    Bi, F.; Iqbal, S.

    2000-01-01

    Disease response of plants in terms of induced browning and phytoalexin (induced secondary metabolites) production were recorded in the tissues of Cicer arietinum (Chick pea) treated with the High Molecular Crude Elicitor Preparations, HMWCEP 'Polysaccharides' of Hypnea musciformis (red algae), Padina tetrastromatica (brown algae) and Ulva lactulus (green algae). A UV-visible spectrophotometric method has been developed for the quantification of induced secondary metabolites with time. (author)

  14. Effects of tissue-preparation-induced callose synthesis on estimates of plasmodesma size exclusion limits.

    Science.gov (United States)

    Radford, J E; White, R G

    2001-01-01

    Plasmodesmata are often characterised by their size exclusion limit (SEL), which is the molecular weight of the largest dye, introduced by microinjection, that will move from cell to cell. In this study, we investigated whether commonly used techniques for isolation and manipulation of tissues, and microinjection of fluorescent dyes, affected the SEL, and whether any such effects could be ameliorated by inhibiting callose deposition. We examined young root epidermal cells of Arabidopsis thaliana and staminal hair cells of Tradescantia virginiana, two tissues often used in experiments on symplastic transport. Transport in root tips dissected from the main plant body and in stamen hairs removed from the base of the stamen filament was compared with transport in undissected roots and stamen hairs attached to the base of the filament, respectively. Tissues were microinjected with fluorescent dyes (457 Da to > 3 kDa) with or without prior incubation in the callose deposition inhibitors 2-deoxy-D-glucose or aniline blue fluorochrome. In both tissues, dissection reduced the SEL, which was largely prevented by prior incubation in 2-deoxy-D-glucose but not by incubation in aniline blue fluorochrome. Thus, standard methods for tissue preparation can cause sufficient callose deposition to reduce cell-to-cell transport, and this needs to be considered in studies employing microinjection. Introduction of the dyes by pressure injection rather than iontophoresis decreased the SEL in A. thaliana but increased it in T. virginiana, showing that these two injection techniques do not necessarily give identical results and that plasmodesmata in different tissues may respond differently to similar experimental procedures.

  15. Three-dimensional reconstruction of colorectal tumors from serial tissue sections by computer graphics: a preliminary study.

    Science.gov (United States)

    Kikuchi, S; Matsuzaki, H; Kondo, K; Ohtani, Y; Ihara, A; Hiki, Y; Kakita, A; Kuwao, S

    2000-01-01

    We present herein the three-dimensional reconstruction of colorectal tumors, with particular reference to growth pattern into each layer of the colorectal wall, and measurement of tumor volume and surface area. Conventional tissue section images of colorectal tumors were analyzed using a computer graphics analysis program. The two-dimensional extent of invasion by each tumor into each layer of intestinal wall were determined from the images of each section. Based on data from multiple sections, tumor and surrounding normal tissue layers were reconstructed three-dimensionally, and volume and surface area of the tumors were determined. Using this technique, three-dimensional morphology of tumor and tumor progression into colorectal wall could be determined. Volume and surface area of the colon tumor were 4871 mm3 and 1741 mm2, respectively. Volume and surface area of the rectal tumor were 1090 mm3 and 877 mm2, respectively. This technique may provide a new approach for pathological analysis of colorectal carcinoma.

  16. Mandibular Bone and Soft Tissues Necrosis Caused by an Arsenical Endodontic Preparation Treated with Piezoelectric Device

    Directory of Open Access Journals (Sweden)

    A. Giudice

    2013-01-01

    Full Text Available This paper describes a case of wide mandibular bone necrosis associated with significant soft tissues injury after using an arsenical endodontic preparation in the right lower second molar for endodontic purpose. Authors debate about the hazardous effects of the arsenic paste and the usefulness of piezosurgery for treatment of this drug related bone necrosis.

  17. Optically Sectioned Imaging of Microvasculature of In-Vivo and Ex-Vivo Thick Tissue Models with Speckle-illumination HiLo Microscopy and HiLo Image Processing Implementation in MATLAB Architecture

    Science.gov (United States)

    Suen, Ricky Wai

    The work described in this thesis covers the conversion of HiLo image processing into MATLAB architecture and the use of speckle-illumination HiLo microscopy for use of ex-vivo and in-vivo imaging of thick tissue models. HiLo microscopy is a wide-field fluorescence imaging technique and has been demonstrated to produce optically sectioned images comparable to confocal in thin samples. The imaging technique was developed by Jerome Mertz and the Boston University Biomicroscopy Lab and has been implemented in our lab as a stand-alone optical setup and a modification to a conventional fluorescence microscope. Speckle-illumination HiLo microscopy combines two images taken under speckle-illumination and standard uniform-illumination to generate an optically sectioned image that reject out-of-focus fluorescence. The evaluated speckle contrast in the images is used as a weighting function where elements that move out-of-focus have a speckle contrast that decays to zero. The experiments shown here demonstrate the capability of our HiLo microscopes to produce optically-sectioned images of the microvasculature of ex-vivo and in-vivo thick tissue models. The HiLo microscope were used to image the microvasculature of ex-vivo mouse heart sections prepared for optical histology and the microvasculature of in-vivo rodent dorsal window chamber models. Studies in label-free surface profiling with HiLo microscopy is also presented.

  18. Separating spectral mixtures in hyperspectral image data using independent component analysis: validation with oral cancer tissue sections

    Science.gov (United States)

    Duann, Jeng-Ren; Jan, Chia-Ing; Ou-Yang, Mang; Lin, Chia-Yi; Mo, Jen-Feng; Lin, Yung-Jiun; Tsai, Ming-Hsui; Chiou, Jin-Chern

    2013-12-01

    Recently, hyperspectral imaging (HSI) systems, which can provide 100 or more wavelengths of emission autofluorescence measures, have been used to delineate more complete spectral patterns associated with certain molecules relevant to cancerization. Such a spectral fingerprint may reliably correspond to a certain type of molecule and thus can be treated as a biomarker for the presence of that molecule. However, the outcomes of HSI systems can be a complex mixture of characteristic spectra of a variety of molecules as well as optical interferences due to reflection, scattering, and refraction. As a result, the mixed nature of raw HSI data might obscure the extraction of consistent spectral fingerprints. Here we present the extraction of the characteristic spectra associated with keratinized tissues from the HSI data of tissue sections from 30 oral cancer patients (31 tissue samples in total), excited at two different wavelength ranges (330 to 385 and 470 to 490 nm), using independent and principal component analysis (ICA and PCA) methods. The results showed that for both excitation wavelength ranges, ICA was able to resolve much more reliable spectral fingerprints associated with the keratinized tissues for all the oral cancer tissue sections with significantly higher mean correlation coefficients as compared to PCA (p<0.001).

  19. Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering.

    Science.gov (United States)

    Nasri-Nasrabadi, Bijan; Mehrasa, Mohammad; Rafienia, Mohammad; Bonakdar, Shahin; Behzad, Tayebeh; Gavanji, Shahin

    2014-08-08

    Starch/cellulose nanofibers composites with proper porosity pore size, mechanical strength, and biodegradability for cartilage tissue engineering have been reported in this study. The porous thermoplastic starch-based composites were prepared by combining film casting, salt leaching, and freeze drying methods. The diameter of 70% nanofibers was in the range of 40-90 nm. All samples had interconnected porous morphology; however an increase in pore interconnectivity was observed when the sodium chloride ratio was increased in the salt leaching. Scaffolds with the total porogen content of 70 wt% exhibited adequate mechanical properties for cartilage tissue engineering applications. The water uptake ratio of nanocomposites was remarkably enhanced by adding 10% cellulose nanofibers. The scaffolds were partially destroyed due to low in vitro degradation rate after more than 20 weeks. Cultivation of isolated rabbit chondrocytes on the fabricated scaffold proved that the incorporation of nanofibers in starch structure improves cell attachment and proliferation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Experimental investigations into sample preparation of Alzheimer tissue specimens for nuclear microprobe analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, T [CEC-JRC, Central Bureau for Nuclear Measurements, Geel (Belgium); Tapper, U A.S. [Dept. of Nuclear Physics, Lund Inst. of Science and Tech. (Sweden); Sturesson, K; Brun, A [Div. of Neuropathology, Dept. of Pathology, Lund University Hospital (Sweden)

    1991-03-01

    Nuclear microprobe analysis was applied to the study of elemental distribution in brains sections of patients with a diagnosis of Alzheimer's disease. Stained and nonstained cryosections were studied. The work carried out shows that serious elemental losses follow the sample staining procedure. Major losses occurred in a simple rinse of the tissue section, probably reducing most of the in-vivo gradients, which show that generally very little information can be gained from stained sections. However, in many cases stained sections are compulsory because of the requirement to recognize the area which is to be studied. All the elemental maps obtained for the neurofibrillary deposits indicate a localized concentration for Si and probably also Al, associated with the senile plaque core. Neither of these elements were found in the staining solutions used. The validity of the results is discussed as well as the possible link of Al and/or Si in the development of Alzheimer's desease. (orig.).

  1. Diagnosis of filamentous fungi on tissue sections by immunohistochemistry using anti-aspergillus antibody.

    Science.gov (United States)

    Challa, Sundaram; Uppin, Shantveer G; Uppin, Megha S; Pamidimukkala, Umabala; Vemu, Lakshmi

    2015-06-01

    Identification based on histology alone has limitations as Aspergillus species share morphology with other filamentous fungi. Differentiation of Aspergillus species from hyalohyphomycetes and dematiaceous fungi is important as the antifungal susceptibility varies among different species and genera. Given these problems, ancillary techniques are needed to increase specificity. Our aim was to study the utility of immunohistochemistry (IHC) with anti-Aspergillus antibody in the identification of Aspergillus species and to differentiate them from other filamentous fungi. Fifty formalin fixed, paraffin embedded tissue sections including 47 from cases of culture proven filamentous fungi, 3 from colonies of cultures of hyalohyphomycetes, and 11 smears from cultures were subjected to IHC studies using polyclonal rabbit anti-Aspergillus antibody (Abcam, UK) after antigen retrieval. The IHC on tissue sections was positive in 88% cases involving culture proven Aspergillus species. There was no cross reactivity with Mucorales species, Candida species, dematiaceous fungi and hyalohyphomycetes. Hence immunohistochemistry can be used as an ancillary technique for the diagnosis of Aspergillus species. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions.

    Science.gov (United States)

    Weber, Daniela; Davies, Michael J; Grune, Tilman

    2015-08-01

    Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples. © 2015 Published by Elsevier Ltd.

  3. Three-Dimensional Human Cardiac Tissue Engineered by Centrifugation of Stacked Cell Sheets and Cross-Sectional Observation of Its Synchronous Beatings by Optical Coherence Tomography.

    Science.gov (United States)

    Haraguchi, Yuji; Hasegawa, Akiyuki; Matsuura, Katsuhisa; Kobayashi, Mari; Iwana, Shin-Ichi; Kabetani, Yasuhiro; Shimizu, Tatsuya

    2017-01-01

    Three-dimensional (3D) tissues are engineered by stacking cell sheets, and these tissues have been applied in clinical regenerative therapies. The optimal fabrication technique of 3D human tissues and the real-time observation system for these tissues are important in tissue engineering, regenerative medicine, cardiac physiology, and the safety testing of candidate chemicals. In this study, for aiming the clinical application, 3D human cardiac tissues were rapidly fabricated by human induced pluripotent stem (iPS) cell-derived cardiac cell sheets with centrifugation, and the structures and beatings in the cardiac tissues were observed cross-sectionally and noninvasively by two optical coherence tomography (OCT) systems. The fabrication time was reduced to approximately one-quarter by centrifugation. The cross-sectional observation showed that multilayered cardiac cell sheets adhered tightly just after centrifugation. Additionally, the cross-sectional transmissions of beatings within multilayered human cardiac tissues were clearly detected by OCT. The observation showed the synchronous beatings of the thicker 3D human cardiac tissues, which were fabricated rapidly by cell sheet technology and centrifugation. The rapid tissue-fabrication technique and OCT technology will show a powerful potential in cardiac tissue engineering, regenerative medicine, and drug discovery research.

  4. HistoStitcher© : An Interactive Program for Accurate and Rapid Reconstruction of Digitized Whole Histological Sections from Tissue Fragments

    Science.gov (United States)

    Chappelow, Jonathan; Tomaszewski, John E.; Feldman, Michael; Shih, Natalie; Madabhushi, Anant

    2011-01-01

    We present an interactive program called HistoStitcher© for accurate and rapid reassembly of histology fragments into a pseudo-whole digitized histological section. HistoStitcher© provides both an intuitive graphical interface to assist the operator in performing the stitch of adjacent histology fragments by selecting pairs of anatomical landmarks, and a set of computational routines for determining and applying an optimal linear transformation to generate the stitched image. Reconstruction of whole histological sections from images of slides containing smaller fragments is required in applications where preparation of whole sections of large tissue specimens is not feasible or efficient, and such whole mounts are required to facilitate (a) disease annotation and (b) image registration with radiological images. Unlike manual reassembly of image fragments in a general purpose image editing program (such as Photoshop), HistoStitcher© provides memory efficient operation on high resolution digitized histology images and a highly flexible stitching process capable of producing more accurate results in less time. Further, by parameterizing the series of transformations determined by the stitching process, the stitching parameters can be saved, loaded at a later time, refined, or reapplied to multi-resolution scans, or quickly transmitted to another site. In this paper, we describe in detail the design of HistoStitcher© and the mathematical routines used for calculating the optimal image transformation, and demonstrate its operation for stitching high resolution histology quadrants of a prostate specimen to form a digitally reassembled whole histology section, for 8 different patient studies. To evaluate stitching quality, a 6 point scoring scheme, which assesses the alignment and continuity of anatomical structures important for disease annotation, is employed by three independent expert pathologists. For 6 studies compared with this scheme, reconstructed sections

  5. 75 FR 48 - Amendments to the Section 7216 Regulations-Disclosure or Use of Information by Preparers of Returns

    Science.gov (United States)

    2010-01-04

    ... business; the disclosure or use of statistical compilations of data under section 7216 of the Internal... return preparation businesses to always produce a statistical compilation that meets the 25 tax return... statistical compilation in conjunction with the sale or disposition of a tax return preparation business only...

  6. Stented Vessels: A Challenge for Histological Preparation and Microscopy

    Directory of Open Access Journals (Sweden)

    Andrea Nolte

    2013-06-01

    Full Text Available Objective: The first procedure to treat blocked coronary arteries was coronary artery bypass graft surgery. In 1977, Andreas Gruntzig introduced percutaneous transluminal coronary angioplasty (PTCA. Today, several stent systems exist ranging from bare metal stents to various drug-eluting stents. Unfortunately, our understanding of the arterial reaction to stent implantation is incomplete – primarily due to technical limitations in the histological study of stented vascular tissue. Methods: In our study, we examined different histological preparation methods based on the embedding material methacrylate. The procedure of embedding and sectioning stented porcine arteries was optimized for the specific requirements, like histochemistry, immunohistochemistry or pre-stained fluorescence. Furthermore, we used a microscopical technique described as fluorescence intensity decay shape analysis microscopy (FIDSAM to eliminate auto-fluorescence from fluorescently labeled tissue. Results: The sections were suitable for histochemical and immunohistochemical staining. Additionally, pre-labeled fluorescence in the porcine tissue was not lost by the embedding process. The evaluation of arterial cross sections with FIDSAM technology gave new, very important insights into the examination possibilities of fluorescently labeled tissue. Conclusions: Future studies of the vascular response to a variety of new stent materials will provide important clues to the pathogenesis resulting in restenosis and occlusion of stents. [J Interdiscipl Histopathol 2013; 1(3.000: 104-112

  7. Study of sample preparation in the measurement of 36Ar(n, p)36Cl reaction cross section

    International Nuclear Information System (INIS)

    Jiang Songsheng; Hemick, T.K.

    1992-01-01

    The preparation of enriched 36 Ar gas samples and 36 Cl samples for the use in the AMS measurement of 36 Ar(n, p) 36 Cl reaction cross section was described. The 36 Ar samples prepared had the volumes of about 0.4 ml and the weights of about 0.5 mg. The uncertainty in atomic numbers of 36 Ar was (0.3∼0.4)%. The reaction product, 36 Cl, in the 36 Ar was collected and the AgCl samples were prepared

  8. Comparison of drug distribution images from whole-body thin tissue sections obtained using desorption electrospray ionization tandem mass spectrometry and autoradiography.

    Science.gov (United States)

    Kertesz, Vilmos; Van Berkel, Gary J; Vavrek, Marissa; Koeplinger, Kenneth A; Schneider, Bradley B; Covey, Thomas R

    2008-07-01

    Desorption electrospray ionization tandem mass spectrometry (DESI-MS/MS) and whole-body autoradiography (WBA) were used for chemical imaging of whole-body thin tissue sections of mice intravenously dosed with propranolol (7.5 mg/kg). DESI-MS/MS imaging utilized selected reaction monitoring detection performed on an AB/MDS SCIEX 4000 QTRAP mass spectrometer equipped with a prototype extended length particle discriminator interface. Propranolol images of the tissue sections using DESI-MS/MS were obtained at surface scan rates of 0.1, 0.5, 2, and 7 mm/s. Although signal decreased with increasing scan rate, useful whole-body images for propranolol were obtained from the tissues even at 7 mm/s, which required just 79 min of analysis time. Attempts to detect and image the distribution of the known propranolol metabolites were unsuccessful. Regions of the tissue sections showing the most radioactivity from WBA sections were excised and analyzed by high-performance liquid chromatography (HPLC) with radiochemical detection to determine relative levels of propranolol and metabolites present. Comparison of the DESI-MS/MS signal for propranolol and the radioactivity attributed to propranolol from WBA sections indicated nominal agreement between the two techniques for the amount of propranolol in the brain, lung, and liver. Data from the kidney showed an unexplained disparity between the two techniques. The results of this study show the feasibility of using DESI-MS/MS to obtain useful chemical images of a drug in whole-body thin tissue sections following drug administration at a pharmacologically relevant level. Further optimization to improve sensitivity and enable detection of the drug metabolites will be among the requirements necessary to move DESI-MS/MS chemical imaging forward as a practical tool in drug discovery.

  9. In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections.

    Science.gov (United States)

    Ellison, Mitchell A; McMahon, Michael B; Bonde, Morris R; Palmer, Cristi L; Luster, Douglas G

    2016-01-01

    Rust fungi are obligate pathogens with multiple life stages often including different spore types and multiple plant hosts. While individual rust pathogens are often associated with specific plants, a wide range of plant species are infected with rust fungi. To study the interactions between these important pathogenic fungi and their host plants, one must be able to differentiate fungal tissue from plant tissue. This can be accomplished using the In situ hybridization (ISH) protocol described here. To validate reproducibility using the ISH protocol, samples of Chrysanthemum × morifolium infected with Puccinia horiana, Gladiolus × hortulanus infected with Uromyces transversalis and Glycine max infected with Phakopsora pachyrhizi were tested alongside uninfected leaf tissue samples. The results of these tests show that this technique clearly distinguishes between rust pathogens and their respective host plant tissues. This ISH protocol is applicable to rust fungi and potentially other plant pathogenic fungi as well. It has been shown here that this protocol can be applied to pathogens from different genera of rust fungi with no background staining of plant tissue. We encourage the use of this protocol for the study of plant pathogenic fungi in paraffin embedded sections of host plant tissue.

  10. 3D prostate histology image reconstruction: Quantifying the impact of tissue deformation and histology section location

    Directory of Open Access Journals (Sweden)

    Eli Gibson

    2013-01-01

    Full Text Available Background: Guidelines for localizing prostate cancer on imaging are ideally informed by registered post-prostatectomy histology. 3D histology reconstruction methods can support this by reintroducing 3D spatial information lost during histology processing. The need to register small, high-grade foci drives a need for high accuracy. Accurate 3D reconstruction method design is impacted by the answers to the following central questions of this work. (1 How does prostate tissue deform during histology processing? (2 What spatial misalignment of the tissue sections is induced by microtome cutting? (3 How does the choice of reconstruction model affect histology reconstruction accuracy? Materials and Methods: Histology, paraffin block face and magnetic resonance images were acquired for 18 whole mid-gland tissue slices from six prostates. 7-15 homologous landmarks were identified on each image. Tissue deformation due to histology processing was characterized using the target registration error (TRE after landmark-based registration under four deformation models (rigid, similarity, affine and thin-plate-spline [TPS]. The misalignment of histology sections from the front faces of tissue slices was quantified using manually identified landmarks. The impact of reconstruction models on the TRE after landmark-based reconstruction was measured under eight reconstruction models comprising one of four deformation models with and without constraining histology images to the tissue slice front faces. Results: Isotropic scaling improved the mean TRE by 0.8-1.0 mm (all results reported as 95% confidence intervals, while skew or TPS deformation improved the mean TRE by <0.1 mm. The mean misalignment was 1.1-1.9΀ (angle and 0.9-1.3 mm (depth. Using isotropic scaling, the front face constraint raised the mean TRE by 0.6-0.8 mm. Conclusions: For sub-millimeter accuracy, 3D reconstruction models should not constrain histology images to the tissue slice front faces and

  11. Staining of E-selectin ligands on paraffin-embedded sections of tumor tissue.

    Science.gov (United States)

    Carrascal, Mylène A; Talina, Catarina; Borralho, Paula; Gonçalo Mineiro, A; Henriques, Ana Raquel; Pen, Cláudia; Martins, Manuela; Braga, Sofia; Sackstein, Robert; Videira, Paula A

    2018-05-02

    The E-selectin ligands expressed by cancer cells mediate adhesion of circulating cancer cells to endothelial cells, as well as within tissue microenvironments important for tumor progression and metastasis. The identification of E-selectin ligands within cancer tissue could yield new biomarkers for patient stratification and aid in identifying novel therapeutic targets. The determinants of selectin ligands consist of sialylated tetrasaccharides, the sialyl Lewis X and A (sLe X and sLe A ), displayed on protein or lipid scaffolds. Standardized procedures for immunohistochemistry make use of the antibodies against sLe X and/or sLe A . However, antibody binding does not define E-selectin binding activity. In this study, we developed an immunohistochemical staining technique, using E-selectin-human Ig Fc chimera (E-Ig) to characterize the expression and localization of E-selectin binding sites on paraffin-embedded sections of different cancer tissue. E-Ig successfully stained cancer cells with high specificity. The E-Ig staining show high reactivity scores in colon and lung adenocarcinoma and moderate reactivity in triple negative breast cancer. Compared with reactivity of antibody against sLe X/A , the E-Ig staining presented higher specificity to cancer tissue with better defined borders and less background. The E-Ig staining technique allows the qualitative and semi-quantitative analysis of E-selectin binding activity on cancer cells. The development of accurate techniques for detection of selectin ligands may contribute to better diagnostic and better understanding of the molecular basis of tumor progression and metastasis.

  12. Preparation of 235mU targets for 235U(n,n')235mU cross section measurements

    International Nuclear Information System (INIS)

    Bond, E.M.; Vieira, D.J.; Rundberg, R.S.; Glover, S.; Hynek, D.; Jansen, Y.; Becker, J.; Macri, R.

    2008-01-01

    This paper describes the preparation of samples for an experiment to measure the cross-section for 235 U(n,n') 235m U in a fast fission spectrum of neutrons provided by a fast pulsed reactor/critical assembly. Samples of 235m U have been prepared for the calibration of the internal conversion electron detector that is used for the 235m U measurement. Two methods are described for the preparation of 235 mU. The first method used a U-Pu chemical separation based on anion-exchange chromatography and the second method used an alpha recoil collection method. Thin, uniform samples of 235m U+ 235 U were prepared for the experiment using electrodeposition. (author)

  13. Effect of sample preparation techniques on the concentrations and distributions of elements in biological tissues using µSRXRF: a comparative study

    International Nuclear Information System (INIS)

    Al-Ebraheem, A; Dao, E; Desouza, E; McNeill, F E; Farquharson, M J; Li, C; Wainman, B C

    2015-01-01

    Routine tissue sample preparation using chemical fixatives is known to preserve the morphology of the tissue being studied. A competitive method, cryofixation followed by freeze drying, involves no chemical agents and maintains the biological function of the tissue. The possible effects of both sample preparation techniques in terms of the distribution of bio-metals (calcium (Ca), copper (Cu) zinc (Zn), and iron (Fe) specifically) in human skin tissue samples was investigated. Micro synchrotron radiation x-ray fluorescence (μSRXRF) was used to map bio-metal distribution in epidermal and dermal layers of human skin samples from various locations of the body that have been prepared using both techniques. For Ca, Cu and Zn, there were statistically significant differences between the epidermis and dermis using the freeze drying technique (p = 0.02, p < 0.01, and p < 0.01, respectively). Also using the formalin fixed, paraffin embedded technique the levels of Ca, Cu and Zn, were significantly different between the epidermis and dermis layers (p = 0.03, p < 0.01, and p < 0.01, respectively). However, the difference in levels of Fe between the epidermis and dermis was unclear and further analysis was required. The epidermis was further divided into two sub-layers, one mainly composed of the stratum corneum and the other deeper layer, the stratum basale. It was found that the difference between the distribution of Fe in the two epidermal layers using the freeze drying technique resulted in a statistically significant difference (p = 0.012). This same region also showed a difference in Fe using the formalin fixed, paraffin embedded technique (p < 0.01). The formalin fixed, paraffin embedded technique also showed a difference between the deeper epidermal layer and the dermis (p < 0.01). It can be concluded that studies involving Ca, Cu and Zn might show similar results using both sample preparation techniques, however studies involving Fe would need more

  14. Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin.

    Science.gov (United States)

    Sullivan-Brown, Jessica; Bisher, Margaret E; Burdine, Rebecca D

    2011-01-01

    Histological techniques are critical for observing tissue and cellular morphology. In this paper, we outline our protocol for embedding, serial sectioning, staining and visualizing zebrafish embryos embedded in JB-4 plastic resin-a glycol methacrylate-based medium that results in excellent preservation of tissue morphology. In addition, we describe our procedures for staining plastic sections with toluidine blue or hematoxylin and eosin, and show how to couple these stains with whole-mount RNA in situ hybridization. We also describe how to maintain and visualize immunofluorescence and EGFP signals in JB-4 resin. The protocol we outline-from embryo preparation, embedding, sectioning and staining to visualization-can be accomplished in 3 d. Overall, we reinforce that plastic embedding can provide higher resolution of cellular details and is a valuable tool for cellular and morphological studies in zebrafish.

  15. RootAnalyzer: A Cross-Section Image Analysis Tool for Automated Characterization of Root Cells and Tissues.

    Directory of Open Access Journals (Sweden)

    Joshua Chopin

    Full Text Available The morphology of plant root anatomical features is a key factor in effective water and nutrient uptake. Existing techniques for phenotyping root anatomical traits are often based on manual or semi-automatic segmentation and annotation of microscopic images of root cross sections. In this article, we propose a fully automated tool, hereinafter referred to as RootAnalyzer, for efficiently extracting and analyzing anatomical traits from root-cross section images. Using a range of image processing techniques such as local thresholding and nearest neighbor identification, RootAnalyzer segments the plant root from the image's background, classifies and characterizes the cortex, stele, endodermis and epidermis, and subsequently produces statistics about the morphological properties of the root cells and tissues. We use RootAnalyzer to analyze 15 images of wheat plants and one maize plant image and evaluate its performance against manually-obtained ground truth data. The comparison shows that RootAnalyzer can fully characterize most root tissue regions with over 90% accuracy.

  16. Optical histology: a method to visualize microvasculature in thick tissue sections of mouse brain.

    Directory of Open Access Journals (Sweden)

    Austin J Moy

    Full Text Available The microvasculature is the network of blood vessels involved in delivering nutrients and gases necessary for tissue survival. Study of the microvasculature often involves immunohistological methods. While useful for visualizing microvasculature at the µm scale in specific regions of interest, immunohistology is not well suited to visualize the global microvascular architecture in an organ. Hence, use of immunohistology precludes visualization of the entire microvasculature of an organ, and thus impedes study of global changes in the microvasculature that occur in concert with changes in tissue due to various disease states. Therefore, there is a critical need for a simple, relatively rapid technique that will facilitate visualization of the microvascular network of an entire tissue.The systemic vasculature of a mouse is stained with the fluorescent lipophilic dye DiI using a method called "vessel painting". The brain, or other organ of interest, is harvested and fixed in 4% paraformaldehyde. The organ is then sliced into 1 mm sections and optically cleared, or made transparent, using FocusClear, a proprietary optical clearing agent. After optical clearing, the DiI-labeled tissue microvasculature is imaged using confocal fluorescence microscopy and adjacent image stacks tiled together to produce a depth-encoded map of the microvasculature in the tissue slice. We demonstrated that the use of optical clearing enhances both the tissue imaging depth and the estimate of the vascular density. Using our "optical histology" technique, we visualized microvasculature in the mouse brain to a depth of 850 µm.Presented here are maps of the microvasculature in 1 mm thick slices of mouse brain. Using combined optical clearing and optical imaging techniques, we devised a methodology to enhance the visualization of the microvasculature in thick tissues. We believe this technique could potentially be used to generate a three-dimensional map of the

  17. Choice of Illumination System & Fluorophore for Multiplex Immunofluorescence on FFPE Tissue Sections.

    Directory of Open Access Journals (Sweden)

    Sandrine Prost

    Full Text Available The recent availability of novel dyes and alternative light sources to facilitate complex tissue immunofluorescence studies such as multiplex labelling has not been matched by reports critically evaluating the considerations and relative benefits of these new tools, particularly in combination. Product information is often limited to wavelengths used for older fluorophores (FITC, TRITC & corresponding Alexa dyes family. Consequently, novel agents such as Quantum dots are not widely appreciated or used, despite highly favourable properties including extremely bright emission, stability and potentially reduced tissue autofluorescence at the excitation wavelength. Using spectral analysis, we report here a detailed critical appraisal and comparative evaluation of different light sources and fluorophores in multiplex immunofluorescence of clinical biopsy sections. The comparison includes mercury light, metal halide and 3 different LED-based systems, using 7 Qdots (525, 565, 585, 605, 625, 705, Cy3 and Cy5. We discuss the considerations relevant to achieving the best combination of light source and fluorophore for accurate multiplex fluorescence quantitation. We highlight practical limitations and confounders to quantitation with filter-based approaches.

  18. Combined in situ zymography, immunofluorescence, and staining of iron oxide particles in paraffin-embedded, zinc-fixed tissue sections.

    Science.gov (United States)

    Haeckel, Akvile; Schoenzart, Lena; Appler, Franziska; Schnorr, Joerg; Taupitz, Matthias; Hamm, Bernd; Schellenberger, Eyk

    2012-01-01

    Superparamagnetic iron oxide particles are used as potent contrast agents in magnetic resonance imaging. In histology, these particles are frequently visualized by Prussian blue iron staining of aldehyde-fixed, paraffin-embedded tissues. Recently, zinc salt-based fixative was shown to preserve enzyme activity in paraffin-embedded tissues. In this study, we demonstrate that zinc fixation allows combining in situ zymography with fluorescence immunohistochemistry (IHC) and iron staining for advanced biologic investigation of iron oxide particle accumulation. Very small iron oxide particles, developed for magnetic resonance angiography, were applied intravenously to BALB/c nude mice. After 3 hours, spleens were explanted and subjected to zinc fixation and paraffin embedding. Cut tissue sections were further processed to in situ zymography, IHC, and Prussian blue staining procedures. The combination of in situ zymography as well as IHC with subsequent Prussian blue iron staining on zinc-fixed paraffin-embedded tissues resulted in excellent histologic images of enzyme activity, protease distribution, and iron oxide particle accumulation. The combination of all three stains on a single section allowed direct comparison with only moderate degradation of fluorescein isothiocyanate-labeled substrate. This protocol is useful for investigating the biologic environment of accumulating iron oxide particles, with excellent preservation of morphology.

  19. Micro-Raman spectroscopy a powerful technique to identify crocidolite and erionite fibers in tissue sections

    Science.gov (United States)

    Rinaudo, C.; Croce, A.; Allegrina, M.; Baris, I. Y.; Dogan, A.; Powers, A.; Rivera, Z.; Bertino, P.; Yang, H.; Gaudino, G.; Carbone, M.

    2013-05-01

    Exposure to mineral fibers such asbestos and erionite is widely associated with the development of lung cancer and pleural malignant mesothelioma (MM). Pedigree and mineralogical studies indicated that genetics may influence mineral fiber carcinogenesis. Although dimensions strongly impact on the fiber carcinogenic potential, also the chemical composition and the fiber is relevant. By using micro-Raman spectroscopy we show here persistence and identification of different mineral phases, directly on histopathological specimens of mice and humans. Fibers of crocidolite asbestos and erionite of different geographic areas (Oregon, US and Cappadocia, Turkey) were injected in mice intra peritoneum. MM developed in 10/15 asbestos-treated mice after 5 months, and in 8-10/15 erionite-treated mice after 14 months. The persistence of the injected fibers was investigated in pancreas, liver, spleen and in the peritoneal tissue. The chemical identification of the different phases occurred in the peritoneal cavity or at the organ borders, while only rarely fibers were localized in the parenchyma. Raman patterns allow easily to recognize crocidolite and erionite fibers. Microscopic analysis revealed that crocidolite fibers were frequently coated by ferruginous material ("asbestos bodies"), whereas erionite fibers were always free from coatings. We also analyzed by micro-Raman spectroscopy lung tissues, both from MM patients of the Cappadocia, where a MM epidemic developed because of environmental exposure to erionite, and from Italian MM patients with occupational exposure to asbestos. Our findings demonstrate that micro-Raman spectroscopy is technique able to identify mineral phases directly on histopathology specimens, as routine tissue sections prepared for diagnostic purpose. REFERENCES A.U. Dogan, M. Dogan. Environ. Geochem. Health 2008, 30(4), 355. M. Carbone, S. Emri, A.U. Dogan, I. Steele, M. Tuncer, HI. Pass, et al. Nat. Rev. Cancer. 2007, 7 (2),147. M. Carbone, Y

  20. Direct investigation of (sub-) surface preparation artifacts in GaAs based materials by FIB sectioning

    Energy Technology Data Exchange (ETDEWEB)

    Belz, Jürgen; Beyer, Andreas; Torunski, Torsten; Stolz, Wolfgang; Volz, Kerstin

    2016-04-15

    The introduction of preparation artifacts is almost inevitable when producing samples for (scanning) transmission electron microscopy ((S)TEM). These artifacts can be divided in extrinsic artifacts like damage processes and intrinsic artifacts caused by the deviations from the volume strain state in thin elastically strained material systems. The reduction and estimation of those effects is of great importance for the quantitative analysis of (S)TEM images. Thus, optimized ion beam preparation conditions are investigated for high quality samples. Therefore, the surface topology is investigated directly with atomic force microscopy (AFM) on the actual TEM samples. Additionally, the sectioning of those samples by a focused ion beam (FIB) is used to investigate the damage depth profile directly in the TEM. The AFM measurements show good quantitative agreement of sample height modulation due to strain relaxation to finite elements simulations. Strong indications of (sub-) surface damage by ion beams are observed. Their influence on high angle annular dark field (HAADF) imaging is estimated with focus on thickness determination by absolute intensity methods. Data consolidation of AFM and TEM measurements reveals a 3.5 nm surface amorphization, negligible surface roughness on the scale of angstroms and a sub-surface damage profile in the range of up to 8.0 nm in crystalline gallium arsenide (GaAs) and GaAs-based ternary alloys. A correction scheme for thickness evaluation of absolute HAADF intensities is proposed and applied for GaAs based materials. - Highlights: • The damage by Ar-ion milling during TEM sample preparation is investigated directly. • After FIB sectioning damage and deep disorder of c-GaAs is seen in cross-section. • The influence of such disorder on conventional ADF measurements is estimated. • A correction for HAADF measurements is proposed with focus on thickness estimations.

  1. Automation of 3D reconstruction of neural tissue from large volume of conventional serial section transmission electron micrographs.

    Science.gov (United States)

    Mishchenko, Yuriy

    2009-01-30

    We describe an approach for automation of the process of reconstruction of neural tissue from serial section transmission electron micrographs. Such reconstructions require 3D segmentation of individual neuronal processes (axons and dendrites) performed in densely packed neuropil. We first detect neuronal cell profiles in each image in a stack of serial micrographs with multi-scale ridge detector. Short breaks in detected boundaries are interpolated using anisotropic contour completion formulated in fuzzy-logic framework. Detected profiles from adjacent sections are linked together based on cues such as shape similarity and image texture. Thus obtained 3D segmentation is validated by human operators in computer-guided proofreading process. Our approach makes possible reconstructions of neural tissue at final rate of about 5 microm3/manh, as determined primarily by the speed of proofreading. To date we have applied this approach to reconstruct few blocks of neural tissue from different regions of rat brain totaling over 1000microm3, and used these to evaluate reconstruction speed, quality, error rates, and presence of ambiguous locations in neuropil ssTEM imaging data.

  2. In situ hybridisation for identification and differentiation of Mycoplasma hyopneumoniae, Mycoplasma hyosynoviae and Mycoplasma hyorhinis in formalin-fixed porcine tissue sections

    DEFF Research Database (Denmark)

    Boye, Mette; Jensen, Tim Kåre; Ahrens, Peter

    2001-01-01

    Oligonucleotide probes targeting 16S ribosomal RNA were designed for species-specific identification of the porcine mycoplasmas Mycoplasma hyopneumoniae, Mycoplasma hyorhinis and Mycoplasma hyosynoviae using a fluorescent in situ hybridisation assay. The specificity of the probes was evaluated...... using pure cultures as well as porcine tissue sections with artificial presence of mycoplasma, and the probes were found specific for the target organisms. The assay was applied on sections of 28 tissue samples from pigs infected with one or more of the three Mycoplasma species as determined...

  3. High-Throughput Method of Whole-Brain Sectioning, Using the Tape-Transfer Technique.

    Science.gov (United States)

    Pinskiy, Vadim; Jones, Jamie; Tolpygo, Alexander S; Franciotti, Neil; Weber, Kevin; Mitra, Partha P

    2015-01-01

    Cryostat sectioning is a popular but labor-intensive method for preparing histological brain sections. We have developed a modification of the commercially available CryoJane tape collection method that significantly improves the ease of collection and the final quality of the tissue sections. The key modification involves an array of UVLEDs to achieve uniform polymerization of the glass slide and robust adhesion between the section and slide. This report presents system components and detailed procedural steps, and provides examples of end results; that is, 20 μm mouse brain sections that have been successfully processed for routine Nissl, myelin staining, DAB histochemistry, and fluorescence. The method is also suitable for larger brains, such as rat and monkey.

  4. An automated segmentation methodology for quantifying immunoreactive puncta number and fluorescence intensity in tissue sections.

    Science.gov (United States)

    Fish, Kenneth N; Sweet, Robert A; Deo, Anthony J; Lewis, David A

    2008-11-13

    A number of human brain diseases have been associated with disturbances in the structure and function of cortical synapses. Answering fundamental questions about the synaptic machinery in these disease states requires the ability to image and quantify small synaptic structures in tissue sections and to evaluate protein levels at these major sites of function. We developed a new automated segmentation imaging method specifically to answer such fundamental questions. The method takes advantage of advances in spinning disk confocal microscopy, and combines information from multiple iterations of a fluorescence intensity/morphological segmentation protocol to construct three-dimensional object masks of immunoreactive (IR) puncta. This new methodology is unique in that high- and low-fluorescing IR puncta are equally masked, allowing for quantification of the number of fluorescently-labeled puncta in tissue sections. In addition, the shape of the final object masks highly represents their corresponding original data. Thus, the object masks can be used to extract information about the IR puncta (e.g., average fluorescence intensity of proteins of interest). Importantly, the segmentation method presented can be easily adapted for use with most existing microscopy analysis packages.

  5. Direct linear measurement of root dentin thickness and dentin volume changes with post space preparation: A cone-beam computed tomography study

    Directory of Open Access Journals (Sweden)

    Shoeb Yakub Shaikh

    2018-01-01

    Full Text Available Aim: The purpose of the present study was direct linear measurement of dentin thickness and dentin volume changes for post space preparation with cone-beam computed tomography (CBCT. Materials and Methods: Ten maxillary central incisors were scanned, before and after root canal and post space preparation, with Orthophos XG three-dimensional hybrid unit. Thirteen axial section scans of each tooth from orifice to apex and dentin thickness for buccal, lingual, mesial, and distal were measured using proprietary measuring tool and thereafter subjected to statistical analysis. Furthermore, dentin volume was evaluated using ITK-SNAP software. Results: There was statistically significant difference between the dentin thickness in pre- and postinstrumentation (paired t-test and also between different groups (one-way ANOVA. In the shortest post length of 4.5mm the post space preparation resulted in 2.17% loss of hard tissue volume, where as 11mm longest post length post space preparation resulted in >40% loss of hard tissue volume. Conclusion: CBCT axial section scan for direct measurements of root dentin thickness can be guideline before and after post space preparation for selection of drill length and diameter.

  6. Preparation of A-150 tissue-equivalent plastic films

    International Nuclear Information System (INIS)

    Saion, E.B.; Shaari, A.H.; Watt, D.E.

    1992-01-01

    A-150 tissue-equivalent (TE) plastic is widely used as a wall material for tissue-equivalent proportional counters (TEPCS) used in experimental microdosimetry. The objective of this note is to give a technical account of how A-150 TE plastic film can be fabricated in the laboratory from commercially available A-150 TE plastic. (author)

  7. Evaluation of sample preparation methods and optimization of nickel determination in vegetable tissues

    Directory of Open Access Journals (Sweden)

    Rodrigo Fernando dos Santos Salazar

    2011-02-01

    Full Text Available Nickel, although essential to plants, may be toxic to plants and animals. It is mainly assimilated by food ingestion. However, information about the average levels of elements (including Ni in edible vegetables from different regions is still scarce in Brazil. The objectives of this study were to: (a evaluate and optimize a method for preparation of vegetable tissue samples for Ni determination; (b optimize the analytical procedures for determination by Flame Atomic Absorption Spectrometry (FAAS and by Electrothermal Atomic Absorption (ETAAS in vegetable samples and (c determine the Ni concentration in vegetables consumed in the cities of Lorena and Taubaté in the Vale do Paraíba, State of São Paulo, Brazil. By means of the analytical technique for determination by ETAAS or FAAS, the results were validated by the test of analyte addition and recovery. The most viable method tested for quantification of this element was HClO4-HNO3 wet digestion. All samples but carrot tissue collected in Lorena contained Ni levels above the permitted by the Brazilian Ministry of Health. The most disturbing results, requiring more detailed studies, were the Ni concentrations measured in carrot samples from Taubaté, where levels were five times higher than permitted by Brazilian regulations.

  8. Preparation of biodegradable PLA/PLGA membranes with PGA mesh and their application for periodontal guided tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Jin; Kang, Inn-Kyu [Department of Polymer Science, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701 (Korea, Republic of); Yoon, Suk Joon [Department of Biology, Sookmyung Women' s University, Hyochangwongil 52, Yongsan-gu, Seoul 140-742 (Korea, Republic of); Yeo, Guw-Dong; Pai, Chaul-Min, E-mail: ikkang@knu.ac.k [Samyang Central R and D Center, 63-2 Hwaam-dong, Yusung-gu, Daejeon 305-717 (Korea, Republic of)

    2009-10-15

    A biodegradable polylactic acid (PLA)/poly(glycolide-co-lactide) copolymer (PLGA) membrane with polyglycolic acid (PGA) mesh was prepared to aid the effective regeneration of defective periodontal tissues. The microporous membrane used in this study consists of biodegradable polymers, and seems to have a structure to provide appropriate properties for periodontal tissue regeneration. Based on the albumin permeation test, it is known that the biodegradable membrane exhibits the suitable permeability of nutrients. The membrane maintained its physical integrity for 6-8 weeks, which could be sufficient to retain space in the periodontal pocket. Cell attachment and cytotoxicity tests were performed with respect to the evaluation of biocompatibility of the membrane. As a result, the membrane did not show any cytotoxicity. The safety and therapeutic efficacies of the biodegradable membranes were confirmed in animal tests.

  9. Preparation of acellular scaffold for corneal tissue engineering by supercritical carbon dioxide extraction technology.

    Science.gov (United States)

    Huang, Yi-Hsun; Tseng, Fan-Wei; Chang, Wen-Hsin; Peng, I-Chen; Hsieh, Dar-Jen; Wu, Shu-Wei; Yeh, Ming-Long

    2017-08-01

    In this study, we developed a novel method using supercritical carbon dioxide (SCCO 2 ) to prepare acellular porcine cornea (APC). Under gentle extraction conditions using SCCO 2 technology, hematoxylin and eosin staining showed that cells were completely lysed, and cell debris, including nuclei, was efficiently removed from the porcine cornea. The SCCO 2 -treated corneas exhibited intact stromal structures and appropriate mechanical properties. Moreover, no immunological reactions and neovascularization were observed after lamellar keratoplasty in rabbits. All transplanted grafts and animals survived without complications. The transplanted APCs were opaque after the operation but became transparent within 2weeks. Complete re-epithelialization of the transplanted APCs was observed within 4weeks. In conclusion, APCs produced by SCCO 2 extraction technology could be an ideal and useful scaffold for corneal tissue engineering. We decellularized the porcine cornea using SCCO 2 extraction technology and investigated the characteristics, mechanical properties, and biocompatibility of the decellularized porcine cornea by lamellar keratoplasty in rabbits. To the best of our knowledge, this is the first report describing the use of SCCO 2 extraction technology for preparation of acellular corneal scaffold. We proved that the cellular components of porcine corneas had been efficiently removed, and the biomechanical properties of the scaffold were well preserved by SCCO 2 extraction technology. SCCO 2 -treated corneas maintained optical transparency and exhibited appropriate strength to withstand surgical procedures. In vivo, the transplanted corneas showed no evidence of immunological reactions and exhibited good biocompatibility and long-term stability. Our results suggested that the APCs developed by SCCO 2 extraction technology could be an ideal and useful scaffold for corneal replacement and corneal tissue engineering. Copyright © 2017 Acta Materialia Inc. Published by

  10. Digital quantification of fibrosis in liver biopsy sections: description of a new method by Photoshop software.

    Science.gov (United States)

    Dahab, Gamal M; Kheriza, Mohamed M; El-Beltagi, Hussien M; Fouda, Abdel-Motaal M; El-Din, Osama A Sharaf

    2004-01-01

    The precise quantification of fibrous tissue in liver biopsy sections is extremely important in the classification, diagnosis and grading of chronic liver disease, as well as in evaluating the response to antifibrotic therapy. Because the recently described methods of digital image analysis of fibrosis in liver biopsy sections have major flaws, including the use of out-dated techniques in image processing, inadequate precision and inability to detect and quantify perisinusoidal fibrosis, we developed a new technique in computerized image analysis of liver biopsy sections based on Adobe Photoshop software. We prepared an experimental model of liver fibrosis involving treatment of rats with oral CCl4 for 6 weeks. After staining liver sections with Masson's trichrome, a series of computer operations were performed including (i) reconstitution of seamless widefield images from a number of acquired fields of liver sections; (ii) image size and solution adjustment; (iii) color correction; (iv) digital selection of a specified color range representing all fibrous tissue in the image and; (v) extraction and calculation. This technique is fully computerized with no manual interference at any step, and thus could be very reliable for objectively quantifying any pattern of fibrosis in liver biopsy sections and in assessing the response to antifibrotic therapy. It could also be a valuable tool in the precise assessment of antifibrotic therapy to other tissue regardless of the pattern of tissue or fibrosis.

  11. In Situ Blotting : A Novel Method for Direct Transfer of Native Proteins from Sectioned Tissue to Blotting Membrane

    NARCIS (Netherlands)

    Okabe, Masashi; Nyakas, Csaba; Buwalda, Bauke; Luiten, Paul G.M.

    1993-01-01

    We describe a novel technique for direct transfer of native proteins from unfixed frozen tissue sections to an immobilizing matrix, e.g., nitrocellulose, polyvinyliden difluoride, or positively charged nylon membranes. Proteins are directly blotted onto the membrane, providing optimal accessibility

  12. Distribution of basic fibroblast growth factor binding sites in various tissue membrane preparations from adult guinea pig

    International Nuclear Information System (INIS)

    Ledoux, D.; Mereau, A.; Dauchel, M.C.; Barritault, D.; Courty, J.

    1989-01-01

    In order to localize a rich source of basic FGF receptor, we examined the distribution of basic FGF binding sites in brain, stomach, lung, spleen, kidney, liver and intestine membrane preparations from adult guinea pig. Comparative binding studies using iodinated basic FGF showed that a specific binding was detected in all the membrane preparations tested. Scatchard plots from iodinated basic FGF competition experiment with native basic FGF in various membrane preparations, suggested the presence of one class of binding sites in some tissues such as liver, kidney, spleen, lung, stomach, and intestine with an apparent dissociation constant (appKD) value ranging from 4 to 7.5 nM and the existence of a second class of higher affinity sites in brain membranes with appKD value of 15 pM. Characterization of these basic FGF high affinity interaction sites was performed using a cross-linking reagent. These results show for the first time that specific interaction sites for basic FGF are widely distributed, suggesting that this growth factor might play a role in the physiological functions of a number of adult organs

  13. Comparison between thaw-mounting and use of conductive tape for sample preparation in ToF-SIMS imaging of lipids in Drosophila microRNA-14 model.

    Science.gov (United States)

    Le, Minh Uyen Thi; Son, Jin Gyeong; Shon, Hyun Kyoung; Park, Jeong Hyang; Lee, Sung Bae; Lee, Tae Geol

    2018-03-30

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging elucidates molecular distributions in tissue sections, providing useful information about the metabolic pathways linked to diseases. However, delocalization of the analytes and inadequate tissue adherence during sample preparation are among some of the unfortunate phenomena associated with this technique due to their role in the reduction of the quality, reliability, and spatial resolution of the ToF-SIMS images. For these reasons, ToF-SIMS imaging requires a more rigorous sample preparation method in order to preserve the natural state of the tissues. The traditional thaw-mounting method is particularly vulnerable to altered distributions of the analytes due to thermal effects, as well as to tissue shrinkage. In the present study, the authors made comparisons of different tissue mounting methods, including the thaw-mounting method. The authors used conductive tape as the tissue-mounting material on the substrate because it does not require heat from the finger for the tissue section to adhere to the substrate and can reduce charge accumulation during data acquisition. With the conductive-tape sampling method, they were able to acquire reproducible tissue sections and high-quality images without redistribution of the molecules. Also, the authors were successful in preserving the natural states and chemical distributions of the different components of fat metabolites such as diacylglycerol and fatty acids by using the tape-supported sampling in microRNA-14 (miR-14) deleted Drosophila models. The method highlighted here shows an improvement in the accuracy of mass spectrometric imaging of tissue samples.

  14. Raising an Antibody Specific to Breast Cancer Subpopulations Using Phage Display on Tissue Sections

    DEFF Research Database (Denmark)

    Larsen, Simon Asbjørn; Meldgaard, Theresa; Fridriksdottir, Agla Jael Rubner

    2016-01-01

    BACKGROUND/AIM: Primary tumors display a great level of intra-tumor heterogeneity in breast cancer. The current lack of prognostic and predictive biomarkers limits accurate stratification and the ability to predict response to therapy. The aim of the present study was to select recombinant antibody...... fragments specific against breast cancer subpopulations, aiding the discovery of novel biomarkers. MATERIALS AND METHODS: Recombinant antibody fragments were selected by phage display. A novel shadowstick technology enabled the direct selection using tissue sections of antibody fragments specific against...

  15. Differential N-glycan patterns identified in lung adenocarcinoma by N-glycan profiling of formalin-fixed paraffin-embedded (FFPE) tissue sections.

    Science.gov (United States)

    Wang, Xiaoning; Deng, Zaian; Huang, Chuncui; Zhu, Tong; Lou, Jiatao; Wang, Lin; Li, Yan

    2018-02-10

    N-glycan profiling is a powerful approach for analyzing the functional relationship between N-glycosylation and cancer. Current methods rely on either serum or fresh tissue samples; however, N-glycan patterns may differ between serum and tissue, as the proteins of serum originate from a variety of tissues. Furthermore, fresh tissue samples are difficult to ship and store. Here, we used a profiling method based on formalin-fixed paraffin-embedded (FFPE) tissue sections from lung adenocarcinoma patients. We found that our method was highly reproducible. We identified 58 N-glycan compositions from lung adenocarcinoma FFPE samples, 51 of which were further used for MS n -based structure prediction. We show that high mannose type N-glycans are upregulated, while sialylated N-glycans are downregulated in our FFPE lung adenocarcinoma samples, compared to the control samples. Our receiver operating characteristic (ROC) curve analysis shows that high mannose type and sialylated N-glycans are useful discriminators to distinguish between lung adenocarcinoma and control tissue. Together, our results indicate that expression levels of specific N-glycans correlate well with lung adenocarcinoma, and strongly suggest that our FFPE-based method will be useful for N-glycan profiling of cancer tissues. Glycosylation is one of the most important post-translational protein modifications, and is associated with several physiopathological processes, including carcinogenesis. In this study, we tested the feasibility of using formalin-fixed paraffin-embedded (FFPE) tissue sections to identify changes in N-glycan patterns and identified the differentially expressed N-glycans of lung adenocarcinoma. Our study shows that the FFPE-based N-glycan profiling method is useful for clinical diagnosis as well as identification of potential biomarkers, and our data expand current knowledge of differential N-glycan patterns of lung adenocarcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hamstrings tendon graft preparation for anterior cruciate ligament reconstruction using the WhipKnotTM soft tissue cinch technique.

    Directory of Open Access Journals (Sweden)

    Amin Masoumiganjgah

    2012-04-01

    Full Text Available BackgroundAppropriate graft tension and secure graft incorporation inbone tunnels are essential for successful anterior cruciateligament (ACL reconstruction using hamstrings tendonautografts. The WhipKnot™ soft tissue cinch, introduced bySmith and Nephew in 2004, is an alternative option to thecommonly used whipstitch technique during preparation ofthe hamstring autograft in ACL reconstruction.AimsTo investigate the effectiveness of the WhipKnot™ softtissue cinch and technique during the preparation of thetendon graft for ACL reconstruction.MethodA total of 33 ACL reconstruction operations performedbetween February 2011 and December 2011 were includedin this study. These were performed by a single seniorsurgeon who used the Whipknot™ technique for thepreparation of each graft. Four were used for eachoperation; two for each end of the harvested hamstringstendons, including semitendinosus and gracilis tendonsrespectively.ResultsIn total, 132 WhipKnots were used during the kneeoperations. Use of the WhipKnot™ technique resulted insuccessful graft preparations, tensioning and effective graftplacement in the tibial and femoral tunnels in almost allinstances. Only one case of WhipKnot™ failure (slippagewas recorded.ConclusionThese results indicate that the Whipknot™ technique is asafe, reliable and practical option for the preparation of thehamstrings autografts.

  17. Comparison of ultramicrotomy and focused-ion-beam for the preparation of TEM and STEM cross section of organic solar cells

    DEFF Research Database (Denmark)

    Corazza, Michael; Simonsen, Søren Bredmose; Gnaegi, Helmut

    2016-01-01

    The challenge of preparing cross sections of organic photovoltaics (OPV) suitable for transmission electron microscopy (TEM) and scanning TEM (STEM) is addressed. The samples were polymer solar cells fabricated using roll-to-roll (R2R) processing methods on a flexible polyethylene terephthalate...... resolution, enabling further studies of phase separation of P3HT:PCBM by means of energy filtered TEM (EFTEM). The sample prepared by FIB shows good structure preservation, but reduced resolution due to non-optimal thicknesses achieved after treatment. Degradation studies of samples prepared...

  18. Effective melanin depigmentation of human and murine ocular tissues: an improved method for paraffin and frozen sections.

    Directory of Open Access Journals (Sweden)

    Caroline Manicam

    Full Text Available PURPOSE: The removal of excessive melanin pigments that obscure ocular tissue morphology is important to address scientific questions and for differential diagnosis of ocular tumours based on histology. Thus, the goal of the present study was to establish an effective and fast melanin bleaching method for paraffin and frozen mouse and human ocular tissues. METHODS: Paraffin-embedded and frozen ocular specimens from mice and human donors were subjected to bleaching employing two methods. The first employed potassium permanganate (KMnO4 with oxalic acid, and the second 10% hydrogen peroxide (H2O2. To determine optimal bleaching conditions, depigmentation was carried out at various incubation times. The effect of diluents used for 10% H2O2 was assessed using phosphate-buffered saline (PBS, and deionized water. Three different slide types and two fixatives, which were ice-cold acetone with 80% methanol, and 4% paraformaldehyde (PFA were used to determine the optimal conditions for better tissue adherence during bleaching. All tissues were stained in hematoxylin and eosin for histological evaluation. RESULTS: Optimal bleaching was achieved using warm 10% H2O2 diluted in PBS at 65°C for 120 minutes. Chromium-gelatin-coated slides prevented tissue detachment. Adherence of cryosections was also improved with post-fixation using 4% PFA and overnight air-drying at RT after cryosectioning. Tissue morphology was preserved under these conditions. Conversely, tissues bleached in KMnO4/oxalic acid demonstrated poor depigmentation with extensive tissue damage. CONCLUSIONS: Warm dilute H2O2 at 65°C for 120 minutes rapidly and effectively bleached both cryo- and paraffin sections of murine and human ocular tissues.

