WorldWideScience

Sample records for tissue regeneration capacity

  1. Biocompatibility and tissue regenerating capacity of crosslinked dermal sheep collagen

    NARCIS (Netherlands)

    van Wachem, P.B.; van Luyn, M.J.A.; Olde Damink, L.H.H.; Olde damink, L.H.H.; Dijkstra, Pieter J.; Feijen, Jan; Nieuwenhuis, P.

    1994-01-01

    The biocompatibility and tissue regenerating capacity of four crosslinked dermal sheep collagens (DSC) was studied. In vitro, the four DSC versions were found to be noncytotoxic or very low in cytoxicity. After subcutaneous implantation in rats, hexamethylenediisocyanatecrcrosslinked DSC (HDSC)

  2. BIOCOMPATIBILITY AND TISSUE REGENERATING CAPACITY OF CROSS-LINKED DERMAL SHEEP COLLAGEN

    NARCIS (Netherlands)

    VANWACHEM, PB; VANLUYN, MJA; DAMINK, LHHO; DIJKSTRA, PJ; FEIJEN, J; NIEUWENHUIS, P

    The biocompatibility and tissue regenerating capacity of four crosslinked dermal sheep collagens (DSC) was studied. In vitro, the four DSC versions were found to be noncytotoxic or very low in cytoxicity. After subcutaneous implantation in rats, hexamethylenediisocyanate-crosslinked DSC (HDSC)

  3. Peptide-Based Materials for Cartilage Tissue Regeneration.

    Science.gov (United States)

    Hastar, Nurcan; Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2017-01-01

    Cartilaginous tissue requires structural and metabolic support after traumatic or chronic injuries because of its limited capacity for regeneration. However, current techniques for cartilage regeneration are either invasive or ineffective for long-term repair. Developing alternative approaches to regenerate cartilage tissue is needed. Therefore, versatile scaffolds formed by biomaterials are promising tools for cartilage regeneration. Bioactive scaffolds further enhance the utility in a broad range of applications including the treatment of major cartilage defects. This chapter provides an overview of cartilage tissue, tissue defects, and the methods used for regeneration, with emphasis on peptide scaffold materials that can be used to supplement or replace current medical treatment options.

  4. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment.

    Science.gov (United States)

    Vanden Berg-Foels, Wendy S

    2014-02-01

    Tissue engineering uses cells, signaling molecules, and/or biomaterials to regenerate injured or diseased tissues. Ex vivo expanded mesenchymal stem cells (MSC) have long been a cornerstone of regeneration therapies; however, drawbacks that include altered signaling responses and reduced homing capacity have prompted investigation of regeneration based on endogenous MSC recruitment. Recent successful proof-of-concept studies have further motivated endogenous MSC recruitment-based approaches. Stem cell migration is required for morphogenesis and organogenesis during development and for tissue maintenance and injury repair in adults. A biomimetic approach to in situ tissue regeneration by endogenous MSC requires the orchestration of three main stages: MSC recruitment, MSC differentiation, and neotissue maturation. The first stage must result in recruitment of a sufficient number of MSC, capable of effecting regeneration, to the injured or diseased tissue. One of the challenges for engineering endogenous MSC recruitment is the selection of effective chemoattractant(s). The objective of this review is to synthesize and evaluate evidence of recruitment efficacy by reported chemoattractants, including growth factors, chemokines, and other more recently appreciated MSC chemoattractants. The influence of MSC tissue sources, cell culture methods, and the in vitro and in vivo environments is discussed. This growing body of knowledge will serve as a basis for the rational design of regenerative therapies based on endogenous MSC recruitment. Successful endogenous MSC recruitment is the first step of successful tissue regeneration.

  5. Regeneration limit of classical Shannon capacity

    Science.gov (United States)

    Sorokina, M. A.; Turitsyn, S. K.

    2014-05-01

    Since Shannon derived the seminal formula for the capacity of the additive linear white Gaussian noise channel, it has commonly been interpreted as the ultimate limit of error-free information transmission rate. However, the capacity above the corresponding linear channel limit can be achieved when noise is suppressed using nonlinear elements; that is, the regenerative function not available in linear systems. Regeneration is a fundamental concept that extends from biology to optical communications. All-optical regeneration of coherent signal has attracted particular attention. Surprisingly, the quantitative impact of regeneration on the Shannon capacity has remained unstudied. Here we propose a new method of designing regenerative transmission systems with capacity that is higher than the corresponding linear channel, and illustrate it by proposing application of the Fourier transform for efficient regeneration of multilevel multidimensional signals. The regenerative Shannon limit—the upper bound of regeneration efficiency—is derived.

  6. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  7. Designing the stem cell microenvironment for guided connective tissue regeneration.

    Science.gov (United States)

    Bogdanowicz, Danielle R; Lu, Helen H

    2017-12-01

    Adult mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because of their ability to self-renew and their capacity for multilineage differentiation and tissue regeneration. For connective tissues, such as ligaments or tendons, MSCs are vital to the modulation of the inflammatory response following acute injury while also interacting with resident fibroblasts to promote cell proliferation and matrix synthesis. To date, MSC injection for connective tissue repair has yielded mixed results in vivo, likely due to a lack of appropriate environmental cues to effectively control MSC response and promote tissue healing instead of scar formation. In healthy tissues, stem cells reside within a complex microenvironment comprising cellular, structural, and signaling cues that collectively maintain stemness and modulate tissue homeostasis. Changes to the microenvironment following injury regulate stem cell differentiation, trophic signaling, and tissue healing. Here, we focus on models of the stem cell microenvironment that are used to elucidate the mechanisms of stem cell regulation and inspire functional approaches to tissue regeneration. Recent studies in this frontier area are highlighted, focusing on how microenvironmental cues modulate MSC response following connective tissue injury and, more importantly, how this unique cell environment can be programmed for stem cell-guided tissue regeneration. © 2017 New York Academy of Sciences.

  8. Fibrogenic Cell Plasticity Blunts Tissue Regeneration and Aggravates Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Patrizia Pessina

    2015-06-01

    Full Text Available Preservation of cell identity is necessary for homeostasis of most adult tissues. This process is challenged every time a tissue undergoes regeneration after stress or injury. In the lethal Duchenne muscular dystrophy (DMD, skeletal muscle regenerative capacity declines gradually as fibrosis increases. Using genetically engineered tracing mice, we demonstrate that, in dystrophic muscle, specialized cells of muscular, endothelial, and hematopoietic origins gain plasticity toward a fibrogenic fate via a TGFβ-mediated pathway. This results in loss of cellular identity and normal function, with deleterious consequences for regeneration. Furthermore, this fibrogenic process involves acquisition of a mesenchymal progenitor multipotent status, illustrating a link between fibrogenesis and gain of progenitor cell functions. As this plasticity also was observed in DMD patients, we propose that mesenchymal transitions impair regeneration and worsen diseases with a fibrotic component.

  9. Regeneration-associated macrophages: a novel approach to boost intrinsic regenerative capacity for axon regeneration

    Directory of Open Access Journals (Sweden)

    Min Jung Kwon

    2016-01-01

    Full Text Available Axons in central nervous system (CNS do not regenerate spontaneously after injuries such as stroke and traumatic spinal cord injury. Both intrinsic and extrinsic factors are responsible for the regeneration failure. Although intensive research efforts have been invested on extrinsic regeneration inhibitors, the extent to which glial inhibitors contribute to the regeneration failure in vivo still remains elusive. Recent experimental evidence has rekindled interests in intrinsic factors for the regulation of regeneration capacity in adult mammals. In this review, we propose that activating macrophages with pro-regenerative molecular signatures could be a novel approach for boosting intrinsic regenerative capacity of CNS neurons. Using a conditioning injury model in which regeneration of central branches of dorsal root ganglia sensory neurons is enhanced by a preceding injury to the peripheral branches, we have demonstrated that perineuronal macrophages surrounding dorsal root ganglia neurons are critically involved in the maintenance of enhanced regeneration capacity. Neuron-derived chemokine (C-C motif ligand 2 (CCL2 seems to mediate neuron-macrophage interactions conveying injury signals to perineuronal macrophages taking on a soley pro-regenerative phenotype, which we designate as regeneration-associated macrophages (RAMs. Manipulation of the CCL2 signaling could boost regeneration potential mimicking the conditioning injury, suggesting that the chemokine-mediated RAM activation could be utilized as a regenerative therapeutic strategy for CNS injuries.

  10. Ginsenoside Rg1 and platelet-rich fibrin enhance human breast adipose-derived stem cells function for soft tissue regeneration

    Science.gov (United States)

    Li, Hong-Mian; Peng, Qi-Liu; Huang, Min-Hong; Li, De-Quan; Liang, Yi-Dan; Chi, Gang-Yi; Li, De-Hui; Yu, Bing-Chao; Huang, Ji-Rong

    2016-01-01

    Adipose-derived stem cells (ASCs) can be used to repair soft tissue defects, wounds, burns, and scars and to regenerate various damaged tissues. The cell differentiation capacity of ASCs is crucial for engineered adipose tissue regeneration in reconstructive and plastic surgery. We previously reported that ginsenoside Rg1 (G-Rg1 or Rg1) promotes proliferation and differentiation of ASCs in vitro and in vivio. Here we show that both G-Rg1 and platelet-rich fibrin (PRF) improve the proliferation, differentiation, and soft tissue regeneration capacity of human breast adipose-derived stem cells (HBASCs) on collagen type I sponge scaffolds in vitro and in vivo. Three months after transplantation, tissue wet weight, adipocyte number, intracellular lipid, microvessel density, and gene and protein expression of VEGF, HIF-1α, and PPARγ were higher in both G-Rg1- and PRF-treated HBASCs than in control grafts. More extensive new adipose tissue formation was evident after treatment with G-Rg1 or PRF. In summary, G-Rg1 and/or PRF co-administration improves the function of HBASCs for soft tissue regeneration engineering. PMID:27191987

  11. Perkembangan Terkini Membran Guided Tissue Regeneration/Guided Bone Regeneration sebagai Terapi Regenerasi Jaringan Periodontal

    Directory of Open Access Journals (Sweden)

    Cindy Cahaya

    2015-06-01

    kombinasi prosedur-prosedur di atas, termasuk prosedur bedah restoratif yang berhubungan dengan rehabilitasi oral dengan penempatan dental implan. Pada tingkat selular, regenerasi periodontal adalah proses kompleks yang membutuhkan proliferasi yang terorganisasi, differensiasi dan pengembangan berbagai tipe sel untuk membentuk perlekatan periodontal. Rasionalisasi penggunaan guided tissue regeneration sebagai membran pembatas adalah menahan epitel dan gingiva jaringan pendukung, sebagai barrier membrane mempertahankan ruang dan gigi serta menstabilkan bekuan darah. Pada makalah ini akan dibahas sekilas mengenai 1. Proses penyembuhan terapi periodontal meliputi regenerasi, repair ataupun pembentukan perlekatan baru. 2. Periodontal spesific tissue engineering. 3. Berbagai jenis membran/guided tissue regeneration yang beredar di pasaran dengan keuntungan dan kerugian sekaligus karakteristik masing-masing membran. 4. Perkembangan membran terbaru sebagai terapi regenerasi penyakit periodontal. Tujuan penulisan untuk memberi gambaran masa depan mengenai terapi regenerasi yang menjanjikan sebagai perkembangan terapi penyakit periodontal.   Latest Development of Guided Tissue Regeneration and Guided Bone Regeneration Membrane as Regenerative Therapy on Periodontal Tissue. Periodontitis is a patological state which influences the integrity of periodontal system that could lead to the destruction of the periodontal tissue and end up with tooth loss. Currently, there are so many researches and efforts to regenerate periodontal tissue, not only to stop the process of the disease but also to reconstruct the periodontal tissue. Periodontal regenerative therapy aims at directing the growth of new bone, cementum and periodontal ligament on the affected teeth. Regenerative procedures consist of soft tissue graft, bone graft, roots biomodification, guided tissue regeneration and combination of the procedures, including restorative surgical procedure that is

  12. Mechanisms of lymphatic regeneration after tissue transfer.

    Directory of Open Access Journals (Sweden)

    Alan Yan

    2011-02-01

    Full Text Available Lymphedema is the chronic swelling of an extremity that occurs commonly after lymph node resection for cancer treatment. Recent studies have demonstrated that transfer of healthy tissues can be used as a means of bypassing damaged lymphatics and ameliorating lymphedema. The purpose of these studies was to investigate the mechanisms that regulate lymphatic regeneration after tissue transfer.Nude mice (recipients underwent 2-mm tail skin excisions that were either left open or repaired with full-thickness skin grafts harvested from donor transgenic mice that expressed green fluorescent protein in all tissues or from LYVE-1 knockout mice. Lymphatic regeneration, expression of VEGF-C, macrophage infiltration, and potential for skin grafting to bypass damaged lymphatics were assessed.Skin grafts healed rapidly and restored lymphatic flow. Lymphatic regeneration occurred beginning at the peripheral edges of the graft, primarily from ingrowth of new lymphatic vessels originating from the recipient mouse. In addition, donor lymphatic vessels appeared to spontaneously re-anastomose with recipient vessels. Patterns of VEGF-C expression and macrophage infiltration were temporally and spatially associated with lymphatic regeneration. When compared to mice treated with excision only, there was a 4-fold decrease in tail volumes, 2.5-fold increase in lymphatic transport by lymphoscintigraphy, 40% decrease in dermal thickness, and 54% decrease in scar index in skin-grafted animals, indicating that tissue transfer could bypass damaged lymphatics and promote rapid lymphatic regeneration.Our studies suggest that lymphatic regeneration after tissue transfer occurs by ingrowth of lymphatic vessels and spontaneous re-connection of existing lymphatics. This process is temporally and spatially associated with VEGF-C expression and macrophage infiltration. Finally, tissue transfer can be used to bypass damaged lymphatics and promote rapid lymphatic regeneration.

  13. Activation of Pax7-positive cells in a non-contractile tissue contributes to regeneration of myogenic tissues in the electric fish S. macrurus.

    Directory of Open Access Journals (Sweden)

    Christopher M Weber

    Full Text Available The ability to regenerate tissues is shared across many metazoan taxa, yet the type and extent to which multiple cellular mechanisms come into play can differ across species. For example, urodele amphibians can completely regenerate all lost tissues, including skeletal muscles after limb amputation. This remarkable ability of urodeles to restore entire limbs has been largely linked to a dedifferentiation-dependent mechanism of regeneration. However, whether cell dedifferentiation is the fundamental factor that triggers a robust regeneration capacity, and whether the loss or inhibition of this process explains the limited regeneration potential in other vertebrates is not known. Here, we studied the cellular mechanisms underlying the repetitive regeneration of myogenic tissues in the electric fish S. macrurus. Our in vivo microinjection studies of high molecular weight cell lineage tracers into single identified adult myogenic cells (muscle or noncontractile muscle-derived electrocytes revealed no fragmentation or cellularization proximal to the amputation plane. In contrast, ultrastructural and immunolabeling studies verified the presence of myogenic stem cells that express the satellite cell marker Pax7 in mature muscle fibers and electrocytes of S. macrurus. These data provide the first example of Pax-7 positive muscle stem cells localized within a non-contractile electrogenic tissue. Moreover, upon amputation, Pax-7 positive cells underwent a robust replication and were detected exclusively in regions that give rise to myogenic cells and dorsal spinal cord components revealing a regeneration process in S. macrurus that is dependent on the activation of myogenic stem cells for the renewal of both skeletal muscle and the muscle-derived electric organ. These data are consistent with the emergent concept in vertebrate regeneration that different tissues provide a distinct progenitor cell population to the regeneration blastema, and these

  14. Mesenchymal Stem Cells of Dental Origin for Inducing Tissue Regeneration in Periodontitis: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Beatriz Hernández-Monjaraz

    2018-03-01

    Full Text Available Periodontitis is a chronic disease that begins with a period of inflammation of the supporting tissues of the teeth table and then progresses, destroying the tissues until loss of the teeth occurs. The restoration of the damaged dental support apparatus is an extremely complex process due to the regeneration of the cementum, the periodontal ligament, and the alveolar bone. Conventional treatment relies on synthetic materials that fill defects and replace lost dental tissue, but these approaches are not substitutes for a real regeneration of tissue. To address this, there are several approaches to tissue engineering for regenerative dentistry, among them, the use of stem cells. Mesenchymal stem cells (MSC can be obtained from various sources of adult tissues, such as bone marrow, adipose tissue, skin, and tissues of the orofacial area. MSC of dental origin, such as those found in the bone marrow, have immunosuppressive and immunotolerant properties, multipotency, high proliferation rates, and the capacity for tissue repair. However, they are poorly used as sources of tissue for therapeutic purposes. Their accessibility makes them an attractive source of mesenchymal stem cells, so this review describes the field of dental stem cell research and proposes a potential mechanism involved in periodontal tissue regeneration induced by dental MSC.

  15. Tissue Engineering Strategies in Ligament Regeneration

    Directory of Open Access Journals (Sweden)

    Caglar Yilgor

    2012-01-01

    Full Text Available Ligaments are dense fibrous connective tissues that connect bones to other bones and their injuries are frequently encountered in the clinic. The current clinical approaches in ligament repair and regeneration are limited to autografts, as the gold standard, and allografts. Both of these techniques have their own drawbacks that limit the success in clinical setting; therefore, new strategies are being developed in order to be able to solve the current problems of ligament grafting. Tissue engineering is a novel promising technique that aims to solve these problems, by producing viable artificial ligament substitutes in the laboratory conditions with the potential of transplantation to the patients with a high success rate. Direct cell and/or growth factor injection to the defect site is another current approach aiming to enhance the repair process of the native tissue. This review summarizes the current approaches in ligament tissue engineering strategies including the use of scaffolds, their modification techniques, as well as the use of bioreactors to achieve enhanced regeneration rates, while also discussing the advances in growth factor and cell therapy applications towards obtaining enhanced ligament regeneration.

  16. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration.

    Science.gov (United States)

    Jones, Brendan A; Pei, Ming

    2012-08-01

    Articular cartilage is difficult to heal once injury or disease occurs. Autologous chondrocyte transplantation is a biological treatment with good prognosis, but donor site morbidity and limited cell source are disadvantages. Currently, mesenchymal stem cells (MSCs) are a promising approach for cartilage regeneration. Despite there being various sources, the best candidate for cartilage regeneration is the one with the greatest chondrogenic potential and the least hypertrophic differentiation. These properties are able to insure that the regenerated tissue is hyaline cartilage of high quality. This review article will summarize relevant literature to justify synovium-derived stem cells (SDSCs) as a tissue-specific stem cell for chondrogenesis by comparing synovium and cartilage with respect to anatomical location and functional structure, comparing the growth characterization and chondrogenic capacity of SDSCs and MSCs, evaluating the application of SDSCs in regenerative medicine and diseases, and discussing potential future directions.

  17. Dental Pulp Stem Cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues

    Directory of Open Access Journals (Sweden)

    Maitane eAurrekoetxea

    2015-10-01

    Full Text Available Dental pulp stem cells, or DPSC, are neural crest-derived cells with an outstanding capacity to differentiate along multiple cell lineages of interest for cell therapy. In particular, highly efficient osteo/dentinogenic differentiation of DPSC can be achieved using simple in vitro protocols, making these cells a very attractive and promising tool for the future treatment of dental and periodontal diseases. Among craniomaxillofacial organs, the tooth and salivary gland are two such cases in which complete regeneration by tissue engineering using DPSC appears to be possible, as research over the last decade has made substantial progress in experimental models of partial or total regeneration of both organs, by cell recombination technology. Moreover, DPSC seem to be a particularly good choice for the regeneration of nerve tissues, including injured or transected cranial nerves. In this context, the oral cavity appears to be an excellent testing ground for new regenerative therapies using DPSC. However, many issues and challenges need yet to be addressed before these cells can be employed in clinical therapy. In this review, we point out some important aspects on the biology of DPSC with regard to their use for the reconstruction of different craniomaxillofacial tissues and organs, with special emphasis on cranial bones, nerves, teeth, and salivary glands. We suggest new ideas and strategies to fully exploit the capacities of DPSC for bioengineering of the aforementioned tissues.

  18. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration

    DEFF Research Database (Denmark)

    Ohki, Makiko; Ohki, Yuichi; Ishihara, Makoto

    2010-01-01

    tissue regeneration is not well understood. Bone marrow (BM)-derived myeloid cells facilitate angiogenesis during tissue regeneration. Here, we report that a serpin-resistant form of tPA by activating the extracellular proteases matrix metalloproteinase-9 and plasmin expands the myeloid cell pool......-A. Remarkably, transplantation of BM-derived tPA-mobilized CD11b(+) cells and VEGFR-1(+) cells, but not carrier-mobilized cells or CD11b(-) cells, accelerates neovascularization and ischemic tissue regeneration. Inhibition of VEGF signaling suppresses tPA-induced neovascularization in a model of hind limb...... and mobilizes CD45(+)CD11b(+) proangiogenic, myeloid cells, a process dependent on vascular endothelial growth factor-A (VEGF-A) and Kit ligand signaling. tPA improves the incorporation of CD11b(+) cells into ischemic tissues and increases expression of neoangiogenesis-related genes, including VEGF...

  19. Somatostatin-like peptide and regeneration capacities in planarians.

    Science.gov (United States)

    Bautz, A; Schilt, J

    1986-11-01

    The presence of a neuropeptide immunologically related to somatostatin (SRIF) has been investigated in the neurosecretory cells of two regenerating planarian species (Dugesia lugubris and Dendrocoelum lacteum). A correlation has been shown between the discharge of the SRIF-like-immunoreactive cells during the first hours after amputation and the capacity to regenerate, and between the persistence of numerous positive cells and the lack of regeneration. These results suggest that somatostatin might play a regulatory (inhibitory) role on the cellular proliferation which leads to the blastema edification.

  20. Epimorphic regeneration approach to tissue replacement in adult mammals

    Science.gov (United States)

    Urodeles and fetal mammals are capable of impressive epimorphic regeneration in a variety of tissues, whereas the typical default response to injury in adult mammals consists of inflammation and scar tissue formation. One component of epimorphic regeneration is the recruitment of resident progenitor...

  1. Myocardial regeneration potential of adipose tissue-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  2. Myocardial regeneration potential of adipose tissue-derived stem cells

    International Nuclear Information System (INIS)

    Bai, Xiaowen; Alt, Eckhard

    2010-01-01

    Research highlights: → Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. → For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. → This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the underlying

  3. Piezoelectric materials for tissue regeneration: A review.

    Science.gov (United States)

    Rajabi, Amir Hossein; Jaffe, Michael; Arinzeh, Treena Livingston

    2015-09-01

    The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues raised the question whether or not electric fields play an important role in cell function. It has kindled research and the development of technologies in emulating biological electricity for tissue regeneration. Promising effects of electrical stimulation on cell growth and differentiation and tissue growth has led to interest in using piezoelectric scaffolds for tissue repair. Piezoelectric materials can generate electrical activity when deformed. Hence, an external source to apply electrical stimulation or implantation of electrodes is not needed. Various piezoelectric materials have been employed for different tissue repair applications, particularly in bone repair, where charges induced by mechanical stress can enhance bone formation; and in neural tissue engineering, in which electric pulses can stimulate neurite directional outgrowth to fill gaps in nervous tissue injuries. In this review, a summary of piezoelectricity in different biological tissues, mechanisms through which electrical stimulation may affect cellular response, and recent advances in the fabrication and application of piezoelectric scaffolds will be discussed. The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues has kindled research and the development of technologies using electrical stimulation for tissue regeneration. Piezoelectric materials generate electrical activity in response to deformations and allow for the delivery of an electrical stimulus without the need for an external power source. As a scaffold for tissue engineering, growing interest exists due to its potential of providing electrical stimulation to cells to promote tissue formation. In this review, we cover the discovery of piezoelectricity in biological tissues, its connection to streaming potentials, biological response to electrical stimulation and

  4. Boon and Bane of Inflammation in Bone Tissue Regeneration and Its Link with Angiogenesis.

    Science.gov (United States)

    Schmidt-Bleek, Katharina; Kwee, Brian J; Mooney, David J; Duda, Georg N

    2015-08-01

    Delayed healing or nonhealing of bone is an important clinical concern. Although bone, one of the two tissues with scar-free healing capacity, heals in most cases, healing is delayed in more than 10% of clinical cases. Treatment of such delayed healing condition is often painful, risky, time consuming, and expensive. Tissue healing is a multistage regenerative process involving complex and well-orchestrated steps, which are initiated in response to injury. At best, these steps lead to scar-free tissue formation. At the onset of healing, during the inflammatory phase, stationary and attracted macrophages and other immune cells at the fracture site release cytokines in response to injury. This initial reaction to injury is followed by the recruitment, proliferation, and differentiation of mesenchymal stromal cells, synthesis of extracellular matrix proteins, angiogenesis, and finally tissue remodeling. Failure to heal is often associated with poor revascularization. Since blood vessels mediate the transport of circulating cells, oxygen, nutrients, and waste products, they appear essential for successful healing. The strategy of endogenous regeneration in a tissue such as bone is interesting to analyze since it may represent a blueprint of successful tissue formation. This review highlights the interdependency of the time cascades of inflammation, angiogenesis, and tissue regeneration. A better understanding of these inter-relations is mandatory to early identify patients at risk as well as to overcome critical clinical conditions that limit healing. Instead of purely tolerating the inflammatory phase, modulations of inflammation (immunomodulation) might represent a valid therapeutic strategy to enhance angiogenesis and foster later phases of tissue regeneration.

  5. Capacity issues in local communities for integral urban regeneration

    Directory of Open Access Journals (Sweden)

    Mrđenović Tatjana

    2013-01-01

    Full Text Available The subject of the research in wider sense is organizational-communication capacity of local communities in Serbia in the frame of sustainable development. Along with this, the paper will explore potentialities of Faludi's model of multiplanning agencies as well as Healey's collaborative theory for better efficiency and effectiveness of planning in the process of urban regeneration. Specifically the paper will research relation between organizational structure of local communities in Serbia and their potentialities to provide adequate communication towards integral information for urban regeneration. Research is framed with a problem of efficiency and effectiveness in creating urban regeneration policies, strategies, designs, and technical solutions. The problem will be focused to Serbian context; characterized with inadequate, transitional, system of governance that is moving from centralistic towards decentralist model. This will be further explored through level and type of participation in the process of urban regeneration. The hypothesis of the research explores the nature of the relation between number and types of communication channels, provided by organizational structure of local communities that should enable effectiveness and efficiency of urban regeneration. In other words the hypothesis is: number and types of communication channels (variable A influences the effectiveness and efficiency of urban planning for sustainable urban regeneration (variable B. The aims of the paper are identification of the regulations between the variables. Expected result is establishing the model for measuring the capacity of local communities for integral urban regeneration.

  6. Biomimetic electrospun nanofibers for tissue regeneration

    International Nuclear Information System (INIS)

    Liao, Susan; Li Bojun; Ma Zuwei; Wei He; Chan Casey; Ramakrishna, Seeram

    2006-01-01

    Nanofibers exist widely in human tissue with different patterns. Electrospinning nanotechnology has recently gained a new impetus due to the introduction of the concept of biomimetic nanofibers for tissue regeneration. The advanced electrospinning technique is a promising method to fabricate a controllable continuous nanofiber scaffold similar to the natural extracellular matrix. Thus, the biomedical field has become a significant possible application field of electrospun fibers. Although electrospinning has developed rapidly over the past few years, electrospun nanofibers are still at a premature research stage. Further comprehensive and deep studies on electrospun nanofibers are essential for promoting their biomedical applications. Current electrospun fiber materials include natural polymers, synthetic polymers and inorganic substances. This review briefly describes several typically electrospun nanofiber materials or composites that have great potential for tissue regeneration, and describes their fabrication, advantages, drawbacks and future prospects. (topical review)

  7. Comparative study of radiosensitivity of normal and regenerating tissues

    International Nuclear Information System (INIS)

    Samokhvalova, H.S.; Popova, M.F.

    1983-01-01

    A comparative study of radiosensitivity of cells of normal and regenerating tissues of bone marrow and spleen has demonstrated that single exposure to X-rays produces a lesser damaging effect on regenerating tissues than on normal ones. The data obtained indicate that the increase in radioresistance of the organism during active regeneration of the haemopoietic organs is due not merely to the increase in the dividing cell pool of these organs but also to qualitative changes in their functional state

  8. 4D printing of polymeric materials for tissue and organ regeneration.

    Science.gov (United States)

    Miao, Shida; Castro, Nathan; Nowicki, Margaret; Xia, Lang; Cui, Haitao; Zhou, Xuan; Zhu, Wei; Lee, Se-Jun; Sarkar, Kausik; Vozzi, Giovanni; Tabata, Yasuhiko; Fisher, John; Zhang, Lijie Grace

    2017-12-01

    Four dimensional (4D) printing is an emerging technology with great capacity for fabricating complex, stimuli-responsive 3D structures, providing great potential for tissue and organ engineering applications. Although the 4D concept was first highlighted in 2013, extensive research has rapidly developed, along with more-in-depth understanding and assertions regarding the definition of 4D. In this review, we begin by establishing the criteria of 4D printing, followed by an extensive summary of state-of-the-art technological advances in the field. Both transformation-preprogrammed 4D printing and 4D printing of shape memory polymers are intensively surveyed. Afterwards we will explore and discuss the applications of 4D printing in tissue and organ regeneration, such as developing synthetic tissues and implantable scaffolds, as well as future perspectives and conclusions.

  9. Promoting tissue regeneration by modulating the immune system.

    Science.gov (United States)

    Julier, Ziad; Park, Anthony J; Briquez, Priscilla S; Martino, Mikaël M

    2017-04-15

    The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach. Most regenerative strategies have not yet proven to be safe or reasonably efficient in the clinic. In addition to stem cells and growth factors, the immune system plays a crucial role in the tissue healing process. Here, we propose that controlling the immune-mediated mechanisms of tissue repair and regeneration may support

  10. Theoretical storage capacity for solar air pretreatment liquid collector/regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Donggen; Zhang, Xiaosong; Yin, Yonggao [School of Energy and Environment, Southeast University, Nanjing 210096 (China)

    2008-08-15

    A new liquid regeneration equipment - solar air pretreatment collector/regenerator for liquid desiccant cooling system is put forward in this paper, which is preferable to solution regeneration in hot and moist climate in South China. The equipment can achieve liquid regeneration in lower temperature. When the solution and the air are in ''match'' state in collector/regenerator, a match air to salt mass ratio ASMR* is found by theoretical study in which there is the largest theoretical storage capacity SC{sub max}. At T{sub r} = 60{sup o}C and X{sub in} 2.33 kg/kg, theoretical calculation discovers when Y{sub in} drops from 29 to 14 g/kg, the SC{sub max} increase 50% compared with ASMR{sup *} being around 26-27. After two new concepts of the effective solution proportion (EPS) and the effective storage capacity (ESC) are defined, it is found by theoretical calculation that when ESP drops from 100% to 67%, ESC raises lowly, not drops and liquid outlet concentration C{sub str.sol} increases from 40% to 49% in which its increment totals to 90%. All these data explain fully that air pretreatment liquid regeneration equipment enables to improve the performance of liquid desiccant cooling system. (author)

  11. In vivo evaluation of hybrid patches composed of PLA based copolymers and collagen/chondroitin sulfate for ligament tissue regeneration.