  19. Effective melanin depigmentation of human and murine ocular tissues: an improved method for paraffin and frozen sections.

    Science.gov (United States)

    Manicam, Caroline; Pitz, Susanne; Brochhausen, Christoph; Grus, Franz H; Pfeiffer, Norbert; Gericke, Adrian

    2014-01-01

    The removal of excessive melanin pigments that obscure ocular tissue morphology is important to address scientific questions and for differential diagnosis of ocular tumours based on histology. Thus, the goal of the present study was to establish an effective and fast melanin bleaching method for paraffin and frozen mouse and human ocular tissues. Paraffin-embedded and frozen ocular specimens from mice and human donors were subjected to bleaching employing two methods. The first employed potassium permanganate (KMnO4) with oxalic acid, and the second 10% hydrogen peroxide (H2O2). To determine optimal bleaching conditions, depigmentation was carried out at various incubation times. The effect of diluents used for 10% H2O2 was assessed using phosphate-buffered saline (PBS), and deionized water. Three different slide types and two fixatives, which were ice-cold acetone with 80% methanol, and 4% paraformaldehyde (PFA) were used to determine the optimal conditions for better tissue adherence during bleaching. All tissues were stained in hematoxylin and eosin for histological evaluation. Optimal bleaching was achieved using warm 10% H2O2 diluted in PBS at 65°C for 120 minutes. Chromium-gelatin-coated slides prevented tissue detachment. Adherence of cryosections was also improved with post-fixation using 4% PFA and overnight air-drying at RT after cryosectioning. Tissue morphology was preserved under these conditions. Conversely, tissues bleached in KMnO4/oxalic acid demonstrated poor depigmentation with extensive tissue damage. Warm dilute H2O2 at 65°C for 120 minutes rapidly and effectively bleached both cryo- and paraffin sections of murine and human ocular tissues.

  20. Preparation and application of an innovative thrombocyte/leukocyte-enriched plasma to promote tissue repair in chelonians.

    Directory of Open Access Journals (Sweden)

    Francesco Di Ianni

    Full Text Available Platelet concentrates are widely used in mammalian regenerative medicine to improve tissue healing. Chelonians (Testudines would benefit from the application of thrombocyte preparations to regenerate damaged tissues, since traumatic injuries are leading causes of morbidity and mortality for both wild-living and domesticated animals. The aim of this study was to establish a protocol that optimized the recovery of the thrombocytes from blood samples and to show the efficacy of thrombocyte-enriched plasma in chelonians. Peripheral blood samples were obtained from Testudo spp. (n = 12 and Trachemys scripta elegans (n = 10. Blood cells were fractionated by sodium diatrizoate-sodium polysucrose density gradient using a two-step centrifugation protocol. Thrombocytes and leukocytes were isolated and resuspended to obtain thrombocyte-leucocyte rich plasma (TLRP. The mean recovery of leukocytes and thrombocytes was 48.9% (±4.0 SEM, n = 22 of the whole blood cell content. No statistically significant difference was observed between blood samples collected from different turtle species. The ability of TLRP to form a gel was evaluated by adding variable concentrations of calcium gluconate at room temperature and at 37°C. A reliable and consistent clotting of the TLRP was obtained in glass tubes and dishes by adding 5-20% v/v of a 100 mg/ml solution of calcium gluconate. Furthermore, in order to test the clinical efficacy of TLRP, a preliminary evaluation was performed on four turtles (Testudo spp. with traumatic injuries. In all the four animals, a successful clinical outcome was observed. The results demonstrated that a thrombocyte-enriched plasma, comparable to mammalian platelet rich plasma, can be prepared from chelonian blood samples. Furthermore, although the low number of cases presented does not allow definitive conclusions from a clinical point of view, their outcome suggests that TLRP application could be further investigated to improve the

  1. Preparation and Application of an Innovative Thrombocyte/Leukocyte-Enriched Plasma to Promote Tissue Repair in Chelonians

    Science.gov (United States)

    Di Ianni, Francesco; Merli, Elisa; Burtini, Francesca; Conti, Virna; Pelizzone, Igor; Di Lecce, Rosanna; Parmigiani, Enrico; Squassino, Gian Paolo; Del Bue, Maurizio; Lucarelli, Enrico; Ramoni, Roberto; Grolli, Stefano

    2015-01-01

    Platelet concentrates are widely used in mammalian regenerative medicine to improve tissue healing. Chelonians (Testudines) would benefit from the application of thrombocyte preparations to regenerate damaged tissues, since traumatic injuries are leading causes of morbidity and mortality for both wild-living and domesticated animals. The aim of this study was to establish a protocol that optimized the recovery of the thrombocytes from blood samples and to show the efficacy of thrombocyte-enriched plasma in chelonians. Peripheral blood samples were obtained from Testudo spp. (n = 12) and Trachemys scripta elegans (n = 10). Blood cells were fractionated by sodium diatrizoate-sodium polysucrose density gradient using a two-step centrifugation protocol. Thrombocytes and leukocytes were isolated and resuspended to obtain thrombocyte-leucocyte rich plasma (TLRP). The mean recovery of leukocytes and thrombocytes was 48.9% (±4.0 SEM, n = 22) of the whole blood cell content. No statistically significant difference was observed between blood samples collected from different turtle species. The ability of TLRP to form a gel was evaluated by adding variable concentrations of calcium gluconate at room temperature and at 37°C. A reliable and consistent clotting of the TLRP was obtained in glass tubes and dishes by adding 5-20% v/v of a 100 mg/ml solution of calcium gluconate. Furthermore, in order to test the clinical efficacy of TLRP, a preliminary evaluation was performed on four turtles (Testudo spp.) with traumatic injuries. In all the four animals, a successful clinical outcome was observed. The results demonstrated that a thrombocyte-enriched plasma, comparable to mammalian platelet rich plasma, can be prepared from chelonian blood samples. Furthermore, although the low number of cases presented does not allow definitive conclusions from a clinical point of view, their outcome suggests that TLRP application could be further investigated to improve the healing process of

  2. Application of SEM and EDX in studying biomineralization in plant tissues.

    Science.gov (United States)

    He, Honghua; Kirilak, Yaowanuj

    2014-01-01

    This chapter describes protocols using formalin-acetic acid-alcohol (FAA) to fix plant tissues for studying biomineralization by means of scanning electron microscopy (SEM) and qualitative energy-dispersive X-ray microanalysis (EDX). Specimen preparation protocols for SEM and EDX mainly include fixation, dehydration, critical point drying (CPD), mounting, and coating. Gold-coated specimens are used for SEM imaging, while gold- and carbon-coated specimens are prepared for qualitative X-ray microanalyses separately to obtain complementary information on the elemental compositions of biominerals. During the specimen preparation procedure for SEM, some biominerals may be dislodged or scattered, making it difficult to determine their accurate locations, and light microscopy is used to complement SEM studies. Specimen preparation protocols for light microscopy generally include fixation, dehydration, infiltration and embedding with resin, microtome sectioning, and staining. In addition, microwave processing methods are adopted here to speed up the specimen preparation process for both SEM and light microscopy.

  3. Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman micro-spectroscopy

    Science.gov (United States)

    Larraona-Puy, M.; Ghita, A.; Zoladek, A.; Perkins, W.; Varma, S.; Leach, I. H.; Koloydenko, A. A.; Williams, H.; Notingher, I.

    2011-05-01

    Skin cancer is the most common human malignancy and basal cell carcinoma (BCC) represents approximately 80% of the non-melanoma cases. Current methods of treatment require histopathological evaluation of the tissues by qualified personnel. However, this method is subjective and in some cases BCC can be confused with other structures in healthy skin, including hair follicles. In this preliminary study, we investigated the potential of Raman micro-spectroscopy (RMS) to discriminate between hair follicles and BCC in skin tissue sections excised during Mohs micrographic surgery (MMS). Imaging and diagnosis of skin sections was automatically generated using ' a priori'-built spectral model based on LDA. This model had 90 ± 9% sensitivity and 85 ± 9% specificity for discrimination of BCC from dermis and epidermis. The model used selected Raman bands corresponding to the largest spectral differences between the Raman spectra of BCC and the normal skin regions, associated mainly with nucleic acids and collagen type I. Raman spectra corresponding to the epidermis regions of the hair follicles were found to be closer to those of healthy epidermis rather than BCC. Comparison between Raman spectral images and the gold standard haematoxylin and eosin (H&E) histopathology diagnosis showed good agreement. Some hair follicle regions were misclassified as BCC; regions corresponded mainly to the outermost layer of hair follicle (basal cells) which are expected to have higher nucleic acid concentration. This preliminary study shows the ability of RMS to distinguish between BCC and other tissue structures associated to healthy skin which can be confused with BCC due to their similar morphology.

  4. Fieldcrest Cannon, Inc. Advanced Technical Preparation. Statistical Process Control (SPC). Safety Section: Modules 1-3. Instructor Book.

    Science.gov (United States)

    Averitt, Sallie D.

    These three modules, which were developed for use by instructors in a manufacturing firm's advanced technical preparation program, contain the materials required to present the safety section of the plant's adult-oriented, job-specific competency-based training program. The 3 modules contain 12 lessons on the following topics: lockout/tagout…

  5. Atomic force microscopy of histological sections using a chemical etching method

    International Nuclear Information System (INIS)

    Tiribilli, B.; Bani, D.; Quercioli, F.; Ghirelli, A.; Vassalli, M.

    2005-01-01

    Physiology and pathology have a big deal on tissue morphology, and the intrinsic spatial resolution of an atomic force microscope (AFM) is able to observe ultrastructural details. In order to investigate cellular and subcellular structures in histological sections with the AFM, we used a new simple method for sample preparation, i.e. chemical etching of semithin sections from epoxy resin-embedded specimens: such treatment appears to melt the upper layers of the embedding resin; thus, removing the superficial roughness caused by the edge of the microtome knife and bringing into high relief the biological structures hidden in the bulk. Consecutive ultrathin sections embedded in epoxy resin were observed with a transmission electron microscope (TEM) to compare the different imaging properties on the same specimen sample. In this paper we report, as an example, our AFM and TEM images of two different tissue specimens, rat pancreas and skeletal muscle fibres, showing that most of the inner details are visible with the AFM. These results suggest that chemical etching of histological sections may be a simple, fast and cost-effective method for AFM imaging with ultrastructural resolution

  6. Optimizing Frozen Sample Preparation for Laser Microdissection: Assessment of CryoJane Tape-Transfer System®.

    Directory of Open Access Journals (Sweden)

    Yelena G Golubeva

    Full Text Available Laser microdissection is an invaluable tool in medical research that facilitates collecting specific cell populations for molecular analysis. Diversity of research targets (e.g., cancerous and precancerous lesions in clinical and animal research, cell pellets, rodent embryos, etc. and varied scientific objectives, however, present challenges toward establishing standard laser microdissection protocols. Sample preparation is crucial for quality RNA, DNA and protein retrieval, where it often determines the feasibility of a laser microdissection project. The majority of microdissection studies in clinical and animal model research are conducted on frozen tissues containing native nucleic acids, unmodified by fixation. However, the variable morphological quality of frozen sections from tissues containing fat, collagen or delicate cell structures can limit or prevent successful harvest of the desired cell population via laser dissection. The CryoJane Tape-Transfer System®, a commercial device that improves cryosectioning outcomes on glass slides has been reported superior for slide preparation and isolation of high quality osteocyte RNA (frozen bone during laser dissection. Considering the reported advantages of CryoJane for laser dissection on glass slides, we asked whether the system could also work with the plastic membrane slides used by UV laser based microdissection instruments, as these are better suited for collection of larger target areas. In an attempt to optimize laser microdissection slide preparation for tissues of different RNA stability and cryosectioning difficulty, we evaluated the CryoJane system for use with both glass (laser capture microdissection and membrane (laser cutting microdissection slides. We have established a sample preparation protocol for glass and membrane slides including manual coating of membrane slides with CryoJane solutions, cryosectioning, slide staining and dissection procedure, lysis and RNA extraction

  7. [Immunocytochemical demonstration of astrocytes in brain sections combined with Nissl staining].

    Science.gov (United States)

    Korzhevskiĭ, D E; Otellin, V A

    2004-01-01

    The aim of the present study was to develop an easy and reliable protocol of combined preparation staining, which would unite the advantages of immunocytochemical demonstration of astrocytes with the availability to evaluate functional state of neurons provided by Nissl technique. The presented protocol of paraffin sections processing allows to retain high quality of tissue structure and provides for selective demonstration of astrocytes using the monoclonal antibodies against glial fibrillary acidic protein and contrast Nissl staining of cells. The protocol can be used without any changes for processing of brain sections obtained from the humans and other mammals with the exception of mice and rabbits.

  8. Tumor tissue slice cultures as a platform for analyzing tissue-penetration and biological activities of nanoparticles.

    Science.gov (United States)

    Merz, Lea; Höbel, Sabrina; Kallendrusch, Sonja; Ewe, Alexander; Bechmann, Ingo; Franke, Heike; Merz, Felicitas; Aigner, Achim

    2017-03-01

    The success of therapeutic nanoparticles depends, among others, on their ability to penetrate a tissue for actually reaching the target cells, and their efficient cellular uptake in the context of intact tissue and stroma. Various nanoparticle modifications have been implemented for altering physicochemical and biological properties. Their analysis, however, so far mainly relies on cell culture experiments which only poorly reflect the in vivo situation, or is based on in vivo experiments that are often complicated by whole-body pharmacokinetics and are rather tedious especially when analyzing larger nanoparticle sets. For the more precise analysis of nanoparticle properties at their desired site of action, efficient ex vivo systems closely mimicking in vivo tissue properties are needed. In this paper, we describe the setup of organotypic tumor tissue slice cultures for the analysis of tissue-penetrating properties and biological activities of nanoparticles. As a model system, we employ 350μm thick slice cultures from different tumor xenograft tissues, and analyze modified or non-modified polyethylenimine (PEI) complexes as well as their lipopolyplex derivatives for siRNA delivery. The described conditions for tissue slice preparation and culture ensure excellent tissue preservation for at least 14days, thus allowing for prolonged experimentation and analysis. When using fluorescently labeled siRNA for complex visualization, fluorescence microscopy of cryo-sectioned tissue slices reveals different degrees of nanoparticle tissue penetration, dependent on their surface charge. More importantly, the determination of siRNA-mediated knockdown efficacies of an endogenous target gene, the oncogenic survival factor Survivin, reveals the possibility to accurately assess biological nanoparticle activities in situ, i.e. in living cells in their original environment. Taken together, we establish tumor (xenograft) tissue slices for the accurate and facile ex vivo assessment of

  9. Complete solubilization of formalin-fixed, paraffin-embedded tissue may improve proteomic studies.

    Science.gov (United States)

    Shi, Shan-Rong; Taylor, Clive R; Fowler, Carol B; Mason, Jeffrey T

    2013-04-01

    Tissue-based proteomic approaches (tissue proteomics) are essential for discovering and evaluating biomarkers for personalized medicine. In any proteomics study, the most critical issue is sample extraction and preparation. This problem is especially difficult when recovering proteins from formalin-fixed, paraffin-embedded (FFPE) tissue sections. However, improving and standardizing protein extraction from FFPE tissue is a critical need because of the millions of archival FFPE tissues available in tissue banks worldwide. Recent progress in the application of heat-induced antigen retrieval principles for protein extraction from FFPE tissue has resulted in a number of published FFPE tissue proteomics studies. However, there is currently no consensus on the optimal protocol for protein extraction from FFPE tissue or accepted standards for quantitative evaluation of the extracts. Standardization is critical to ensure the accurate evaluation of FFPE protein extracts by proteomic methods such as reverse phase protein arrays, which is now in clinical use. In our view, complete solubilization of FFPE tissue samples is the best way to achieve the goal of standardizing the recovery of proteins from FFPE tissues. However, further studies are recommended to develop standardized protein extraction methods to ensure quantitative and qualitative reproducibility in the recovery of proteins from FFPE tissues. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Preparation of thermosensitive magnetic liposome encapsulated recombinant tissue plasminogen activator for targeted thrombolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hao-Lung [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Chen, Jyh-Ping, E-mail: jpchen@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan, ROC (China); Graduate Institute of Health Industry and Technology, Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan, ROC (China)

    2017-04-01

    Recombinant tissue plasminogen activator (rtPA) was encapsulated in thermosensitive magnetic liposome (TML) prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, distearolyphosphatidyl ethanolamine-N-poly(ethylene glycol) 2000, cholesterol and Fe{sub 3}O{sub 4} magnetic nanoparticles by solvent evaporation/sonication and freeze-thaw cycles method. Response surface methodology was proved to be a powerful tool to predict the drug encapsulation efficiency and temperature-sensitive drug release. Validation experiments verified the accuracy of the model that provides a simple and effective method for fabricating TML with controllable encapsulation efficiency and predictable temperature-sensitive drug release behavior. The prepared samples were characterized for physico-chemical properties by dynamic light scattering, transmission electron microscopy, X-ray diffraction and differential scanning calorimetry. Temperature-sensitive release of rtPA could be confirmed from in vitro thrombolysis experiments. A thrombolytic drug delivery system using TML could be proposed for magnetic targeted delivery of rtPA to the site of thrombus followed by temperature-triggered controlled drug release in an alternating magnetic field. - Highlights: • rtPA and Fe{sub 3}O{sub 4} MNP were encapsulated in thermosensitive magnetic liposome (TML). • RSM could predict the drug encapsulation efficiency and temperature-sensitive drug release from TML. • Temperature-sensitive release of rtPA was confirmed from in vitro thrombolysis experiments. • TML-rtPA will be useful as a magnetic targeted nanodrug to improve clinical thrombolytic therapy.

  11. Inhibition of proliferative activity in tissue culture in vivo of esophagus and stomach tumour cells under preoperative irradiation

    International Nuclear Information System (INIS)

    Zinchenko, V.A.; Okulov, L.V.; Gol'dshmid, B.Ya.

    1988-01-01

    Inhibition of proliferative activity of tumor cells as a result of radiation effect. Tumor tissue taken from patiets with preoperative tumor irradiation by 30 Gy cumulative dose (5 Gy per a session) and from patients whose tumors were not subjected to irradiation (control) was used. The tumor tissue was cultivated in the diffusion chamber and then implanted to the abdominal cavity of the non-inbred male rats. On preparations in the growth area pathomorphological changes were evaluated, the share of mitotically dividing and DNA-synthesizing cells was determined. The absence of growth area around the explant, obvious reduction of mitotic activity and DNA-synthesizing function of cells in preparations of irradiated tumors in 88 % of cases testify to the inhibition of the stomach cardial section and esophagus tumor tissue repopulation after radiation effect. The investigation results confirm the advisability of preoperative irradiation of patients with tumors of the given localization

  12. Action of nitric oxide on healthy and inflamed human dental pulp tissue.

    Science.gov (United States)

    da Silva, Leopoldo Penteado Nucci; Issa, João Paulo Mardegan; Del Bel, Elaine Aparecida

    2008-10-01

    Irreversible pulpitis has been associated with pain and an increase in the number of pulp inflammatory cells. Based on the action of nitric oxide (NO) elsewhere, NO may possibly participate in the sensory and autonomic innervation of the dental pulp, and may influence local inflammatory responses. The purpose of this study was to analyze normal and inflamed human dental pulp for the presence of NADPH-diaphorase (NADPH-d), as an index of NO system activity. Six non-carious second premolar pulp tissue samples were obtained from young patients who required extractions for orthodontic reasons and six inflamed samples were obtained from symptomatic carious second premolars clinically diagnosed with irreversible pulpitis. Pulp tissue was carefully removed, fixed by immersion in a cold 4% PFA buffered solution for 120 min, rinsed in cold phosphate buffer, and quickly-frozen for cryostat sectioning. Pulp tissue was sectioned perpendicularly to the vertical axis of the tooth at 20 microm and processed for histochemistry. Sections of each specimen were stained with hematoxylin-eosin and other sections were subjected to histochemical NADPH-d detection. Results indicated the presence of NADPH reactivity within the pulps of both normal and carious teeth. In the normal teeth NADPH-d activity was detected in a small number of vascular endothelial cells and fibroblasts. The inflammatory response of the pulp from carious premolars was detected in connective tissue by the presence of an increased number of fibroblasts, angioblasts and collagen fibers. It was possible to determine the extent of odontoblast reactivity since the odontoblast layer was usually absent in these split-peel preparations. There were no obvious signs of stained pulpal nerve fibers. Overall NADPH-d staining was significantly more intense within inflamed pulp tissues compared to normal healthy samples (Mann-Whitney test, pfunctions of NO in human dental pulp in pathophysiological situations.

  13. [Strategies to choose scaffold materials for tissue engineering].

    Science.gov (United States)

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which

  14. European Organisation for Research and Treatment of Cancer (EORTC) Pathobiology Group standard operating procedure for the preparation of human tumour tissue extracts suited for the quantitative analysis of tissue-associated biomarkers.

    Science.gov (United States)

    Schmitt, Manfred; Mengele, Karin; Schueren, Elisabeth; Sweep, Fred C G J; Foekens, John A; Brünner, Nils; Laabs, Juliane; Malik, Abha; Harbeck, Nadia

    2007-03-01

    With the new concept of 'individualized treatment and targeted therapies', tumour tissue-associated biomarkers have been given a new role in selection of cancer patients for treatment and in cancer patient management. Tumour biomarkers can give support to cancer patient stratification and risk assessment, treatment response identification, or to identifying those patients who are expected to respond to certain anticancer drugs. As the field of tumour-associated biomarkers has expanded rapidly over the last years, it has become increasingly apparent that a strong need exists to establish guidelines on how to easily disintegrate the tumour tissue for assessment of the presence of tumour tissue-associated biomarkers. Several mechanical tissue (cell) disruption techniques exist, ranging from bead mill homogenisation and freeze-fracturing through to blade or pestle-type homogenisation, to grinding and ultrasonics. Still, only a few directives have been given on how fresh-frozen tumour tissues should be processed for the extraction and determination of tumour biomarkers. The PathoBiology Group of the European Organisation for Research and Treatment of Cancer therefore has devised a standard operating procedure for the standardised preparation of human tumour tissue extracts which is designed for the quantitative analysis of tumour tissue-associated biomarkers. The easy to follow technical steps involved require 50-300 mg of deep-frozen cancer tissue placed into small size (1.2 ml) cryogenic tubes. These are placed into the shaking flask of a Mikro-Dismembrator S machine (bead mill) to pulverise the tumour tissue in the capped tubes in the deep-frozen state by use of a stainless steel ball, all within 30 s of exposure. RNA is isolated from the pulverised tissue following standard procedures. Proteins are extracted from the still frozen pulverised tissue by addition of Tris-buffered saline to obtain the cytosol fraction of the tumour or by the Tris buffer supplemented with

  15. Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags.

    Science.gov (United States)

    Cruz-Alonso, María; Fernandez, Beatriz; Álvarez, Lydia; González-Iglesias, Héctor; Traub, Heike; Jakubowski, Norbert; Pereiro, Rosario

    2017-12-18

    An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma - mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. Graphical abstract Gold nanoclusters (AuNCs) conjugated to a primary specific antibody serve as a label for amplified bioimaging of metallothioneins (MTs) by laser ablation coupled to inductively coupled plasma - mass spectrometry (ICP-MS) in human ocular tissue sections.

  16. Diagnostic Value of Processing Cytologic Aspirates of Renal Tumors in Agar Cell (Tissue) Blocks

    DEFF Research Database (Denmark)

    Smedts, F.; Schrik, M.; Horn, T.

    2010-01-01

    smears were prepared after each aspiration for conventional cytology and the remaining aspirate was processed for the improved agar microbiopsy (AM) method. Conventional cytology slides, AM slides and surgical specimens were diagnosed separately, after which the diagnoses were compared....... Immunohistochemistry was performed as required on the AM sections. Surgical specimens served as the gold standard. Results In 53% of conventional cytologic smears, the cellular yield was sufficient to render a correct diagnosis. In 12% the diagnosis was incorrect, in 21% only a differential diagnosis could be fin......-initiated, and in 14% too few diagnostic cells were present in the conventional smears for cytologic diagnosis. It was, however, possible to correctly diagnose histologic sections from 97% of AM tissue blocks. In 11 cases this was facilitated with immunochemistry. In only 1 case did the AM tissue block contain too few...

  17. Serial section scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging of cells and tissues.

    Science.gov (United States)

    Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas

    2012-01-01

    High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S(3)EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm(3) volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S(3)EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S(3)EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation.

  18. Serial section scanning electron microscopy (S3EM on silicon wafers for ultra-structural volume imaging of cells and tissues.

    Directory of Open Access Journals (Sweden)

    Heinz Horstmann

    Full Text Available High resolution, three-dimensional (3D representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM, complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S(3EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm(3 volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S(3EM, for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S(3EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation.

  19. Studies on the quantitative autoradiography. III. Quantitative comparison of a novel tissue-mold measurement technique "paste-mold method," to the semiquantitative whole body autoradiography (WBA), using the same animals.

    Science.gov (United States)

    Motoji, N; Hamai, Y; Niikura, Y; Shigematsu, A

    1995-01-01

    A novel preparation technique, so called "Paste Mold," was devised for organ and tissue distribution studies. This is the most powerful by joining with autoradioluminography (ARLG), which was established and validated recently in the working group of Forum '93 of Japanese Society for study of xenobiotics. A small piece (10-50 mg) of each organ or tissue was available for measuring its radioactive concentration and it was sampled from the remains of frozen carcass used for macroautoradiography (MARG). The solubilization of the frozen pieces was performed with mixing a suitable volume of gelatine and strong alkaline solution prior to mild heating kept at 40 degrees C for a few hours. After that, the tissue paste was molded in template pattern to form the small plates. The molded plates were contacted with Imaging plate (IP) for recording their radioactive concentration. The recorded IP was processed by BAS2000. The molded plate was formed in thickness of 200 microns, so called infinit thickness against soft beta rays, and therefore the resulting relative intensities, represented by (PSL-BG)/S values, indicated practically responsible ratio of the radioactive concentration in organs and tissues, without any calibulation for beta-self absorption coefficiency. On the other hand, the left half body of the frozen carcass was used for making whole body autoradiography (WBA) before the Paste-Mold preparation. Comparison was performed for difference in (PSL-BG)/S values of organs and tissues between frozen and dried sections. A good concordance in relative intensities, (PSL-BG)/S by the Paste-Mold preparation was given with those by the frozen sections rather than dried sections.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Preparation and properties of polyvinyl alcohol (PVA) and hydroxylapatite (HA) hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Yuan, F; Ma, M; Lu, L; Pan, Z; Zhou, W; Cai, J; Luo, S; Zeng, W; Yin, F

    2017-05-20

    A novel bioactive hydrogel for cartilage tissue based on polyvinyl alcohol (PVA) and hydroxylapatite (HA) were prepared, the effects of its component contents on the mechanical properties and microstructure of the hydrogel were investigated. The important properties of the scaffold composites, such as density, porosity, compressive modulus and microstructure were studied and analyzed through various measurements and methods. The biodegradability of hydrogel was evaluated by soaking the samples into artificial degradation solution at body temperature (36 - 37 oC) in vitro. Experimental results showed that the PVA/HA hydrogels had a density of 0.572 - 0.683 g/cm3, a porosity of 63.25 - 96.14% and a compressive modulus of 5.62 - 8.24 MP. The HA compound in the hydrogels enhanced the biodegradation significantly and linearly increased the rate of biodegradation by 2.3 - 8.5 %. The compressive modulus of PVA/HA exhibited a linear reduce to 0.86 - 1.53 MP with the time of degradation. The scaffold composites PVA/HA possess a high porosity, decent compressive modulus and good biodegradability. After further optimizing the structure and properties, this composite might be considered as novel hydrogel biomaterials to be applied in the field of cartilage tissue engineering.

  1. Comparison of a new hydro-surgical technique to traditional methods for the preparation of full-thickness skin grafts from canine cadaveric skin and report of a single clinical case.

    Science.gov (United States)

    Townsend, F I; Ralphs, S C; Coronado, G; Sweet, D C; Ward, J; Bloch, C P

    2012-01-01

    To compare the hydro-surgical technique to traditional techniques for removal of subcutaneous tissue in the preparation of full-thickness skin grafts. Ex vivo experimental study and a single clinical case report. Four canine cadavers and a single clinical case. Four sections of skin were harvested from the lateral flank of recently euthanatized dogs. Traditional preparation methods used included both a blade or scissors technique, each of which were compared to the hydro-surgical technique individually. Preparation methods were compared based on length of time for removal of the subcutaneous tissue from the graft, histologic grading, and measurable thickness as compared to an untreated sample. The hydro-surgical technique had the shortest skin graft preparation time as compared to traditional techniques (p = 0.002). There was no significant difference in the histological grading or measurable subcutaneous thickness between skin specimens. The hydro-surgical technique provides a rapid, effective debridement of subcutaneous tissue in the preparation of full-thickness skin grafts. There were not any significant changes in histological grade and subcutaneous tissue remaining among all treatment types. Additionally the hydro-surgical technique was successfully used to prepare a full-thickness meshed free skin graft in the reconstruction of a traumatic medial tarsal wound in a dog.

  2. Qualitative and Quantitative Analysis of Histone Deacetylases in Kidney Tissue Sections.

    Science.gov (United States)

    Ververis, Katherine; Marzully, Selly; Samuel, Chrishan S; Hewitson, Tim D; Karagiannis, Tom C

    2016-01-01

    Fluorescent microscope imaging technologies are increasing in their applications and are being used on a wide scale. However methods used to quantify the level of fluorescence intensity are often not utilized-perhaps given the result may be immediately seen, quantification of the data may not seem necessary. However there are a number of reasons given to quantify fluorescent images including the importance of removing potential bias in the data upon observation as well as quantification of large numbers of images gives statistical power to detect subtle changes in experiments. In addition discreet localization of a protein could be detected without selection bias that may not be detectable by eye. Such data will be deemed useful when detecting the levels of HDAC enzymes within cells in order to develop more effective HDAC inhibitor compounds for use against multiple diseased states. Hence, we discuss a methodology devised to analyze fluorescent images using Image J to detect the mean fluorescence intensity of the 11 metal-dependent HDAC enzymes using murine kidney tissue sections as an example.

  3. Quantitative images of metals in plant tissues measured by laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Becker, J.S.; Dietrich, R.C.; Matusch, A.; Pozebon, D.; Dressler, V.L.

    2008-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for quantitative imaging of toxic and essential elements in thin sections (thickness of 30 or 40 μm) of tobacco plant tissues. Two-dimensional images of Mg, Fe, Mn, Zn, Cu, Cd, Rh, Pt and Pb in leaves, shoots and roots of tobacco were produced. Sections of the plant tissues (fixed onto glass slides) were scanned by a focused beam of a Nd:YAG laser in a laser ablation chamber. The ablated material was transported with argon as carrier gas to the ICP ion source at a quadrupole ICP-MS instrument. Ion intensities of the investigated elements were measured together with 13 C + , 33 S + and 34 S + within the entire plant tissue section. Matrix matching standards (prepared using powder of dried tobacco leaves) were used to constitute calibration curves, whereas the regression coefficient of the attained calibration curves was typically 0.99. The variability of LA-ICP-MS process, sample heterogeneity and water content in the sample were corrected by using 13 C + as internal standard. Quantitative imaging of the selected elements revealed their inhomogeneous distribution in leaves, shoots and roots

  4. Human brain receptor autoradiography using whole hemisphere sections: a general method that minimizes tissue artefacts

    International Nuclear Information System (INIS)

    Quirion, R.; Robitaille, Y.; Martial, J.; Chabot, J.G.; Lemoine, P.; Pilapil, C.; Dalpe, M.

    1987-01-01

    A general method for the preparation of high-quality, mostly ice-crystal-artefact-free whole human brain hemisphere sections is described. Upon receipt, hemispheres are divided; one is then fixed in buffered 10% formalin for neuropathological analysis while the other is cut in 8-10-mm-thick coronal slices that are then rapidly frozen in 2-methylbutane at -40 degrees C (10-15 sec) before being placed in the brain bank at -80 degrees C. Such rapid freezing markedly decreases the formation of ice-crystal artefacts. Whole-hemisphere 20-micron thick sections are then cut and mounted onto lantern-type gelatin-coated slides. These sections are subsequently used for both qualitative and quantitative in vitro receptor autoradiography. Examples of data obtained are given by using various radioligands labelling classical neutrotransmitter, neuropeptide, enzyme, and ion channel receptor binding sites. This method should be useful for the obtention of various receptor maps in human brain. Such information could be most useful for in vivo receptor visualization studies using positron emission tomography (PET) scanning. It could also indicate if a given receptor population is specifically and selectively altered in certain brain diseases, eventually leading to the development of new therapeutic approaches

  5. Production, separation and target preparation of 171Tm an 147Pm for neutron cross section measurements

    CERN Document Server

    Heinitz, S; Schumann, D; Dressler, R; Kivel, N; Guerrero, C; Köster, U; Tessler, M; Paul, M; Halfon, S

    2015-01-01

    The knowledge of the neutron capture cross sections of s-process branching point isotopes represents a basic requirement for the understanding of star evolution. Since such branching point isotopes are by definition radioactive, the measurement of their cross sections from thermal to stellar energies becomes a challenging task. Considerable amounts of material have to be produced, representing a significant radioactive hazard. We report here on the production and separation of 3.5 mg 171Tm from 240 mg 170Er2O3 and 72 µg 147Pm from 100 mg 146Nd2O3 irradiated at the ILL high flux reactor. Thin targets were prepared with high chemical and radioisotopic purity suitable for neutron capture measurements at n_TOF CERN and the SARAF-LiLiT facility.

  6. Automated MALDI Matrix Coating System for Multiple Tissue Samples for Imaging Mass Spectrometry

    Science.gov (United States)

    Mounfield, William P.; Garrett, Timothy J.

    2012-03-01

    Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.

  7. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering.

    Science.gov (United States)

    Lowe, Baboucarr; Venkatesan, Jayachandran; Anil, Sukumaran; Shim, Min Suk; Kim, Se-Kwon

    2016-12-01

    Solid three dimensional (3D) composite scaffolds for bone tissue engineering were prepared using the freeze-drying method. The scaffolds were composed of chitosan, natural nano-hydroxyapatite (nHA) and fucoidan in the following combinations: chitosan, chitosan-fucoidan, chitosan-nHA, and chitosan-nHA-fucoidan. Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and optical microscopy (OM) were used to determine the physiochemical constituents and the morphology of the scaffolds. The addition of nHA into the chitosan-fucoidan composite scaffold reduced the water uptake and water retention. FT-IR analysis confirmed the presence of a phosphate group in the chitosan-nHA-fucoidan scaffold. This group is present because of the presence of nHA (isolated via alkaline hydrolysis from salmon fish bones). Microscopic results indicated that the dispersion of nHA and fucoidan in the chitosan matrix was uniform with a pore size of 10-400μm. The composite demonstrated a suitable micro architecture for cell growth and nutrient supplementation. This compatibility was further elucidated in vitro using periosteum-derived mesenchymal stem cells (PMSCs). The cells demonstrated high biocompatibility and excellent mineralization for the chitosan-nHA-fucoidan scaffold. We believe that a chitosan-nHA-fucoidan composite is a promising biomaterial for the scaffold that can be used for bone tissue regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Quantitative Time-Resolved Fluorescence Imaging of Androgen Receptor and Prostate-Specific Antigen in Prostate Tissue Sections.

    Science.gov (United States)

    Krzyzanowska, Agnieszka; Lippolis, Giuseppe; Helczynski, Leszek; Anand, Aseem; Peltola, Mari; Pettersson, Kim; Lilja, Hans; Bjartell, Anders

    2016-05-01

    Androgen receptor (AR) and prostate-specific antigen (PSA) are expressed in the prostate and are involved in prostate cancer (PCa). The aim of this study was to develop reliable protocols for reproducible quantification of AR and PSA in benign and malignant prostate tissue using time-resolved fluorescence (TRF) imaging techniques. AR and PSA were detected with TRF in tissue microarrays from 91 PCa patients. p63/ alpha-methylacyl-CoA racemase (AMACR) staining on consecutive sections was used to categorize tissue areas as benign or cancerous. Automated image analysis was used to quantify staining intensity. AR intensity was significantly higher in AMACR+ and lower in AMACR- cancer areas as compared with benign epithelium. The PSA intensity was significantly lower in cancer areas, particularly in AMACR- glands. The AR/PSA ratio varied significantly in the AMACR+ tumor cells as compared with benign glands. There was a trend of more rapid disease progression in patients with higher AR/PSA ratios in the AMACR- areas. This study demonstrates the feasibility of developing reproducible protocols for TRF imaging and automated image analysis to study the expression of AR and PSA in benign and malignant prostate. It also highlighted the differences in AR and PSA protein expression within AMACR- and AMACR+ cancer regions. © 2016 The Histochemical Society.

  9. Microfocus study of metal distribution and speciation in tissue extracted from revised metal on metal hip implants

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Alister J [Department of Orthopaedic Surgery, Imperial College and Imperial College Healthcare NHS Trust, Charing Cross Hospital Campus, Fulham Palace Rd, London W6 8RF (United Kingdom); Sandison, Ann [Department of Histopathology, Imperial College and Imperial College Healthcare NHS Trust, Charing Cross Hospital Campus, Fulham Palace Rd, London W6 8RF (United Kingdom); Quinn, Paul; Mosselmans, J Frederick W [Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0DE (United Kingdom); Sampson, Barry [Department of Clinical Biochemistry, Imperial College and Imperial College Healthcare NHS Trust, Charing Cross Hospital Campus, Fulham Palace Rd, London W6 8RF (United Kingdom); Atkinson, Kirk D [8 Nuclear Department Defence Academy College of Management and Technology HMS Sultan Military Road Gosport PO12 3BY (United Kingdom); Skinner, John A [Department of Orthopaedics, Royal National Orthopaedic Hospital, HA7 4LP (United Kingdom); Goode, Angela [Dept of Materials, Imperial College London, SW7 2AZ (United Kingdom); Powell, Jonathan J, E-mail: Paul.Quinn@diamond.ac.u [Medical Research Council Human Nutrition Research Centre, Cambridge CB1 9NL (United Kingdom)

    2009-11-15

    Unexplained tissue inflammation in metal-on-metal hip replacements is suspected to be caused by implant-derived nanoparticles. The aim of this study was to investigate the nature of the metal particles in tissue surrounding metal-on-metal (MOM) hips that has been extracted during revision. Mapping of tissue surrounding the failed MOM hips was performed using microfocus X-ray Fluorescence (XRF). This revealed mainly Cr which was localized to the cellular regions. There was co-localisation of Co, were present, to areas of high Cr abundance. XANES of the tissue and appropriate standards revealed that the most common species were Cr(III) and Co(II). EXAFS analysis of the tissue and various metal standards revealed that the most abundant implant-related species was Cr(III) phosphate. Different tissue preparation methods, including frozen sectioning, were examined but were found not to affect the distribution or speciation of the metals in the tissue.

  10. Microfocus study of metal distribution and speciation in tissue extracted from revised metal on metal hip implants

    International Nuclear Information System (INIS)

    Hart, Alister J; Sandison, Ann; Quinn, Paul; Mosselmans, J Frederick W; Sampson, Barry; Atkinson, Kirk D; Skinner, John A; Goode, Angela; Powell, Jonathan J

    2009-01-01

    Unexplained tissue inflammation in metal-on-metal hip replacements is suspected to be caused by implant-derived nanoparticles. The aim of this study was to investigate the nature of the metal particles in tissue surrounding metal-on-metal (MOM) hips that has been extracted during revision. Mapping of tissue surrounding the failed MOM hips was performed using microfocus X-ray Fluorescence (XRF). This revealed mainly Cr which was localized to the cellular regions. There was co-localisation of Co, were present, to areas of high Cr abundance. XANES of the tissue and appropriate standards revealed that the most common species were Cr(III) and Co(II). EXAFS analysis of the tissue and various metal standards revealed that the most abundant implant-related species was Cr(III) phosphate. Different tissue preparation methods, including frozen sectioning, were examined but were found not to affect the distribution or speciation of the metals in the tissue.

  11. INSITU BLOTTING - A NOVEL METHOD FOR DIRECT TRANSFER OF NATIVE PROTEINS FROM SECTIONED TISSUE TO BLOTTING MEMBRANE - PROCEDURE AND SOME APPLICATIONS

    NARCIS (Netherlands)

    OKABE, M; NYAKAS, C; BUWALDA, B; LUITEN, PGM

    We describe a novel technique for direct transfer of native proteins from unfixed frozen tissue sections to an immobilizing matrix, e.g., nitrocellulose, polyvinyliden difluoride, or positively charged nylon membranes. Proteins are directly blotted onto the membrane, providing optimal accessibility

  12. Tissue microarrays and their use for preparation of reference slides ...

    African Journals Online (AJOL)

    Use of Tissue array was first applied in 1998, and has received a significant amount of attention from the research community ever since. In this technique, a large number (up to 1000) of cylindrical tissue core extracted from \\"donor\\" paraffin block are deposited into \\"recipient\\" block. The aim was modification of the ...

  13. A compact and versatile microfluidic probe for local processing of tissue sections and biological specimens

    Science.gov (United States)

    Cors, J. F.; Lovchik, R. D.; Delamarche, E.; Kaigala, G. V.

    2014-03-01

    The microfluidic probe (MFP) is a non-contact, scanning microfluidic technology for local (bio)chemical processing of surfaces based on hydrodynamically confining nanoliter volumes of liquids over tens of micrometers. We present here a compact MFP (cMFP) that can be used on a standard inverted microscope and assist in the local processing of tissue sections and biological specimens. The cMFP has a footprint of 175 × 100 × 140 mm3 and can scan an area of 45 × 45 mm2 on a surface with an accuracy of ±15 μm. The cMFP is compatible with standard surfaces used in life science laboratories such as microscope slides and Petri dishes. For ease of use, we developed self-aligned mounted MFP heads with standardized "chip-to-world" and "chip-to-platform" interfaces. Switching the processing liquid in the flow confinement is performed within 90 s using a selector valve with a dead-volume of approximately 5 μl. We further implemented height-compensation that allows a cMFP head to follow non-planar surfaces common in tissue and cellular ensembles. This was shown by patterning different macroscopic copper-coated topographies with height differences up to 750 μm. To illustrate the applicability to tissue processing, 5 μm thick M000921 BRAF V600E+ melanoma cell blocks were stained with hematoxylin to create contours, lines, spots, gradients of the chemicals, and multiple spots over larger areas. The local staining was performed in an interactive manner using a joystick and a scripting module. The compactness, user-friendliness, and functionality of the cMFP will enable it to be adapted as a standard tool in research, development and diagnostic laboratories, particularly for the interaction with tissues and cells.

  14. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  15. Preparation and Evaluation of Gelatin-Chitosan-Nanobioglass 3D Porous Scaffold for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kanchan Maji

    2016-01-01

    Full Text Available The aim of the present study was to prepare and characterize bioglass-natural biopolymer based composite scaffold and evaluate its bone regeneration ability. Bioactive glass nanoparticles (58S in the size range of 20–30 nm were synthesized using sol-gel method. Porous scaffolds with varying bioglass composition from 10 to 30 wt% in chitosan, gelatin matrix were fabricated using the method of freeze drying of its slurry at 40 wt% solids loading. Samples were cross-linked with glutaraldehyde to obtain interconnected porous 3D microstructure with improved mechanical strength. The prepared scaffolds exhibited >80% porosity with a mean pore size range between 100 and 300 microns. Scaffold containing 30 wt% bioglass (GCB 30 showed a maximum compressive strength of 2.2±0.1 MPa. Swelling and degradation studies showed that the scaffold had excellent properties of hydrophilicity and biodegradability. GCB 30 scaffold was shown to be noncytotoxic and supported mesenchymal stem cell attachment, proliferation, and differentiation as indicated by MTT assay and RUNX-2 expression. Higher cellular activity was observed in GCB 30 scaffold as compared to GCB 0 scaffold suggesting the fact that 58S bioglass nanoparticles addition into the scaffold promoted better cell adhesion, proliferation, and differentiation. Thus, the study showed that the developed composite scaffolds are potential candidates for regenerating damaged bone tissue.

  16. Genetic evidence reveals improvement opportunities for tissue preparation in forensic analysis

    OpenAIRE

    Romero, Rosa Elena; Sandoval, Alejandro; Arango, Juliana; Camargo, Martha Lucia

    2016-01-01

    Introduction: Paraffin embedded tissues are an excellent alternative to obtain dna, especially when it is not possible to have fresh samples or when the tissue storage and preservation is not feasible; therefore, this sample is the only item available for matching purposes. The success in any genetic analysis implies having adequate tissue fixation and suitable dna extraction methods that allow to obtain good quality and quantity molecules, free of biological, chemical and microbiological con...

  17. 3D on-chip microscopy of optically cleared tissue

    Science.gov (United States)

    Zhang, Yibo; Shin, Yoonjung; Sung, Kevin; Yang, Sam; Chen, Harrison; Wang, Hongda; Teng, Da; Rivenson, Yair; Kulkarni, Rajan P.; Ozcan, Aydogan

    2018-02-01

    Traditional pathology relies on tissue biopsy, micro-sectioning, immunohistochemistry and microscopic imaging, which are relatively expensive and labor-intensive, and therefore are less accessible in resource-limited areas. Low-cost tissue clearing techniques, such as the simplified CLARITY method (SCM), are promising to potentially reduce the cost of disease diagnosis by providing 3D imaging and phenotyping of thicker tissue samples with simpler preparation steps. However, the mainstream imaging approach for cleared tissue, fluorescence microscopy, suffers from high-cost, photobleaching and signal fading. As an alternative approach to fluorescence, here we demonstrate 3D imaging of SCMcleared tissue using on-chip holography, which is based on pixel-super-resolution and multi-height phase recovery algorithms to digitally compute the sample's amplitude and phase images at various z-slices/depths through the sample. The tissue clearing procedures and the lens-free imaging system were jointly optimized to find the best illumination wavelength, tissue thickness, staining solution pH, and the number of hologram heights to maximize the imaged tissue volume, minimize the amount of acquired data, while maintaining a high contrast-to-noise ratio for the imaged cells. After this optimization, we achieved 3D imaging of a 200-μm thick cleared mouse brain tissue over a field-of-view of based microscope (20× 0.75NA). Moreover, the lens-free microscope achieves an order-of-magnitude better data efficiency compared to its lens-based counterparts for volumetric imaging of samples. The presented low-cost and high-throughput lens-free tissue imaging technique enabled by CLARITY can be used in various biomedical applications in low-resource-settings.

  18. Preparation and comparative characterization of keratin–chitosan and keratin–gelatin composite scaffolds for tissue engineering applications

    International Nuclear Information System (INIS)

    Balaji, S.; Kumar, Ramadhar; Sripriya, R.; Kakkar, Prachi; Ramesh, D. Vijaya; Reddy, P. Neela Kanta; Sehgal, P.K.

    2012-01-01

    We report fabrication of three dimensional scaffolds with well interconnected matrix of high porosity using keratin, chitosan and gelatin for tissue engineering and other biomedical applications. Scaffolds were fabricated using porous Keratin–Gelatin (KG), Keratin–Chitosan (KC) composites. The morphology of both KG and KC was investigated using SEM. The scaffolds showed high porosity with interconnected pores in the range of 20–100 μm. They were further tested by FTIR, DSC, CD, tensile strength measurement, water uptake and swelling behavior. In vitro cell adhesion and cell proliferation tests were carried out to study the biocompatibility behavior and their application as an artificial skin substitute. Both KG and KC composite scaffolds showed similar properties and patterns for cell proliferation. Due to rapid degradation of gelatin in KG, we found that it has limited application as compared to KC scaffold. We conclude that KC scaffold owing to its slow degradation and antibacterial properties would be a better substrate for tissue engineering and other biomedical application. Highlights: ► Extraction of reduced keratin from horn meal. ► Preparation of keratin–gelatin and keratin–chitosan composite scaffolds. ► Characterizations of the composite scaffolds. ► Comparative cytotoxicity analysis on NIH3T3 fibroblasts.

  19. Detection of Chlamydia in postmortal formalin-fixed tissue

    DEFF Research Database (Denmark)

    Lundemose, AG; Lundemose, JB; Birkelund, Svend

    1989-01-01

    A procedure to detect Chlamydia in postmortal formalin-fixed tissue is described. Monoclonal antibodies against a genus specific chlamydia epitope were used in immunofluorescence to detect chlamydia inclusions in formalin-fixed tissue sections. Lung sections from chlamydia-infected mice were....... Background and non-specific fluorescence were reduced by treating the tissue sections with trypsin, rabbit serum and Evans blue counterstain. Besides giving an exact diagnosis at autopsy, the method provides the possibility of determining the occurrence of chlamydia infections in various tissues, based...

  20. Rapid immunohistochemical diagnosis of tobacco mosaic virus disease by microwave-assisted plant sample preparation

    Science.gov (United States)

    Zellnig, Günther; Möstl, Stefan; Zechmann, Bernd

    2013-01-01

    Immunoelectron microscopy is a powerful method to diagnose viral diseases and to study the distribution of the viral agent within plant cells and tissues. Nevertheless, current protocols for the immunological detection of viral diseases with transmission electron microscopy (TEM) in plants take between 3 and 6 days and are therefore not suited for rapid diagnosis of virus diseases in plants. In this study, we describe a method that allows rapid cytohistochemical detection of tobacco mosaic virus (TMV) in leaves of tobacco plants. With the help of microwave irradiation, sample preparation of the leaves was reduced to 90 min. After sample sectioning, virus particles were stained on the sections by immunogold labelling of the viral coat protein, which took 100 min. After investigation with the TEM, a clear visualization of TMV in tobacco cells was achieved altogether in about half a day. Comparison of gold particle density by image analysis revealed that samples prepared with the help of microwave irradiation yielded significantly higher gold particle density as samples prepared conventionally at room temperature. This study clearly demonstrates that microwave-assisted plant sample preparation in combination with cytohistochemical localization of viral coat protein is well suited for rapid diagnosis of plant virus diseases in altogether about half a day by TEM. PMID:23580761

  1. CpG Methylation Analysis of HPV16 in Laser Capture Microdissected Archival Tissue and Whole Tissue Sections from High Grade Anal Squamous Intraepithelial Lesions: A Potential Disease Biomarker.

    Directory of Open Access Journals (Sweden)

    Monica Molano

    Full Text Available Incidence and mortality rates of anal cancer are increasing globally. More than 90% of anal squamous cell carcinomas (ASCC are associated with human papillomavirus (HPV. Studies on HPV-related anogenital lesions have shown that patterns of methylation of viral and cellular DNA targets could potentially be developed as disease biomarkers. Lesion-specific DNA isolated from formalin-fixed paraffin-embedded (FFPE tissues from existing or prospective patient cohorts may constitute a valuable resource for methylation analysis. However, low concentrations of DNA make these samples technically challenging to analyse using existing methods. We therefore set out to develop a sensitive and reproducible nested PCR-pyrosequencing based method to accurately quantify methylation at 10 CpG sites within the E2BS1, E2BS2,3,4 and Sp1 binding sites in the viral upstream regulatory region of HPV16 genome. Methylation analyses using primary and nested PCR-pyrosequencing on 52 FFPE tissue [26 paired whole tissue sections (WTS and laser capture microdissected (LCM tissues] from patients with anal squamous intraepithelial lesions was performed. Using nested PCR, methylation results were obtained for the E2BS1, E2BS2,3,4 and Sp1 binding sites in 86.4% of the WTS and 81.8% of the LCM samples. Methylation patterns were strongly correlated within median values of matched pairs of WTS and LCM sections, but overall methylation was higher in LCM samples at different CpG sites. High grade lesions showed low methylation levels in the E2BS1 and E2BS2 regions, with increased methylation detected in the E2BS,3,4/Sp1 regions, showing the highest methylation at CpG site 37. The method developed is highly sensitive in samples with low amounts of DNA and demonstrated to be suitable for archival samples. Our data shows a possible role of specific methylation in the HPV16 URR for detection of HSIL.

  2. A Novel Hybrid Ultramicrotomy/FIB-SEM Technique: Preparation of Serial Electron-Transparent Thin Sections of a Hayabusa Grain

    Science.gov (United States)

    Berger, Eve L.; Keller, Lindsay P.

    2014-01-01

    The Japanese space agency's (JAXA) Hayabusa mission returned the first particulate samples (typically grain surfaces and interiors. Using this method, we increase the number of FIB-prepared sections that can be recovered from a particle with dimensions on the order of tens of microns. These sections can be subsequently analyzed using a variety of analytical techniques. Particle RA-QD02-0211 is a approx. 40×40×20 micron particle from Itokawa containing olivine and Fe sulfides. It was embedded in low viscosity epoxy and partly sectioned to a depth of approx 10 micron; sections are placed on Cu grids with thin amorphous films for transmission electron microscope (TEM) analyses. With the sample surface partly exposed, the epoxy bullet is trimmed to a height of approx. 5mm to accommodate the allowable dimensions for FIB work (FEI Quanta 600 3D dual beam FIB-SEM). Using a diamond trim knife, the epoxy surrounding the grain is removed on 3 sides (to within a few microns of the grain); the depth of material removed extends well below the bottom of the particle. The sample is attached to an SEM pin mount, the epoxy coated with conductive paint, and the entire assembly coated with approx. 40nm of carbon to eliminate sample charging during FIB work. A protective carbon cap is placed according to the plan for the 15 FIB sections. The central 'spine' of the cap runs perpendicular to the front of the sample, and the 'ribs' protruding from either side run parallel. Each rib indicates the location of a planned FIB section, and the spine contains the final two planned sections. We use a cap with a 4 micron-wide spine and 2micron-wide ribs that have ?3.5 micron of space between them (narrower cuts result in too much re-deposition of material inside the trenches). Using a 30kV, 3nA ion-beam we expose the front surface of the grain and commence milling trenches between sections. Rather than using the typical C-cut to prepare the sample for lift-out, an L-cut is used instead, leaving

  3. Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Vavpetič, P., E-mail: primoz.vavpetic@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Vogel-Mikuš, K. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Jeromel, L. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Ogrinc Potočnik, N. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); FOM-Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Pongrac, P. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Department of Plant Physiology, University of Bayreuth, Universitätstr. 30, 95447 Bayreuth (Germany); Drobne, D.; Pipan Tkalec, Ž.; Novak, S.; Kos, M.; Koren, Š.; Regvar, M. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Pelicon, P. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2015-04-01

    The analysis of biological samples in frozen-hydrated state with micro-PIXE technique at Jožef Stefan Institute (JSI) nuclear microprobe has matured to a point that enables us to measure and examine frozen tissue samples routinely as a standard research method. Cryotome-cut slice of frozen-hydrated biological sample is mounted between two thin foils and positioned on the sample holder. The temperature of the cold stage in the measuring chamber is kept below 130 K throughout the insertion of the samples and the proton beam exposure. Matrix composition of frozen-hydrated tissue is consisted mostly of ice. Sample deterioration during proton beam exposure is monitored during the experiment, as both Elastic Backscattering Spectrometry (EBS) and Scanning Transmission Ion Microscopy (STIM) in on–off axis geometry are recorded together with the events in two PIXE detectors and backscattered ions from the chopper in a single list-mode file. The aim of this experiment was to determine differences and similarities between two kinds of biological sample preparation techniques for micro-PIXE analysis, namely freeze-drying and frozen-hydrated sample preparation in order to evaluate the improvements in the elemental localisation of the latter technique if any. In the presented work, a standard micro-PIXE configuration for tissue mapping at JSI was used with five detection systems operating in parallel, with proton beam cross section of 1.0 × 1.0 μm{sup 2} and a beam current of 100 pA. The comparison of the resulting elemental distributions measured at the biological tissue prepared in the frozen-hydrated and in the freeze-dried state revealed differences in elemental distribution of particular elements at the cellular level due to the morphology alteration in particular tissue compartments induced either by water removal in the lyophilisation process or by unsatisfactory preparation of samples for cutting and mounting during the shock-freezing phase of sample preparation.

  4. Radioprotective effects of a preparation (HemoHIM) of herb mixture on self-renewal tissues and immune system in mice

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Park, Hae Ran; Jung, Uhee; Oh, Heon [KAERI, Taejon (Korea, Republic of); Kim, Sung Ho [Chonnam National Univ. Seoul (Korea, Republic of); Yee, Sung Tae [Sunchon National Univ., Seoul (Korea, Republic of)

    2004-07-01

    A preparation (HemoHIM) of herb mixture was designed to protect the gastrointestine and hematopoietic organs and to promote recovery of the immune system against radiation damage. The mixture of 3 edible medicinal herbs was decocted with hot water and the extract was fractionated with ethanol. The preparation HemoHIM was made up with addition of ethanol-insoluble fraction to the total water extract. In vitro, HemoHIM, its polysaccharide and ethanol fractions protected lymphocytes against radiation and scavenged hydroxyl radicals. The proliferation of lymphocytes and bone marrow cells by HemoHIM was due to its polysaccharide fraction. In mice administered with the preparation (HemoHIM) before gamma-irradiation the jejunal crypt survival was increased and the apoptosis of crypt cells was decreased. HemoHIM administration increased the survival of bone marrow stem cells and promoted the repopulation of blood cells following irradiation. In the analysis of the repopulated lymphocyte subsets, B cells were firstly regenerated and then T cells were recovered in mice administrated with HemoHIM. The antibody production against T-dependent antigen DNP-KLH was augmented by HemoHIM in irradiated mice. Finally, oral or intraperitoneal administration of HemoHIM augmented the 30 day survival rate after irradiation. These results indicated that HemoHIM, a preparation of the herb mixture, protected the stem cells of self-renewal tissues and hematopoietic organs and promoted recovery of the immune system against radiation damage, thus increasing the survival following lethal irradiation. Since the preparation of herb mixture is a relatively nontoxic natural product, it might be a useful modifier for prevention and control of radiation damages.

  5. Multiple double cross-section transmission electron microscope sample preparation of specific sub-10 nm diameter Si nanowire devices.

    Science.gov (United States)

    Gignac, Lynne M; Mittal, Surbhi; Bangsaruntip, Sarunya; Cohen, Guy M; Sleight, Jeffrey W

    2011-12-01

    The ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 μm apart.

  6. [Application of Immunohistochemistry and Immunofluorescence Staining in Detection of Phospholipase A2 Receptor on Paraffin Section of Renal Biopsy Tissue].

    Science.gov (United States)

    Dong, Hong-rui; Wang, Yan-yan; Wang, Guo-qin; Sun, Li-jun; Cheng, Hong; Chen, Yi-pu

    2015-10-01

    To evaluate the application of immunohistochemistry and fluorescence staining method in the detection of phospholipase A2 receptor (PLA2R) on paraffin section of renal biopsy tissue,and to find an accurate and fast method for the detection of PLA2R in renal tissue. The PLA2R of 193 cases were detected by immunohistochemical staining,and the antigen was repaired by the method of high pressure cooker (HPC) hot repair plus trypsin repair. The 193 samples including 139 cases of idiopathic membranous nephropathy (IMN), 15 cases of membranous lupus nephritis, 8 cases of hepatitis B virus associated membranous nephropathy, 18 cases of IgA nephropathy, and 13 cases of minimal change diseases. To compare the dyeing effects, 22 paraffin sections of renal biopsy tissue of IMN cases with positive PLA2R were stained by using 4 different. of antigen repairing,which included HPC hot repair, HPC hot repair plus trypsin repair, water bath heat repair, and water bath heat repair plus trypsin repair. To compare the dyeing effects, 15 paraffin sections of renal biopsy tissue of IMN cases with positive PLA2R were stained by using 3 different. of antigen repairing,which included water bath heat repair plus trypsin repair, protease K digestion repair, and pepsin digestion repair. In 193 cases, the positive rate of PLA2R in IMN cases was 90.6% (126/139), and the other 54 patients without IMN were negative. Twenty-two IMN patients were positive for PLA2R by using the HPC heat repair plus trypsin repaire or the water bath heat repair plus trypsin repair;while only a few cases of 22 IMN cases were positive by using the HPC hot repair alone or water bath heat repair alone. Fifteen IMN patients were positive for PLA2R by using water bath heat repair plus trypsin repair,protease K digestion repair,and pepsin digestion repair, but the distribution of positive deposits and the background were different. PLA2R immunohistochemical staining can effectively identify IMN and secondary MN. For

  7. Analyses of the eustachian tube and its surrounding tissues with cross sectional images by high-resolution computed tomography (HR-CT)

    International Nuclear Information System (INIS)

    Yoshida, Haruo; Kobayashi, Toshimitsu; Takasaki, Kenji; Kanda, Yukihiko; Nakao, Yoshiaki; Morikawa, Minoru; Ishimaru, Hideki; Hayashi, Kuniaki

    2000-01-01

    We attempted to image the eustachian tube (ET) and its surrounding tissues by high-resolution computed tomography (HR-CT). Twenty-two normal subjects (44 ears) without middle ear problems were studied, and a patient with severe patulous ET was also studied as an abnormal case. In our device of multiplanar reconstruction technique, we were able to obtain the clear reconstructed images of the ET lumen as well as of its surrounding tissues (bone, ET cartilage, tensor veli palatini muscle, levator veli palatini muscle, Ostmann's fat tissue, tensor tympani muscle, internal carotid artery) at any desired portion, either parallel or perpendicular to the long axis of the ET. However, the exact borders between the ET cartilage and the muscles, Ostmann's fat tissue and the tubal gland were not clearly identified. In the severe case of patulous ET, the ET lumen was widely opened at each cross-sectional image from the pharyngeal orifice to the tympanic orifice, in contrast with its being closed at the cartilaginous portion in the normal cases. In addition, the fat tissue and glands around the ET lumen were not clearly identified in this case. We suggest that this method will lead to better understanding of the ET-related diseases such as patulous ET. (author)

  8. Analyses of the eustachian tube and its surrounding tissues with cross sectional images by high-resolution computed tomography (HR-CT)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Haruo; Kobayashi, Toshimitsu; Takasaki, Kenji; Kanda, Yukihiko; Nakao, Yoshiaki; Morikawa, Minoru; Ishimaru, Hideki; Hayashi, Kuniaki [Nagasaki Univ. (Japan). School of Medicine

    2000-07-01

    We attempted to image the eustachian tube (ET) and its surrounding tissues by high-resolution computed tomography (HR-CT). Twenty-two normal subjects (44 ears) without middle ear problems were studied, and a patient with severe patulous ET was also studied as an abnormal case. In our device of multiplanar reconstruction technique, we were able to obtain the clear reconstructed images of the ET lumen as well as of its surrounding tissues (bone, ET cartilage, tensor veli palatini muscle, levator veli palatini muscle, Ostmann's fat tissue, tensor tympani muscle, internal carotid artery) at any desired portion, either parallel or perpendicular to the long axis of the ET. However, the exact borders between the ET cartilage and the muscles, Ostmann's fat tissue and the tubal gland were not clearly identified. In the severe case of patulous ET, the ET lumen was widely opened at each cross-sectional image from the pharyngeal orifice to the tympanic orifice, in contrast with its being closed at the cartilaginous portion in the normal cases. In addition, the fat tissue and glands around the ET lumen were not clearly identified in this case. We suggest that this method will lead to better understanding of the ET-related diseases such as patulous ET. (author)

  9. Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge

    DEFF Research Database (Denmark)

    Emmett, Matthew J.; Lim, Hee-Woong; Jager, Jennifer

    2017-01-01

    Brown adipose tissue is a thermogenic organ that dissipates chemical energy as heat to protect animals against hypothermia and to counteract metabolic disease1. However, the transcriptional mechanisms that determine the thermogenic capacity of brown adipose tissue before environmental cold...

  10. Study on fluorouracil–chitosan nanoparticle preparation and its antitumor effect

    Directory of Open Access Journals (Sweden)

    Gaimin Chen

    2016-05-01

    Full Text Available To successfully prepare fluorouracil–chitosan nanoparticles, and further analyze its anti-tumor activity mechanism, this paper makes a comprehensive study of existing preparation prescription and makes a detailed analysis of fluorouracil–chitosan in vitro release and pharmacodynamic behavior of animals. Two-step synthesis method is adopted to prepare 5-FU–CS–mPEG prodrugs, and infrared, 1H NMR and differential thermal analysis are adopted to analyze characterization synthetic products of prepared drugs. To ensure clinical efficacy of prepared drugs, UV spectrophotometry is adopted for determination of drug loading capacity of prepared drugs, transmission electron microscopy is adopted to observe the appearance, dynamic dialysis method is used to observe in vitro drug release of prepared drugs and fitting of various release models is done. Anti-tumor effect is studied via level of animal pharmacodynamics. After the end of the experiment, tumor inhibition rate, spleen index and thymus index of drugs are calculated. Experimental results show that the prepared drugs are qualified in terms of regular shape, dispersion, drug content, etc. Animal pharmacodynamics experiments have shown that concentration level of drug loading capacity of prepared drugs has a direct impact on anti-tumor rate. The higher the concentration, the higher the anti-tumor rate. Results of pathological tissue sections of mice show that the prepared drugs cause varying degrees of damage to receptor cells, resulting in cell necrosis or apoptosis problem. It can thus be concluded that ion gel method is an effective method to prepare drug-loading nanoparticles, with prepared nanoparticles evenly distributed in regular shape which demonstrate good slow-release characteristics in receptor vitro and vivo. At the same time, after completion of drug preparation, relatively strong anti-tumor activity can be generated for the receptor, so this mode of preparation enjoys broad

  11. SEM evaluation of the morphological changes in hard dental tissues prepared by Er: YAG laser and rotary instruments

    Directory of Open Access Journals (Sweden)

    Tomov Georgi

    2010-09-01

    Full Text Available Effective ablation of dental hard tissues by means of the erbium:yttrium-aluminum garnet (Er: YAG laser has been reported recently, and its application to caries removal and cavity preparation has been expected. However, few studies have investigated the morphological changes in hard dental tissues after Er: YAG laser caries treatment. In the present study the morphological changes in hard dental tissues after Er: YAG laser caries ablation in vitro was compared with that of conventional mechanical treatment. Thirty extracted human teeth with caries were used. Ten tooth was treated with the Er: YAG laser, and the other was treated with a conventional steel and diamond burs. Laser treatment was performed by means of a non-contact irradiation modes with cooling water spray, with a new Er: YAG laser (LiteTouch. Conventional bur treatment was conducted by means of a low-speed micromotor and air turbine with water cooling. Scanning electron microscope (SEM observations were performed for each treatment. The Er: YAG laser ablated carious dentin effectively with minimal thermal damage to the surrounding intact dentin, and removed infected and softened carious dentin to the same degree as the burtreatment. In addition, a lower degree of vibration was noted with the Er: YAG laser treatment. The SEM examination revealed characteristic micro-irregularities of the lased dentin and enamel surfaces with potential benefits for adhesive restorations. Our results show that the Er: YAG laser is promising as a new technical modality for caries treatment

  12. "In situ preparation": new surgical procedure indicated for soft-tissue sarcoma of a lower limb in close proximity to major neurovascular structures.

    Science.gov (United States)

    Matsumoto, Seiichi; Kawaguchi, Noriyoshi; Manabe, Jun; Matsushita, Yasushi

    2002-02-01

    When soft-tissue sarcomas occur near neurovascular structures, preoperative images cannot always reveal the accurate relationship between the tumor and these structures. Therefore, in some patients, neurovascular structures are sacrificed unnecessarily. In other patients, neurovascular structures are preserved with an inappropriate margin, followed by local recurrence. The objective of this study was to evaluate a new surgical method, "in situ preparation" (ISP), which enables the preparation of neurovascular bundles and the intraoperative evaluation of the surgical margin without contamination by tumor cells. With this method, additional procedures, including pasteurization, alcohol soaking, and distilled water soaking of the preserved neurovascular bundle can also be performed to preserve the continuity of vessels. Between April 1992 and December 1998, 18 patients with soft-tissue sarcoma were operated on using ISP. The tumor and neurovascular structure were lifted en bloc from the surgical bed and separated from the field by the use of a vinyl sheet. The consistency of the neurovascular structures was preserved. The tissue block could be freely turned around and the neurovascular structure was separated from the block through the nearest approach. The margin between the tumor and neurovascular structure was evaluated, and an additional procedure, such as pasteurization, alcohol soaking or distilled water soaking, was performed, according to the safety of the surgical margin. Only one patient showed recurrence after ISP. Complications after ISP were arterial occlusion in two patients and nerve palsy in three patients. The main cause of these complications was the long period of pasteurization; modified additional procedures could prevent such complications. ISP is a useful method with which to ensure a safe surgical margin and good functional results.

  13. The hospital preparation of radiopharmaceuticals

    International Nuclear Information System (INIS)

    The subject is covered in sections: introduction; preparation ((general - sterilization), production areas (laboratories), working methods for injections, working methods for oral preparations and iodination procedures); analytical testing (general, standards common to injections and oral preparations, standards for injections, standards for oral preparations); reliable methods of preparing sup(99m)Tc-radiopharmaceuticals and 51 Cr-red cells; commercial radiopharmaceutical kits. (U.K.)

  14. Bronchus-associated lymphoid tissue (BALT) lymphoma of the lung showing mosaic pattern of inhomogeneous attenuation on thin-section CT: a case report

    International Nuclear Information System (INIS)

    Lee, In Jae; Kim, Sung Hwan; Koo, Soo Hyun; Kim, Hyun Beom; Hwang, Dae Hyun; Lee, Kwan Seop; Lee, Yul; Jang, Kee Taek; Kim, Duck Hwan

    2000-01-01

    The authors present a case of histologically proven bronchus-associated lymphoid tissue (BALT) lymphoma of the lung in a patient with primary Sjogren's syndrome that manifested on thin-section CT scan as a mosaic pattern of inhomogeneous attenuation due to mixed small airway and infiltrative abnormalities

  15. 46,XY,DUP(10Q) IN DIRECT CVS PREPARATION AND MOSAIC 48,XXXY,DUP(10Q) IN CVS LONG-TERM CULTURE AND FETAL TISSUE

    NARCIS (Netherlands)

    SIJMONS, RH; SIKKEMARADDATZ, B; KLOOSTERMAN, MD; BRIET, JW; DEJONG, B; LESCHOT, NJ

    Chorionic villus sampling (CVS) was performed on a 40-year-old woman at 9 1/2 menstrual weeks because of advanced maternal age. The direct preparation showed 46,XY,dup(10)(q11.2q23.2). CVS long-term culture and fetal tissue revealed a rare additional abnormality: 48,XXXY,dup(10)(q11.2q23.2). This

  16. Pathology in a tube step 2: simple rapid fabrication of curved circular cross section millifluidic channels for biopsy preparation/3D imaging towards pancreatic cancer detection and diagnosis

    Science.gov (United States)

    Das, Ronnie; Burfeind, Chris W.; Lim, Saniel D.; Patle, Shubham; Seibel, Eric J.

    2018-02-01

    3D pathology is intrinsically dependent on 3D microscopy, or the whole tissue imaging of patient tissue biopsies (TBs). Consequently, unsectioned needle specimens must be processed whole: a procedure which cannot necessarily be accomplished through manual methods, or by retasking automated pathology machines. Thus "millifluidic" devices (for millimeter-scale biopsies) are an ideal solution for tissue handling/preparation. TBs are large, messy and a solid-liquid mixture; they vary in material, geometry and structure based on the organ biopsied, the clinician skill and the needle type used. As a result, traditional microfluidic devices are insufficient to handle such mm-sized samples and their associated fabrication techniques are impractical and costly with respect to time/efficiency. Our research group has devised a simple, rapid fabrication process for millifluidic devices using jointed skeletal molds composed of machined, reusable metal rods, segmented rods and stranded wire as structural cores; these cores are surrounded by Teflon outer housing. We can therefore produce curving, circular-cross-section (CCCS) millifluidic channels in rapid fashion that cannot normally be achieved by microfabrication, micro-/CNC-machining, or 3D printing. The approach has several advantages. CLINICAL: round channels interface coring needles. PROCESSING: CCCS channels permit multi-layer device designs for additional (processing, monitoring, testing) stages. REUSABILITY: for a biopsy/needle diameter, molding (interchangeable) components may be produced one-time then reused for other designs. RAPID: structural cores can be quickly removed due to Teflon®'s ultra-low friction; housing may be released with ethanol; PDMS volumes cure faster since metal skeleton molds conduct additional heat from within the curing elastomer.

  17. Synovial fluid white cell count and histopathological examination of periprosthetic tissue samples (frozen and permanent sections in the diagnosis of prosthetic knee infection

    Directory of Open Access Journals (Sweden)

    Obada B.

    2017-02-01

    Full Text Available The aim of the study was to determine prospectively the importance of synovial fluid white cell count and intraoperative frozen and permanent sections analysis (number of polymorphonuclear leukocytes per high-power field in the diagnosis of septic total knee arthroplasty. There were studied prospectively 72 patients who needed a revision total knee arthroplasty between 2013-2015. 30 patients were diagnosed with prosthetic joint infection due to high rates of ESR (93% and CRP (90% and preoperative positive culture from aspirated synovial fluid and 42 patients were considered to have aseptic failure according to negative preoperative culture from joint aspirate. For all the patients was analysed synovial fluid white cell count and histopathological aspect of intraoperative frozen and permanent sections of periprosthetic tissue. The results showed a median value of 13800 of sinovial white cells count for infected knee and 92 for noninfected knee. 90% of the patients with joint infection had more than 5 polymorphonuclear leukocytes per high power field on intraoperative frozen sections and 83% on permanent sections. None of the patients from aseptic group had more than 5 polymorphonuclear leukocytes per field on permanent sections. The erythrocyte sedimentation rate and C-reactive protein level can be supplemented with cultures of aspirated joint fluid and fluid white cell count to confirm the diagnosis of periprosthetic infection. When the preoperative diagnosis remain unclear, the histological examination of frozen or permanent sections of periprosthetic tissue with at least 5 polymorphonuclear leukocytes per high power field, is predictive for the presence of infection.

  18. Bronchus-associated lymphoid tissue (BALT) lymphoma of the lung showing mosaic pattern of inhomogeneous attenuation on thin-section CT: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Jae; Kim, Sung Hwan; Koo, Soo Hyun; Kim, Hyun Beom; Hwang, Dae Hyun; Lee, Kwan Seop; Lee, Yul; Jang, Kee Taek; Kim, Duck Hwan [Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of)

    2000-09-01

    The authors present a case of histologically proven bronchus-associated lymphoid tissue (BALT) lymphoma of the lung in a patient with primary Sjogren's syndrome that manifested on thin-section CT scan as a mosaic pattern of inhomogeneous attenuation due to mixed small airway and infiltrative abnormalities.

  19. THE USE OF A NOVEL ALDEHYDE-FUNCTIONALIZED CHITOSAN HYDROGEL TO PREPARE POROUS TUBULAR SCAFFOLDS FOR VASCULAR TISSUE ENGINEERING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Eduardo P. Azevedo

    Full Text Available In this work, porous tubular scaffolds were prepared from a novel water soluble aldehyde-functionalized chitosan (ALDCHIT hydrogel, which was obtained by dissolving this chitosan derivative in water and using oxidized dextrose (OXDEXT as the crosslinking agent at different ALDCHIT:OXDEXT mole ratios (10:1, 10:2 and 10:4. By increasing the amount of OXDEXT in respect to ALDCHIT the hydrogels became more rigid and could absorb more than 200% of its weight in water. Since the ALDCHIT:OXDEXT 10:4 was the most stable hydrogel, its ability to form porous tubular scaffolds was investigated. The tubular scaffolds were prepared by the lyophilization method, where the orientation of the pores was controlled by exposing either the internal or the external surface of the frozen hydrogel during the sublimation step. When only the inner surface of the frozen hydrogel was exposed, tubular scaffolds with a highly porous lumen and a sealed outer surface were obtained, where the orientation of the pores, their sizes and interconnectivity seem to be optimum for vascular tissue engineering application.

  20. Preparation of biological samples for transmission X-ray microanalysis: a review of alternative procedures to the use of sectioned material

    International Nuclear Information System (INIS)

    Sigee, D.C.

    1988-01-01

    Although transmission X-ray microanalysis of biological material has traditionally been carried out mainly on sectioned preparations, a number of alternative procedures exist. These are considered under three major headings - whole cell preparations, analysis of cell homogenates and biological fluids, and applications of the technique to microsamples of purified biochemicals. These three aspects provide a continuous range of investigative level - from the cellular to the molecular. The use of X-ray microanalysis with whole cell preparations is considered in reference to eukaryote (animal) cells and prokaryotes - where it has particular potential in environmental studies on bacteria. In the case of cell homogenates and biological fluids, the technique has been used mainly with microdroplets of animal material. The use of X-ray microanalysis with purified biochemicals is considered in relation to both particulate and non-particulate samples. In the latter category, the application of this technique for analysis of thin films of metalloprotein is particularly emphasised. It is concluded that wider use could be made of the range of preparative techniques available - both within a particular investigation, and in diverse fields of study. Transmission X-ray microanalysis has implications for environmental, physiological and molecular biology as well as cell biology

  1. Histopathological pattern of soft tissues tumors and tumour like lesions in the pathology department of lady reading hospital peshawar, pakistan

    International Nuclear Information System (INIS)

    Sajjad, M.; Ahmad, F.

    2016-01-01

    Soft tissues tumours are tumours of mesenchymal origin excluding epithelial, skeletal tissue, reticuloendothelial system, brain coverings and solid viscera of the body. The objective of this study was to know the histopathological pattern of soft tissues tumours in the Pathology Department of Lady Reading Hospital Peshawar Khyber Pakhtunkhwa Pakistan. Methods: This descriptive study was conducted on retrospective data from January 2009 to December 2013. All the soft tissues biopsy specimens were received in 10% formalin, labelled, gross performed, sections processed in alcohol, xylene, wax, block prepared, frozen, microtome sections taken and processed for H and E staining, mounted and reported by a Histopathologist. The inclusion criteria was any sufficient soft tissue tumour biopsy specimen of any age, sex, location in body whereas the exclusion criteria was autolysed biopsy specimen. A minimum of four and maximum of eight sections and 5 micron thick were taken from each specimen. Results: A total of 267 soft tissues tumours biopsy specimens were received in the pathology laboratory with age range of 01 to 75 years, with mean age of 30.68+-17.71 years. Male to female ratio was 1.13:1. Amongst the total, benign tumours were 176 (65.91%). Haemangioma, 73 (27.3%) was the commonest tumours followed by lipomas 41 (15.4%) cases. Amongst the total malignant tumours, i.e., 91 (34.08%), rhabdomyosarcoma, 35 (13.1%) was the commonest tumour followed by angiosarcoma 14 (5.2%) cases. Conclusion: Haemangioma is the commonest benign tumour and rhabdomyosarcoma is the commonest malignant tumour in this study. (author)

  2. Preparation of a Two-Photon Fluorescent Probe for Imaging H2O2 in Lysosomes in Living Cells and Tissues.

    Science.gov (United States)

    Ren, Mingguang; Deng, Beibei; Kong, Xiuqi; Tang, Yonghe; Lin, Weiying

    2017-01-01

    Hydrogen peroxide (H 2 O 2 ) plays important roles in many physiological and pathological processes. At the cellular organelle level, the abnormal concentrations of H 2 O 2 in the lysosomes may cause redox imbalance and the loss of the critical functions of the lysosomes. Herein, we describe the preparation of a potent lysosome-targeted two-photon fluorescent probe (Lyso-HP) for the detection of H 2 O 2 in the lysosomes in the living cells. This unique fluorescent probe can also be employed to effectively detect H 2 O 2 in the living tissues using two-photon fluorescence microscopy.

  3. An optimised protocol for isolation of RNA from small sections of laser-capture microdissected FFPE tissue amenable for next-generation sequencing.

    Science.gov (United States)

    Amini, Parisa; Ettlin, Julia; Opitz, Lennart; Clementi, Elena; Malbon, Alexandra; Markkanen, Enni

    2017-08-23

    Formalin-fixed paraffin embedded (FFPE) tissue constitutes a vast treasury of samples for biomedical research. Thus far however, extraction of RNA from FFPE tissue has proved challenging due to chemical RNA-protein crosslinking and RNA fragmentation, both of which heavily impact on RNA quantity and quality for downstream analysis. With very small sample sizes, e.g. when performing Laser-capture microdissection (LCM) to isolate specific subpopulations of cells, recovery of sufficient RNA for analysis with reverse-transcription quantitative PCR (RT-qPCR) or next-generation sequencing (NGS) becomes very cumbersome and difficult. We excised matched cancer-associated stroma (CAS) and normal stroma from clinical specimen of FFPE canine mammary tumours using LCM, and compared the commonly used protease-based RNA isolation procedure with an adapted novel technique that additionally incorporates a focused ultrasonication step. We successfully adapted a protocol that uses focused ultrasonication to isolate RNA from small amounts of deparaffinised, stained, clinical LCM samples. Using this approach, we found that total RNA yields could be increased by 8- to 12-fold compared to a commonly used protease-based extraction technique. Surprisingly, RNA extracted using this new approach was qualitatively at least equal if not superior compared to the old approach, as Cq values in RT-qPCR were on average 2.3-fold lower using the new method. Finally, we demonstrate that RNA extracted using the new method performs comparably in NGS as well. We present a successful isolation protocol for extraction of RNA from difficult and limiting FFPE tissue samples that enables successful analysis of small sections of clinically relevant specimen. The possibility to study gene expression signatures in specific small sections of archival FFPE tissue, which often entail large amounts of highly relevant clinical follow-up data, unlocks a new dimension of hitherto difficult-to-analyse samples which now

  4. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue culture media for human ex vivo tissue and cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture...

  5. Preparation of 3D fibroin/chitosan blend porous scaffold for tissue engineering via a simplified method.

    Science.gov (United States)

    Ruan, Yuhui; Lin, Hong; Yao, Jinrong; Chen, Zhengrong; Shao, Zhengzhong

    2011-03-10

    In this work, we developed a simple and flexible method to manufacture a 3D porous scaffold based on the blend of regenerated silk fibroin (RSF) and chitosan (CS). No crosslinker or other toxic reagents were used in this method. The pores of resulted 3D scaffolds were connected with each other, and their sizes could be easily controlled by the concentration of the mixed solution. Compared with pure RSF scaffolds, the water absorptivities of these RSF/CS blend scaffolds with significantly enhanced mechanical properties were greatly increased. The results of MTT and RT-PCR tests indicated that the chondrocytes grew very well in these blend RSF/CS porous scaffolds. This suggested that the RSF/CS blend scaffold prepared by this new method could be a promising candidate for applications in tissue engineering. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. [Influence of implants prepared by selective laser melting on early bone healing].

    Science.gov (United States)

    Liu, J Y; Chen, F; Ge, Y J; Wei, L; Pan, S X; Feng, H L

    2018-02-18

    To evaluate the influence of the rough surface of dental implants prepared by selective laser melting (SLM) on early bone healing around titanium implants. A total of sixteen titanium implants were involved in our research, of which eight implants were prepared by SLM (TIXOS Cylindrical, Leader-Novaxa, Milan, Italy; 3.3 mm×10 mm, internal hex) and the other eight were sandblasted, large-grit and acid-etched (SLA) implants (IMPLUS Cylindrical, Leader-Novaxa, Milan, Italy; 3.3 mm×10 mm, internal hex). All of the dental implants were inserted into the healed extraction sockets of the mandible of two adult male Beagle dogs. Half of the dental implants were designed to be healed beneath the mucosa and the other half were intended to be healed transgingivally and were immediately loaded by acrylic resin bridge restoration. Three types of tetracycline fluorescent labels, namely calcein blue, alizarin complexone and calcein, were administered into the veins of the Beagle dogs 2, 4, and 8 weeks after implant placement respectively for fluorescent evaluation of newly formed bone peri-implant. Both Beagle dogs were euthanized 12 weeks after implant insertion and the mandible block specimens containing the titanium implants and surrounding bone and soft tissue of each dog were carefully sectioned and dissected. A total of 16 hard tissue slices were obtained and stained with toluidine blue for microscopic examination and histomorphometric measurements. Histological observation was made for each slice under light microscope and laser scanning confocal microscope (LSCM). Comparison on new bone formation around titanium implants of each group was made and mineral apposition rate (MAR) was calculated for each group. Dental implants prepared by selective laser melting had achieved satisfying osseointegration to surrounding bone tissue after the healing period of 12 weeks. Newly formed bone tissue was observed creeping on the highly porous surface of the SLM implant and growing

  7. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  8. Investigation of the “true” extraction recovery of analytes from multiple types of tissues and its impact on tissue bioanalysis using two model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Long, E-mail: long.yuan@bms.com [Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Ma, Li [Biotransformation, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Dillon, Lisa [Discovery Toxicology, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Fancher, R. Marcus; Sun, Huadong [Metabolism and Pharmacokinetics, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Zhu, Mingshe [Biotransformation, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Lehman-McKeeman, Lois [Discovery Toxicology, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Aubry, Anne-Françoise [Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States); Ji, Qin C., E-mail: qin.ji@bms.com [Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb, Princeton, NJ 08543 (United States)

    2016-11-16

    LC-MS/MS has been widely applied to the quantitative analysis of tissue samples. However, one key remaining issue is that the extraction recovery of analyte from spiked tissue calibration standard and quality control samples (QCs) may not accurately represent the “true” recovery of analyte from incurred tissue samples. This may affect the accuracy of LC-MS/MS tissue bioanalysis. Here, we investigated whether the recovery determined using tissue QCs by LC-MS/MS can accurately represent the “true” recovery from incurred tissue samples using two model compounds: BMS-986104, a S1P{sub 1} receptor modulator drug candidate, and its phosphate metabolite, BMS-986104-P. We first developed a novel acid and surfactant assisted protein precipitation method for the extraction of BMS-986104 and BMS-986104-P from rat tissues, and determined their recoveries using tissue QCs by LC-MS/MS. We then used radioactive incurred samples from rats dosed with {sup 3}H-labeled BMS-986104 to determine the absolute total radioactivity recovery in six different tissues. The recoveries determined using tissue QCs and incurred samples matched with each other very well. The results demonstrated that, in this assay, tissue QCs accurately represented the incurred tissue samples to determine the “true” recovery, and LC-MS/MS assay was accurate for tissue bioanalysis. Another aspect we investigated is how the tissue QCs should be prepared to better represent the incurred tissue samples. We compared two different QC preparation methods (analyte spiked in tissue homogenates or in intact tissues) and demonstrated that the two methods had no significant difference when a good sample preparation was in place. The developed assay showed excellent accuracy and precision, and was successfully applied to the quantitative determination of BMS-986104 and BMS-986104-P in tissues in a rat toxicology study. - Highlights: • Investigated the “true” recovery in six different tissues using incurred

  9. Investigation of the “true” extraction recovery of analytes from multiple types of tissues and its impact on tissue bioanalysis using two model compounds

    International Nuclear Information System (INIS)

    Yuan, Long; Ma, Li; Dillon, Lisa; Fancher, R. Marcus; Sun, Huadong; Zhu, Mingshe; Lehman-McKeeman, Lois; Aubry, Anne-Françoise; Ji, Qin C.

    2016-01-01

    LC-MS/MS has been widely applied to the quantitative analysis of tissue samples. However, one key remaining issue is that the extraction recovery of analyte from spiked tissue calibration standard and quality control samples (QCs) may not accurately represent the “true” recovery of analyte from incurred tissue samples. This may affect the accuracy of LC-MS/MS tissue bioanalysis. Here, we investigated whether the recovery determined using tissue QCs by LC-MS/MS can accurately represent the “true” recovery from incurred tissue samples using two model compounds: BMS-986104, a S1P 1 receptor modulator drug candidate, and its phosphate metabolite, BMS-986104-P. We first developed a novel acid and surfactant assisted protein precipitation method for the extraction of BMS-986104 and BMS-986104-P from rat tissues, and determined their recoveries using tissue QCs by LC-MS/MS. We then used radioactive incurred samples from rats dosed with 3 H-labeled BMS-986104 to determine the absolute total radioactivity recovery in six different tissues. The recoveries determined using tissue QCs and incurred samples matched with each other very well. The results demonstrated that, in this assay, tissue QCs accurately represented the incurred tissue samples to determine the “true” recovery, and LC-MS/MS assay was accurate for tissue bioanalysis. Another aspect we investigated is how the tissue QCs should be prepared to better represent the incurred tissue samples. We compared two different QC preparation methods (analyte spiked in tissue homogenates or in intact tissues) and demonstrated that the two methods had no significant difference when a good sample preparation was in place. The developed assay showed excellent accuracy and precision, and was successfully applied to the quantitative determination of BMS-986104 and BMS-986104-P in tissues in a rat toxicology study. - Highlights: • Investigated the “true” recovery in six different tissues using incurred tissue

  10. Subperiosteal preparation using a new piezoelectric device: a histological examination

    Directory of Open Access Journals (Sweden)

    Stoetzer, Marcus

    2014-12-01

    Full Text Available Introduction: Subperiosteal preparation using a periosteal elevator leads to disturbances of local immunohistochemistry and periosteal histology due to a microtrauma. Usually soft-tissue damage can be considerably reduced by using piezoelectric technology. For this reason, the effects of a novel piezoelectric device on immunohistochemistry and periosteal histology were examined and compared to conventional preparation of the periosteum using a periosteal elevator.Material and methods: Lewis rats were randomly assigned to one of five groups (n=50. Subperiosteal preparation was performed using either a piezoelectric device or a periosteal elevator. Immunohistochemical and histological analyses were performed immediately after preparation as well as three and eight days postoperatively. A statistical analysis of the histological colouring was performed offline using analysis of variance (ANOVA on ranks (p<0.05. Results: At all times, immunohistochemical and histological analysis demonstrated a significantly more homogenous tissue structure in the group of rats that underwent piezosurgery than in the group of rats that underwent treatment with a periosteal elevator.Conclusion: The use of a piezoelectric device for subperiosteal preparation is associated with more harmonious immunohistochemical and histological results for the periosteum than the use of a conventional periosteal elevator. As a result, piezoelectric devices can be expected to have a positive effect primarily on soft tissue, in particular of the periosteal as well as on surrounding tissues.

  11. Different methods of dentin processing for application in bone tissue engineering: A systematic review.

    Science.gov (United States)

    Tabatabaei, Fahimeh Sadat; Tatari, Saeed; Samadi, Ramin; Moharamzadeh, Keyvan

    2016-10-01

    Dentin has become an interesting potential biomaterial for tissue engineering of oral hard tissues. It can be used as a scaffold or as a source of growth factors in bone tissue engineering. Different forms of dentin have been studied for their potential use as bone substitutes. Here, we systematically review different methods of dentin preparation and the efficacy of processed dentin in bone tissue engineering. An electronic search was carried out in PubMed and Scopus databases for articles published from 2000 to 2016. Studies on dentin preparation for application in bone tissue engineering were selected. The initial search yielded a total of 1045 articles, of which 37 were finally selected. Review of studies showed that demineralization was the most commonly used dentin preparation process for use in tissue engineering. Dentin extract, dentin particles (tooth ash), freeze-dried dentin, and denatured dentin are others method of dentin preparation. Based on our literature review, we can conclude that preparation procedure and the size and shape of dentin particles play an important role in its osteoinductive and osteoconductive properties. Standardization of these methods is important to draw a conclusion in this regard. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2616-2627, 2016. © 2016 Wiley Periodicals, Inc.

  12. Study of distribution of /sup 169/Yb, /sup 67/Ga and /sup 111/In in tumor tissue by macroautoradiography. Comparison between viable tumor tissue and necrotic tumor tissue

    Energy Technology Data Exchange (ETDEWEB)

    Ando, A; Sanada, S; Hiraki, T [Kanazawa Univ. (Japan). School of Paramedicine; Doishita, K; Ando, I

    1977-01-01

    The localization of /sup 169/Yb, /sup 67/Ga and /sup 111/In in tumor tissues was determined macroautoradiographically. /sup 169/Yb-citrate, /sup 67/Ga-citrate and /sup 111/In-citrate were injected intravenously into rats which had received subcutaneously transplantations of Yoshida sarcoma, and were injected intraperitoneally to the mice which had received subcutaneous transplantations of Ehrlich tumor. These animals were sacrificed 3, 24 and 48 hours after injection. The tumor tissues were frozen in n-hexane (-70/sup 0/C) cooled with dry ice-acetone. After this, the frozen tumor tissues were cut into thin serial sections (10 ..mu..m) in a cryostat (-20/sup 0/C). One of these sections was then placed on x-ray film, and this film was developed after exposure of several days. The next slice of each of these sections were stained using the hematoxylin and eosin. From the observations of these autoradiogram and H-E stained slice, the following results were obtained. Concentration of /sup 169/Yb, /sup 67/Ga and /sup 111/In was predominant in viable tumor tissue rather than in necrotic tumor tissue, regardless of time after administration. /sup 67/Ga and /sup 111/In were distributed uniformly in viable tumor tissue, but there was greater deposition of /sup 169/Yb in viable tumor tissue neighboring the necrotic tumor.

  13. Preparation and characterization of gelatin–hydroxyapatite composite microspheres for hard tissue repair

    International Nuclear Information System (INIS)

    Chao, Shao Ching; Wang, Ming-Jia; Pai, Nai-Su; Yen, Shiow-Kang

    2015-01-01

    Gelatin–hydroxyapatite composite microspheres composed of 21% gelatin (G) and 79% hydroxyapatite (HA) with uniform morphology and controllable size were synthesized from a mixed solution of Ca(NO 3 ) 2 , NH 4 H 2 PO 4 and gelatin by a wet-chemical method. Material analyses such as X-ray diffraction (XRD), scanning/transmission electron microscopy examination (SEM/TEM) and inductively coupled plasma-mass spectroscopy (ICP-MS) were used to characterize G–HA microspheres by analyzing their crystalline phase, microstructure, morphology and composition. HA crystals precipitate along G fibers to form nano-rods with diameters of 6–10 nm and tangle into porous microspheres after blending. The cell culture indicates that G–HA composite microspheres without any toxicity could enhance the proliferation and differentiation of osteoblast-like cells. In a rat calvarial defect model, G–HA bioactive scaffolds were compared with fibrin glue (F) and Osteoset® Bone Graft Substitute (OS) for their capacity of regenerating bone. Four weeks post-implantation, new bone, mineralization, and expanded blood vessel area were found in G–HA scaffolds, indicating greater osteoconductivity and bioactivity than F and OS. - Highlights: • G–HA composite microspheres were prepared by hydroxyapatite and gelatin. • In vitro tests indicated that the G–HA microspheres were biocompatible and bioactive. • In in vitro tests, G–HA microspheres could be applied in hard tissue engineering. • G–HA had healed the bone defect and provides a high proportion of surface area to open space

  14. Preparation of designed poly(D,L-lactide)/nanosized hydroxyapatite composite structures by stereolithography

    NARCIS (Netherlands)

    Ronca, A.; Ambrosio, L.; Grijpma, D. W.

    The preparation of scaffolds to facilitate the replacement of damaged tissues and organs by means of tissue engineering has been much investigated. The key properties of the biomaterials used to prepare such scaffolds include biodegradability, biocompatibility and a well-defined three-dimensional

  15. Preparation of designed poly(d,l-lactide)/nanosized hydroxyapatite composite structures by stereolithography

    NARCIS (Netherlands)

    Ronca, A.; Ambrosio, L.; Grijpma, Dirk W.

    2013-01-01

    The preparation of scaffolds to facilitate the replacement of damaged tissues and organs by means of tissue engineering has been much investigated. The key properties of the biomaterials used to prepare such scaffolds include biodegradability, biocompatibility and a well-defined three-dimensional

  16. Production, separation and target preparation of {sup 171}Tm and {sup 147}Pm for neutron cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Heinitz, Stephan; Maugeri, Emilio A.; Schumann, Dorothea; Dressler, Rugard; Kivel, Niko [Paul Scherrer Institute, Villigen (Switzerland); Guerrero, Carlos [Sevilla Univ. (Spain); Koester, Ullrich [Institut Laue-Langevin, Grenoble (France); Tessler, Moshe; Paul, Michael [Hebrew Univ. of Jerusalem (Israel); Halfon, Shlomi [Soreq Nuclear Research Center, Yavne (Israel); Collaboration: nTOF Collaboration

    2017-07-01

    The knowledge of the neutron capture cross sections of s-process branching point isotopes represents a basic requirement for the understanding of star evolution. Since such branching point isotopes are by definition radioactive, the measurement of their cross sections from thermal to stellar energies becomes a challenging task. Considerable amounts of material have to be produced, representing a significant radioactive hazard. We report here on the production and separation of 3.5 mg {sup 171}Tm from 240 mg {sup 170}Er{sub 2}O{sub 3} and 72 μg {sup 147}Pm from 100 mg {sup 146}Nd{sub 2}O{sub 3} irradiated at the ILL high flux reactor. Thin targets were prepared with high chemical and radioisotopic purity suitable for neutron capture measurements at nTOF CERN and the SARAF-LiLiT facility.

  17. Detection of EGFR and COX-2 Expression by Immunohistochemical Method on a Tissue Microarray Section in Lung Cancer and Biological Significance

    Directory of Open Access Journals (Sweden)

    Xinyun WANG

    2010-02-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR and cyclooxygenase-2 (COX-2, which can regulate growth, invasion and metastasis of tumor through relevant signaling pathway, have been detected in a variety of solid tumors. The aim of this study is to investigate the biological significance of EGFR and COX-2 expression in lung cancer and the relationship between them. Methods The expression of EGFR and COX-2 was detected in 89 primary lung cancer tissues, 12 premaliganant lesions, 12 lymph node metastases, and 10 normal lung tissues as the control by immunohistochemical method on a tissue microarray section. Results EGFR protein was detectable in 59.6%, 41.7%, and 66.7% of primary lung cancer tissues, premalignant lesions and lymph node metastases, respectively; COX-2 protein was detectable in 52.8%, 41.7%, and 66.7% of primary lung cancer tissues, premalignant lesions and lymph node metastases, respectively, which were significantly higher than those of the control (P 0.05. COX-2 expression was related to gross type (P < 0.05. A highly positive correlation was observed between EGFR and COX-2 expression (P < 0.01. Conclusion Overexpression of EGFR and COX-2 may play an important role in the tumorgenesis, progression and malignancy of lung cancer. Detection of EGFR and COX-2 expression might be helpful to diagnosis and prognosis of lung cancer.

  18. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli; Nolting, Dorrit; Andersen, Lars Dyrskjøt

    2007-01-01

    been shown to increase detection sensitivity in FISH, combining these techniques into one protocol significantly decreases the time needed for miRNA detection in cryosections, while simultaneously retaining high detection sensitivity. Starting with fixation of the tissue sections, this miRNA FISH...

  19. Detailed sectional anatomy of the spine

    International Nuclear Information System (INIS)

    Rauschning, W.

    1985-01-01

    Morphologic studies on the human spine constitute a special challenge because of the spine's complex topographic anatomy and the intimate relationship between the supporting skeleton and the contiguous soft tissues (muscles, discs, joint capsules) as well as the neurovascular contents of the spinal canal and intervertebral foramina. The improving resolution and multiplanar image reformatting capabilities of modern CT scanners call for accurate anatomic reference material. Such anatomic images should be available without distortion, in natural colors, and in considerable detail. The images should present the anatomy in the correct axial, sagittal, and coronal planes and should also be sufficiently closely spaced so as to follow the thin cuts of modern CT scanners. This chapter details one of several recent attempts to correlate gross anatomy with the images depicted by high-resolution CT. The methods of specimen preparation, sectioning, and photographing have been documented elsewhere

  20. 29 CFR 780.911 - Preparation for transportation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Preparation for transportation. 780.911 Section 780.911... Employment in Fruit and Vegetable Harvest Transportation; Exemption From Overtime Pay Requirements Under Section 13(b)(16) Exempt Operations on Fruits Or Vegetables § 780.911 Preparation for transportation. The...

  1. Local tissue distribution of fissile nuclides

    International Nuclear Information System (INIS)

    Smith, J.M.

    1981-01-01

    Conventional tissue-section autoradiography of alpha-emitting actinide elements may require prohibitively long exposure times. Neutron-induced or fission-track autoradiography can be used for fissile nuclides such as 233 U, 235 U, and 239 Pu to circumvent this difficulty. The detection limit for these nuclides is about 4 x 10 -13 (weight fraction). This paper describes a specific technique for determining their microdistribution with histologically stained tissue sections

  2. Preparation and Characterization of Soluble Eggshell Membrane Protein/PLGA Electro spun Nano fibers for Guided Tissue Regeneration Membrane

    International Nuclear Information System (INIS)

    Jia, J.; Liu, G.; Duan, Y.; Guo, Z.; Yu, J.

    2012-01-01

    Guided tissue regeneration (GTR) is a widely used method in periodontal therapy, which involves the placement of a barrier membrane to exclude migration of epithelium and ensure repopulation of periodontal ligament cells. The objective of this study is to prepare and evaluate a new type of soluble eggshell membrane protein (SEP)/poly (lactic-co-glycolic acid) (PLGA) nano fibers using electro spinning method for GTR membrane application. SEP/PLGA nano fibers were successfully prepared with various blending ratios. The morphology, chemical composition, surface wettability, and mechanical properties of the nano fibers were characterized using scanning electron microscopy (SEM), contact angle measurement, Fourier transform-infrared spectroscopy (FTIR), and a universal testing machine. L-929 fibroblast cells were used to evaluate the biocompatibility of SEP/PLGA nano fibers and investigate the interaction between cells and nano fibers. Results showed that the SEP/PLGA electro spun membrane was composed of uniform, bead-free nano fibers, which formed an interconnected porous network structure. Mechanical property of SEP has been greatly improved by the addition of PLGA. The biological study results showed that SEP/PLGA nano fibers could enhance cell attachment, spreading, and proliferation. The study indicated the potential of SEP/PLGA nano fibers for GTR application and provided a basis for future optimization

  3. Vascularization after treatment of gingival recession defects with platelet-rich fibrin or connective tissue graft.

    Science.gov (United States)

    Eren, Gülnihal; Kantarcı, Alpdoğan; Sculean, Anton; Atilla, Gül

    2016-11-01

    The aim of this study was to evaluate histologically the following treatment of bilateral localized gingival recessions with coronally advanced flap (CAF) combined with platelet-rich fibrin (PRF) or subepithelial connective tissue graft (SCTG). Tissue samples were harvested from 14 subjects either 1 or 6 months after the surgeries. The 2-mm punch biopsies were obtained from the mid-portion of the grafted sites. Neutral buffered formalin fixed, paraffin-embedded 5-μm thick tissue sections were stained with hematoxylin eosin and Masson's trichrome in order to analyze the collagen framework, epithelium thickness and rete-peg length. Multiple sequential sections were cut from paraffin-embedded blocks of tissue and immunohistochemically prepared for detection of vascular endothelial growth factor, CD31 and CD34, for the assessment of vascularization. Rete peg formation was significantly increased in the sites treated with PRF compared to the SCTG group after 6 months (p < 0.05). On the contrary, the number of vessels was increased in the SCTG group compared to the PRF group after 6 months (p < 0.05). No statistically significant differences were observed in the collagen density. Staining intensity of CD31 increased in submucosal area of PRF group than SCTG group after 1 month. Higher staining intensity of CD34 was observed in the submucosal area of PRF group compared with SCTG group after 6 months. The results of the present study suggest that in histological evaluation because of its biological compounds, PRF results earlier vessel formation and tissue maturation compared to connective tissue graft. PRF regulated the vascular response associated with an earlier wound healing.

  4. 3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy

    KAUST Repository

    Zhang, Yibo; Shin, Yoonjung; Sung, Kevin; Yang, Sam; Chen, Harrison; Wang, Hongda; Teng, Da; Rivenson, Yair; Kulkarni, Rajan P.; Ozcan, Aydogan

    2017-01-01

    High-throughput sectioning and optical imaging of tissue samples using traditional immunohistochemical techniques can be costly and inaccessible in resource-limited areas. We demonstrate three-dimensional (3D) imaging and phenotyping in optically transparent tissue using lens-free holographic on-chip microscopy as a low-cost, simple, and high-throughput alternative to conventional approaches. The tissue sample is passively cleared using a simplified CLARITY method and stained using 3,3′-diaminobenzidine to target cells of interest, enabling bright-field optical imaging and 3D sectioning of thick samples. The lens-free computational microscope uses pixel super-resolution and multi-height phase recovery algorithms to digitally refocus throughout the cleared tissue and obtain a 3D stack of complex-valued images of the sample, containing both phase and amplitude information. We optimized the tissue-clearing and imaging system by finding the optimal illumination wavelength, tissue thickness, sample preparation parameters, and the number of heights of the lens-free image acquisition and implemented a sparsity-based denoising algorithm to maximize the imaging volume and minimize the amount of the acquired data while also preserving the contrast-to-noise ratio of the reconstructed images. As a proof of concept, we achieved 3D imaging of neurons in a 200-μm-thick cleared mouse brain tissue over a wide field of view of 20.5 mm2. The lens-free microscope also achieved more than an order-of-magnitude reduction in raw data compared to a conventional scanning optical microscope imaging the same sample volume. Being low cost, simple, high-throughput, and data-efficient, we believe that this CLARITY-enabled computational tissue imaging technique could find numerous applications in biomedical diagnosis and research in low-resource settings.

  5. 3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy

    KAUST Repository

    Zhang, Yibo

    2017-08-12

    High-throughput sectioning and optical imaging of tissue samples using traditional immunohistochemical techniques can be costly and inaccessible in resource-limited areas. We demonstrate three-dimensional (3D) imaging and phenotyping in optically transparent tissue using lens-free holographic on-chip microscopy as a low-cost, simple, and high-throughput alternative to conventional approaches. The tissue sample is passively cleared using a simplified CLARITY method and stained using 3,3′-diaminobenzidine to target cells of interest, enabling bright-field optical imaging and 3D sectioning of thick samples. The lens-free computational microscope uses pixel super-resolution and multi-height phase recovery algorithms to digitally refocus throughout the cleared tissue and obtain a 3D stack of complex-valued images of the sample, containing both phase and amplitude information. We optimized the tissue-clearing and imaging system by finding the optimal illumination wavelength, tissue thickness, sample preparation parameters, and the number of heights of the lens-free image acquisition and implemented a sparsity-based denoising algorithm to maximize the imaging volume and minimize the amount of the acquired data while also preserving the contrast-to-noise ratio of the reconstructed images. As a proof of concept, we achieved 3D imaging of neurons in a 200-μm-thick cleared mouse brain tissue over a wide field of view of 20.5 mm2. The lens-free microscope also achieved more than an order-of-magnitude reduction in raw data compared to a conventional scanning optical microscope imaging the same sample volume. Being low cost, simple, high-throughput, and data-efficient, we believe that this CLARITY-enabled computational tissue imaging technique could find numerous applications in biomedical diagnosis and research in low-resource settings.

  6. Low-temperature X-ray microanalysis of the differentiating vascular tissue in root tips of Lemna minor L

    Energy Technology Data Exchange (ETDEWEB)

    Echlin, P [Univ. of Cambridge, England; Lai, C E; Hayes, T L

    1982-06-01

    The fracture faces of bulk-frozen tissue offer a number of advantages for the analysis of diffusible elements. They are easy to prepare, remain uncontaminated, and, unlike most frozen-hydrated sections, can be shown to exist in a fully hydrated state throughout examination and analysis. Root tips of Lemna minor briefly treated with a polymeric cryoprotectant are quench frozen in melting nitrogen. Fractures are prepared using the AMRAY Biochamber, lightly etched if necessary to reveal surface detail and carbon coated while maintaining the specimen at 110 K. The frozen-hydrated fracture faces are analyzed at 110 K using the P/B ratio method which is less sensitive to changes in surface geometry and variations in beam current. The method has been used to investigate the distribution of seven elements (Na/sup +/, Mg/sup + +/, P, S, Cl/sup -/, K/sup +/ and Ca/sup + +/) in the developing vascular tissue of the root tip. The microprobe can measure relative elemental ratios at the cellular level and the results from this present study reveal important variations in different parts of the root. The younger, more actively dividing cells, appear to have a slightly higher concentration of diffusible ions in comparison to the somewhat older tissues which have begun to differentiate into what are presumed to be functional vascular elements.

  7. Protective effects of a preparation(hemoHIM) of herb mixture on self-renewal tissues and immune system in whole body irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae-Ran; Oh, Heon; Jo, Sung-Kee [Korea Atomic Energy Research Institute, Daejon (Korea, Republic of); Kim, Sung-Ho [Chonnam National Univ., Kwangju (Korea, Republic of); Yee, Sung-Tae [Sunchon National Univ., Sunchon (Korea, Republic of)

    2002-07-01

    A preparation (HemoHIM) of herb mixture was designed to protect the gastrointestine and hematopoietic organs and to promote recovery of the immune system against radiation damage. The mixture of 3 edible medicinal herbs (Angelica gagantis Radix, etc.) was decocted with hot water and the extract was fractionated with ethanol. The preparation HemoHIM was made up with addition of ethanol- insoluble fraction yielded from one half of the total water extract to the other half of the total water extract. In vitro, lymphocytes were protected by HemoHIM, its polysaccharide and ethanol fractions against radiation. The proliferation of lymphocytes and bone marrow cells by HemoHIM was due to its polysaccharide fraction. In mice administered with the preparation (HemoHIM) before gamma- irradiation, the jejunal crypt survival was increased and the apoptosis of crypt cells was decreased. HemoHIM administration increased the survival of bone marrow stem cells and promoted the repopulation of blood cells following irradiation. In the analysis of the repopulated lymphocyte subsets, B cells were firstly regenerated and then T cells were recovered in mice administrated with HemoHIM. The antibody production against T-dependent antigen DNP-KLH was augmented by HemoHIM in irradiated mice. These results indicated that HemoHIM, a preparation of the herb mixture, protected the stem cells of self-renewal tissues and hematopoietic organs and promoted recovery of the immune system against radiation damage. Since the preparation of herb mixture is a relatively nontoxic natural product, it might be a useful modifier for prevention and control of radiation damages.

  8. Rapid intra-operative diagnosis of kidney cancer by attenuated total reflection infrared spectroscopy of tissue smears.

    Science.gov (United States)

    Pucetaite, Milda; Velicka, Martynas; Urboniene, Vidita; Ceponkus, Justinas; Bandzeviciute, Rimante; Jankevicius, Feliksas; Zelvys, Arunas; Sablinskas, Valdas; Steiner, Gerald

    2018-01-09

    Herein, a technique to analyze air-dried kidney tissue impression smears by means of attenuated total reflection infrared (ATR-IR) spectroscopy is presented. Spectral tumor markers-absorption bands of glycogen-are identified in the ATR-IR spectra of the kidney tissue smear samples. Thin kidney tissue cryo-sections currently used for IR spectroscopic analysis lack such spectral markers as the sample preparation causes irreversible molecular changes in the tissue. In particular, freeze-thaw cycle results in degradation of the glycogen and reduction or complete dissolution of its content. Supervised spectral classification was applied to the recorded spectra of the smears and the test spectra were classified with a high accuracy of 92% for normal tissue and 94% for tumor tissue, respectively. For further development, we propose that combination of the method with optical fiber ATR probes could potentially be used for rapid real-time intra-operative tissue analysis without interfering with either the established protocols of pathological examination or the ordinary workflow of operating surgeon. Such approach could ensure easier transition of the method to clinical applications where it may complement the results of gold standard histopathology examination and aid in more precise resection of kidney tumors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hard X-ray submicrometer tomography of human brain tissue at Diamond Light Source

    Science.gov (United States)

    Khimchenko, A.; Bikis, C.; Schulz, G.; Zdora, M.-C.; Zanette, I.; Vila-Comamala, J.; Schweighauser, G.; Hench, J.; Hieber, S. E.; Deyhle, H.; Thalmann, P.; Müller, B.

    2017-06-01

    There is a lack of the necessary methodology for three-dimensional (3D) investigation of soft tissues with cellular resolution without staining or tissue transformation. Synchrotron radiation based hard X-ray in-line phase contrast tomography using single-distance phase reconstruction (SDPR) provides high spatial resolution and density contrast for the visualization of individual cells using a standard specimen preparation and data reconstruction. In this study, we demonstrate the 3D characterization of a formalin-fixed paraffin-embedded (FFPE) human cerebellum specimen by SDPR at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, UK) at pixel sizes down to 0.45 μm. The approach enables visualization of cerebellar layers (Stratum moleculare and Stratum granulosum), the 3D characterization of individual cells (Purkinje, stellate and granule cells) and can even resolve some subcellular structures (nucleus and nucleolus of Purkinje cells). The tomographic results are qualitatively compared to hematoxylin and eosin (H&E) stained histological sections. We demonstrate the potential benefits of hard X-ray microtomography for the investigations of biological tissues in comparison to conventional histology.

  10. Hard X-ray submicrometer tomography of human brain tissue at Diamond Light Source

    International Nuclear Information System (INIS)

    Khimchenko, A; Bikis, C; Schulz, G; Hieber, S E; Deyhle, H; Thalmann, P; Müller, B; Zdora, M-C; Zanette, I; Vila-Comamala, J; Schweighauser, G; Hench, J

    2017-01-01

    There is a lack of the necessary methodology for three-dimensional (3D) investigation of soft tissues with cellular resolution without staining or tissue transformation. Synchrotron radiation based hard X-ray in-line phase contrast tomography using single-distance phase reconstruction (SDPR) provides high spatial resolution and density contrast for the visualization of individual cells using a standard specimen preparation and data reconstruction. In this study, we demonstrate the 3D characterization of a formalin-fixed paraffin-embedded (FFPE) human cerebellum specimen by SDPR at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, UK) at pixel sizes down to 0.45 μm. The approach enables visualization of cerebellar layers ( Stratum moleculare and Stratum granulosum ), the 3D characterization of individual cells (Purkinje, stellate and granule cells) and can even resolve some subcellular structures (nucleus and nucleolus of Purkinje cells). The tomographic results are qualitatively compared to hematoxylin and eosin (H and E) stained histological sections. We demonstrate the potential benefits of hard X-ray microtomography for the investigations of biological tissues in comparison to conventional histology. (paper)

  11. Brain tissue stiffness is a sensitive marker for acidosis.

    Science.gov (United States)

    Holtzmann, Kathrin; Gautier, Hélène O B; Christ, Andreas F; Guck, Jochen; Káradóttir, Ragnhildur Thóra; Franze, Kristian

    2016-09-15

    Carbon dioxide overdose is frequently used to cull rodents for tissue harvesting. However, this treatment may lead to respiratory acidosis, which potentially could change the properties of the investigated tissue. Mechanical tissue properties often change in pathological conditions and may thus offer a sensitive generic readout for changes in biological tissues with clinical relevance. In this study, we performed force-indentation measurements with an atomic force microscope on acute cerebellar slices from adult rats to test if brain tissue undergoes changes following overexposure to CO2 compared to other methods of euthanasia. The pH significantly decreased in brain tissue of animals exposed to CO2. Concomitant with the drop in pH, cerebellar grey matter significantly stiffened. Tissue stiffening was reproduced by incubation of acute cerebellar slices in acidic medium. Tissue stiffness provides an early, generic indicator for pathophysiological changes in the CNS. Atomic force microscopy offers unprecedented high spatial resolution to detect such changes. Our results indicate that the stiffness particularly of grey matter strongly correlates with changes of the pH in the cerebellum. Furthermore, the method of tissue harvesting and preparation may not only change tissue stiffness but very likely also other physiologically relevant parameters, highlighting the importance of appropriate sample preparation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Detection of Streptococcus suis by in situ hybridization, indirect immunofluorescence, and peroxidase-antiperoxidase assays in formalin-fixed, paraffin-embedded tissue sections from pigs

    DEFF Research Database (Denmark)

    Boye, Mette; Feenstra, Anne Avlund; Tegtmeier, Conny

    2000-01-01

    and the immunohistochemical methods were used for detection of S. suis in formalin-fixed, paraffin-embedded tissue sections of brain, endocardium, and lung from pigs infected with S. suis. The methods developed were able to detect single cells of S. suis in situ in the respective samples, whereas no signal was observed from...