    Science.gov (United States)

    Pinese, Coline; Gagnieu, Christian; Nottelet, Benjamin; Rondot-Couzin, Capucine; Hunger, Sylvie; Coudane, Jean; Garric, Xavier

    2017-10-01

    Biomaterials for soft tissues regeneration should exhibit sufficient mechanical strength, demonstrating a mechanical behavior similar to natural tissues and should also promote tissues ingrowth. This study was aimed at developing new hybrid patches for ligament tissue regeneration by synergistic incorporation of a knitted structure of degradable polymer fibers to provide mechanical strength and of a biomimetic matrix to help injured tissues regeneration. PLA- Pluronic ® (PLA-P) and PLA-Tetronic ® (PLA-T) new copolymers were shaped as knitted patches and were associated with collagen I (Coll) and collagen I/chondroitine-sulfate (Coll CS) 3-dimensional matrices. In vitro study using ligamentocytes showed the beneficial effects of CS on ligamentocytes proliferation. Hybrid patches were then subcutaneously implanted in rats for 4 and 12 weeks. Despite degradation, patches retained strength to answer the mechanical physiological needs. Tissue integration capacity was assessed with histological studies. We showed that copolymers, associated with collagen and chondroitin sulfate sponge, exhibited very good tissue integration and allowed neotissue synthesis after 12 weeks in vivo. To conclude, PLA-P/CollCS and PLA-T/CollCS hybrid patches in terms of structure and composition give good hopes for tendon and ligament regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1778-1788, 2017. © 2016 Wiley Periodicals, Inc.

  12. A tissue regeneration approach to bone and cartilage repair

    CERN Document Server

    Dunstan, Colin; Rosen, Vicki

    2015-01-01

    Reviewing exhaustively the current state of the art of tissue engineering strategies for regenerating bones and joints through the use of biomaterials, growth factors and stem cells, along with an investigation of the interactions between biomaterials, bone cells, growth factors and added stem cells and how together skeletal tissues can be optimised, this book serves to highlight the importance of biomaterials composition, surface topography, architectural and mechanical properties in providing support for tissue regeneration. Maximizing reader insights into the importance of the interplay of these attributes with bone cells (osteoblasts, osteocytes and osteoclasts) and cartilage cells (chondrocytes), this book also provides a detailed reference as to how key signalling pathways are activated. The contribution of growth factors to drive tissue regeneration and stem cell recruitment is discussed along with a review the potential and challenges of adult or embryonic mesenchymal stem cells to further enhance the...

  13. THE POTENTIAL ROLE OF ENDOGENOUS STEM CELLS IN REGENERATION OF THE INNER EAR

    Science.gov (United States)

    Martinez-Monedero, Rodrigo; Oshima, Kazuo; Heller, Stefan; Edge, Albert S.B.

    2007-01-01

    Stem cells in various mammalian tissues retain the capacity to renew themselves and may be able to restore damaged tissue. Their existence has been proven by genetic tracer studies that demonstrate their differentiation into multiple tissue types and by their ability to self-renew through proliferation. Stem cells from the adult nervous system proliferate to form clonal floating colonies called spheres in vitro, and recent studies have demonstrated sphere formation by cells in the cochlea in addition to the vestibular system and the auditory ganglia, indicating that these tissues contain cells with stem cell properties. The presence of stem cells in the inner ear raises the hope of regeneration of mammalian inner ear cells but is difficult to correlate with the lack spontaneous regeneration seen in the inner ear after tissue damage. Loss of stem cells postnatally in the cochlea may correlate with the loss of regenerative capacity and may limit our ability to stimulate regeneration. Retention of sphere forming capacity in adult vestibular tissues suggests that the limited capacity for repair may be attributed to the continued presence of progenitor cells. Future strategies for regeneration must consider the distribution of endogenous stem cells in the inner ear and whether cells with the capacity for regeneration are retained. PMID:17321086

  14. Repair and regeneration: opportunities for carcinogenesis from tissue stem cells

    OpenAIRE

    Perryman, Scott V; Sylvester, Karl G

    2007-01-01

    This review will discuss the mechanisms of repair and regeneration in various tissue types and how dysregulation of these mechaisms may lead to cancer. Normal homeostasis involves a careful balance between cell loss and cell renewal. Stem and progenitor cells perform these biologic processes as the functional units of regeneration during both tissue homeostasis and repair. The concept of tissue stem cells capable of giving rise to all differentiated cells within a given tissue led to the conc...

  15. Stem Cells in Tissue Repair and Regeneration

    OpenAIRE

    Falanga, Vincent

    2012-01-01

    The field of tissue repair and wound healing has blossomed in the last 30 years. We have gone from recombinant growth factors, to living tissue engineering constructs, to stem cells. The task now is to pursue true regeneration, thus achieving full restoration of structures and their function.

  16. The role of allofibroblasts transplantation in cartilaginous tissue regeneration process

    OpenAIRE

    Khadjibaev Аbdukhakim Muminovich; Tilyakov Akbar Buriyevich; Magrupov Bokhodir Asadullaevich; Urazmetova Maisa Dmitriyevna; Ubaydullaev Bobur Sabirovich

    2017-01-01

    Aim of investigation. Ground of embryonal allofibroblasts in the process of cartilaginous tissue regeneration. Material and methods. Investigation is based on the study the results of stimulation cartilaginous tissue regeneration process in the conditions of embryonal allofibroblasts application in 24 experimental sexually mature rabbits in which the model of symphysis pubis rupture with its following recovery have been used. Pieces of cartilaginous tissue have been fixed in 10% neutral forma...

  17. Tissue-specific composite cell aggregates drive periodontium tissue regeneration by reconstructing a regenerative microenvironment.

    Science.gov (United States)

    Zhu, Bin; Liu, Wenjia; Zhang, Hao; Zhao, Xicong; Duan, Yan; Li, Dehua; Jin, Yan

    2017-06-01

    Periodontitis is the most common cause of periodontium destruction. Regeneration of damaged tissue is the expected treatment goal. However, the regeneration of a functional periodontal ligament (PDL) insertion remains a difficulty, due to complicated factors. Recently, periodontal ligament stem cells (PDLSCs) and bone marrow-derived mesenchymal stem cells (BMMSCs) have been shown to participate in PDL regeneration, both pathologically and physiologically. Besides, interactions affect the biofunctions of different derived cells during the regenerative process. Therefore, the purpose of this study was to discuss the different derived composite cell aggregate (CA) systems of PDLSCs and BMMSCs (iliac-derived or jaw-derived) for periodontium regeneration under regenerative microenvironment reconstruction. Our results showed although all three mono-MSC CAs were compacted and the cells arranged regularly in them, jaw-derived BMMSC (JBMMSC) CAs secreted more extracellular matrix than the others. Furthermore, PDLSC/JBMMSC compound CAs highly expressed ALP, Col-I, fibronectin, integrin-β1 and periostin, suggesting that their biofunction is more appropriate for periodontal structure regeneration. Inspiringly, PDLSC/JBMMSC compound CAs regenerated more functional PDL-like tissue insertions in both nude mice ectopic and minipig orthotopic transplantation. The results indicated that the different derived CAs of PDLSCs/JBMMSCs provided an appropriate regenerative microenvironment facilitating a more stable and regular regeneration of functional periodontium tissue. This method may provide a possible strategy to solve periodontium defects in periodontitis and powerful experimental evidence for clinical applications in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  18. The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration

    OpenAIRE

    Rivera, Francisco J.; Silva, Maria Elena; Aigner, Ludwig

    2017-01-01

    Editorial on the Research Topic The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration In mammals, although regeneration is quite restricted to a number of tissues and organs, this particular healing process is possible through the existence of tissue-resident stem/progenitor cells. Upon injury, these cells are activated, they proliferate, migrate, and differentiate into tissue-specific cells and functionally replace the damaged or lost cells. Besides this, angio...

  19. Regeneration of the anterior cruciate ligament: Current strategies in tissue engineering

    Science.gov (United States)

    Nau, Thomas; Teuschl, Andreas

    2015-01-01

    Recent advancements in the field of musculoskeletal tissue engineering have raised an increasing interest in the regeneration of the anterior cruciate ligament (ACL). It is the aim of this article to review the current research efforts and highlight promising tissue engineering strategies. The four main components of tissue engineering also apply in several ACL regeneration research efforts. Scaffolds from biological materials, biodegradable polymers and composite materials are used. The main cell sources are mesenchymal stem cells and ACL fibroblasts. In addition, growth factors and mechanical stimuli are applied. So far, the regenerated ACL constructs have been tested in a few animal studies and the results are encouraging. The different strategies, from in vitro ACL regeneration in bioreactor systems to bio-enhanced repair and regeneration, are under constant development. We expect considerable progress in the near future that will result in a realistic option for ACL surgery soon. PMID:25621217

  20. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    Science.gov (United States)

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site. © 2014 Wiley Periodicals, Inc.

  1. Tissue regeneration and biomineralization in sea urchins: role of Notch signaling and presence of stem cell markers.

    Directory of Open Access Journals (Sweden)

    Helena C Reinardy

    Full Text Available Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages and spines in the sea urchin, Lytechinus variegatus. The ability to manipulate regeneration was demonstrated by concentration-dependent inhibition of regrowth of spines and tube feet by treatment with the mitotic inhibitor, vincristine. Treatment with the gamma-secretase inhibitor DAPT resulted in a concentration-dependent inhibition of regrowth, indicating that both tube feet and spine regeneration require functional Notch signaling. Stem cell markers (Piwi and Vasa were expressed in tube feet and spine tissue, and Vasa-positive cells were localized throughout the epidermis of tube feet by immunohistochemistry, suggesting the existence of multipotent progenitor cells in these highly regenerative appendages. The presence of Vasa protein in other somatic tissues (e.g. esophagus, radial nerve, and a sub-population of coelomocytes suggests that multipotent cells are present throughout adult sea urchins and may contribute to normal homeostasis in addition to regeneration. Mechanistic insight into the cellular pathways governing the tremendous regenerative capacity of echinoderms may reveal processes that can be modulated for regenerative therapies, shed light on the evolution of regeneration, and enable the ability to predict how these processes will respond to changing environmental conditions.

  2. Hydrogel based cartilaginous tissue regeneration: recent insights and technologies.

    Science.gov (United States)

    Chuah, Yon Jin; Peck, Yvonne; Lau, Jia En Josias; Hee, Hwan Tak; Wang, Dong-An

    2017-03-28

    Hydrogels have been extensively employed as an attractive biomaterial to address numerous existing challenges in the fields of regenerative medicine and research because of their unique properties such as the capability to encapsulate cells, high water content, ease of modification, low toxicity, injectability, in situ spatial fit and biocompatibility. These inherent properties have created many opportunities for hydrogels as a scaffold or a cell/drug carrier in tissue regeneration, especially in the field of cartilaginous tissue such as articular cartilage and intervertebral discs. A concise overview of the anatomy/physiology of these cartilaginous tissues and their pathophysiology, epidemiology and existing clinical treatments will be briefly described. This review article will discuss the current state-of-the-art of various polymers and developing strategies that are explored in establishing different technologies for cartilaginous tissue regeneration. In particular, an innovative approach to generate scaffold-free cartilaginous tissue via a transient hydrogel scaffolding system for disease modeling to pre-clinical trials will be examined. Following that, the article reviews numerous hydrogel-based medical implants used in clinical treatment of osteoarthritis and degenerated discs. Last but not least, the challenges and future directions of hydrogel based medical implants in the regeneration of cartilaginous tissue are also discussed.

  3. On the participation of irradiated tissues in the formation of limb regenerate in axolotls

    International Nuclear Information System (INIS)

    Tuchkova, S.Ya.

    1976-01-01

    The aim of the study was to obtain further information on the participation of irradiated tissue cells in formation of regenerated limbs after X-irradiation of axolotls and experimental restoration of the regenerational ability. Cells of irradiated tissues were labeled with H 3 -thymidine; the presence of the label in regenerated tissues would be indicative of participation of irradiated cells in the regeneration process. Irradiation dose was 700 R. 30 axolotls with irradiated limbs were intramuscularly injected with rat muscle homogenate into the right limb once a day beginning from the day of treatment. 15 similarly irradiated animals which did not receive homogenate served as a control. The authors concluded that the presence of highly labeled cells in regenerated tissues was likely to indicate the participation of irradiated tissue cells in regeneration of the limb. However, the quantitative contribution of such cells was impossible to determine since remaining irradiated tissues of the organ contained mostly unlabeled cells. It was also impossible to rule out the possibility of cell migration from non-irradiated tissues [ru

  4. Environmental conditions influence tissue regeneration rates in scleractinian corals.

    Science.gov (United States)

    Sabine, Alexis M; Smith, Tyler B; Williams, Dana E; Brandt, Marilyn E

    2015-06-15

    Natural and anthropogenic factors may influence corals' ability to recover from partial mortality. To examine how environmental conditions affect lesion healing, we assessed several water quality parameters and tissue regeneration rates in corals at six reefs around St. Thomas, US Virgin Islands. We hypothesized that sites closer to developed areas would have poor water quality due to proximity to anthropogenic stresses, which would impede tissue regeneration. We found that water flow and turbidity most strongly influenced lesion recovery rates. The most impacted site, with high turbidity and low flow, recovered almost three times slower than the least impacted site, with low turbidity, high flow, and low levels of anthropogenic disturbance. Our results illustrate that in addition to lesion-specific factors known to affect tissue regeneration, environmental conditions can also control corals' healing rates. Resource managers can use this information to protect low-flow, turbid nearshore reefs by minimizing sources of anthropogenic stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. About tendon tissue regeneration in experimental radiation disease

    Energy Technology Data Exchange (ETDEWEB)

    Popov, D; Trichkova, P

    1976-01-01

    Under the conditions of experimental acute radiation disease the authors study the tendon tissue regeneration after suture of the lateral part of the gastrocnemius muscle tendon. Tendon auto and alloplasty were applied. In four postoperative periods the histological features are described in details as well as the characteristic phenomena observed during the regeneration influenced to a considerable degree by the irradiation. Round cell infiltration, large necrotic zones, erythrocyte infiltrations as well as predominance of non-specific tendon regeneration long after the surgery characterize the recovery period of the traumatically damaged tendon, nevertheless that at the end there is real tendon regeneration even though in a longer period in comparison with the controls (non-irradiated animals).

  6. Regeneration of soft tissues is promoted by MMP1 treatment after digit amputation in mice.

    Directory of Open Access Journals (Sweden)

    Xiaodong Mu

    Full Text Available The ratio of matrix metalloproteinases (MMPs to the tissue inhibitors of metalloproteinases (TIMPs in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians (i.e. axolotl/newt demonstrate complete regeneration of missing or wounded digits and even limbs; MMPs play a critical role during amphibian regeneration. Conversely, mammalian wound healing re-establishes tissue integrity, but at the expense of scar tissue formation. The differences between amphibian regeneration and mammalian wound healing can be attributed to the greater ratio of MMPs to TIMPs in amphibian tissue. Previous studies have demonstrated the ability of MMP1 to effectively promote skeletal muscle regeneration by favoring extracellular matrix (ECM remodeling to enhance cell proliferation and migration. In this study, MMP1 was administered to the digits amputated at the mid-second phalanx of adult mice to observe its effect on digit regeneration. Results indicated that the regeneration of soft tissue and the rate of wound closure were significantly improved by MMP1 administration, but the elongation of the skeletal tissue was insignificantly affected. During digit regeneration, more mutipotent progenitor cells, capillary vasculature and neuromuscular-related tissues were observed in MMP1 treated tissues; moreover, there was less fibrotic tissue formed in treated digits. In summary, MMP1 was found to be effective in promoting wound healing in amputated digits of adult mice.

  7. Tissue Engineering Strategies in Ligament Regeneration

    OpenAIRE

    Yilgor, Caglar; Yilgor Huri, Pinar; Huri, Gazi

    2011-01-01

    Ligaments are dense fibrous connective tissues that connect bones to other bones and their injuries are frequently encountered in the clinic. The current clinical approaches in ligament repair and regeneration are limited to autografts, as the gold standard, and allografts. Both of these techniques have their own drawbacks that limit the success in clinical setting; therefore, new strategies are being developed in order to be able to solve the current problems of ligament grafting. Tissue eng...

  8. Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration.

    Science.gov (United States)

    Martino, Mikaël M; Maruyama, Kenta; Kuhn, Gisela A; Satoh, Takashi; Takeuchi, Osamu; Müller, Ralph; Akira, Shizuo

    2016-03-22

    Tissue injury and the healing response lead to the release of endogenous danger signals including Toll-like receptor (TLR) and interleukin-1 receptor, type 1 (IL-1R1) ligands, which modulate the immune microenvironment. Because TLRs and IL-1R1 have been shown to influence the repair process of various tissues, we explored their role during bone regeneration, seeking to design regenerative strategies integrating a control of their signalling. Here we show that IL-1R1/MyD88 signalling negatively regulates bone regeneration, in the mouse. Furthermore, IL-1β which is released at the bone injury site, inhibits the regenerative capacities of mesenchymal stem cells (MSCs). Mechanistically, IL-1R1/MyD88 signalling impairs MSC proliferation, migration and differentiation by inhibiting the Akt/GSK-3β/β-catenin pathway. Lastly, as a proof of concept, we engineer a MSC delivery system integrating inhibitors of IL-1R1/MyD88 signalling. Using this strategy, we considerably improve MSC-based bone regeneration in the mouse, demonstrating that this approach may be useful in regenerative medicine applications.

  9. Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration.

    Science.gov (United States)

    Zhang, Hao; Liu, Shiyu; Zhu, Bin; Xu, Qiu; Ding, Yin; Jin, Yan

    2016-11-14

    Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue.

  10. Fast growth may impair regeneration capacity in the branching coral Acropora muricata.

    Science.gov (United States)

    Denis, Vianney; Guillaume, Mireille M M; Goutx, Madeleine; de Palmas, Stéphane; Debreuil, Julien; Baker, Andrew C; Boonstra, Roxane K; Bruggemann, J Henrich

    2013-01-01

    Regeneration of artificially induced lesions was monitored in nubbins of the branching coral Acropora muricata at two reef-flat sites representing contrasting environments at Réunion Island (21°07'S, 55°32'E). Growth of these injured nubbins was examined in parallel, and compared to controls. Biochemical compositions of the holobiont and the zooxanthellae density were determined at the onset of the experiment, and the photosynthetic efficiency (Fv/Fm ) of zooxanthellae was monitored during the experiment. Acropora muricata rapidly regenerated small lesions, but regeneration rates significantly differed between sites. At the sheltered site characterized by high temperatures, temperature variations, and irradiance levels, regeneration took 192 days on average. At the exposed site, characterized by steadier temperatures and lower irradiation, nubbins demonstrated fast lesion repair (81 days), slower growth, lower zooxanthellae density, chlorophyll a concentration and lipid content than at the former site. A trade-off between growth and regeneration rates was evident here. High growth rates seem to impair regeneration capacity. We show that environmental conditions conducive to high zooxanthellae densities in corals are related to fast skeletal growth but also to reduced lesion regeneration rates. We hypothesize that a lowered regenerative capacity may be related to limited availability of energetic and cellular resources, consequences of coral holobionts operating at high levels of photosynthesis and associated growth.

  11. Fast growth may impair regeneration capacity in the branching coral Acropora muricata.

    Directory of Open Access Journals (Sweden)

    Vianney Denis

    Full Text Available Regeneration of artificially induced lesions was monitored in nubbins of the branching coral Acropora muricata at two reef-flat sites representing contrasting environments at Réunion Island (21°07'S, 55°32'E. Growth of these injured nubbins was examined in parallel, and compared to controls. Biochemical compositions of the holobiont and the zooxanthellae density were determined at the onset of the experiment, and the photosynthetic efficiency (Fv/Fm of zooxanthellae was monitored during the experiment. Acropora muricata rapidly regenerated small lesions, but regeneration rates significantly differed between sites. At the sheltered site characterized by high temperatures, temperature variations, and irradiance levels, regeneration took 192 days on average. At the exposed site, characterized by steadier temperatures and lower irradiation, nubbins demonstrated fast lesion repair (81 days, slower growth, lower zooxanthellae density, chlorophyll a concentration and lipid content than at the former site. A trade-off between growth and regeneration rates was evident here. High growth rates seem to impair regeneration capacity. We show that environmental conditions conducive to high zooxanthellae densities in corals are related to fast skeletal growth but also to reduced lesion regeneration rates. We hypothesize that a lowered regenerative capacity may be related to limited availability of energetic and cellular resources, consequences of coral holobionts operating at high levels of photosynthesis and associated growth.

  12. Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues.

    Science.gov (United States)

    Pei, Wuhong; Xu, Lisha; Huang, Sunny C; Pettie, Kade; Idol, Jennifer; Rissone, Alberto; Jimenez, Erin; Sinclair, Jason W; Slevin, Claire; Varshney, Gaurav K; Jones, MaryPat; Carrington, Blake; Bishop, Kevin; Huang, Haigen; Sood, Raman; Lin, Shuo; Burgess, Shawn M

    2018-01-01

    Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration.

  13. Activation of germline-specific genes is required for limb regeneration in the Mexican axolotl

    OpenAIRE

    Zhu, Wei; Pao, Gerald M; Satoh, Akira; Cummings, Gillian; Monaghan, James R; Harkins, Timothy T; Bryant, Susan V; Voss, S Randal; Gardiner, David M; Hunter, Tony

    2012-01-01

    The capacity for tissue and organ regeneration in humans is dwarfed by comparison to that of salamanders. Emerging evidence suggests that mechanisms learned from the early phase of salamander limb regeneration-wound healing, cellular dedifferentiation and blastemal formation-will reveal therapeutic approaches for tissue regeneration in humans. Here we describe a unique transcriptional fingerprint of regenerating limb tissue in the Mexican axolotl (Ambystoma mexicanum) that is indicative of ce...

  14. Reparative inflammation takes charge of tissue regeneration

    NARCIS (Netherlands)

    Karin, Michael; Clevers, Hans

    2016-01-01

    Inflammation underlies many chronic and degenerative diseases, but it also mitigates infections, clears damaged cells and initiates tissue repair. Many of the mechanisms that link inflammation to damage repair and regeneration in mammals are conserved in lower organisms, indicating that it is an

  15. Guiding tissue regeneration with ultrasound in vitro and in vivo

    Science.gov (United States)

    Dalecki, Diane; Comeau, Eric S.; Raeman, Carol H.; Child, Sally Z.; Hobbs, Laura; Hocking, Denise C.

    2015-05-01

    Developing new technologies that enable the repair or replacement of injured or diseased tissues is a major focus of regenerative medicine. This paper will discuss three ultrasound technologies under development in our laboratories to guide tissue regeneration both in vitro and in vivo. A critical obstacle in tissue engineering is the need for rapid and effective tissue vascularization strategies. To address this challenge, we are developing acoustic patterning techniques for microvascular tissue engineering. Acoustic radiation forces associated with ultrasound standing wave fields provide a rapid, non-invasive approach to spatially pattern cells in three dimensions without affecting cell viability. Acoustic patterning of endothelial cells leads to the rapid formation of microvascular networks throughout the volumes of three-dimensional hydrogels, and the morphology of the resultant microvessel networks can be controlled by design of the ultrasound field. A second technology under development uses ultrasound to noninvasively control the microstructure of collagen fibers within engineered tissues. The microstructure of extracellular matrix proteins provides signals that direct cell functions critical to tissue regeneration. Thus, controlling collagen microfiber structure with ultrasound provides a noninvasive approach to regulate the mechanical properties of biomaterials and control cellular responses. The third technology employs therapeutic ultrasound to enhance the healing of chronic wounds. Recent studies demonstrate increased granulation tissue thickness and collagen deposition in murine dermal wounds exposed to pulsed ultrasound. In summary, ultrasound technologies offer noninvasive approaches to control cell behaviors and extracellular matrix organization and thus hold great promise to advance tissue regeneration in vitro and in vivo.

  16. Osseointegration of subperiosteal implant via guided tissue regeneration. A pilot study

    DEFF Research Database (Denmark)

    Hjørting-Hansen, E; Helbo, M; Aaboe, M

    1995-01-01

    The principle of guided tissue regeneration was applied in an attempt to generate bone to cover a subperiosteal implant. Titanium frame works, casted on individual impressions of the anterior surface of the tibia of 4 Copenhagen White rabbits, were stabilized to the tibia by microscrews, and half...... of them were covered by an expanded polytetrafluoroethylene augmentation membrane. The observation period was 12 weeks. Guided bone regeneration partly covering the implants was seen at all experimental sides; on the control sides the implants were mainly embedded in fibrous tissue. Studies...... are in progress with the aim of reducing marked marrow space formation observed in all the regenerated areas....

  17. Network-Based Method for Identifying Co- Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues.

    Science.gov (United States)

    Chen, Lei; Pan, Hongying; Zhang, Yu-Hang; Feng, Kaiyan; Kong, XiangYin; Huang, Tao; Cai, Yu-Dong

    2017-10-02

    Bone and dental diseases are serious public health problems. Most current clinical treatments for these diseases can produce side effects. Regeneration is a promising therapy for bone and dental diseases, yielding natural tissue recovery with few side effects. Because soft tissues inside the bone and dentin are densely populated with nerves and vessels, the study of bone and dentin regeneration should also consider the co-regeneration of nerves and vessels. In this study, a network-based method to identify co-regeneration genes for bone, dentin, nerve and vessel was constructed based on an extensive network of protein-protein interactions. Three procedures were applied in the network-based method. The first procedure, searching, sought the shortest paths connecting regeneration genes of one tissue type with regeneration genes of other tissues, thereby extracting possible co-regeneration genes. The second procedure, testing, employed a permutation test to evaluate whether possible genes were false discoveries; these genes were excluded by the testing procedure. The last procedure, screening, employed two rules, the betweenness ratio rule and interaction score rule, to select the most essential genes. A total of seventeen genes were inferred by the method, which were deemed to contribute to co-regeneration of at least two tissues. All these seventeen genes were extensively discussed to validate the utility of the method.

  18. A high mitochondrial transport rate characterizes CNS neurons with high axonal regeneration capacity.

    Directory of Open Access Journals (Sweden)

    Romain Cartoni

    Full Text Available Improving axonal transport in the injured and diseased central nervous system has been proposed as a promising strategy to improve neuronal repair. However, the contribution of each cargo to the repair mechanism is unknown. DRG neurons globally increase axonal transport during regeneration. Because the transport of specific cargos after axonal insult has not been examined systematically in a model of enhanced regenerative capacity, it is unknown whether the transport of all cargos would be modulated equally in injured central nervous system neurons. Here, using a microfluidic culture system we compared neurons co-deleted for PTEN and SOCS3, an established model of high axonal regeneration capacity, to control neurons. We measured the axonal transport of three cargos (mitochondria, synaptic vesicles and late endosomes in regenerating axons and found that the transport of mitochondria, but not the other cargos, was increased in PTEN/SOCS3 co-deleted axons relative to controls. The results reported here suggest a pivotal role for this organelle during axonal regeneration.

  19. Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective

    Science.gov (United States)

    Henkel, Jan; Woodruff, Maria A.; Epari, Devakara R.; Steck, Roland; Glatt, Vaida; Dickinson, Ian C.; Choong, Peter F. M.; Schuetz, Michael A.; Hutmacher, Dietmar W.

    2013-01-01

    The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteoconductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineering and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts. PMID:26273505

  20. The effect of gamma radiation and N-ethyl-N-nitrosourea on cultured maize callus growth and plant regeneration

    International Nuclear Information System (INIS)

    Moustafa, R.A.K.; Duncan, D.R.; Widholm, J.M.

    1989-01-01

    Regenerable maize calli of two inbred lines were exposed to 0 to 100 Gy of gamma rays or treated with 0 to 30 mM of N-ethyl-N-nitrosourea (ENU) to determine their effect on growth and plant regeneration capability. Both growth and plant regeneration capacity decreased with increasing levels of either gamma radiation or ENU; however, plant regeneration capacity was more sensitive to either agent than growth. The 50% inhibition dose (I 50 ) for callus growth (fresh-weight gain) was approximately 100 Gy of gamma radiation and 30 mM ENU. The I 50 for plant regeneration capacity of treated callus was approximately 25 Gy of gamma radiation and 2.5 mM ENU. The decrease in plant regeneration capacity correlated with a change in tissue composition of the treated callus from a hard, yellow and opaque tissue to a soft, grayish-yellow and translucent tissue. This change was quantified by measuring the reduction of MnO 4 - to MnO 2 (PR assay) by the callus. These results suggest that the effect of gamma radiation or ENU on plant regeneration capacity must be taken into consideration if these potentially mutagenic agents are to be used on maize callus cultures, for the purpose of producing useful mutations at a whole plant level. The data also suggest that the PR assay may be useful for predicting the actual plant regeneration capacity of maize callus. (author)

  1. Comparison of regeneration potentials in tissue cultures of primitive and cultivated tomato species (Lycopersicon sp.

    Directory of Open Access Journals (Sweden)

    M. Lech

    2014-01-01

    Full Text Available Regeneration capacities of two tomato cultivars: Potentat and Rutgers, and of three accessions of wild tomato species: Lycopersicon peruvianum PI 128650, L. peruvianum var. dentatum PI 128655 and L. glandulosum were studied using an universal medium suitable for regeneration of those plants from leaf pieces in tissue culture. Fragments of leaf blades were taken from plants raised in greenhouse conditions and placed on a modified MS medium containing 0.3 mg/l IAA and 3.0 mg/l BAP solidified with 1% agar. The explants were transferred every 4-5 weeks on fresh medium of the same composition. It was shown that all the three primitive tomato species revealed much higher multiplication coefficients than the two cultivars. Appropriate values were: 11 - for L. glandulosum, 8 - for L. peruvianum, 7 - for L. peruvianum var. dentatum, 4 - for L. esculentum cv. Potentat and 2 - cv. Rutgers. Completely regenerated plants were obtained from all the tested species, but organogenesis occurred almost two weeks earlier in wild tomatoes than in the culitivated varieties of L. esculentum.

  2. Advances and Prospects in Tissue-Engineered Meniscal Scaffolds for Meniscus Regeneration

    Directory of Open Access Journals (Sweden)

    Weimin Guo

    2015-01-01

    Full Text Available The meniscus plays a crucial role in maintaining knee joint homoeostasis. Meniscal lesions are relatively common in the knee joint and are typically categorized into various types. However, it is difficult for inner avascular meniscal lesions to self-heal. Untreated meniscal lesions lead to meniscal extrusions in the long-term and gradually trigger the development of knee osteoarthritis (OA. The relationship between meniscal lesions and knee OA is complex. Partial meniscectomy, which is the primary method to treat a meniscal injury, only relieves short-term pain; however, it does not prevent the development of knee OA. Similarly, other current therapeutic strategies have intrinsic limitations in clinical practice. Tissue engineering technology will probably address this challenge by reconstructing a meniscus possessing an integrated configuration with competent biomechanical capacity. This review describes normal structure and biomechanical characteristics of the meniscus, discusses the relationship between meniscal lesions and knee OA, and summarizes the classifications and corresponding treatment strategies for meniscal lesions to understand meniscal regeneration from physiological and pathological perspectives. Last, we present current advances in meniscal scaffolds and provide a number of prospects that will potentially benefit the development of meniscal regeneration methods.

  3. Tissue regenerating functions of coagulation factor XIII

    DEFF Research Database (Denmark)

    Soendergaard, C; Kvist, P H; Seidelin, J B

    2013-01-01

    The protransglutaminase factor XIII (FXIII) has recently gained interest within the field of tissue regeneration, as it has been found that FXIII significantly influences wound healing by exerting a multitude of functions. It supports haemostasis by enhancing platelet adhesion to damaged......-receptor 2 and the αVβ3 integrin is important for angiogenesis supporting formation of granulation tissue. Chronic inflammatory conditions involving bleeding and activation of the coagulation cascade have been shown to lead to reduced FXIII levels in plasma. Of particular importance for this review...

  4. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application.

    Science.gov (United States)

    Chandika, Pathum; Ko, Seok-Chun; Oh, Gun-Woo; Heo, Seong-Yeong; Nguyen, Van-Tinh; Jeon, You-Jin; Lee, Bonggi; Jang, Chul Ho; Kim, GeunHyung; Park, Won Sun; Chang, Wonseok; Choi, Il-Whan; Jung, Won-Kyo

    2015-11-01

    An emerging paradigm in wound healing techniques is that a tissue-engineered skin substitute offers an alternative approach to create functional skin tissue. Here we developed a fish collagen/alginate (FCA) sponge scaffold that was functionalized by different molecular weights of chitooligosaccharides (COSs) with the use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride as a cross-linking agent. The effects of cross-linking were analyzed by Fourier transform infrared spectroscopy. The results indicate that the homogeneous materials blending and cross-linking intensity were dependent on the molecular weights of COSs. The highly interconnected porous architecture with 160-260μm pore size and over 90% porosity and COS's MW driven swelling and retention capacity, tensile property and in vitro biodegradation behavior guaranteed the FCA/COS scaffolds for skin tissue engineering application. Further improvement of these properties enhanced the cytocompatibility of all the scaffolds, especially the scaffolds containing COSs with MW in the range of 1-3kDa (FCA/COS1) showed the best cytocompatibility. These physicochemical, mechanical, and biological properties suggest that the FCA/COS1 scaffold is a superior candidate that can be used for skin tissue regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Live Imaging of Axolotl Digit Regeneration Reveals Spatiotemporal Choreography of Diverse Connective Tissue Progenitor Pools.

    Science.gov (United States)

    Currie, Joshua D; Kawaguchi, Akane; Traspas, Ricardo Moreno; Schuez, Maritta; Chara, Osvaldo; Tanaka, Elly M

    2016-11-21

    Connective tissues-skeleton, dermis, pericytes, fascia-are a key cell source for regenerating the patterned skeleton during axolotl appendage regeneration. This complexity has made it difficult to identify the cells that regenerate skeletal tissue. Inability to identify these cells has impeded a mechanistic understanding of blastema formation. By tracing cells during digit tip regeneration using brainbow transgenic axolotls, we show that cells from each connective tissue compartment have distinct spatial and temporal profiles of proliferation, migration, and differentiation. Chondrocytes proliferate but do not migrate into the regenerate. In contrast, pericytes proliferate, then migrate into the blastema and give rise solely to pericytes. Periskeletal cells and fibroblasts contribute the bulk of digit blastema cells and acquire diverse fates according to successive waves of migration that choreograph their proximal-distal and tissue contributions. We further show that platelet-derived growth factor signaling is a potent inducer of fibroblast migration, which is required to form the blastema. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Mathematical modeling in wound healing, bone regeneration and tissue engineering.

    Science.gov (United States)

    Geris, Liesbet; Gerisch, Alf; Schugart, Richard C

    2010-12-01

    The processes of wound healing and bone regeneration and problems in tissue engineering have been an active area for mathematical modeling in the last decade. Here we review a selection of recent models which aim at deriving strategies for improved healing. In wound healing, the models have particularly focused on the inflammatory response in order to improve the healing of chronic wound. For bone regeneration, the mathematical models have been applied to design optimal and new treatment strategies for normal and specific cases of impaired fracture healing. For the field of tissue engineering, we focus on mathematical models that analyze the interplay between cells and their biochemical cues within the scaffold to ensure optimal nutrient transport and maximal tissue production. Finally, we briefly comment on numerical issues arising from simulations of these mathematical models.

  7. The cancer paradigms of mammalian regeneration: can mammals regenerate as amphibians?

    Science.gov (United States)

    Sarig, Rachel; Tzahor, Eldad

    2017-04-01

    Regeneration in mammals is restricted to distinct tissues and occurs mainly by expansion and maturation of resident stem cells. During regeneration, even subtle mutations in the proliferating cells may cause a detrimental effect by eliciting abnormal differentiation or malignant transformation. Indeed, cancer in mammals has been shown to arise through deregulation of stem cells maturation, which often leads to a differentiation block and cell transformation. In contrast, lower organisms such as amphibians retain a remarkable regenerative capacity in various organs, which occurs via de- and re-differentiation of mature cells. Interestingly, regenerating amphibian cells are highly resistant to oncogenic transformation. Therapeutic approaches to improve mammalian regeneration mainly include stem-cell transplantations; but, these have proved unsuccessful in non-regenerating organs such as the heart. A recently developed approach is to induce de-differentiation of mature cardiomyocytes using factors that trigger their re-entry into the cell cycle. This novel approach raises numerous questions regarding the balance between transformation and regeneration induced by de-differentiation of mature mammalian somatic cells. Can this balance be controlled artificially? Do de-differentiated cells acquire the protection mechanisms seen in regenerating cells of lower organisms? Is this model unique to the cardiac tissue, which rarely develops tumors? This review describes regeneration processes in both mammals and lower organisms and, particularly, the ability of regenerating cells to avoid transformation. By comparing the characteristics of mammalian embryonic and somatic cells, we discuss therapeutic strategies of using various cell populations for regeneration. Finally, we describe a novel cardiac regeneration approach and its implications for regenerative medicine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email

  8. Factors promoting increased rate of tissue regeneration: the zebrafish fin as a tool for examining tissue engineering design concepts.

    Science.gov (United States)

    Boominathan, Vijay P; Ferreira, Tracie L

    2012-12-01

    Student interest in topics of tissue engineering is increasing exponentially as the number of universities offering programs in bioengineering are on the rise. Bioengineering encompasses all of the STEM categories: Science, Technology, Engineering, and Math. Inquiry-based learning is one of the most effective techniques for promoting student learning and has been demonstrated to have a high impact on learning outcomes. We have designed program outcomes for our bioengineering program that require tiered activities to develop problem solving skills, peer evaluation techniques, and promote team work. While it is ideal to allow students to ask unique questions and design their own experiments, this can be difficult for instructors to have reagents and supplies available for a variety of activities. Zebrafish can be easily housed, and multiple variables can be tested on a large enough group to provide statistical value, lending them well to inquiry-based learning modules. We have designed a laboratory activity that takes observation of fin regeneration to the next level: analyzing conditions that may impact regeneration. Tissue engineers seek to define the optimum conditions to grow tissue for replacement parts. The field of tissue engineering is likely to benefit from understanding natural mechanisms of regeneration and the factors that influence the rate of regeneration. We have outlined the results of varying temperature on fin regeneration and propose other inquiry modules such as the role of pH in fin regeneration. Furthermore, we have provided useful tools for developing critical thinking and peer review of research ideas, assessment guidelines, and grading rubrics for the activities associated with this exercise.

  9. Nanomechanical mapping of bone tissue regenerated by magnetic scaffolds.

    Science.gov (United States)

    Bianchi, Michele; Boi, Marco; Sartori, Maria; Giavaresi, Gianluca; Lopomo, Nicola; Fini, Milena; Dediu, Alek; Tampieri, Anna; Marcacci, Maurilio; Russo, Alessandro

    2015-01-01

    Nanoindentation can provide new insights on the maturity stage of regenerating bone. The aim of the present study was the evaluation of the nanomechanical properties of newly-formed bone tissue at 4 weeks from the implantation of permanent magnets and magnetic scaffolds in the trabecular bone of rabbit femoral condyles. Three different groups have been investigated: MAG-A (NdFeB magnet + apatite/collagen scaffold with magnetic nanoparticles directly nucleated on the collagen fibers during scaffold synthesis); MAG-B (NdFeB magnet + apatite/collagen scaffold later infiltrated with magnetic nanoparticles) and MAG (NdFeB magnet). The mechanical properties of different-maturity bone tissues, i.e. newly-formed immature, newly-formed mature and native trabecular bone have been evaluated for the three groups. Contingent correlations between elastic modulus and hardness of immature, mature and native bone have been examined and discussed, as well as the efficacy of the adopted regeneration method in terms of "mechanical gap" between newly-formed and native bone tissue. The results showed that MAG-B group provided regenerated bone tissue with mechanical properties closer to that of native bone compared to MAG-A or MAG groups after 4 weeks from implantation. Further, whereas the mechanical properties of newly-formed immature and mature bone were found to be fairly good correlated, no correlation was detected between immature or mature bone and native bone. The reported results evidence the efficacy of nanoindentation tests for the investigation of the maturity of newly-formed bone not accessible through conventional analyses.

  10. A Miniature Swine Model for Stem Cell-Based De Novo Regeneration of Dental Pulp and Dentin-Like Tissue.

    Science.gov (United States)

    Zhu, Xiaofei; Liu, Jie; Yu, Zongdong; Chen, Chao-An; Aksel, Hacer; Azim, Adham A; Huang, George T-J

    2018-02-01

    The goal of this study was to establish mini-swine as a large animal model for stem cell-based pulp regeneration studies. Swine dental pulp stem cells (sDPSCs) were isolated from mini-swine and characterized in vitro. For in vivo studies, we first employed both ectopic and semi-orthotopic study models using severe combined immunodeficiency mice. One is hydroxyapatite-tricalcium phosphate (HA/TCP) model for pulp-dentin complex formation, and the other is tooth fragment model for complete pulp regeneration with new dentin depositing along the canal walls. We found that sDPSCs are similar to their human counterparts exhibiting mesenchymal stem cell characteristics with ability to form colony forming unit-fibroblastic and odontogenic differentiation potential. sDPSCs formed pulp-dentin complex in the HA/TCP model and showed pulp regeneration capacity in the tooth fragment model. We then tested orthotopic pulp regeneration on mini-swine including the use of multi-rooted teeth. Using autologous sDPSCs carried by hydrogel and transplanted into the mini-swine root canal space, we observed regeneration of vascularized pulp-like tissue with a layer of newly deposited dentin-like (rD) tissue or osteodentin along the canal walls. In some cases, dentin bridge-like structure was observed. Immunohistochemical analysis detected the expression of nestin, dentin sialophosphoprotein, dentin matrix protein 1, and bone sialoprotein in odontoblast-like cells lining against the produced rD. We also tested the use of allogeneic sDPSCs for the same procedures. Similar findings were observed in allogeneic transplantation. This study is the first to show an establishment of mini-swine as a suitable large animal model utilizing multi-rooted teeth for further cell-based pulp regeneration studies.

  11. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    Science.gov (United States)

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation. Copyright © 2012 Wiley Periodicals, Inc.

  12. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Science.gov (United States)

    2009-01-01

    Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves. PMID:19939265

  13. Regeneration of Sudanese maize inbred lines and open pollinated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... Callus induction capacity was highest in inbred lines IL3, IL15 and IL1. The. Varieties Hudiba-2 and ... Maize plant regeneration can take place through two avenues, that is ..... regenerants were tussel ear formation and dwarfism. These abnormalities are typical of tissue-cultured cells, plants derived from ...

  14. 3D printing of composite tissue with complex shape applied to ear regeneration

    International Nuclear Information System (INIS)

    Lee, Jung-Seob; Hong, Jung Min; Jung, Jin Woo; Shim, Jin-Hyung; Cho, Dong-Woo; Oh, Jeong-Hoon

    2014-01-01

    In the ear reconstruction field, tissue engineering enabling the regeneration of the ear's own tissue has been considered to be a promising technology. However, the ear is known to be difficult to regenerate using traditional methods due to its complex shape and composition. In this study, we used three-dimensional (3D) printing technology including a sacrificial layer process to regenerate both the auricular cartilage and fat tissue. The main part was printed with poly-caprolactone (PCL) and cell-laden hydrogel. At the same time, poly-ethylene-glycol (PEG) was also deposited as a sacrificial layer to support the main structure. After complete fabrication, PEG can be easily removed in aqueous solutions, and the procedure for removing PEG has no effect on the cell viability. For fabricating composite tissue, chondrocytes and adipocytes differentiated from adipose-derived stromal cells were encapsulated in hydrogel to dispense into the cartilage and fat regions, respectively, of ear-shaped structures. Finally, we fabricated the composite structure for feasibility testing, satisfying expectations for both the geometry and anatomy of the native ear. We also carried out in vitro assays for evaluating the chondrogenesis and adipogenesis of the cell-printed structure. As a result, the possibility of ear regeneration using 3D printing technology which allowed tissue formation from the separately printed chondrocytes and adipocytes was demonstrated. (paper)

  15. Connective Tissue Fibroblast Properties Are Position-Dependent during Mouse Digit Tip Regeneration

    Science.gov (United States)

    Wu, Yuanyuan; Wang, Karen; Karapetyan, Adrine; Fernando, Warnakulusuriya Akash; Simkin, Jennifer; Han, Manjong; Rugg, Elizabeth L.; Muneoka, Ken

    2013-01-01

    A key factor that contributes to the regenerative ability of regeneration-competent animals such as the salamander is their use of innate positional cues that guide the regeneration process. The limbs of mammals has severe regenerative limitations, however the distal most portion of the terminal phalange is regeneration competent. This regenerative ability of the adult mouse digit is level dependent: amputation through the distal half of the terminal phalanx (P3) leads to successful regeneration, whereas amputation through a more proximal location, e.g. the subterminal phalangeal element (P2), fails to regenerate. Do the connective tissue cells of the mammalian digit play a role similar to that of the salamander limb in controlling the regenerative response? To begin to address this question, we isolated and cultured cells of the connective tissue surrounding the phalangeal bones of regeneration competent (P3) and incompetent (P2) levels. Despite their close proximity and localization, these cells show very distinctive profiles when characterized in vitro and in vivo. In vitro studies comparing their proliferation and position-specific interactions reveal that cells isolated from the P3 and P2 are both capable of organizing and differentiating epithelial progenitors, but with different outcomes. The difference in interactions are further characterized with three-dimension cultures, in which P3 regenerative cells are shown to lack a contractile response that is seen in other fibroblast cultures, including the P2 cultures. In in vivo engraftment studies, the difference between these two cell lines is made more apparent. While both P2 and P3 cells participated in the regeneration of the terminal phalanx, their survival and proliferative indices were distinct, thus suggesting a key difference in their ability to interact within a regeneration permissive environment. These studies are the first to demonstrate distinct positional characteristics of connective tissue

  16. Connective tissue fibroblast properties are position-dependent during mouse digit tip regeneration.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Wu

    Full Text Available A key factor that contributes to the regenerative ability of regeneration-competent animals such as the salamander is their use of innate positional cues that guide the regeneration process. The limbs of mammals has severe regenerative limitations, however the distal most portion of the terminal phalange is regeneration competent. This regenerative ability of the adult mouse digit is level dependent: amputation through the distal half of the terminal phalanx (P3 leads to successful regeneration, whereas amputation through a more proximal location, e.g. the subterminal phalangeal element (P2, fails to regenerate. Do the connective tissue cells of the mammalian digit play a role similar to that of the salamander limb in controlling the regenerative response? To begin to address this question, we isolated and cultured cells of the connective tissue surrounding the phalangeal bones of regeneration competent (P3 and incompetent (P2 levels. Despite their close proximity and localization, these cells show very distinctive profiles when characterized in vitro and in vivo. In vitro studies comparing their proliferation and position-specific interactions reveal that cells isolated from the P3 and P2 are both capable of organizing and differentiating epithelial progenitors, but with different outcomes. The difference in interactions are further characterized with three-dimension cultures, in which P3 regenerative cells are shown to lack a contractile response that is seen in other fibroblast cultures, including the P2 cultures. In in vivo engraftment studies, the difference between these two cell lines is made more apparent. While both P2 and P3 cells participated in the regeneration of the terminal phalanx, their survival and proliferative indices were distinct, thus suggesting a key difference in their ability to interact within a regeneration permissive environment. These studies are the first to demonstrate distinct positional characteristics of

  17. How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials?

    Science.gov (United States)

    Hedayati, R; Janbaz, S; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2017-01-01

    Although the initial mechanical properties of additively manufactured porous biomaterials are intensively studied during the last few years, almost no information is available regarding the evolution of the mechanical properties of implant-bone complex as the tissue regeneration progresses. In this paper, we studied the effects of tissue regeneration on the static and fatigue behavior of selective laser melted porous titanium structures with three different porosities (i.e. 77, 81, and 85%). The porous structures were filled with four different polymeric materials with mechanical properties in the range of those observed for de novo bone (0.7GPamanufactured and filled porous structures were then determined. The static mechanical properties and fatigue life (including endurance limit) of the porous structures were found to increase by factors 2-7, even when they were filled with polymeric materials with relatively low mechanical properties. The relative increase in the mechanical properties was much higher for the porous structures with lower porosities. Moreover, the increase in the fatigue life was more notable as compared to the increase in the static mechanical properties. Such large values of increase in the mechanical properties with the progress of bone tissue regeneration have implications in terms of mechanical stimulus for bone tissue regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Directory of Open Access Journals (Sweden)

    Sethuraman Swaminathan

    2009-11-01

    Full Text Available Abstract Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.

  19. Plant regeneration from petiole segments of some species in tissue culture

    Directory of Open Access Journals (Sweden)

    Krystyna Klimaszewska

    2013-12-01

    Full Text Available The regeneration ability of 21 plant species belonging to 14 families was tested. The method of tissue culture in vitro was applied, on basic MS medium with an addition of growth regulators from the auxin and cytokinin groups. From among the investigated plant groups Peperomia scandens and Caladium × hortulanum were capable of plant regeneration, Passiilora coerulea regenerated shoots, Hedera helix, Begonia glabra, Coleus blumei, Fuchsia hybrida, Passiflora suberosa and Peperomia eburnea formed callus and roots, Kalanchoe blossfeldiana, Pelargonium grandiflorum, P. peltatum, P. radula, Coleus shirensis and Magnolia soulangeana produced callus, Philodendron scandens, Rhododendron smirnovii, Hibiscus rosa-sinensis, Coprosma baueri, Cestrum purpureum and Solanum rantonnetii did not exhibit any regeneration reactions.

  20. Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue.

    Science.gov (United States)

    Mayorga, Maritza; Finan, Amanda; Penn, Marc

    2009-03-01

    Myocardial infarction (MI) is a lead cause of mortality in the Western world. Treatment of acute MI is focused on restoration of antegrade flow which inhibits further tissue loss, but does not restore function to damaged tissue. Chronic therapy for injured myocardial tissue involves medical therapy that attempts to minimize pathologic remodeling of the heart. End stage therapy for chronic heart failure (CHF) involves inotropic therapy to increase surviving cardiac myocyte function or mechanical augmentation of cardiac performance. Not until the point of heart transplantation, a limited resource at best, does therapy focus on the fundamental problem of needing to replace injured tissue with new contractile tissue. In this setting, the potential for stem cell therapy has garnered significant interest for its potential to regenerate or create new contractile cardiac tissue. While to date adult stem cell therapy in clinical trials has suggested potential benefit, there is waning belief that the approaches used to date lead to regeneration of cardiac tissue. As the literature has better defined the pathways involved in cardiac differentiation, preclinical studies have suggested that stem cell pretreatment to direct stem cell differentiation prior to stem cell transplantation may be a more efficacious strategy for inducing cardiac regeneration. Here we review the available literature on pre-transplantation conditioning of stem cells in an attempt to better understand stem cell behavior and their readiness in cell-based therapy for myocardial regeneration.

  1. Neural tissue engineering options for peripheral nerve regeneration.

    Science.gov (United States)

    Gu, Xiaosong; Ding, Fei; Williams, David F

    2014-08-01

    Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Ye-Rang Yun

    2010-01-01

    Full Text Available Fibroblast growth factors (FGFs that signal through FGF receptors (FGFRs regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain optimal outcomes in vivo, it is important to enhance the half-life of FGFs and their biological stability. Future applications of FGFs are expected when the biological functions of FGFs are potentiated through the appropriate use of delivery systems and scaffolds. This review will introduce the biology and cellular functions of FGFs and deal with the biomaterials based delivery systems and their current applications for the regeneration of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues.

  3. Secretomes from bone marrow-derived mesenchymal stromal cells enhance periodontal tissue regeneration.

    Science.gov (United States)

    Kawai, Takamasa; Katagiri, Wataru; Osugi, Masashi; Sugimura, Yukiko; Hibi, Hideharu; Ueda, Minoru

    2015-04-01

    Periodontal tissue regeneration with the use of mesenchymal stromal cells (MSCs) has been regarded as a future cell-based therapy. However, low survival rates and the potential tumorigenicity of implanted MSCs could undermine the efficacy of cell-based therapy. The use of conditioned media from MSCs (MSC-CM) may be a feasible approach to overcome these limitations. The aim of this study was to confirm the effect of MSC-CM on periodontal regeneration. MSC-CM were collected during their cultivation. The concentrations of the growth factors in MSC-CM were measured with the use of enzyme-linked immunoassay. Rat MSCs (rMSCs) and human umbilical vein endothelial cells cultured in MSC-CM were assessed on wound-healing and angiogenesis. The expressions of osteogenetic- and angiogenic-related genes of rMSCs cultured in MSC-CM were quantified by means of real-time reverse transcriptase-polymerase chain reaction analysis. In vivo, periodontal defects were prepared in the rat models and the collagen sponges with MSC-CM were implanted. MSC-CM includes insulin-like growth factor-1, vascular endothelial growth factor, transforming growth factor-β1 and hepatocyte growth factor. In vitro, wound-healing and angiogenesis increased significantly in MSC-CM. The levels of expression of osteogenetic- and angiogenic-related genes were significantly upregulated in rMSCs cultured with MSC-CM. In vivo, in the MSC-CM group, 2 weeks after implantation, immunohistochemical analysis showed several CD31-, CD105-or FLK-1-positive cells occurring frequently. At 4 weeks after implantation, regenerated periodontal tissue was observed in MSC-CM groups. The use of MSC-CM may be an alternative therapy for periodontal tissue regeneration because several cytokines included in MSC-CM will contribute to many processes of complicated periodontal tissue regeneration. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  5. Tumor suppressors: enhancers or suppressors of regeneration?

    Science.gov (United States)

    Pomerantz, Jason H.; Blau, Helen M.

    2013-01-01

    Tumor suppressors are so named because cancers occur in their absence, but these genes also have important functions in development, metabolism and tissue homeostasis. Here, we discuss known and potential functions of tumor suppressor genes during tissue regeneration, focusing on the evolutionarily conserved tumor suppressors pRb1, p53, Pten and Hippo. We propose that their activity is essential for tissue regeneration. This is in contrast to suggestions that tumor suppression is a trade-off for regenerative capacity. We also hypothesize that certain aspects of tumor suppressor pathways inhibit regenerative processes in mammals, and that transient targeted modification of these pathways could be fruitfully exploited to enhance processes that are important to regenerative medicine. PMID:23715544

  6. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration.

    Science.gov (United States)

    Chang, Wei; Shah, Munish B; Lee, Paul; Yu, Xiaojun

    2018-06-01

    Recently in peripheral nerve regeneration, preclinical studies have shown that the use of nerve guidance conduits (NGCs) with multiple longitudinally channels and intra-luminal topography enhance the functional outcomes when bridging a nerve gap caused by traumatic injury. These features not only provide guidance cues for regenerating nerve, but also become the essential approaches for developing a novel NGC. In this study, a novel spiral NGC with aligned nanofibers and wrapped with an outer nanofibrous tube was first developed and investigated. Using the common rat sciatic 10-mm nerve defect model, the in vivo study showed that a novel spiral NGC (with and without inner nanofibers) increased the successful rate of nerve regeneration after 6 weeks recovery. Substantial improvements in nerve regeneration were achieved by combining the spiral NGC with inner nanofibers and outer nanofibrous tube, based on the results of walking track analysis, electrophysiology, nerve histological assessment, and gastrocnemius muscle measurement. This demonstrated that the novel spiral NGC with inner aligned nanofibers and wrapped with an outer nanofibrous tube provided a better environment for peripheral nerve regeneration than standard tubular NGCs. Results from this study will benefit for future NGC design to optimize tissue-engineering strategies for peripheral nerve regeneration. We developed a novel spiral nerve guidance conduit (NGC) with coated aligned nanofibers. The spiral structure increases surface area by 4.5 fold relative to a tubular NGC. Furthermore, the aligned nanofibers was coated on the spiral walls, providing cues for guiding neurite extension. Finally, the outside of spiral NGC was wrapped with randomly nanofibers to enhance mechanical strength that can stabilize the spiral NGC. Our nerve histological data have shown that the spiral NGC had 50% more myelinated axons than a tubular structure for nerve regeneration across a 10 mm gap in a rat sciatic nerve

  7. A short review: Recent advances in electrospinning for bone tissue regeneration

    Directory of Open Access Journals (Sweden)

    Song-Hee Shin

    2012-12-01

    Full Text Available Nanofibrous structures developed by electrospinning technology provide attractive extracellular matrix conditions for the anchorage, migration, and differentiation of tissue cells, including those responsible for the regeneration of hard tissues. Together with the ease of set up and cost-effectiveness, the possibility to produce nanofibers with a wide range of compositions and morphologies is the merit of electrospinning. Significant efforts have exploited the development of bone regenerative nanofibers, which includes tailoring of composite/hybrid compositions that are bone mimicking and the surface functionalization such as mineralization. Moreover, by utilizing bioactive molecules such as adhesive proteins, growth factors, and chemical drugs, in concert with the nanofibrous matrices, it is possible to provide artificial materials with improved cellular responses and therapeutic efficacy. These studies have mainly focused on the regulation of stem cell behaviors for use in regenerative medicine and tissue engineering. While there are some challenges in achieving controllable delivery of bioactive molecules and complex-shaped three-dimensional scaffolds for tissue engineering, the electrospun nanofibrous matrices can still have a beneficial impact in the area of hard-tissue regeneration.

  8. Effects of umbilical cord tissue mesenchymal stem cells (UCX® on rat sciatic nerve regeneration after neurotmesis injuries

    Directory of Open Access Journals (Sweden)

    Gärtner A

    2013-04-01

    Full Text Available Peripheral nerves have the intrinsic capacity of self-regeneration after traumatic injury but the extent of the regeneration is often very poor. Increasing evidence demonstrates that mesenchymal stem/stromal cells (MSCs may play an important role in tissue regeneration through the secretion of soluble trophic factors that enhance and assist in repair by paracrine activation of surrounding cells. In the present study, the therapeutic value of a population of umbilical cord tissue-derived MSCs, obtained by a proprietary method (UCX®, was evaluated on end-to-end rat sciatic nerve repair. Furthermore, in order to promote both, end-to-end nerve fiber contacts and MSC cell-cell interaction, as well as reduce the flush away effect of the cells after administration, a commercially available haemostatic sealant, Floseal®, was used as vehicle. Both, functional and morphologic recoveries were evaluated along the healing period using extensor postural thrust (EPT, withdrawal reflex latency (WRL, ankle kinematics analysis, and either histological analysis or stereology, in the hyper-acute, acute and chronic phases of healing. The histological analysis of the hyper-acute and acute phase studies revealed that in the group treated with UCX ® alone the Wallerian degeneration was improved for the subsequent process of regeneration, the fiber organization was higher, and the extent of fibrosis was lower. The chronic phase experimental groups revealed that treatment with UCX® induced an increased number of regenerated fibers and thickening of the myelin sheet. Kinematics analysis showed that the ankle joint angle determined for untreated animals was significantly different from any of the treated groups at the instant of initial contact (IC. At opposite toe off (OT and heel rise (HR, differences were found between untreated animals and the groups treated with either UCX® alone or UCX® administered with Floseal®. Overall, the UCX® application presented

  9. Tissue-Engineered Tendon for Enthesis Regeneration in a Rat Rotator Cuff Model

    Directory of Open Access Journals (Sweden)

    Michael J. Smietana

    2017-06-01

    Full Text Available Healing of rotator cuff (RC injuries with current suture or augmented scaffold techniques fails to regenerate the enthesis and instead forms a weaker fibrovascular scar that is prone to subsequent failure. Regeneration of the enthesis is the key to improving clinical outcomes for RC injuries. We hypothesized that the utilization of our tissue-engineered tendon to repair either an acute or a chronic full-thickness supraspinatus tear would regenerate a functional enthesis and return the biomechanics of the tendon back to that found in native tissue. Engineered tendons were fabricated from bone marrow-derived mesenchymal stem cells utilizing our well-described fabrication technology. Forty-three rats underwent unilateral detachment of the supraspinatus tendon followed by acute (immediate or chronic (4 weeks retracted repair by using either our engineered tendon or a trans-osseous suture technique. Animals were sacrificed at 8 weeks. Biomechanical and histological analyses of the regenerated enthesis and tendon were performed. Statistical analysis was performed by using a one-way analysis of variance with significance set at p < 0.05. Acute repairs using engineered tendon had improved enthesis structure and lower biomechanical failures compared with suture repairs. Chronic repairs with engineered tendon had a more native-like enthesis with increased fibrocartilage formation, reduced scar formation, and lower biomechanical failure compared with suture repair. Thus, the utilization of our tissue-engineered tendon showed improve enthesis regeneration and improved function in chronic RC repairs compared with suture repair. Clinical Significance: Our engineered tendon construct shows promise as a clinically relevant method for repair of RC injuries.