  13. 7 CFR 27.21 - Preparation of samples of cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Preparation of samples of cotton. 27.21 Section 27.21... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.21 Preparation of samples of cotton. The samples from each bale shall be prepared as specified in this section...

  14. Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering.

    Science.gov (United States)

    Chen, Shangwu; Zhang, Qin; Nakamoto, Tomoko; Kawazoe, Naoki; Chen, Guoping

    2016-03-01

    Engineering of cartilage tissue in vitro using porous scaffolds and chondrocytes provides a promising approach for cartilage repair. However, nonuniform cell distribution and heterogeneous tissue formation together with weak mechanical property of in vitro engineered cartilage limit their clinical application. In this study, gelatin porous scaffolds with homogeneous and open pores were prepared using ice particulates and freeze-drying. The scaffolds were used to culture bovine articular chondrocytes to engineer cartilage tissue in vitro. The pore structure and mechanical property of gelatin scaffolds could be well controlled by using different ratios of ice particulates to gelatin solution and different concentrations of gelatin. Gelatin scaffolds prepared from ≥70% ice particulates enabled homogeneous seeding of bovine articular chondrocytes throughout the scaffolds and formation of homogeneous cartilage extracellular matrix. While soft scaffolds underwent cellular contraction, stiff scaffolds resisted cellular contraction and had significantly higher cell proliferation and synthesis of sulfated glycosaminoglycan. Compared with the gelatin scaffolds prepared without ice particulates, the gelatin scaffolds prepared with ice particulates facilitated formation of homogeneous cartilage tissue with significantly higher compressive modulus. The gelatin scaffolds with highly open pore structure and good mechanical property can be used to improve in vitro tissue-engineered cartilage.

  15. Personnel Preparation.

    Science.gov (United States)

    Fair, George, Ed.; Stodden, Robert, Ed.

    1981-01-01

    Three articles comprise a section on personnel preparation in vocational education. Articles deal with two inservice programs in career/vocational education for the handicapped and a project to train paraprofessionals to assist special educators in vocational education. (CL)

  16. Prepared to practice? Perception of career preparation and guidance of recent medical graduates at two campuses of a transnational medical school: a cross-sectional study.

    Science.gov (United States)

    Kassim, Sameer S; McGowan, Yvonne; McGee, Hannah; Whitford, David L

    2016-02-09

    Graduating medical students enter the workforce with substantial medical knowledge and experience, yet little is known about how well they are prepared for the transition to medical practice in diverse settings. We set out to compare perceptions of medical school graduates' career guidance with their perceptions of preparedness to practice as interns. We also set out to compare perceptions of preparedness for hospital practice between graduates from two transnational medical schools. This was a cross-sectional study. A Preparedness for Hospital Practice (PHPQ) survey and career guidance questionnaire was sent to recent medical graduates, incorporating additional free text responses on career preparation. Data was analyzed using descriptive statistics and tests of association including Chi-square, Mann-Whitney U and Kruskal-Wallis H tests. Forty three percent (240/555) of graduates responded to the survey: 39 % of respondents were domestic (Dublin, Ireland or Manama, Kingdom of Bahrain) and interning locally; 15 % were overseas students interning locally; 42 % were overseas students interning internationally and 4 % had not started internship. Two variables explained 13 % of the variation in preparedness for hospital practice score: having planned postgraduate education prior to entering medical school and having helpful career guidance in medical school. Overseas graduates interning internationally were more likely to have planned their postgraduate career path prior to entering medical school. Dublin graduates found their career guidance more helpful than Bahrain counterparts. The most cited shortcomings were lack of structured career advice and lack of advice on the Irish and Bahraini postgraduate systems. This study has demonstrated that early consideration of postgraduate career preparation and helpful medical school career guidance has a strong association with perceptions of preparedness of medical graduates for hospital practice. In an era of increasing

  17. Modification in the assembly technique of histological sections for analysis of spatial distribution of boron by autoradiography

    International Nuclear Information System (INIS)

    Portu, A; Carpano, M; Dagrosa, A; Pozzi, E; Thorp, S; Curotto, P; Cabrini, R L; Saint Martin, G

    2012-01-01

    . It is necessary to find out other techniques to preserve necrotic areas for quantification. The preparation of tissue sections embedded in paraffin is widely used in pathology laboratories technique. To achieve these cuts, the samples must be processed previously. The aim of this study was to evaluate the feasibility of using tissue sections embedded in paraffin as alternative arrangement, in order to preserve the structures that are damaged in frozen sections (author)

  18. Preparation and characterization of gelatin–hydroxyapatite composite microspheres for hard tissue repair

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Shao Ching [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan (China); Department of Minimally Invasive Skull Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard, Sect. 4, Taichung, Taiwan (China); Department of Neurosurgery, ChangHua Hospital, Ministry of Health and Welfare, 80 Chung Cheng Road, Sect. 2 Chiu Kuan Village, Changhua 500, Taiwan (China); Wang, Ming-Jia; Pai, Nai-Su [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan (China); Yen, Shiow-Kang, E-mail: skyen@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan (China)

    2015-12-01

    Gelatin–hydroxyapatite composite microspheres composed of 21% gelatin (G) and 79% hydroxyapatite (HA) with uniform morphology and controllable size were synthesized from a mixed solution of Ca(NO{sub 3}){sub 2}, NH{sub 4}H{sub 2}PO{sub 4} and gelatin by a wet-chemical method. Material analyses such as X-ray diffraction (XRD), scanning/transmission electron microscopy examination (SEM/TEM) and inductively coupled plasma-mass spectroscopy (ICP-MS) were used to characterize G–HA microspheres by analyzing their crystalline phase, microstructure, morphology and composition. HA crystals precipitate along G fibers to form nano-rods with diameters of 6–10 nm and tangle into porous microspheres after blending. The cell culture indicates that G–HA composite microspheres without any toxicity could enhance the proliferation and differentiation of osteoblast-like cells. In a rat calvarial defect model, G–HA bioactive scaffolds were compared with fibrin glue (F) and Osteoset® Bone Graft Substitute (OS) for their capacity of regenerating bone. Four weeks post-implantation, new bone, mineralization, and expanded blood vessel area were found in G–HA scaffolds, indicating greater osteoconductivity and bioactivity than F and OS. - Highlights: • G–HA composite microspheres were prepared by hydroxyapatite and gelatin. • In vitro tests indicated that the G–HA microspheres were biocompatible and bioactive. • In in vitro tests, G–HA microspheres could be applied in hard tissue engineering. • G–HA had healed the bone defect and provides a high proportion of surface area to open space.

  19. Fluorescence in situ hybridization on formalin-fixed and paraffin-embedded tissue

    DEFF Research Database (Denmark)

    Laub Petersen, Bodil; Zeuthen, Mette Christa; Pedersen, Sanni

    2004-01-01

    , such as quantitation of signals as in triploidy, it is possible to isolate nuclei from paraffin-embedded tissue. However, using formalin-fixed paraffin-embedded tissue, either in thin sections or as isolated nuclei, one encounters a range of technical problems, paralleling those met in immunohistochemistry. Variations...... nuclei and tissue sections from formalin-fixed, paraffin-embedded tissue....

  20. Spatial cluster analysis of nanoscopically mapped serotonin receptors for classification of fixed brain tissue

    Science.gov (United States)

    Sams, Michael; Silye, Rene; Göhring, Janett; Muresan, Leila; Schilcher, Kurt; Jacak, Jaroslaw

    2014-01-01

    We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories. Therefore, our localization microscopy-based method was adapted to characterize protein density and protein cluster localization in samples fixed using different protocols followed by common fluorescent immunohistochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be confined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were subsequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method, samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues. Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from mental illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level. Furthermore, the presented workflow marks a unique technological advance in the characterization of protein distributions in brain tissue sections.

  1. The use of animal tissues alongside human tissue: Cultural and ethical considerations.

    Science.gov (United States)

    Kaw, Anu; Jones, D Gareth; Zhang, Ming

    2016-01-01

    Teaching and research facilities often use cadaveric material alongside animal tissues, although there appear to be differences in the way we handle, treat, and dispose of human cadaveric material compared to animal tissue. This study sought to analyze cultural and ethical considerations and provides policy recommendations on the use of animal tissues alongside human tissue. The status of human and animal remains and the respect because of human and animal tissues were compared and analyzed from ethical, legal, and cultural perspectives. The use of animal organs and tissues is carried out within the context of understanding human anatomy and function. Consequently, the interests of human donors are to be pre-eminent in any policies that are enunciated, so that if any donors find the presence of animal remains unacceptable, the latter should not be employed. The major differences appear to lie in differences in our perceptions of their respective intrinsic and instrumental values. Animals are considered to have lesser intrinsic value and greater instrumental value than humans. These differences stem from the role played by culture and ethical considerations, and are manifested in the resulting legal frameworks. In light of this discussion, six policy recommendations are proposed, encompassing the nature of consent, respect for animal tissues as well as human remains, and appropriate separation of both sets of tissues in preparation and display. © 2015 Wiley Periodicals, Inc.

  2. Preparation of a biomimetic composite scaffold from gelatin/collagen and bioactive glass fibers for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Esmaeel; Azami, Mahmoud [Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Kajbafzadeh, Abdol-Mohammad [Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Department of Pediatric Urology, Children' s Hospital Medical Center, Tehran, Iran (IRI) (Iran, Islamic Republic of); Moztarzadeh, Fatollah [Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Faridi-Majidi, Reza [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shamousi, Atefeh; Karimi, Roya [Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ai, Jafar, E-mail: jafar_ai@tums.ac.ir [Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Brain and Spinal Injury Research Center (BASIR), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-02-01

    Bone tissue is a composite material made of organic and inorganic components. Bone tissue engineering requires scaffolds that mimic bone nature in chemical and mechanical properties. This study proposes a novel method for preparing composite scaffolds that uses sub-micron bioglass fibers as the organic phase and gelatin/collagen as the inorganic phase. The scaffolds were constructed by using freeze drying and electro spinning methods and their mechanical properties were enhanced by using genipin crosslinking agent. Electron microscopy micrographs showed that the structure of composite scaffolds were porous with pore diameters of approximately 70–200 μm, this was again confirmed by mercury porosimetery. These pores are suitable for osteoblast growth. The diameters of the fibers were approximately 150–450 nm. Structural analysis confirmed the formation of desirable phases of sub-micron bioglass fibers. Cellular biocompatibility tests illustrated that scaffolds containing copper ion in the bioglass structure had more cell growth and osteoblast attachment in comparison to copper-free scaffolds. - Highlights: • Fabrication of 45S5 sub-micron bioglass fiber using electrospinning method. • Production of copper doped submicron bioglass fibers on 45S5 bioglass base by electrospinning sol gel route method. • Incorporation of bioglass/Cu-bioglass sub-micron fibers into gelatin/collagen matrix to form biomimetic composite scaffold which were non-cytotoxic according to MTT assay. • Discovering that copper can decrease the glass transition temperatures and enhance osteoblast cell adhesion and viability.

  3. Preparation of a biomimetic composite scaffold from gelatin/collagen and bioactive glass fibers for bone tissue engineering

    International Nuclear Information System (INIS)

    Sharifi, Esmaeel; Azami, Mahmoud; Kajbafzadeh, Abdol-Mohammad; Moztarzadeh, Fatollah; Faridi-Majidi, Reza; Shamousi, Atefeh; Karimi, Roya; Ai, Jafar

    2016-01-01

    Bone tissue is a composite material made of organic and inorganic components. Bone tissue engineering requires scaffolds that mimic bone nature in chemical and mechanical properties. This study proposes a novel method for preparing composite scaffolds that uses sub-micron bioglass fibers as the organic phase and gelatin/collagen as the inorganic phase. The scaffolds were constructed by using freeze drying and electro spinning methods and their mechanical properties were enhanced by using genipin crosslinking agent. Electron microscopy micrographs showed that the structure of composite scaffolds were porous with pore diameters of approximately 70–200 μm, this was again confirmed by mercury porosimetery. These pores are suitable for osteoblast growth. The diameters of the fibers were approximately 150–450 nm. Structural analysis confirmed the formation of desirable phases of sub-micron bioglass fibers. Cellular biocompatibility tests illustrated that scaffolds containing copper ion in the bioglass structure had more cell growth and osteoblast attachment in comparison to copper-free scaffolds. - Highlights: • Fabrication of 45S5 sub-micron bioglass fiber using electrospinning method. • Production of copper doped submicron bioglass fibers on 45S5 bioglass base by electrospinning sol gel route method. • Incorporation of bioglass/Cu-bioglass sub-micron fibers into gelatin/collagen matrix to form biomimetic composite scaffold which were non-cytotoxic according to MTT assay. • Discovering that copper can decrease the glass transition temperatures and enhance osteoblast cell adhesion and viability.

  4. 40 CFR 761.323 - Sample preparation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sample preparation. 761.323 Section... Remediation Waste Samples § 761.323 Sample preparation. (a) The comparison study requires analysis of a... concentrations by dilution. Any excess material resulting from the preparation of these samples, which is not...

  5. Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering.

    Science.gov (United States)

    Hardy, John G; Cornelison, R Chase; Sukhavasi, Rushi C; Saballos, Richard J; Vu, Philip; Kaplan, David L; Schmidt, Christine E

    2015-01-14

    Tissues in the body are hierarchically structured composite materials with tissue-specific chemical and topographical properties. Here we report the preparation of tissue scaffolds with macroscopic pores generated via the dissolution of a sacrificial supramolecular polymer-based crystal template (urea) from a biodegradable polymer-based scaffold (polycaprolactone, PCL). Furthermore, we report a method of aligning the supramolecular polymer-based crystals within the PCL, and that the dissolution of the sacrificial urea yields scaffolds with macroscopic pores that are aligned over long, clinically-relevant distances ( i.e ., centimeter scale). The pores act as topographical cues to which rat Schwann cells respond by aligning with the long axis of the pores. Generation of an interpenetrating network of polypyrrole (PPy) and poly(styrene sulfonate) (PSS) in the scaffolds yields electroactive tissue scaffolds that allow the electrical stimulation of Schwann cells cultured on the scaffolds which increases the production of nerve growth factor (NGF).

  6. Preparation, characterization and use of a reference material to proficiency testing for determination of metals in fish tissue in natura

    International Nuclear Information System (INIS)

    Santana, Luciana Vieira de

    2013-01-01

    The proficiency tests are widely used to evaluate the analytical capacity of laboratories and also as part of the accreditation process. For this reason, are important tools for the control of the quality of the analytical results obtained in the laboratories that work directly with seafood companies. In Brazil there are no providers of proficiency testing for metals potentially toxic in fish tissues. In this work will be described all steps used for the production of reference materials to be used in a proficiency testing pilot study for As, Cd, Pb and Hg in fish tissue following the recommendations of the ISO Guide 35. He preparation scheme consisted in selecting the individuals, cleaning, grinding, homogenization and fortification with As, Cd and Pb in two concentration levels. The preparation resulted in 164 sachets of 10 g each. In order to evaluate the effect of gamma irradiation in the samples conservation 52 sachets were irradiated with 60 Co (10.00 ± 1.05 kGy) in a gamma cell. This material with others non irradiated 52 sachets were used for the homogeneity and stability studies. The remaining 60 were used for the proficiency testing. The results demonstrated that both materials were homogeneous and presented good stability (during a period of 45 days). However, the irradiated material present better integrity, concerning biological degradation, when stored in ambient temperature. For this reason they were used to the proficiency testing pilot program. Ten laboratories participated in the proficiency testing pilot study and the results were evaluated using the following tests: z-score, confidence ellipse and En numbers. This work demonstrates the capability of the laboratory to produce reference materials as well as to organize and conduct proficiency testing. (author)

  7. Tissue and Organ 3D Bioprinting.

    Science.gov (United States)

    Xia, Zengmin; Jin, Sha; Ye, Kaiming

    2018-02-01

    Three-dimensional (3D) bioprinting enables the creation of tissue constructs with heterogeneous compositions and complex architectures. It was initially used for preparing scaffolds for bone tissue engineering. It has recently been adopted to create living tissues, such as cartilage, skin, and heart valve. To facilitate vascularization, hollow channels have been created in the hydrogels by 3D bioprinting. This review discusses the state of the art of the technology, along with a broad range of biomaterials used for 3D bioprinting. It provides an update on recent developments in bioprinting and its applications. 3D bioprinting has profound impacts on biomedical research and industry. It offers a new way to industrialize tissue biofabrication. It has great potential for regenerating tissues and organs to overcome the shortage of organ transplantation.

  8. On the influence of spatial discretization on cross section preparation with HELIOS 1.9

    International Nuclear Information System (INIS)

    Merk, B.; Koch, R.

    2008-01-01

    The aim of many reactor calculations is the determination of the neutron flux and the nuclear power distribution. These distributions are in general calculated by solving the space and energy dependent static transport equation. Thus, a reliable computation of the neutron flux distribution within the reactor core would require the solution of the space-, energy- and angle-dependent neutron transport equation for the full nuclear reactor core. It is not yet feasible to solve exactly the neutron transport equation for realistic reactor core geometries in detail in practical use. Thus deterministic reactor calculations are split into the cell and lattice calculation based on static transport and the core simulation based on nodal codes. The cell and lattice calculations are mostly based on multi group transport calculations within two dimensions considering unstructured meshes. The resulting neutron flux is used for the preparation of few group cross sections like they are used in the nodal 3D full core simulation codes. One commercial standard product is the Studsvik Scandpower code system HELIOS 1.9. ''The transport method of HELIOS is called the CCCP method, because it is based on current coupling and collision probabilities (first-flight probabilities).. the system to be calculated consists of space elements that are coupled with each other and with the boundaries by interface currents, while the properties of each space element - its responses to sources and in-currents - are obtained from collision probabilities'' [ 1]. The applied collision probabilities method is based on the flat flux approximation. ''We assume that particles are emitted isotropically and uniformly within each discrete volume. This is known as the flat flux approximation. The flat flux approximation places a restriction on the mesh: if the flux varies rapidly within a region, the mesh should be refined sufficiently to ensure that the flux is well approximated by a piecewise - constant

  9. Metabolic Profile of Pancreatic Acinar and Islet Tissue in Culture

    Science.gov (United States)

    Suszynski, Thomas M.; Mueller, Kathryn; Gruessner, Angelika C.; Papas, Klearchos K.

    2016-01-01

    The amount and condition of exocrine impurities may affect the quality of islet preparations especially during culture. In this study, the objective was to determine the oxygen demandand viability of islet and acinar tissue post-isolation and whether they change disproportionately while in culture. We compare the OCR normalized to DNA (OCR/DNA, a measure of fractional viability in units nmol/min/mg DNA), and percent change in OCR and DNA recoveries between adult porcine islet and acinar tissue from the same preparation (paired) over a 6-9 days of standard culture. Paired comparisons were done to quantify differences in OCR/DNA between islet and acinar tissue from the same preparation, at specified time points during culture; the mean (± standard error) OCR/DNA was 74.0 (±11.7) units higher for acinar (vs. islet) tissue on the day of isolation (n=16, p<0.0001), but 25.7 (±9.4) units lower after 1 day (n=8, p=0.03), 56.6 (±11.5) units lower after 2 days (n=12, p=0.0004), and 65.9 (±28.7) units lower after 8 days (n=4, p=0.2) in culture. DNA and OCR recoveries decreased at different rates for acinar versus islet tissue over 6-9 days in culture (n=6). DNA recovery decreased to 24±7% for acinar and 75±8% for islets (p=0.002). Similarly, OCR recovery decreased to 16±3% for acinar and remained virtually constant for islets (p=0.005). Differences in the metabolic profile of acinarand islet tissue should be considered when culturing impure islet preparations. OCR-based measurements may help optimize pre-IT culture protocols. PMID:25131082

  10. Hard dental tissue minimal-invasive preparation using contemporary polymer rotating instruments and laser

    OpenAIRE

    Beloica Miloš; Vulićević Zoran R.; Mandinić Zoran; Radović Ivana; Jovičić Olivera; Carević Momir; Tekić Jasmina

    2014-01-01

    Goal of contemporary dentistry is to decrease the patient’s discomfort during treatment. Dentists aim to achieve maximum with the newly developed dental materials as well as with new cavity preparation techniques in the shortest time span. Since the development of the first constructed borer (drilling machine) for caries removal, the preparation techniques have considerably changed. The progress of dental materials as well as the cavity preparation techniqu...

  11. Profiling of adrenocorticotropic hormone and arginine vasopressin in human pituitary gland and tumor thin tissue sections using droplet-based liquid-microjunction surface-sampling-HPLC-ESI-MS-MS.

    Science.gov (United States)

    Kertesz, Vilmos; Calligaris, David; Feldman, Daniel R; Changelian, Armen; Laws, Edward R; Santagata, Sandro; Agar, Nathalie Y R; Van Berkel, Gary J

    2015-08-01

    Described here are the results from the profiling of the proteins arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human pituitary gland and pituitary adenoma tissue sections, using a fully automated droplet-based liquid-microjunction surface-sampling-HPLC-ESI-MS-MS system for spatially resolved sampling, HPLC separation, and mass spectrometric detection. Excellent correlation was found between the protein distribution data obtained with this method and data obtained with matrix-assisted laser desorption/ionization (MALDI) chemical imaging analyses of serial sections of the same tissue. The protein distributions correlated with the visible anatomic pattern of the pituitary gland. AVP was most abundant in the posterior pituitary gland region (neurohypophysis), and ATCH was dominant in the anterior pituitary gland region (adenohypophysis). The relative amounts of AVP and ACTH sampled from a series of ACTH-secreting and non-secreting pituitary adenomas correlated with histopathological evaluation. ACTH was readily detected at significantly higher levels in regions of ACTH-secreting adenomas and in normal anterior adenohypophysis compared with non-secreting adenoma and neurohypophysis. AVP was mostly detected in normal neurohypophysis, as expected. This work reveals that a fully automated droplet-based liquid-microjunction surface-sampling system coupled to HPLC-ESI-MS-MS can be readily used for spatially resolved sampling, separation, detection, and semi-quantitation of physiologically-relevant peptide and protein hormones, including AVP and ACTH, directly from human tissue. In addition, the relative simplicity, rapidity, and specificity of this method support the potential of this basic technology, with further advancement, for assisting surgical decision-making. Graphical Abstract Mass spectrometry based profiling of hormones in human pituitary gland and tumor thin tissue sections.

  12. Optimal molecular profiling of tissue and tissue components: defining the best processing and microdissection methods for biomedical applications.

    Science.gov (United States)

    Rodriguez-Canales, Jaime; Hanson, Jeffrey C; Hipp, Jason D; Balis, Ulysses J; Tangrea, Michael A; Emmert-Buck, Michael R; Bova, G Steven

    2013-01-01

    Isolation of well-preserved pure cell populations is a prerequisite for sound studies of the molecular basis of any tissue-based biological phenomenon. This updated chapter reviews current methods for obtaining anatomically specific signals from molecules isolated from tissues, a basic requirement for productive linking of phenotype and genotype. The quality of samples isolated from tissue and used for molecular analysis is often glossed over or omitted from publications, making interpretation and replication of data difficult or impossible. Fortunately, recently developed techniques allow life scientists to better document and control the quality of samples used for a given assay, creating a foundation for improvement in this area. Tissue processing for molecular studies usually involves some or all of the following steps: tissue collection, gross dissection/identification, fixation, processing/embedding, storage/archiving, sectioning, staining, microdissection/annotation, and pure analyte labeling/identification and quantification. We provide a detailed comparison of some current tissue microdissection technologies and provide detailed example protocols for tissue component handling upstream and downstream from microdissection. We also discuss some of the physical and chemical issues related to optimal tissue processing and include methods specific to cytology specimens. We encourage each laboratory to use these as a starting point for optimization of their overall process of moving from collected tissue to high-quality, appropriately anatomically tagged scientific results. Improvement in this area will significantly increase life science quality and productivity. The chapter is divided into introduction, materials, protocols, and notes subheadings. Because many protocols are covered in each of these sections, information relating to a single protocol is not contiguous. To get the greatest benefit from this chapter, readers are advised to read through the entire

  13. A prototype for unsupervised analysis of tissue microarrays for cancer research and diagnostics.

    Science.gov (United States)

    Chen, Wenjin; Reiss, Michael; Foran, David J

    2004-06-01

    The tissue microarray (TMA) technique enables researchers to extract small cylinders of tissue from histological sections and arrange them in a matrix configuration on a recipient paraffin block such that hundreds can be analyzed simultaneously. TMA offers several advantages over traditional specimen preparation by maximizing limited tissue resources and providing a highly efficient means for visualizing molecular targets. By enabling researchers to reliably determine the protein expression profile for specific types of cancer, it may be possible to elucidate the mechanism by which healthy tissues are transformed into malignancies. Currently, the primary methods used to evaluate arrays involve the interactive review of TMA samples while they are viewed under a microscope, subjectively evaluated, and scored by a technician. This process is extremely slow, tedious, and prone to error. In order to facilitate large-scale, multi-institutional studies, a more automated and reliable means for analyzing TMAs is needed. We report here a web-based prototype which features automated imaging, registration, and distributed archiving of TMAs in multiuser network environments. The system utilizes a principal color decomposition approach to identify and characterize the predominant staining signatures of specimens in color space. This strategy was shown to be reliable for detecting and quantifying the immunohistochemical expression levels for TMAs.

  14. How-To-Do-It: Using Cauliflower to Demonstrate Plant Tissue Culture.

    Science.gov (United States)

    Haldeman, Janice H.; Ellis, Jane P.

    1988-01-01

    Presents techniques used for disinfestation of plant material, preparation of equipment and media, and laboratory procedures for tissue culture using cauliflower. Details methods for preparing solutions and plant propagation by cloning. (CW)

  15. Radiosterilization of Tissues Preserved for Clinical Purposes: Effect on Tissue Antigenicity

    International Nuclear Information System (INIS)

    Ostrowski, K.; Kossowska, B.; Moskalewski, S.; Komender, A.; Kurnatowski, W.

    1967-01-01

    The first part of the paper contains practical considerations on the radiosterilization of preserved human bone, human and calf cartilage, cow’s fascia and aponeurosis, based on material from the Tissue Bank which produces about 2500 transplants yearly. The method of preservation and packing of each type of tissue is mentioned briefly. The preserved tissues are irradiated in a cobalt bomb or in a nuclear reactor. The conditions of irradiation and the control of sterility are described. The advantages and disadvantages of radiosterilization are discussed on the basis of the authors’ own experience and clinical reports of surgeons using radiosterilized tissues in practice. In the second part of the paper, experimental studies on the influence of freezing, lyophilization and radiosterilization on tissue antigenicity are reported. The regional lymph node reacts to an antigenic stimulus by an increased production of large, pyroninophylic cells, so-called ''blast'' cells. The rabbits used as recipients received grafts of allogeneic cancellous bone, fresh or subjected to different experimental procedures. Smears from lymph node cell suspension were prepared and the percentage of blast cells was estimated. On the basis of the lymph node response, it appears that freezing and lyophilization, as well as radiosterilization, may abolish the antigenicity of cancellous bone. The practical implication of these results for methods of preservation of tissues for clinical purposes is discussed. (author)

  16. The effect of chronic administration of ketoconazol on spermatogenesis indices and testis tissue in mice

    Directory of Open Access Journals (Sweden)

    S.E Safavi

    2009-02-01

    Full Text Available Ketoconazole, a broad spectrum antifungal agent has been employed widely in the treatment of fungal diseases. In addition to being antifungal, studies have indicated that this drug has an inhibitory effect on steroid hormone production including glucocorticoids and sex hormones and also its administration causes reduction in the amount of blood testosterone level and histologic changes in testicular tissue of laboratory animals. The aim of this study is to determine the effect of long term ketoconazole administration on spermatogenesis indices in testicular tissue of mice. In this experimental study 50 male mice were used which were allocated to 5 groups each containing 10 animals. The mice received a 50 mg/kg dose of ketoconazole daily for a period of 15 days, 1, 2 and 3 months orally. One group was used as the control and the other 4 groups received Ketoconazole, testicular tissue samples were collected at the end of the aforementioned time period, and after preparation of tissue sections and staining with hematoxylin and coin the spermiogenesis indices including tubular differentiation index (TDI, spermatogenesis index (SI and repopulation index (RI were studied. The results indicated that SI and RI decreased significantly (p

  17. Slide-free histology via MUSE: UV surface excitation microscopy for imaging unsectioned tissue (Conference Presentation)

    Science.gov (United States)

    Levenson, Richard M.; Harmany, Zachary; Demos, Stavros G.; Fereidouni, Farzad

    2016-03-01

    Widely used methods for preparing and viewing tissue specimens at microscopic resolution have not changed for over a century. They provide high-quality images but can involve time-frames of hours or even weeks, depending on logistics. There is increasing interest in slide-free methods for rapid tissue analysis that can both decrease turn-around times and reduce costs. One new approach is MUSE (microscopy with UV surface excitation), which exploits the shallow penetration of UV light to excite fluorescent signals from only the most superficial tissue elements. The method is non-destructive, and eliminates requirement for conventional histology processing, formalin fixation, paraffin embedding, or thin sectioning. It requires no lasers, confocal, multiphoton or optical coherence tomography optics. MUSE generates diagnostic-quality histological images that can be rendered to resemble conventional hematoxylin- and eosin-stained samples, with enhanced topographical information, from fresh or fixed, but unsectioned tissue, rapidly, with high resolution, simply and inexpensively. We anticipate that there could be widespread adoption in research facilities, hospital-based and stand-alone clinical settings, in local or regional pathology labs, as well as in low-resource environments.

  18. Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2015-01-01

    Full Text Available Tissues in the body are hierarchically structured composite materials with tissue-specific chemical and topographical properties. Here we report the preparation of tissue scaffolds with macroscopic pores generated via the dissolution of a sacrificial supramolecular polymer-based crystal template (urea from a biodegradable polymer-based scaffold (polycaprolactone, PCL. Furthermore, we report a method of aligning the supramolecular polymer-based crystals within the PCL, and that the dissolution of the sacrificial urea yields scaffolds with macroscopic pores that are aligned over long, clinically-relevant distances (i.e., centimeter scale. The pores act as topographical cues to which rat Schwann cells respond by aligning with the long axis of the pores. Generation of an interpenetrating network of polypyrrole (PPy and poly(styrene sulfonate (PSS in the scaffolds yields electroactive tissue scaffolds that allow the electrical stimulation of Schwann cells cultured on the scaffolds which increases the production of nerve growth factor (NGF.

  19. Mass spectrometric characterization of elements and molecules in cell cultures and tissues

    International Nuclear Information System (INIS)

    Arlinghaus, H.F.; Kriegeskotte, C.; Fartmann, M.; Wittig, A.; Sauerwein, W.; Lipinsky, D.

    2006-01-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and laser post-ionization secondary neutral mass spectrometry (laser-SNMS) have been used to image and quantify targeted compounds, intrinsic elements and molecules with subcellular resolution in single cells of both cell cultures and tissues. Special preparation procedures for analyzing cell cultures and tissue materials were developed. Cancer cells type MeWo, incubated with boronated compounds, were sandwiched between two substrates, cryofixed, freeze-fractured and freeze-dried. Also, after injection with boronated compounds, different types of mouse tissues were extracted, prepared on a special specimen carrier and plunged with high velocity into LN 2 -cooled propane for cryofixation. After trimming, these tissue blocks were freeze-dried. The measurements of the K/Na ratio demonstrated that for both cell cultures and tissue materials the special preparation techniques used were appropriate for preserving the chemical and structural integrity of the living cell. The boron images show inter- and intracellular boron signals with different intensities. Molecular images show distinct features partly correlated with the cell structure. A comparison between laser-SNMS and ToF-SIMS showed that especially laser-SNMS is particularly well-suited for identifying specific cell structures and imaging ultratrace element concentrations in tissues

  20. Evaluation of specimen preparation techniques for micro-PIXE localisation of elements in hyperaccumulating plants

    International Nuclear Information System (INIS)

    Kachenko, Anthony G.; Siegele, Rainer; Bhatia, Naveen P.; Singh, Balwant; Ionescu, Mihail

    2008-01-01

    Hybanthus floribundus subsp. floribundus, a rare Australian Ni-hyperaccumulating shrub and Pityrogramma calomelanos var. austroamericana, an Australian naturalized As-hyperaccumulating fern are promising species for use in phytoremediation of contaminated sites. Micro-proton-induced X-ray emission (μ-PIXE) spectroscopy was used to map the elemental distribution of the accumulated metal(loid)s, Ca and K in leaf or pinnule tissues of the two plant species. Samples were prepared by two contrasting specimen preparation techniques: freeze-substitution in tetrahydrofuran (THF) and freeze-drying. The specimens were analysed to compare the suitability of each technique in preserving (i) the spatial elemental distribution and (ii) the tissue structure of the specimens. Further, the μ-PIXE results were compared with concentration of elements in the bulk tissue obtained by ICP-AES analysis. In H. floribundus subsp. floribundus, μ-PIXE analysis revealed Ni, Ca and K concentrations in freeze-dried leaf tissues were at par with bulk tissue concentrations. Elemental distribution maps illustrated that Ni was preferentially localised in the adaxial epidermal tissues (1% DW) and least concentration was found in spongy mesophyll tissues (0.53% DW). Conversely, elemental distribution maps of THF freeze-substituted tissues indicated significantly lower Ni, Ca and K concentrations than freeze-dried specimens and bulk tissue concentrations. Moreover, Ni concentrations were uniform across the whole specimen and no localisation was observed. In P. calomelanos var. austroamericana freeze-dried pinnule tissues, μ-PIXE revealed statistically similar As, Ca and K concentrations as compared to bulk tissue concentrations. Elemental distribution maps showed that As localisation was relatively uniform across the whole specimen. Once again, THF freeze-substituted tissues revealed a significant loss of As compared to freeze-dried specimens and the concentrations obtained by bulk tissue analysis

  1. Analysis of human tissue management models for medical research: preparation for implementation of the 2012 revision of the Bioethics and Safety Act of Korea.

    Science.gov (United States)

    Ryu, Young-Joon; Kim, Hankyeom; Jang, Sejin; Koo, Young-Mo

    2013-06-01

    Efficient management of human tissue samples is a critical issue; the supply of samples is unable to satisfy the current demands for research. Lack of informed consent is also an ethical problem. One of the goals of the 2012 revision of Korea's Bioethics and Safety Act was to implement regulations that govern the management of human tissue samples. To remain competitive, medical institutions must prepare for these future changes. In this report, we review two tissue management models that are currently in use; model 1 is the most common system utilized by hospitals in Korea and model 2 is implemented by some of the larger institutions. We also propose three alternative models that offer advantages over the systems currently in use. Model 3 is a multi-bank model that protects the independence of physicians and pathologists. Model 4 utilizes a comprehensive single bioresource bank; although in this case, the pathologists gain control of the samples, which may make it difficult to implement. Model 5, which employs a bioresource utilization steering committee (BUSC), is viable to implement and still maintains the advantages of Model 4. To comply with the upcoming law, we suggest that physicians and pathologists in an institution should collaborate to choose one of the improved models of tissue management system that best fits for their situation.

  2. Application of infrared spectroscopy for diagnosis of kidney tumor tissue

    OpenAIRE

    Bandzevičiūtė, Rimantė

    2016-01-01

    Application of Infrared Spectroscopy for Diagnosis of Kidney Tumor Tissue It is possible to apply the technique of an attenuated total reflection of infrared radiation (ATR IR) for the characterisation of the removed tissues during the surgery. Application of this method for interstitium of the removed tissue does not require any specific sample preparation. For this reason ATR IR technique applied for the interstitium allows to get information about tissues immediately after surgical operati...

  3. 32 CFR 989.23 - Contractor prepared documents.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Contractor prepared documents. 989.23 Section... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.23 Contractor prepared documents. All Air Force... should reflect on the cover sheet they are an Air Force document. Contractor preparation information...

  4. Fine structures and ion images on fresh frozen dried ultrathin sections by transmission electron and scanning ion microscopy

    International Nuclear Information System (INIS)

    Takaya, K.; Okabe, M.; Sawataishi, M.; Takashima, H.; Yoshida, T.

    2003-01-01

    Ion microscopy (IM) of air-dried or freeze-dried cryostat and semi-thin cryosections has provided ion images of elements and organic substances in wide areas of the tissue. For reproducible ion images by a shorter time of exposure to the primary ion beam, fresh frozen dried ultrathin sections were prepared by freezing the tissue in propane chilled with liquid nitrogen, cryocut at 60 nm, mounted on grids and silicon wafer pieces, and freeze-dried. Rat Cowper gland and sciatic nerve, bone marrow of the rat administered of lithium carbonate, tree frog and African toad spleen and buffy coat of atopic dermatitis patients were examined. Fine structures and ion images of the corresponding areas in the same or neighboring sections were observed by transmission electron microscopy (TEM) followed by sector type and time-of-flight type IM. Cells in the buffy coat contained larger amounts of potassium and magnesium while plasma had larger amounts of sodium and calcium. However, in the tissues, lithium, sodium, magnesium, calcium and potassium were distributed in the cell and calcium showed a granular appearance. A granular cell of the tree frog spleen contained sodium and potassium over the cell and magnesium and calcium were confined to granules

  5. Scalable robotic biofabrication of tissue spheroids

    International Nuclear Information System (INIS)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V; Brown, J; Beaver, W; Da Silva, J V L

    2011-01-01

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  6. Scalable robotic biofabrication of tissue spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V [Advanced Tissue Biofabrication Center, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC (United States); Brown, J [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Beaver, W [York Technical College, Rock Hill, SC (United States); Da Silva, J V L, E-mail: mironovv@musc.edu [Renato Archer Information Technology Center-CTI, Campinas (Brazil)

    2011-06-15

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  7. High resolution SEM imaging of gold nanoparticles in cells and tissues.

    Science.gov (United States)

    Goldstein, A; Soroka, Y; Frušić-Zlotkin, M; Popov, I; Kohen, R

    2014-12-01

    The growing demand of gold nanoparticles in medical applications increases the need for simple and efficient characterization methods of the interaction between the nanoparticles and biological systems. Due to its nanometre resolution, modern scanning electron microscopy (SEM) offers straightforward visualization of metallic nanoparticles down to a few nanometre size, almost without any special preparation step. However, visualization of biological materials in SEM requires complicated preparation procedure, which is typically finished by metal coating needed to decrease charging artefacts and quick radiation damage of biomaterials in the course of SEM imaging. The finest conductive metal coating available is usually composed of a few nanometre size clusters, which are almost identical to the metal nanoparticles employed in medical applications. Therefore, SEM monitoring of metal nanoparticles within cells and tissues is incompatible with the conventional preparation methods. In this work, we show that charging artefacts related to non-conductive biological specimen can be successfully eliminated by placing the uncoated biological sample on a conductive substrate. By growing the cells on glass pre-coated with a chromium layer, we were able to observe the uptake of 10 nm gold nanoparticles inside uncoated and unstained macrophages and keratinocytes cells. Imaging in back scattered electrons allowed observation of gold nanoparticles located inside the cells, while imaging in secondary electron gave information on gold nanoparticles located on the surface of the cells. By mounting a skin cross-section on an improved conductive holder, consisting of a silicon substrate coated with copper, we were able to observe penetration of gold nanoparticles of only 5 nm size through the skin barrier in an uncoated skin tissue. The described method offers a convenient modification in preparation procedure for biological samples to be analyzed in SEM. The method provides high

  8. Making mock-FNA smears from fresh surgical pathology specimens to improve smear preparation technique and to create cytohistological correlation series.

    Directory of Open Access Journals (Sweden)

    Tibor Mezei

    Full Text Available Fine needle aspiration (FNA cytology is a well-established diagnostic method based on the microscopic interpretation of often scant cytological material; therefore, experience, good technique and smear quality are equally important in obtaining satisfactory results.We studied the use of fresh surgical pathology specimens for making so-called mock-FNA smears with the potential of cytohistological correlation. Additionally, we studied how this process aids the improvement of preparation technique and smear quality.Cytological aspirates from 32 fresh biopsy specimens from various sites: lung (20, lymph nodes (6, and breast (6 were obtained, all with a clinical diagnosis of tumor. Aspiration was performed from grossly palpable tumors. 25 G needle and Cameco-type syringe holder was used with minimal or no suction.Unfixed surgical specimens provided sufficient cytological material that resulted in good quality smears. After standard processing of specimens into microscopic sections from paraffin embedded tissues, cytohistological case-series were created. No significant alteration was reported in tissue architecture on hematoxylin-eosin stained sections after the aspiration procedure. A gradual, but steady improvement was observed in smear quality just after a few preparations.Our study proved that surgical specimens may be used as a source of cytological material to create cytohistological correlation studies and also to improve FNA cytology skills. The use of very fine gauge needle (25 G, 0,6 mm diameter during the sampling process does not alter tissue architecture therefore the final histopathological diagnosis is not compromised. We conclude that by using fresh surgical specimens useful cytohistological collections can be created both as a teaching resource and as improving experience.

  9. Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation μCT

    International Nuclear Information System (INIS)

    Raum, K; Leguerney, I; Chandelier, F; Talmant, M; Saied, A; Peyrin, F; Laugier, P

    2006-01-01

    200 MHz scanning acoustic microscopy (SAM) and synchrotron radiation μCT (SR-μCT) were used to assess microstructural parameters and tissue properties in site-matched regions of interest in cortical bone. Anterior and postero-lateral regions of ten cross sections from human cortical radius were explored. Structural parameters, including diameter and number of Haversian canals per cortical area (Ca.Dm, N.Ca/Ar) and porosity Po were assessed with both methods using a custom-developed image fusion and analysis software. Acoustic impedance Z and degree of mineralization of bone DMB were extracted separately for osteonal and interstitial tissues from the fused images. Structural parameter estimations obtained from radiographic and acoustic images were almost identical. DMB and impedance values were in the range between 0.77 and 1.28 g cm -3 and 5.13 and 12.1 Mrayl, respectively. Interindividual and regional variations were observed, whereas the strongest difference was found between osteonal and interstitial tissues (Z: 7.2 ± 1.1 Mrayl versus 9.3 ± 1.0 Mrayl, DMB: 1.06 ± 0.07 g cm -3 versus 1.16 ± 0.05 g cm -3 , paired t-test, p 2 = 0.174, p -4 ) and for the pooled (osteonal and interstitial) data. The regression of the pooled osteonal and interstitial tissue data follows a second-order polynomial (R 2 = 0.39, p -4 ). Both modalities fulfil the requirement for a simultaneous evaluation of cortical bone microstructure and material properties at the tissue level. While SAM inspection is limited to the evaluation of carefully prepared sample surfaces, SR-μCT provides volumetric information on the tissue without substantial preparation requirements. However, SAM provides a quantitative estimate of elastic properties at the tissue level that cannot be captured by SR-μCT

  10. 5α-reductase activity in rat adipose tissue

    International Nuclear Information System (INIS)

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-01-01

    We measured the 5 α-reductase activity in isolated cell preparations of rat adipose tissue using the formation of [ 3 H] dihydrotestosterone from [ 3 H] testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5α-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10 -8 M), when added to the medium, caused a 90% decrease in 5α-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5α-reductase activity in each tissue studied

  11. ToF-SIMS Parallel Imaging MS/MS of Lipid Species in Thin Tissue Sections.

    Science.gov (United States)

    Bruinen, Anne Lisa; Fisher, Gregory L; Heeren, Ron M A

    2017-01-01

    Unambiguous identification of detected species is essential in complex biomedical samples. To date, there are not many mass spectrometry imaging techniques that can provide both high spatial resolution and identification capabilities. A new and patented imaging tandem mass spectrometer, exploiting the unique characteristics of the nanoTOF II (Physical Electronics, USA) TOF-SIMS TRIFT instrument, was developed to address this.Tandem mass spectrometry is based on the selection of precursor ions from the full secondary ion spectrum (MS 1 ), followed by energetic activation and fragmentation, and collection of the fragment ions to obtain a tandem MS spectrum (MS 2 ). The PHI NanoTOF II mass spectrometer is equipped with a high-energy collision induced dissociation (CID) fragmentation cell as well as a second time-of-flight analyzer developed for simultaneous ToF-SIMS and tandem MS imaging experiments.We describe here the results of a ToF-SIMS imaging experiment on a thin tissue section of an infected zebrafish as a model organism for tuberculosis. The focus is on the obtained ion distribution plot of a fatty acid as well as its identification by tandem mass spectrometry.

  12. 7 CFR 905.8 - Prepare for market.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Prepare for market. 905.8 Section 905.8 Agriculture... TANGELOS GROWN IN FLORIDA Order Regulating Handling Definitions § 905.8 Prepare for market. Prepare for market means to wash, grade, size, or place fruit (whether or not wrapped) into any container whatsoever...

  13. Intrinsic regulation of blood flow in adipose tissue

    DEFF Research Database (Denmark)

    Henriksen, O; Nielsen, Steen Levin; Paaske, W

    1976-01-01

    Previous studies on intact human subcutaneous tissue have shown, that blood flow remains constant during minor changes in perfusion pressure. This so-called autoregulatory response has not been demonstrable in isolated preparations of adipose tissue. In the present study on isolated, denervated...... subcutaneous tissue in female rabbits only 2 of 12 expts. revealed an autoregulatory response during reduction in arterial perfusion pressure. Effluent blood flow from the tissue in the control state was 15.5 ml/100 g-min (S.D. 6.4, n = 12) corresponding to slight vasodilatation of the exposed tissue...... vasoconstriction with pronounced flow reduction. These two reactions may be important for local regulation of blood flow in subcutaneous tissue during orthostatic changes in arterial and venous pressure. It is concluded that the response in adipose tissue to changes in arterial pressure (autoregulation), venous...

  14. A Method for Preparing Spaceflight RNAlater-Fixed Arabidopsis thaliana (Brassicaceae Tissue for Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Eric R. Schultz

    2013-07-01

    Full Text Available Premise of the study: In spaceflight experiments, tissues for morphologic study are fixed in 3% glutaraldehyde, while tissues for molecular study are fixed in RNAlater; thus, an experiment containing both study components requires multiple fixation strategies. The possibility of using RNAlater-fixed materials for standard SEM-based morphometric investigation was explored to expand the library of tissues available for analysis and maximize usage of samples returned from spaceflight, but these technologies have wide application to any situation where recovery of biological resources is limited. Methods and Results: RNAlater-fixed samples were desalinated in distilled water, dehydrated through graded methanol, plunged into liquid ethane, and transferred to cryovials for freeze-substitution. Sample tissues were critical point dried, mounted, sputter-coated, and imaged. Conclusions: The protocol resulted in acceptable SEM images from RNAlater-fixed Arabidopsis thaliana tissue. The majority of the tissues remained intact, including general morphology and finer details such as root hairs and trichomes.

  15. A model of a code of ethics for tissue banks operating in developing countries.

    Science.gov (United States)

    Morales Pedraza, Jorge

    2012-12-01

    Ethical practice in the field of tissue banking requires the setting of principles, the identification of possible deviations and the establishment of mechanisms that will detect and hinder abuses that may occur during the procurement, processing and distribution of tissues for transplantation. This model of a Code of Ethics has been prepared with the purpose of being used for the elaboration of a Code of Ethics for tissue banks operating in the Latin American and the Caribbean, Asia and the Pacific and the African regions in order to guide the day-to-day operation of these banks. The purpose of this model of Code of Ethics is to assist interested tissue banks in the preparation of their own Code of Ethics towards ensuring that the tissue bank staff support with their actions the mission and values associated with tissue banking.

  16. 21 CFR 864.4400 - Enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme preparations. 864.4400 Section 864.4400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4400 Enzyme...

  17. Irbesartan increased PPARγ activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    International Nuclear Information System (INIS)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo; Horiuchi, Masatsugu

    2011-01-01

    Research highlights: → Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. → Irbesartan decreased white adipose tissue weight without affecting body weight. → DNA-binding for PPARγ was increased in white adipose tissue in vivo by irbesartan. → Irbesartan increased adipocyte number in white adipose tissue. → Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPARγ agonistic action of an AT 1 receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPARγ in white adipose tissue and the DNA-binding activity of PPARγ in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPARγ and improved adipose tissue dysfunction including insulin resistance.

  18. Comparison of two methods of preparation of tissue to study the internal anatomy of the delphacid Togosodes orizicolus with microscopy of electronic light

    International Nuclear Information System (INIS)

    Macaya-Lizano, A.V.; Pereira, R.; Espinoza, A.M.

    1997-01-01

    Two methods of embedding, sectioning and staining were developed to study the internal anatomy of delphacid plant hopper Tagosodes orizicolus, one of the most important plagues of rice in Latin America and the only vector of the white leaf tenuivirus (RHBV), using both light and electron microscopy. The paraffines-hematoxyline-eosin Y method allows color identification of tissues, for example purple for fat tissue, pink for muscles, yellow-brown for exocutile, while the resin-toluidine-blue method preserves better the ultrastructure but do not permit color identification. The information obtained by these procedures is complementary and the material can also be used for in situ studies by immuno microscopy, to assess the changes in cell ultrastructure and the localization and replication of the RHBV during its infection cycle in the insect vector. (author) [es

  19. Descemet Membrane Endothelial Keratoplasty Learning Curve for Graft Preparation in an Eye Bank Using 645 Donor Corneas.

    Science.gov (United States)

    Parekh, Mohit; Ruzza, Alessandro; Romano, Vito; Favaro, Elisa; Baruzzo, Mattia; Salvalaio, Gianni; Grassetto, Andrea; Ferrari, Stefano; Ponzin, Diego

    2018-03-01

    To investigate the learning curve of Descemet membrane endothelial keratoplasty (DMEK) graft preparation in an eye bank. Four operators prepared 645 DMEK grafts using the stripping technique between 2014 and 2017 at the Veneto Eye Bank Foundation, Italy. Endothelial cell loss (ECL) and tissue wastage were recorded retrospectively after DMEK preparation and correlated with the number of tissues prepared each year by each operator. On average, our operators performed 1 donor preparation a week over the course of this study. Only donors older than 60 years were used in this study, and approximately 10% of donors had diabetes. The Wilcoxon test for paired data and 1-way ANOVA were used for checking statistical significance with the Tukey test as post hoc analysis. P 0.05). There is a learning curve for DMEK graft preparation. ECL and tissue wastage can be reduced with practice and skills. However, each operator may be limited to his or her own learning capability.

  20. [Tissue-specific nucleoprotein complexes].

    Science.gov (United States)

    Riadnova, I Iu; Shataeva, L K; Khavinson, V Kh

    2000-01-01

    A method of isolation of native nucleorprotein complexes from cattle cerebral cortex, thymus, and liver was developed. Compositions of these complexes were studied by means of gel-chromatography and ion-exchange chromatography. These preparations were shown to consist of several fractions of proteins and their complexes differ by molecular mass and electro-chemical properties. Native nucleoprotein complexes revealed high tissue specific activity, which was not species-specific.

  1. Vitrification of in vitro matured oocytes collected from surplus ovarian medulla tissue resulting from fertility preservation of ovarian cortex tissue

    DEFF Research Database (Denmark)

    Yin, Huiqun; Jiang, Hong; Kristensen, Stine Gry

    2016-01-01

    PURPOSE: The aim of the study was to investigate the maturation rate of immature oocytes collected from ovarian medulla tissue normally discarded during preparation of ovarian cortical tissue for fertility preservation. Further we evaluated survival of derived MII oocytes following vitrification...... and warming. METHODS: 36 patients aged from 8 to 41 years who had one ovary excised for fertility preservation were included. Oocytes were collected from the medulla tissue and matured in vitro 44-48 h followed by vitrification. Number of oocytes collected, the rates of maturation and post-warming survival...... of cortical tissue may pose a risk of relapse, but the IVM approach is currently too inefficient to be the only method used for fertility preservation....

  2. Spatial accuracy of 3D reconstructed radioluminographs of serial tissue sections and resultant absorbed dose estimates

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, I.A.; Flynn, A.A.; Pedley, R.B.; Green, A.J.; El-Emir, E.; Dearling, J.L.J.; Boxer, G.M.; Boden, R.; Begent, R.H.J. [Cancer Research UK Targeting and Imaging Group, Department of Oncology, Royal Free and University College Medical School, Royal Free Campus, London (United Kingdom)

    2002-10-21

    Many agents using tumour-associated characteristics are deposited heterogeneously within tumour tissue. Consequently, tumour heterogeneity should be addressed when obtaining information on tumour biology or relating absorbed radiation dose to biological effect. We present a technique that enables radioluminographs of serial tumour sections to be reconstructed using automated computerized techniques, resulting in a three-dimensional map of the dose-rate distribution of a radiolabelled antibody. The purpose of this study is to assess the reconstruction accuracy. Furthermore, we estimate the potential error resulting from registration misalignment, for a range of beta-emitting radionuclides. We compare the actual dose-rate distribution with that obtained from the same activity distribution but with manually defined translational and rotational shifts. As expected, the error produced with the short-range {sup 14}C is much larger than that for the longer range {sup 90}Y; similarly values for the medium range {sup 131}I are between the two. Thus, the impact of registration inaccuracies is greater for short-range sources. (author)

  3. Dental histology of Coelophysis bauri and the evolution of tooth attachment tissues in early dinosaurs.

    Science.gov (United States)

    Fong, Raymond K M; LeBlanc, Aaron R H; Berman, David S; Reisz, Robert R

    2016-07-01

    Studies of dinosaur teeth have focused primarily on external crown morphology and thus, use shed or in situ tooth crowns, and are limited to the enamel and dentine dental tissues. As a result, the full suites of periodontal tissues that attach teeth to the jaws remain poorly documented, particularly in early dinosaurs. These tissues are an integral part of the tooth and thus essential to a more complete understanding of dental anatomy, development, and evolution in dinosaurs. To identify the tooth attachment tissues in early dinosaurs, histological thin sections were prepared from the maxilla and dentary of a partial skull of the early theropod Coelophysis bauri from the Upper Triassic (Rhaetian- 209-201 Ma) Whitaker Quarry, New Mexico, USA. As one of the phylogenetically and geologically oldest dinosaurs, it is an ideal candidate for examining dental tissues near the base of the dinosaurian clade. The teeth of C. bauri exhibited a fibrous tooth attachment in which the teeth possessed five tissues: enamel, dentine, cementum, periodontal ligament (PDL), and alveolar bone. Our findings, coupled with those of more recent studies of ornithischian teeth, indicate that a tripartite periodontium, similar to that of crocodilians and mammals, is the plesiomorphic condition for dinosaurs. The occurrence of a tripartite periodontium in dinosaurs adds to the growing consensus that the presence of these tissues is the plesiomorphic condition for the major amniote clades. Furthermore, this study establishes the relative timing of tissue development and growth directions of periodontal tissues and provides the first comparative framework for future studies of dinosaur periodontal development, tooth replacement, and histology. J. Morphol. 277:916-924, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Fluorescence excitation analysis by two-photon confocal laser scanning microscopy: a new method to identify fluorescent nanoparticles on histological tissue sections

    Directory of Open Access Journals (Sweden)

    Kahn E

    2012-10-01

    Full Text Available Edmond Kahn,1 Nicolas Tissot,3 Perrine Frere,3 Aurélien Dauphin,3 Mohamed Boumhras,2,4 Claude-Marie Bachelet,3 Frédérique Frouin,1 Gérard Lizard21Institut National de la Santé et de la Recherche Médicale (INSERM U678/UMR-S UPMC, CHU Pitié-Salpêtrière, Paris, France; 2Equipe Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique EA7270, Faculté des Sciences Gabriel, Université de Bourgogne-INSERM Dijon, France; 3Plateforme d'Imagerie cellulaire, UPMC, Paris, France; 4Laboratory of Biochemistry and Neuroscience, Applied Toxicology Group, Faculty of Science and Technology, Settat, MoroccoAbstract: In the present study, we make use of the ability of two-photon confocal laser scanning microscopes (CLSMs equipped with tunable lasers to produce spectral excitation image sequences. Furthermore, unmixing, which is usually performed on emission image sequences, is performed on these excitation image sequences. We use factor analysis of medical image sequences (FAMIS, which produces factor images, to unmix spectral image sequences of stained structures in tissue sections to provide images of characterized stained cellular structures. This new approach is applied to histological tissue sections of mouse aorta containing labeled iron nanoparticles stained with Texas Red and counterstained with SYTO13, to obtain visual information about the accumulation of these nanoparticles in the arterial wall. The possible presence of Texas Red is determined using a two-photon CLSM associated with FAMIS via the excitation spectra. Texas Red and SYTO13 are thus differentiated, and corresponding factor images specify their possible presence and cellular localization. In conclusion, the designed protocol shows that sequences of images obtained by excitation in a two-photon CLSM enables characterization of Texas Red-stained nanoparticles and other markers. This methodology offers an alternative and complementary solution to the conventional use of emission

  5. Raman Spectroscopy of Ocular Tissue

    Science.gov (United States)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  6. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Chengdong Xiong

    2009-07-01

    Full Text Available Abstract In this study, we report the physico-chemical and biological properties of a novel biodegradable composite scaffold made of nano-hydroxyapatite and natural derived polymers of chitosan and carboxymethyl cellulose, namely, n-HA/CS/CMC, which was prepared by freeze-drying method. The physico-chemical properties of n-HA/CS/CMC scaffold were tested by infrared absorption spectra (IR, transmission electron microscope(TEM, scanning electron microscope(SEM, universal material testing machine and phosphate buffer solution (PBS soaking experiment. Besides, the biological properties were evaluated by MG63 cells and Mesenchymal stem cells (MSCs culture experiment in vitro and a short period implantation study in vivo. The results show that the composite scaffold is mainly formed through the ionic crossing-linking of the two polyions between CS and CMC, and n-HA is incorporated into the polyelectrolyte matrix of CS-CMC without agglomeration, which endows the scaffold with good physico-chemical properties such as highly interconnected porous structure, high compressive strength and good structural stability and degradation. More important, the results of cells attached, proliferated on the scaffold indicate that the scaffold is non-toxic and has good cell biocompatibility, and the results of implantation experiment in vivo further confirm that the scaffold has good tissue biocompatibility. All the above results suggest that the novel degradable n-HA/CS/CMC composite scaffold has a great potential to be used as bone tissue engineering material.

  7. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering

    Science.gov (United States)

    Liuyun, Jiang; Yubao, Li; Chengdong, Xiong

    2009-01-01

    In this study, we report the physico-chemical and biological properties of a novel biodegradable composite scaffold made of nano-hydroxyapatite and natural derived polymers of chitosan and carboxymethyl cellulose, namely, n-HA/CS/CMC, which was prepared by freeze-drying method. The physico-chemical properties of n-HA/CS/CMC scaffold were tested by infrared absorption spectra (IR), transmission electron microscope(TEM), scanning electron microscope(SEM), universal material testing machine and phosphate buffer solution (PBS) soaking experiment. Besides, the biological properties were evaluated by MG63 cells and Mesenchymal stem cells (MSCs) culture experiment in vitro and a short period implantation study in vivo. The results show that the composite scaffold is mainly formed through the ionic crossing-linking of the two polyions between CS and CMC, and n-HA is incorporated into the polyelectrolyte matrix of CS-CMC without agglomeration, which endows the scaffold with good physico-chemical properties such as highly interconnected porous structure, high compressive strength and good structural stability and degradation. More important, the results of cells attached, proliferated on the scaffold indicate that the scaffold is non-toxic and has good cell biocompatibility, and the results of implantation experiment in vivo further confirm that the scaffold has good tissue biocompatibility. All the above results suggest that the novel degradable n-HA/CS/CMC composite scaffold has a great potential to be used as bone tissue engineering material. PMID:19594953

  8. 7 CFR 160.89 - Medicinal preparations.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Medicinal preparations. 160.89 Section 160.89... STANDARDS FOR NAVAL STORES Sales and Shipments § 160.89 Medicinal preparations. A compound or mixture containing spirits of turpentine or rosin, or both, with other drugs, when sold for medicinal purposes, is...

  9. Preparing Engineers for Social Responsibility

    Science.gov (United States)

    Zandvoort, H.

    2008-01-01

    In this paper I introduce the contributions to a special section of the journal: one devoted to the question of how engineering curricula can or should contribute to the preparation of graduates for socially responsible decision making and conduct. The special section is motivated by the circumstance that, although there is broad agreement that…

  10. PATMA: parser of archival tissue microarray

    Directory of Open Access Journals (Sweden)

    Lukasz Roszkowiak

    2016-12-01

    Full Text Available Tissue microarrays are commonly used in modern pathology for cancer tissue evaluation, as it is a very potent technique. Tissue microarray slides are often scanned to perform computer-aided histopathological analysis of the tissue cores. For processing the image, splitting the whole virtual slide into images of individual cores is required. The only way to distinguish cores corresponding to specimens in the tissue microarray is through their arrangement. Unfortunately, distinguishing the correct order of cores is not a trivial task as they are not labelled directly on the slide. The main aim of this study was to create a procedure capable of automatically finding and extracting cores from archival images of the tissue microarrays. This software supports the work of scientists who want to perform further image processing on single cores. The proposed method is an efficient and fast procedure, working in fully automatic or semi-automatic mode. A total of 89% of punches were correctly extracted with automatic selection. With an addition of manual correction, it is possible to fully prepare the whole slide image for extraction in 2 min per tissue microarray. The proposed technique requires minimum skill and time to parse big array of cores from tissue microarray whole slide image into individual core images.

  11. Introduction to tissue engineering applications and challenges

    CERN Document Server

    Birla, Ravi

    2014-01-01

    Covering a progressive medical field, Tissue Engineering describes the innovative process of regenerating human cells to restore or establish normal function in defective organs. As pioneering individuals look ahead to the possibility of generating entire organ systems, students may turn to this textbook for a comprehensive understanding and preparation for the future of regenerative medicine. This book explains chemical stimulations, the bioengineering of specific organs, and treatment plans for chronic diseases. It is a must-read for tissue engineering students and practitioners.

  12. Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold

    Science.gov (United States)

    Kumar, Sachin; Chatterjee, Kaushik

    2015-01-01

    The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium

  13. Periapical tissue response after use of intermediate restorative material, gutta-percha, reinforced zinc oxide cement, and mineral trioxide aggregate as retrograde root-end filling materials: a histologic study in dogs.

    Science.gov (United States)

    Wälivaara, Dan-Åke; Abrahamsson, Peter; Isaksson, Sten; Salata, Luiz Antonio; Sennerby, Lars; Dahlin, Christer

    2012-09-01

    To investigate the periapical tissue response of 4 different retrograde root-filling materials, ie, intermediate restorative material, thermoplasticized gutta-percha, reinforced zinc oxide cement (Super-EBA), and mineral trioxide aggregate (MTA), in conjunction with an ultrasonic root-end preparation technique in an animal model. Vital roots of the third and fourth right mandibular premolars in 6 healthy mongrel dogs were apicectomized and sealed with 1 of the materials using a standardized surgical procedure. After 120 days, the animals were sacrificed and the specimens were analyzed radiologically, histologically, and scanning electron microscopically. The Fisher exact test was performed on the 2 outcome values. Twenty-three sections were analyzed histologically. Evaluation showed better re-establishment of the periapical tissues and generally lower inflammatory infiltration in the sections from teeth treated with the intermediate restorative material and the MTA. New root cement on the resected dentin surfaces was seen on all sections regardless of the used material. New hard tissue formation, directly on the surface of the material, was seen only in the MTA sections. There was no statistical difference in outcome among the tested materials. The results from this dog model favor the intermediate restorative material and MTA as retrograde fillings when evaluating the bone defect regeneration. MTA has the most favorable periapical tissue response when comparing the biocompatibility of the materials tested. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  14. AUS module MIRANDA - a data preparation code based on multiregion resonance theory

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1977-07-01

    MIRANDA is a data preparation module of the AUS reactor neutronics scheme and is used to prepare multigroup cross-section data which are pertinent to a particular reactor system from a general purpose multigroup library of cross sections. The cross-section library has been prepared from ENDF/B and includes temperature dependent data and resonance cross sections represented by subgroup parameters. The MIRANDA module includes a multiregion resonance calculation in slab, cylinder or cluster geometry, a homogeneous Bsub(L) flux solution, and a group condensation facility. Interaction with other AUS modules, particularly for burnup calculations, is provided. (Author)

  15. 21 CFR 113.81 - Product preparation.

    Science.gov (United States)

    2010-04-01

    ...) Blanching by heat, when required in the preparation of food for canning, should be effected by heating the... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Product preparation. 113.81 Section 113.81 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  16. 12 CFR 917.8 - Budget preparation.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Budget preparation. 917.8 Section 917.8 Banks... POWERS AND RESPONSIBILITIES OF BANK BOARDS OF DIRECTORS AND SENIOR MANAGEMENT § 917.8 Budget preparation. (a) Adoption of budgets. Each Bank's board of directors shall be responsible for the adoption of an...

  17. Microteaching as a self-learning tool. Students' perceptions in the preparation and exposition of a microlesson in a tissue engineering course

    Directory of Open Access Journals (Sweden)

    Antonio Campos-Sánchez

    2013-09-01

    Full Text Available Microteaching is a didactic tool of recent application to undergraduate and postgraduate students as a way to promote self-learning. In this work we compared the perceptions of the students who provide instruction in tissue engineering using microteaching and the perceptions of the same students when they receive such instructions. Two similar questionnaires with items related to the preparation and exposition of a microlesson were used to investigate the perception of 56 students before and after the microteaching session. In our results, students significantly prefer to use specific objectives, textbooks and Internet information when they are preparing a microlesson as compared to the situation when they receive it. On the other hand, the use of a pre-programmed index during the exposition and the reduction of the use of PowerPoint software are significantly more preferred by the students after receiving the microlesson. No statistical differences were found for the rest of the options analyzed. These results show that the self-assessment generated in the microteaching session, which is linked to the feedback related to the self-learning process, makes microteaching a technique not only useful for self-learning but also an important tool to promote self-regulation across the curriculum.

  18. Feasibility of using tissue microarray cores of paraffin-embedded breast cancer tissue for measurement of gene expression: a proof-of-concept study.

    Science.gov (United States)

    Drury, Suzanne; Salter, Janine; Baehner, Frederick L; Shak, Steven; Dowsett, Mitch

    2010-06-01

    To determine whether 0.6 mm cores of formalin-fixed paraffin-embedded (FFPE) tissue, as commonly used to construct immunohistochemical tissue microarrays, may be a valid alternative to tissue sections as source material for quantitative real-time PCR-based transcriptional profiling of breast cancer. Four matched 0.6 mm cores of invasive breast tumour and two 10 microm whole sections were taken from eight FFPE blocks. RNA was extracted and reverse transcribed, and TaqMan assays were performed on the 21 genes of the Oncotype DX Breast Cancer assay. Expression of the 16 recurrence-related genes was normalised to the set of five reference genes, and the recurrence score (RS) was calculated. RNA yield was lower from 0.6 mm cores than from 10 microm whole sections, but was still more than sufficient to perform the assay. RS and single gene data from cores were highly comparable with those from whole sections (RS p=0.005). Greater variability was seen between cores than between sections. FFPE sections are preferable to 0.6 mm cores for RNA profiling in order to maximise RNA yield and to allow for standard histopathological assessment. However, 0.6 mm cores are sufficient and would be appropriate to use for large cohort studies.

  19. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering.

    Science.gov (United States)

    Henke, Matthias; Baumer, Julia; Blunk, Torsten; Tessmar, Joerg

    2014-03-01

    Radically cross-linked hydrogels are frequently used as cell carriers due to their excellent biocompatibility and their tissue-like mechanical properties. Through frequent investigation, PEG-based polymers such as oligo(poly(ethylene glycol)fumarate [OPF] have proven to be especially suitable as cell carriers by encapsulating cells during hydrogel formation. In some cases, NaCl or biodegradable gelatin microparticles were added prior to cross-linking in order to provide space for the proliferating cells, which would otherwise stay embedded in the hydrogel matrix. However, all of these immediate cross-linking procedures involve time consuming sample preparation and sterilization directly before cell culture and often show notable swelling after their preparation. In this study, ready to use OPF-hydrogel scaffolds were prepared by gas foaming, freeze drying, individual packing into bags and subsequent γ-sterilization. The scaffolds could be stored and used "off-the-shelf" without any need for further processing prior to cell culture. Thus the handling was simplified and the sterility of the cell carrier was assured. Further improvement of the gel system was achieved using a two component injectable system, which may be used for homogenous injection molding in order to create individually shaped three dimensional scaffolds. In order to evaluate the suitability of the scaffolds for tissue engineering, constructs were seeded with juvenile bovine chondrocytes and cultured for 28 days. Cross-sections of the respective constructs showed an intense and homogenous red staining of GAG with safranin O, indicating a homogenous cell distribution within the scaffolds and the production of substantial amounts of GAG-rich matrix. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Age-related changes of dental pulp tissue after experimental tooth movement in rats

    Directory of Open Access Journals (Sweden)

    Martina Von Böhl

    2016-01-01

    Full Text Available It is generally accepted that the effect of orthodontic tooth movement on the dental pulp in adolescents is reversible and that it has no long-lasting effect on pulpal physiology. However, it is not clear yet if the same conclusion is also valid for adult subjects. Thus, in two groups of rats, aged 6 and 40 weeks respectively, 3 molars at one side of the maxilla were moved together in a mesial direction with a standardized orthodontic appliance delivering a force of 10 cN. The contralateral side served as a control. Parasagittal histological sections were prepared after tooth movement for 1, 2, 4, 8, and 12 weeks. The pulp tissue was characterized for the different groups, with special emphasis on cell density, inflammatory cells, vascularity, and odontoblasts. Dimensions of dentin and the pulpal horns was determined and related with the duration of orthodontic force application and age ware evaluated. We found that neither in young nor in adult rats, force application led to long-lasting or irreversible changes in pulpal tissues. Dimensional variables showed significant age-related changes. In conclusion, orthodontic tooth movement per se has no long-lasting or irreversible effect on pulpal tissues, neither in the young nor in the adult animals.

  1. Differences in sensitivity of rat mesenteric small arteries to agonists when studied as ring preparations or as cannulated preparations

    NARCIS (Netherlands)

    Buus, N. H.; VanBavel, E.; Mulvany, M. J.

    1994-01-01

    1. Pharmacological experiments on vascular tissue are normally performed on isometric ring or strip preparations. The aim of this study was to compare the isometric characteristics with the characteristics obtained if vessels were examined under the more physiologically appropriate isobaric

  2. Preparation and Characterization of Polycaprolactone / Layered Double Hydroxide Nanocomposite for Hard Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    M. Baradaran

    2016-12-01

    Full Text Available In recent years the use of nanomaterials in bone tissue engineering scaffold has been considered due to its imitating the structure of natural bone tissue which contains a nanocomposite structure mixed with a three-dimensional matrix. In the meantime, Polycaprol actone has been used as a bio-polymer in bone tissue engineering applications as a scaffold. The aim of this study is to develop porous scaffolds made of polycaprol actone/layered double hydroxide biocomposite, with appropriate mechanical, bioactive and biological properties, for bone tissue engineering application. The nanocomposite scaffolds were fabricated by the particulate leaching method and freeze-drying method. In this study, MG63 cells (osteosarcoma was investigated for cellular study. Energy dispersive X-ray analysis confirmed uniform distribution of ceramic phase in polycaprol actone matrix. The results of mechanical tests showed the increase in young’s modulus after addition of ceramic phase. The microscopic investigations demonstrated that the pores generated after addition of ceramic phase and the average size of pores was as large as 100-600μm. Also by the addition of LDH, the hydrophilicity of PCL increased but the rate of hydroxyapatite formation was delayed due to presence of magnesium ions. The cell culture experiments confirmed the attachment and proliferation of cells on the scaffolds. The results showed that the fabricated scaffolds have the potential to be used in cancellous bone tissue engineering.

  3. Preparation of scaffolds from human hair proteins for tissue-engineering applications

    International Nuclear Information System (INIS)

    Verma, Vipin; Verma, Poonam; Ray, Alok R; Ray, Pratima

    2008-01-01

    Human hair proteins were isolated and purified for the fabrication of tissue-engineering scaffolds. Their cellular compatibility was studied using NIH3T3 mice fibroblast cells. The proteins were characterized using FTIR spectroscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis for molecular weights and two-dimensional polyacrylamide gel electrophoresis for their isoelectric points (pIs). The molecular weights of keratins were in the range of 40-60 kilo-Daltons (kDa) and of matrix proteins were in the range of 15-30 kDa. The pIs of keratins were found to be in the range of 4.5-5.3. Sponges of the proteins were formed by lyophilization. Scanning electron microscopy was performed to examine the surface. Swelling studies were carried out in phosphate buffer saline at physiological pH 7.4. The hydrophilic character of the protein surface was studied by determining an average contact angle, which came to be 37 0 . The wells of tissue culture plates were coated with these proteins for studying the attachment and morphology of the cells. The protein detachment study was done to ensure the adsorption of proteins on the wells until the completion of the experiments. The cellular growth on a protein-coated surface showed three-dimensional 'bulged' morphology due to cell-cell and cell-matrix contacts. The sponges of human hair proteins supported more cells for a longer period than control. The morphology and cell proliferation studies exhibited by NIH3T3 cells on these proteins have shown their potential to be used as tissue-engineering scaffolds with better cell-cell contacts and leucine-aspartic acid-valine (LDV)-mediated cell-matrix interactions

  4. Molecular imaging of cannabis leaf tissue with MeV-SIMS method

    Science.gov (United States)

    Jenčič, Boštjan; Jeromel, Luka; Ogrinc Potočnik, Nina; Vogel-Mikuš, Katarina; Kovačec, Eva; Regvar, Marjana; Siketić, Zdravko; Vavpetič, Primož; Rupnik, Zdravko; Bučar, Klemen; Kelemen, Mitja; Kovač, Janez; Pelicon, Primož

    2016-03-01

    To broaden our analytical capabilities with molecular imaging in addition to the existing elemental imaging with micro-PIXE, a linear Time-Of-Flight mass spectrometer for MeV Secondary Ion Mass Spectrometry (MeV-SIMS) was constructed and added to the existing nuclear microprobe at the Jožef Stefan Institute. We measured absolute molecular yields and damage cross-section of reference materials, without significant alteration of the fragile biological samples during the duration of measurements in the mapping mode. We explored the analytical capability of the MeV-SIMS technique for chemical mapping of the plant tissue of medicinal cannabis leaves. A series of hand-cut plant tissue slices were prepared by standard shock-freezing and freeze-drying protocol and deposited on the Si wafer. We show the measured MeV-SIMS spectra showing a series of peaks in the mass area of cannabinoids, as well as their corresponding maps. The indicated molecular distributions at masses of 345.5 u and 359.4 u may be attributed to the protonated THCA and THCA-C4 acids, and show enhancement in the areas with opened trichome morphology.

  5. Molecular imaging of cannabis leaf tissue with MeV-SIMS method

    Energy Technology Data Exchange (ETDEWEB)

    Jenčič, Boštjan, E-mail: bostjan.jencic@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Jeromel, Luka [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Ogrinc Potočnik, Nina [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); M4I, Maastricht University, Peter Debijelaan 25A, 6229 HX Maastricht (Netherlands); Vogel-Mikuš, Katarina [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); University of Ljubljana, Biotechnical Faculty, Dept. of Biology, Večna pot 11, SI-1000 Ljubljana (Slovenia); Kovačec, Eva; Regvar, Marjana [University of Ljubljana, Biotechnical Faculty, Dept. of Biology, Večna pot 11, SI-1000 Ljubljana (Slovenia); Siketić, Zdravko [Ruđer Bošković Institute, P.O. Box 180, 10000 Zagreb (Croatia); Vavpetič, Primož; Rupnik, Zdravko; Bučar, Klemen; Kelemen, Mitja; Kovač, Janez; Pelicon, Primož [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2016-03-15

    To broaden our analytical capabilities with molecular imaging in addition to the existing elemental imaging with micro-PIXE, a linear Time-Of-Flight mass spectrometer for MeV Secondary Ion Mass Spectrometry (MeV-SIMS) was constructed and added to the existing nuclear microprobe at the Jožef Stefan Institute. We measured absolute molecular yields and damage cross-section of reference materials, without significant alteration of the fragile biological samples during the duration of measurements in the mapping mode. We explored the analytical capability of the MeV-SIMS technique for chemical mapping of the plant tissue of medicinal cannabis leaves. A series of hand-cut plant tissue slices were prepared by standard shock-freezing and freeze-drying protocol and deposited on the Si wafer. We show the measured MeV-SIMS spectra showing a series of peaks in the mass area of cannabinoids, as well as their corresponding maps. The indicated molecular distributions at masses of 345.5 u and 359.4 u may be attributed to the protonated THCA and THCA-C4 acids, and show enhancement in the areas with opened trichome morphology.

  6. Molecular imaging of cannabis leaf tissue with MeV-SIMS method

    International Nuclear Information System (INIS)

    Jenčič, Boštjan; Jeromel, Luka; Ogrinc Potočnik, Nina; Vogel-Mikuš, Katarina; Kovačec, Eva; Regvar, Marjana; Siketić, Zdravko; Vavpetič, Primož; Rupnik, Zdravko; Bučar, Klemen; Kelemen, Mitja; Kovač, Janez; Pelicon, Primož

    2016-01-01

    To broaden our analytical capabilities with molecular imaging in addition to the existing elemental imaging with micro-PIXE, a linear Time-Of-Flight mass spectrometer for MeV Secondary Ion Mass Spectrometry (MeV-SIMS) was constructed and added to the existing nuclear microprobe at the Jožef Stefan Institute. We measured absolute molecular yields and damage cross-section of reference materials, without significant alteration of the fragile biological samples during the duration of measurements in the mapping mode. We explored the analytical capability of the MeV-SIMS technique for chemical mapping of the plant tissue of medicinal cannabis leaves. A series of hand-cut plant tissue slices were prepared by standard shock-freezing and freeze-drying protocol and deposited on the Si wafer. We show the measured MeV-SIMS spectra showing a series of peaks in the mass area of cannabinoids, as well as their corresponding maps. The indicated molecular distributions at masses of 345.5 u and 359.4 u may be attributed to the protonated THCA and THCA-C4 acids, and show enhancement in the areas with opened trichome morphology.

  7. Nanoscale Chemical Characterization of Solid-State Microbattery Stacks by Means of Auger Spectroscopy and Ion-Milling Cross Section Preparation.

    Science.gov (United States)

    Uhart, A; Ledeuil, J B; Pecquenard, B; Le Cras, F; Proust, M; Martinez, H

    2017-09-27

    The current sustained demand for "smart" and connected devices has created a need for more miniaturized power sources, hence for microbatteries. Lithium-ion or "lithium-free" all-solid-state thin-film batteries are adapted solutions to this issue. The capability to carry out spatially resolved chemical analysis is fundamental for the understanding of the operation in an all-solid-state microbattery. Classically cumbersome and not straightforward techniques as TEM/STEM/EELS and FIB preparation methods could be used to address this issue. The challenge in this work is to make the characterization of Li-based material possible by coupling ion-milling cross section preparation method and AES techniques to characterize the behavior of a LiCoO 2 positive electrode in an all solid state microbattery. The surface chemistry of LiCoO 2 has been studied before and after LiPON deposition. Modifications of the chemical environments characteristic of the positive electrode have been reported at different steps of the electrochemical process. An original qualitative and a semiquantitative analysis has been used in this work with the peak deconvolution method based on real, certified reference spectra to better understand the lithiation/delithiation process. This original coupling has demonstrated that a full study of the pristine, cycled, and post mortem positive electrode in a microbattery is also possible. The ion-milling preparation method allows access to a large area, and the resolution of Auger analysis is highly resolved in energy to separate the lithium and the cobalt signals in an accurate way.

  8. Outline of preparation construction of Shimane Nuclear Power Station No.3

    International Nuclear Information System (INIS)

    Oda, Yasuhiro; Sasaki, Yutaka; Matsukage, Shigeo; Kawahara, Kazufumi

    2004-01-01

    The preparation construction of Shimane Nuclear Power Station No.3 (No.3) started on 15th March in 2004. The main preparation construction consist of the site preparation, revetment works, breakwater works, production of blocks, flood-way and outlet works. The outline of the project is described by the time schedule of work, the cross section of site preparation, site, the revetment method used, the cross section of representative breakwater, structure style and improvement works of flood-way and outlet and content of each works. (S.Y.)

  9. Chitosan based nanofibers in bone tissue engineering.

    Science.gov (United States)

    Balagangadharan, K; Dhivya, S; Selvamurugan, N

    2017-11-01

    Bone tissue engineering involves biomaterials, cells and regulatory factors to make biosynthetic bone grafts with efficient mineralization for regeneration of fractured or damaged bones. Out of all the techniques available for scaffold preparation, electrospinning is given priority as it can fabricate nanostructures. Also, electrospun nanofibers possess unique properties such as the high surface area to volume ratio, porosity, stability, permeability and morphological similarity to that of extra cellular matrix. Chitosan (CS) has a significant edge over other materials and as a graft material, CS can be used alone or in combination with other materials in the form of nanofibers to provide the structural and biochemical cues for acceleration of bone regeneration. Hence, this review was aimed to provide a detailed study available on CS and its composites prepared as nanofibers, and their associated properties found suitable for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Resonance sensor measurements of stiffness variations in prostate tissue in vitro--a weighted tissue proportion model.

    Science.gov (United States)

    Jalkanen, Ville; Andersson, Britt M; Bergh, Anders; Ljungberg, Börje; Lindahl, Olof A

    2006-12-01

    Prostate cancer is the most common type of cancer in men in Europe and the US. The methods to detect prostate cancer are still precarious and new techniques are needed. A piezoelectric transducer element in a feedback system is set to vibrate with its resonance frequency. When the sensor element contacts an object a change in the resonance frequency is observed, and this feature has been utilized in sensor systems to describe physical properties of different objects. For medical applications it has been used to measure stiffness variations due to various patho-physiological conditions. In this study the sensor's ability to measure the stiffness of prostate tissue, from two excised prostatectomy specimens in vitro, was analysed. The specimens were also subjected to morphometric measurements, and the sensor parameter was compared with the morphology of the tissue with linear regression. In the probe impression interval 0.5-1.7 mm, the maximum R(2) > or = 0.60 (p sensor was pressed, the greater, i.e., deeper, volume it sensed. Tissue sections deeper in the tissue were assigned a lower mathematical weighting than sections closer to the sensor probe. It is concluded that cancer increases the measured stiffness as compared with healthy glandular tissue, but areas with predominantly stroma or many stones could be more difficult to differ from cancer.

  11. In situ zymography and immunolabeling in fixed and decalcified craniofacial tissues.

    Science.gov (United States)

    Porto, Isabel M; Rocha, Lenaldo B; Rossi, Marcos A; Gerlach, Raquel F

    2009-07-01

    In situ zymography is a very important technique that shows the proteolytic activity in sections and allows researchers to observe the specific sites of proteolysis in tissues or cells. It is normally performed in non-fixed frozen sections and is not routinely performed in calcified tissues. In this study, we describe a technique that maintains proteolytic activity in fixed and decalcified sections obtained after routine paraffin sectioning in conventional microtome and cryostat sections. We used adult rat hemimandibles, which presented bone, enamel, and dentine matrices; the substrate used was dye-quenched-gelatin. Gelatinolytic activity was colocalized with MMP-2 using fluorescent antibodies. Specific proteolytic activity was observed in all sections, compatible with metalloproteinase activity, particularly in dentine and bone. Furthermore, matrix metalloproteinase-2 was colocalized to the sites of green fluorescence in dentine. In conclusion, the technique presented here will allow in situ zymography reactions in fixed, decalcified, and paraffin-embedded tissues, and we showed that paraformaldehyde-lysine-periodate-fixed cryostat sections are suitable for colocalization of gelatinolytic activity and protein labeling with antibodies.

  12. Cross-sectional anatomy for computed tomography

    International Nuclear Information System (INIS)

    Farkas, M.L.

    1988-01-01

    This self-study guide recognizes that evaluation and interpretation of CT-images demands a firm understanding of both cross-sectional anatomy and the principles of computed tomography. The objectives of this book are: to discuss the basic principles of CT, to stress the importance of cross-sectional anatomy to CT through study of selected cardinal transverse sections of head, neck, and trunk, to explain orientation and interpretation of CT-images with the aid of corresponding cross-sectional preparations

  13. Direct-to-PCR tissue preservation for DNA profiling.

    Science.gov (United States)

    Sorensen, Amy; Berry, Clare; Bruce, David; Gahan, Michelle Elizabeth; Hughes-Stamm, Sheree; McNevin, Dennis

    2016-05-01

    Disaster victim identification (DVI) often occurs in remote locations with extremes of temperatures and humidities. Access to mortuary facilities and refrigeration are not always available. An effective and robust DNA sampling and preservation procedure would increase the probability of successful DNA profiling and allow faster repatriation of bodies and body parts. If the act of tissue preservation also released DNA into solution, ready for polymerase chain reaction (PCR), the DVI process could be further streamlined. In this study, we explored the possibility of obtaining DNA profiles without DNA extraction, by adding aliquots of preservative solutions surrounding fresh human muscle and decomposing human muscle and skin tissue samples directly to PCR. The preservatives consisted of two custom preparations and two proprietary solutions. The custom preparations were a salt-saturated solution of dimethyl sulfoxide (DMSO) with ethylenediaminetetraacetic (EDTA) and TENT buffer (Tris, EDTA, NaCl, Tween 20). The proprietary preservatives were DNAgard (Biomatrica(®)) and Tissue Stabilising Kit (DNA Genotek). We obtained full PowerPlex(®) 21 (Promega) and GlobalFiler(®) (Life Technologies) DNA profiles from fresh and decomposed tissue preserved at 35 °C for up to 28 days for all four preservatives. The preservative aliquots removed from the fresh muscle tissue samples had been stored at -80 °C for 4 years, indicating that long-term archival does not diminish the probability of successful DNA typing. Rather, storage at -80 °C seems to reduce PCR inhibition.

  14. Intercalated chitosan/hydroxyapatite nanocomposites: Promising materials for bone tissue engineering applications.

    Science.gov (United States)

    Nazeer, Muhammad Anwaar; Yilgör, Emel; Yilgör, Iskender

    2017-11-01

    Preparation and characterization of chitosan/hydroxyapatite (CS/HA) nanocomposites displaying an intercalated structure is reported. Hydroxyapatite was synthesized through sol-gel process. Formic acid was introduced as a new solvent to obtain stable dispersions of nano-sized HA particles in polymer solution. CS/HA dispersions with HA contents of 5, 10 and 20% by weight were prepared. Self-assembling of HA nanoparticles during the drying of the solvent cast films led to the formation of homogeneous CS/HA nanocomposites. Composite films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-rays (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, X-rays diffraction (XRD) analysis and thermogravimetric analysis (TGA). SEM and AFM confirmed the presence of uniformly distributed HA nanoparticles on the chitosan matrix surface. XRD patterns and cross-sectional SEM images showed the formation of layered nanocomposites. Complete degradation of chitosan matrix in TGA experiments, led to the formation of nanoporous 3D scaffolds containing hydroxyapatite, β-tricalcium phosphate and calcium pyrophosphate. CS/HA composites can be considered as promising materials for bone tissue engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Liquid scintillation: Sample preparation and counting atypical emissions

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Liquid scintillation sample preparation has the most published information but the least amount of definitive technical direction because the chemical and physical nature of the samples from biological investigations varies widely. This chapter discusses the following related topics: Aqueous Samples; Tissue Solubilizers; Absorption of 14 CO 2 ; Sample Combustion Methods; Heterogeneous Systems; Sample Preparation Problems (colored samples, chemiluminescence, photoluminescence, static electricity); Counting Various Types of Emitters; Counting Atypical Emissions. 2 refs., 2 figs

  16. Biodegradable elastomeric scaffolds for soft tissue engineering

    NARCIS (Netherlands)

    Pêgo, A.P.; Poot, Andreas A.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Elastomeric copolymers of 1,3-trimethylene carbonate (TMC) and ε-caprolactone (CL) and copolymers of TMC and D,L-lactide (DLLA) have been evaluated as candidate materials for the preparation of biodegradable scaffolds for soft tissue engineering. TMC-DLLA copolymers are amorphous and degrade more

  17. Histopathology of Tilapia tissues harbouring Clinostomum tilapiae ...

    African Journals Online (AJOL)

    Tissues obtained from infected Oreochromis niloticus were processed sectioned and stained with haemotoxylin and eosin. Good sections were selected, studied and photographed. The histopathology revealed a proliferation of eosinophiles at the secondary lamellar of the gills. The site of attachment on the fish skin ...

  18. Improved method of producing satisfactory sections of whole eyeball by routine histology.

    Science.gov (United States)

    Arko-Boham, Benjamin; Ahenkorah, John; Hottor, Bismarck Afedo; Dennis, Esther; Addai, Frederick Kwaku

    2014-02-01

    To overcome the loss of structural integrity when eyeball sections are prepared by wax embedding, we experimentally modified the routine histological procedure and report satisfactorily well-preserved antero-posterior sections of whole eyeballs for teaching/learning purposes. Presently histological sections of whole eyeballs are not readily available because substantial structural distortions attributable to variable consistency of tissue components (and their undesired differential shrinkage) result from routine processing. Notably, at the dehydration stage of processing, the soft, gel-like vitreous humor considerably shrinks relative to the tough fibrous sclera causing collapse of the ocular globe. Additionally, the combined effects of fixation, dehydration, and embedding at 60°C renders the eye lens too hard for microtome slicing at thicknesses suitable for light microscopy. We satisfactorily preserved intact antero-posterior sections of eyeballs via routine paraffin wax processing procedure entailing two main modifications; (i) careful needle aspiration of vitreous humor and replacement with molten wax prior to wax infiltration; (ii) softening of lens in trimmed wax block by placing a drop of concentrated liquid phenol on it for 3 h during microtomy. These variations of the routine histological method produced intact whole eyeball sections with retinal detachment as the only structural distortion. Intact sections of the eyeball obtained compares well with the laborious, expensive, and 8-week long celloidin method. Our method has wider potential usability than costly freeze drying method which requires special skills and equipment (cryotome) and does not produce whole eyeball sections. Copyright © 2013 Wiley Periodicals, Inc.

  19. In vitro labeling receptor autoradiography: loss of label during ethanol dehydration and preparative procedures

    International Nuclear Information System (INIS)

    Kuhar, M.J.; Unnerstall, J.R.

    1982-01-01

    Slide-mounted tissue sections of brain were incubated with several reversibly binding [ 3 H]ligands to label receptors. Exposure of these labeled, mounted tissue sections to ethanol solutions for dehydration resulted in a substantial loss of receptor bound ligands in all cases, even when the tissues were fixed with formaldehyde vapors before exposure. Thus, serious problems can be introduced into in vitro labeling autoradiographic procedures by exposure of sections to aqueous or organic media. (Auth.)

  20. Implementation of immunohistochemistry on frozen ear notch tissue samples in diagnosis of bovine viral diarrhea virus in persistently infected cattle

    Directory of Open Access Journals (Sweden)

    Bedeković Tomislav

    2011-12-01

    Full Text Available Abstract Background Bovine viral diarrhea is a contagious disease of domestic and wild ruminants and one of the most economically important diseases in cattle. Bovine viral diarrhea virus belongs to the genus Pestivirus, within the family Flaviviridae. The identification and elimination of the persistently infected animals from herds is the initial step in the control and eradication programs. It is therefore necessary to have reliable methods for diagnosis of bovine viral diarrhea virus. One of those methods is immunohistochemistry. Immunohistochemistry on formalin fixed, paraffin embedded tissue is a routine technique in diagnosis of persistently infected cattle from ear notch tissue samples. However, such technique is inappropriate due to complicated tissue fixation process and it requires more days for preparation. On the contrary, immunohistochemistry on frozen tissue was usually applied on organs from dead animals. In this paper, for the first time, the imunohistochemistry on frozen ear notch tissue samples was described. Findings Seventeen ear notch tissue samples were obtained during the period 2008-2009 from persistently infected cattle. Samples were fixed in liquid nitrogen and stored on -20°C until testing. Ear notch tissue samples from all persistently infected cattle showed positive results with good section quality and possibility to determinate type of infected cells. Conclusions Although the number of samples was limited, this study indicated that immunohistochemistry on formalin fixed paraffin embedded tissue can be successfully replaced with immunohistochemistry on frozen ear notch tissue samples in diagnosis of persistently infected cattle.

  1. SEM investigation of heart tissue samples

    International Nuclear Information System (INIS)

    Saunders, R; Amoroso, M

    2010-01-01

    We used the scanning electron microscope to examine the cardiac tissue of a cow (Bos taurus), a pig (Sus scrofa), and a human (Homo sapiens). 1mm 3 blocks of left ventricular tissue were prepared for SEM scanning by fixing in 96% ethanol followed by critical point drying (cryofixation), then sputter-coating with gold. The typical ridged structure of the myofibrils was observed for all the species. In addition crystal like structures were found in one of the samples of the heart tissue of the pig. These structures were investigated further using an EDVAC x-ray analysis attachment to the SEM. Elemental x-ray analysis showed highest peaks occurred for gold, followed by carbon, oxygen, magnesium and potassium. As the samples were coated with gold for conductivity, this highest peak is expected. Much lower peaks at carbon, oxygen, magnesium and potassium suggest that a cystallized salt such as a carbonate was present in the tissue before sacrifice.

  2. SEM investigation of heart tissue samples

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, R; Amoroso, M [Physics Department, University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies (Trinidad and Tobago)

    2010-07-01

    We used the scanning electron microscope to examine the cardiac tissue of a cow (Bos taurus), a pig (Sus scrofa), and a human (Homo sapiens). 1mm{sup 3} blocks of left ventricular tissue were prepared for SEM scanning by fixing in 96% ethanol followed by critical point drying (cryofixation), then sputter-coating with gold. The typical ridged structure of the myofibrils was observed for all the species. In addition crystal like structures were found in one of the samples of the heart tissue of the pig. These structures were investigated further using an EDVAC x-ray analysis attachment to the SEM. Elemental x-ray analysis showed highest peaks occurred for gold, followed by carbon, oxygen, magnesium and potassium. As the samples were coated with gold for conductivity, this highest peak is expected. Much lower peaks at carbon, oxygen, magnesium and potassium suggest that a cystallized salt such as a carbonate was present in the tissue before sacrifice.

  3. Preparation of next generation set of group cross sections. A task report to the Japan Nuclear Cycle Development Institute

    International Nuclear Information System (INIS)

    Kaneko, Kunio

    2000-03-01

    The SLAROM code, performing fast reactor cell calculation based on a deterministic methodology, has been revised by adding the universal module PEACO of generating Ultra-fine group neutron spectra. The revised SLAROM, then, was utilized for evaluating reaction rate distributions in ZPPR-13A simulated by a 2-dim RZ homogeneous model, although actually ZPPR-13A composed of radially heterogeneous cells. The reaction rate distributions of ZPPR-13A were also calculated by the code MVP, that is a continuous energy Monte Carlo calculation code based on a probabilistic methodology. By comparing both results, it was concluded that the module PEACO has excellent capability for evaluating highly accurate effective cross sections. Also it was proved that the use of a new fine group cross section library set (next generation set), reflecting behavior of cross sections of structural materials, such as Fe and 0, in the fast neutron energy region, is indispensable for attaining a better agreement within 1% between both calculation methods. Also, for production of a next generation set of group cross sections, the code NJOY97.V107 was added to the group cross section production system and both front and end processing parts were prepared. This system was utilized to produce the new 70 group JFS-3 library using the evaluated nuclear data library JENDL-3.2. Furthermore, to confirm the capability of this new group cross section production system, the above new JFS-3 library was applied to core performance analysis of ZPPR-9 core with a 2-dim RZ homogeneous model and analysis of heterogeneous cells of ZPPR-9 core by using the deterministic method. Also the analysis using the code MVP was performed. By comparison of both results the following conclusion has been derived; the deterministic method, with the PEACO module for resonance cross sections, contributes to improve accuracy of predicting reaction rate distributions and Na void reactivity in fast reactor cores. And it becomes clear

  4. Tissue grown in space in NASA Bioreactor

    Science.gov (United States)

    2001-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Final samples from Mir and Earth appeared histologically cartilaginous throughout their entire cross sections (5-8 mm thick), with the exception of fibrous outer capsules. Constructs grown on Earth (A) appeared to have a more organized extracellular matrix with more uniform collagen orientation as compared with constructs grown on Mir (B), but the average collagen fiber diameter was similar in the two groups (22 +- 2 nm) and comparable to that previously reported for developing articular cartilage. Randomly oriented collagen in Mir samples would be consistent with previous reports that microgravity disrupts fibrillogenesis. These are transmission electron micrographs of constructs from Mir (A) and Earth (B) groups at magnifications of x3,500 and x120,000 (Inset). The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Credit: Proceedings of the National Academy of Sciences.

  5. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan); Horiuchi, Masatsugu, E-mail: horiuchi@m.ehime-u.ac.jp [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan)

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  6. Preparation and characterization of chitosan-heparin composite matrices for blood contacting tissue engineering

    International Nuclear Information System (INIS)

    He Qing; Gong Kai; Gong Yandao; Zhang Xiufang; Ao Qiang; Zhang Lihai; Hu Min

    2010-01-01

    Chitosan has been widely used for biomaterial scaffolds in tissue engineering because of its good mechanical properties and cytocompatibility. However, the poor blood compatibility of chitosan has greatly limited its biomedical utilization, especially for blood contacting tissue engineering. In this study, we exploited a polymer blending procedure to heparinize the chitosan material under simple and mild conditions to improve its antithrombogenic property. By an optimized procedure, a macroscopically homogeneous chitosan-heparin (Chi-Hep) blended suspension was obtained, with which Chi-Hep composite films and porous scaffolds were fabricated. X-ray photoelectron spectroscopy and sulfur elemental analysis confirmed the successful immobilization of heparin in the composite matrices (i.e. films and porous scaffolds). Toluidine blue staining indicated that heparin was distributed homogeneously in the composite matrices. Only a small amount of heparin was released from the matrices during incubation in normal saline for 10 days. The composite matrices showed improved blood compatibility, as well as good mechanical properties and endothelial cell compatibility. These results suggest that the Chi-Hep composite matrices are promising candidates for blood contacting tissue engineering.

  7. 30 CFR 75.1316 - Preparation before blasting.

    Science.gov (United States)

    2010-07-01

    ... two working faces are approaching each other, cutting, drilling and blasting shall be done at only one... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Preparation before blasting. 75.1316 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1316 Preparation...

  8. Darkfield illumination improves microscopic detection of metals in Timm's stained tissue

    DEFF Research Database (Denmark)

    Baatrup, E; Frederickson, C J

    1989-01-01

    Deposits of trace or toxic metals can be quickly identified by light microscopical surveys of tissue sections stained for metals by variants of Timm's silver enhancement method. The present work shows that the small, isolated silver grains that label isolated deposits of metal in tissue are undet...... are undetectable in brightfield light microscopy but are easily detected in darkfield microscopy. Darkfield illumination is therefore recommended for improving the detection of trace or toxic metals in tissue. Udgivelsesdato: 1989-Aug......Deposits of trace or toxic metals can be quickly identified by light microscopical surveys of tissue sections stained for metals by variants of Timm's silver enhancement method. The present work shows that the small, isolated silver grains that label isolated deposits of metal in tissue...

  9. Comparison of three different fat graft preparation methods: gravity separation, centrifugation, and simultaneous washing with filtration in a closed system.

    Science.gov (United States)

    Zhu, Min; Cohen, Steven R; Hicok, Kevin C; Shanahan, Rob K; Strem, Brian M; Yu, Johnson C; Arm, Douglas M; Fraser, John K

    2013-04-01

    Successful long-term volume retention of an autologous fat graft is problematic. The presence of contaminating cells, tumescent fluid, and free lipid in the graft contributes to disparate outcomes. Better preparation methods for the fat graft before transplantation may significantly improve results. Subcutaneous fat from 22 donors was divided and processed using various graft preparation methods: (1) no manipulation control, (2) gravity separation, (3) Coleman centrifugation, and (4) simultaneous washing with filtration using a commercially available system (Puregraft; Cytori Therapeutics, Inc., San Diego, Calif.). Fat grafts from various preparation methods were examined for free lipid, aqueous liquid, viable tissue, and blood cell content. Adipose tissue viability was determined by measuring glycerol release after agonist induction of lipolysis. All test graft preparation methods exhibited significantly less aqueous fluid and blood cell content compared with the control. Grafts prepared by washing with filtration exhibited significantly reduced blood cell and free lipid content, with significantly greater adipose tissue viability than other methods. Washing with filtration within a closed system produces a fat graft with higher tissue viability and lower presence of contaminants compared with grafts prepared by alternate methods.

  10. Diagnostic power and pitfalls of intraoperative consultation (frozen section) in rhabdomyosarcoma.

    Science.gov (United States)

    Kurtulan, Olcay; Kösemehmetoğlu, Kemal

    2015-01-01

    Intraoperative consultation plays an important role in the management of soft tissue sarcomas, such as rhabdomyosarcoma. In this study, we aimed to draw attention to the important points during frozen section interpretation, and analyse the accuracy of frozen diagnosis in rhabdomyosarcoma patients. The cases, both diagnosed as rhabdomyosarcoma or followed with a history of rhabdomyosarcoma, and interpreted with intraoperative consultation (frozen section) between 2000 and 2013 were culled from pathology archives. The diagnoses were confirmed by desmin and myogenin, immunohistochemically. The frozen and final diagnoses were noted of 21 biopsy specimens of 19 patients. Sensitivity and specificity of intraoperative consultation were calculated regarding to the major diagnostic discrepancies leading to a change in surgical management of the patient, after exclusion of the cases deferred to paraffin section. Of the evaluated 21 biopsy material, 3 (14%) were misdiagnosed: Of the 2 false negative embryonal rhabdomyosarcoma cases, sample was not representative of the tumor, and there was chemo/radiotherapy induced changes in the other case. In the only false positively diagnosed case with a known history of rhabdomyosarcoma, inflammatory cells were misinterpreted as small round cell neoplasm. In 5 (29%) of 21 biopsies, a frozen diagnosis could not be given, and the diagnosis was deferred. Six cases (29%) were evaluated with cytological squash or imprint preparation; none of the misdiagnosed cases was evaluated with adjunct cytological preparation. Six of 8 misdiagnosed or deferred biopsies showed morphological changes secondary to radiotherapy and/or chemotherapy. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated as 85%, 67%, 92% and 50%, respectively. Intraoperative consultation for rhabdomyosarcoma is a reliable tool with high sensitivity and fair specificity. Cases with treatment effect may lead to diagnostic difficulties

  11. TEM specimen preparation of semiconductor-PMMA-metal interfaces

    International Nuclear Information System (INIS)

    Thangadurai, P.; Lumelsky, Yulia; Silverstein, Michael S.; Kaplan, Wayne D.

    2008-01-01

    Transmission electron microscopy (TEM) cross-section specimens of PMMA in contact with gold and Si were prepared by focused ion beam (FIB) and compared with plan-view PMMA specimens prepared by a dip-coating technique. The specimens were characterized by TEM and electron energy loss spectroscopy (EELS). In the cross-section specimens, the thin films of PMMA were located in a Si-PMMA-Au multilayer. Different thicknesses of PMMA films were spin-coated on the Si substrates. The thickness of the TEM specimens prepared by FIB was estimated using EELS to be 0.65 of the plasmon mean-free-path. Along the PMMA-Au interface, Au particle diffusion into the PMMA was observed, and the size of the Au particles was in the range of 2-4 nm. Dip-coating of PMMA directly on Cu TEM grids resulted in thin specimens with a granular morphology, with a thickness of 0.58 of the plasmon mean-free-path. The dip-coated specimens were free from ion milling induced artifacts, and thus serve as control specimens for comparison with the cross-sectioned specimens prepared by FIB

  12. Metallothionein expression in placental tissue in Menkes' disease

    DEFF Research Database (Denmark)

    Hærslev, T.; Krag Jacobsen, G.; Horn, N.

    1995-01-01

    . The avidin-biotin-complex (ABC)-technique was used. The copper content was measured by neutron activation analysis (NAA). In all placental tissue sections positive MT immunostaining appeared only in the trophoblast and only in proliferating cells. In placental tissue sections obtained from foetuses...... and children affected by Menkes' disease an additional MT immunostaining appeared in the Hofbauer cells of the chorionic villi. This staining was associated with an increased content of copper as measured by NAA. We conclude that the immunohistochemical demonstration of MT reflects the copper content and may...

  13. Formation of tissue factor activity following incubation of recombinant human tissue factor apoprotein with plasma lipoproteins

    International Nuclear Information System (INIS)

    Sakai, T.; Kisiel, W.

    1990-01-01

    Incubation of recombinant human tissue factor apoprotein (Apo-TF) with human plasma decreased the recalcified clotting time of this plasma in a time-and dose-dependent manner suggesting relipidation of the Apo-TF by plasma lipoproteins. Incubation of Apo-TF with purified preparations of human very low density, low density and high density lipoproteins resulted in tissue factor activity in a clotting assay. The order of effectiveness was VLDL greater than LDL much greater than HDL. Tissue factor activity generated by incubation of a fixed amount of Apo-TF with plasma lipoproteins was lipoprotein concentration-dependent and saturable. The association of Apo-TF with lipoprotein particles was supported by gel filtration studies in which 125 I-Apo-TF coeluted with the plasma lipoprotein in the void volume of a Superose 6 column in the presence and absence of calcium ions. In addition, void-volume Apo-TF-lipoprotein fractions exhibited tissue factor activity. These results suggest that the factor VIII-bypassing activity of bovine Apo-TF observed in a canine hemophilic model may be due, in part, to its association with plasma lipoproteins and expression of functional tissue factor activity

  14. Patch esophagoplasty using an in-body-tissue-engineered collagenous connective tissue membrane.

    Science.gov (United States)

    Okuyama, Hiroomi; Umeda, Satoshi; Takama, Yuichi; Terasawa, Takeshi; Nakayama, Yasuhide

    2018-02-01

    Although many approaches to esophageal replacement have been investigated, these efforts have thus far only met limited success. In-body-tissue-engineered connective tissue tubes have been reported to be effective as vascular replacement grafts. The aim of this study was to investigate the usefulness of an In-body-tissue-engineered collagenous connective tissue membrane, "Biosheet", as a novel esophageal scaffold in a beagle model. We prepared Biosheets by embedding specially designed molds into subcutaneous pouches in beagles. After 1-2months, the molds, which were filled with ingrown connective tissues, were harvested. Rectangular-shaped Biosheets (10×20mm) were then implanted to replace defects of the same size that had been created in the cervical esophagus of the beagle. An endoscopic evaluation was performed at 4 and 12weeks after implantation. The esophagus was harvested and subjected to a histological evaluation at 4 (n=2) and 12weeks (n=2) after implantation. The animal study protocols were approved by the National Cerebral and Cardiovascular Centre Research Institute Committee (No. 16048). The Biosheets showed sufficient strength and flexibility to replace the esophagus defect. All animals survived with full oral feeding during the study period. No anastomotic leakage was observed. An endoscopic study at 4 and 12weeks after implantation revealed that the anastomotic sites and the internal surface of the Biosheets were smooth, without stenosis. A histological analysis at 4weeks after implantation demonstrated that stratified squamous epithelium was regenerated on the internal surface of the Biosheets. A histological analysis at 12weeks after implantation showed the regeneration of muscle tissue in the implanted Biosheets. The long-term results of patch esophagoplasty using Biosheets showed regeneration of stratified squamous epithelium and muscular tissues in the implanted sheets. These results suggest that Biosheets may be useful as a novel esophageal

  15. Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery.

    Science.gov (United States)

    Mehari, Fanuel; Rohde, Maximillian; Kanawade, Rajesh; Knipfer, Christian; Adler, Werner; Klämpfl, Florian; Stelzle, Florian; Schmidt, Michael

    2016-10-01

    In the present study, the elemental compositions of fat and nerve tissue during their plasma mediated laser ablation are studied in the context of tissue differentiation for laser surgery applications by using Laser-Induced Breakdown Spectroscopy (LIBS). Tissue samples of porcine fat and nerve were prepared as ex vivo experimental objects. Plasma mediated laser ablation is performed using an Nd : YAG laser in open air and under normal stray light conditions. The performed measurements suggest that the two tissue types show a high similarity in terms of qualitative elemental composition while at the same time revealing a distinct difference in the concentration of the constituent elements. Different analysis approaches are evaluated and discussed to optimize the tissue-differentiation performance of the LIBS approach. Plasma mediated laser tissue ablation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 49 CFR 192.235 - Preparation for welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Preparation for welding. 192.235 Section 192.235... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.235 Preparation for welding. Before beginning any welding, the welding surfaces must be clean and free of any material that...

  17. 40 CFR 86.531-78 - Vehicle preparation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preparation. 86.531-78 Section... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.531-78 Vehicle preparation. (a) The manufacturer...

  18. Calculation of microplanar beam dose profiles in a tissue/lung/tissue phantom

    International Nuclear Information System (INIS)

    Company, F.Z.; Allen, B.J.

    1998-01-01

    Recent advances in synchrotron generated x-ray beams with a high fluence rate permit investigation of the application of an array of closely spaced, parallel or converging microplanar beams in radiotherapy. The proposed technique takes advantage of the hypothesized repair mechanism of capillary cells between alternate microbeam zones, which regenerates the lethally irradiated endothelial cells. The lateral and depth doses of 100 keV microplanar beams are investigated for different beam dimensions and spacings in a tissue, lung and tissue/lung/tissue phantom. The EGS4 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams (up to 20x20cm square cross section). The maximum dose on the beam axis (peak) and the minimum interbeam dose (valley) are compared at different depths, bundles, heights, widths and beam spacings. (author)

  19. Preservation and storage of prepared ballistic gelatine.

    Science.gov (United States)

    Mattijssen, E J A T; Alberink, I; Jacobs, B; van den Boogaard, Y

    2016-02-01

    The use of ballistic gelatine, generally accepted as a human muscle tissue simulant in wound ballistic studies, might be improved by adding a preservative (Methyl 4-hydroxybenzoate) which inhibits microbial growth. This study shows that replacing a part of the gelatine powder by the preservative does not significantly alter the penetration depth of projectiles. Storing prepared blocks of ballistic gelatine over time decreased the penetration depth of projectiles. Storage of prepared gelatine for 4 week already showed a significant effect on the penetration depth of projectiles. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Demonstration of lipofuscin and Nissl bodies in crystal violet stained sections using a fluorescence technique or pyronin Y stain.

    Science.gov (United States)

    Terr, L I

    1986-09-01

    This paper presents two simple, reliable methods for identification of lipofuscin and Nissl bodies in the same section. One method shows that lipofuscin stained with crystal violet retains its ability to fluoresce and can be observed under the fluorescence microscope after the stain has faded. Fading is accompanied by a gradual increase in the intensity of the fluorescence and is complete in about 5 min. Exciting illumination from this part of the spectrum also substantially fades staining of other autofluorescing tissue elements, such as lipids. Nonfluorescing structures, such as Nissl bodies, remain stained. By changing from transillumination with tungsten light to epifluorescent illumination and vice versa, both types of structures--Nissl bodies and lipofuscin--can be identified in the same section. The second technique uses pyronin Y for staining Nissl bodies in preparations previously stained with crystal violet. Nissl bodies are stained pink but lipofuscin remains violet. Lipofuscin in these sections also remains autofluorescent after the crystal violet stain has faded under violet or near-UV light.

  1. Modeling light–tissue interaction in optical coherence tomography systems

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Jørgensen, Thomas Martini; Thrane, Lars

    2015-01-01

    Optical coherence tomography (OCT) performs high-resolution, cross-sectional tomographic imaging of the internal tissue microstructure by measuring backscattered or backreflected light. The scope of this chapter is to present analytical and numerical models that are able to describe light-tissue ...

  2. Radiopharmaceuticals for localization in target tissues exhibiting a regional pH shift relative to surrounding tissues

    International Nuclear Information System (INIS)

    Blau, M.; Kung, H.F.

    1981-01-01

    This patent relates to the preparation and use of radiopharmaceutical chemical compounds comprising a radioactive isotope, other than an isotope of iodine, in chemical combination with at least one primary, secondary or tertiary amino group. The compounds have a lipophilicity sufficiently high at a pH of 7.6 to permit passage of the compound from the blood of a mammal into a target organ or tissue and sufficiently low at a pH of 6.6 to prevent rapid return of the compound from the target organ or tissue to the blood. The compounds have a percent protein binding of less than ninety percent. These compounds may be selectively deposited in at least one target tissue or organ of a mammal, the tissue or organ of which has a significantly different intracellular pH than the blood of the mammal, by introducing the compound of the invention into the bloodstream of the mammal. A plurality of selenide compounds containing Se-75 isotope are claimed in relation to the patent. (U.K.)