  10. Evaluation of physical properties and adsorption capacity of regenerated granular activated carbons (GACs)

    International Nuclear Information System (INIS)

    Chae, Seon-Ha; Kim, Seong-Su; Park, No-Suk; Jeong, Woochang

    2013-01-01

    The objectives of this study were to evaluate the variation in physical properties and investigate the adsorption capacity after regeneration of granular activated carbon (GAC). A correlation analysis was conducted to examine the relationship between the iodide number and loss rate. The experimental results showed that the loss rate of regenerated carbon should be related to the usage time of GAC. Physical properties including the effective size and uniformity coefficient were similar to those of virgin GAC. This result indicates that the function of GAC as an adsorption medium may be recovered completely. Although the iodine number and specific surface area of the regenerated GAC were smaller than those of virgin GAC, the cumulative pore volume of the former was larger. The removal efficiency of organic matter from the regenerated GAC column was equal to or slightly higher than that from the virgin GAC column. Consequently, regeneration may increase the number of mesopores which are responsible for the removal of organic matter

  11. Evaluation of physical properties and adsorption capacity of regenerated granular activated carbons (GACs)

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Seon-Ha; Kim, Seong-Su; Park, No-Suk [Korea Water Resources Corporation, Daejeon (Korea, Republic of); Jeong, Woochang [Kyungnam University, Changwon (Korea, Republic of)

    2013-04-15

    The objectives of this study were to evaluate the variation in physical properties and investigate the adsorption capacity after regeneration of granular activated carbon (GAC). A correlation analysis was conducted to examine the relationship between the iodide number and loss rate. The experimental results showed that the loss rate of regenerated carbon should be related to the usage time of GAC. Physical properties including the effective size and uniformity coefficient were similar to those of virgin GAC. This result indicates that the function of GAC as an adsorption medium may be recovered completely. Although the iodine number and specific surface area of the regenerated GAC were smaller than those of virgin GAC, the cumulative pore volume of the former was larger. The removal efficiency of organic matter from the regenerated GAC column was equal to or slightly higher than that from the virgin GAC column. Consequently, regeneration may increase the number of mesopores which are responsible for the removal of organic matter.

  12. Tissue and organ regeneration in adults extension of the paradigm to several organs

    CERN Document Server

    Yannas, Ioannis V

    2015-01-01

    This textbook describes the basic principles of induced organ regeneration in skin and peripheral nerves and extends the original successful paradigm to other organs. A set of trans-organ rules is established and its use in regeneration of several organs is illustrated from the works of several independent investigators who worked with a variety of organs, such as the lung, the bladder, and the Achilles tendon, using collagen-based scaffolds somewhat similar to the original one. These critical medical treatments fill the clinical need that is not met by organ transplantation. New to this second edition: New information extending the paradigm of tissue regeneration from organ regeneration in skin and peripheral nerves to other organs Guidelines, known as trans-organ rules, are described for the first time for extending this unique medical treatment to organs of several medical specialties The work serves as a comprehensive text and reference for students and practitioners of tissue engineering  

  13. Development of a Novel Tissue Engineering Strategy Towards Whole Limb Regeneration

    National Research Council Canada - National Science Library

    Laurencin, Cato T

    2008-01-01

    .... In contrast to the bottom up approach of limb regeneration that relies on blastema formation outgrowth and cell dedifferentiation as seen in amphibians and lower vertebrates tissue engineering...

  14. Identification and Actions of a Novel Third Maresin Conjugate in Tissue Regeneration: MCTR3.

    Directory of Open Access Journals (Sweden)

    Jesmond Dalli

    Full Text Available Maresin conjugates in tissue regeneration (MCTR are a new family of evolutionarily conserved chemical signals that orchestrate host responses to promote tissue regeneration and resolution of infections. Herein, we identified the novel MCTR3 and established rank order potencies and matched the stereochemistries of MCTR1, MCTR2 and MCTR3 using material prepared by total organic synthesis and mediators isolated from both mouse and human systems. MCTR3 was produced from endogenous substrate by E. coli activated human macrophages and identified in sepsis patients. Each of the three synthetic MCTR dose-dependently (1-100 nM accelerated tissue regeneration in planaria by 0.6-0.9 days. When administered at the onset or peak of inflammation, each of the MCTR promoted resolution of E. coli infections in mice. They increased bacterial phagocytosis by exudate leukocytes (~15-50%, limited neutrophil infiltration (~20-50%, promoted efferocytosis (~30% and reduced eicosanoids. MCTR1 and MCTR2 upregulated human neutrophil and macrophage phagocytic responses where MCTR3 also proved to possess potent actions. These results establish the complete stereochemistry and rank order potencies for MCTR1, MCTR2 and MCTR3 that provide novel resolution moduli in regulating host responses to clear infections and promote tissue regeneration.

  15. Heritability of regeneration in tissue cultures of sweet potato (Ipomoea batatas L.).

    Science.gov (United States)

    Templeton-Somers, K M; Collins, W W

    1986-03-01

    A population of open-pollinated progeny from 12 parents, and the 12 parents, was surveyed for in vitro growth and regeneration characteristics. Four different tissue culture procedures involving different media and the use of different explants to initiate the cultures were used. Petiole explants from young leaves were used as explants for initiation of callus cultures. These were evaluated for callus growth rate, friability, and callus color and texture, before transferring to each of three different regeneration media for evaluation of morphogenetic potential. Small shoot tips also were used to initiate callus cultures, which were evaluated for the same growth characteristics and transferred to growth-regulator free regeneration media. Regeneration occurred through root or shoot regeneration or through embryogenesis. Tissue culture treatment effects, as well as genotypic effects, were highly significant in determining: the types of callus produced, callus growth rates, color and texture on the two types of media used for the second and third subcultures. The family x treatment interaction was generally not statistically significant, affecting only callus color. Estimates of narrow sense heritability for callus growth rate in both the second and third subcultures were high enough (0.35 and 0.63, respectively) for the evaluation of parental lines for selection procedures. These characteristics were also the only early culture callus traits that were consistently correlated with later morphogenesis of the cultures. They were negatively correlated with root or shoot regeneration. The occurence of somatic embryogenesis was not correlated with early callus growth characteristics. Genetic and treatment effects were highly significant in the evaluation of morphogenetic potential, through root or shoot regeneration, or through embryogenesis. Regeneration of all types was of low frequency for all procedures, expressed in ≦ 11% of the cultures of the total population.

  16. Endogenous Ion Dynamics in Cell Motility and Tissue Regeneration

    International Nuclear Information System (INIS)

    Özkucur, N; Perike, S; Epperlein, H H; Funk, R H W

    2011-01-01

    Directional cell migration is an essential process, including regeneration of tissues, wound healing, and embryonic development. Cells achieve persistent directional migration by polarizing the spatiotemporal components involved in the morphological polarity. Ion transporter proteins situated at the cell membrane generates small electric fields that can induce directional cell motility. Besides them, externally applied direct current electric fields induce similar kind of responses as cell orientation and directional migration. However, the bioelectric mechanisms that lead to cellular directedness are poorly understood. Therefore, understanding the bioelectric signaling cues can serve as a powerful modality in controlling the cell behaviour, which can contribute additional insights for development and regeneration.

  17. Pulp and periodontal tissue repair - regeneration or tissue metaplasia after dental trauma. A review

    DEFF Research Database (Denmark)

    Andreasen, Jens O

    2012-01-01

    Healing subsequent to dental trauma is known to be very complex, a result explained by the variability of the types of dental trauma (six luxations, nine fracture types, and their combinations). On top of that, at least 16 different cellular systems get involved in more severe trauma types each o...... of tissue replaces the injured). In this study, a review is given of the impact of trauma to various dental tissues such as alveolar bone, periodontal ligament, cementum, Hertvigs epithelial root sheath, and the pulp....... of them with a different potential for healing with repair, i.e. (re-establishment of tissue continuity without functional restitution) and regeneration (where the injured or lost tissue is replaced with new tissue with identical tissue anatomy and function) and finally metaplasia (where a new type...

  18. JAW CYSTS AND GUIDED BONE REGENERATION (a late complication after enucleation

    Directory of Open Access Journals (Sweden)

    Hristina Lalabonova

    2013-10-01

    Full Text Available Maxillary jaw bone possesses a high regenerative capacity. Yet sometimes the defects enucleation of jaw cysts leaves may regenerate only partially or not at all. For this reason some researchers advise treatment of the residual cavities after cystectomy using bone regeneration stimulation methods. We report a case of an atypical complication after enucleation of a maxillary cyst manifesting itself eight years after the initial treatment. The symptoms the patient reported were at first periodic sweating on the left sides of face and head. This was followed by a piercing pain in the left palpebral fissure radiating to the middle of the palate and felt in the left cheekbone, left eye and left supraorbital ridge. The patient has a history of maxillary cysts recurring three times and of three operations she had 20, 12 and 8 years previously. The multiple recurrences of the cysts after their enucleation indicates poor regenerative capacity of the body which resulted in the formation of cicatricial tissue. It is most probably this tissue that was responsible for the disruption of the nerve conduction capacity which can account for the reported symptoms. We filled the cavity with bone graft material which boosted the bone structure regeneration. Although maxillary jaws possess high regenerative capacity we advise the use of guided bone regeneration in cases of large bone defects that usually occur after enucleation of jaw cysts.

  19. MINIMALLY INVASIVE SINGLE FLAP APPROACH WITH CONNECTIVE TISSUE WALL FOR PERIODONTAL REGENERATION

    Directory of Open Access Journals (Sweden)

    Kamen Kotsilkov

    2017-09-01

    Full Text Available INTRODUCTION: The destructive periodontal diseases are among the most prevalent in the human population. In some cases, bony defects are formed during the disease progression, thus sustaining deep periodontal pockets. The reconstruction of these defects is usually done with the classical techniques of bone substitutes placement and guided tissue regeneration. The clinical and histological data from the recent years, however, demonstrate the relatively low regenerative potential of these techniques. The contemporary approaches for periodontal regeneration rely on minimally invasive surgical protocols, aimed at complete tissue preservation in order to achieve and maintain primary closure and at stimulating the natural regenerative potential of the periodontal tissues. AIM: This presentation demonstrates the application of a new, minimally invasive, single flap surgical technique for periodontal regeneration in a clinical case with periodontitis and a residual deep intrabony defect. MATERIALS AND METHODS: A 37 years old patient presented with chronic generalised periodontitis. The initial therapy led to good control of the periodontal infection with a single residual deep periodontal pocket medially at 11 due to a deep intrabony defect. A single flap approach with an enamel matrix derivate application and a connective tissue wall technique were performed. The proper primary closure was obtained. RESULT: One month after surgery an initial mineralisation process in the defect was detected. At the third month, a complete clinical healing was observed. The radiographic control showed finished bone mineralisation and periodontal space recreation. CONCLUSION: In the limitation of the presented case, the minimally invasive surgical approach led to complete clinical healing and new bone formation, which could be proof for periodontal regeneration.

  20. Vegetative Regeneration Capacities of Five Ornamental Plant Invaders After Shredding

    Science.gov (United States)

    Monty, Arnaud; Eugène, Marie; Mahy, Grégory

    2015-02-01

    Vegetation management often involves shredding to dispose of cut plant material or to destroy the vegetation itself. In the case of invasive plants, this can represent an environmental risk if the shredded material exhibits vegetative regeneration capacities. We tested the effect of shredding on aboveground and below-ground vegetative material of five ornamental widespread invaders in Western Europe that are likely to be managed by cutting and shredding techniques: Buddleja davidii (butterfly bush, Scrophulariaceae), Fallopia japonica (Japanese knotweed, Polygonaceae), Spiraea × billardii Hérincq (Billard's bridewort, Rosaceae), Solidago gigantea (giant goldenrod, Asteraceae), and Rhus typhina L. (staghorn sumac, Anacardiaceae). We looked at signs of vegetative regeneration and biomass production, and analyzed the data with respect to the season of plant cutting (spring vs summer), the type of plant material (aboveground vs below-ground), and the shredding treatment (shredded vs control). All species were capable of vegetative regeneration, especially the below-ground material. We found differences among species, but the regeneration potential was generally still present after shredding despite a reduction of growth rates. Although it should not be excluded in all cases (e.g., destruction of giant goldenrod and staghorn sumac aboveground material), the use of a shredder to destroy woody alien plant material cannot be considered as a general management option without significant environmental risk.

  1. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    Science.gov (United States)

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-19

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.

  2. Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system.

    Science.gov (United States)

    Elliott Donaghue, Irja; Tam, Roger; Sefton, Michael V; Shoichet, Molly S

    2014-09-28

    Tissue engineering frequently involves cells and scaffolds to replace damaged or diseased tissue. It originated, in part, as a means of effecting the delivery of biomolecules such as insulin or neurotrophic factors, given that cells are constitutive producers of such therapeutic agents. Thus cell delivery is intrinsic to tissue engineering. Controlled release of biomolecules is also an important tool for enabling cell delivery since the biomolecules can enable cell engraftment, modulate inflammatory response or otherwise benefit the behavior of the delivered cells. We describe advances in cell and biomolecule delivery for tissue regeneration, with emphasis on the central nervous system (CNS). In the first section, the focus is on encapsulated cell therapy. In the second section, the focus is on biomolecule delivery in polymeric nano/microspheres and hydrogels for the nerve regeneration and endogenous cell stimulation. In the third section, the focus is on combination strategies of neural stem/progenitor cell or mesenchymal stem cell and biomolecule delivery for tissue regeneration and repair. In each section, the challenges and potential solutions associated with delivery to the CNS are highlighted. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Do cell based tissue engineering products for meniscus regeneration influence vascularization?

    Science.gov (United States)

    Koch, Matthias; Ehrenreich, Tobias; Koehl, Gudrun; Pattappa, Girish; Pfeifer, Christian; Loibl, Markus; Müller, Michael; Nerlich, Michael; Angele, Peter; Zellner, Johannes

    2017-01-01

    Meniscus regeneration is observed within the peripheral, vascularized zone but decreases in the inner two thirds alongside the vascularization. Within this avascular area, cell-based tissue-engineering-approaches appear to be a promising strategy for the treatment of meniscal defects. Evaluation of the angiogenic potential of cell-based tissue-engineering-products for meniscus healing. Evaluation of angiogenesis induced by rabbit meniscus-pellets, meniscus-cells (MC) or mesenchymal stem-cells (MSC) in cell-based tissue-engineering-products within a rabbit meniscus-ring was performed using a transparent dorsal skin fold chamber in nude mice. Observations were undertaken during a 14 days period. Cell preconditioning differed between experimental groups. Immunohistochemical analysis of the regenerated tissue in the meniscus-ring induced by cell loaded composite scaffolds for differentiation and anti-angiogenic factors were performed. Meniscus-pellets and MSC-/MC-based tissue-engineering-products induced angiogenesis. An accelerated vascularization was detected in the group of meniscus-pellets derived from the vascularized zone compared to avascular meniscus-pellets. In terms of cell-based tissue-engineering-products, chondrogenic preconditioning resulted in significantly increased vessel growth. MSC-constructs showed an accelerated angiogenesis. Immunohistochemical evaluation showed a progressive differentiation and lower content for anti-angiogenic endostatin in the precultured group. Preconditioning of MC-/MSC-based tissue-engineering-products is a promising tool to influence the angiogenic potential of tissue-engineering-products and to adapt these properties according to the aimed tissue qualities.

  4. Linking ontogeny and tissue regeneration: a study on tissue damage and wound healing in carp in connection to the developmental stage

    DEFF Research Database (Denmark)

    Nielsen, Michael Engelbrecht; Schmidt, Jacob; Ingerslev, Hans-Christian

    regeneration since its genome is well-described and it is easy visually to follow the wound healing. In this study, carps were physically damaged in the musculature using sterile needles at day 10, 16, 24, 47 and 94 post hatch. Muscle tissue samples were subsequently taken at day 1, 3 and 7 post damage...... healing and tissue regeneration, the developmental stage of the individual may influence the immune reaction initiated following damage and thus the proliferative responses, which usually cross-talk with the immune system. Common carp (Cyprinus carpio) is an excellent fish specie to study tissue...

  5. Down-regulate of Djrfc2 causes tissues hypertrophy during planarian regeneration.

    Science.gov (United States)

    Guo, Qi; Zhao, Guixia; Ni, Jiajia; Guo, Yanan; Zhang, Yizhe; Tian, Qingnan; Zhang, Shoutao

    2017-11-25

    Planarians are an ideal model organism for regeneration research due to their amazing ability to regenerate. DNA replication is crucial for genome stability. Replication factor C (RFC), which is a replication factor C-like complex and plays an important role during DNA replication in eukaryotes, has been reported as a wound response factor during planarian regeneration. However, how RFC controls regeneration in planarians by regulating DNA replication remains to be explained. Here, we used a two-dimensional electrophoresis (2-DE) proteomic approach to identify differentially expressed proteins in intact and regenerated planarians. Approximately 132 protein spots showed differences between intact and regenerative tissues. We selected 21 significantly expressed protein spots and processed them using TOF MS analysis. Finally, we cloned three of these candidate genes (Djhsp70, Djrfc2, Djfaim), focusing on the function of Djrfc2 during regeneration. We found that the distribution of Djrfc2 tends toward the wound site. RNA interference (RNAi) of Djrfc2 increases the number of dividing cells and the expression level of planarian neoblast marker genes, which may result in hyper-proliferation. Our studies use an available approach to directly study the regeneration dynamic at the protein level and provide further evidence to support a function of Djrfc2 in planarian regeneration. Copyright © 2017. Published by Elsevier Inc.

  6. Regeneration of skull bones in adult rabbits after implantation of commercial osteoinductive materials and transplantation of a tissue-engineering construct.

    Science.gov (United States)

    Volkov, A V; Alekseeva, I S; Kulakov, A A; Gol'dshtein, D V; Shustrov, S A; Shuraev, A I; Arutyunyan, I V; Bukharova, T B; Rzhaninova, A A; Bol'shakova, G B; Grigor'yan, A S

    2010-10-01

    We performed a comparative study of reparative osteogenesis in rabbits with experimental critical defects of the parietal bones after implantation of commercial osteoinductive materials "Biomatrix", "Osteomatrix", "BioOss" in combination with platelet-rich plasma and transplantation of a tissue-engineering construct on the basis of autogenic multipotent stromal cells from the adipose tissue predifferentiated in osteogenic direction. It was found that experimental reparative osteogenesis is insufficiently stimulated by implantation materials and full-thickness trepanation holes were not completely closed. After transplantation of the studied tissue-engineering construct, the defect was filled with full-length bone regenerate (in the center of the regenerate and from the maternal bone) in contrast to control and reference groups, where the bone tissue was formed only on the side of the maternal bone. On day 120 after transplantation of the tissue-engineering construct, the percent of newly-formed bone tissue in the regenerate was 24% (the total percent of bone tissue in the regenerate was 39%), which attested to active incomplete regenerative process in contrast to control and reference groups. Thus, the study demonstrated effective regeneration of the critical defects of the parietal bones in rabbits 120 days after transplantation of the tissue-engineering construct in contrast to commercial osteoplastic materials for directed bone regeneration.

  7. Regenerative medicine in dental and oral tissues: Dental pulp mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Janti Sudiono

    2017-08-01

    Full Text Available Background. Regenerative medicine is a new therapeutic modality using cell, stem cell and tissue engineering technologies. Purpose. To describe the regenerative capacity of dental pulp mesenchymal stem cell. Review. In dentistry, stem cell and tissue engineering technologies develop incredibly and attract great interest, due to the capacity to facilitate innovation in dental material and regeneration of dental and oral tissues. Mesenchymal stem cells derived from dental pulp, periodontal ligament and dental follicle, can be isolated, cultured and differentiated into various cells, so that can be useful for regeneration of dental, nerves, periodontal and bone tissues. Tissue engineering is a technology in reconstructive biology, which utilizes mechanical, cellular, or biological mediators to facilitate regeneration or reconstruction of a particular tissue. The multipotency, high proliferation rates and accessibility, make dental pulp as an attractive source of mesenchymal stem cells for tissue regeneration. Revitalized dental pulp and continued root development is the focus of regenerative endodontic while biological techniques that can restore lost alveolar bone, periodontal ligament, and root cementum is the focus of regenerative periodontic. Conclucion. Dentin-derived morphogens such as BMP are known to be involved in the regulation of odontogenesis. The multipotency and angiogenic capacity of DPSCs as the regenerative capacity of human dentin / pulp complex indicated that dental pulp may contain progenitors that are responsible for dentin repair. The human periodontal ligament is a viable alternative source for possible primitive precursors to be used in stem cell therapy.

  8. Bone Tissue Engineering and Regeneration: From Discovery to the Clinic—An Overview

    OpenAIRE

    O'Keefe, Regis J.; Mao, Jeremy

    2011-01-01

    A National Institutes of Health sponsored workshop “Bone Tissue Engineering and Regeneration: From Discovery to the Clinic” gathered thought leaders from medicine, science, and industry to determine the state of art in the field and to define the barriers to translating new technologies to novel therapies to treat bone defects. Tissue engineering holds enormous promise to improve human health through prevention of disease and the restoration of healthy tissue functions. Bone tissue engineerin...

  9. Resolvin D1 prevents smoking-induced emphysema and promotes lung tissue regeneration.

    Science.gov (United States)

    Kim, Kang-Hyun; Park, Tai Sun; Kim, You-Sun; Lee, Jae Seung; Oh, Yeon-Mok; Lee, Sang-Do; Lee, Sei Won

    2016-01-01

    Emphysema is an irreversible disease that is characterized by destruction of lung tissue as a result of inflammation caused by smoking. Resolvin D1 (RvD1), derived from docosahexaenoic acid, is a novel lipid that resolves inflammation. The present study tested whether RvD1 prevents smoking-induced emphysema and promotes lung tissue regeneration. C57BL/6 mice, 8 weeks of age, were randomly divided into four groups: control, RvD1 only, smoking only, and smoking with RvD1 administration. Four different protocols were used to induce emphysema and administer RvD1: mice were exposed to smoking for 4 weeks with poly(I:C) or to smoking only for 24 weeks, and RvD1 was injected within the smoking exposure period to prevent regeneration or after completion of smoking exposure to assess regeneration. The mean linear intercept and inflammation scores were measured in the lung tissue, and inflammatory cells and cytokines were measured in the bronchoalveolar lavage fluid. Measurements of mean linear intercept showed that RvD1 significantly attenuated smoking-induced lung destruction in all emphysema models. RvD1 also reduced smoking-induced inflammatory cell infiltration, which causes the structural derangements observed in emphysema. In the 4-week prevention model, RvD1 reduced the smoking-induced increase in eosinophils and interleukin-6 in the bronchoalveolar lavage fluid. In the 24-week prevention model, RvD1 also reduced the increased neutrophils and total cell counts induced by smoking. RvD1 attenuated smoking-induced emphysema in vivo by reducing inflammation and promoting tissue regeneration. This result suggests that RvD1 may be useful in the prevention and treatment of emphysema.

  10. In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration.

    Science.gov (United States)

    Boga, João C; Miguel, Sónia P; de Melo-Diogo, Duarte; Mendonça, António G; Louro, Ricardo O; Correia, Ilídio J

    2018-05-01

    The incidence of fractures and bone-related diseases like osteoporosis has been increasing due to aging of the world's population. Up to now, grafts and titanium implants have been the principal therapeutic approaches used for bone repair/regeneration. However, these types of treatment have several shortcomings, like limited availability, risk of donor-to-recipient infection and tissue morbidity. To overcome these handicaps, new 3D templates, capable of replicating the features of the native tissue, are currently being developed by researchers from the area of tissue engineering. These 3D constructs are able to provide a temporary matrix on which host cells can adhere, proliferate and differentiate. Herein, 3D cylindrical scaffolds were designed to mimic the natural architecture of hollow bones, and to allow nutrient exchange and bone neovascularization. 3D scaffolds were produced with tricalcium phosphate (TCP)/alginic acid (AA) using a Fab@home 3D printer. Furthermore, graphene oxide (GO) was incorporated into the structure of some scaffolds to further enhance their mechanical properties. The results revealed that the scaffolds incorporating GO displayed greater porosity, without impairing their mechanical properties. These scaffolds also presented a controlled swelling profile, enhanced biomineralization capacity and were able to increase the Alkaline Phosphatase (ALP) activity. Such characteristics make TCP/AA scaffolds functionalized with GO promising 3D constructs for bone tissue engineering applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Connective tissue graft as a biological barrier for guided tissue regeneration in intrabony defects: a histological study in dogs.

    Science.gov (United States)

    Ribeiro, Fernando Salimon; Pontes, Ana Emília Farias; Zuza, Elizangela Partata; da Silva, Vanessa Camila; Lia, Raphael Carlos Comelli; Marcantonio Junior, Elcio

    2015-06-01

    The use of the autogenous periosteal graft as biological barrier has been proposed for periodontal regeneration. The aim of this study was to evaluate the histometric findings of the subepithelial connective tissue graft as barrier in intrabony defects compared to a bioabsorbable membrane. Three-walled intrabony defects were created surgically in the mesial aspect of the right and left maxillary canines in five healthy mongrel dogs. The defects were chronified, and two types of barriers were randomly carried out for guided tissue regeneration in a split-mouth design: the test group with a subepithelial connective tissue graft and the control group with a bioabsorbable membrane. The specimens were processed for histometric analyses of the epithelium (E), connective tissue (CT), newly formed cementum (NC), new bone (NB), and total newly formed tissues (NFT). The test side showed smaller mean of NC (3.6 ± 1.2), NB (2.1 ± 0.7), and NFT (7.7 ± 0.8) than the control group (NC 7.3 ± 0.5; NB 5.3 ± 1.3; NFT 10.1 ± 2.2; P  0.05) and CT (test 2.5 ± 1.1; control 2.0 ± 0.5; P > 0.05) between groups. The bioabsorbable membrane was more effective in maintaining the space for periodontal regeneration than periosteal connective graft when used as barrier. The bioabsorbable membrane showed more favorable regenerative results in intrabony defects in dogs than the subepithelial connective tissue graft as biological barrier.

  12. The Role of a Platelet Lysate-Based Compartmentalized System as a Carrier of Cells and Platelet-Origin Cytokines for Periodontal Tissue Regeneration

    NARCIS (Netherlands)

    Babo, P.S.; Cai, X.; Plachokova, A.S.; Reis, R.L.; Jansen, J.A.; Gomes, M.E.; Walboomers, X.F.

    2016-01-01

    Currently available clinical therapies are not capable to regenerate tissues that are lost by periodontitis. Tissue engineering can be applied as a strategy to regenerate reliably the tissues and function of damaged periodontium. A prerequisite for this regeneration is the colonization of the defect

  13. Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration.

    Science.gov (United States)

    Mahmoud, Ahmed I; O'Meara, Caitlin C; Gemberling, Matthew; Zhao, Long; Bryant, Donald M; Zheng, Ruimao; Gannon, Joseph B; Cai, Lei; Choi, Wen-Yee; Egnaczyk, Gregory F; Burns, Caroline E; Burns, C Geoffrey; MacRae, Calum A; Poss, Kenneth D; Lee, Richard T

    2015-08-24

    Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Enhanced bioactive scaffolds for bone tissue regeneration

    Science.gov (United States)

    Karnik, Sonali

    Bone injuries are commonly termed as fractures and they vary in their severity and causes. If the fracture is severe and there is loss of bone, implant surgery is prescribed. The response to the implant depends on the patient's physiology and implant material. Sometimes, the compromised physiology and undesired implant reactions lead to post-surgical complications. [4, 5, 20, 28] Efforts have been directed towards the development of efficient implant materials to tackle the problem of post-surgical implant failure. [ 15, 19, 24, 28, 32]. The field of tissue engineering and regenerative medicine involves the use of cells to form a new tissue on bio-absorbable or inert scaffolds. [2, 32] One of the applications of this field is to regenerate the damaged or lost bone by using stem cells or osteoprogenitor cells on scaffolds that can integrate in the host tissue without causing any harmful side effects. [2, 32] A variety of natural, synthetic materials and their combinations have been used to regenerate the damaged bone tissue. [2, 19, 30, 32, 43]. Growth factors have been supplied to progenitor cells to trigger a sequence of metabolic pathways leading to cellular proliferation, differentiation and to enhance their functionality. [56, 57] The challenge persists to supply these proteins, in the range of nano or even picograms, and in a sustained fashion over a period of time. A delivery system has yet to be developed that would mimic the body's inherent mechanism of delivering the growth factor molecules in the required amount to the target organ or tissue. Titanium is the most preferred metal for orthopedic and orthodontic implants. [28, 46, 48] Even though it has better osteogenic properties as compared to other metals and alloys, it still has drawbacks like poor integration into the surrounding host tissue leading to bone resorption and implant failure. [20, 28, 35] It also faces the problem of postsurgical infections that contributes to the implant failure. [26, 37

  15. Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury

    DEFF Research Database (Denmark)

    Mackey, Abigail Louise; Kjaer, Michael

    2017-01-01

    Human skeletal muscle has the potential to regenerate completely after injury induced under controlled experimental conditions. The events inside the myofibres as they undergo necrosis, followed closely by satellite cell mediated myogenesis, have been mapped in detail. Much less is known about...... the adaptation throughout this process of both the connective tissue structures surrounding the myofibres, and the fibroblasts, the cells responsible for synthesising this connective tissue. However, the few studies investigating muscle connective tissue remodelling demonstrate a strong response that appears...

  16. Therapeutic efficacy of guided tissue regeneration and connective tissue autotransplants with periosteum in the management of gingival recession

    Directory of Open Access Journals (Sweden)

    Jovičić Bojan

    2008-01-01

    Full Text Available Background/Aim. Gingival recession progression in clinical practice as an ethiological factor of periodontal diseases, and symptoms of the disease have caused the development of various surgical procedures and techniques of the reconstruction of periodontal defects. The aim of this study was to verify efficacy of surgical procedures that include connective tissue autotransplants with periosteum and guided tissue regeneration for the treatment of gingival recession. Methods. The study included 20 teet with gingival recession, Müller class II and III. Ten teeth with gingival recession were treated with resorptive membrane and coronary guided surgical flap (GTR group. On the contralateral side 10 teeth with gingival recession were treated with connective tissue autotransplants with periosteum in combination with coronary guided surgical flap (TVT group. We measured the degree of epithelial attachment (DEA, width of subgingival curettage (WGC and vertical deepness of recession (VDR. For statistical significance we used Student's ttest. Results. The study revealed statistical significance in reducing VDR by both used treatments. Root deepness in GTR and TVT group was 63.5%, and 90%, respectively. With both surgical techniques we achieved coronary dislocation of the epithelial attachment, larger zone of gingival curettage, and better oral hygiene. Conclusion. Current surgical techniques are effective in the regeneration of deep periodontal spaces and the treatment of gingival recession. Significantly better results were achieved with the used coronary guided surgical flap than with guided tissue regeneration.

  17. Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration

    Science.gov (United States)

    2016-12-01

    Precision Tissue Models”, Distinguished Seminar, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of...in vitro drug screening and potential in vivo retinal neuron repair. The expansion of ganglion cells is tightly related to the spatial arrangement of...AWARD NUMBER: W81XWH-14-1-0522 TITLE: Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration PRINCIPAL INVESTIGATOR

  18. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration.

    Science.gov (United States)

    Chandika, Pathum; Ko, Seok-Chun; Jung, Won-Kyo

    2015-01-01

    Wound healing is a complex biological process that depends on the wound condition, the patient's health, and the physicochemical support given through external materials. The development of bioactive molecules and engineered tissue substitutes to provide physiochemical support to enhance the wound healing process plays a key role in advancing wound-care management. Thus, identification of ideal molecules in wound treatment is still in progress. The discovery of natural products that contain ideal molecules for skin tissue regeneration has been greatly advanced by exploration of the marine bioenvironment. Consequently, tremendously diverse marine organisms have become a great source of numerous biological macromolecules that can be used to develop tissue-engineered substitutes with wound healing properties. This review summarizes the wound healing process, the properties of macromolecules from marine organisms, and the involvement of these molecules in skin tissue regeneration applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration

    Science.gov (United States)

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world's population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues. PMID:25954205

  20. Scaffolds to Control Inflammation and Facilitate Dental Pulp Regeneration

    Science.gov (United States)

    Colombo, John S.; Moore, Amanda N.; Hartgerink, Jeffrey D.; D’Souza, Rena N.

    2014-01-01

    In dentistry, the maintenance of a vital dental pulp is of paramount importance, as teeth devitalized by root canal treatment may become more brittle and prone to structural failure over time. Advanced carious lesions can irreversibly damage the dental pulp by propagating a sustained inflammatory response throughout the tissue. While the inflammatory response initially drives tissue repair, sustained inflammation has an enormously destructive effect on the vital pulp, eventually leading to total necrosis of the tissue and necessitating its removal. The implications of tooth devitalization have driven significant interest in the development of bioactive materials that facilitate the regeneration of damaged pulp tissues by harnessing the capacity of the dental pulp for self-repair. In considering the process by which pulpitis drives tissue destruction, it is clear that an important step in supporting the regeneration of pulpal tissues is the attenuation of inflammation. Macrophages, key mediators of the immune response, may play a critical role in the resolution of pulpitis due to their ability to switch to a pro-resolution phenotype. This process can be driven by the resolvins, a family of molecules derived from fatty acids that show great promise as therapeutic agents. In this review, we outline the importance of preserving the capacity of the dental pulp to self-repair through the rapid attenuation of inflammation. Potential treatment modalities, such as shifting macrophages to a pro-resolving phenotype with resolvins are described, and a range of materials known to support the regeneration of dental pulp are presented. PMID:24698696

  1. Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold.

    Science.gov (United States)

    Moshaverinia, Alireza; Chen, Chider; Xu, Xingtian; Akiyama, Kentaro; Ansari, Sahar; Zadeh, Homayoun H; Shi, Songtao

    2014-02-01

    Mesenchymal stem cells (MSCs) provide an advantageous alternative therapeutic option for bone regeneration in comparison to current treatment modalities. However, delivering MSCs to the defect site while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated bone regeneration. Here, we tested the bone regeneration capacity of periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) encapsulated in a novel RGD- (arginine-glycine-aspartic acid tripeptide) coupled alginate microencapsulation system in vitro and in vivo. Five-millimeter-diameter critical-size calvarial defects were created in immunocompromised mice and PDLSCs and GMSCs encapsulated in RGD-modified alginate microspheres were transplanted into the defect sites. New bone formation was assessed using microcomputed tomography and histological analyses 8 weeks after transplantation. Results confirmed that our microencapsulation system significantly enhanced MSC viability and osteogenic differentiation in vitro compared with non-RGD-containing alginate hydrogel microspheres with larger diameters. Results confirmed that PDLSCs were able to repair the calvarial defects by promoting the formation of mineralized tissue, while GMSCs showed significantly lower osteogenic differentiation capability. Further, results revealed that RGD-coupled alginate scaffold facilitated the differentiation of oral MSCs toward an osteoblast lineage in vitro and in vivo, as assessed by expression of osteogenic markers Runx2, ALP, and osteocalcin. In conclusion, these results for the first time demonstrated that MSCs derived from orofacial tissue encapsulated in RGD-modified alginate scaffold show promise for craniofacial bone regeneration. This treatment modality has many potential dental and orthopedic applications.

  2. Cap-n-Collar Promotes Tissue Regeneration by Regulating ROS and JNK Signaling in the Drosophila melanogaster Wing Imaginal Disc.

    Science.gov (United States)

    Brock, Amanda R; Seto, Mabel; Smith-Bolton, Rachel K

    2017-07-01

    Regeneration is a complex process that requires an organism to recognize and repair tissue damage, as well as grow and pattern new tissue. Here, we describe a genetic screen to identify novel regulators of regeneration. We ablated the Drosophila melanogaster larval wing primordium by inducing apoptosis in a spatially and temporally controlled manner and allowed the tissue to regenerate and repattern. To identify genes that regulate regeneration, we carried out a dominant-modifier screen by assessing the amount and quality of regeneration in adult wings heterozygous for isogenic deficiencies. We have identified 31 regions on the right arm of the third chromosome that modify the regenerative response. Interestingly, we observed several distinct phenotypes: mutants that regenerated poorly, mutants that regenerated faster or better than wild-type, and mutants that regenerated imperfectly and had patterning defects. We mapped one deficiency region to cap-n-collar ( cnc ), the Drosophila Nrf2 ortholog, which is required for regeneration. Cnc regulates reactive oxygen species levels in the regenerating epithelium, and affects c-Jun N-terminal protein kinase (JNK) signaling, growth, debris localization, and pupariation timing. Here, we present the results of our screen and propose a model wherein Cnc regulates regeneration by maintaining an optimal level of reactive oxygen species to promote JNK signaling. Copyright © 2017 by the Genetics Society of America.

  3. Wnt/β-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration

    Science.gov (United States)

    Bastakoty, Dikshya; Young, Pampee P.

    2016-01-01

    The Wnt/β-catenin pathway is an evolutionarily conserved set of signals with critical roles in embryonic and neonatal development across species. In mammals the pathway is quiescent in many organs. It is reactivated in response to injury and is reported to play complex and contrasting roles in promoting regeneration and fibrosis. We review the current understanding of the role of the Wnt/β-catenin pathway in injury of various mammalian organs and discuss the current advances and potential of Wnt inhibitory therapeutics toward promoting tissue regeneration and reducing fibrosis.—Bastakoty, D., Young, P. P. Wnt/β-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration. PMID:27335371

  4. High capacity of plant regeneration from callus of interspecific hybrids with cultivated barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Bagger Jørgensen, Rikke; Jensen, C. J.; Andersen, B.

    1986-01-01

    Callus was induced from hybrids between cultivated barley (Hordeum vulgare L. ssp. vulgare) and ten species of wild barley (Hordeum L.) as well as from one backcross line ((H. lechleri .times. H. vulgare) .times. H. vulgare). Successful callus induction and regeneration of plants were achieved from...... explants of young spikes on the barley medium J 25-8. The capacity for plant regeneration was dependent on the wild parental species. In particular, combinations with four related wild species, viz. H. jubatum, H. roshevitzii, H. lechleri, and H. procerum, regenerated high numbers of plants from calli....

  5. Anterior Gradient 2 (AGR2) Induced Epidermal Growth Factor Receptor (EGFR) Signaling Is Essential for Murine Pancreatitis-Associated Tissue Regeneration

    Science.gov (United States)

    Wodziak, Dariusz; Dong, Aiwen; Basin, Michael F.; Lowe, Anson W.

    2016-01-01

    A recently published study identified Anterior Gradient 2 (AGR2) as a regulator of EGFR signaling by promoting receptor presentation from the endoplasmic reticulum to the cell surface. AGR2 also promotes tissue regeneration in amphibians and fish. Whether AGR2-induced EGFR signaling is essential for tissue regeneration in higher vertebrates was evaluated using a well-characterized murine model for pancreatitis. The impact of AGR2 expression and EGFR signaling on tissue regeneration was evaluated using the caerulein-induced pancreatitis mouse model. EGFR signaling and cell proliferation were examined in the context of the AGR2-/- null mouse or with the EGFR-specific tyrosine kinase inhibitor, AG1478. In addition, the Hippo signaling coactivator YAP1 was evaluated in the context of AGR2 expression during pancreatitis. Pancreatitis-induced AGR2 expression enabled EGFR translocation to the plasma membrane, the initiation of cell signaling, and cell proliferation. EGFR signaling and tissue regeneration were partially inhibited by the tyrosine kinase inhibitor AG1478, but absent in the AGR2-/- null mouse. AG1478-treated and AGR2-/- null mice with pancreatitis died whereas all wild-type controls recovered. YAP1 activation was also dependent on pancreatitis-induced AGR2 expression. AGR2-induced EGFR signaling was essential for tissue regeneration and recovery from pancreatitis. The results establish tissue regeneration as a major function of AGR2-induced EGFR signaling in adult higher vertebrates. Enhanced AGR2 expression and EGFR signaling are also universally present in human pancreatic cancer, which support a linkage between tissue injury, regeneration, and cancer pathogenesis. PMID:27764193

  6. Tracking mechanical and morphological dynamics of regenerating Hydra tissue fragments using a two fingered micro-robotic hand

    Science.gov (United States)

    Veschgini, M.; Gebert, F.; Khangai, N.; Ito, H.; Suzuki, R.; Holstein, T. W.; Mae, Y.; Arai, T.; Tanaka, M.

    2016-03-01

    Regeneration of a tissue fragment of freshwater polyp Hydra is accompanied by significant morphological fluctuations, suggesting the generation of active forces. In this study, we utilized a two fingered micro-robotic hand to gain insights into the mechanics of regenerating tissues. Taking advantage of a high force sensitivity (˜1 nN) of our micro-hand, we non-invasively acquired the bulk elastic modulus of tissues by keeping the strain levels low (ɛ < 0.15). Moreover, by keeping the strain at a constant level, we monitored the stress relaxation of the Hydra tissue and determined both viscous modulus and elastic modulus simultaneously, following a simple Maxwell model. We further investigated the correlation between the frequency of force fluctuation and that of morphological fluctuation by monitoring one "tweezed" tissue and the other "intact" tissue at the same time. The obtained results clearly indicated that the magnitude and periodicity of the changes in force and shape are directly correlated, confirming that our two fingered micro-hand can precisely quantify the mechanics of soft, dynamic tissue during the regeneration and development in a non-invasive manner.

  7. Limb Regeneration in Axolotl: Is It Superhealing?

    Directory of Open Access Journals (Sweden)

    Stéphane Roy

    2006-01-01

    Full Text Available The ability of axolotls to regenerate their limbs is almost legendary. In fact, urodeles such as the axolotl are the only vertebrates that can regenerate multiple structures like their limbs, jaws, tail, spinal cord, and skin (the list goes on throughout their lives. It is therefore surprising to realize, although we have known of their regenerative potential for over 200 years, how little we understand the mechanisms behind this achievement of adult tissue morphogenesis. Many observations can be drawn between regeneration and other disciplines such as development and wound healing. In this review, we present new developments in functional analysis that will help to address the role of specific genes during the process of regeneration. We also present an analysis of the resemblance between wound healing and regeneration, and discuss whether axolotls are superhealers. A better understanding of these animals' regenerative capacity could lead to major benefits by providing regenerative medicine with directions on how to develop therapeutic approaches leading to regeneration in humans.

  8. Fabrication and evaluation of thermosensitive chitosan/collagen/α, β-glycerophosphate hydrogels for tissue regeneration.

    Science.gov (United States)

    Dang, Qifeng; Liu, Kai; Zhang, Zhenzhen; Liu, Chengsheng; Liu, Xi; Xin, Ying; Cheng, Xiaoyu; Xu, Tao; Cha, Dongsu; Fan, Bing

    2017-07-01

    Thermosensitive hydrogels whose physiological properties are similar to extracellular matrix have been extensively used for tissue regeneration. Polysaccharides and proteins, as biocompatible substrates similar to bio-macromolecules that could be recognized by human body, are two preferred polymers for fabrication of such hydrogels. A series of novel thermosensitive hydrogels (CS-ASC-HGs) containing chitosan (CS) and acid-soluble collagen (ASC) were thus prepared, in the presence of α, β-glycerophosphate, to mimic extracellular microenvironment for tissue regeneration. Rheological measurements demonstrated excellent thermosensitivity. FT-IR and SEM indicated CS-ASC-HGs possessed 3D porous architectures with fibrous ASC, and the molecular structure of ASC was well-maintained in hydrogels. Hemolysis, acute toxicity, and cytotoxicity tests suggested CS-ASC-HGs were of good biocompatibility. CS-ASC-HGs were able to support the survival and proliferation of L929 cells encapsulated in them. Moreover, CS-ASC-HGs had better pH stability and biocompatibility than pure CS hydrogel. These results suggested that CS-ASC-HGs could serve as promising scaffolds for tissue regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Matrilin-2, an extracellular adaptor protein, is needed for the regeneration of muscle, nerve and other tissues

    Directory of Open Access Journals (Sweden)

    Éva Korpos

    2015-01-01

    Full Text Available The extracellular matrix (ECM performs essential functions in the differentiation, maintenance and remodeling of tissues during development and regeneration, and it undergoes dynamic changes during remodeling concomitant to alterations in the cell-ECM interactions. Here we discuss recent data addressing the critical role of the widely expressed ECM protein, matrilin-2 (Matn2 in the timely onset of differentiation and regeneration processes in myogenic, neural and other tissues and in tumorigenesis. As a multiadhesion adaptor protein, it interacts with other ECM proteins and integrins. Matn2 promotes neurite outgrowth, Schwann cell migration, neuromuscular junction formation, skeletal muscle and liver regeneration and skin wound healing. Matn2 deposition by myoblasts is crucial for the timely induction of the global switch toward terminal myogenic differentiation during muscle regeneration by affecting transforming growth factor beta/bone morphogenetic protein 7/Smad and other signal transduction pathways. Depending on the type of tissue and the pathomechanism, Matn2 can also promote or suppress tumor growth.

  10. Strategies on process engineering of chondrocyte culture for cartilage tissue regeneration.

    Science.gov (United States)

    Mallick, Sarada Prasanna; Rastogi, Amit; Tripathi, Satyavrat; Srivastava, Pradeep

    2017-04-01

    The current work is an attempt to study the strategies for cartilage tissue regeneration using porous scaffold in wavy walled airlift bioreactor (ALBR). Novel chitosan, poly (L-lactide) and hyaluronic acid based composite scaffold were prepared. The scaffolds were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, N-hydroxysuccinimide and chondroitin sulfate to obtain interconnected 3D microstructure showing excellent biocompatibility, higher cellular differentiation and increased stability. The surface morphology and porosity of the scaffolds were analyzed using scanning electron microscopy (SEM) and mercury intrusion porosimeter and optimized for chondrocyte regeneration. The study shows that the scaffolds were highly porous with pore size ranging from 48 to 180 µm and the porosities in the range 80-92%. Swelling and in vitro degradation studies were performed for the composite scaffolds; by increasing the chitosan: HA ratio in the composite scaffolds, the swelling property increases and stabilizes after 24 h. There was controlled degradation of composite scaffolds for 4 weeks. The uniform chondrocyte distribution in the scaffold using various growth modes in the shake flask and ALBR was studied by glycosaminoglycans (GAG) quantification, MTT assay and mixing time evaluation. The cell culture studies demonstrated that efficient designing of ALBR increases the cartilage regeneration as compared to using a shake flask. The free chondrocyte microscopy and cell attachment were performed by inverted microscope and SEM, and from the study it was confirmed that the cells uniformly attached to the scaffold. This study focuses on optimizing strategies for the culture of chondrocyte using suitable scaffold for improved cartilage tissue regeneration.

  11. Root cementum modulates periodontal regeneration in Class III furcation defects treated by the guided tissue regeneration technique: a histometric study in dogs.

    Science.gov (United States)

    Gonçalves, Patricia F; Gurgel, Bruno C V; Pimentel, Suzana P; Sallum, Enilson A; Sallum, Antonio W; Casati, Márcio Z; Nociti, Francisco H

    2006-06-01

    Because the possibility of root cementum preservation as an alternative approach for the treatment of periodontal disease has been demonstrated, this study aimed to histometrically evaluate the effect of root cementum on periodontal regeneration. Bilateral Class III furcation defects were created in dogs, and each dog was randomly assigned to receive one of the following treatments: control (group A): scaling and root planing with the removal of root cementum; or test (group B): removal of soft microbial deposits by polishing the root surface with rubber cups and polishing paste, aiming at maximum cementum preservation. Guided tissue regeneration (GTR) was applied to both groups. Four months after treatment, a superior length of new cementum (3.59 +/- 1.67 mm versus 6.20 +/- 2.26 mm; P = 0.008) and new bone (1.86 +/- 1.76 mm versus 4.62 +/- 3.01 mm; P = 0.002) and less soft tissue along the root surface (2.77 +/- 0.79 mm versus 1.10 +/- 1.48 mm; P = 0.020) was observed for group B. Additionally, group B presented a larger area of new bone (P = 0.004) and a smaller area of soft tissue (P = 0.008). Within the limits of this study, root cementum may modulate the healing pattern obtained by guided tissue regeneration in Class III furcation defects.

  12. Viscoelastic Properties of Dental Pulp Tissue and Ramifications on Biomaterial Development for Pulp Regeneration.

    Science.gov (United States)

    Erisken, Cevat; Kalyon, Dilhan M; Zhou, Jian; Kim, Sahng G; Mao, Jeremy J

    2015-10-01

    A critical step in biomaterial selection effort is the determination of material as well as the biological properties of the target tissue. Previously, the selection of biomaterials and carriers for dental pulp regeneration has been solely based on empirical experience. In this study, first, the linear viscoelastic material functions and compressive properties of miniature pig dental pulp were characterized using small-amplitude oscillatory shear and uniaxial compression at a constant rate. They were then compared with the properties of hydrogels (ie, agarose, alginate, and collagen) that are widely used in tissue regeneration. The comparisons of the linear viscoelastic material functions of the native pulp tissue with those of the 3 hydrogels revealed the gel-like behavior of the pulp tissue over a relatively large range of time scales (ie, over the frequency range of 0.1-100 rps). At the constant gelation agent concentration of 2%, the dynamic properties (ie, storage and loss moduli and the tanδ) of the collagen-based gel approached those of the native tissue. Under uniaxial compression, the peak normal stresses and compressive moduli of the agarose gel were similar to those of the native tissue, whereas alginate and collagen exhibited significantly lower compressive properties. The linear viscoelastic and uniaxial compressive properties of the dental pulp tissue reported here should enable the more appropriate selection of biogels for dental pulp regeneration via the better tailoring of gelation agents and their concentrations to better mimic the dynamic and compressive properties of native pulp tissue. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Enhanced Bone Tissue Regeneration by Porous Gelatin Composites Loaded with the Chinese Herbal Decoction Danggui Buxue Tang.

    Directory of Open Access Journals (Sweden)

    Wen-Ling Wang

    Full Text Available Danggui Buxue Tang (DBT is a traditional Chinese herbal decoction containing Radix Astragali and Radix Angelicae sinensis. Pharmacological results indicate that DBT can stimulate bone cell proliferation and differentiation. The aim of the study was to investigate the efficacy of adding DBT to bone substitutes on bone regeneration following bone injury. DBT was incorporated into porous composites (GGT made from genipin-crosslinked gelatin and β-triclacium phosphates as bone substitutes (GGTDBT. The biological response of mouse calvarial bone to these composites was evaluated by in vivo imaging systems (IVIS, micro-computed tomography (micro-CT, and histology analysis. IVIS images revealed a stronger fluorescent signal in GGTDBT-treated defect than in GGT-treated defect at 8 weeks after implantation. Micro-CT analysis demonstrated that the level of repair from week 4 to 8 increased from 42.1% to 71.2% at the sites treated with GGTDBT, while that increased from 33.2% to 54.1% at GGT-treated sites. These findings suggest that the GGTDBT stimulates the innate regenerative capacity of bone, supporting their use in bone tissue regeneration.

  14. Reduce, reuse, recycle - Developmental signals in spinal cord regeneration.

    Science.gov (United States)

    Cardozo, Marcos Julian; Mysiak, Karolina S; Becker, Thomas; Becker, Catherina G

    2017-12-01

    Anamniotes, fishes and amphibians, have the capacity to regenerate spinal cord tissue after injury, generating new neurons that mature and integrate into the spinal circuitry. Elucidating the molecular signals that promote this regeneration is a fundamental question in regeneration research. Model systems, such as salamanders and larval and adult zebrafish are used to analyse successful regeneration. This shows that many developmental signals, such as Notch, Hedgehog (Hh), Bone Morphogenetic Protein (BMP), Wnt, Fibroblast Growth Factor (FGF), Retinoic Acid (RA) and neurotransmitters are redeployed during regeneration and activate resident spinal progenitor cells. Here we compare the roles of these signals in spinal cord development and regeneration of the much larger and fully patterned adult spinal cord. Understanding how developmental signalling systems are reactivated in successfully regenerating species may ultimately lead to ways to reactivate similar systems in mammalian progenitor cells, which do not show neurogenesis after spinal injury. Copyright © 2017. Published by Elsevier Inc.

  15. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    Science.gov (United States)

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost.

    Science.gov (United States)

    Yashina, Svetlana; Gubin, Stanislav; Maksimovich, Stanislav; Yashina, Alexandra; Gakhova, Edith; Gilichinsky, David

    2012-03-06

    Whole, fertile plants of Silene stenophylla Ledeb. (Caryophyllaceae) have been uniquely regenerated from maternal, immature fruit tissue of Late Pleistocene age using in vitro tissue culture and clonal micropropagation. The fruits were excavated in northeastern Siberia from fossil squirrel burrows buried at a depth of 38 m in undisturbed and never thawed Late Pleistocene permafrost sediments with a temperature of -7 °C. Accelerator mass spectrometry (AMS) radiocarbon dating showed fruits to be 31,800 ± 300 y old. The total γ-radiation dose accumulated by the fruits during this time was calculated as 0.07 kGy; this is the maximal reported dose after which tissues remain viable and seeds still germinate. Regenerated plants were brought to flowering and fruiting and they set viable seeds. At present, plants of S. stenophylla are the most ancient, viable, multicellular, living organisms. Morphophysiological studies comparing regenerated and extant plants obtained from modern seeds of the same species in the same region revealed that they were distinct phenotypes of S. stenophylla. The first generation cultivated from seeds obtained from regenerated plants progressed through all developmental stages and had the same morphological features as parent plants. The investigation showed high cryoresistance of plant placental tissue in permafrost. This natural cryopreservation of plant tissue over many thousands of years demonstrates a role for permafrost as a depository for an ancient gene pool, i.e., preexisting life, which hypothetically has long since vanished from the earth's surface, a potential source of ancient germplasm, and a laboratory for the study of rates of microevolution.

  17. Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Dixin Cui

    2017-01-01

    Full Text Available Temporomandibular joint osteoarthritis (TMJ OA is a degenerative disease, characterized by progressive cartilage degradation, subchondral bone remodeling, synovitis, and chronic pain. Due to the limited self-healing capacity in condylar cartilage, traditional clinical treatments have limited symptom-modifying and structure-modifying effects to restore impaired cartilage as well as other TMJ tissues. In recent years, stem cell-based therapy has raised much attention as an alternative approach towards tissue repair and regeneration. Mesenchymal stem cells (MSCs, derived from the bone marrow, synovium, and even umbilical cord, play a role as seed cells for the cartilage regeneration of TMJ OA. MSCs possess multilineage differentiation potential, including chondrogenic differentiation as well as osteogenic differentiation. In addition, the trophic modulations of MSCs exert anti-inflammatory and immunomodulatory effects under aberrant conditions. Furthermore, MSCs combined with appropriate scaffolds can form cartilaginous or even osseous compartments to repair damaged tissue and impaired function of TMJ. In this review, we will briefly discuss the pathogenesis of cartilage degeneration in TMJ OA and emphasize the potential sources of MSCs and novel approaches for the cartilage regeneration of TMJ OA, particularly focusing on the MSC-based therapy and tissue engineering.

  18. Potential of stem cell based therapy and tissue engineering in the regeneration of the central nervous system

    International Nuclear Information System (INIS)

    An Yihua; Tsang, Kent K S; Zhang Han

    2006-01-01

    The insufficiency of self-repair and regeneration of the central nervous system (CNS) leads to difficulty of rehabilitation of the injured brain. In the past few decades, the significant progress in cell therapy and tissue engineering has contributed to the functional recovery of the CNS to a great extent. The present review focuses on the potential role of stem cell based therapy and tissue engineering in the regeneration of the CNS. (topical review)

  19. Concise review: bridging the gap: bone regeneration using skeletal stem cell-based strategies-where are we now?

    DEFF Research Database (Denmark)

    Dawson, Jonathan I; Kanczler, Janos; Kassem, Moustapha

    2014-01-01

    Skeletal stem cells confer to bone its innate capacity for regeneration and repair. Bone regeneration strategies seek to harness and enhance this regenerative capacity for the replacement of tissue damaged or lost through congenital defects, trauma, functional/esthetic problems, and a broad range...... for musculoskeletal regeneration. Stem Cells 2014;32:35-44...... of diseases associated with an increasingly aged population. This review describes the state of the field and current steps to translate and apply skeletal stem cell biology in the clinic and the problems therein. Challenges are described along with key strategies including the isolation and ex vivo expansion...

  20. Factors affecting callus and protoplast production and regeneration of plants from garlic tissue cultures

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Nabulsi, I.

    2001-08-01

    Five cultivars of garlic, two explants, six callusing media, six regeneration media, two kinds of light and several doses of gamma irradiation were used to determine the best conditions for callus induction and plant regeneration from garlic tissue cultures. Also, some experiments were conducted to study the possibility to isolate protoplast and regenerate plants. The experiment showed that medium MS9 was good for regenerating plant directly from basal plate without going through callus phase. ANOVA exhibited significant differences among used cultivars in their ability to form callus. No significant difference was observed between 16 hr light and complete darkness in callus growth. However, appearance of callus was generally better on darkness. Cultivar varied in their ability to regenerate and interaction between cultivars and media was observed. Cultivar kisswany was the best in regeneration (38%) and medium MS47 was the best among used media (35%). Light type played a significant role in regeneration of plants where red light was much better than white light in inducing regeneration (68% vs 36%). ANOVA revealed significant effect of low doses of gamma irradiation on stimulation regeneration of plant whereas high doses prevented regeneration. Many experiments were conducted to isolate protoplast and regenerate plants. The best method for culturing was the droplet and the best conditions for incubation were complete darkness at 25 Degreed centigrade. This lead to formation of cell wall but no cell division was observed (author)

  1. A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors

    Directory of Open Access Journals (Sweden)

    Donald M. Bryant

    2017-01-01

    Full Text Available Mammals have extremely limited regenerative capabilities; however, axolotls are profoundly regenerative and can replace entire limbs. The mechanisms underlying limb regeneration remain poorly understood, partly because the enormous and incompletely sequenced genomes of axolotls have hindered the study of genes facilitating regeneration. We assembled and annotated a de novo transcriptome using RNA-sequencing profiles for a broad spectrum of tissues that is estimated to have near-complete sequence information for 88% of axolotl genes. We devised expression analyses that identified the axolotl orthologs of cirbp and kazald1 as highly expressed and enriched in blastemas. Using morpholino anti-sense oligonucleotides, we find evidence that cirbp plays a cytoprotective role during limb regeneration whereas manipulation of kazald1 expression disrupts regeneration. Our transcriptome and annotation resources greatly complement previous transcriptomic studies and will be a valuable resource for future research in regenerative biology.

  2. The Hippo pathway: key interaction and catalytic domains in organ growth control, stem cell self-renewal and tissue regeneration.

    Science.gov (United States)

    Cherrett, Claire; Furutani-Seiki, Makoto; Bagby, Stefan

    2012-01-01

    The Hippo pathway is a conserved pathway that interconnects with several other pathways to regulate organ growth, tissue homoeostasis and regeneration, and stem cell self-renewal. This pathway is unique in its capacity to orchestrate multiple processes, from sensing to execution, necessary for organ expansion. Activation of the Hippo pathway core kinase cassette leads to cytoplasmic sequestration of the nuclear effectors YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif), consequently disabling their transcriptional co-activation function. Components upstream of the core kinase cassette have not been well understood, especially in vertebrates, but are gradually being elucidated and include cell polarity and cell adhesion proteins.

  3. Nanostructured Mesoporous Silicas for Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Isabel Izquierdo-Barba

    2008-01-01

    Full Text Available The research on the development of new biomaterials that promote bone tissue regeneration is receiving great interest by the biomedical scientific community. Recent advances in nanotechnology have allowed the design of materials with nanostructure similar to that of natural bone. These materials can promote new bone formation by inducing the formation of nanocrystalline apatites analogous to the mineral phase of natural bone onto their surfaces, i.e. they are bioactive. They also stimulate osteoblast proliferation and differentiation and, therefore, accelerate the healing processes. Silica-based ordered mesoporous materials are excellent candidates to be used as third generation bioceramics that enable the adsorption and local control release of biological active agents that promote bone regeneration. This local delivery capability together with the bioactive behavior of mesoporous silicas opens up promising expectations in the bioclinical field. In this review, the last advances in nanochemistry aimed at designing and tailoring the chemical and textural properties of mesoporous silicas for biomedical applications are described. The recent developed strategies to synthesize bioactive glasses with ordered mesopore arrangements are also summarized. Finally, a deep discussion about the influence of the textural parameters and organic modification of mesoporous silicas on molecules adsorption and controlled release is performed.

  4. Stem cell death and survival in heart regeneration and repair.

    Science.gov (United States)

    Abdelwahid, Eltyeb; Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-03-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.