  3. The Resin-Embedded Cornea Prepared Via Rapid Processing Protocol : A Good Histomorphometric Target for Clinical Investigation in Ophthalmology and Optometry

    Science.gov (United States)

    Cheah, Pike See; Mohidin, Norhani; Mohd Ali, Bariah; Maung, Myint; Latif, Azian Abdul

    2008-01-01

    This study illustrates and quantifies the changes on corneal tissue between the paraffin-embedded and resin-embedded blocks and thus, selects a better target in investigational ophthalmology and optometry via light microscopy. Corneas of two cynomolgus monkeys (Macaca fascicularis) were used in this study. The formalin-fixed cornea was prepared in paraffin block via the conventional tissue processing protocol (4-day protocol) and stained with haematoxylin and eosin. The glutaraldehyde-fixed cornea was prepared in resin block via the rapid and modified tissue processing procedure (1.2-day protocol) and stained with toluidine blue. The paraffin-embedded sample exhibits various undesired tissue damage and artifact such as thinner epithelium (due to the substantial volumic extraction from the tissue), thicker stroma layer (due to the separation of lamellae and the presence of voids) and the distorted endothelium. In contrast, the resin-embedded corneal tissue has demonstrated satisfactory corneal ultrastructural preservation. The rapid and modified tissue processing method for preparing the resin-embedded is particularly beneficial to accelerate the microscopic evaluation in ophthalmology and optometry. PMID:22570589

  4. Production and characterization of monoclonal antibodies directed against connective tissue proteoglycans

    DEFF Research Database (Denmark)

    Caterson, B; Christner, J E; Baker, J R

    1985-01-01

    distribution of 4- and 6-sulfated and unsulfated proteoglycans in tissue sections of cartilage and other noncartilaginous tissues. Digestion with chondroitinase ABC or ACII can be used to differentiate between chondroitin sulfate and dermatan sulfate proteoglycan in different connective tissues. In addition...

  5. The application of lesion sterilization and tissue repair 3Mix-MP for treating rat's dental pulp tissue

    Directory of Open Access Journals (Sweden)

    Raditya Nugroho

    2015-03-01

    Full Text Available Background: Lesion sterilization and tissue repair (LSTR 3Mix-MP are three broad-spectrum antibiotics, including metronidazole, ciprofloxacin and minocycline are mixed with propylene glycol or macrogol. There is the possibility ofthe healing process that marked proliferation ofnew blood vessels and proliferation offibroblasts in the treatment ofirreversible pulpitis by pulp capping LSTR 3MixMP because of  the principle of the method LSTR 3Mix-MP is to kill bacteria. Purpose: The purpose of this study to prove the effect of LSTR 3Mix-MP on chronic inflammation and the healing process in rat dental pulp tissue in vivo. Methods: Rattus norvegicus anaesthetized by using ketamine and xylazine dissolved in sterile isotonic saline solution (0.2 ml/50gr mm on the upper right thigh. Cavity preparation class I to perforation by using a low speed tapered diamond round bur. In the treatment group, rats were treated 3Mix-MP at a dose of10 mg and then covered with glass ionomer cement for 7 days on the pulp that has been opened for 3 days. The control group treated with saline irrigation on the pulp that has been opened for 3 days. Rats were killed after seven days, and then made preparations pulp tissue to count the number oflymphocytes, macrophages, plasma cells, blood vessels, and fibroblasts Results: There is an increase in the average number ofmacrophage cells, plasma, and fibroblasts; and decreased lymphocytes and blood vessels in the treated group exposure LSTR 3Mix-MP. Conclusion:LSTR 3Mix-MP can reduce chronic inflammation process and enhance the healing process in rat dental pulp tissue.

  6. [Oral rehabilitation with metalloceramic restorations in patients with non-differentiated systemic connective tissue dysplasia].

    Science.gov (United States)

    Stafeev, А А

    2015-01-01

    False formation of connective tissues have a great influence on structure and function of organs and tissues of the human body. In prosthodontics, the changes in connective tissues greatly occur during clinical stages of preparing metal ceramic dentures. The algorithm of treatment patients with connective tissue dysplasia during metal ceramic dentures was developed and introduced into practical dentistry based on studying the morphology and functionality of dentition and clinical experience.

  7. In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections

    Science.gov (United States)

    Rust fungi infect a wide range of plant species making them of particular interest to plant pathologists. In order to study the interactions between these important pathogenic fungi and their host plants it is useful to be able to differentiate fungal tissue from plant tissue. This can be accomplish...

  8. Imaging cellular and subcellular structure of human brain tissue using micro computed tomography

    Science.gov (United States)

    Khimchenko, Anna; Bikis, Christos; Schweighauser, Gabriel; Hench, Jürgen; Joita-Pacureanu, Alexandra-Teodora; Thalmann, Peter; Deyhle, Hans; Osmani, Bekim; Chicherova, Natalia; Hieber, Simone E.; Cloetens, Peter; Müller-Gerbl, Magdalena; Schulz, Georg; Müller, Bert

    2017-09-01

    Brain tissues have been an attractive subject for investigations in neuropathology, neuroscience, and neurobiol- ogy. Nevertheless, existing imaging methodologies have intrinsic limitations in three-dimensional (3D) label-free visualisation of extended tissue samples down to (sub)cellular level. For a long time, these morphological features were visualised by electron or light microscopies. In addition to being time-consuming, microscopic investigation includes specimen fixation, embedding, sectioning, staining, and imaging with the associated artefacts. More- over, optical microscopy remains hampered by a fundamental limit in the spatial resolution that is imposed by the diffraction of visible light wavefront. In contrast, various tomography approaches do not require a complex specimen preparation and can now reach a true (sub)cellular resolution. Even laboratory-based micro computed tomography in the absorption-contrast mode of formalin-fixed paraffin-embedded (FFPE) human cerebellum yields an image contrast comparable to conventional histological sections. Data of a superior image quality was obtained by means of synchrotron radiation-based single-distance X-ray phase-contrast tomography enabling the visualisation of non-stained Purkinje cells down to the subcellular level and automated cell counting. The question arises, whether the data quality of the hard X-ray tomography can be superior to optical microscopy. Herein, we discuss the label-free investigation of the human brain ultramorphology be means of synchrotron radiation-based hard X-ray magnified phase-contrast in-line tomography at the nano-imaging beamline ID16A (ESRF, Grenoble, France). As an example, we present images of FFPE human cerebellum block. Hard X-ray tomography can provide detailed information on human tissues in health and disease with a spatial resolution below the optical limit, improving understanding of the neuro-degenerative diseases.

  9. Peroxisome proliferator-activated receptor α (PPARα mRNA expression in human hepatocellular carcinoma tissue and non-cancerous liver tissue

    Directory of Open Access Journals (Sweden)

    Kurokawa Tsuyoshi

    2011-12-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptor α (PPARα regulates lipid metabolism in the liver. It is unclear, however, how this receptor changes in liver cancer tissue. On the other hand, mouse carcinogenicity studies showed that PPARα is necessary for the development of liver cancer induced by peroxisome proliferators, and the relationship between PPARα and the development of liver cancer have been the focus of considerable attention. There have been no reports, however, demonstrating that PPARα is involved in the development of human liver cancer. Methods The subjects were 10 patients who underwent hepatectomy for hepatocellular carcinoma. We assessed the expression of PPARα mRNA in human hepatocellular carcinoma tissue and non-cancerous tissue, as well as the expression of target genes of PPARα, carnitine palmitoyltransferase 1A and cyclin D1 mRNAs. We also evaluated glyceraldehyde 3-phosphate dehydrogenase, a key enzyme in the glycolytic system. Results The amounts of PPARα, carnitine palmitoyltransferase 1A and glyceraldehyde 3-phosphate dehydrogenase mRNA in cancerous sections were significantly increased compared to those in non-cancerous sections. The level of cyclin D1 mRNA tends to be higher in cancerous than non-cancerous sections. Although there was a significant correlation between the levels of PPARα mRNA and cyclin D1 mRNA in both sections, however the correlation was higher in cancerous sections. Conclusion The present investigation indicated increased expression of PPARα mRNA and mRNAs for PPARα target genes in human hepatocellular carcinoma. These results might be associated with its carcinogenesis and characteristic features of energy production.

  10. Identification of 5-hydroxytryptamine-producing cells by detection of fluorescence in paraffin-embedded tissue sections

    Directory of Open Access Journals (Sweden)

    Y. Kaneko

    2016-09-01

    Full Text Available 5-Hydroxytryptamine (5-HT produced by enterochromaffin (EC cells is an important enteric mucosal signaling ligand and has been implicated in several gastrointestinal diseases, including inflammatory bowel disease and functional disorders such as irritable bowel syndrome. The present study reports a new, simple and rapid visualization method of 5-HT-producing EC cells utilizing detection of autofluorescence in paraffin-embedded tissue sections after formalin fixation. In human samples, there was a high incidence of autofluorescence+ cells in the 5-HT+ cells in the pyloric, small intestinal and colonic glands, while co-localization was lacking between autofluorescence+ and gastrin+ cells in the pyloric and small intestinal glands. Autofluorescence+ EC cells were detected in the colon of mice and rats. Autofluorescence+ cells were also observed in 5-HT+ β cells in the pancreatic islets of Langerhans in pregnant mice, while non-pregnant mouse pancreatic islet cells showed no 5-HT immunoreactivity or autofluorescence. These results suggest that autofluorescence+ cells are identical to 5-HT+ cells, and the source of autofluorescence may be 5-HT itself or molecules related to its synthesis or degradation. This autofluorescence signal detection method may be applicable for monitoring of inflammatory status of inflammatory bowel diseases in both the experimental and clinical settings.

  11. Subperiosteal preparation using a new piezoelectric device: a histological examination

    OpenAIRE

    Stoetzer, Marcus; Magel, Anja; Kampmann, Andreas; Lemound, Juliana; Gellrich, Nils-Claudius; von See, Constantin

    2014-01-01

    Introduction: Subperiosteal preparation using a periosteal elevator leads to disturbances of local immunohistochemistry and periosteal histology due to a microtrauma. Usually soft-tissue damage can be considerably reduced by using piezoelectric technology. For this reason, the effects of a novel piezoelectric device on immunohistochemistry and periosteal histology were examined and compared to conventional preparation of the periosteum using a periosteal elevator.Material and methods: Lewis...

  12. Distribution of phospholipase C isozymes in various rat tissues and cultured cells

    International Nuclear Information System (INIS)

    Suh, P.G.; Ryu, S.H.; Choi, W.C.; Lee, K.Y.; Rhee, S.G.

    1987-01-01

    Monoclonal antibodies prepared against PLC-I or PLC-II enzyme did not cross-react with the other. Using a pair of antibodies which recognizes 2 different antigenic sites on the same molecule, radioimmunoassays were developed for the quantitation of PLC-I and PLC-II in homogenates of various tissues and cultured cells, prepared by homogenization in a 2 M KCl buffer. The contents of PLC enzymes were measured in 19 rat tissues, in human platelets and in 17 cultured cells. Results indicate that the concentration of PLC-I and PLC-II is very high in brain, PLC-I is localized mainly in brain and partly in seminal vesicles, PLC-II is found in most tissues and cells. PLC-I is highly localized even in brain: 5 different neuroblastoma did not contain PLC-I while 2 glioma and 1 astrocytoma contained significant amounts

  13. 3D printing facilitated scaffold-free tissue unit fabrication

    International Nuclear Information System (INIS)

    Tan, Yu; Richards, Dylan J; Mei, Ying; Trusk, Thomas C; Visconti, Richard P; Yost, Michael J; Drake, Christopher J; Argraves, William Scott; Markwald, Roger R; Kindy, Mark S

    2014-01-01

    Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing microdroplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit microdroplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell–cell adhesion, tissue formation and maturation. (paper)

  14. Identification and quantification of mRNA for nerve growth factor in histological preparations

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P A; Rush, R A; Scott, J; Penschow, J; Coghlan, J

    1986-03-14

    Hybridization histochemistry has been used to detect mRNA for nerve growth factor (NGF) in histological preparations of mouse salivary glands and rat iris using a /sup 32/P-labelled cDNA probe and autoradiography. Label was visible over the tubular cells of the male mouse submaxillary gland but not the sublingual gland. A much lower label density was found over the tubular cells of the female submaxillary gland, whereas sections of liver and pancreas were negative. Quantitative autoradiography allowed the detection of low levels of mRNA for NGF in the rat iris which was elevated by prior culture of the tissue. The results provide direct histological evidence for the presence of specific NGF-mRNA in the mouse submaxillary gland and rat iris, with increased levels following culture. 15 refs.

  15. 21 CFR 184.1387 - Lactase enzyme preparation from Candida pseudotropicalis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactase enzyme preparation from Candida pseudotropicalis. 184.1387 Section 184.1387 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... preparation from Candida pseudotropicalis. (a) This enzyme preparation is derived from the nonpathogenic...

  16. Vitamin K-dependent carboxylases from non-hepatic tissues

    NARCIS (Netherlands)

    Vermeer, C.; Hendrix, H.; Daemen, M.

    1982-01-01

    The presence of vitamin K-dependent carboxylase was investigated in the microsomal fraction of 20 different types of bovine tissue. Except for muscle, veins, lymphocytes and bone membrane, carboxylase was found in all these preparations, albeit in varying amounts. No differences could be detected

  17. Histomorphological Evaluation of Fresh Ovarian Tissue Transplanted Into Back Muscles of Balb/C Mice

    Directory of Open Access Journals (Sweden)

    I Amiri

    2011-06-01

    Full Text Available & objectives: Today, different methods for maintaining reproductive capability in young women with cancer are being considered. One of the most prominent of these methods is ovarian tissue transplant. Despite the relative success of this method, the appropriate location and methods of transplantation is still a matter of discussion. The present study evaluated the histomorphology of fresh ovarian tissue transplantation by two methods, inter muscular and intra muscular, in Balb/C mice. Methods & Materials: The study was conducted at Hamedan University of Medical Sciences in 2009. Fresh ovarian tissues from 12-14 day old Balb/C mice were transplanted into back muscles of ovarectomized 6 week old Balb/C mice both intermuscularly and intramuscularly. All transplanted mice received intra-peritoneal injections of a unit of rFSH for 4 weeks, every other day. At the end of the tenth week, all transplant recipient mice were killed and the transplanted ovarian tissues were removed. All samples were assessed for the angiogenesis and viability of follicles. Data were analyzed using SPSS software, using independent t- test. Results: In intermuscular transplanted group, the transplanted tissues were rejected in two cases. In the sections prepared from the other cases, in spite of the presence of some small necrotic areas, the majority of ovarian tissues had a healthy appearance within the primordial, primary, secondary and antral follicles. Apart from a significant reduction in the number of follicles and smaller size of follicles in the transplanted tissue in comparison with control group, no other major differences in morphology, histology, and the process of maturation of ovarian follicles were observed between the transplanted and control groups. Conclusion: Fresh ovarian tissue transplantation into muscles of the back area without basic vascular pedicle has new angiogenesis capabilities, appropriate survival and development of primordial follicles and

  18. Proceedings. Feedstock preparation and quality 1997 workshop

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Jan Erik [ed.

    1998-06-01

    The IEA Bioenergy Feedstock Preparation and Quality 1997 Workshop dealt with fuel feedstock quality improvement and methods to determine feedstock properties. It was arranged by the Swedish Univ. of Agricultural Sciences on behalf of the IEA Bioenergy Task XII Activity 4.1 Feedstock Preparation and Quality. This Activity is a 3-year cooperation 1995-1997 between Denmark, Sweden and the USA, mainly based on information exchange. The workshop had two sections: presentations by invited experts, and country reports on recent development in feedstock preparation and quality in the three participating countries. Separate abstracts have been prepared for four of the six papers presented

  19. A laser-powered hydrokinetic system for caries removal and cavity preparation.

    Science.gov (United States)

    Hadley, J; Young, D A; Eversole, L R; Gornbein, J A

    2000-06-01

    Laser systems have been developed for the cutting of dental hard tissues. The erbium, chromium:yttrium-scandium-gallium-garnet, or Er,Cr:YSGG, laser system used in conjunction with an air-water spray has been shown to be efficacious in vitro for cavity preparation. The authors randomly selected subjects for cavity preparation with conventional air turbine/bur dental surgery or an Er,Cr:YSGG laser-powered system using a split-mouth design. They prepared Class I, III and V cavities, placed resin restorations and evaluated subjects on the day of the procedure and 30 days and six months postoperatively for pulp vitality, recurrent caries, pain and discomfort, and restoration retention. Sixty-seven subjects completed the study. There were no statistical differences between the two treatment groups for the parameters measured with one exception; there was a statistically significant decrease in discomfort levels for the laser system at the time of cavity preparation for subjects who declined to receive local anesthetic. The Er,Cr:YSGG laser system is effective for preparation of Class I, III and V cavities and resin restorations are retained by lased tooth surfaces. Hard-tissue cutting lasers are being introduced for use in operative dentistry. In this study, an Er,Cr:YSGG laser has been shown to be effective for cavity preparation and restoration replacement.

  20. Dental hard tissue characterization using laser-based ultrasonics

    Science.gov (United States)

    Blodgett, David W.; Massey, Ward L.

    2003-07-01

    Dental health care and research workers require a means of imaging the structures within teeth in vivo. One critical need is the detection of tooth decay in its early stages. If decay can be detected early enough, the process can be monitored and interventional procedures, such as fluoride washes and controlled diet, can be initiated to help re-mineralize the tooth. Currently employed x-ray imaging is limited in its ability to visualize interfaces and incapable of detecting decay at a stage early enough to avoid invasive cavity preparation followed by a restoration. To this end, non-destructive and non-contact in vitro measurements on extracted human molars using laser-based ultrasonics are presented. Broadband ultrasonic waves are excited in the extracted sections by using a pulsed carbon-dioxide (CO2) laser operating in a region of high optical absorption in the dental hard tissues. Optical interferometric detection of the ultrasonic wave surface displacements in accomplished with a path-stabilized Michelson-type interferometer. Results for bulk and surface in-vitro characterization of caries are presented on extracted molars with pre-existing caries.

  1. NONCHEMICAL DEHYDRATION OF FIXED TISSUE COMBINING MICROWAVES AND VACUUM

    NARCIS (Netherlands)

    KOK, LP; BOON, ME

    A novel histoprocessing method for paraffin and plastic sections is presented in which dehydration of fixed tissue blocks is achieved within 5 minutes by microwaving under vacuum. Exploiting the decrease in boiling temperature under vacuum, we succeed in evaporating liquid molecules in the tissues

  2. Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Md. Minhajul [Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000 (Bangladesh); Khan, Mubarak A. [Institute of Radiation and Polymer Technology (IRPT), Atomic Energy Research Establishment (AERE), P. O. Box No. 3787, Dhaka 1000 (Bangladesh); Rahman, Mohammed Mizanur, E-mail: mizanur.rahman@du.ac.bd [Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000 (Bangladesh)

    2015-04-01

    Biodegradable porous hybrid polymer composites were prepared by using gelatin as base polymer matrix, β-tricalcium phosphate (TCP) and calcium sulfate (CS) as cementing materials, chitosan as an antimicrobial agent, and glutaraldehyde and polyethylene glycol (PEG) as crosslinkers at different mass ratios. Thereafter, the composites were subjected to γ-radiation sterilization. The structure and properties of these composite scaffolds were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), mechanical properties testing (compressive, bending, tensile and impact), thermogravimetry/differential thermal analysis (TG/DTA), and physical stability test in simulated body fluid (SBF). We found that TCP rich composites showed enhanced mechanical properties among all the crosslinked composites. γ-Radiation sterilization triggered further cross linking in polymer matrix resulting a decrease in pore size of the composites and an increase in pore wall thickness with improved mechanical and thermal properties. The chemically crosslinked composite with 40% TCP followed by γ-radiation sterilization showed the smallest pore size distribution with a mean pore diameter of 159.22 μm, which falls in the range of 100–350 μm — known to be suitable for osteoconduction. Considering its improved mechanical and thermal properties along with osteoconduction ability without cytotoxicity, we propose this biocomposite as a viable candidate for bone tissue engineering. - Highlights: • Composite scaffolds were prepared from biopolymers (gelatin and chitosan). • β-TCP and CS were used as bioactive cementing materials at different ratios. • γ-Sterilization improved the mechanical properties of the biocomposites. • γ-Sterilization reduced the cytotoxicity and induced high antimicrobial properties. • Composite having 40% TCP has the proper pore size distribution for osteoconduction.

  3. Preparation of lumped fission product (FP) cross sections for a multigroup library

    International Nuclear Information System (INIS)

    Ono, S.; Corcuera, R.P.

    1984-01-01

    A method for the calculation of lumped Fission Product (FP) cross sections has been developed. The group constants fo each nuclide are generated by NJOY code, based on ENDF/B-V data. In this first version, cross section of 28 nuclides are lumped for typical characteristics of Binary Breeder Reactor (BBR). One energy group calculations are made for a 1000 MWe fast reactor to verify the influence of burnup, number of FP and fuel composition on the lumped fission product cross sections. (Author) [pt

  4. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture.

    Science.gov (United States)

    DeQuach, Jessica A; Mezzano, Valeria; Miglani, Amar; Lange, Stephan; Keller, Gordon M; Sheikh, Farah; Christman, Karen L

    2010-09-27

    The native extracellular matrix (ECM) consists of a highly complex, tissue-specific network of proteins and polysaccharides, which help regulate many cellular functions. Despite the complex nature of the ECM, in vitro cell-based studies traditionally assess cell behavior on single ECM component substrates, which do not adequately mimic the in vivo extracellular milieu. We present a simple approach for developing naturally derived ECM coatings for cell culture that provide important tissue-specific cues unlike traditional cell culture coatings, thereby enabling the maturation of committed C2C12 skeletal myoblast progenitors and human embryonic stem cells differentiated into cardiomyocytes. Here we show that natural muscle-specific coatings can (i) be derived from decellularized, solubilized adult porcine muscle, (ii) contain a complex mixture of ECM components including polysaccharides, (iii) adsorb onto tissue culture plastic and (iv) promote cell maturation of committed muscle progenitor and stem cells. This versatile method can create tissue-specific ECM coatings, which offer a promising platform for cell culture to more closely mimic the mature in vivo ECM microenvironment.

  5. Molecular imaging of lipids in cells and tissues

    Science.gov (United States)

    Borner, Katrin; Malmberg, Per; Mansson, Jan-Eric; Nygren, Hakan

    2007-02-01

    The distribution pattern of lipid species in biological tissues was analyzed with imaging mass spectrometry (TOF-SIMS; time-of-flight secondary ion mass spectrometry). The first application shows distribution of a glycosphingolipid, the galactosylceramide-sulfate (sulfatide) with different hydrocarbon chain lengths and the fatty acids palmitate and oleate in rat cerebellum. Sulfatides were seen localized in regions suggested as paranodal areas of rat cerebellar white matter as well as in the granular layer, with highest concentrations at the borders of the white matter. Different distribution patterns could be shown for the fatty acid C16:0 palmitate and C18:1 oleate in rat cerebellum, which seem to origin partly from the hydrocarbon chains of phosphatidylcholine. Results were shown for two different tissue preparation methods, which were plunge-freezing and cryostat sectioning as well as high-pressure freezing, freeze-fracturing and freeze-drying. The second application shows TOF-SIMS analysis on a biological trial of choleratoxin treatment in mouse intestine. The effect of cholera toxin on lipids in the intestinal epithelium was shown by comparing control and cholera toxin treated mouse intestine samples. A significant increase of the cholesterol concentration was seen after treatment. Cholesterol was mainly localized to the brush border of enterocytes of the intestinal villi, which could be explained by the presence of cholesterol-rich lipid rafts present on the microvilli or by relations to cholesterol uptake. After cholera toxin exposure, cholesterol was seen increased in the nuclei of enterocytes and apparently in the interstitium of the villi. We find that imaging TOF-SIMS is a powerful tool for studies of lipid distributions in cells and tissues, enabling the elucidation of their role in cell function and biology.

  6. 48 CFR 315.372 - Preparation of negotiation memorandum.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Preparation of negotiation memorandum. 315.372 Section 315.372 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Source Selection 315.372 Preparation of negotiation memorandum. The Contracting...

  7. Peripheral laser iridoplasty opens angle in plateau iris by thinning the cross-sectional tissues

    Directory of Open Access Journals (Sweden)

    Liu J

    2013-09-01

    Full Text Available Ji Liu,1,2 Tania Lamba,1 David A Belyea1 1Department of Ophthalmology, The George Washington University, Washington DC, USA; 2Yale Eye Center, Yale University, New Haven, CT, USA Abstract: Plateau iris syndrome has been described as persistent angle narrowing or occlusion with intraocular pressure elevation after peripheral iridotomy due to the abnormal plateau iris configuration. Argon laser peripheral iridoplasty (ALPI is an effective adjunct procedure to treat plateau iris syndrome. Classic theory suggests that the laser causes the contraction of the far peripheral iris stroma, "pulls" the iris away from the angle, and relieves the iris-angle apposition. We report a case of plateau iris syndrome that was successfully treated with ALPI. Spectral domain optical coherence tomography confirmed the angle was open at areas with laser treatment but remained appositionally closed at untreated areas. Further analysis suggested significant cross-sectional thinning of the iris at laser-treated areas in comparison with untreated areas. The findings indicate that APLI opens the angle, not only by contracting the iris stroma, but also by thinning the iris tissue at the crowded angle. This is consistent with the ALPI technique to aim at the iris as far peripheral as possible. This case also suggests that spectral domain optical coherence tomography is a useful adjunct imaging tool to gonioscopy in assessing the angle condition. Keywords: plateau iris, optic coherence tomography, argon laser peripheral iridoplasty, angle-closure glaucoma

  8. Preparation and Characterization of Biomimetic Hydroxyapatite-Resorbable Polymer Composites for Hard Tissue Repair

    Science.gov (United States)

    Hiebner, Kristopher Robert

    Autografts are the orthopedic "gold standard" for repairing bone voids. Autografts are osteoconductive and do not elicit an immune response, but they are in short supply and require a second surgery to harvest the bone graft. Allografts are currently the most common materials used for the repair of segmental defects in hard tissue. Unlike autografts, allografts can cause an undesirable immune response and the possibility of disease transmission is a major concern. As an alternative to the above approaches, recent research efforts have focused on the use of composite materials made from hydroxyapatite (HA) and bioresorbable polymers, such as poly-L-lactide (PLLA). Recent results have shown that the surface hydroxides on HA can initiate the ring opening polymerization (ROP) of L-lactide and other lactones creating a composite with superior interfacial strength. This thesis demonstrates that the surface of porous biologically derived HA substrates, such as coralline HA and trabecular bone, can be used to initiate the ROP of L-lactide and other lactones from the vapor phase. This process increases the strength of the porous scaffold through the deposition of a thin, uniform polymer coating, while maintaining the porous structure. The kinetics of the chemical vapor deposition polymerization (CVDP) are described using a quartz crystal microbalance (QCM). The reaction temperature and monomer vapor pressure are found to affect the rate of the polymerization. Also described in this thesis is the preparation of a porous polymer scaffold that mimics the structure of demineralized bone matrix (DBM). This demineralized bone matrix simulant (DBMS) is created using anorganic bovine bone as a template to initiate the polymerization of various lactones, followed by the removal of the HA scaffold. This material retained its shape and exhibits mechanical properties superior to DBM. Finally it is shown that HA can be used to initiate the ROP of a-caprolactam and the biocompatibility

  9. Stabilization of an injection preparation of technetium-99m MDP with ascorbic acid

    International Nuclear Information System (INIS)

    Lindelauf, F.M.P.; Sijtma, S.K.

    1983-01-01

    Tc-99m-labelled preparations for bone scanning are subject to oxidation in vitro. This results in bad scans with images of soft tissues as well. Three commercially available preparations were tested for stability after addition of ascorbic acid which effectively counteracts the oxidation by dissolved oxygen. (Auth.)

  10. The effect of aging of formalin-fixed paraffin-embedded tissues on the in situ hybridization and immunohistochemistry signals in cervical lesions.

    Science.gov (United States)

    Nuovo, Allison J; Garofalo, Michela; Mikhail, Alexandria; Nicol, Alcina F; Vianna-Andrade, Cecilia; Nuovo, Gerard J

    2013-09-01

    Formalin-fixed, paraffin-embedded tissues are widely used in biomedical research but little is known about the effect of the age of the block or unstained slides on the in situ hybridization or immunohistochemistry signal. We compared the in situ-based and immunohistochemistry-based signals for cervical intraepithelial neoplasia samples that ranged from 0 to 15 years of age. There was a progressive and statistically significant decrease in the strength of the p16 signal when comparing tissues prepared from recent unstained slides (0 to 1 y old, mean score of 92%) to those of intermediate age (5 to 7 y old, mean score of 49%) to old unstained slides (cut 13 to 15 y ago, mean score of 10%). Equivalent, progressive, and significant decreases in the intensity of the signals for microRNAs, CD45, and human papillomavirus DNA were seen in tissues stored on slides from 5 to 7 years and 13 to 15 years, respectively. However, the diminution of signal was much less, although still statistically significant, if the sections from the 13- to 15-year-old paraffin blocks were prepared in 2012. The data likely does not represent degradation of the targets as extraction of several microRNA from the old blocks showed no detectable degradation, despite the markedly weakened in situ hybridization signal. It is concluded that in situ-based signal for DNA, microRNAs, and proteins in paraffin-embedded tissues are significantly reduced over time, especially when stored long term on glass slides which, in turn, can lead to a significant underestimation of the amount and presence of the nucleic acid or protein target.

  11. Tissue expansion and fluid absorption by skin tissue following intradermal injections through hollow microneedles

    Science.gov (United States)

    Shrestha, Pranav; Stoeber, Boris

    2017-11-01

    Hollow microneedles provide a promising alternative to conventional drug delivery techniques due to improved patient compliance and the dose sparing effect. The dynamics of fluid injected through hollow microneedles into skin, which is a heterogeneous and deformable porous medium, have not been investigated extensively in the past. We have introduced the use of Optical Coherence Tomography (OCT) for real-time visualization of fluid injections into excised porcine tissue. The results from ex-vivo experiments, including cross-sectional tissue images from OCT and pressure/flow-rate measurements, show a transient mode of high flow-rate into the tissue followed by a lower steady-state infusion rate. The injected fluid expands the underlying tissue and causes the external free surface of the skin to rise, forming a characteristic intradermal wheal. We have used OCT to visualize the evolution of tissue and free surface deformation, and advancement of the boundary between regions of expanding and stationary tissue. We will show the effect of different injection parameters such as fluid pressure, viscosity and microneedle retraction on the injected volume. This work has been supported through funding from the Collaborative Health Research Program by the Natural Science and Engineering Research Council of Canada and the Canadian Health Research Institute, and through the Canada Research Chairs program.

  12. Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation.

    Science.gov (United States)

    Zhu, Changlai; Li, Feng; Zhou, Xinyang; Lin, Lin; Zhang, Tianyi

    2014-05-01

    Bacterial cellulose (BC) is a natural biomaterial with unique properties suitable for tissue engineering applications, but it has not yet been used for preparing nerve conduits to repair peripheral nerve injuries. The objectives of this study were to prepare and characterize the Kampuchea-synthesized bacterial cellulose (KBC) and further evaluate the biocompatibility of KBC with peripheral nerve cells and tissues in vitro and in vivo. KBC membranes were composed of interwoven ribbons of about 20-100 nm in width, and had a high purity and the same crystallinity as that of cellulose Iα. The results from light and scanning electron microscopy, MTT assay, flow cytometry, and RT-PCR indicated that no significant differences in the morphology and cell function were observed between Schwann cells (SCs) cultured on KBC membranes and glass slips. We also fabricated a nerve conduit using KBC, which was implanted into the spatium intermusculare of rats. At 1, 3, and 6 weeks post-implantation, clinical chemistry and histochemistry showed that there were no significant differences in blood counts, serum biochemical parameters, and tissue reactions between implanted rats and sham-operated rats. Collectively, our data indicated that KBC possessed good biocompatibility with primary cultured SCs and KBC did not exert hematological and histological toxic effects on nerve tissues in vivo. Copyright © 2013 Wiley Periodicals, Inc.

  13. Overview on Techniques to Construct Tissue Arrays with Special Emphasis on Tissue Microarrays

    Science.gov (United States)

    Vogel, Ulrich

    2014-01-01

    With the advent of new histopathological staining techniques (histochemistry, immunohistochemistry, in situ hybridization) and the discovery of thousands of new genes, mRNA, and proteins by molecular biology, the need grew for a technique to compare many different cells or tissues on one slide in a cost effective manner and with the possibility to easily track the identity of each specimen: the tissue array (TA). Basically, a TA consists of at least two different specimens per slide. TAs differ in the kind of specimens, the number of specimens installed, the dimension of the specimens, the arrangement of the specimens, the embedding medium, the technique to prepare the specimens to be installed, and the technique to construct the TA itself. A TA can be constructed by arranging the tissue specimens in a mold and subsequently pouring the mold with the embedding medium of choice. In contrast, preformed so-called recipient blocks consisting of the embedding medium of choice have punched, drilled, or poured holes of different diameters and distances in which the cells or tissue biopsies will be deployed manually, semi-automatically, or automatically. The costs of constructing a TA differ from a few to thousands of Euros depending on the technique/equipment used. Remarkably high quality TAs can be also achieved by low cost techniques. PMID:27600339

  14. Gelatin in situ zymography on fixed, paraffin-embedded tissue: zinc and ethanol fixation preserve enzyme activity.

    Science.gov (United States)

    Hadler-Olsen, Elin; Kanapathippillai, Premasany; Berg, Eli; Svineng, Gunbjørg; Winberg, Jan-Olof; Uhlin-Hansen, Lars

    2010-01-01

    In situ zymography is a method for the detection and localization of enzymatic activity in tissue sections. This method is used with frozen sections because routine fixation of tissue in neutral-buffered formalin inhibits enzyme activity. However, frozen sections present with poor tissue morphology, making precise localization of enzymatic activity difficult to determine. Ethanol- and zinc-buffered fixative (ZBF) are known to preserve both morphological and functional properties of the tissue well, but it has not previously been shown that these fixatives preserve enzyme activity. In the present study, we show that in situ zymography can be performed on ethanol- and ZBF-fixed paraffin-embedded tissue. Compared with snap-frozen tissue, ethanol- and ZBF-fixed tissue showed stronger signals and superior morphology, allowing for a much more precise detection of gelatinolytic activity. Gelatinolytic enzymes could also be extracted from both ethanol- and ZBF-fixed tissue. The yield, as analyzed by SDS-PAGE gelatin zymography and Western blotting, was influenced by the composition of the extraction buffer, but was generally lower than that obtained from unfixed tissue.

  15. Application of electrical stimulation for functional tissue engineering in vitro and in vivo

    Science.gov (United States)

    Park, Hyoungshin (Inventor); Freed, Lisa (Inventor); Vunjak-Novakovic, Gordana (Inventor); Langer, Robert (Inventor); Radisic, Milica (Inventor)

    2013-01-01

    The present invention provides new methods for the in vitro preparation of bioartificial tissue equivalents and their enhanced integration after implantation in vivo. These methods include submitting a tissue construct to a biomimetic electrical stimulation during cultivation in vitro to improve its structural and functional properties, and/or in vivo, after implantation of the construct, to enhance its integration with host tissue and increase cell survival and functionality. The inventive methods are particularly useful for the production of bioartificial equivalents and/or the repair and replacement of native tissues that contain electrically excitable cells and are subject to electrical stimulation in vivo, such as, for example, cardiac muscle tissue, striated skeletal muscle tissue, smooth muscle tissue, bone, vasculature, and nerve tissue.

  16. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology.

    Science.gov (United States)

    Xu, Tao; Zhao, Weixin; Zhu, Jian-Ming; Albanna, Mohammad Z; Yoo, James J; Atala, Anthony

    2013-01-01

    This study was designed to develop a versatile method for fabricating complex and heterogeneous three-dimensional (3D) tissue constructs using simultaneous ink-jetting of multiple cell types. Human amniotic fluid-derived stem cells (hAFSCs), canine smooth muscle cells (dSMCs), and bovine aortic endothelial cells (bECs), were separately mixed with ionic cross-linker calcium chloride (CaCl(2)), loaded into separate ink cartridges and printed using a modified thermal inkjet printer. The three cell types were delivered layer-by-layer to pre-determined locations in a sodium alginate-collagen composite located in a chamber under the printer. The reaction between CaCl(2) and sodium alginate resulted in a rapid formation of a solid composite gel and the printed cells were anchored in designated areas within the gel. The printing process was repeated for several cycles leading to a complex 3D multi-cell hybrid construct. The biological functions of the 3D printed constructs were evaluated in vitro and in vivo. Each of the printed cell types maintained their viability and normal proliferation rates, phenotypic expression, and physiological functions within the heterogeneous constructs. The bioprinted constructs were able to survive and mature into functional tissues with adequate vascularization in vivo. These findings demonstrate the feasibility of fabricating complex heterogeneous tissue constructs containing multiple cell types using inkjet printing technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Experimental Toxoplasmosis in Rats Induced Orally with Eleven Strains of Toxoplasma gondii of Seven Genotypes: Tissue Tropism, Tissue Cyst Size, Neural Lesions, Tissue Cyst Rupture without Reactivation, and Ocular Lesions.

    Directory of Open Access Journals (Sweden)

    Jitender P Dubey

    Full Text Available The protozoan parasite Toxoplasma gondii is one of the most widely distributed and successful parasites. Toxoplasma gondii alters rodent behavior such that infected rodents reverse their fear of cat odor, and indeed are attracted rather than repelled by feline urine. The location of the parasite encysted in the brain may influence this behavior. However, most studies are based on the highly susceptible rodent, the mouse.Latent toxoplasmosis was induced in rats (10 rats per T. gondii strains of the same age, strain, and sex, after oral inoculation with oocysts (natural route and natural stage of infection of 11 T. gondii strains of seven genotypes. Rats were euthanized at two months post inoculation (p.i. to investigate whether the parasite genotype affects the distribution, location, tissue cyst size, or lesions. Tissue cysts were enumerated in different regions of the brains, both in histological sections as well in saline homogenates. Tissue cysts were found in all regions of the brain. The tissue cyst density in different brain regions varied extensively between rats with many regions highly infected in some animals. Overall, the colliculus was most highly infected although there was a large amount of variability. The cerebral cortex, thalamus, and cerebellum had higher tissue cyst densities and two strains exhibited tropism for the colliculus and olfactory bulb. Histologically, lesions were confined to the brain and eyes. Tissue cyst rupture was frequent with no clear evidence for reactivation of tachyzoites. Ocular lesions were found in 23 (25% of 92 rat eyes at two months p.i. The predominant lesion was focal inflammation in the retina. Tissue cysts were seen in the sclera of one and in the optic nerve of two rats. The choroid was not affected. Only tissue cysts, not active tachyzoite infections, were detected. Tissue cysts were seen in histological sections of tongue of 20 rats but not in myocardium and leg muscle.This study reevaluated

  18. A novel monoclonal antibody for detection of galectin-9 in tissue sections: application to human tissues infected by oncogenic viruses

    Directory of Open Access Journals (Sweden)

    Barjon Clément

    2012-07-01

    Full Text Available Abstract Background Galectin-9 is a mammalian lectin which possesses immunosuppressive properties. Excessive production of galectin-9 has been reported in two types of human virus-associated diseases chronic hepatitis C and nasopharyngeal carcinoma associated to the Epstein-Barr virus. The objective of this study was to produce new monoclonal antibodies targeting galectin-9 in order to improve its detection in clinical samples, especially on tissue sections analysed by immunohistochemistry. Methods Hybridomas were produced through immunization of mice with the recombinant c-terminus part of galectin-9 (residues 191 to 355 of the long isoform and semi-solid fusion of spleen cells with Sp2/0 cells. Monoclonal antibodies were characterized using ELISA, epitope mapping, western blot and immunohistochemistry. Results We selected seven hybridomas producing antibodies reacting with our recombinant c-terminus galectin-9 in ELISA. Five of them reacted with the epitope “TPAIPPMMYPHPA” (common to all isoforms, residues 210 to 222 of the long isoform and stained all three isoforms of galectin-9 analysed by western blot. One of them, 1G3,demonstrated very good sensitivity and specificity when used for immunohistochemistry. Using 1G3, we could confirm the intense and constant expression of galectin-9 by Epstein-Barr virus positive malignant cells from nasopharyngeal carcinomas. In most samples, specific staining was detected in both cytoplasm and nuclei. Galectin-9 was also detected in liver biopsies from patients infected by the human hepatitis C or B viruses with expression not only in inflammatory leucocytes and Kupffer cells, but also in hepatocytes. In contrast, galectin-9 was virtually absent in non-infected liver specimens. Conclusion The 1G3 monoclonal antibody will be a powerful tool to assess galectin-9 expression and distribution especially in diseases related to oncogenic viruses.

  19. Fast and Simple Protocols for Mass Spectrometry-Based Proteomics of Small Fresh Frozen Uterine Tissue Sections

    NARCIS (Netherlands)

    Dapic, I.; Uwugiaren, N.; Jansen, P.J.; Corthals, G.L.

    2017-01-01

    Human tissues are an important link between organ-specific spatial molecular information, patient pathology, and patient treatment options. However, patient tissues are uniquely obtained by time and location, and limited in their availability and size. Currently, little knowledge exists about

  20. UV-laser microdissection system - A novel approach for the preparation of high-resolution stable isotope records (δ13C/δ18O) from tree rings

    Science.gov (United States)

    Schollaen, Karina; Helle, Gerhard

    2013-04-01

    Intra-annual stable isotope (δ13C and δ18O) studies of tree rings at various incremental resolutions have been attempting to extract valuable seasonal climatic and environmental information or assessing plant ecophysiological processes. For preparing high-resolution isotope samples normally wood segments or cores are mechanically divided in radial direction or cut in tangential direction. After mechanical dissection, wood samples are ground to a fine powder and either cellulose is extracted or bulk wood samples are analyzed. Here, we present a novel approach for the preparation of high-resolution stable isotope records from tree rings using an UV-laser microdissection system. Firstly, tree-ring cellulose is directly extracted from wholewood cross-sections largely leaving the wood anatomical structure intact and saving time as compared to the classical procedure. Secondly, micro-samples from cellulose cross-sections are dissected with an UV-Laser dissection microscope. Tissues of interest from cellulose cross-sections are identified and marked precisely with a screen-pen and dissected via an UV-laser beam. Dissected cellulose segments were automatically collected in capsules and are prepared for stable isotope (δ13C and δ18O) analysis. The new techniques facilitate inter- and intra-annual isotope analysis on tree-ring and open various possibilities for comparisons with wood anatomy in plant eco-physiological studies. We describe the design and the handling of this novel methodology and discuss advantages and constraints given by the example of intra-annual oxygen isotope analysis on tropical trees.

  1. Validation of evaluated neutron standard cross sections

    International Nuclear Information System (INIS)

    Badikov, S.; Golashvili, T.

    2008-01-01

    Some steps of the validation and verification of the new version of the evaluated neutron standard cross sections were carried out. In particular: -) the evaluated covariance data was checked for physical consistency, -) energy-dependent evaluated cross-sections were tested in most important neutron benchmark field - 252 Cf spontaneous fission neutron field, -) a procedure of folding differential standard neutron data in group representation for preparation of specialized libraries of the neutron standards was verified. The results of the validation and verification of the neutron standards can be summarized as follows: a) the covariance data of the evaluated neutron standards is physically consistent since all the covariance matrices of the evaluated cross sections are positive definite, b) the 252 Cf spectrum averaged standard cross-sections are in agreement with the evaluated integral data (except for 197 Au(n,γ) reaction), c) a procedure of folding differential standard neutron data in group representation was tested, as a result a specialized library of neutron standards in the ABBN 28-group structure was prepared for use in reactor applications. (authors)

  2. Backscattered electron SEM imaging of resin sections from plant specimens: observation of histological to subcellular structure and CLEM.

    Science.gov (United States)

    Rizzo, N W; Duncan, K E; Bourett, T M; Howard, R J

    2016-08-01

    We have refined methods for biological specimen preparation and low-voltage backscattered electron imaging in the scanning electron microscope that allow for observation at continuous magnifications of ca. 130-70 000 X, and documentation of tissue and subcellular ultrastructure detail. The technique, based upon early work by Ogura & Hasegawa (1980), affords use of significantly larger sections from fixed and resin-embedded specimens than is possible with transmission electron microscopy while providing similar data. After microtomy, the sections, typically ca. 750 nm thick, were dried onto the surface of glass or silicon wafer and stained with heavy metals-the use of grids avoided. The glass/wafer support was then mounted onto standard scanning electron microscopy sample stubs, carbon-coated and imaged directly at an accelerating voltage of 5 kV, using either a yttrium aluminum garnet or ExB backscattered electron detector. Alternatively, the sections could be viewed first by light microscopy, for example to document signal from a fluorescent protein, and then by scanning electron microscopy to provide correlative light/electron microscope (CLEM) data. These methods provide unobstructed access to ultrastructure in the spatial context of a section ca. 7 × 10 mm in size, significantly larger than the typical 0.2 × 0.3 mm section used for conventional transmission electron microscopy imaging. Application of this approach was especially useful when the biology of interest was rare or difficult to find, e.g. a particular cell type, developmental stage, large organ, the interface between cells of interacting organisms, when contextual information within a large tissue was obligatory, or combinations of these factors. In addition, the methods were easily adapted for immunolocalizations. © 2015 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society.

  3. Characterization of human breast cancer tissues by infrared imaging.

    Science.gov (United States)

    Verdonck, M; Denayer, A; Delvaux, B; Garaud, S; De Wind, R; Desmedt, C; Sotiriou, C; Willard-Gallo, K; Goormaghtigh, E

    2016-01-21

    Fourier Transform InfraRed (FTIR) spectroscopy coupled to microscopy (IR imaging) has shown unique advantages in detecting morphological and molecular pathologic alterations in biological tissues. The aim of this study was to evaluate the potential of IR imaging as a diagnostic tool to identify characteristics of breast epithelial cells and the stroma. In this study a total of 19 breast tissue samples were obtained from 13 patients. For 6 of the patients, we also obtained Non-Adjacent Non-Tumor tissue samples. Infrared images were recorded on the main cell/tissue types identified in all breast tissue samples. Unsupervised Principal Component Analyses and supervised Partial Least Square Discriminant Analyses (PLS-DA) were used to discriminate spectra. Leave-one-out cross-validation was used to evaluate the performance of PLS-DA models. Our results show that IR imaging coupled with PLS-DA can efficiently identify the main cell types present in FFPE breast tissue sections, i.e. epithelial cells, lymphocytes, connective tissue, vascular tissue and erythrocytes. A second PLS-DA model could distinguish normal and tumor breast epithelial cells in the breast tissue sections. A patient-specific model reached particularly high sensitivity, specificity and MCC rates. Finally, we showed that the stroma located close or at distance from the tumor exhibits distinct spectral characteristics. In conclusion FTIR imaging combined with computational algorithms could be an accurate, rapid and objective tool to identify/quantify breast epithelial cells and differentiate tumor from normal breast tissue as well as normal from tumor-associated stroma, paving the way to the establishment of a potential complementary tool to ensure safe tumor margins.

  4. MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays.

    Science.gov (United States)

    Powers, Thomas W; Neely, Benjamin A; Shao, Yuan; Tang, Huiyuan; Troyer, Dean A; Mehta, Anand S; Haab, Brian B; Drake, Richard R

    2014-01-01

    A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed tissues from normal mouse kidney, human pancreatic and prostate cancers, and a human hepatocellular carcinoma tissue microarray were processed by antigen retrieval followed by on-tissue digestion with peptide N-glycosidase F. The released N-glycans were detected by MALDI-IMS analysis, and the structural composition of a subset of glycans could be verified directly by on-tissue collision-induced fragmentation. Other structural assignments were confirmed by off-tissue permethylation analysis combined with multiple database comparisons. Imaging of mouse kidney tissue sections demonstrates specific tissue distributions of major cellular N-linked glycoforms in the cortex and medulla. Differential tissue distribution of N-linked glycoforms was also observed in the other tissue types. The efficacy of using MALDI-IMS glycan profiling to distinguish tumor from non-tumor tissues in a tumor microarray format is also demonstrated. This MALDI-IMS workflow has the potential to be applied to any FFPE tissue block or tissue microarray to enable higher throughput analysis of the global changes in N-glycosylation associated with cancers.

  5. Beta adrenergic receptors in human cavernous tissue

    Energy Technology Data Exchange (ETDEWEB)

    Dhabuwala, C.B.; Ramakrishna, C.V.; Anderson, G.F.

    1985-04-01

    Beta adrenergic receptor binding was performed with /sup 125/I iodocyanopindolol on human cavernous tissue membrane fractions from normal tissue and transsexual procedures obtained postoperatively, as well as from postmortem sources. Isotherm binding studies on normal fresh tissues indicated that the receptor density was 9.1 fmoles/mg. with a KD of 23 pM. Tissue stored at room temperature for 4 to 6 hours, then at 4C in saline solution for 19 to 20 hours before freezing showed no significant changes in receptor density or affinity, and provided evidence for the stability of postmortem tissue obtained within the same time period. Beta receptor density of 2 cavernous preparations from transsexual procedures was not significantly different from normal control tissues, and showed that high concentrations of estrogen received by these patients had no effect on beta adrenergic receptor density. Displacement of /sup 125/iodocyanopindolol by 5 beta adrenergic agents demonstrated that 1-propranolol had the greatest affinity followed by ICI 118,551, zinterol, metoprolol and practolol. When the results of these displacement studies were subjected to Scatfit, non- linear regression line analysis, a single binding site was described. Based on the relative potency of the selective beta adrenergic agents it appears that these receptors were of the beta 2 subtype.

  6. Traction force microscopy of engineered cardiac tissues.

    Science.gov (United States)

    Pasqualini, Francesco Silvio; Agarwal, Ashutosh; O'Connor, Blakely Bussie; Liu, Qihan; Sheehy, Sean P; Parker, Kevin Kit

    2018-01-01

    Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we investigated the relationship between contractile proficiency and metabolism in neonate rat ventricular myocytes (NRVM) cultured on gels with stiffness mimicking soft immature (1 kPa), normal healthy (13 kPa), and stiff diseased (90 kPa) cardiac microenvironments. We found that tissues engineered on the softest gels generated the least amount of stress and had the smallest work output. Conversely, cardiomyocytes in tissues engineered on healthy- and disease-mimicking gels generated significantly higher stresses, with the maximal contractile work measured in NRVM engineered on gels of normal stiffness. Interestingly, although tissues on soft gels exhibited poor stress generation and work production, their basal metabolic respiration rate was significantly more elevated than in other groups, suggesting a highly ineffective coupling between energy production and contractile work output. Our novel platform can thus be utilized to quantitatively assess the mechanotransduction pathways that initiate tissue-level structural and functional remodeling in response to substrate stiffness.

  7. Biomimetic nanoclay scaffolds for bone tissue engineering

    Science.gov (United States)

    Ambre, Avinash Harishchandra

    Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was

  8. Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system.

    Science.gov (United States)

    Elliott Donaghue, Irja; Tam, Roger; Sefton, Michael V; Shoichet, Molly S

    2014-09-28

    Tissue engineering frequently involves cells and scaffolds to replace damaged or diseased tissue. It originated, in part, as a means of effecting the delivery of biomolecules such as insulin or neurotrophic factors, given that cells are constitutive producers of such therapeutic agents. Thus cell delivery is intrinsic to tissue engineering. Controlled release of biomolecules is also an important tool for enabling cell delivery since the biomolecules can enable cell engraftment, modulate inflammatory response or otherwise benefit the behavior of the delivered cells. We describe advances in cell and biomolecule delivery for tissue regeneration, with emphasis on the central nervous system (CNS). In the first section, the focus is on encapsulated cell therapy. In the second section, the focus is on biomolecule delivery in polymeric nano/microspheres and hydrogels for the nerve regeneration and endogenous cell stimulation. In the third section, the focus is on combination strategies of neural stem/progenitor cell or mesenchymal stem cell and biomolecule delivery for tissue regeneration and repair. In each section, the challenges and potential solutions associated with delivery to the CNS are highlighted. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Comparative assessment of the interfacial soft and hard tissues investing implants and natural teeth in the macaque mandible.

    Science.gov (United States)

    Siar, Chong Huat; Toh, Chooi Gait; Romanos, Georgios E; Ng, Kok Han

    2015-07-01

    The aim of this study was to conduct a comparative qualitative and quantitative assessment of the interfacial soft and hard tissues investing implants and natural teeth. The test sample consisted of six adult healthy male Macaca fascicularis with three-unit splinted crowns, each crown supported by an Ankylos screw-shaped titanium implant. These implants were placed in the mandibular premolar-second molar region, one side by an immediate-loading (IL) and the other by delayed-loading (DL) protocol. The animals were sacrificed after 3 months of functional loading. Another two monkeys with natural dentition served as controls. Nondecalcified sections were prepared for assessment of optical intensities (OI) under a confocal laser scanning microscope. In both the test (IL and DL) and control, the soft tissue complexes demonstrated a highly fluorescent keratinized layer and diminished cytoplasmic and enhanced membranous fluorescence in the remaining epithelium. Peri-implant mucosa was further characterized by an intense fluorescence at the junctional epithelium-implant interface and in the stromal mononuclear infiltrate. Connective tissue contact and periodontal ligament were weakly fluorescent. In hard tissues, a high fluorescence was observed in peri-implant woven bone and along the implant-bone interface. Mean OI was significantly higher in peri-implant woven bone than around teeth (P  0.05). Present findings suggest that peri-implant woven bone is highly mineralized, while the peri-implant and gingival mucosa share structural similarities. Optical intensities of interfacial tissues investing implants and teeth are related to their biological properties.

  10. PrPSc detection in formalin-fixed paraffin-embedded tissue by ELISA

    Directory of Open Access Journals (Sweden)

    Nicholson Eric M

    2011-10-01

    Full Text Available Abstract Background Formalin-fixed paraffin-embedded tissue is regularly employed in the diagnosis of transmissible spongiform encephalopathies (TSE by immunohistochemistry (IHC, the standard by which all other TSE diagnostic protocols are judged. While IHC affords advantages over diagnostic approaches that typically utilize fresh or frozen tissue, such as Western blot and ELISA, the process of fixing, staining, and analyzing individual sections by hand does not allow for rapid or high throughput screening. However, preservation of tissues in formalin is not dependent upon the availability of refrigeration. Findings Formalin-fixed paraffin-embedded tissues from TSE transmission studies of scrapie in sheep, chronic wasting disease in white-tailed deer or transmissible mink encephalopathy in cattle were cut at 5 μm thickness. Samples containing the tissue equivalent of as little as one 5 μm section can be used to readily discriminate positive from negative samples. Conclusions This approach cannot replace IHC but may be used along with IHC as both a more rapid and readily high throughput screen where fresh or frozen tissues are not available or impractical.

  11. Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: Using Response Surface Methodology.

    Science.gov (United States)

    Radaei, Payam; Mashayekhan, Shohreh; Vakilian, Saeid

    2017-06-01

    Electrospray ionization is a wide spread technique for producing polymeric microcarriers (MCs) by applying electrostatic force and ionic cross-linker, simultaneously. In this study, fabrication process of gelatin-chitosan MCs and its optimization using the Response Surface Methodology (RSM) is reported. Gelatin/chitosan (G/C) blend ratio, applied voltage and feeding flow rate, their individual and interaction effects on the diameter and mechanical strength of the MCs were investigated. The obtained models for diameter and mechanical strength of MCs have a quadratic relationship with G/C blend ratio, applied voltage and feeding flow rate. Using the desirability curve, optimized G/C blend ratios that are introduced, include the desirable quantities for MCs diameter and mechanical strength. MCs of the same desirable diameter (350μm) and different G/C blend ratio (1, 2, and 3) were fabricated and their elasticity was investigated via Atomic Force Microscopy (AFM). The biocompatibility of the MCs was evaluated using MTT assay. The results showed that human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) could attach and proliferate on fabricated MCs during 7days of culturing especially on those prepared with G/C blend ratios of 1 and 2. Such gelatin-chitosan MCs may be considered as a promising candidate for injectable tissue engineering scaffolds, supporting attachment and proliferation of hUCMSCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Measurement of actinide neutron cross sections

    International Nuclear Information System (INIS)

    Firestone, Richard B.; Nitsche, Heino; Leung, Ka-Ngo; Perry, DaleL.; English, Gerald

    2003-01-01

    The maintenance of strong scientific expertise is critical to the U.S. nuclear attribution community. It is particularly important to train students in actinide chemistry and physics. Neutron cross-section data are vital components to strategies for detecting explosives and fissile materials, and these measurements require expertise in chemical separations, actinide target preparation, nuclear spectroscopy, and analytical chemistry. At the University of California, Berkeley and the Lawrence Berkeley National Laboratory we have trained students in actinide chemistry for many years. LBNL is a leader in nuclear data and has published the Table of Isotopes for over 60 years. Recently, LBNL led an international collaboration to measure thermal neutron capture radiative cross sections and prepared the Evaluated Gamma-ray Activation File (EGAF) in collaboration with the IAEA. This file of 35, 000 prompt and delayed gamma ray cross-sections for all elements from Z=1-92 is essential for the neutron interrogation of nuclear materials. LBNL has also developed new, high flux neutron generators and recently opened a 1010 n/s D+D neutron generator experimental facility

  13. The potential impact of the preparation rich in growth factors (PRGF) in different medical fields.

    Science.gov (United States)

    Anitua, Eduardo; Sánchez, Mikel; Orive, Gorka; Andía, Isabel

    2007-11-01

    Platelet-rich preparations constitute a relatively new biotechnology for the stimulation and acceleration of tissue healing and bone regeneration. The versatility and biocompatibility of this approach has stimulated its therapeutic use in numerous medical and scientific fields including dentistry, oral implantology, orthopaedics, ulcer treatment, tissue engineering among others. Here we discuss the important progress that has been accomplished in the field of platelet-rich preparations in the last few years. Some of the most interesting therapeutic applications of this technology are discussed as are some of the limitations, future challenges and directions in the field.