  5. Potential Roles of Dental Pulp Stem Cells in Neural Regeneration and Repair

    Science.gov (United States)

    Luo, Lihua; Wang, Xiaoyan; Key, Brian; Lee, Bae Hoon

    2018-01-01

    This review summarizes current advances in dental pulp stem cells (DPSCs) and their potential applications in the nervous diseases. Injured adult mammalian nervous system has a limited regenerative capacity due to an insufficient pool of precursor cells in both central and peripheral nervous systems. Nerve growth is also constrained by inhibitory factors (associated with central myelin) and barrier tissues (glial scarring). Stem cells, possessing the capacity of self-renewal and multicellular differentiation, promise new therapeutic strategies for overcoming these impediments to neural regeneration. Dental pulp stem cells (DPSCs) derive from a cranial neural crest lineage, retain a remarkable potential for neuronal differentiation, and additionally express multiple factors that are suitable for neuronal and axonal regeneration. DPSCs can also express immunomodulatory factors that stimulate formation of blood vessels and enhance regeneration and repair of injured nerve. These unique properties together with their ready accessibility make DPSCs an attractive cell source for tissue engineering in injured and diseased nervous systems. In this review, we interrogate the neuronal differentiation potential as well as the neuroprotective, neurotrophic, angiogenic, and immunomodulatory properties of DPSCs and its application in the injured nervous system. Taken together, DPSCs are an ideal stem cell resource for therapeutic approaches to neural repair and regeneration in nerve diseases. PMID:29853908

  6. RHEB: a potential regulator of chondrocyte phenotype for cartilage tissue regeneration.

    Science.gov (United States)

    Ashraf, S; Ahn, J; Cha, B-H; Kim, J-S; Han, I; Park, H; Lee, S-H

    2017-09-01

    As articular cartilage has a limited ability to self-repair, successful cartilage regeneration requires clinical-grade chondrocytes with innate characteristics. However, cartilage regeneration via chondrocyte transplantation is challenging, because chondrocytes lose their innate characteristics during in vitro expansion. Here, we investigated the mechanistic underpinning of the gene Ras homologue enriched in brain (RHEB) in the control of senescence and dedifferentiation through the modulation of oxidative stress in chondrocytes, a hallmark of osteoarthritis. Serial expansion of human chondrocytes led to senescence, dedifferentiation and oxidative stress. RHEB maintained the innate characteristics of chondrocytes by regulating senescence, dedifferentiation and oxidative stress, leading to the upregulation of COL2 expression via SOX9 and the downregulation of p27 expression via MCL1. RHEB also decreased the expression of COL10. RHEB knockdown mimics decreased the expression of SOX9, COL2 and MCL1, while abrogating the suppressive function of RHEB on p27 and COL10 in chondrocytes. RHEB-overexpressing chondrocytes successfully formed cartilage tissue in vitro as well as in vivo, with increased expression of GAG matrix and chondrogenic markers. RHEB induces a distinct gene expression signature that maintained the innate chondrogenic properties over a long period. Therefore, RHEB expression represents a potentially useful mechanism in terms of cartilage tissue regeneration from chondrocytes, by which chondrocyte phenotypic and molecular characteristics can be retained through the modulation of senescence, dedifferentiation and oxidative stress. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Composite poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration

    International Nuclear Information System (INIS)

    Ravichandran, Rajeswari; Venugopal, Jayarama Reddy; Sundarrajan, Subramanian; Mukherjee, Shayanti; Sridhar, Radhakrishnan; Ramakrishna, Seeram

    2012-01-01

    Tissue engineering scaffolds for skin tissue regeneration is an ever expounding area of research, as the products that meet the necessary requirements are far and elite. The nanofibrous poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/Collagen (PLLA/PAA/Col I and III) scaffolds were fabricated by electrospinning and characterized by SEM, contact angle and FTIR analysis for skin tissue regeneration. The cell-scaffold interactions were analyzed by cell proliferation and their morphology observed in SEM. The results showed that the cell proliferation was significantly increased (p ≤ 0.05) in PLLA/PAA/Col I and III scaffolds compared to PLLA and PLLA/PAA nanofibrous scaffolds. The abundance and accessibility of adipose derived stem cells (ADSCs) may prove to be novel cell therapeutics for dermal tissue regeneration. The differentiation of ADSCs was confirmed using collagen expression and their morphology by CMFDA dye extrusion technique. The current study focuses on the application of PLLA/PAA/Col I and III nanofibrous scaffolds for skin tissue engineering and their potential use as substrate for the culture and differentiation of ADSCs. The objective for inclusion of a novel cell binding moiety like PAA was to replace damaged extracellular matrix and to guide new cells directly into the wound bed with enhanced proliferation and overall organization. This combinatorial epitome of PLLA/PAA/Col I and III nanofibrous scaffold with stem cell therapy to induce the necessary paracrine signalling effect would favour faster regeneration of the damaged skin tissues. - Highlights: ► Differentiation of adipose derived stem cells in the presence of bFGF for wound healing ► Introduction of PAA as ECM mimetic cell binding moiety ► Combination of PLLA/PAA/Col I and III nanofibers and stem cell therapy for skin regeneration.

  8. Composite poly-L-lactic acid/poly-({alpha},{beta})-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, Rajeswari [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Venugopal, Jayarama Reddy, E-mail: nnijrv@nus.edu.sg [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Sundarrajan, Subramanian [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Mukherjee, Shayanti [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Sridhar, Radhakrishnan [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Ramakrishna, Seeram, E-mail: seeram@nus.edu.sg [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore)

    2012-08-01

    Tissue engineering scaffolds for skin tissue regeneration is an ever expounding area of research, as the products that meet the necessary requirements are far and elite. The nanofibrous poly-L-lactic acid/poly-({alpha},{beta})-DL-aspartic acid/Collagen (PLLA/PAA/Col I and III) scaffolds were fabricated by electrospinning and characterized by SEM, contact angle and FTIR analysis for skin tissue regeneration. The cell-scaffold interactions were analyzed by cell proliferation and their morphology observed in SEM. The results showed that the cell proliferation was significantly increased (p {<=} 0.05) in PLLA/PAA/Col I and III scaffolds compared to PLLA and PLLA/PAA nanofibrous scaffolds. The abundance and accessibility of adipose derived stem cells (ADSCs) may prove to be novel cell therapeutics for dermal tissue regeneration. The differentiation of ADSCs was confirmed using collagen expression and their morphology by CMFDA dye extrusion technique. The current study focuses on the application of PLLA/PAA/Col I and III nanofibrous scaffolds for skin tissue engineering and their potential use as substrate for the culture and differentiation of ADSCs. The objective for inclusion of a novel cell binding moiety like PAA was to replace damaged extracellular matrix and to guide new cells directly into the wound bed with enhanced proliferation and overall organization. This combinatorial epitome of PLLA/PAA/Col I and III nanofibrous scaffold with stem cell therapy to induce the necessary paracrine signalling effect would favour faster regeneration of the damaged skin tissues. - Highlights: Black-Right-Pointing-Pointer Differentiation of adipose derived stem cells in the presence of bFGF for wound healing Black-Right-Pointing-Pointer Introduction of PAA as ECM mimetic cell binding moiety Black-Right-Pointing-Pointer Combination of PLLA/PAA/Col I and III nanofibers and stem cell therapy for skin regeneration.

  9. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants.

    Science.gov (United States)

    Machczyńska, Joanna; Zimny, Janusz; Bednarek, Piotr Tomasz

    2015-10-01

    Plant regeneration via in vitro culture can induce genetic and epigenetic variation; however, the extent of such changes in triticale is not yet understood. In the present study, metAFLP, a variation of methylation-sensitive amplified fragment length polymorphism analysis, was used to investigate tissue culture-induced variation in triticale regenerants derived from four distinct genotypes using androgenesis and somatic embryogenesis. The metAFLP technique enabled identification of both sequence and DNA methylation pattern changes in a single experiment. Moreover, it was possible to quantify subtle effects such as sequence variation, demethylation, and de novo methylation, which affected 19, 5.5, 4.5% of sites, respectively. Comparison of variation in different genotypes and with different in vitro regeneration approaches demonstrated that both the culture technique and genetic background of donor plants affected tissue culture-induced variation. The results showed that the metAFLP approach could be used for quantification of tissue culture-induced variation and provided direct evidence that in vitro plant regeneration could cause genetic and epigenetic variation.

  10. ECM Decorated Electrospun Nanofiber for Improving Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Yong Fu

    2018-03-01

    Full Text Available Optimization of nanofiber surface properties can lead to enhanced tissue regeneration outcomes in the context of bone tissue engineering. Herein, we developed a facile strategy to decorate elctrospun nanofibers using extracellular matrix (ECM in order to improve their performance for bone tissue engineering. Electrospun PLLA nanofibers (PLLA NF were seeded with MC3T3-E1 cells and allowed to grow for two weeks in order to harvest a layer of ECM on nanofiber surface. After decellularization, we found that ECM was successfully preserved on nanofiber surface while maintaining the nanostructure of electrospun fibers. ECM decorated on PLLA NF is biologically active, as evidenced by its ability to enhance mouse bone marrow stromal cells (mBMSCs adhesion, support cell proliferation and promote early stage osteogenic differentiation of mBMSCs. Compared to PLLA NF without ECM, mBMSCs grown on ECM/PLLA NF exhibited a healthier morphology, faster proliferation profile, and more robust osteogenic differentiation. Therefore, our study suggests that ECM decoration on electrospun nanofibers could serve as an efficient approach to improving their performance for bone tissue engineering.

  11. Biocomposite nanofibrous strategies for the controlled release of biomolecules for skin tissue regeneration

    Directory of Open Access Journals (Sweden)

    Gandhimathi C

    2014-10-01

    Full Text Available Chinnasamy Gandhimathi,1 Jayarama Reddy Venugopal,2 Velmurugan Bhaarathy,2 Seeram Ramakrishna,2 Srinivasan Dinesh Kumar1 1Cellular and Molecular Epigenetics Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; 2Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore Abstract: Nanotechnology and tissue engineering have enabled engineering of nanostructured strategies to meet the current challenges in skin tissue regeneration. Electrospinning technology creates porous nanofibrous scaffolds to mimic extracellular matrix of the native tissues. The present study was performed to gain some insights into the applications of poly(L-lactic acid-co-poly-(ε-caprolactone (PLACL/silk fibroin (SF/vitamin E (VE/curcumin (Cur nanofibrous scaffolds and to assess their potential for being used as substrates for the culture of human dermal fibroblasts for skin tissue engineering. PLACL/SF/VE/Cur nanofibrous scaffolds were fabricated by electrospinning and characterized by fiber morphology, membrane porosity, wettability, mechanical strength, and chemical properties by Fourier transform infrared (FTIR analysis. Human dermal fibroblasts were cultured on these scaffolds, and the cell scaffold interactions were analyzed by cell proliferation, cell morphology, secretion of collagen, expression of F-actin, and 5-chloromethylfluorescein diacetate (CMFDA dye. The electrospun nanofiber diameter was obtained between 198±4 nm and 332±13 nm for PLACL, PLACL/SF, PLACL/SF/VE, and PLACL/SF/VE/Cur nanofibrous scaffolds. FTIR analysis showed the presence of the amide groups I, II, and III, and a porosity of up to 92% obtained on these nanofibrous scaffolds. The results showed that the fibroblast proliferation, cell morphology, F-actin, CMFDA dye expression, and secretion of collagen were significantly increased in PLACL/SF/VE/Cur when compared

  12. Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering

    Science.gov (United States)

    Wu, Jun; Zeng, Faquan; Weisel, Richard D.; Li, Ren-Ke

    Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.

  13. Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: Comparisons with the normal articular cartilage

    Directory of Open Access Journals (Sweden)

    Kurokawa Takayuki

    2011-09-01

    Full Text Available Abstract Background We have recently found a phenomenon that spontaneous regeneration of a hyaline cartilage-like tissue can be induced in a large osteochondral defect by implanting a double-network (DN hydrogel plug, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid and poly-(N, N'-Dimetyl acrylamide, at the bottom of the defect. The purpose of this study was to clarify gene expression profile of the regenerated tissue in comparison with that of the normal articular cartilage. Methods We created a cylindrical osteochondral defect in the rabbit femoral grooves. Then, we implanted the DN gel plug at the bottom of the defect. At 2 and 4 weeks after surgery, the regenerated tissue was analyzed using DNA microarray and immunohistochemical examinations. Results The gene expression profiles of the regenerated tissues were macroscopically similar to the normal cartilage, but showed some minor differences. The expression degree of COL2A1, COL1A2, COL10A1, DCN, FMOD, SPARC, FLOD2, CHAD, CTGF, and COMP genes was greater in the regenerated tissue than in the normal cartilage. The top 30 genes that expressed 5 times or more in the regenerated tissue as compared with the normal cartilage included type-2 collagen, type-10 collagen, FN, vimentin, COMP, EF1alpha, TFCP2, and GAPDH genes. Conclusions The tissue regenerated by using the DN gel was genetically similar but not completely identical to articular cartilage. The genetic data shown in this study are useful for future studies to identify specific genes involved in spontaneous cartilage regeneration.

  14. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration

    Science.gov (United States)

    Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H

    2015-01-01

    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species’ regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF –p53 axis activation. DOI: http://dx.doi.org/10.7554/eLife.07702.001 PMID:26575287

  15. Which cartilage is regenerated, hyaline cartilage or fibrocartilage? Non-invasive ultrasonic evaluation of tissue-engineered cartilage.

    Science.gov (United States)

    Hattori, K; Takakura, Y; Ohgushi, H; Habata, T; Uematsu, K; Takenaka, M; Ikeuchi, K

    2004-09-01

    To investigate ultrasonic evaluation methods for detecting whether the repair tissue is hyaline cartilage or fibrocartilage in new cartilage regeneration therapy. We examined four experimental rabbit models: a spontaneous repair model (group S), a large cartilage defect model (group L), a periosteal graft model (group P) and a tissue-engineered cartilage regeneration model (group T). From the resulting ultrasonic evaluation, we used %MM (the maximum magnitude of the measurement area divided by that of the intact cartilage) as a quantitative index of cartilage regeneration. The results of the ultrasonic evaluation were compared with the histological findings and histological score. The %MM values were 61.1 +/- 16.5% in group S, 29.8 +/- 15.1% in group L, 36.3 +/- 18.3% in group P and 76.5 +/- 18.7% in group T. The results showed a strong similarity to the histological scoring. The ultrasonic examination showed that all the hyaline-like cartilage in groups S and T had a high %MM (more than 60%). Therefore, we could define the borderline between the two types of regenerated cartilage by the %MM.

  16. Activation of germline-specific genes is required for limb regeneration in the Mexican axolotl

    Science.gov (United States)

    Zhu, Wei; Pao, Gerald M; Satoh, Akira; Cummings, Gillian; Monaghan, James R; Harkins, Timothy T; Bryant, Susan V; Voss, S Randal; Gardiner, David M; Hunter, Tony

    2013-01-01

    The capacity for tissue and organ regeneration in humans is dwarfed by comparison to that of salamanders. Emerging evidence suggests that mechanisms learned from the early phase of salamander limb regeneration – wound healing, cellular dedifferentiation and blastemal formation – will reveal therapeutic approaches for tissue regeneration in humans. Here we describe a unique transcriptional fingerprint of regenerating limb tissue in the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells to a germline-like state. Two genes that are required for self-renewal of germ cells in mice and flies, Piwi-like 1 (PL1) and Piwi-like 2 (PL2), are expressed in limb blastemal cells, the basal layer keratinocytes and the thickened apical epithelial cap in the wound epidermis in the regenerating limb. Depletion of PL1 and PL2 by morpholino oligonucleotides decreased cell proliferation and increased cell death in the blastema leading to a significant retardation of regeneration. Examination of key molecules that are known to be required for limb development or regeneration further revealed that FGF8 is transcriptionally downregulated in the presence of the morpholino oligos, indicating PL1 and PL2 might participate in FGF signaling during limb regeneration. Given the requirement for FGF signaling in limb development and regeneration, the results suggest that PL1 and PL2 function to establish a unique germline-like state that is associated with successful regeneration. PMID:22841627

  17. Xiphoid Process-Derived Chondrocytes: A Novel Cell Source for Elastic Cartilage Regeneration

    Science.gov (United States)

    Nam, Seungwoo; Cho, Wheemoon; Cho, Hyunji; Lee, Jungsun

    2014-01-01

    Reconstruction of elastic cartilage requires a source of chondrocytes that display a reliable differentiation tendency. Predetermined tissue progenitor cells are ideal candidates for meeting this need; however, it is difficult to obtain donor elastic cartilage tissue because most elastic cartilage serves important functions or forms external structures, making these tissues indispensable. We found vestigial cartilage tissue in xiphoid processes and characterized it as hyaline cartilage in the proximal region and elastic cartilage in the distal region. Xiphoid process-derived chondrocytes (XCs) showed superb in vitro expansion ability based on colony-forming unit fibroblast assays, cell yield, and cumulative cell growth. On induction of differentiation into mesenchymal lineages, XCs showed a strong tendency toward chondrogenic differentiation. An examination of the tissue-specific regeneration capacity of XCs in a subcutaneous-transplantation model and autologous chondrocyte implantation model confirmed reliable regeneration of elastic cartilage regardless of the implantation environment. On the basis of these observations, we conclude that xiphoid process cartilage, the only elastic cartilage tissue source that can be obtained without destroying external shape or function, is a source of elastic chondrocytes that show superb in vitro expansion and reliable differentiation capacity. These findings indicate that XCs could be a valuable cell source for reconstruction of elastic cartilage. PMID:25205841

  18. Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration.

    Science.gov (United States)

    Cunha, Carla; Panseri, Silvia; Antonini, Stefania

    2011-02-01

    Effective nerve regeneration and functional recovery subsequent to peripheral nerve injury is still a clinical challenge. Autologous nerve graft transplantation is a feasible treatment in several clinical cases, but it is limited by donor site morbidity and insufficient donor tissue, impairing complete functional recovery. Tissue engineering has introduced innovative approaches to promote and guide peripheral nerve regeneration by using biomimetic conduits creating favorable microenvironments for nervous ingrowth, but despite the development of a plethora of nerve prostheses, few approaches have as yet entered the clinic. Promising strategies using nanotechnology have recently been proposed, such as the use of scaffolds with functionalized cell-binding domains, the use of guidance channels with cell-scale internally oriented fibers, and the possibility of sustained release of neurotrophic factors. This review addresses the fabrication, advantages, drawbacks, and results achieved by the most recent nanotechnology approaches in view of future solutions for peripheral nerve repair. Peripheral nerve repair strategies are very limited despite numerous advances on the field of neurosciences and regenerative medicine. This review discusses nanotechnology based strategies including scaffolds with functionalized cell binding domains, the use of guidance channels, and the potential use of sustained release neurotropic factors. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Serra, I.R.; Fradique, R.; Vallejo, M.C.S.; Correia, T.R.; Miguel, S.P.; Correia, I.J., E-mail: icorreia@ubi.pt

    2015-10-01

    Recently, bone tissue engineering emerged as a viable therapeutic alternative, comprising bone implants and new personalized scaffolds to be used in bone replacement and regeneration. In this study, biocompatible scaffolds were produced by freeze-drying, using different formulations (chitosan, chitosan/gelatin, chitosan/β-TCP and chitosan/gelatin/β-TCP) to be used as temporary templates during bone tissue regeneration. Sample characterization was performed through attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction and energy dispersive spectroscopy analysis. Mechanical characterization and porosity analysis were performed through uniaxial compression test and liquid displacement method, respectively. In vitro studies were also done to evaluate the biomineralization activity and the cytotoxic profile of the scaffolds. Scanning electron and confocal microscopy analysis were used to study cell adhesion and proliferation at the scaffold surface and within their structure. Moreover, the antibacterial activity of the scaffolds was also evaluated through the agar diffusion method. Overall, the results obtained revealed that the produced scaffolds are bioactive and biocompatible, allow cell internalization and show antimicrobial activity against Staphylococcus aureus. Such, make these 3D structures as potential candidates for being used on the bone tissue regeneration, since they promote cell adhesion and proliferation and also prevent biofilm development at their surfaces, which is usually the main cause of implant failure. - Highlights: • Production of 3D scaffolds composed by chitosan/gelatin/β-TCP by freeze-drying for bone regeneration • Physicochemical characterization of the bone substitutes by SEM, FTIR, XRD and EDS • Evaluation of the cytotoxic profile and antibacterial activity of the 3D structures through in vitro assays.

  20. Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration

    International Nuclear Information System (INIS)

    Serra, I.R.; Fradique, R.; Vallejo, M.C.S.; Correia, T.R.; Miguel, S.P.; Correia, I.J.

    2015-01-01

    Recently, bone tissue engineering emerged as a viable therapeutic alternative, comprising bone implants and new personalized scaffolds to be used in bone replacement and regeneration. In this study, biocompatible scaffolds were produced by freeze-drying, using different formulations (chitosan, chitosan/gelatin, chitosan/β-TCP and chitosan/gelatin/β-TCP) to be used as temporary templates during bone tissue regeneration. Sample characterization was performed through attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction and energy dispersive spectroscopy analysis. Mechanical characterization and porosity analysis were performed through uniaxial compression test and liquid displacement method, respectively. In vitro studies were also done to evaluate the biomineralization activity and the cytotoxic profile of the scaffolds. Scanning electron and confocal microscopy analysis were used to study cell adhesion and proliferation at the scaffold surface and within their structure. Moreover, the antibacterial activity of the scaffolds was also evaluated through the agar diffusion method. Overall, the results obtained revealed that the produced scaffolds are bioactive and biocompatible, allow cell internalization and show antimicrobial activity against Staphylococcus aureus. Such, make these 3D structures as potential candidates for being used on the bone tissue regeneration, since they promote cell adhesion and proliferation and also prevent biofilm development at their surfaces, which is usually the main cause of implant failure. - Highlights: • Production of 3D scaffolds composed by chitosan/gelatin/β-TCP by freeze-drying for bone regeneration • Physicochemical characterization of the bone substitutes by SEM, FTIR, XRD and EDS • Evaluation of the cytotoxic profile and antibacterial activity of the 3D structures through in vitro assays

  1. Biochemical Stimulus-Based Strategies for Meniscus Tissue Engineering and Regeneration

    Science.gov (United States)

    Chen, Mingxue; Guo, Weimin; Gao, Shunag; Hao, Chunxiang; Shen, Shi; Zhang, Zengzeng; Wang, Zhenyong; Wang, Zehao; Li, Xu; Jing, Xiaoguang; Zhang, Xueliang; Yuan, Zhiguo; Wang, Mingjie; Zhang, Yu; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang

    2018-01-01

    Meniscus injuries are very common and still pose a challenge for the orthopedic surgeon. Meniscus injuries in the inner two-thirds of the meniscus remain incurable. Tissue-engineered meniscus strategies seem to offer a new approach for treating meniscus injuries with a combination of seed cells, scaffolds, and biochemical or biomechanical stimulation. Cell- or scaffold-based strategies play a pivotal role in meniscus regeneration. Similarly, biochemical and biomechanical stimulation are also important. Seed cells and scaffolds can be used to construct a tissue-engineered tissue; however, stimulation to enhance tissue maturation and remodeling is still needed. Such stimulation can be biomechanical or biochemical, but this review focuses only on biochemical stimulation. Growth factors (GFs) are one of the most important forms of biochemical stimulation. Frequently used GFs always play a critical role in normal limb development and growth. Further understanding of the functional mechanism of GFs will help scientists to design the best therapy strategies. In this review, we summarize some of the most important GFs in tissue-engineered menisci, as well as other types of biological stimulation. PMID:29581987

  2. Djhsp90s are crucial regulators during planarian regeneration and tissue homeostasis.

    Science.gov (United States)

    Dong, Zimei; Chu, Gengbo; Sima, Yingxu; Chen, Guangwen

    2018-04-15

    Heat shock protein 90 family members (HSP90s), as molecular chaperones, have conserved roles in the physiological processes of eukaryotes regulating cytoprotection, increasing host resistance and so on. However, whether HSP90s affect regeneration in animals is unclear. Planarians are emerging models for studying regeneration in vivo. Here, the roles of three hsp90 genes from planarian Dugesia japonica are investigated by WISH and RNAi. The results show that: (1) Djhsp90s expressions are induced by heat and cold shock, tissue damage and ionic liquid; (2) Djhsp90s mRNA are mainly distributed each side of the body in intact worms as well as blastemas in regenerative worms; (3) the worms show head regression, lysis, the body curling and the regeneration arrest or even failure after Djhsp90s RNAi; (4) Djhsp90s are involved in autophagy and locomotion of the body. The research results suggest that Djhsp90s are not only conserved in cytoprotection, but also involved in homeostasis maintenance and regeneration process by regulating different pathways in planarians. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Stress-sensitive tissue regeneration in viscoelastic biomaterials subjected to modulated tensile strain.

    Science.gov (United States)

    Belfiore, Laurence A; Floren, Michael L; Paulino, Alexandre T; Belfiore, Carol J

    2011-09-01

    This research contribution addresses the mechanochemistry of intra-tissue mass transfer for nutrients, oxygen, growth factors, and other essential ingredients that anchorage-dependent cells require for successful proliferation on biocompatible surfaces. The unsteady state reaction-diffusion equation (i.e., modified diffusion equation) is solved according to the von Kármán-Pohlhausen integral method of boundary layer analysis when nutrient consumption and tissue regeneration are stimulated by harmonically imposed stress. The mass balance with diffusion and stress-sensitive kinetics represents a rare example where the Damköhler and Deborah numbers appear together in an effort to simulate the development of mass transfer boundary layers in porous viscoelastic biomaterials. The Boltzmann superposition integral is employed to calculate time-dependent strain in terms of the real and imaginary components of dynamic compliance for viscoelastic solids that transmit harmonic excitation to anchorage-dependent cells. Rates of nutrient consumption under stress-free conditions are described by third-order kinetics which include local mass densities of nutrients, oxygen, and attached cells that maintain dynamic equilibrium with active protein sites in the porous matrix. Thinner nutrient mass transfer boundary layers are stabilized at shorter dimensionless diffusion times when the stress-free intra-tissue Damköhler number increases above its initial-condition-sensitive critical value. The critical stress-sensitive intra-tissue Damköhler number, above which it is necessary to consider the effect of harmonic strain on nutrient consumption and tissue regeneration, is proportional to the Deborah number and corresponds to a larger fraction of the stress-free intra-tissue Damköhler number in rigid biomaterials. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Bioactive Sr(II/Chitosan/Poly(ε-caprolactone Scaffolds for Craniofacial Tissue Regeneration. In Vitro and In Vivo Behavior

    Directory of Open Access Journals (Sweden)

    Itzia Rodríguez-Méndez

    2018-03-01

    Full Text Available In craniofacial tissue regeneration, the current gold standard treatment is autologous bone grafting, however, it presents some disadvantages. Although new alternatives have emerged there is still an urgent demand of biodegradable scaffolds to act as extracellular matrix in the regeneration process. A potentially useful element in bone regeneration is strontium. It is known to promote stimulation of osteoblasts while inhibiting osteoclasts resorption, leading to neoformed bone. The present paper reports the preparation and characterization of strontium (Sr containing hybrid scaffolds formed by a matrix of ionically cross-linked chitosan and microparticles of poly(ε-caprolactone (PCL. These scaffolds of relatively facile fabrication were seeded with osteoblast-like cells (MG-63 and human bone marrow mesenchymal stem cells (hBMSCs for application in craniofacial tissue regeneration. Membrane scaffolds were prepared using chitosan:PCL ratios of 1:2 and 1:1 and 5 wt % Sr salts. Characterization was performed addressing physico-chemical properties, swelling behavior, in vitro biological performance and in vivo biocompatibility. Overall, the composition, microstructure and swelling degree (≈245% of scaffolds combine with the adequate dimensional stability, lack of toxicity, osteogenic activity in MG-63 cells and hBMSCs, along with the in vivo biocompatibility in rats allow considering this system as a promising biomaterial for the treatment of craniofacial tissue regeneration.

  5. Stem Cell Therapy in Wound Healing and Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2016-08-01

    a novel approach to many diseases. SUMMARY: Wound healing therapies continue to rapidly evolve, with advances in basic science and engineering research heralding the development of new therapies, as well as ways to modify existing treatments. Stem cell-based therapy is one of the most promising therapeutic concepts for wound healing. Advances in stem cell biology have enabled researchers and clinicians alike with access to cells capable of actively modulating the healing response.  KEYWORDS: wound healing, tissue regeneration, stem cells therapy

  6. The role of irradiated tissue during pattern formation in the regenerating limb

    International Nuclear Information System (INIS)

    Maden, M.

    1979-01-01

    The amphibian limb regeneration blastema is used here to examine whether irradiated, non-dividing tissue can participate in the development of new patterns of morphogenesis. Irradiated blastemas were rotated 180 0 on normal stumps and normal blastemas rotated on irradiated stumps. In both cases supernumerary elements developed from the unirradiated tissue. The supernumeraries were defective but this did not seem to be due to a lack of tissue. Rather it suggested that this could be a realization of compartments in vertebrate development or simply reflect the limited regulative ability of the blastema. The results are also discussed in relation to a recent model of pattern formation. (author)

  7. Microarray Analysis of microRNA Expression during Axolotl Limb Regeneration

    Science.gov (United States)

    Holman, Edna C.; Campbell, Leah J.; Hines, John; Crews, Craig M.

    2012-01-01

    Among vertebrates, salamanders stand out for their remarkable capacity to quickly regrow a myriad of tissues and organs after injury or amputation. The limb regeneration process in axolotls (Ambystoma mexicanum) has been well studied for decades at the cell-tissue level. While several developmental genes are known to be reactivated during this epimorphic process, less is known about the role of microRNAs in urodele amphibian limb regeneration. Given the compelling evidence that many microRNAs tightly regulate cell fate and morphogenetic processes through development and adulthood by modulating the expression (or re-expression) of developmental genes, we investigated the possibility that microRNA levels change during limb regeneration. Using two different microarray platforms to compare the axolotl microRNA expression between mid-bud limb regenerating blastemas and non-regenerating stump tissues, we found that miR-21 was overexpressed in mid-bud blastemas compared to stump tissue. Mature A. mexicanum (“Amex”) miR-21 was detected in axolotl RNA by Northern blot and differential expression of Amex-miR-21 in blastema versus stump was confirmed by quantitative RT-PCR. We identified the Amex Jagged1 as a putative target gene for miR-21 during salamander limb regeneration. We cloned the full length 3′UTR of Amex-Jag1, and our in vitro assays demonstrated that its single miR-21 target recognition site is functional and essential for the response of the Jagged1 gene to miR-21 levels. Our findings pave the road for advanced in vivo functional assays aimed to clarify how microRNAs such as miR-21, often linked to pathogenic cell growth, might be modulating the redeployment of developmental genes such as Jagged1 during regenerative processes. PMID:23028429

  8. Microarray analysis of microRNA expression during axolotl limb regeneration.

    Directory of Open Access Journals (Sweden)

    Edna C Holman

    Full Text Available Among vertebrates, salamanders stand out for their remarkable capacity to quickly regrow a myriad of tissues and organs after injury or amputation. The limb regeneration process in axolotls (Ambystoma mexicanum has been well studied for decades at the cell-tissue level. While several developmental genes are known to be reactivated during this epimorphic process, less is known about the role of microRNAs in urodele amphibian limb regeneration. Given the compelling evidence that many microRNAs tightly regulate cell fate and morphogenetic processes through development and adulthood by modulating the expression (or re-expression of developmental genes, we investigated the possibility that microRNA levels change during limb regeneration. Using two different microarray platforms to compare the axolotl microRNA expression between mid-bud limb regenerating blastemas and non-regenerating stump tissues, we found that miR-21 was overexpressed in mid-bud blastemas compared to stump tissue. Mature A. mexicanum ("Amex" miR-21 was detected in axolotl RNA by Northern blot and differential expression of Amex-miR-21 in blastema versus stump was confirmed by quantitative RT-PCR. We identified the Amex Jagged1 as a putative target gene for miR-21 during salamander limb regeneration. We cloned the full length 3'UTR of Amex-Jag1, and our in vitro assays demonstrated that its single miR-21 target recognition site is functional and essential for the response of the Jagged1 gene to miR-21 levels. Our findings pave the road for advanced in vivo functional assays aimed to clarify how microRNAs such as miR-21, often linked to pathogenic cell growth, might be modulating the redeployment of developmental genes such as Jagged1 during regenerative processes.

  9. Stem cell technology using bioceramics: hard tissue regeneration towards clinical application

    Directory of Open Access Journals (Sweden)

    Hiroe Ohnishi, Yasuaki Oda and Hajime Ohgushi

    2010-01-01

    Full Text Available Mesenchymal stem cells (MSCs are adult stem cells which show differentiation capabilities toward various cell lineages. We have already used MSCs for treatments of osteoarthritis, bone necrosis and bone tumor. For this purpose, culture expanded MSCs were combined with various ceramics and then implanted. Because of rejection response to allogeneic MSC implantation, we have utilized patients' own MSCs for the treatment. Bone marrow is a good cell source of MSCs, although the MSCs also exist in adipose tissue. When comparing osteogenic differentiation of these MSCs, bone marrow MSCs show more extensive bone forming capability than adipose MSCs. Thus, the bone marrow MSCs are useful for bone tissue regeneration. However, the MSCs show limited proliferation and differentiation capabilities that hindered clinical applications in some cases. Recent advances reveal that transduction of plural transcription factors into human adult cells results in generation of new type of stem cells called induced pluripotent stem cells (iPS cells. A drawback of the iPS cells for clinical applications is tumor formation after their in vivo implantation; therefore it is difficult to use iPS cells for the treatment. To circumvent the problem, we transduced a single factor of either SOX2 or NANOG into the MSCs and found high proliferation as well as osteogenic differentiation capabilities of the MSCs. The stem cells could be combined with bioceramics for clinical applications. Here, we summarize our recent technologies using adult stem cells in viewpoints of bone tissue regeneration.

  10. Role of pore size and morphology in musculo-skeletal tissue regeneration

    International Nuclear Information System (INIS)

    Perez, Roman A.; Mestres, Gemma

    2016-01-01

    Biomaterials in the form of scaffolds hold great promise in the regeneration of diseased tissues. The scaffolds stimulate cellular adhesion, proliferation and differentiation. While the scaffold composition will dictate their biocompatibility, their porosity plays a key role in allowing proper cell penetration, nutrient diffusion as well as bone ingrowth. Porous scaffolds are processed with the help of a wide variety of techniques. Designing scaffolds with the appropriate porosity is a complex issue since this may jeopardize other physico-chemical properties. From a macroscopic point of view, parameters such as the overall architecture, pore morphology, interconnectivity and pore size distribution, have unique roles in allowing bone ingrowth to take place. From a microscopic perspective, the adsorption and retention of proteins in the microporosities of the material will dictate the subsequent cell adhesion. Therefore, the microstructure of the substrate can determine cell proliferation as well as the expression of specific osteogenic genes. This review aims at discussing the effect of micro- and macroporosity on the physico-chemical and biological properties of scaffolds for musculo-skeletal tissue regeneration. - Highlights: • Osteoconduction and osteoinduction of a biomaterial relies on its pattern of micro/macroporosity. • Size, morphology, distribution and interconnection of the pores influence both mechanical and biological properties. • Macroporosity (pores > 50 μm) determines cell colonization and therefore growth of vascular and bone tissue. • Micropores (< 50 μm) are crucial for proteins adsorption, which in turn can determine cell fate.

  11. Role of pore size and morphology in musculo-skeletal tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Roman A., E-mail: romanp@dankook.ac.kr [Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Mestres, Gemma [Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala (Sweden)

    2016-04-01

    Biomaterials in the form of scaffolds hold great promise in the regeneration of diseased tissues. The scaffolds stimulate cellular adhesion, proliferation and differentiation. While the scaffold composition will dictate their biocompatibility, their porosity plays a key role in allowing proper cell penetration, nutrient diffusion as well as bone ingrowth. Porous scaffolds are processed with the help of a wide variety of techniques. Designing scaffolds with the appropriate porosity is a complex issue since this may jeopardize other physico-chemical properties. From a macroscopic point of view, parameters such as the overall architecture, pore morphology, interconnectivity and pore size distribution, have unique roles in allowing bone ingrowth to take place. From a microscopic perspective, the adsorption and retention of proteins in the microporosities of the material will dictate the subsequent cell adhesion. Therefore, the microstructure of the substrate can determine cell proliferation as well as the expression of specific osteogenic genes. This review aims at discussing the effect of micro- and macroporosity on the physico-chemical and biological properties of scaffolds for musculo-skeletal tissue regeneration. - Highlights: • Osteoconduction and osteoinduction of a biomaterial relies on its pattern of micro/macroporosity. • Size, morphology, distribution and interconnection of the pores influence both mechanical and biological properties. • Macroporosity (pores > 50 μm) determines cell colonization and therefore growth of vascular and bone tissue. • Micropores (< 50 μm) are crucial for proteins adsorption, which in turn can determine cell fate.

  12. Chemoattractive capacity of different lengths of nerve fragments bridging regeneration chambers for the repair of sciatic nerve defects

    Institute of Scientific and Technical Information of China (English)

    Jiren Zhang; Yubo Wang; Jincheng Zhang

    2012-01-01

    A preliminary study by our research group showed that 6-mm-long regeneration chamber bridging is equivalent to autologous nerve transplantation for the repair of 12-mm nerve defects.In this study,we compared the efficacy of different lengths (6,8,10 mm) of nerve fragments bridging 6-mm regeneration chambers for the repair of 12-mm-long nerve defects.At 16 weeks after the regeneration chamber was implanted,the number,diameter and myelin sheath thickness of the regenerated nerve fibers,as well as the conduction velocity of the sciatic nerve and gastrocnemius muscle wet weight ratio,were similar to that observed with autologous nerve transplantation.Our results demonstrate that 6-,8-and 10-mm-long nerve fragments bridging 6-mm regeneration chambers effectively repair 12-mm-long nerve defects.Because the chemoattractive capacity is not affected by the length of the nerve fragment,we suggest adopting 6-mm-long nerve fragments for the repair of peripheral nerve defects.

  13. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    Science.gov (United States)

    Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha

    2013-02-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  14. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    International Nuclear Information System (INIS)

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.; Sudera, Prerna; Sivam, Santosh Param; Sharma, Pratibha

    2013-01-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO 2 70 mol%, CaO 26 mol % and P 2 O 5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  15. Engineering Cell Fate for Tissue Regeneration by In Vivo Transdifferentiation.

    Science.gov (United States)

    de Lázaro, I; Kostarelos, K

    2016-02-01

    Changes in cell identity occur in adult mammalian organisms but are rare and often linked to disease. Research in the last few decades has thrown light on how to manipulate cell fate, but the conversion of a particular cell type into another within a living organism (also termed in vivo transdifferentiation) has only been recently achieved in a limited number of tissues. Although the therapeutic promise of this strategy for tissue regeneration and repair is exciting, important efficacy and safety concerns will need to be addressed before it becomes a reality in the clinical practice. Here, we review the most relevant in vivo transdifferentiation studies in adult mammalian animal models, offering a critical assessment of this potentially powerful strategy for regenerative medicine.

  16. Human papillomavirus E6/E7 oncogenes promote mouse ear regeneration by increasing the rate of wound re-epithelization and epidermal growth.

    Science.gov (United States)

    Valencia, Concepción; Bonilla-Delgado, José; Oktaba, Katarzyna; Ocádiz-Delgado, Rodolfo; Gariglio, Patricio; Covarrubias, Luis

    2008-12-01

    Mammals have limited regeneration capacity. We report here that, in transgenic mice (Tg(bK6-E6/E7)), the expression of the E6/E7 oncogenes of human papilloma virus type 16 (HPV16) under the control of the bovine keratin 6 promoter markedly improves the mouse's capacity to repair portions of the ear after being wounded. Increased repair capacity correlates with an increased number of epidermal proliferating cells. In concordance with the expected effects of the E6 and E7 oncogenes, levels of p53 decreased and those of p16 in epidermal cells increased. In addition, we observed that wound re-epithelization proceeded faster in transgenic than in wild-type animals. After the initial re-epithelization, epidermal cell migration from the intact surrounding tissue appears to be a major contributor to the growing epidermis, especially in the repairing tissue of transgenic mice. We also found that there is a significantly higher number of putative epidermal stem cells in Tg(bK6-E6/E7) than in wild-type mice. Remarkably, hair follicles and cartilage regenerated within the repaired ear tissue, without evidence of tumor formation. We propose that the ability to regenerate ear portions is limited by the capacity of the epidermis to repair itself and grow.

  17. Organ and plantlet regeneration of Menyanthes trifoliata through tissue culture

    Directory of Open Access Journals (Sweden)

    Urszula Adamczyk-Rogozińska

    2014-01-01

    Full Text Available The conditions for the regeneration of plants through organogenesis from callus tissues of Menyanthes trifoliata are described. The shoot multiplication rate was affected by basal culture media, the type and concentration of cytokinin and subculture number. The best response was obtained when caulogenic calli were cultured on the modified Schenk and Hildebrandt medium (SH-M containing indole-3-acetic acid (IAA 0,5 mg/l and 6-benzyladenine (BA 1 mg/l or zeatin (2 mg/l. Under these conditions ca 7 shoots (mostly 1 cm or more in length per culture in the 5th and 6th passages could be developed. In older cultures (after 11-12 passages there was a trend for more numerous but shorter shoot formation. All regenerated shoots could be rooted on the SH-M medium supplemented with 0.5 mg/l IAA within 6 weeks; 80% of in vitro rooted plantlets survived their transfer to soil.

  18. Fibroblast growth factors as tissue repair and regeneration therapeutics

    Directory of Open Access Journals (Sweden)

    Quentin M. Nunes

    2016-01-01

    Full Text Available Cell communication is central to the integration of cell function required for the development and homeostasis of multicellular animals. Proteins are an important currency of cell communication, acting locally (auto-, juxta-, or paracrine or systemically (endocrine. The fibroblast growth factor (FGF family contributes to the regulation of virtually all aspects of development and organogenesis, and after birth to tissue maintenance, as well as particular aspects of organism physiology. In the West, oncology has been the focus of translation of FGF research, whereas in China and to an extent Japan a major focus has been to use FGFs in repair and regeneration settings. These differences have their roots in research history and aims. The Chinese drive into biotechnology and the delivery of engineered clinical grade FGFs by a major Chinese research group were important enablers in this respect. The Chinese language clinical literature is not widely accessible. To put this into context, we provide the essential molecular and functional background to the FGF communication system covering FGF ligands, the heparan sulfate and Klotho co-receptors and FGF receptor (FGFR tyrosine kinases. We then summarise a selection of clinical reports that demonstrate the efficacy of engineered recombinant FGF ligands in treating a wide range of conditions that require tissue repair/regeneration. Alongside, the functional reasons why application of exogenous FGF ligands does not lead to cancers are described. Together, this highlights that the FGF ligands represent a major opportunity for clinical translation that has been largely overlooked in the West.

  19. Tissue-engineered trachea regeneration using decellularized trachea matrix treated with laser micropore technique.

    Science.gov (United States)

    Xu, Yong; Li, Dan; Yin, Zongqi; He, Aijuan; Lin, Miaomiao; Jiang, Gening; Song, Xiao; Hu, Xuefei; Liu, Yi; Wang, Jinpeng; Wang, Xiaoyun; Duan, Liang; Zhou, Guangdong

    2017-08-01

    Tissue-engineered trachea provides a promising approach for reconstruction of long segmental tracheal defects. However, a lack of ideal biodegradable scaffolds greatly restricts its clinical translation. Decellularized trachea matrix (DTM) is considered a proper scaffold for trachea cartilage regeneration owing to natural tubular structure, cartilage matrix components, and biodegradability. However, cell residual and low porosity of DTM easily result in immunogenicity and incomplete cartilage regeneration. To address these problems, a laser micropore technique (LMT) was applied in the current study to modify trachea sample porosity to facilitate decellular treatment and cell ingrowth. Decellularization processing demonstrated that cells in LMT treated samples were more easily removed compared with untreated native trachea. Furthermore, after optimizing the protocols of LMT and decellular treatments, the LMT-treated DTM (LDTM) could retain their original tubular shape with only mild extracellular matrix damage. After seeding with chondrocytes and culture in vitro for 8 weeks, the cell-LDTM constructs formed tubular cartilage with relatively homogenous cell distribution in both micropores and bilateral surfaces. In vivo results further confirmed that the constructs could form mature tubular cartilage with increased DNA and cartilage matrix contents, as well as enhanced mechanical strength, compared with native trachea. Collectively, these results indicate that LDTM is an ideal scaffold for tubular cartilage regeneration and, thus, provides a promising strategy for functional reconstruction of trachea cartilage. Lacking ideal biodegradable scaffolds greatly restricts development of tissue-engineered trachea. Decellularized trachea matrix (DTM) is considered a proper scaffold for trachea cartilage regeneration. However, cell residual and low porosity of DTM easily result in immunogenicity and incomplete cartilage regeneration. By laser micropore technique (LMT), the

  20. [The influence of biological compatibility of the cyanoacrylate glue on regeneration of the cartilaginous tissue].

    Science.gov (United States)

    Semenov, F V; Skibitskaya, N F

    The objective of the present study was to evaluate the possibility of the application of the cyanoacrylate-based glue for the strengthening of the reconstructed elements of the middle ear and its influence on the regeneration of the cartilaginous tissue. We used the cartilaginous tissue from the auricles of the male California rabbits as a model. The cartilage was destroyed in a standard press. Half of the cartilage thus fragmented was implanted into the left auricle. The remaining part was mixed up with the cyanoacrylate glue and implanted into the right auricle of the same animal. The implanted material was used for the morphological study on day 10, within 1 and 2 months after the beginning of the experiment. The results of the study confirm the absence of the toxic action of the biologically compatible cyanoacrylate-based glue on the regeneration of the cartilaginous and connective tissues which suggests the possibility of its application for the surgical treatment of the diseases of the middle ear.

  1. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors.

    Science.gov (United States)

    Ansari, Sahar; Chen, Chider; Xu, Xingtian; Annabi, Nasim; Zadeh, Homayoun H; Wu, Benjamin M; Khademhosseini, Ali; Shi, Songtao; Moshaverinia, Alireza

    2016-06-01

    Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering.

  2. Bioactive polymeric–ceramic hybrid 3D scaffold for application in bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Torres, A.L.; Gaspar, V.M.; Serra, I.R.; Diogo, G.S.; Fradique, R. [CICS-UBI — Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã (Portugal); Silva, A.P. [CAST-UBI — Centre for Aerospace Science and Technologies, University of Beira Interior, Calçada Fonte do Lameiro, 6201-001 Covilhã (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI — Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã (Portugal)

    2013-10-01

    The regeneration of large bone defects remains a challenging scenario from a therapeutic point of view. In fact, the currently available bone substitutes are often limited by poor tissue integration and severe host inflammatory responses, which eventually lead to surgical removal. In an attempt to address these issues, herein we evaluated the importance of alginate incorporation in the production of improved and tunable β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) three-dimensional (3D) porous scaffolds to be used as temporary templates for bone regeneration. Different bioceramic combinations were tested in order to investigate optimal scaffold architectures. Additionally, 3D β-TCP/HA vacuum-coated with alginate, presented improved compressive strength, fracture toughness and Young's modulus, to values similar to those of native bone. The hybrid 3D polymeric–bioceramic scaffolds also supported osteoblast adhesion, maturation and proliferation, as demonstrated by fluorescence microscopy. To the best of our knowledge this is the first time that a 3D scaffold produced with this combination of biomaterials is described. Altogether, our results emphasize that this hybrid scaffold presents promising characteristics for its future application in bone regeneration. - Graphical abstract: B-TCP:HA–alginate hybrid 3D porous scaffolds for application in bone regeneration. - Highlights: • The produced hybrid 3D scaffolds are prone to be applied in bone tissue engineering. • Alginate coated 3D scaffolds present high mechanical and biological properties. • In vitro assays for evaluation of human osteoblast cell attachment in the presence of the scaffolds • The hybrid 3D scaffolds present suitable mechanical and biological properties for use in bone regenerative medicine.

  3. Bioactive polymeric–ceramic hybrid 3D scaffold for application in bone tissue regeneration

    International Nuclear Information System (INIS)

    Torres, A.L.; Gaspar, V.M.; Serra, I.R.; Diogo, G.S.; Fradique, R.; Silva, A.P.; Correia, I.J.

    2013-01-01

    The regeneration of large bone defects remains a challenging scenario from a therapeutic point of view. In fact, the currently available bone substitutes are often limited by poor tissue integration and severe host inflammatory responses, which eventually lead to surgical removal. In an attempt to address these issues, herein we evaluated the importance of alginate incorporation in the production of improved and tunable β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) three-dimensional (3D) porous scaffolds to be used as temporary templates for bone regeneration. Different bioceramic combinations were tested in order to investigate optimal scaffold architectures. Additionally, 3D β-TCP/HA vacuum-coated with alginate, presented improved compressive strength, fracture toughness and Young's modulus, to values similar to those of native bone. The hybrid 3D polymeric–bioceramic scaffolds also supported osteoblast adhesion, maturation and proliferation, as demonstrated by fluorescence microscopy. To the best of our knowledge this is the first time that a 3D scaffold produced with this combination of biomaterials is described. Altogether, our results emphasize that this hybrid scaffold presents promising characteristics for its future application in bone regeneration. - Graphical abstract: B-TCP:HA–alginate hybrid 3D porous scaffolds for application in bone regeneration. - Highlights: • The produced hybrid 3D scaffolds are prone to be applied in bone tissue engineering. • Alginate coated 3D scaffolds present high mechanical and biological properties. • In vitro assays for evaluation of human osteoblast cell attachment in the presence of the scaffolds • The hybrid 3D scaffolds present suitable mechanical and biological properties for use in bone regenerative medicine

  4. Neuromast hair cells retain the capacity of regeneration during heavy metal exposure.

    Science.gov (United States)

    Montalbano, G; Capillo, G; Laurà, R; Abbate, F; Levanti, M; Guerrera, M C; Ciriaco, E; Germanà, A

    2018-07-01

    The neuromast is the morphological unit of the lateral line of fishes and is composed of a cluster of central sensory cells (hair cells) surrounded by support and mantle cells. Heavy metals exposure leads to disruption of hair cells within the neuromast. It is well known that the zebrafish has the ability to regenerate the hair cells after damage caused by toxicants. The process of regeneration depends on proliferation, differentiation and cellular migration of sensory and non-sensory progenitor cells. Therefore, our study was made in order to identify which cellular types are involved in the complex process of regeneration during heavy metals exposure. For this purpose, adult zebrafish were exposed to various heavy metals (Arsenic, cadmium and zinc) for 72h. After acute (24h) exposure, immunohistochemical localization of S100 (a specific marker for hair cells) in the neuromasts highlighted the hair cells loss. The immunoreaction for Sox2 (a specific marker for stem cells), at the same time, was observed in the support and mantle cells, after exposure to arsenic and cadmium, while only in the support cells after exposure to zinc. After chronic (72h) exposure the hair cells were regenerated, showing an immunoreaction for S100 protein. At the same exposure time to the three metals, a Sox2 immunoreaction was expressed in support and mantle cells. Our results showed for the first time the regenerative capacity of hair cells, not only after, but also during exposure to heavy metals, demonstrated by the presence of different stem cells that can diversify in hair cells. Copyright © 2018 Elsevier GmbH. All rights reserved.

  5. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice.

    Directory of Open Access Journals (Sweden)

    Eric Meadows

    Full Text Available Duchenne muscular dystrophy (DMD is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myog(flox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myog(flox/flox mice (mdx, Myog(flox/flox mice (wild-type, and mdx:Myog(floxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted. mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function.

  6. The role of laminins in cartilaginous tissues: from development to regeneration.

    Science.gov (United States)

    Sun, Y; Wang, T L; Toh, W S; Pei, M

    2017-07-21

    As a key molecule of the extracellular matrix, laminin provides a delicate microenvironment for cell functions. Recent findings suggest that laminins expressed by cartilage-forming cells (chondrocytes, progenitor cells and stem cells) could promote chondrogenesis. However, few papers outline the effect of laminins on providing a favorable matrix microenvironment for cartilage regeneration. In this review, we delineated the expression of laminins in hyaline cartilage, fibrocartilage and cartilage-like tissue (nucleus pulposus) throughout several developmental stages. We also examined the effect of laminins on the biological activities of chondrocytes, including adhesion, migration and survival. Furthermore, we scrutinized the potential influence of various laminin isoforms on cartilage-forming cells' proliferation and chondrogenic differentiation. With this information, we hope to facilitate the understanding of the spatial and temporal interactions between cartilage-forming cells and laminin microenvironment to eventually advance cell-based cartilage engineering and regeneration.

  7. Effects of soil drought stress on plant regeneration efficiency and endogenous hormone levels of immature embryos in wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Bie, X.; Wang, K.; Liu, C.; Du, L.

    2017-01-01

    In this study, the water supply in soil for wheat mother donor plants was controlled, leading to drought stress conditions, and the relative soil water content (RSWC) was measured in different soil depths. The immature embryos of common wheat (Triticum aestivum L.) 13 days post anthesis (DPA) were used to test regeneration capacity. The accumulation of the plant growth regulators (PGRs) including abscisic acid (ABA), indole-3-acetic acid (IAA), and hydrogen peroxide (H2O2) in the wheat embryos grown under the two conditions was measured. The results indicated that RSWC difference between the drought treatment and the irrigated control was more than 13% at the various soil depths, with the maximum difference was observed at 40 cm depth. Tissue culture evaluation showed that the plant regeneration efficiency of the immature embryos grown under drought stress treatment was significantly higher than that of the tissues grown under the control condition. Assay for PGR found that the drought stress caused obviously increased concentration of endogenous ABA and H2O2, and slightly decreased level of IAA in the target tissues. Therefore, it seems that the concentration of endogenous ABA, IAA, and H2O2 in immature wheat embryos is very important in regeneration capacity. Drought stress can improve the regeneration capacity by changing the levels of ABA, IAA, and H2O2. Our results would be helpful to efficient development of genetically modified wheat plants through improvement of regeneration via manipulating the endogenous PGRs. (author)

  8. Comparison of connective tissue graft and guided tissue regeneration in covering root surfaces

    Directory of Open Access Journals (Sweden)

    LotfazarM.

    2002-08-01

    Full Text Available There are many researches evaluation different methods for covering the root surface. In the most of these studies, type I and II of Miller treatment had been searched. The purpose of this study was a comparison between connective tissue graft (CTG and guided tissue regeneration (GTR with a collagen membrane in the treatment of gingival recession defects (Miller class III. Six patients, each contributing a pair of Miller class III buccal gingival recessions, were treated. The clinical measurements were obtained at baseline and 1,2,4,6,12,18 months after surgery. Statistical analysis were performed using paired t-test between periods (baseline versus 6 months and baseline versus 18 months within each treatment group and also between treatment groups before treatment and 6, 12 and 18 months after the treatment. The treatments were compared by a triple analysis of variance along the time (treatment, patient, time. Both CTG and GTR with a bioabsorbable membrane demonstrated significant clinical and esthetic improvement for gingival recession coverage. The CTG and GTR procedures had mean root coverage of 55% and 47.5% respectively, in the end of study. The CTG group was statistically better than GTR for recession depth, recession width and keratinized tissue width. Also, passing the time (18 months as a distinct factor of treatment procedures was effective in increasing of clinical attachment level and keratinized tissue width.

  9. Mechanical Stretching Promotes Skin Tissue Regeneration via Enhancing Mesenchymal Stem Cell Homing and Transdifferentiation.

    Science.gov (United States)

    Liang, Xiao; Huang, Xiaolu; Zhou, Yiwen; Jin, Rui; Li, Qingfeng

    2016-07-01

    Skin tissue expansion is a clinical procedure for skin regeneration to reconstruct cutaneous defects that can be accompanied by severe complications. The transplantation of mesenchymal stem cells (MSCs) has been proven effective in promoting skin expansion and helping to ameliorate complications; however, systematic understanding of its mechanism remains unclear. MSCs from luciferase-Tg Lewis rats were intravenously transplanted into a rat tissue expansion model to identify homing and transdifferentiation. To clarify underlying mechanisms, a systematic approach was used to identify the differentially expressed genes between mechanically stretched human MSCs and controls. The biological significance of these changes was analyzed through bioinformatic methods. We further investigated genes and pathways of interest to disclose their potential role in mechanical stretching-induced skin regeneration. Cross sections of skin samples from the expanded group showed significantly more luciferase(+) and stromal cell-derived factor 1α (SDF-1α)(+), luciferase(+)keratin 14(+), and luciferase(+)CD31(+) cells than the control group, indicating MSC transdifferentiation into epidermal basal cells and endothelial cells after SDF-1α-mediated homing. Microarray analysis suggested upregulation of genes related to hypoxia, vascularization, and cell proliferation in the stretched human MSCs. Further investigation showed that the homing of MSCs was blocked by short interfering RNA targeted against matrix metalloproteinase 2, and that mechanical stretching-induced vascular endothelial growth factor A upregulation was related to the Janus kinase/signal transducer and activator of transcription (Jak-STAT) and Wnt signaling pathways. This study determines that mechanical stretching might promote skin regeneration by upregulating MSC expression of genes related to hypoxia, vascularization, and cell proliferation; enhancing transplanted MSC homing to the expanded skin; and

  10. Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Seung Taek Ji

    2017-01-01

    Full Text Available The primary cause of death among chronic diseases worldwide is ischemic cardiovascular diseases, such as stroke and myocardial infarction. Recent evidence indicates that adult stem cell therapies involving cardiovascular regeneration represent promising strategies to treat cardiovascular diseases. Owing to their immunomodulatory properties and vascular repair capabilities, mesenchymal stem cells (MSCs are strong candidate therapeutic stem cells for use in cardiovascular regeneration. However, major limitations must be overcome, including their very low survival rate in ischemic lesion. Various attempts have been made to improve the poor survival and longevity of engrafted MSCs. In order to develop novel therapeutic strategies, it is necessary to first identify stem cell modulators for intracellular signal triggering or niche activation. One promising therapeutic strategy is the priming of therapeutic MSCs with stem cell modulators before transplantation. Another is a tissue engineering-based therapeutic strategy involving a cell scaffold, a cell-protein-scaffold architecture made of biomaterials such as ECM or hydrogel, and cell patch- and 3D printing-based tissue engineering. This review focuses on the current clinical applications of MSCs for treating cardiovascular diseases and highlights several therapeutic strategies for promoting the therapeutic efficacy of MSCs in vitro or in vivo from cell priming to tissue engineering strategies, for use in cardiovascular regeneration.

  11. A novel tissue engineering technique for regeneration of lost interdental papillary height

    Directory of Open Access Journals (Sweden)

    Rutuj Surana

    2010-01-01

    Full Text Available Open interdental spaces caused by papillary gingival recession are one of the most common problems faced in dentistry. Surgical and nonsurgical periodontal treatments for regeneration of lost papillary height have been reported with limited success. The present study reports effectiveness of autologous cultured fibroblast injections, a tissue engineering technique for papillary regeneration. A black triangle caused by Tarnow′s and Nordland′s class I papillary gingival loss was reported in maxillary anterior region of a young male patient. An autologous gingival biopsy was cultured in a biotechnology lab for the growth and expansion of fibroblasts. Cultured fibroblast suspension was injected into the receded papilla twice at an interval of 5 days. Follow-ups were recorded on the 6th day, 15 th day, at 1 month and at 2 months. Complete fill of black triangle was noted at the end of 2 months. No inflammatory or immune reactions were noted at the site of injection. Autologous cultured fibroblast injections are safe, efficacious, and an acceptable treatment option for the regeneration of lost papillary height.

  12. [Progress in application of 3D bioprinting in cartilage regeneration and reconstruction for tissue engineering].

    Science.gov (United States)

    Liao, Junlin; Wang, Shaohua; Chen, Jia; Xie, Hongju; Zhou, Jianda

    2017-02-28

    Three-dimensional (3D) bioprinting provides an advanced technology for tissue engineering and regenerative medicine because of its ability to produce the models or organs with higher precision and more suitable for human body. It has been successfully used to produce a variety of cartilage scaffold materials. In addition, 3D bioprinter can directly to print tissue and organs with live chondrocytes. In conclusion, 3D bioprinting may have broad prospect for cartilage regeneration and reconstruction in tissue engineering.

  13. Trophic Effects and Regenerative Potential of Mobilized Mesenchymal Stem Cells From Bone Marrow and Adipose Tissue as Alternative Cell Sources for Pulp/Dentin Regeneration.