  14. The surrounding tissue modifies the placental stem villous vascular responses

    DEFF Research Database (Denmark)

    Brøgger, Torbjørn; Forman, Axel; Aalkjær, Christian

    2014-01-01

    is available. In-depth understanding of the mechanisms involved in control of placental vascular tone are needed to develop new tissue targets for therapeutic intervention. Method: From fresh born placentas segments of stem villous arteries were carefully dissected. The artery branches were divided....... The surrounding trophoblast was removed from one end and left intact in the other, and the segment was divided to give two ring preparations, with or without trophoblast. The preparations were mounted in wire myographs and responses to vasoactive agents were compared. Results: pD2values for PGF2α, Tx-analog U...... or endotheline-1. These differences partly disappeared in the presence of L-NAME. Conclusion: The perivascular tissue significantly reduces sensitivity and force development of stem villous arteries, partly due to release of NO This represents a new mechanism for control of human stem villous artery tone....

  15. Tissue Printing to Visualize Polyphenol Oxidase and Peroxidase in Vegetables, Fruits, and Mushrooms

    Science.gov (United States)

    Melberg, Amanda R.; Flurkey, William H.; Inlow, Jennifer K.

    2009-01-01

    A simple tissue-printing procedure to determine the tissue location of the endogenous enzymes polyphenol oxidase and peroxidase in a variety of vegetables, fruits, and mushrooms is described. In tissue printing, cell contents from the surface of a cut section of the tissue are transferred to an adsorptive surface, commonly a nitrocellulose…

  16. A simplified procedure for preparation of undecalcified human bone sections

    DEFF Research Database (Denmark)

    Wallin, J A; Tkocz, I; Levinsen, J

    1985-01-01

    -type diamond cut-off wheel and a slowly advancing table carrying the specimen held in a rotating mount. Sections may be cut at a thickness of 80 micron +/- 1%. After cleaning in an ultrasonic bath, these can be mounted on slides for quantitative microscopic examination with transmitted light. Grinding...

  17. FIB-SEM imaging of carbon nanotubes in mouse lung tissue

    DEFF Research Database (Denmark)

    Købler, Carsten; Saber, Anne Thoustrup; Jacobsen, Nicklas Raun

    2014-01-01

    Ultrastructural characterisation is important for understanding carbon nanotube (CNT) toxicity and how the CNTs interact with cells and tissues. The standard method for this involves using transmission electron microscopy (TEM). However, in particular, the sample preparation, using a microtome...

  18. Microdissection of gonadal tissues for gene expression analyses

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Dalgaard, Marlene Danner; Sonne, Si Brask

    2011-01-01

    Laser microdissection permits isolation of specific cell types from tissue sections or cell cultures. This may be beneficial when investigating the role of specific cells in a complex tissue or organ. In tissues with easily distinguishable morphology, a simple hematoxylin staining is sufficient...... phosphatase enzyme, such as fetal germ cells, testicular carcinoma in situ cells, and putatively also other early stem cell populations. We have applied these protocols for microdissection of rat Leydig cells, fetal human and zebrafish germ cells, and human testicular germ cell tumors, but the staining...

  19. Trace element load in cancer and normal lung tissue

    International Nuclear Information System (INIS)

    Kubala-Kukus, A.; Braziewicz, J.; Banas, D.; Majewska, U.; Gozdz, S.; Urbaniak, A.

    1999-01-01

    Samples of malignant and benign human lung tissues were analysed by two complementary methods, i.e., particle induced X-ray emission (PIXE) and total reflection X-ray fluorescence (TRXRF). The concentration of trace elements of P, S, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Se, Sr, Hg and Pb was determined in squamous cancer of lung tissue from 65 people and in the benign lung tumour tissue from 5 people. Several elements shows enhancement in cancerous lung tissue of women in comparison to men, i.e., titanium show maximum enhancement by 48% followed by Cr (20%) and Mn (36%). At the same time trace element concentration of Sr and Pb are declaimed by 30% and 20% in women population. Physical basis of used analytical methods, experimental set-up and the procedure of sample preparation are described

  20. 7 CFR 61.34 - Drawing and preparation of sample.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Drawing and preparation of sample. 61.34 Section 61.34 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Cottonseed Samplers § 61.34 Drawing and preparation of sample. Each licensed cottonseed sampler shall draw...

  1. 48 CFR 2052.211-70 - Preparation of technical reports.

    Science.gov (United States)

    2010-10-01

    ....211-70 Preparation of technical reports. As prescribed at 2011.104-70(a), the contracting officer... Reports (JAN 1993) All technical reports required by Section C and all Technical Progress Reports required... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Preparation of technical...

  2. Induction of hyperresponsiveness in human airway tissue by neutrophils--mechanism of action.

    Science.gov (United States)

    Anticevich, S Z; Hughes, J M; Black, J L; Armour, C L

    1996-05-01

    The two main features of asthma are bronchial hyperresponsiveness and inflammation. The inflammatory response in asthma consists of infiltration and activation of a variety of inflammatory cells including neutrophils. Our previous studies have shown that stimulated neutrophil supernatants cause hyperresponsiveness of human bronchial tissue in vitro. To investigate the effect of the sensitization status of the tissue and the albumin concentration used to prepare supernatants on the response of human bronchial tissue to stimulated neutrophil supernatants. Neutrophil supernatants were prepared from human isolated blood in the presence of varying concentrations of albumin (0%, 0.1% and 4%). Neutrophil supernatants were added to sensitized and non-sensitized human isolated bronchial tissue which was stimulated with electrical field stimulation (EFS) (20 s every 4 min). Receptor antagonists specific for the prostaglandin and thromboxane (10(-7) M GR32191), platelet activating factor (10(-6) M WEB 2086), leukotriene D4 (10(-6) M MK-679) and neurokinin A (10(-7) M SR48968) receptors were used to identify neutrophil products responsible for the effects observed in the bronchial tissue. In non-sensitized human bronchial tissue, stimulated neutrophil supernatants induced a direct contraction in the presence of 0% and 0.1% but not 4% albumin. This contraction was due to leukotriene D4 as MK-679 completely inhibited the contraction. In contrast, stimulated neutrophil supernatants increased responsiveness of sensitized human bronchial tissue to EFS. The increased responsiveness was observed only in the presence of 0.1% albumin, with the site of modulation likely to be prejunctional on the parasympathetic nerve. The increased responsiveness was not inhibited by any of the antagonists tested. Sensitization status of the tissue and albumin concentration effect the responsiveness of human bronchial tissue to stimulated neutrophil supernatant. Our results suggest a possible role for

  3. Environmental Impact Section

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Section is concerned with preparation of environmental statements and assessments and development of assessment methodologies for energy technologies. During 1976, activities involved nuclear, fossil, and geothermal energy; this work was supported by the U.S.Army, HUD, US ERDA, and US NRC. Two special studies--one on the effects of power plant intake structures on fish impingement and another on multiple uses of cooling lakes--were completed and should serve as references for future analyses. Two research projects sponsored by NRC--the Unified Transport Approach (UTA) to Power Plant Assessment and the Environmental Monitoring Data Evaluation Study--were continued. The purpose of the UA program is to develop fast-transient, one- and two-dimensional transport models for estimating thermal, radiological, chemical, and biological impacts in complicated water bodies. The impact of public use of various products that contain radioactive isotope is being evaluated. The Environmental Impact Sections assistance to NRC expanded to include assessments of fuel-fabrication facilities being considered for relicensing and two uranium in-situ solution mining facility proposals. The work for HUD comprises an assessment of the first application of MIUS in a new town development. A generic environmental statement was prepared and an environmental monitoring program for the facility was designed

  4. Photodynamic tissue adhesion with chlorin(e6) protein conjugates.

    Science.gov (United States)

    Khadem, J; Veloso, A A; Tolentino, F; Hasan, T; Hamblin, M R

    1999-12-01

    To test the hypothesis that a photodynamic laser-activated tissue solder would perform better in sealing scleral incisions when the photosensitizer was covalently linked to the protein than when it was noncovalently mixed. Conjugates and mixtures were prepared between the photosensitizer chlorin(e6) and various proteins (albumin, fibrinogen, and gelatin) in different ratios and used to weld penetrating scleral incisions made in human cadaveric eyes. A blue-green (488-514 nm) argon laser activated the adhesive, and the strength of the closure was measured by increasing the intraocular pressure until the wound showed leakage. Both covalent conjugates and noncovalent mixtures showed a light dose-dependent increase in leaking pressure. A preparation of albumin chlorin(e6) conjugate with additional albumin added (2.5 protein to chlorin(e6) molar ratio) showed significantly higher weld strength than other protein conjugates and mixtures. This is the first report of dye-protein conjugates as tissue solders. These conjugates may have applications in ophthalmology.

  5. Tissue banking in Asia Pacific region: past, present and future.

    Science.gov (United States)

    Nather, Aziz; Mandy, Foong Shi Yun; Ning, Tan; Kaiying, Wang

    2018-04-25

    Tissue banking in the Asia Pacific regions is driven by two main forces-firstly the International Atomic Energy Agency (IAEA) via Regional Co-operative Agreement projects and secondly by the Asia Pacific Association of Surgical Tissue Banking (APASTB). This overview is written in three sections: (1) History of tissue banking in individual country in the region. (2) History of APASTB. (3) History of IAEA programme in Asia Pacific region. The current status and future of the tissue banking programme in the region will be discussed.

  6. Optical-Thermal Response of Laser-Irradiated Tissue

    CERN Document Server

    Welch, Ashley J

    2011-01-01

    The second edition of 'Optical-Thermal Response of Laser-Irradiated Tissue' maintains the standard of excellence established in the first edition, while adjusting the content to reflect changes in tissue optics and medical applications since 1995. The material concerning light propagation now contains new chapters devoted to electromagnetic theory for coherent light. The material concerning thermal laser-tissue interactions contains a new chapter on pulse ablation of tissue. The medical applications section now includes several new chapters on Optical Coherent Tomography, acoustic imaging, molecular imaging, forensic optics and nerve stimulation. A detailed overview is provided of the optical and thermal response of tissue to laser irradiation along with diagnostic and therapeutic examples including fiber optics. Sufficient theory is included in the book so that it is suitable for a one or two semester graduate or for senior elective courses. Material covered includes: 1. light propagation and diagnostic appl...

  7. Preparation of radiohalogenated biomolecules via organotin intermediates. Ch. 8

    International Nuclear Information System (INIS)

    Hanson, R.N.

    1991-01-01

    The purpose of this review is to describe the specific application of organotin chemistry to the preparation of radiohalogenated bio-organic compounds as radiotracers. Although the research group was the first to apply the radiohalodestannylation methodology to the synthesis of a labeled compound of biological interest, iodotamoxifen, and subsequently extended its use to the labeled hormones, dopamine receptor antagonists and perfusion agents, the versatility of the method has subsequently found broad acceptance. For many situations in which high specific activity, rapidity of incorporation and labeling site specificity are required, electrophilic destannylation is the method of choice. The sections that follow provide a description of the development of radiohalodestannylation and its application in radiopharmaceutical chemistry. The first section will briefly review the criteria that define the radionuclidic, biochemical and chemical limits associated with radiopharmaceuticals. The next section describes the rationale for the choice of organotin intermediates and highlights the methods available for their synthesis. Following that section are several areas of biomedical research interest that illustrate how organotin chemistry has been applied in the preparation of specific radiohalogenated compounds. Although the examples will focus primarily on situations that require high affinity and specific activity, labeled derivatives which were prepared to evaluate more general physiological properties will also be reviewed. (author). 171 refs

  8. Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications.

    Science.gov (United States)

    Jayakumar, R; Ramachandran, Roshni; Divyarani, V V; Chennazhi, K P; Tamura, H; Nair, S V

    2011-03-01

    In this study, we prepared chitin-chitosan/nano TiO(2) composite scaffolds using lyophilization technique for bone tissue engineering. The prepared composite scaffold was characterized using SEM, XRD, FTIR and TGA. In addition, swelling, degradation and biomineralization capability of the composite scaffolds were evaluated. The developed composite scaffold showed controlled swelling and degradation when compared to the control scaffold. Cytocompatibility of the scaffold was assessed by MTT assay and cell attachment studies using osteoblast-like cells (MG-63), fibroblast cells (L929) and human mesenchymal stem cells (hMSCs). Results indicated no sign of toxicity and cells were found attached to the pore walls within the scaffolds. These results suggested that the developed composite scaffold possess the prerequisites for tissue engineering scaffolds and it can be used for tissue engineering applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Analysis of hepcidin expression: in situ hybridization and quantitative polymerase chain reaction from paraffin sections.

    Science.gov (United States)

    Sakuraoka, Yuhki; Sawada, Tokihiko; Shiraki, Takayuki; Park, Kyunghwa; Sakurai, Yuhichiro; Tomosugi, Naohisa; Kubota, Keiichi

    2012-07-28

    To establish methods for quantitative polymerase chain reaction (PCR) for hepcidin using RNAs isolated from paraffin-embedded sections and in situ hybridization of hepatocellular carcinoma (HCC). Total RNA from paraffin-embedded sections was isolated from 68 paraffin-embedded samples of HCC. Samples came from 54 male and 14 female patients with a mean age of 66.8 ± 7.8 years. Quantitative PCR was performed. Immunohistochemistry and in situ hybridization for hepcidin were also performed. Quantitative PCR for hepcidin using RNAs isolated from paraffin-embedded sections of HCC was performed successfully. The expression level of hepcidin mRNA in cancer tissues was significantly higher than that in non-cancer tissues. A method of in situ hybridization for hepcidin was established successfully, and this demonstrated that hepcidin mRNA was expressed in non-cancerous tissue but absent in cancerous tissue. We have established novel methods for quantitative PCR for hepcidin using RNAs isolated from paraffin-embedded sections and in situ hybridization of HCC.

  10. Determination of americium and plutonium in autopsy tissue: methods and problems

    International Nuclear Information System (INIS)

    Boyd, H.A.; Eutsler, B.C.; McInroy, J.F.

    1979-01-01

    The current methods used by the tissue analysis program at LASL for the determination of americium and plutonium in autopsy tissue are described. Problems affecting radiochemical yield are discussed. Included are problems associated with sample preparation, separation of plutonium from large amounts of bone ash, and reagent contamination. The average 242 Pu tracer yield for 1800 Pu determinations is 78 +- 12%. The average 242 Am tracer yield is 85 +- 7% for 40 determinations

  11. The toughness of secondary cell wall and woody tissue

    OpenAIRE

    Lucas, P. W.; Tan, H. T. W.; Cheng, P. Y.

    1997-01-01

    The 'across grain' toughness of 51 woods has been determined on thin wet sections using scissors. The moisture content of sections and the varying sharpness of the scissor blades had little effect on the results. In thin sections (less than 0.6mm), toughness rose linearly with section thickness. The intercept toughness at zero thickness, estimated from regression analysis, was proportional to relative density, consistent with values reported for non-woody plant tissues. Extrapolation of the i...

  12. Histological Evaluation of Decellularized Skeletal Muscle Tissue Using Two Different Decellularization Agents

    Directory of Open Access Journals (Sweden)

    Hana Hrebíková

    2017-02-01

    Full Text Available The aim of the present study was to determine effect of two decellularized agents, sodium dodecyl sulphate (SDS and Triton X-100, to the skeletal muscle tissue. Final scaffold was evaluated by several histological techniques to analyse preservation of essential structures including collagen and elastic fibres, basement membranes, glycosaminoglycans and also to confirm elimination of nuclear and cytoplasmic components which are redundant in effectively prepared decellularized scaffolds. Comparison of tissue scaffolds processed with different detergents proved that SDS is superior to Triton X-100 as it can effectively decellularize muscle tissue.

  13. Automated Liquid Microjunction Surface Sampling-HPLC-MS/MS Analysis of Drugs and Metabolites in Whole-Body Thin Tissue Sections

    Energy Technology Data Exchange (ETDEWEB)

    Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL

    2013-01-01

    A fully automated liquid extraction-based surface sampling system utilizing a commercially available autosampler coupled to high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) detection is reported. Discrete spots selected for droplet-based sampling and automated sample queue generation for both the autosampler and MS were enabled by using in-house developed software. In addition, co-registration of spatially resolved sampling position and HPLC-MS information to generate heatmaps of compounds monitored for subsequent data analysis was also available in the software. The system was evaluated with whole-body thin tissue sections from propranolol dosed rat. The hands-free operation of the system was demonstrated by creating heatmaps of the parent drug and its hydroxypropranolol glucuronide metabolites with 1 mm resolution in the areas of interest. The sample throughput was approximately 5 min/sample defined by the time needed for chromatographic separation. The spatial distributions of both the drug and its metabolites were consistent with previous studies employing other liquid extraction-based surface sampling methodologies.

  14. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink.

    Science.gov (United States)

    Pati, Falguni; Cho, Dong-Woo

    2017-01-01

    Bioprinting provides an exciting opportunity to print and pattern all the components that make up a tissue-cells and extracellular matrix (ECM) material-in three dimensions (3D) to generate tissue analogues. A large number of materials have been used for making bioinks; however, majority of them cannot represent the complexity of natural ECM and thus are unable to reconstitute the intrinsic cellular morphologies and functions. We present here a method for making of bioink from decellularized extracellular matrices (dECMs) and a protocol for bioprinting of cell-laden constructs with this novel bioink. The dECM bioink is capable of providing an optimized microenvironment that is conducive to the growth of 3D structured tissue. We have prepared bioinks from different tissues, including adipose, cartilage and heart tissues and achieved high cell viability and functionality of the bioprinted tissue structures using our novel bioink.

  15. High-throughput simultaneous analysis of RNA, protein, and lipid biomarkers in heterogeneous tissue samples.

    Science.gov (United States)

    Reiser, Vladimír; Smith, Ryan C; Xue, Jiyan; Kurtz, Marc M; Liu, Rong; Legrand, Cheryl; He, Xuanmin; Yu, Xiang; Wong, Peggy; Hinchcliffe, John S; Tanen, Michael R; Lazar, Gloria; Zieba, Renata; Ichetovkin, Marina; Chen, Zhu; O'Neill, Edward A; Tanaka, Wesley K; Marton, Matthew J; Liao, Jason; Morris, Mark; Hailman, Eric; Tokiwa, George Y; Plump, Andrew S

    2011-11-01

    With expanding biomarker discovery efforts and increasing costs of drug development, it is critical to maximize the value of mass-limited clinical samples. The main limitation of available methods is the inability to isolate and analyze, from a single sample, molecules requiring incompatible extraction methods. Thus, we developed a novel semiautomated method for tissue processing and tissue milling and division (TMAD). We used a SilverHawk atherectomy catheter to collect atherosclerotic plaques from patients requiring peripheral atherectomy. Tissue preservation by flash freezing was compared with immersion in RNAlater®, and tissue grinding by traditional mortar and pestle was compared with TMAD. Comparators were protein, RNA, and lipid yield and quality. Reproducibility of analyte yield from aliquots of the same tissue sample processed by TMAD was also measured. The quantity and quality of biomarkers extracted from tissue prepared by TMAD was at least as good as that extracted from tissue stored and prepared by traditional means. TMAD enabled parallel analysis of gene expression (quantitative reverse-transcription PCR, microarray), protein composition (ELISA), and lipid content (biochemical assay) from as little as 20 mg of tissue. The mean correlation was r = 0.97 in molecular composition (RNA, protein, or lipid) between aliquots of individual samples generated by TMAD. We also demonstrated that it is feasible to use TMAD in a large-scale clinical study setting. The TMAD methodology described here enables semiautomated, high-throughput sampling of small amounts of heterogeneous tissue specimens by multiple analytical techniques with generally improved quality of recovered biomolecules.

  16. Advisory Committee for the Calibration Standards of Ionizing Radiation Measurement: Section 3. Neutron measurements

    International Nuclear Information System (INIS)

    1982-01-01

    Section III (Mesures neutroniques) of the Comite Consultatif pour les Etalons de Mesure des Rayonnements Ionisants held its fifth meeting in May 1981. Recent work carried out at BIPM in the field of neutron measurements was reported. The status of a full-scale 252 Cf neutron source intercomparison (10 7 s - 1 ) and of several restricted comparisons was discussed. Intercomparisons of fast neutron fluence rates are in progress ( 115 In(n,n') 115 Insup(m); NB/Zr) or will take place in the near future ( 115 n(n,#betta#) 116 Insup(m); 235 U and 238 U fission chambers). An intercomparison of neutron dosimetry standards by circulating tissue-equivalent ion chambers will be prepared and organized by BIPM. Finally, there was a broad exchange of information on work in progress at the various laboratories represented at the meeting [fr

  17. Pullulan microcarriers for bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Aydogdu, Hazal [Middle East Technical University, Department of Biomedical Engineering, Ankara 06800 (Turkey); Keskin, Dilek [Middle East Technical University, Department of Biomedical Engineering, Ankara 06800 (Turkey); Middle East Technical University, Department of Engineering Sciences, Ankara 06800 (Turkey); METU BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800 (Turkey); Baran, Erkan Turker, E-mail: erkanturkerbaran@gmail.com [METU BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800 (Turkey); Tezcaner, Aysen, E-mail: tezcaner@metu.edu.tr [Middle East Technical University, Department of Biomedical Engineering, Ankara 06800 (Turkey); Middle East Technical University, Department of Engineering Sciences, Ankara 06800 (Turkey); METU BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800 (Turkey)

    2016-06-01

    Microcarrier systems offer a convenient way to repair bone defects as injectable cell carriers that can be applied with small incisions owing to their small size and spherical shape. In this study, pullulan (PULL) microspheres were fabricated and characterized as cell carriers for bone tissue engineering applications. PULL was cross-linked by trisodium trimetaphosphate (STMP) to enhance the stability of the microspheres. Improved cytocompatibility was achieved by silk fibroin (SF) coating and biomimetic mineralization on the surface by incubating in simulated body fluid (SBF). X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescent microscopy analysis confirmed biomimetic mineralization and SF coating on microspheres. The degradation analysis revealed that PULL microspheres had a slow degradation rate with 8% degradation in two weeks period indicating that the microspheres would support the formation of new bone tissue. Furthermore, the mechanical tests showed that the microspheres had a high mechanical stability that was significantly enhanced with the biomimetic mineralization. In vitro cell culture studies with SaOs-2 cells showed that cell viability was higher on SF and SBF coated microspheres on 7th day compared to PULL ones under dynamic conditions. Alkaline phosphatase activity was higher for SF coated microspheres in comparison to uncoated microspheres when dynamic culture condition was applied. The results suggest that both organic and inorganic surface modifications can be applied on PULL microspheres to prepare a biocompatible microcarrier system with suitable properties for bone tissue engineering. - Highlights: • Porous PULL microspheres were prepared as cell carrier for the first time. • Mineralization on the microspheres improved their mechanical properties. • Mineralization and SF coating enhanced cell proliferation on PULL microspheres.

  18. Pullulan microcarriers for bone tissue regeneration

    International Nuclear Information System (INIS)

    Aydogdu, Hazal; Keskin, Dilek; Baran, Erkan Turker; Tezcaner, Aysen

    2016-01-01

    Microcarrier systems offer a convenient way to repair bone defects as injectable cell carriers that can be applied with small incisions owing to their small size and spherical shape. In this study, pullulan (PULL) microspheres were fabricated and characterized as cell carriers for bone tissue engineering applications. PULL was cross-linked by trisodium trimetaphosphate (STMP) to enhance the stability of the microspheres. Improved cytocompatibility was achieved by silk fibroin (SF) coating and biomimetic mineralization on the surface by incubating in simulated body fluid (SBF). X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescent microscopy analysis confirmed biomimetic mineralization and SF coating on microspheres. The degradation analysis revealed that PULL microspheres had a slow degradation rate with 8% degradation in two weeks period indicating that the microspheres would support the formation of new bone tissue. Furthermore, the mechanical tests showed that the microspheres had a high mechanical stability that was significantly enhanced with the biomimetic mineralization. In vitro cell culture studies with SaOs-2 cells showed that cell viability was higher on SF and SBF coated microspheres on 7th day compared to PULL ones under dynamic conditions. Alkaline phosphatase activity was higher for SF coated microspheres in comparison to uncoated microspheres when dynamic culture condition was applied. The results suggest that both organic and inorganic surface modifications can be applied on PULL microspheres to prepare a biocompatible microcarrier system with suitable properties for bone tissue engineering. - Highlights: • Porous PULL microspheres were prepared as cell carrier for the first time. • Mineralization on the microspheres improved their mechanical properties. • Mineralization and SF coating enhanced cell proliferation on PULL microspheres.

  19. RAPID PROCESSING OF ARCHIVAL TISSUE SAMPLES FOR PROTEOMIC ANALYSIS USING PRESSURE-CYCLING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Vinuth N. Puttamallesh1,2

    2017-06-01

    Full Text Available Advent of mass spectrometry based proteomics has revolutionized our ability to study proteins from biological specimen in a high-throughput manner. Unlike cell line based studies, biomedical research involving tissue specimen is often challenging due to limited sample availability. In addition, investigation of clinically relevant research questions often requires enormous amount of time for sample collection prospectively. Formalin fixed paraffin embedded (FFPE archived tissue samples are a rich source of tissue specimen for biomedical research. However, there are several challenges associated with analysing FFPE samples. Protein cross-linking and degradation of proteins particularly affects proteomic analysis. We demonstrate that barocycler that uses pressure-cycling technology enables efficient protein extraction and processing of small amounts of FFPE tissue samples for proteomic analysis. We identified 3,525 proteins from six 10µm esophageal squamous cell carcinoma (ESCC tissue sections. Barocycler allows efficient protein extraction and proteolytic digestion of proteins from FFPE tissue sections at par with conventional methods.

  20. Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering

    KAUST Repository

    Limongi, Tania; Tirinato, Luca; Pagliari, Francesca; Giugni, Andrea; Allione, Marco; Perozziello, Gerardo; Candeloro, Patrizio; Di Fabrizio, Enzo M.

    2016-01-01

    Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of 1-100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing the dimensions of a material into the nanoscale range usually results in the change of its physiochemical properties such as reactivity, crystallinity, and solubility. This review treats the convergence of last research news at the interface of nanostructured biomaterials and tissue engineering for emerging biomedical technologies such as scaffolding and tissue regeneration. The present review is organized into three main sections. The introduction concerns an overview of the increasing utility of nanostructured materials in the field of tissue engineering. It elucidates how nanotechnology, by working in the submicron length scale, assures the realization of a biocompatible interface that is able to reproduce the physiological cell-matrix interaction. The second, more technical section, concerns the design and fabrication of biocompatible surface characterized by micro- and submicroscale features, using microfabrication, nanolithography, and miscellaneous nanolithographic techniques. In the last part, we review the ongoing tissue engineering application of nanostructured materials and scaffolds in different fields such as neurology, cardiology, orthopedics, and skin tissue regeneration.

  1. Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering

    KAUST Repository

    Limongi, Tania

    2016-09-02

    Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of 1-100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing the dimensions of a material into the nanoscale range usually results in the change of its physiochemical properties such as reactivity, crystallinity, and solubility. This review treats the convergence of last research news at the interface of nanostructured biomaterials and tissue engineering for emerging biomedical technologies such as scaffolding and tissue regeneration. The present review is organized into three main sections. The introduction concerns an overview of the increasing utility of nanostructured materials in the field of tissue engineering. It elucidates how nanotechnology, by working in the submicron length scale, assures the realization of a biocompatible interface that is able to reproduce the physiological cell-matrix interaction. The second, more technical section, concerns the design and fabrication of biocompatible surface characterized by micro- and submicroscale features, using microfabrication, nanolithography, and miscellaneous nanolithographic techniques. In the last part, we review the ongoing tissue engineering application of nanostructured materials and scaffolds in different fields such as neurology, cardiology, orthopedics, and skin tissue regeneration.

  2. Registration for deceased organ and tissue donation among Ontario immigrants: a population-based cross-sectional study.

    Science.gov (United States)

    Li, Alvin Ho-Ting; Lam, Ngan N; Dhanani, Sonny; Weir, Matthew; Prakash, Versha; Kim, Joseph; Knoll, Greg; Garg, Amit X

    2016-01-01

    Canada has low rates of deceased organ and tissue donation. Immigrants to Canada may differ in their registered support for deceased organ donation based on their country of origin. We used linked administrative databases in Ontario (about 11 million residents aged ≥ 16 yr) to study the proportion of immigrants and long-term residents registered for deceased organ and tissue donation as of October 2013. We used modified Poisson regression to identify and quantify predictors of donor registration. Compared with long-term residents ( n = 9 244 570), immigrants ( n = 1 947 646) were much less likely to register for deceased organ and tissue donation (11.9% v. 26.5%). Immigrants from the United States, Australia and New Zealand had the highest registration rate (40.0%), whereas immigrants with the lowest registration rates were from Eastern Europe and Central Asia (9.4%), East Asia and Pacific (8.4%) and sub-Saharan Africa (7.9%). The largest numbers of unregistered immigrants were from India ( n = 202 548), China ( n = 186 678) and the Philippines ( n = 125 686). Characteristics among the immigrant population associated with a higher likelihood of registration included economic immigrant status, living in a rural area (population speak English and French, and more years residing in Canada. Immigrants in Ontario were less likely to register for deceased organ and tissue donation than long-term residents. There is a need to better understand reasons for lower registration rates among Canadian immigrants and to create culture-sensitive materials to build support for deceased organ and tissue donation.

  3. Self-assembly of tissue spheroids on polymeric membranes.

    Science.gov (United States)

    Messina, Antonietta; Morelli, Sabrina; Forgacs, Gabor; Barbieri, Giuseppe; Drioli, Enrico; De Bartolo, Loredana

    2017-07-01

    In this study, multicellular tissue spheroids were fabricated on polymeric membranes in order to accelerate the fusion process and tissue formation. To this purpose, tissue spheroids composed of three different cell types, myoblasts, fibroblasts and neural cells, were formed and cultured on agarose and membranes of polycaprolactone (PCL) and chitosan (CHT). Membranes prepared by a phase-inversion technique display different physicochemical, mechanical and transport properties, which can affect the fusion process. The membranes accelerated the fusion process of a pair of spheroids with respect to the inert substrate. In this process, a critical role is played by the membrane properties, especially by their mechanical characteristics and oxygen and carbon dioxide mass transfer. The rate of fusion was quantified and found to be similar for fibroblast, myoblast and neural tissue spheroids on membranes, which completed the fusion within 3 days. These spheroids underwent faster fusion and maturation on PCL membrane than on agarose, the rate of fusion being proportional to the value of oxygen and carbon dioxide permeances and elastic characteristics. Consequently, tissue spheroids on the membranes expressed high biological activity in terms of oxygen uptake, making them more suitable as building blocks in the fabrication of tissues and organs. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Food preparation supplies predict children's family meal and home-prepared dinner consumption in low-income households.

    Science.gov (United States)

    Appelhans, Bradley M; Waring, Molly E; Schneider, Kristin L; Pagoto, Sherry L

    2014-05-01

    Frequent family meals and home food preparation are considered important for children's nutritional health and weight maintenance. This cross-sectional study tested whether these parent-driven behaviors are related to the availability of food preparation supplies in low-income urban households. Caregivers of children ages 6-13 provided information on family meal frequency, child consumption of home-prepared dinners, household food insecurity, and attitudes towards cooking. Researchers used a newly developed Food Preparation Checklist (FPC) to assess the availability of 41 food preparation supplies during a physical audit of the home environment. Caregivers and children provided anthropometric measurements and jointly reported on child dietary intake. In ordinal logistic regression models, greater home availability of food preparation supplies was associated with more frequent family meals and child consumption of home-prepared dinners. Associations were independent of household financial strain, food insecurity, caregiver attitudes toward cooking, and sociodemographic characteristics. Fewer food preparation supplies were available in households characterized by greater food insecurity, lower income, and negative caregiver attitudes towards cooking, but did not differ by child or caregiver weight status. As in prior studies, more frequent family meals and consumption of home-prepared dinners were associated with healthier child dietary intake in several areas. We conclude that food preparation supplies are often limited in the most socioeconomically disadvantaged households, and their availability is related to the frequency with which children consume family meals and home-prepared dinners. The potential role of food preparation supplies as contributors to socioeconomic disparities in child nutritional health and obesity deserves further study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Characterization of Three-Dimensional Printed Composite Scaffolds Prepared with Different Fabrication Methods

    Directory of Open Access Journals (Sweden)

    Szlązak K.

    2016-06-01

    Full Text Available An optimal method for composites preparation as an input to rapid prototyping fabrication of scaffolds with potential application in osteochondral tissue engineering is still needed. Scaffolds in tissue engineering applications play a role of constructs providing appropriate mechanical support with defined porosity to assist regeneration of tissue. The aim of the presented study was to analyze the influence of composite fabrication methods on scaffolds mechanical properties. The evaluation was performed on polycaprolactone (PCL with 5 wt% beta-tricalcium phosphate (TCP scaffolds fabricated using fused deposition modeling (FDM. Three different methods of PCL-TCP composite preparation: solution casting, particles milling, extrusion and injection were used to provide material for scaffold fabrication. The obtained scaffolds were investigated by means of scanning electron microscope, x-ray micro computed tomography, thermal gravimetric analysis and static material testing machine. All of the scaffolds had the same geometry (cylinder, 4×6 mm and fiber orientation (0/60/120°. There were some differences in the TCP distribution and formation of the ceramic agglomerates in the scaffolds. They depended on fabrication method. The use of composites prepared by solution casting method resulted in scaffolds with the best combination of compressive strength (5.7±0.2 MPa and porosity (48.5±2.7 %, both within the range of trabecular bone.

  6. A novel method for sample preparation of fresh lung cancer tissue for proteomics analysis by tumor cell enrichment and removal of blood contaminants

    Directory of Open Access Journals (Sweden)

    Orre Lotta

    2010-02-01

    was an effective removal of contaminants from red blood cells and plasma proteins resulting in larger proteome coverage compared to the direct lysis of frozen samples. This sample preparation method may be successfully implemented for the discovery of lung cancer biomarkers on tissue samples using mass spectrometry-based proteomics.

  7. Tissue Microarray Analysis Applied to Bone Diagenesis

    OpenAIRE

    Barrios Mello, Rafael; Regis Silva, Maria Regina; Seixas Alves, Maria Teresa; Evison, Martin; Guimarães, Marco Aurélio; Francisco, Rafaella Arrabaça; Dias Astolphi, Rafael; Miazato Iwamura, Edna Sadayo

    2017-01-01

    Taphonomic processes affecting bone post mortem are important in forensic, archaeological and palaeontological investigations. In this study, the application of tissue microarray (TMA) analysis to a sample of femoral bone specimens from 20 exhumed individuals of known period of burial and age at death is described. TMA allows multiplexing of subsamples, permitting standardized comparative analysis of adjacent sections in 3-D and of representative cross-sections of a large number of specimens....

  8. 21 CFR 184.1250 - Cellulase enzyme preparation derived from Trichoderma longibrachiatum.

    Science.gov (United States)

    2010-04-01

    ... Trichoderma longibrachiatum. 184.1250 Section 184.1250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1250 Cellulase enzyme preparation derived from Trichoderma longibrachiatum. (a) Cellulase enzyme preparation is derived from a nonpathogenic, nontoxicogenic strain of Trichoderma longibrachiatum (formerly T...

  9. LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.

    Science.gov (United States)

    Marshall, J C; Shakespear, R A; Odell, W D

    1976-11-01

    Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.

  10. A method for the determination of potassium concentration in organic tissue samples

    International Nuclear Information System (INIS)

    Maciel, A.C.A.

    1976-12-01

    An original method has been developed to detect small variations of potassium in several samples of organic tissue. These variations are relative to elements that are biologically representative, such as carbon, oxygen, and nitrogen. The samples are irradiated with a beam of protons from a Van de Graaff accelerator (4MV). Vacancies are created in the K-shell of potassium, and x-rays are emitted when these vacancies are filled with outer electrons. These X-rays and the protons elastically scattered by the nuclei of carbon, nitrogen and oxygen are detected and their energy spectra are analysed by computer programs especially elaborated for this purpose. A technique for routine preparation of samples in the laboratory was developed including the production of aluminum support layers, and the preparation of organic tissue samples with a low temperature microtome. The unique features of this method are that it does not destroy the tissue, permitting further analysis with the microscope, and the normalization of the amount of potassium using other elements (C,O,N) instead of the total mass of the sample. (Author) [pt

  11. Rapid prototyping technology and its application in bone tissue engineering.

    Science.gov (United States)

    Yuan, Bo; Zhou, Sheng-Yuan; Chen, Xiong-Sheng

    Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects.

  12. Rapid prototyping technology and its application in bone tissue engineering*

    Science.gov (United States)

    YUAN, Bo; ZHOU, Sheng-yuan; CHEN, Xiong-sheng

    2017-01-01

    Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects. PMID:28378568

  13. [Preparation of acellular matrix from antler cartilage and its biological compatibility].

    Science.gov (United States)

    Fu, Jing; Zhang, Wei; Zhang, Aiwu; Ma, Lijuan; Chu, Wenhui; Li, Chunyi

    2017-06-01

    To study the feasibility of acellular matrix materials prepared from deer antler cartilage and its biological compatibility so as to search for a new member of the extracellular matrix family for cartilage regeneration. The deer antler mesenchymal (M) layer tissue was harvested and treated through decellular process to prepare M layer acellular matrix; histologic observation and detection of M layer acellular matrix DNA content were carried out. The antler stem cells [antlerogenic periosteum (AP) cells] at 2nd passage were labelled by fluorescent stains and by PKH26. Subsequently, the M layer acellular matrix and the AP cells at 2nd passage were co-cultured for 7 days; then the samples were transplanted into nude mice to study the tissue compatibility of M layer acellular matrix in the living animals. HE and DAPI staining confirmed that the M layer acellular matrix did not contain nucleus; the DNA content of the M layer acellular matrix was (19.367±5.254) ng/mg, which was significantly lower than that of the normal M layer tissue [(3 805.500±519.119) ng/mg]( t =12.630, P =0.000). In vitro co-culture experiments showed that AP cells could adhere to or even embedded in the M layer acellular matrix. Nude mice transplantation experiments showed that the introduced AP cells could proliferate and induce angiogenesis in the M layer acellular matrix. The deer antler cartilage acellular matrix is successfully prepared. The M layer acellular matrix is suitable for adhesion and proliferation of AP cells in vitro and in vivo , and it has the function of stimulating angiogenesis. This model for deer antler cartilage acellular matrix can be applied in cartilage tissue engineering in the future.

  14. Evaluation of different tissue de-paraffinization procedures for infrared spectral imaging.

    Science.gov (United States)

    Nallala, Jayakrupakar; Lloyd, Gavin Rhys; Stone, Nicholas

    2015-04-07

    In infrared spectral histopathology, paraffin embedded tissues are often de-paraffinized using chemical agents such as xylene and hexane. These chemicals are known to be toxic and the routine de-waxing procedure is time consuming. A comparative study was carried out to identify alternate de-paraffinization methods by using paraffin oil and electronic de-paraffinization (using a mathematical computer algorithm) and their effectiveness was compared to xylene and hexane. Sixteen adjacent tissue sections obtained from a single block of a normal colon tissue were de-paraffinized using xylene, hexane and paraffin oil (+ hexane wash) at five different time points each for comparison. One section was reserved unprocessed for electronic de-paraffinization based on a modified extended multiplicative signal correction (EMSC). IR imaging was carried out on these tissue sections. Coefficients based on the fit of a pure paraffin model to the IR images were then calculated to estimate the amount of paraffin remaining after processing. Results indicate that on average xylene removes more paraffin in comparison to hexane and paraffin oil although the differences were small. This makes paraffin oil, followed by a hexane wash, an interesting and less toxic alternative method of de-paraffinization. However, none of the chemical methods removed paraffin completely from the tissues at any given time point. Moreover, paraffin was removed more easily from the glandular regions than the connective tissue regions indicating a form of differential paraffin retention based on the histology. In such cases, the use of electronic de-paraffinization to neutralize such variances across different tissue regions might be considered. Moreover it is faster, reduces scatter artefacts by index matching and enables samples to be easily stored for further analysis if required.

  15. The reliability of a segmentation methodology for assessing intramuscular adipose tissue and other soft-tissue compartments of lower leg MRI images.

    Science.gov (United States)

    Karampatos, Sarah; Papaioannou, Alexandra; Beattie, Karen A; Maly, Monica R; Chan, Adrian; Adachi, Jonathan D; Pritchard, Janet M

    2016-04-01

    Determine the reliability of a magnetic resonance (MR) image segmentation protocol for quantifying intramuscular adipose tissue (IntraMAT), subcutaneous adipose tissue, total muscle and intermuscular adipose tissue (InterMAT) of the lower leg. Ten axial lower leg MRI slices were obtained from 21 postmenopausal women using a 1 Tesla peripheral MRI system. Images were analyzed using sliceOmatic™ software. The average cross-sectional areas of the tissues were computed for the ten slices. Intra-rater and inter-rater reliability were determined and expressed as the standard error of measurement (SEM) (absolute reliability) and intraclass coefficient (ICC) (relative reliability). Intra-rater and inter-rater reliability for IntraMAT were 0.991 (95% confidence interval [CI] 0.978-0.996, p soft tissue compartments, the ICCs were all >0.90 (p soft-tissue compartments of the lower leg. A standard operating procedure manual is provided to assist users, and SEM values can be used to estimate sample size and determine confidence in repeated measurements in future research.

  16. 27 CFR 19.384 - Preparation of bottling or packaging record.

    Science.gov (United States)

    2010-04-01

    ... packaging record. 19.384 Section 19.384 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Than Denaturation and Manufacture of Articles Bottling, Packaging, and Removal of Products § 19.384 Preparation of bottling or packaging record. The proprietor shall prepare a record for each batch of spirits...

  17. Imaging of single cells and tissue using MeV ions

    International Nuclear Information System (INIS)

    Watt, F.; Bettiol, A.A.; Kan, J.A. van; Ynsa, M.D.; Ren Minqin; Rajendran, R.; Cui Huifang; Sheu, F.-S.; Jenner, A.M.

    2009-01-01

    With the attainment of sub-100 nm high energy (MeV) ion beams, comes the opportunity to image cells and tissue at nano-dimensions. The advantage of MeV ion imaging is that the ions will penetrate whole cells, or relatively thick tissue sections, without any significant loss of resolution. In this paper, we demonstrate that whole cells (cultured N2A neuroblastoma cells ATCC) and tissue sections (rabbit pancreas tissue) can be imaged at sub-100 nm resolutions using scanning transmission ion microscopy (STIM), and that sub-cellular structural details can be identified. In addition to STIM imaging we have also demonstrated for the first time, that sub-cellular proton induced fluorescence imaging (on cultured N2A neuroblastoma cells ATCC) can also be carried out at resolutions of 200 nm, compared with 300-400 nm resolutions achieved by conventional optical fluorescence imaging. The combination of both techniques offers a potentially powerful tool in the quest for elucidating cell function, particularly when it should be possible in the near future to image down to sub-50 nm.

  18. [Lasers in dentistry. Part B--Interaction with biological tissues and the effect on the soft tissues of the oral cavity, the hard tissues of the tooth and the dental pulp].

    Science.gov (United States)

    Moshonov, J; Stabholz, A; Leopold, Y; Rosenberg, I; Stabholz, A

    2001-10-01

    . Histologically, after laser ablation, presence of odontoblastic nuclei is important. Consistency and composition of the intracellular tissue is another factor influencing cell viability. If heat is intensive and exists for an extended time, the consistency of the intracellular ground substance may not be preserved. Accordingly, the application of excessive energy densities has been shown to result in significant damage to pulp tissue and in particular to odontoblasts. Studies showed that the use of Er:YAG laser to treat dental hard tissues is both safe and effective for caries removal, cavity preparation and enamel etching.

  19. COMPARISON OF THE QUALITY OF RNA ISOLATED FROM THE RAINBOW TROUT (Oncorhynchus mykiss TISSUE IN FOUR DIFFERENT WAYS

    Directory of Open Access Journals (Sweden)

    Irena Vardić

    2004-03-01

    Full Text Available Rapid and accurate diagnostic procedures for identification of reared fish diseases are important in order to reduce serious losses in relation of diseases outbrakes. Therefore, molecular biology methods are required for such types of investigations. First level in these experiments are DNA or RNA isolation. Tissue preparation for isolation of RNA, which is used in further RT-PCR (reverse transcription-polymerise chain reaction analysis is the key step on which is the whole process of analysis dependent. Our goal was to compare quality and integrity of RNA isolated from the rainbow trout tissue, which was prepared in four different ways: fresh tissue, frozen tissue, in formalin-fixed, paraffin embedded tissue as well as in methacarn-fixed, paraffin embedded tissue. Isolated RNA was analyzed in gel electrophoresis on non-denaturated, 1% agarose gel. Quality and integrity of RNA was proved by RT-PCR reaction with primers for ß-actin gene. Additional, prepared tissue was tested on presence of two fish viruses: viral haemorrhagic septicaemia (VHS virus and infectious haematopoietic necrosis (IHN virus in RT-PCR reaction with primers specific for these viruses. RNA isolated from fresh and frozen tissue was of high quality, integrity and quantity. RNA isolated from in methacarn-fixed, paraffin embedded tissue was quite disintegrated, but in RT-PCR with primers for ß-actin gave expected products. These products were absent after RT-PCR reaction with in formallin-fixed, paraffin-embedded tissue. That agrees with the facts from the literature about very agressive affect of formalin as a fixative on RNA in tissue. Inspected fish were not infected with VHS and IHN viruses and that was in agreement with results of clinical examination and pathological analysis. According to our knowledge, this is the first successful RNA isolation from in methacarn-fixed, paraffin embedded fish tissue. Isolated RNA can be used for further analysis in RT-PCR reaction. This

  20. Trace elements in digestive cancer tissue by PIXE

    International Nuclear Information System (INIS)

    Ciortea, C.; Constantinescu, O.; Cata, I.; Dumitriu, D. E.; Enulescu, A.; Fluerasu, D.; Pantelica, A.; Penescu, L. C.; Piticu, I.; Radu, A. T.; Vargolici, M.; Ciortea, M.; Staniceanu, F.; Popescu, E.; Donciu, D.; Moldovan, A.; Popescu, L.; Burghelea, B.

    2004-01-01

    Elemental composition study of digestive cancer tissue with different localizations (esophagus, stomach, colon) by using PIXE analysis is presented. A number of 20 tumor and normal (control) tissue samples were analyzed. Thin targets were prepared by mineralization of the lyophilized tissue with nitric acid and dropping on 2 μm Mylar foil. The measurements were carried out in vacuum using 3 MeV protons delivered by the tandem accelerator in Bucharest, Romania. The following elements were identified: S, Cl, K, Ca, Cr, Mn, Fe, Cu and Zn. Although the results show relatively large variations from a sample to another there were obtained mean ratios of tumor/normal concentrations which are significantly greater than one, in the limit of the standard deviation for the following elements: K (1.45±0.28), Ca (1.30±0.21), Cr (2.33±0.56), and Zn (1.18±0.15). For the other determined elements, no significant difference between the tumor and normal tissues, in the limit of the present standard deviation, was found. (authors)

  1. In-air micro-pixe analysis of tissue samples

    International Nuclear Information System (INIS)

    Tanaka, A.; Ishii, K.; Komori, Y.

    2002-01-01

    Micro-PIXE is capable of providing spatial distributions of elements in the micro-meter scale and its application to biology is useful to elucidate the cellular metabolism. Since, in this method, a sample target is usually irradiated with proton or α-particle beams in vacuum, beam heating results in evaporation of volatile elements an shrinking of the sample. In order to avoid these side effects, we previously developed a technique of in-air micro-PIXE analysis for samples of cultured cells. In addition to these, analysis of exposed tissue samples from living subjects is highly desirable in biological and medical research. Here, we describe a technique of in-air micro-PIXE analysis of such tissue samples. The target samples of exposed tissue slices from a Donryu rat, in which a tumor had been transplanted, were analyzed with proton micro-beams of 2.6 MeV. We report that the shape of cells and the distribution of volatile elements in the tissue sample remain uncharged when using a target preparation based on a freeze-drying method. (author)

  2. Trace elements in digestive cancer tissue by PIXE

    International Nuclear Information System (INIS)

    Ciortea, Constantin; Constantinescu, Olimpiu; Filimon, Andrei

    2005-01-01

    Elemental composition study of digestive cancer tissue with different localizations (esophagus, stomach, colon), by using PIXE analysis, is presented. A number of 20 tumors and normal (control) tissue samples was analyzed. Thin targets were prepared by mineralization with nitric acid of the lyophilized tissue and dropping on 2 μm Mylar foil. The measurements were carried out in vacuum using 3 MeV protons delivered by the Tandem Accelerator in Bucharest, Romania. The following elements were determined: S, Cl, K, Ca, Cr, Mn, Fe, Cu and Zn. Although the results show relatively large variations from a sample to another, there were obtained mean ratios of tumor/normal concentrations which are significantly greater than one, in the limit of the standard deviation, for the following elements: K(1.45 ± 0.28), Ca(1.30 ± 0.21), Cr(2.33 ± 0.56), and Zn(1.18 ± 0.15). For other elements determined, no significant difference between the tumor and normal tissues , in the limit of the present standard deviation, was found. (authors)

  3. Comparison of commercial DNA preparation kits for the detection of Brucellae in tissue using quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Straube Eberhard

    2010-04-01

    Full Text Available Abstract Background The detection of Brucellae in tissue specimens using PCR assays is difficult because the amount of bacteria is usually low. Therefore, optimised DNA extraction methods are critical. The aim of this study was to assess the performance of commercial kits for the extraction of Brucella DNA. Methods Five kits were evaluated using clinical specimens: QIAamp™ DNA Mini Kit (QIAGEN, peqGold™ Tissue DNA Mini Kit (PeqLab, UltraClean™ Tissue and Cells DNA Isolation Kit (MoBio, DNA Isolation Kit for Cells and Tissues (Roche, and NucleoSpin™ Tissue (Macherey-Nagel. DNA yield was determined using a quantitative real-time PCR assay targeting IS711 that included an internal amplification control. Results Kits of QIAGEN and Roche provided the highest amount of DNA, Macherey-Nagel and Peqlab products were intermediate whereas MoBio yielded the lowest amount of DNA. Differences were significant (p Conclusions We observed differences in DNA yield as high as two orders of magnitude for some samples between the best and the worst DNA extraction kits and inhibition was observed occasionally. This indicates that DNA purification may be more relevant than expected when the amount of DNA in tissue is very low.

  4. Production and cross-sectional characterization of aligned co-electrospun hollow microfibrous bulk assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Feng-Lei [Centre for Imaging Sciences, The University of Manchester, Manchester M13 9PT (United Kingdom); The School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester (United Kingdom); Parker, Geoff J.M., E-mail: geoff.parker@manchester.ac.uk [Centre for Imaging Sciences, The University of Manchester, Manchester M13 9PT (United Kingdom); CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester (United Kingdom); Eichhorn, Stephen J. [College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom); Hubbard Cristinacce, Penny L. [Centre for Imaging Sciences, The University of Manchester, Manchester M13 9PT (United Kingdom); School of Psychological Sciences, University of Manchester, Manchester M13 9PT (United Kingdom)

    2015-11-15

    The development of co-electrospun (co-ES) hollow microfibrous assemblies of an appreciable thickness is critical for many practical applications, including filtration membranes and tissue-mimicking scaffolds. In this study, thick uniaxially aligned hollow microfibrous assemblies forming fiber bundles and strips were prepared by co-ES of polycaprolactone (PCL) and polyethylene oxide (PEO) as shell and core materials, respectively. Hollow microfiber bundles were deposited on a fixed rotating disc, which resulted in non-controllable cross-sectional shapes on a macroscopic scale. In comparison, fiber strips were produced with tuneable thickness and width by additionally employing an x–y translation stage in co-ES. Scanning electron microscopy (SEM) images of cross-sections of fiber assemblies were analyzed to investigate the effects of production time (from 0.5 h to 12 h), core flow rate (from 0.8 mL/h to 2.0 mL/h) and/or translation speed (from 0.2 mm/s to 5 mm/s) on the pores and porosity. We observed significant changes in pore size and shape with core flow rate but the influence of production time varied; five strips produced under the same conditions had reasonably good size and porosity reproducibility; pore sizes didn't vary significantly from strip bottom to surface, although the porosity gradually decreased and then returned to the initial level. - Highlights: • Hollow microfibrous assemblies based on co-electrospinning are demonstrated. • The thickness and width of co-electrospun strips were controllable. • Cross-sections of fibres had non-normally distributed pore sizes and shapes. • Cross-sections were significantly influenced by production time and flow rate. • Co-electrospun strips had reasonably good reproducible cross-sections.

  5. Design and Fabrication of Biodegradable Porous Chitosan/Gelatin/Tricalcium Phosphate Hybrid Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Y. Mohammadi

    2007-08-01

    Full Text Available In this study, based on a biomimetic approach, novel 3D biodegradable porous hybrid scaffolds consisting of chitosan, gelatin, and tricalcium phosphate were developed for bone and cartilage tissue engineering. Macroporous chitosan/ gelatin/β-TCP scaffolds were prepared through the process of freeze-gelation/solid-liquid phase separation. The results showed that the prepared scaffolds are highly porous, with porosities larger than 80%, and have interconnected pores. Biocompatibility studies were successfully performed by in vitro and in vivo assays. Moreover, the attachment, migration, and proliferation of chondrocytes on these unique temporary scaffolds were examined to determine their potentials in tissue engineering applications.

  6. Application of Hanging Drop Technique for Kidney Tissue Culture.

    Science.gov (United States)

    Wang, Shaohui; Wang, Ximing; Boone, Jasmine; Wie, Jin; Yip, Kay-Pong; Zhang, Jie; Wang, Lei; Liu, Ruisheng

    2017-01-01

    The hanging drop technique is a well-established method used in culture of animal tissues. However, this method has not been used in adult kidney tissue culture yet. This study was to explore the feasibility of using this technique for culturing adult kidney cortex to study the time course of RNA viability in the tubules and vasculature, as well as the tissue structural integrity. In each Petri dish with the plate covered with sterile buffer, a section of mouse renal cortex was cultured within a drop of DMEM culture medium on the inner surface of the lip facing downward. The tissue were then harvested at each specific time points for Real-time PCR analysis and histological studies. The results showed that the mRNA level of most Na+ related transporters and cotransporters were stably maintained within 6 hours in culture, and that the mRNA level of most receptors found in the vasculature and glomeruli were stably maintained for up to 9 days in culture. Paraffin sections of the cultured renal cortex indicated that the tubules began to lose tubular integrity after 6 hours, but the glomeruli and vasculatures were still recognizable up to 9 days in culture. We concluded that adult kidney tissue culture by hanging drop method can be used to study gene expressions in vasculature and glomeruli. © 2017 The Author(s). Published by S. Karger AG, Basel.

  7. Application of Hanging Drop Technique for Kidney Tissue Culture

    Directory of Open Access Journals (Sweden)

    Shaohui Wang

    2017-05-01

    Full Text Available Background/Aims: The hanging drop technique is a well-established method used in culture of animal tissues. However, this method has not been used in adult kidney tissue culture yet. This study was to explore the feasibility of using this technique for culturing adult kidney cortex to study the time course of RNA viability in the tubules and vasculature, as well as the tissue structural integrity. Methods: In each Petri dish with the plate covered with sterile buffer, a section of mouse renal cortex was cultured within a drop of DMEM culture medium on the inner surface of the lip facing downward. The tissue were then harvested at each specific time points for Real-time PCR analysis and histological studies. Results: The results showed that the mRNA level of most Na+ related transporters and cotransporters were stably maintained within 6 hours in culture, and that the mRNA level of most receptors found in the vasculature and glomeruli were stably maintained for up to 9 days in culture. Paraffin sections of the cultured renal cortex indicated that the tubules began to lose tubular integrity after 6 hours, but the glomeruli and vasculatures were still recognizable up to 9 days in culture. Conclusions: We concluded that adult kidney tissue culture by hanging drop method can be used to study gene expressions in vasculature and glomeruli.

  8. Staining plastic blocks with triiodide to image cells and soft tissues in backscattered electron SEM of skeletal and dental tissues

    Directory of Open Access Journals (Sweden)

    A Boyde

    2012-07-01

    Full Text Available Backscattered electron scanning electron microscopy (BSE SEM is an invaluable method for studying the histology of the hard, mineralised components of poly-methyl methacrylate (PMMA or other resin embedded skeletal and dental tissues. Intact tissues are studied in micro-milled or polished block faces with an electron-optical section thickness of the order of a half to one micron and with the area of the section as big as a whole – large or small – bone organ. However, BSE SEM does not give information concerning the distribution of uncalcified, ‘soft’, cellular and extracellular matrix components. This can be obtained by confocal microscopy of the same block and the two sorts of images merged but the blocks have to be studied in two microscope systems. The present work shows a new, simple and economic approach to visualising both components by using the triiodide ion in Lugol's iodine solution to stain the block surface prior to the application of any conductive coating – and the latter can be omitted if charging is suppressed by use of poor vacuum conditions in the SEM sample chamber. The method permits the use of archival tissue, and it will be valuable in studies of both normal growth and development and pathological changes in bones and joints, including osteoporosis and osteoarthritis, and tissue adaptation to implants.

  9. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cell and tissue culture supplies and equipment. 864.2240 Section 864.2240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products...

  10. Association between home food preparation skills and behaviour, and consumption of ultra-processed foods: Cross-sectional analysis of the UK National Diet and nutrition survey (2008-2009).

    Science.gov (United States)

    Lam, Matthew Chak Leung; Adams, Jean

    2017-05-23

    'Ultra-processed foods' (UPF) have been industrially processed and tend to be higher in saturated fat, sodium and sugar than other foods. There is some evidence that consumption of UPF is associated with overweight, obesity and related diseases. In developed countries more than half of dietary energy is attributed to UPF. One reason for reliance on UPF may be poor home food preparation skills or infrequent use of these. This relationship has been previously proposed but not tested. We examined the relationship between home food preparation skills and behaviour and consumption of UPF. We used data from adults in the UK National Diet & Nutrition Survey 2008-09. Home food preparation skills and behaviours of adults (n = 509) were assessed using questions on confidence using eight cooking techniques, confidence cooking 10 foods, ability to prepare a cake or biscuits without help, and whether or not participants prepared a main meal five or more days per week. Individuals' UPF consumption was determined from four-day estimated diet diaries. Associations were adjusted for age, gender, occupational social class and household composition. In fully adjusted models, individuals who were confident with all 10 foods (adjusted beta (95% CI) = -3.76 (-6.02 to -1.50)), able to bake cakes or biscuits without help (-3.87 (-6.62 to -1.12)), and cooked a main meal at least five days a week (-2.84 (-5.43 to -0.24)) consumed a lower percentage of dietary energy from UPF. In UK adults better home food preparation skills and more frequent use of these skills tended to be cross-sectionally associated with lower UPF consumption. Greater encouragement of these skills may help reduce reliance on UPF.

  11. Utilizing 3D Printing Technology to Merge MRI with Histology: A Protocol for Brain Sectioning

    Science.gov (United States)

    Luciano, Nicholas J; Sati, Pascal; Nair, Govind; Guy, Joseph R; Ha, Seung-Kwon; Absinta, Martina; Chiang, Wen-Yang; Leibovitch, Emily C; Jacobson, Steven; Silva, Afonso C; Reich, Daniel S.

    2016-01-01

    Magnetic resonance imaging (MRI) allows for the delineation between normal and abnormal tissue on a macroscopic scale, sampling an entire tissue volume three-dimensionally. While MRI is an extremely sensitive tool for detecting tissue abnormalities, association of signal changes with an underlying pathological process is usually not straightforward. In the central nervous system, for example, inflammation, demyelination, axonal damage, gliosis, and neuronal death may all induce similar findings on MRI. As such, interpretation of MRI scans depends on the context, and radiological-histopathological correlation is therefore of the utmost importance. Unfortunately, traditional pathological sectioning of brain tissue is often imprecise and inconsistent, thus complicating the comparison between histology sections and MRI. This article presents novel methodology for accurately sectioning primate brain tissues and thus allowing precise matching between histology and MRI. The detailed protocol described in this article will assist investigators in applying this method, which relies on the creation of 3D printed brain slicers. Slightly modified, it can be easily implemented for brains of other species, including humans. PMID:28060281

  12. Utilizing 3D Printing Technology to Merge MRI with Histology: A Protocol for Brain Sectioning.

    Science.gov (United States)

    Luciano, Nicholas J; Sati, Pascal; Nair, Govind; Guy, Joseph R; Ha, Seung-Kwon; Absinta, Martina; Chiang, Wen-Yang; Leibovitch, Emily C; Jacobson, Steven; Silva, Afonso C; Reich, Daniel S

    2016-12-06

    Magnetic resonance imaging (MRI) allows for the delineation between normal and abnormal tissue on a macroscopic scale, sampling an entire tissue volume three-dimensionally. While MRI is an extremely sensitive tool for detecting tissue abnormalities, association of signal changes with an underlying pathological process is usually not straightforward. In the central nervous system, for example, inflammation, demyelination, axonal damage, gliosis, and neuronal death may all induce similar findings on MRI. As such, interpretation of MRI scans depends on the context, and radiological-histopathological correlation is therefore of the utmost importance. Unfortunately, traditional pathological sectioning of brain tissue is often imprecise and inconsistent, thus complicating the comparison between histology sections and MRI. This article presents novel methodology for accurately sectioning primate brain tissues and thus allowing precise matching between histology and MRI. The detailed protocol described in this article will assist investigators in applying this method, which relies on the creation of 3D printed brain slicers. Slightly modified, it can be easily implemented for brains of other species, including humans.

  13. In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold

    International Nuclear Information System (INIS)

    Yang Bo; Yin Zhanhai; Cao Junling; Shi Zhongli; Zhang Zengtie; Liu Fuqiang; Song Hongxing; Caterson, Bruce

    2010-01-01

    In this study, we constructed tissue-engineered cartilage using allogeneic cancellous bone matrix gelatin (BMG) as a scaffold. Allogeneic BMG was prepared by sequential defatting, demineralization and denaturation. Isolated rabbit chondrocytes were seeded onto allogeneic cancellous BMG, and cell-BMG constructs were harvested after 1, 3 and 6 weeks for evaluation by hematoxylin and eosin staining for overall morphology, toluidine blue for extracellular matrix (ECM) proteoglycans, immunohistochemical staining for collagen type II and a transmission electron microscope for examining cellular microstructure on BMG. The prepared BMG was highly porous with mechanical strength adjustable by duration of demineralization and was easily trimmed for tissue repair. Cancellous BMG showed favorable porosity for cell habitation and metabolism material exchange with larger pore sizes (100-500 μm) than in cortical BMG (5-15 μm), allowing cell penetration. Cancellous BMG also showed good biocompatibility, which supported chondrocyte proliferation and sustained their differentiated phenotype in culture for up to 6 weeks. Rich and evenly distributed cartilage ECM proteoglycans and collagen type II were observed around chondrocytes on the surface and inside the pores throughout the cancellous BMG. Considering the large supply of banked bone allografts and relatively convenient preparation, our study suggests that allogeneic cancellous BMG is a promising scaffold for cartilage tissue engineering.

  14. In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Yang Bo; Yin Zhanhai; Cao Junling; Shi Zhongli; Zhang Zengtie; Liu Fuqiang [College of Medicine, Xi' an Jiaotong University, Yanta West Road, No 76, Yanta District, Xi' an, Shaanxi Province 710061 (China); Song Hongxing [Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Caterson, Bruce, E-mail: caojl@mail.xjtu.edu.c [Connective Tissue Biology Laboratories, Cardiff School of Biosciences, Cardiff University, Biomedical Building, Museum Avenue, Cardiff, CF10 3US (United Kingdom)

    2010-08-01

    In this study, we constructed tissue-engineered cartilage using allogeneic cancellous bone matrix gelatin (BMG) as a scaffold. Allogeneic BMG was prepared by sequential defatting, demineralization and denaturation. Isolated rabbit chondrocytes were seeded onto allogeneic cancellous BMG, and cell-BMG constructs were harvested after 1, 3 and 6 weeks for evaluation by hematoxylin and eosin staining for overall morphology, toluidine blue for extracellular matrix (ECM) proteoglycans, immunohistochemical staining for collagen type II and a transmission electron microscope for examining cellular microstructure on BMG. The prepared BMG was highly porous with mechanical strength adjustable by duration of demineralization and was easily trimmed for tissue repair. Cancellous BMG showed favorable porosity for cell habitation and metabolism material exchange with larger pore sizes (100-500 {mu}m) than in cortical BMG (5-15 {mu}m), allowing cell penetration. Cancellous BMG also showed good biocompatibility, which supported chondrocyte proliferation and sustained their differentiated phenotype in culture for up to 6 weeks. Rich and evenly distributed cartilage ECM proteoglycans and collagen type II were observed around chondrocytes on the surface and inside the pores throughout the cancellous BMG. Considering the large supply of banked bone allografts and relatively convenient preparation, our study suggests that allogeneic cancellous BMG is a promising scaffold for cartilage tissue engineering.

  15. Comparing different preparation methods to study human fibrin fibers and platelets using TEM.

    Science.gov (United States)

    Buys, Antoinette V; Pretorius, Etheresia

    2012-06-01

    For the study of cellular ultrastructure, the sample needs to be stabilized by fixation, with the ultimate aim to preserve the native tissue organization and to protect the tissue against later stages of preparation. Chemical and freezing fixation are most used, and chemical fixation employs agents that permeate tissues and cells by diffusion and covalently bind with their major biochemical constituents to fix them. Most widely used chemical fixatives are aldehydes, e.g., formaldehyde and glutaraldehyde, which are noncoagulating, crosslinking agents. Cryofixation methods for ultrastructural studies are also popular, and high-pressure freezing immobilizes all cell constituents and arrests biological activity by removing the thermal energy from the system. In the current research, we used platelet-rich plasma (PRP) to study expansive fibrin fibers and platelet ultrastructure to compare the two fixation techniques. We also used thrombin and calcium chloride as a clotting agent to determine the technique most suitable for the formation of extensive fibrin networks. Chemically fixated fibrin fibers were more compact and condensed and also showed a banding pattern on longitudinal sections. High-pressure frozen samples were more dispersed while platelets fixated showed better preserved cellular membranes and organelle structure. PRP coagulated by addition of CaCl(2) showed blood platelets that are noticeably more activated compared with PRP; however, with thrombin, a sharp ultrastructure was seen. We conclude that PRP mixed with thrombin, and freeze substituted, is the most suitable method for the study of extensive fibrin fibers as well as platelets. Copyright © 2011 Wiley Periodicals, Inc.

  16. Structural requirements of research tissue banks derived from standardized project surveillance.

    Science.gov (United States)

    Herpel, E; Koleganova, N; Schreiber, B; Walter, B; Kalle, C V; Schirmacher, P

    2012-07-01

    Tissue banks constitute decisive and rate-limiting resource and technology platforms for basic and translational biomedical research, notably in the area of cancer. Thus, it is essential to plan and structure tissue banking and allocate resources according to research needs, but essential requirements are still incompletely defined. The tissue bank of the National Center of Tumor Diseases Heidelberg (NCT) was founded with the intention to provide tissues of optimal quality and to prioritize the realization of research projects. We analysed its structure and prospective project management registration as well as tracking records for all projects of the NCT tissue bank as of its start in 2005 in order to obtain information that may be relevant for tissue bank planning. All project proposals submitted to the NCT tissue bank (n = 681) were included in the study. For a detailed evaluation of provided services, only projects that were completed until July 2011 (n = 605) were analysed. For these 605 projects, NCT tissue bank provided 769 specific services. In all projects/services, we recorded project leader, type and amount of material provided, type of research (basic/translational), work load of project and project completion. Furthermore, all completed projects were tracked after 90 days according to a standard protocol to determine principal investigators' (PI) satisfaction and quality of the provided material. Until July 2011, 605 projects had been successfully completed as documented by material transfer agreement. Of the projects, 72.7 % addressed basic research, 22.3 % were translational research projects and 3 % concerned epidemiological research; 91 % (n = 546) concerned a single PI and the NTC tissue bank. For these projects, 769 specific services were provided. Of these services, 288 concerned providing formalin-fixed and paraffin-embedded (FFPE) tissue (extracts, full size sections), 126 providing fresh frozen materials (including fresh frozen

  17. Breast Cancer and Estrogen Biosynthesis in Adipose Tissue

    Science.gov (United States)

    1998-10-01

    article must therefore be hereby marked " advertisement " in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. $ These two authors...activity in adipose tissue from breast quadrants: a link with tumor site. Br. Mcd . J. 296, 741 743. [12] Reed. M.J.. Topping, L., Coldham, N.G...Burkitt HG, Daniels VG. 1987 Connective tissue. In: Functional histology. A text and colour atlas, 2nd ed. Edinburgh, UK: Churchill Living- stone

  18. Structural characterization of pharmaceutical heparins prepared from different animal tissues.

    Science.gov (United States)

    Fu, Li; Li, Guoyun; Yang, Bo; Onishi, Akihiro; Li, Lingyun; Sun, Peilong; Zhang, Fuming; Linhardt, Robert J

    2013-05-01

    Although most pharmaceutical heparin used today is obtained from porcine intestine, heparin has historically been prepared from bovine lung and ovine intestine. There is some regulatory concern about establishing the species origin of heparin. This concern began with the outbreak of mad cow disease in the 1990s and was exacerbated during the heparin shortage in the 2000s and the heparin contamination crisis of 2007-2008. Three heparins from porcine, ovine, and bovine were characterized through state-of-the-art carbohydrate analysis methods with a view profiling their physicochemical properties. Differences in molecular weight, monosaccharide and disaccharide composition, oligosaccharide sequence, and antithrombin III-binding affinity were observed. These data provide some insight into the variability of heparins obtained from these three species and suggest some analytical approaches that may be useful in confirming the species origin of a heparin active pharmaceutical ingredient. Copyright © 2013 Wiley Periodicals, Inc.

  19. Wound healing of osteotomy defects prepared with piezo or conventional surgical instruments: a pilot study in rabbits.

    Science.gov (United States)

    Ma, Li; Mattheos, Nikos; Sun, Yan; Liu, Xi Ling; Yip Chui, Ying; Lang, Niklaus Peter

    2015-08-01

    The aim of the present study was to evaluate and compare the wound-healing process following osteotomies performed with either conventional rotary burs or piezoelectric surgery in a rabbit model. Two types of osteotomy window defects of the nasal cavities were prepared on the nasal bone of 16 adult New Zealand white rabbits with either a conventional rotary bur or piezo surgery. The defects were covered with a resorbable membrane. Four animals were killed at 1, 2, 3, and 5 weeks after the surgical procedure, respectively. Histological and morphometric evaluations were performed to assess the volumetric density of various tissue components: the blood clot, vascularized structures, provisional matrix, osteoid, mineralized bone, bone debris, residual tissue, and old bone. Significantly more bone debris was found at 1 week in the conventionally-prepared defects compared to the piezo surgically-prepared defects. At 2 and 3 weeks, a newly-formed hard tissue bridge, mainly composed of woven bone, was seen; however, no statistically-significant differences were observed. At 5 weeks, the defects were completely filled with newly-formed bone. The defects prepared by piezo surgery showed a significantly decreased proportion of bone debris at 1 week, compared to conventional rotary bur defect. © 2014 Wiley Publishing Asia Pty Ltd.

  20. The effect of dentin on the pulp tissue dissolution capacity of sodium hypochlorite and calcium hydroxide.

    Science.gov (United States)

    Slutzky-Goldberg, Iris; Hanut, Aiham; Matalon, Shlomo; Baev, Valery; Slutzky, Hagay

    2013-08-01

    Sodium hypochlorite (NaOCl) and calcium hydroxide (Ca[OH]2) have tissue dissolution capacity. The aim of this study was to evaluate the potential effect of dentin on their tissue dissolution capacity in a novel dentin model. Dentin models were prepared from 25 freshly extracted human molar teeth; the crowns were separated from the roots, and a rectangular inner shape was prepared. Pulp tissue samples adjusted to similar weights of 6.5 ± 0.2 mg were randomly divided into 6 groups: NaOCl groups in test tubes or dentin models for 1 hour, Ca(OH)2 groups in test tubes or dentin models for 1 week, and control groups saline in test tubes or dentin models for 1 week. The final weights after the experimental period were checked and compared with the initial weights. The differences were statistically analyzed. The tissue dissolution capacity of Ca(OH)2 was affected by the presence of dentin. Similarly, NaOCl lost its effect on the pulp tissue after incubation in dentin. Comparison between all test groups showed highly significant differences (P interactions between local endodontic medicaments, dentin, and pulp tissue. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

    Science.gov (United States)

    Nguyen, Peter L.; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J.

    2015-01-01

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis. PMID:25650759

  2. Determination of elemental tissue composition following proton treatment using positron emission tomography

    International Nuclear Information System (INIS)

    Cho, Jongmin; Ibbott, Geoffrey; Gillin, Michael; Gonzalez-Lepera, Carlos; Min, Chul Hee; Zhu, Xuping; El Fakhri, Georges; Paganetti, Harald; Mawlawi, Osama

    2013-01-01

    Positron emission tomography (PET) has been suggested as an imaging technique for in vivo proton dose and range verification after proton induced-tissue activation. During proton treatment, irradiated tissue is activated and decays while emitting positrons. In this paper, we assessed the feasibility of using PET imaging after proton treatment to determine tissue elemental composition by evaluating the resultant composite decay curve of activated tissue. A phantom consisting of sections composed of different combinations of 1 H, 12 C, 14 N, and 16 O was irradiated using a pristine Bragg peak and a 6 cm spread-out Bragg-peak (SOBP) proton beam. The beam ranges defined at 90% distal dose were 10 cm; the delivered dose was 1.6 Gy for the near monoenergetic beam and 2 Gy for the SOBP beam. After irradiation, activated phantom decay was measured using an in-room PET scanner for 30 min in list mode. Decay curves from the activated 12 C and 16 O sections were first decomposed into multiple simple exponential decay curves, each curve corresponding to a constituent radioisotope, using a least-squares method. The relative radioisotope fractions from each section were determined. These fractions were used to guide the decay curve decomposition from the section consisting mainly of 12 C + 16 O and calculate the relative elemental composition of 12 C and 16 O. A Monte Carlo simulation was also used to determine the elemental composition of the 12 C + 16 O section. The calculated compositions of the 12 C + 16 O section using both approaches (PET and Monte Carlo) were compared with the true known phantom composition. Finally, two patients were imaged using an in-room PET scanner after proton therapy of the head. Their PET data and the technique described above were used to construct elemental composition ( 12 C and 16 O) maps that corresponded to the proton-activated regions. We compared the 12 C and 16 O compositions of seven ROIs that corresponded to the vitreous humor, adipose

  3. 40 CFR 1501.4 - Whether to prepare an environmental impact statement.

    Science.gov (United States)

    2010-07-01

    ... impact statement. 1501.4 Section 1501.4 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY NEPA AND AGENCY PLANNING § 1501.4 Whether to prepare an environmental impact statement. In determining whether to prepare an environmental impact statement the Federal agency shall: (a) Determine under its...

  4. Application of a nuclear microprobe to the study of calcified tissues

    Science.gov (United States)

    Coote, Graeme E.; Vickridge, Ian C.

    1988-03-01

    The mineral fraction of calcified tissue is largely calcium hydroxyapatite (bones and teeth) or calcium carbonate (shells and fish otoliths). Apatite has such a strong affinity for fluoride ions that the F/Ca ratio can vary markedly with position in a bone or tooth, depending on the amount of fluoride present at the time of calcification or partial recrystallization. New biological information can be obtained by introducing extra fluoride into the diet of an animal and using a microprobe later to scan sections of bones or teeth. In suitable burial sites extra fluoride is introduced after death, and the new distribution may have applications in forensic science and archaeology. Fish otoliths are also of interest since a new carbonate layer is formed each day and the distribution of trace elements may record some aspects of the fish's life history. Results from the following studies are presented: fluorine distributions in the teeth of sheep which ingested extra fluoride for known periods; distributions of calcium and fluorine in femurs of rats which drank water high in fluoride for periods from 2 to 15 weeks; calcium and fluorine distributions in artificially-prepared lesions in tooth enamel; diffusion profiles in archaeological human teeth and animal bones; patterns in the strontium/calcium ratio in sectioned otoliths of several species of fish.

  5. Preparation and characterization of carbon nanofibrous/hydroxyapatite sheets for bone tissue engineering.

    Science.gov (United States)

    Abd El-Aziz, A M; El Backly, Rania M; Taha, Nahla A; El-Maghraby, Azza; Kandil, Sherif H

    2017-07-01

    Critical size bone defects are orthopedic defects that will not heal without intervention or that will not completely heal over the natural life time of the animal. Although bone generally has the ability to regenerate completely however, critical defects require some sort of scaffold to do so. In the current study we proposed a method to obtain a carbon nanofibrous/Hydroxyapatite (HA) bioactive scaffold. The carbon nanofibrous (CNF) nonwoven fabrics were obtained by the use of the electrospinning process of the polymeric solution of poly acrylonitrile "PAN" and subsequent stabilization and carbonization processes. The CNFs sheets were functionalized by both hydroxyapatite (HA) and bovine serum albumin (BSA). The HA was added to the electrospun solution, but in case of (BSA), it was adsorbed after the carbonization process. The changes in the properties taking place in the precursor sheets were investigated using the characterization methods (SEM, FT-IR, TGA and EDX). The prepared materials were tested for biocompatibility via subcutaneous implantation in New Zealand white rabbits. We successfully prepared biocompatible functionalized sheets, which have been modified with HA or HA and BSA. The sheets that were functionalized by both HA and BSA are more biocompatible with fewer inflammatory cells of (neutrophils and lymphocytes) than ones with only HA over the period of 3weeks. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Is chronic fatigue syndrome a connective tissue disorder? A cross-sectional study in adolescents

    NARCIS (Netherlands)

    van de Putte, E. M.; Uiterwaal, C. S. P. M.; Bots, M. L.; Kuis, W.; Kimpen, J. L. L.; Engelbert, R. H. H.

    2005-01-01

    To investigate whether constitutional laxity of the connective tissues is more frequently present in adolescents with chronic fatigue syndrome (CFS) than in healthy controls. Increased joint hypermobility in patients with CFS has been previously described, as has lower blood pressure in fatigued

  7. Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture

    Science.gov (United States)

    Amornvit, Pokpong; Srithavaj, Theerathavaj

    2014-01-01

    Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638

  8. 40 CFR 86.1432 - Vehicle preparation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Vehicle preparation. 86.1432 Section...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty...

  9. Effect of cryoprotectants for maintaining drug permeability barriers in porcine buccal mucosa

    DEFF Research Database (Denmark)

    Marxen, Eva; Axelsen, Mary Carlos; Pedersen, Anne Marie Lynge

    2016-01-01

    fresh or frozen/thawed tissue was determined using modified Ussing chambers. Haematoxylin-eosin stained tissue sections for histology were prepared. The permeability of nicotine across tissue frozen without cryoprotectants was significantly higher compared to tissue frozen with cryoprotectants or fresh...

  10. Freeze-drying and related preparation techniques for biological microprobe analysis

    International Nuclear Information System (INIS)

    Wroblewski, R.; Wroblewski, J.; Anniko, M.; Edstroem, L.P.

    1985-01-01

    An X-ray microanalytical and morphological investigation has been carried out on rapidly frozen, freeze-dried or freeze-substituted tissues. A comparison was made between different embedding and polymerization procedures following freeze-substitution and freeze-drying. The investigation also included an analysis of specimens infiltrated, embedded and polymerized by ultraviolet irradiation at low temperatures with Lowicryl HM20. The morphological preservation of Lowicryl embedded tissue was adequate for the identification of different cell structures like nuclei, mitochondria, lysosomes and different types of endoplasmic reticulum. X-ray microanalytical investigation of low temperature embedded material displayed an elemental composition of cells and organelles similar to that found in freeze-dried cyosections. Compared with freeze-dried cryosections, low temperature embedded material could be sectioned for light microscopy and area of interest chosen for further thin sectioning. This is of great importance in work with tissues with complicated morphology and heterogenous cell populations

  11. Photothermal effects of laser tissue soldering

    International Nuclear Information System (INIS)

    McNally, K.M.; Sorg, B.S.; Welch, A.J.; Dawes, J.M.; Owen, E.R.

    1999-01-01

    Low-strength anastomoses and thermal damage of tissue are major concerns in laser tissue welding techniques where laser energy is used to induce thermal changes in the molecular structure of the tissues being joined, hence allowing them to bond together. Laser tissue soldering, on the other hand, is a bonding technique in which a protein solder is applied to the tissue surfaces to be joined, and laser energy is used to bond the solder to the tissue surfaces. The addition of protein solders to augment tissue repair procedures significantly reduces the problems of low strength and thermal damage associated with laser tissue welding techniques. Investigations were conducted to determine optimal solder and laser parameters for tissue repair in terms of tensile strength, temperature rise and damage and the microscopic nature of the bonds formed. An in vitro study was performed using an 808 nm diode laser in conjunction with indocyanine green (ICG)-doped albumin protein solders to repair bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The efficacy of temperature feedback control in enhancing the soldering process was also investigated. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the repairs. A reduction in dye concentration from 2.5mgml -1 to 0.25mgml -1 was also found to result in an increase in tensile strength. Increasing the laser irradiance and thus surface temperature resulted in an increased severity of histological injury. Thermal denaturation of tissue collagen and necrosis of the intimal layer smooth muscle cells increased laterally and in depth with higher temperatures. The strongest repairs were produced with an irradiance of 6.4Wcm -2 using a solid protein solder composed of 60% BSA and 0.25mgml -1 ICG. Using this combination of laser and solder parameters, surface temperatures were observed to reach 85±5 deg. C with a

  12. Assessing accumulated hard-tissue debris using micro-computed tomography and free software for image processing and analysis.

    Science.gov (United States)

    De-Deus, Gustavo; Marins, Juliana; Neves, Aline de Almeida; Reis, Claudia; Fidel, Sandra; Versiani, Marco A; Alves, Haimon; Lopes, Ricardo Tadeu; Paciornik, Sidnei

    2014-02-01

    The accumulation of debris occurs after root canal preparation procedures specifically in fins, isthmus, irregularities, and ramifications. The aim of this study was to present a step-by-step description of a new method used to longitudinally identify, measure, and 3-dimensionally map the accumulation of hard-tissue debris inside the root canal after biomechanical preparation using free software for image processing and analysis. Three mandibular molars presenting the mesial root with a large isthmus width and a type II Vertucci's canal configuration were selected and scanned. The specimens were assigned to 1 of 3 experimental approaches: (1) 5.25% sodium hypochlorite + 17% EDTA, (2) bidistilled water, and (3) no irrigation. After root canal preparation, high-resolution scans of the teeth were accomplished, and free software packages were used to register and quantify the amount of accumulated hard-tissue debris in either canal space or isthmus areas. Canal preparation without irrigation resulted in 34.6% of its volume filled with hard-tissue debris, whereas the use of bidistilled water or NaOCl followed by EDTA showed a reduction in the percentage volume of debris to 16% and 11.3%, respectively. The closer the distance to the isthmus area was the larger the amount of accumulated debris regardless of the irrigating protocol used. Through the present method, it was possible to calculate the volume of hard-tissue debris in the isthmuses and in the root canal space. Free-software packages used for image reconstruction, registering, and analysis have shown to be promising for end-user application. Copyright © 2014. Published by Elsevier Inc.

  13. Evaluation of collagen in connective tissue walls of odontogenic cysts--a histochemical study.

    Science.gov (United States)

    Vij, Ruchieka; Vij, Hitesh; Rao, Nirmala N

    2011-03-01

    The purpose of this study was to evaluate the nature of collagen in the connective tissue walls of odontogenic cysts, like the odontogenic keratocyst (OKC), dentigerous cyst and radicular cyst using picrosirius red stained sections. Furthermore, it was intended to assess if the capsular connective tissue can affect the nature of overlying epithelium, thus emphasizing the role of epithelial-mesenchymal interactions in biological behaviour of the cysts. The material for the study included 51 formalin-fixed paraffin-embedded tissue blocks (15 odontogenic keratocyst, 15 dentigerous cysts, 15 radicular cysts and four normal mucosa and two dental follicular tissue as controls), retrieved from the Department of Oral Pathology and Microbiology, MCODS, Manipal. Tissue blocks were sectioned at 5-μm thickness, stained with picrosirius red stain and observed with polarization and light microscopy. Few sections of OKC and dentigerous cyst exhibited greenish-yellow birefringence in sub-epithelial region, whereas others showed a yellowish-orange birefringence under polarization microscopy. Most radicular cysts had yellowish-orange to orange birefringence. Shift in colour in case OKC and dentigerous cyst was attributed to the presence of inflammation in those sections. These regions also exhibited either a change in phenotype or thickness of overlying epithelium. This technique can be used to study the nature of collagen fibres in odontogenic cyst walls. Further studies with an increased sample size and using various epithelial and mesenchymal markers and ssDNA antibodies should be carried out to confirm the effect of epithelial-mesenchymal interactions on the nature of epithelium of odontogenic cysts. © 2010 John Wiley & Sons A/S.

  14. The preparation of titanium-vanadium carbide/nickel cermets. Technical report

    International Nuclear Information System (INIS)

    Precht, W.; Sprissler, B.

    1976-01-01

    Titanium/vanadium alloy carbide rods were prepared by a zone melting procedure. Wetting studies were carried out using sections of the fused rods and candidate matrix material. It was established that nickel exhibits excellent wetting of (Ti, V) C, and accordingly cermet blends were prepared and liquid phase sintered. Processing parameters are discussed as well as their effect on the final microstructure. Alternate methods for cermet preparation are offered which use as received titanium carbide and vanadium carbide powders

  15. Influence of industrial dust of uranium ore on rats' lung tissue

    International Nuclear Information System (INIS)

    Jumasheva, R.T.

    2010-01-01

    Under the conditions of radiotoxic influence of uranium ore dust (UOD), the respiratory organs are the main system specifically responsible for adaptation to this factor. At the same time, there are not sufficient studies regarding the morphological aspects of structural lung distortions due to inhalational influence by UOD. To identify the nature of morphological changes in the animals' lung tissue at the cellular and subcellular levels under the influence of industrial dust of uranium ore in a dose of 50 MPC. Experimental studies were conducted on 80 white rats (tom) with a body mass of 120-180 g. The experimental animals were subjected to chronic inhalation of UOD in a dose of 50 MPC (107.75 mg/m 3 ). The animals that were kept in similar chambers but that were not exposed to UOD served as control animals. Material from the animals for research was withdrawn in 3, 7, 30 and 60 days after the beginning of the experiment. The animals were withdrawn from the experiment by decapitation after a brief ether anesthesia. The lung tissue was subjected to conventional histological processing. Sections were stained with haematoxylin and eosin according to van Gieson's method. For electronic microscopic examination the lung tissue slices were fixed and embedded by conventional methods. Obtained blocks were used to prepare ultrathin sections. An impact of UOD in a dose of 50 MPC was accompanied by the development of acute focal serous inflammation in the wall of the small bronchi and lung parenchyma in the early stages of the experiment (3-7 days), pneumonic foci of fibrosis, and the development of marked sclerotic changes in the peribronchial lymphoid tissue by the 30-th day. By the 60-th day, an increase of sclerotic changes in the bronchial wall accompanied by inhibition of the reaction on the part of interstitial macrophages and bronchus associated lymphoid tissue were reported. These indicate the intense course of the compensatory processes. Conducted electron

  16. Proteoglycan and proteome profiling of central human pulmonary fibrotic tissue utilizing miniaturized sample preparation

    DEFF Research Database (Denmark)

    Malmström, Johan; Larsen, Kristoffer; Hansson, Lennart

    2002-01-01

    -dimensional electrophoresis was interfaced to miniaturized sample preparation techniques using microcapillary extraction. Four protein groups were identified; cytoskeletal, adhesion, scavenger and metabolic proteins. These patient's proteomes showed a high degree of heterogeneity between patients but larger homogeneity...

  17. Evaluation of several techniques to modify denatured muscle tissue to obtain a scaffold for peripheral nerve regeneration

    NARCIS (Netherlands)

    Meek, MF; den Dunnen, WFA; Schakenraad, JM; Robinson, PH

    The aim of this study was to (1) evaluate the effect of several preparation techniques of denatured muscle tissue to obtain an open three-dimensional structure, and (2) test if this scaffold is suitable for peripheral nerve regeneration. Four samples (A-D) of muscle tissue specimens were evaluated

  18. Confocal Microscopy of Unfixed Breast Needle Core Biopsies: A Comparison to Fixed and Stained Sections

    Directory of Open Access Journals (Sweden)

    Zavislan James M

    2009-08-01

    Full Text Available Abstract Background Needle core biopsy, often in conjunction with ultrasonic or stereotactic guided techniques, is frequently used to diagnose breast carcinoma in women. Confocal scanning laser microscopy (CSLM is a technology that provides real-time digital images of tissues with cellular resolution. This paper reports the progress in developing techniques to rapidly screen needle core breast biopsy and surgical specimens at the point of care. CSLM requires minimal tissue processing and has the potential to reduce the time from excision to diagnosis. Following imaging, specimens can still be submitted for standard histopathological preparation. Methods Needle core breast specimens from 49 patients were imaged at the time of biopsy. These lesions had been characterized under the Breast Imaging Reporting And Data System (BI-RADS as category 3, 4 or 5. The core biopsies were imaged with the CSLM before fixation. Samples were treated with 5% citric acid and glycerin USP to enhance nuclear visibility in the reflectance confocal images. Immediately following imaging, the specimens were fixed in buffered formalin and submitted for histological processing and pathological diagnosis. CSLM images were then compared to the standard histology. Results The pathologic diagnoses by standard histology were 7 invasive ductal carcinomas, 2 invasive lobular carcinomas, 3 ductal carcinomas in-situ (CIS, 21 fibrocystic changes/proliferative conditions, 9 fibroadenomas, and 5 other/benign; two were excluded due to imaging difficulties. Morphologic and cellular features of benign and cancerous lesions were identified in the confocal images and were comparable to standard histologic sections of the same tissue. Conclusion CSLM is a technique with the potential to screen needle core biopsy specimens in real-time. The confocal images contained sufficient information to identify stromal reactions such as fibrosis and cellular proliferations such as intra-ductal and

  19. Confocal Microscopy of Unfixed Breast Needle Core Biopsies: A Comparison to Fixed and Stained Sections

    Science.gov (United States)

    2009-01-01

    Background Needle core biopsy, often in conjunction with ultrasonic or stereotactic guided techniques, is frequently used to diagnose breast carcinoma in women. Confocal scanning laser microscopy (CSLM) is a technology that provides real-time digital images of tissues with cellular resolution. This paper reports the progress in developing techniques to rapidly screen needle core breast biopsy and surgical specimens at the point of care. CSLM requires minimal tissue processing and has the potential to reduce the time from excision to diagnosis. Following imaging, specimens can still be submitted for standard histopathological preparation. Methods Needle core breast specimens from 49 patients were imaged at the time of biopsy. These lesions had been characterized under the Breast Imaging Reporting And Data System (BI-RADS) as category 3, 4 or 5. The core biopsies were imaged with the CSLM before fixation. Samples were treated with 5% citric acid and glycerin USP to enhance nuclear visibility in the reflectance confocal images. Immediately following imaging, the specimens were fixed in buffered formalin and submitted for histological processing and pathological diagnosis. CSLM images were then compared to the standard histology. Results The pathologic diagnoses by standard histology were 7 invasive ductal carcinomas, 2 invasive lobular carcinomas, 3 ductal carcinomas in-situ (CIS), 21 fibrocystic changes/proliferative conditions, 9 fibroadenomas, and 5 other/benign; two were excluded due to imaging difficulties. Morphologic and cellular features of benign and cancerous lesions were identified in the confocal images and were comparable to standard histologic sections of the same tissue. Conclusion CSLM is a technique with the potential to screen needle core biopsy specimens in real-time. The confocal images contained sufficient information to identify stromal reactions such as fibrosis and cellular proliferations such as intra-ductal and infiltrating carcinoma, and

  20. The Impact of Repeated Freeze-Thaw Cycles on the Quality of Biomolecules in Four Different Tissues.

    Science.gov (United States)

    Ji, Xiaoli; Wang, Min; Li, Lingling; Chen, Fang; Zhang, Yanyang; Li, Qian; Zhou, Junmei

    2017-10-01

    High-quality biosamples are valuable resources for biomedical research. However, some tissues are stored without being sectioned into small aliquots and have to undergo repeated freeze-thaw cycles throughout prolonged experimentation. Little is known regarding the effects of repeated freeze-thaw cycles on the quality of biomolecules in tissues. The aim of this study was to evaluate the impact of repeated freeze-thaw (at room temperature or on ice) cycles on biomolecules and gene expression in four different types of tissues. Each fresh tissue was sectioned into seven aliquots and snap-frozen before undergoing repeated freeze-thaw cycles at room temperature or on ice. Biomolecules were extracted and analyzed. Both relative and absolute quantification were used to detect the changes in gene expression. The results indicated that the impact of repeated freeze-thaw cycles on RNA integrity varied by tissue type. Gene expression, including the housekeeping gene, was affected in RNA-degraded samples according to absolute quantification rather than relative quantification. Furthermore, our results suggest that thawing on ice could protect RNA integrity compared with thawing at room temperature. No obvious degradation of protein or DNA was observed with repeated freeze-thaw cycles either at room temperature or on ice. This research provides ample evidence for the necessity of sectioning fresh tissues into small aliquots before snap-freezing, thus avoiding degradation of RNA and alteration of gene expression resulting from repeated freeze-thaw cycles. For frozen tissue samples that were already in storage and had to be used repeatedly during their lifecycle, thawing on ice or sectioned at ultralow temperature is recommended.

  1. Ga-67 uptake post cesarean section

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, O.L.; Maisano, E.R.

    1984-02-01

    Gallium-67 distribution in normal patients is well known; it is also known that the concentration in some tissues may vary according to an individual physiologic stimulus. In this report, the case of a young woman is presented who was studied 15 days after a cesarean section and showed physiologic and pathologic Ga-67 accumulation.

  2. Ga-67 uptake post cesarean section

    International Nuclear Information System (INIS)

    Lopez, O.L.; Maisano, E.R.

    1984-01-01

    Gallium-67 distribution in normal patients is well known; it is also known that the concentration in some tissues may vary according to an individual physiologic stimulus. In this report, the case of a young woman is presented who was studied 15 days after a cesarean section and showed physiologic and pathologic Ga-67 accumulation

  3. Operating Room Fires and Surgical Skin Preparation.

    Science.gov (United States)

    Jones, Edward L; Overbey, Douglas M; Chapman, Brandon C; Jones, Teresa S; Hilton, Sarah A; Moore, John T; Robinson, Thomas N

    2017-07-01

    Operating room fires are "never events" that remain an under-reported source of devastating complications. One common set-up that promotes fires is the use of surgical skin preparations combined with electrosurgery and oxygen. Limited data exist examining the incidence of fires and surgical skin preparations. A standardized, ex vivo model was created with a 15 × 15 cm section of clipped porcine skin. An electrosurgical "Bovie" pencil was activated for 2 seconds on 30 Watts coagulation mode in 21% oxygen (room air), both immediately and 3 minutes after skin preparation application. Skin preparations with and without alcohol were tested, and were applied with and without pooling. Alcohol-based skin preparations included 70% isopropyl alcohol (IPA) with 2% chlorhexidine gluconate, 74% IPA with 0.7% iodine povacrylex, and plain 70% IPA. No fires occurred with nonalcohol-based preparations (p fires occurred in 38% (23 of 60) at 0 minutes and 27% (16 of 60) at 3 minutes. Alcohol-based skin preparations fuel operating room fires in common clinical scenarios. Following manufacturer guidelines and allowing 3 minutes for drying, surgical fires were still created in 1 in 10 cases without pooling and more than one-quarter of cases with pooling. Surgeons can decrease the risk of an operating room fire by using nonalcohol-based skin preparations or avoiding pooling of the preparation solution. Published by Elsevier Inc.

  4. Ethanol production using Saccharomyces cerevisiae cells immobilised on corn stem ground tissue

    Directory of Open Access Journals (Sweden)

    Vučurović Vesna M.

    2009-01-01

    Full Text Available Cell immobilisation in alcoholic fermentation has been extensively studied during the past few decades because of its technical and economical advantages over those of free cell systems. A biocatalyst was prepared by immobilising a commercial Saccharomyces cerevisiae strain (baker yeast on corn stem ground tissue for use in alcoholic fermentation. For this purpose, the yeast cells were submitted to the batch tests 'in situ' adsorption onto pieces of the corn stem ground tissue. Cells immobilisation was analysed by optical microscopy. It was determined that the addition of the corn stem ground tissue led to an increase of the pH value, total dissolved salts content, and sugar content in fermentation medium. The addition of 5 and 10g of the corn stem ground tissue per liter of medium, increased ethanol yield, decreased amount of residual sugar and the cells immobilisation was effective. Corn stem is one of the abundant, available, inexpensive, stable, reusable, nontoxic celulosic biomaterial with high porosity, which facilitates the transmission of substrates and products between carrier and medium. The prepared immobilised biocatalyst showed higher fermentation activity than free cells. The results indicate that corn stem might be an interesting support for yeast cell immobilisation, and also a cheap alternative recourse of mineral components with possibility of application for improving ethanol productivities.

  5. Use of focused ultrasonication in activity-based profiling of deubiquitinating enzymes in tissue.

    Science.gov (United States)

    Nanduri, Bindu; Shack, Leslie A; Rai, Aswathy N; Epperson, William B; Baumgartner, Wes; Schmidt, Ty B; Edelmann, Mariola J

    2016-12-15

    To develop a reproducible tissue lysis method that retains enzyme function for activity-based protein profiling, we compared four different methods to obtain protein extracts from bovine lung tissue: focused ultrasonication, standard sonication, mortar & pestle method, and homogenization combined with standard sonication. Focused ultrasonication and mortar & pestle methods were sufficiently effective for activity-based profiling of deubiquitinases in tissue, and focused ultrasonication also had the fastest processing time. We used focused-ultrasonicator for subsequent activity-based proteomic analysis of deubiquitinases to test the compatibility of this method in sample preparation for activity-based chemical proteomics. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.

    Science.gov (United States)

    Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan

    2012-07-01

    In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30  s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.

  7. 21 CFR 864.3875 - Automated tissue processor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated tissue processor. 864.3875 Section 864.3875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3875...

  8. 21 CFR 864.3010 - Tissue processing equipment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue processing equipment. 864.3010 Section 864.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3010...

  9. Regional Analysis of Soft Tissue Thickness on Korean Buttocks and Application to Fasciocutaneous Flap Design

    Directory of Open Access Journals (Sweden)

    Do Yup Kim

    2014-03-01

    Full Text Available Background Various shapes and designs of the gluteal artery perforator flap have been used for treating sacral pressure sores and reconstructing breasts. To establish the ideal fasciocutaneous flap design for use in the gluteal area, the soft tissue thickness distribution was measured. Methods Twenty-one buttocks of adult Korean cadavers were analyzed through rectangular subfascial dissection. Each buttock was divided horizontally into 10 sections and vertically into 10 sections, and then, the thickness at the corners of the sections was measured. For the sake of comparison and statistical verification with living bodies, computed tomography (CT images of 120 buttocks of patients were randomly selected. Five horizontal sections and 4 vertical sections were made, and the thickness at each corner was recorded. Results According to the dissection and the CT images, the area with the thinnest soft tissues in the buttock was around the posterior superior iliac spine, close to the sacral area. The thickest area was the superolateral area of the buttock, which was 3.24 times and 2.15 times thicker than the thinnest area in the studies on cadaver anatomy and the CT images, respectively. Conclusions The thickness of the soft tissues in the buttocks differed by area. The superolateral area had the thickest soft tissues, and the superomedial area had the thinnest. This study includes information on the distribution of the thickness of the gluteal soft tissues of Koreans. The outcome of this study may contribute to the design of effective local flaps for pressure sore reconstruction and free flaps for breast reconstruction.

  10. A novel, modernized Golgi-Cox stain optimized for CLARITY cleared tissue.

    Science.gov (United States)

    Kassem, Mustafa S; Fok, Sandra Y Y; Smith, Kristie L; Kuligowski, Michael; Balleine, Bernard W

    2018-01-15

    High resolution neuronal information is extraordinarily useful in understanding the brain's functionality. The development of the Golgi-Cox stain allowed observation of the neuron in its entirety with unrivalled detail. Tissue clearing techniques, e.g., CLARITY and CUBIC, provide the potential to observe entire neuronal circuits intact within tissue and without previous restrictions with regard to section thickness. Here we describe an improved Golgi-Cox stain method, optimised for use with CLARITY and CUBIC that can be used in both fresh and fixed tissue. Using this method, we were able to observe neurons in their entirety within a fraction of the time traditionally taken to clear tissue (48h). We were also able to show for the first-time that Golgi stained tissue is fluorescent when visualized using a multi-photon microscope, allowing us to image synaptic spines with a detail previously unachievable. These novel methods provide cheap and easy to use techniques to investigate the morphology of cellular processes in the brain at a new-found depth, speed, utility and detail, without previous restrictions of time, tissue type and section thickness. This is the first application of a Golgi-Cox stain to cleared brain tissue, it is investigated and discussed in detail, describing different methodologies that may be used, a comparison between the different clearing techniques and lastly the novel interaction of these techniques with this ultra-rapid stain. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Bacterial contamination of amniotic membrane in a tissue bank from Iran.

    Science.gov (United States)

    Aghayan, Hamid Reza; Goodarzi, Parisa; Baradaran-Rafii, Alireza; Larijani, Bagher; Moradabadi, Leila; Rahim, Fakher; Arjmand, Babak

    2013-09-01

    Human Amniotic Membrane (AM) transplantation can promote tissue healing and reduce inflammation, tissue scarring and neovascularization. Homa Peyvand Tamin (HPT) tissue bank has focused on manufacturing human cell and tissue based products including AM. The purpose of this study is to evaluate and identify bacterial contamination of AMs that is produced by HPT for several ophthalmic applications. From July 2006 to April 2011, 122 placentas from cesarean sections were retrieved by HPT after obtaining informed consent from the donors. Besides testing donor's blood sample for viral markers, microbiological evaluation was performed pre and post processing. During tissue processing, decontamination was performed by an antibiotic cocktail including; Gentamicin, Ceftriaxone and Cloxacillin. Of 271 cesarean section AM donors who were screened as potential donors, 122 were accepted for processing and assessed for microbiological contamination. Donors' age were between 21 and 41 years (Mean = 27.61 ± 0.24). More than 92% of mothers were in their first or second gravidity with full term pregnancies. The most prevalent organisms were Staphylococci species (72.53%). After processing, contamination rates markedly decreased by 84.62% (p value = 0.013). According to our results, most of bacterial contaminations were related to donation process and the contamination pattern suggests procurement team as a source. Therefore we recommend that regular training programs should be implemented by tissue banks for procurement staff. These programs should focus on improved donor screening and proper aseptic technique for tissue retrieval. We also suggest that tissue banks should periodically check the rate and types of tissue contaminations. These data help them to find system faults and to update processing methods.

  12. 21 CFR 250.201 - Preparations for the treatment of pernicious anemia.

    Science.gov (United States)

    2010-04-01

    ... anemia. 250.201 Section 250.201 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Drugs and Foods § 250.201 Preparations for the treatment of pernicious anemia. (a) The ninth announcement of the Anti-anemia Preparations Advisory Board of the United States Pharmacopeia is concerned with...

  13. Fibrinogen Demonstration in Oral Lichen Planus: An Immunofluorescence Study on Archival Tissues.

    Science.gov (United States)

    Shirol, Pallavi D; Naik, Veena; Kale, Alka

    2015-10-01

    Lichen planus is a premalignant condition with minimal diagnostic aids. This study is an attempt to use paraffin embedded sections of lichen planus with immunofluorescein stain and to evaluate the immunofluorescent sections to establish pattern of fibrinogen deposition. Thirty-five paraffin embedded sections of old and new cases of oral lichen planus (study group) and five normal oral mucosa (control group) were chosen. Two sections of each (H & E) case were taken, one was stained with hematoxylin and eosin and another with fluorescein isothiocynate conjugate (FITC) polyclonal rabbit antibody against fibrinogen. Fluorescent findings were examined with a fluorescent microscope. A high statistical significant correlation was found in respect to fluorescence positivity, intensity of fluorescence and distribution of fluorescence each with p < 0.0001 and fluorescence at blood vessel walls (p = 0.0003). This study suggested that paraffin embedded sections can be successfully used in direct immunofluorescence staining in routine set up where only formalin fixed tissues are received. Paraffin embedded sections can be successfully used in direct immunofluorescence staining when only formalin fixed tissues are received.

  14. Spectral staining of tumor tissue by fiber optic FTIR spectroscopy

    Science.gov (United States)

    Salzer, Reiner; Steiner, Gerald; Kano, Angelique; Richter, Tom; Bergmann, Ralf; Rodig, Heike; Johannsen, Bernd; Kobelke, Jens

    2003-07-01

    Infrared (IR) optical fiber have aroused great interest in recent years because of their potential in in-vivo spectroscopy. This potential includes the ability to be flexible, small and to guide IR light in a very large range of wavelengths. Two types - silver halide and chalcogenide - infrared transmitting fibers are investigated in the detection of a malignant tumor. As a test sample for all types of fibers we used a thin section of an entire rat brain with glioblastoma. The fibers were connected with a common infrared microscope. Maps across the whole tissue section with more than 200 spectra were recorded by moving the sample with an XY stage. Data evaluation was performed using fuzzy c-means cluster analysis (FCM). The silver halide fibers provided excellent results. The tumor was clearly discernible from healthy tissue. Chalcogenide fibers are not suitable to distinguish tumor from normal tissue because the fiber has a very low transmittance in the important fingerprint region.

  15. Performance of JEF2.2 based continuous energy cross sections in predicting the multiplication factor of critical systems

    International Nuclear Information System (INIS)

    John, T.M.; de Leege, P.F.A.; Hoogenboom, J.E.

    1996-01-01

    The continuous energy representation of cross sections for neutronics calculations avoids the requirement of resonance self shielding and the assumptions about the neutron spectrum used for weighing cross sections, required in the preparation of a multigroup cross sections library. The cross sections library prepared for a particular temperature of the nuclide is valid irrespective of the environment of the nuclide and can be used in calculations for many types of reactors. It is comparatively easier to incorporate them in Monte Carlo simulation of neutron transport. The Monte Carlo code MCNP is capable of using a continuous energy representation of nuclear cross sections in simulation of neutron or photon transport. The ACER module of NJOY is able to generate the continuous energy cross section of any nuclide in a format that can be used by MCNP, from any evaluated data file in ENDF/B format. Continuous energy cross sections prepared from the evaluated data file JEF2.2 was used to analyse some standard critical benchmarks and also the critical configuration of the HOR, a 2 MW research reactor at Delft, the Netherlands. Results show that continuous energy cross sections prepared from JEF2.2 evaluated file predicts the multiplication factor of critical systems very close to unity. (author). 6 refs., 2 tabs., 1 fig

  16. Preparation of multigroup lumped fission product cross-sections from ENDF/B-VI for FBRs

    International Nuclear Information System (INIS)

    Devan, K.; Gopalakrishnan, V.; Mohanakrishnan, P.; Sridharan, M.S.

    1997-01-01

    Multigroup pseudo fission product cross-sections were computed from the American evaluated nuclear data library ENDF/B-VI, corresponding to various burnups of the proposed 500 MWe prototype fast breeder reactor (PFBR), in India. The data were derived from the cross-sections of 111 selected fission products that account for almost complete capture of fission products in an FBR. The dependence of burnup on the pseudo fission product cross-sections, and comparison with other data sets, viz. JNDC, ENDF/B-IV and ABBN, are discussed. (author)

  17. Growth factor and proteinase profile of Vivostat® platelet-rich fibrin linked to tissue repair.

    Science.gov (United States)

    Agren, M S; Rasmussen, K; Pakkenberg, B; Jørgensen, B

    2014-07-01

    Autologous platelet-rich fibrin (PRF(®)) is prepared by the automatic Vivostat(®) system. Conflicting results with Vivostat PRF in acute wound healing prompted us to examine its cellular and biomolecular composition. Specifically, platelets, selected growth factors and matrix metalloproteinase (MMP)-9 were quantified using novel analytical methods. Ten healthy non-thrombocytopenic volunteers donated blood for generation of intermediate fibrin-I and final PRF. Anticoagulated whole blood and serum procured in parallel served as baseline controls. Leucocyte, erythrocyte and platelet counts in whole blood and fibrin-I were determined by automated haematology analyser. Platelet concentration in PRF was quantified manually by stereologic analysis of Giemsa-stained tissue sections, and the total content of five growth factors and MMP-9 by enzyme-linked immunosorbent assays. The number of leucocytes and erythrocytes was reduced (P platelets increased (P fibrin-I versus whole blood. PRF contained 982 ± 206 × 10(9) platelets/l representing 3·9-fold (P platelet-derived growth factor (PDGF)-AB [2·5-fold, P PDGF-BB [1·6-fold, P vascular endothelial growth factor > basic fibroblast growth factor [75-fold, P platelet enrichment and biomolecular constituents may guide clinicians in their optimal use of Vivostat PRF for tissue regenerative applications. © 2013 International Society of Blood Transfusion.

  18. Electrospun polyurethane membranes for Tissue Engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Laís P., E-mail: lagabriel@gmail.com [National Institute of Biofabrication, Campinas (Brazil); Department of Chemical Engineering, University of Campinas, Campinas (Brazil); Rodrigues, Ana Amélia [National Institute of Biofabrication, Campinas (Brazil); Department of Medical Sciences, University of Campinas, Campinas (Brazil); Macedo, Milton; Jardini, André L.; Maciel Filho, Rubens [National Institute of Biofabrication, Campinas (Brazil); Department of Chemical Engineering, University of Campinas, Campinas (Brazil)

    2017-03-01

    Tissue Engineering proposes, among other things, tissue regeneration using scaffolds integrated with biological molecules, growth factors or cells for such regeneration. In this research, polyurethane membranes were prepared using the electrospinning technique in order to obtain membranes to be applied in Tissue Engineering, such as epithelial, drug delivery or cardiac applications. The influence of fibers on the structure and morphology of the membranes was studied using scanning electron microscopy (SEM), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), and the thermal stability was analyzed by thermogravimetry analysis (TGA). In vitro cells attachment and proliferation was investigated by SEM, and in vitro cell viability was studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays and Live/Dead® assays. It was found that the membranes present an homogeneous morphology, high porosity, high surface area/volume ratio, it was also observed a random fiber network. The thermal analysis showed that the membrane degradation started at 254 °C. In vitro evaluation of fibroblasts cells showed that fibroblasts spread over the membrane surface after 24, 48 and 72 h of culture. This study supports the investigation of electrospun polyurethane membranes as biocompatible scaffolds for Tissue Engineering applications and provides some guidelines for improved biomaterials with desired properties.

  19. Histopathological study of the effects of low-intensity laser irradiation ({lambda}=650 nm) on dental pulp tissue after cavity preparation; Estudo histopatologico dos efeitos da irradiacao laser em baixa intensidade ({lambda}=650nm) em tecido pulpar apos preparo cavitario

    Energy Technology Data Exchange (ETDEWEB)

    Bertella, Claudio

    2001-07-01

    The purpose of this study was to evaluate (in vivo) the effects of low-intensity Arsenide Gallium Aluminium laser application post-cavity preparation class 1. Six patients with bilateral pre-molars and molars indicated to extraction for orthodontics aim were selected. Four samples of these teeth underwent cavity preparation with deep from medium to high and two samples underwent cavity preparation from high to pulp expositions. The samples were constituted of two teeth of the same patient and received different treatments. One of the teeth underwent laser exposition and the other one was maintained as control, before restorative procedure with polycarboxylate cement. A diode laser ({lambda}=650 nm), output power 30 mW and fluencies of 1,8 J/cm{sup 2} and 2,7 J/cm{sup 2} in pre-molars and molars, respectively, was used for irradiation with repetition rate of 18 Hz in interrupted continuous wave mode. After seven days, the teeth were extracted and processed histologically with HE to verify morphological changes in the pulpy tissue. The four samples, which cavity preparation and restorative material were not in contact with the pulp, did not show histological differences between irradiated and non-irradiated teeth. Both of them presented the same characteristics of normality. The two samples with exposed pulpy tissue showed different results. The irradiated teeth presented no or slight inflammatory signs when compared to the control samples, which showed abscess in the coronary pulp interior and intense inflammatory infiltrated. These results suggest that the laser irradiation can be used as a therapeutic modality in clinical trials, in the conditions employed in this study. (author)

  20. A Combined Tissue Kinetics and Dosimetric Model of Respiratory Tissue Exposed to Radiation

    Energy Technology Data Exchange (ETDEWEB)

    John R. Ford

    2005-11-01

    Existing dosimetric models of the radiation response of tissues are essentially static. Consideration of changes in the cell populations over time has not been addressed realistically. For a single acute dose this is not a concern, but for modeling chronic exposures or fractionated acute exposures, the natural turnover and progression of cells could have a significant impact on a variety of endpoints. This proposal addresses the shortcomings of current methods by combining current dose-based calculation techniques with information on the cell turnover for a model tissue. The proposed model will examine effects at the single-cell level for an exposure of a section of human bronchiole. The cell model will be combined with Monte Carlo calculations of doses to cells and cell nuclei due to varying dose-rates of different radiation qualities. Predictions from the model of effects on survival, apoptosis rates, and changes in the number of cycling and differentiating cells will be tested experimentally. The availability of dynamic dosimetric models of tissues at the single-cell level will be useful for analysis of low-level radiation exposures and in the development of new radiotherapy protocols.