    Science.gov (United States)

    Murakami, Masashi; Hayashi, Yuki; Iohara, Koichiro; Osako, Yohei; Hirose, Yujiro; Nakashima, Misako

    2015-01-01

    Dental pulp stem cell (DPSC) subsets mobilized by granulocyte-colony-stimulating factor (G-CSF) are safe and efficacious for complete pulp regeneration. The supply of autologous pulp tissue, however, is very limited in the aged. Therefore, alternative sources of mesenchymal stem/progenitor cells (MSCs) are needed for the cell therapy. In this study, DPSCs, bone marrow (BM), and adipose tissue (AD)-derived stem cells of the same individual dog were isolated using G-CSF-induced mobilization (MDPSCs, MBMSCs, and MADSCs). The positive rates of CXCR4 and G-CSFR in MDPSCs were similar to MADSCs and were significantly higher than those in MBMSCs. Trophic effects of MDPSCs on angiogenesis, neurite extension, migration, and antiapoptosis were higher than those of MBMSCs and MADSCs. Pulp-like loose connective tissues were regenerated in all three MSC transplantations. Significantly higher volume of regenerated pulp and higher density of vascularization and innervation were observed in response to MDPSCs compared to MBMSC and MADSC transplantation. Collagenous matrix containing dentin sialophosphoprotein (DSPP)-positive odontoblast-like cells was the highest in MBMSCs and significantly higher in MADSCs compared to MDPSCs. MBMSCs and MADSCs, therefore, have potential for pulp regeneration, although the volume of regenerated pulp tissue, angiogenesis, and reinnervation, were less. Thus, in conclusion, an alternative cell source for dental pulp/dentin regeneration are stem cells from BM and AD tissue.

  14. Fine-tuning Cartilage Tissue Engineering by Applying Principles from Embryonic Development

    NARCIS (Netherlands)

    C.A. Hellingman (Catharine)

    2012-01-01

    textabstractCartilage has a very poor capacity for regeneration in vivo. In head and neck surgery cartilage defects are usually reconstructed with autologous cartilage from for instance the external ear or the ribs. Cartilage tissue engineering may be a promising alternative to supply tissue for

  15. Development and regeneration of the zebrafish maxillary barbel: a novel study system for vertebrate tissue growth and repair.

    Science.gov (United States)

    LeClair, Elizabeth E; Topczewski, Jacek

    2010-01-15

    Barbels are integumentary sense organs found in fishes, reptiles and amphibians. The zebrafish, Danio rerio, develops paired nasal and maxillary barbels approximately one month post fertilization. Small in diameter and optically clear, these adult appendages offer a window on the development, maintenance and function of multiple cell types including skin cells, neural-crest derived pigment cells, circulatory vessels, taste buds and sensory nerves. Importantly, barbels in other otophysan fishes (e.g., catfish) are known to regenerate; however, this capacity has not been tested in zebrafish. We describe the development of the maxillary barbel in a staged series of wild type and transgenic zebrafish using light microscopy, histology and immunohistochemistry. By imaging transgenic zebrafish containing fluorescently labeled endothelial cells (Tg(fli1a:EGFP)), we demonstrate that the barbel contains a long ( approximately 2-3 mm) closed-end vessel that we interpret as a large lymphatic. The identity of this vessel was further supported by live imaging of the barbel circulation, extending recent descriptions of the lymphatic system in zebrafish. The maxillary barbel can be induced to regenerate by proximal amputation. After more than 750 experimental surgeries in which approximately 85% of the barbel's length was removed, we find that wound healing is complete within hours, followed by blastema formation ( approximately 3 days), epithelial redifferentiation (3-5 days) and appendage elongation. Maximum regrowth occurs within 2 weeks of injury. Although superficially normal, the regenerates are shorter and thicker than the contralateral controls, have abnormally organized mesenchymal cells and extracellular matrix, and contain prominent connective tissue "stumps" at the plane of section--a mode of regeneration more typical of mammalian scarring than other zebrafish appendages. Finally, we show that the maxillary barbel can regenerate after repeated injury and also in

  16. Development and regeneration of the zebrafish maxillary barbel: a novel study system for vertebrate tissue growth and repair.

    Directory of Open Access Journals (Sweden)

    Elizabeth E LeClair

    2010-01-01

    Full Text Available Barbels are integumentary sense organs found in fishes, reptiles and amphibians. The zebrafish, Danio rerio, develops paired nasal and maxillary barbels approximately one month post fertilization. Small in diameter and optically clear, these adult appendages offer a window on the development, maintenance and function of multiple cell types including skin cells, neural-crest derived pigment cells, circulatory vessels, taste buds and sensory nerves. Importantly, barbels in other otophysan fishes (e.g., catfish are known to regenerate; however, this capacity has not been tested in zebrafish.We describe the development of the maxillary barbel in a staged series of wild type and transgenic zebrafish using light microscopy, histology and immunohistochemistry. By imaging transgenic zebrafish containing fluorescently labeled endothelial cells (Tg(fli1a:EGFP, we demonstrate that the barbel contains a long ( approximately 2-3 mm closed-end vessel that we interpret as a large lymphatic. The identity of this vessel was further supported by live imaging of the barbel circulation, extending recent descriptions of the lymphatic system in zebrafish. The maxillary barbel can be induced to regenerate by proximal amputation. After more than 750 experimental surgeries in which approximately 85% of the barbel's length was removed, we find that wound healing is complete within hours, followed by blastema formation ( approximately 3 days, epithelial redifferentiation (3-5 days and appendage elongation. Maximum regrowth occurs within 2 weeks of injury. Although superficially normal, the regenerates are shorter and thicker than the contralateral controls, have abnormally organized mesenchymal cells and extracellular matrix, and contain prominent connective tissue "stumps" at the plane of section--a mode of regeneration more typical of mammalian scarring than other zebrafish appendages. Finally, we show that the maxillary barbel can regenerate after repeated injury and

  17. Stem cell signaling. An integral program for tissue renewal and regeneration : Wnt signaling and stem cell control

    NARCIS (Netherlands)

    Clevers, Hans; Loh, Kyle M; Nusse, Roel

    2014-01-01

    Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified,

  18. Efficacy of Connective Tissue with and without Periosteum in Regeneration of Intrabony Defects

    Directory of Open Access Journals (Sweden)

    Vahid Esfahanian

    2014-12-01

    Full Text Available Background and aims. Connective tissue grafts with and without periosteum is used in regenerative treatments of bone and has demonstrated successful outcomes in previous investigations. The aim of present study was to evaluate the effec-tiveness of connective tissue graft with and without periosteum in regeneration of intrabony defects. Materials and methods. In this single-blind randomized split-mouth clinical trial, 15 pairs of intrabony defects in 15 pa-tients with moderate to advanced periodontitis were treated by periosteal connective tissue graft + ABBM (test group or non-periosteal connective tissue graft + ABBM (control group. Probing pocket depth, clinical attachment level, free gingi-val margin position, bone crestal position, crest defect depth and defect depth to stent were measured at baseline and after six months by surgical re-entry. Data was analyzed by Student’s t-test and paired t-tests (α=0.05. Results. Changes in clinical parameters after 6 months in the test and control groups were as follows: mean of PPD reduc-tion: 3.1±0.6 (P<0.0001; 2.5±1.0 mm (P<0.0001, CAL gain: 2.3±0.9 (P<0.0001; 2.2±1.0 mm (P<0.0001, bone fill: 2.2±0.7 mm (P<0.0001; 2.2±0.7 mm (P<0.0001, respectively. No significant differences in the position of free gingival margin were observed during 6 months compared to baseline in both groups. Conclusion. Combinations of periosteal connective tissue graft + ABBM and non-periosteal connective tissue graft + ABBM were similarly effective in treating intrabony defects without any favor for any group. Connective tissue and perio-steum can be equally effective in regeneration of intrabony defects.

  19. Site-Specific Bioconjugation of an Organometallic Electron Mediator to an Enzyme with Retained Photocatalytic Cofactor Regenerating Capacity and Enzymatic Activity

    Directory of Open Access Journals (Sweden)

    Sung In Lim

    2015-04-01

    Full Text Available Photosynthesis consists of a series of reactions catalyzed by redox enzymes to synthesize carbohydrates using solar energy. In order to take the advantage of solar energy, many researchers have investigated artificial photosynthesis systems mimicking the natural photosynthetic enzymatic redox reactions. These redox reactions usually require cofactors, which due to their high cost become a key issue when constructing an artificial photosynthesis system. Combining a photosensitizer and an Rh-based electron mediator (RhM has been shown to photocatalytically regenerate cofactors. However, maintaining the high concentration of cofactors available for efficient enzymatic reactions requires a high concentration of the expensive RhM; making this process cost prohibitive. We hypothesized that conjugation of an electron mediator to a redox enzyme will reduce the amount of electron mediators necessary for efficient enzymatic reactions. This is due to photocatalytically regenerated NAD(PH being readily available to a redox enzyme, when the local NAD(PH concentration near the enzyme becomes higher. However, conventional random conjugation of RhM to a redox enzyme will likely lead to a substantial loss of cofactor regenerating capacity and enzymatic activity. In order to avoid this issue, we investigated whether bioconjugation of RhM to a permissive site of a redox enzyme retains cofactor regenerating capacity and enzymatic activity. As a model system, a RhM was conjugated to a redox enzyme, formate dehydrogenase obtained from Thiobacillus sp. KNK65MA (TsFDH. A RhM-containing azide group was site-specifically conjugated to p-azidophenylalanine introduced to a permissive site of TsFDH via a bioorthogonal strain-promoted azide-alkyne cycloaddition and an appropriate linker. The TsFDH-RhM conjugate exhibited retained cofactor regenerating capacity and enzymatic activity.

  20. Treatment strategy for guided tissue regeneration in various class II furcation defect: Case series

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar Verma

    2013-01-01

    Full Text Available Periodontal regeneration is a main aspect in the treatment of teeth affected by periodontitis. Periodontal regeneration in furcation areas is quite challenging, especially when it is in interproximal region. There are several techniques used alone or in combination considered to achieve periodontal regeneration, including the bone grafts or substitutes, guided tissue regeneration (GTR, root surface modification, and biological mediators. Many factors may account for variability in response to regenerative therapy in class II furcation. This case series describes the management of class II furcation defect in a mesial interproximal region of a maxillary tooth and other with a buccal class II furcation of mandibular tooth, with the help of surgical intervention including the GTR membrane and bone graft materials. This combined treatment resulted in healthy periodontium with a radiographic evidence of alveolar bone gain in both cases. This case series demonstrates that proper diagnosis, followed by removal of etiological factors and utilizing the combined treatment modalities will restore health and function of the tooth with the severe attachment loss.

  1. The regeneration of epidermal cells of Saintpaulia leaves as a new plant-tissue system for cellular radiation biology

    International Nuclear Information System (INIS)

    Engels, F.M.; Laan, F.M. van der; Leenhouts, H.P.; Chadwick, K.H.

    1980-01-01

    investigation of the nucleus of epidermal cells of the petioles of Saintpaulia leaves by cytofluorimetry revealed that all cells are in a non-cycling pre DNA synthesis phase. Cultivation of dissected leaves results in a synchronous regeneration process of a defined number of cells. Five days after onset of cultivation the cells reach the first mitosis. The nuclear development during the regeneration process is described. Irradiation of the leaves results in a directly visible inhibition of this regenerating capability which is used to quantify cell survival in a tissue. The data show that the radiation response has a similar shape to that of the survival of single cells in culture. This response can be observed before the first mitosis of the cells and its application as a new plant tissue system for cellular radiation research is discussed. (author)

  2. The role of laminins in cartilaginous tissues: from development to regeneration

    Directory of Open Access Journals (Sweden)

    Y Sun

    2017-07-01

    Full Text Available As a key molecule of the extracellular matrix, laminin provides a delicate microenvironment for cell functions. Recent findings suggest that laminins expressed by cartilage-forming cells (chondrocytes, progenitor cells and stem cells could promote chondrogenesis. However, few papers outline the effect of laminins on providing a favorable matrix microenvironment for cartilage regeneration. In this review, we delineated the expression of laminins in hyaline cartilage, fibrocartilage and cartilage-like tissue (nucleus pulposus throughout several developmental stages. We also examined the effect of laminins on the biological activities of chondrocytes, including adhesion, migration and survival. Furthermore, we scrutinized the potential influence of various laminin isoforms on cartilage-forming cells’ proliferation and chondrogenic differentiation. With this information, we hope to facilitate the understanding of the spatial and temporal interactions between cartilage-forming cells and laminin microenvironment to eventually advance cell-based cartilage engineering and regeneration.

  3. Pulp-dentin Regeneration: Current State and Future Prospects.

    Science.gov (United States)

    Cao, Y; Song, M; Kim, E; Shon, W; Chugal, N; Bogen, G; Lin, L; Kim, R H; Park, N-H; Kang, M K

    2015-11-01

    The goal of regenerative endodontics is to reinstate normal pulp function in necrotic and infected teeth that would result in reestablishment of protective functions, including innate pulp immunity, pulp repair through mineralization, and pulp sensibility. In the unique microenvironment of the dental pulp, the triad of tissue engineering would require infection control, biomaterials, and stem cells. Although revascularization is successful in resolving apical periodontitis, multiple studies suggest that it alone does not support pulp-dentin regeneration. More recently, cell-based approaches in endodontic regeneration based on pulpal mesenchymal stem cells (MSCs) have demonstrated promising results in terms of pulp-dentin regeneration in vivo through autologous transplantation. Although pulpal regeneration requires the cell-based approach, several challenges in clinical translation must be overcome-including aging-associated phenotypic changes in pulpal MSCs, availability of tissue sources, and safety and regulation involved with expansion of MSCs in laboratories. Allotransplantation of MSCs may alleviate some of these obstacles, although the long-term stability of MSCs and efficacy in pulp-dentin regeneration demand further investigation. For an alternative source of MSCs, our laboratory developed induced MSCs (iMSCs) from primary human keratinocytes through epithelial-mesenchymal transition by modulating the epithelial plasticity genes. Initially, we showed that overexpression of ΔNp63α, a major isoform of the p63 gene, led to epithelial-mesenchymal transition and acquisition of stem characteristics. More recently, iMSCs were generated by transient knockdown of all p63 isoforms through siRNA, further simplifying the protocol and resolving the potential safety issues of viral vectors. These cells may be useful for patients who lack tissue sources for endogenous MSCs. Further research will elucidate the level of potency of these iMSCs and assess their

  4. A histopathologic investigation on the effects of electrical stimulation on periodontal tissue regeneration in experimental bony defects in dogs.

    Science.gov (United States)

    Kaynak, Deniz; Meffert, Roland; Günhan, Meral; Günhan, Omer

    2005-12-01

    One endpoint of periodontal therapy is to regenerate the structure lost due to periodontal disease. In the periodontium, gingival epithelium is regenerated by oral epithelium. Underlying connective tissue, periodontal ligament, bone, and cementum are derived from connective tissue. Primitive connective tissue cells may develop into osteoblasts and cementoblasts, which form bone and cementum. Several procedural advances may support these regenerations; however, the regeneration of alveolar bone does not always occur. Therefore, bone stimulating factors are a main topic for periodontal reconstructive research. The present study was designed to examine histopathologically whether the application of an electrical field could demonstrate enhanced alveolar and cementum regeneration and modify tissue factors. Seven beagle dogs were used for this experiment. Mandibular left and right sides served as control and experimental sides, respectively, and 4-walled intrabony defects were created bilaterally between the third and fourth premolars. The experimental side was treated with a capacitively coupled electrical field (CCEF) (sinusoidal wave, 60 kHz, and 5 V peak-to-peak), applied for 14 hours per day. The following measurements were performed on the microphotographs: 1) the distance from the cemento-enamel junction to the apical notch (CEJ-AN) and from the crest of newly formed bone (alveolar ridge) to the apical notch (AR-AN); 2) the thickness of new cementum in the apical notch region; and 3) the length of junctional epithelium. The following histopathologic parameters were assessed by a semiquantitative subjective method: 1) inflammatory cell infiltration (ICI); 2) cellular activity of the periodontal ligament; 3) number and morphology of osteoclasts; 4) resorption lacunae; and 5) osteoblastic activity. The results showed that the quantity of new bone fill and the mean value of the thickness of the cementum were significantly higher for the experimental side (P 0

  5. Effects of Regeneration Conditions on Sorption Capacity of CO{sub 2} Dry Potassium Sorbent During Carbonation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yunseop; Park, Young Cheol; Jo, Sung-Ho; Ryu, Ho-Jung; Yi, Chang-Keun [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Rhee, Young Woo [Chungnam National University, Daejeon (Korea, Republic of)

    2015-02-15

    In this study, we investigated carbonation-regeneration and agglomeration characteristics of dry sorbents. Experiment has been proceeded in the batch-type reactor, which is made of quartz: 0.05 m of I.D and 0.8 m in height. The sorbents that is collected at the cyclone of the carbonation reactor of continuous process were used in this study. The reactivity was studied at the various concentrations of water vapor, N{sub 2} and CO{sub 2} in the fluidizing gas at regeneration reaction. As a result, the reactivity increased as the regeneration temperature increased, the reactivity decreased as the concentration of water vapor increased. The absorption capacity showed the highest value in case of using N{sub 2} 100% as regeneration gas. And decreased in order of H{sub 2}O+N{sub 2}, CO{sub 2} 100% and H{sub 2}O+CO{sub 2}. The agglomeration characteristics were investigated according to the particle sizes and concentrations of water vapor at carbonation reaction. As a result, the particle with smaller size and higher concentration of water vapor showed the higher agglomeration characteristic.

  6. Evaluation of several techniques to modify denatured muscle tissue to obtain a scaffold for peripheral nerve regeneration

    NARCIS (Netherlands)

    Meek, MF; den Dunnen, WFA; Schakenraad, JM; Robinson, PH

    The aim of this study was to (1) evaluate the effect of several preparation techniques of denatured muscle tissue to obtain an open three-dimensional structure, and (2) test if this scaffold is suitable for peripheral nerve regeneration. Four samples (A-D) of muscle tissue specimens were evaluated

  7. Evaluating the Use of Monocytes with a Degradable Polyurethane for Vascular Tissue Regeneration

    Science.gov (United States)

    Battiston, Kyle Giovanni

    Monocytes are one of the first cell types present following the implantation of a biomaterial or tissue engineered construct. Depending on the monocyte activation state supported by the biomaterial, monocytes and their derived macrophages (MDMs) can act as positive contributors to tissue regeneration and wound healing, or conversely promote a chronic inflammatory response that leads to fibrous encapsulation and implant rejection. A degradable polar hydrophobic iconic polyurethane (D-PHI) has been shown to reduce pro-inflammatory monocyte/macrophage response compared to tissue culture polystyrene (TCPS), a substrate routinely used for in vitro culture of cells, as well as poly(lactide- co-glycolide) (PLGA), a standard synthetic biodegradable biomaterial in the tissue engineering field. D-PHI has also shown properties suitable for use in a vascular tissue engineering context. In order to understand the mechanism through which D-PHI attenuates pro-inflammatory monocyte response, this thesis investigated the ability of D-PHI to modulate interactions with adsorbed serum proteins and the properties of D-PHI that were important for this activity. D-PHI was shown to regulate protein adsorption in a manner that produced divergent monocyte responses compared to TCPS and PLGA when coated with the serum proteins alpha2-macroglobulin or immunoglobulin G (IgG). In the case of IgG, D-PHI was shown to reduce pro-inflammatory binding site exposure as a function of the material's polar, hydrophobic, and ionic character. Due to the favourable monocyte activation state supported by D-PHI, and the importance of monocytes/macrophages in regulating the response of tissue-specific cell types in vivo, the ability of a D-PHI-stimulated monocyte/macrophage activation state to contribute to modulating the response of vascular smooth muscle cells (VSMCs) in a vascular tissue engineering context was investigated. D-PHI- stimulated monocytes promoted VSMC growth and migration through biomolecule

  8. Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation

    Science.gov (United States)

    2012-02-01

    10-1-0927 TITLE: Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation...immunosuppression. Bone Marrow Derived Mesenchymal stem cells (BM-MSCs) are pluripotent cells, capable of differentiation along multiple mesenchymal lineages into...As part of implemented transition from University of Pittsburgh to Johns Hopkins University, we optimized our mesenchymal stem cell (MSC) isolation

  9. Chronic stress does not impair liver regeneration in rats

    DEFF Research Database (Denmark)

    Andersen, Kasper J; Knudsen, Anders Riegels; Wiborg, Ove

    2015-01-01

    a 70 % partial hepatectomy (PHx). The animals were evaluated on postoperative day 2 or 4. Blood samples were collected to examine circulating markers of inflammation and liver cell damage. Additionally, liver tissues were sampled to evaluate liver weight and regeneration rate. RESULTS: None......BACKGROUND: Although wound healing is a simple regenerative process that is critical after surgery, it has been shown to be impaired under psychological stress. The liver has a unique capacity to regenerate through highly complex mechanisms. The aim of this study was to investigate the effects...... of chronic stress, which may induce a depression-like state, on the complex process of liver regeneration in rats. METHODS: Twenty rats were included in this study. The animals received either a standard housing protocol or were subjected to a Chronic Mild Stress (CMS) stress paradigm. All rats underwent...

  10. Local application of IGFBP5 protein enhanced periodontal tissue regeneration via increasing the migration, cell proliferation and osteo/dentinogenic differentiation of mesenchymal stem cells in an inflammatory niche.

    Science.gov (United States)

    Han, Nannan; Zhang, Fengqiu; Li, Guoqing; Zhang, Xiuli; Lin, Xiao; Yang, Haoqing; Wang, Lijun; Cao, Yangyang; Du, Juan; Fan, Zhipeng

    2017-09-29

    revealed that rhIGFBP5 could activate the functions of MSCs in an inflammatory niche, provided insight into the mechanism underlying the activated capacities of MSCs, and identified IGFBP5 as a potential cytokine for improving tissue regeneration and periodontitis treatment independent of exogenous MSCs and its potential application in dental clinic.

  11. The Role of a Platelet Lysate-Based Compartmentalized System as a Carrier of Cells and Platelet-Origin Cytokines for Periodontal Tissue Regeneration.

    Science.gov (United States)

    Babo, Pedro S; Cai, Xinjie; Plachokova, Adelina S; Reis, Rui L; Jansen, John A; Gomes, Manuela E; Walboomers, X Frank

    2016-10-01

    Currently available clinical therapies are not capable to regenerate tissues that are lost by periodontitis. Tissue engineering can be applied as a strategy to regenerate reliably the tissues and function of damaged periodontium. A prerequisite for this regeneration is the colonization of the defect with the adequate cell populations. In this study, we proposed a bilayered system composed of (1) a platelet lysate (PL)-based construct produced by crosslinking of PL proteins with genipin (gPL) for the delivery of rat periodontal ligament cells (rat-PDLCs); combined with (2) an injectable composite consisting of calcium phosphate cement incorporated with PL-loaded poly(d, l-lactic-co-glycolic acid) microspheres. This system was expected to promote periodontal regeneration by the delivery of adequate progenitor cells and providing a stable system enriched with adequate cytokines and growth factors for the orchestration of tissue regrowth in periodontal defects. The bilayered system was tested in a three-wall intrabony defect in rats and the healing of periodontal tissue was assessed 6 weeks after surgery. Results showed that the bilayered system was able to promote the regrowth of functional periodontal tissues, both with (cells + gPL) and without the loading of PDLCs (gPL). Significant connective tissue attachment (45.0 ± 15.0% and 64.0 ± 15.0% for gPL and cells + gPL group, respectively) and new bone area (33.8 ± 21% and 21.3 ± 3% for gPL and cells + gPL group, respectively) were observed. Nevertheless, rat PDLCs delivered with gPL construct in the defect area were hardly visible 6 weeks after surgery and did not contribute for the regeneration of new periodontal tissue. Overall, our findings show that the bilayered system promotes the stabilization of PL proteins on the root surface and has a positive effect in the repair of periodontal tissues both in quality and in quantity.

  12. Magnesium substitution in brushite cements for enhanced bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cabrejos-Azama, Jatsue, E-mail: jacaza@farm.ucm.es [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain); Departamento de Estomatología III, Facultad de Odontología UCM, Madrid (Spain); Alkhraisat, Mohammad Hamdan; Rueda, Carmen [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain); Torres, Jesús [Facultad de Ciencias de la salud URJC, Alcorcón, Madrid (Spain); Blanco, Luis [Departamento de Estomatología III, Facultad de Odontología UCM, Madrid (Spain); López-Cabarcos, Enrique [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain)

    2014-10-01

    We have synthesized calcium phosphate cements doped with different amounts of magnesium (Mg-CPC) with a twofold purpose: i) to evaluate in vitro the osteoblast cell response to this material, and ii) to compare the bone regeneration capacity of the doped material with a calcium cement prepared without magnesium (CPC). Cell proliferation and in vivo response increased in the Mg-CPCs in comparison with CPC. The Mg-CPCs have promoted higher new bone formation than the CPC (p < 0.05). The cytocompatibility and histomorfometric analysis performed in the rabbit calvaria showed that the incorporation of magnesium ions in CPC improves osteoblasts proliferation and provides higher new bone formation. The development of a bone substitute with controllable biodegradable properties and improved bone regeneration can be considered a step toward personalized therapy that can adapt to patient needs and clinical situations. - Highlights: • The Mg-CPCs promote higher new bone formation than the CPC. • The incorporation of magnesium ions in CPC improves osteoblasts proliferation. • Mg-CPC is a bone substitute with controllable biodegradable properties. • We suggest that the use of Mg ions could improve the clinical efficiency of CPCs.

  13. Hard tissue regeneration using bone substitutes: an update on innovations in materials.

    Science.gov (United States)

    Sarkar, Swapan Kumar; Lee, Byong Taek

    2015-05-01

    Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues.

  14. Adjunctive Systemic Antimicrobial Therapy vs Asepsis in Conjunction with Guided Tissue Regeneration: A Randomized, Controlled Clinical Trial.

    Science.gov (United States)

    Abu-Ta'a, Mahmoud

    2016-01-01

    This randomized clinical trial compares the usefulness of adjunctive antibiotics, while strict asepsis was followed during periodontal surgery involving guided tissue regeneration. Two groups of 20 consecutive patients each with advanced periodontal disease were randomly assigned to treatment. They displayed one angular defect each with an intrabony component ≥3 mm, probing pocket depth and probing attachment level (PAL) ≥7 mm. Test group included 13 males, mean age 60 years, treated with enamel matrix derivative (EMD) and demineralized freeze-dried bone allograft with modified papilla preservation technique, received oral amoxicillin 1 gm, 1 hour preoperatively and 2 gm for 2 days postoperatively. Control group included 10 males, mean age 57 years, treated with EMD and demineralized freeze-dried bone allograft with modified papilla preservation technique, received no antibiotics. Outcome measures were clinical attachment level (CAL) gain, residual periodontal pocket depth (res. PD), gingival recession (GR), bleeding on probing (BOP), adverse events and postoperative complications. Patients were followed up to 12 months after periodontal surgery involving guided tissue regeneration. There were no significant differences between both groups for CAL gain, res. PD, GR, BOP nor other clinical parameters, though patients' subjective perception of postoperative discomfort was significantly smaller in the group receiving antibiotics. Antibiotics do not provide significant advantages concerning clinical periodontal parameters nor concerning postoperative infections in case of proper asepsis. It does, on the contrary, reduce postoperative discomfort. Regarding the results of this study, adjunc-tive systemic antibiotics in combination with guided tissue regeneration may be useful in reducing postoperative discomfort but may not be helpful for improving periodontal regeneration outcomes.

  15. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty.

    Science.gov (United States)

    Chung, Yeun Goo; Tu, Duong; Franck, Debra; Gil, Eun Seok; Algarrahi, Khalid; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R

    2014-01-01

    Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4) (Width × Length, 1 × 2 cm(2)) in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS) implants (Group 2, N = 4) or urethrotomy alone (Group 3, N = 3). Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome), immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (α-smooth muscle actin and SM22α) and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results of this study

  16. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty.

    Directory of Open Access Journals (Sweden)

    Yeun Goo Chung

    Full Text Available Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4 (Width × Length, 1 × 2 cm(2 in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS implants (Group 2, N = 4 or urethrotomy alone (Group 3, N = 3. Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome, immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (α-smooth muscle actin and SM22α and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results

  17. In vitro evaluation of electrospun chitosan mats crosslinked with genipin as guided tissue regeneration barrier membranes

    Science.gov (United States)

    Norowski, Peter Andrew, Jr.

    Guided tissue regeneration (GTR) is a surgical technique commonly used to exclude bacteria and soft tissues from bone graft sites in oral/maxillofacial bone graft sites by using a barrier membrane to maintain the graft contour and space. Current clinical barrier membrane materials based on expanded polytetrafluoroethylene (ePTFE) and bovine type 1 collagen are non-ideal and experience a number of disadvantages including membrane exposure, bacterial colonization/biofilm formation and premature degradation, all of which result in increased surgical intervention and poor bone regeneration. These materials do not actively participate in tissue regeneration, however bioactive materials, such as chitosan, may provide advantages such as the ability to stimulate wound healing and de novo bone formation. Our hypothesis is that electrospun chitosan GTR membranes will support cell attachment and growth but prevent cell infiltration/penetration of membrane, demonstrate in vitro degradation predictive of 4--6 month in vivo functionality, and will deliver antibiotics locally to prevent/inhibit periopathogenic complications. To test this hypothesis a series of chitosan membranes were electrospun, in the presence or absence of genipin, a natural crosslinking agent, at concentrations of 5 and 10 mM. These membranes were characterized by scanning electron microscopy, tensile testing, suture pullout testing, Fourier transform infrared spectroscopy, X-ray diffraction, and gel permeation chromatography, and in vitro biodegradation for diameter/morphology of fibers, membrane strengths, degree of crosslinking, crystallinity, molecular weight, and degradation kinetics, respectively. Cytocompability of membranes was evaluated in osteoblastic, fibroblastic and monocyte cultures. The activity of minocycline loaded and released from the membranes was determined in zone of inhibition tests using P. gingivalis microbe. The results demonstrated that genipin crosslinking extended the in vitro

  18. [Application of silk-based tissue engineering scaffold for tendon / ligament regeneration].

    Science.gov (United States)

    Hu, Yejun; Le, Huihui; Jin, Zhangchu; Chen, Xiao; Yin, Zi; Shen, Weiliang; Ouyang, Hongwei

    2016-03-01

    Tendon/ligament injury is one of the most common impairments in sports medicine. The traditional treatments of damaged tissue repair are unsatisfactory, especially for athletes, due to lack of donor and immune rejection. The strategy of tissue engineering may break through these limitations, and bring new hopes to tendon/ligament repair, even regeneration. Silk is a kind of natural biomaterials, which has good biocompatibility, wide range of mechanical properties and tunable physical structures; so it could be applied as tendon/ligament tissue engineering scaffolds. The silk-based scaffold has robust mechanical properties; combined with other biological ingredients, it could increase the surface area, promote more cell adhesion and improve the biocompatibility. The potential clinical application of silk-based scaffold has been confirmed by in vivo studies on tendon/ligament repairing, such as anterior cruciate ligament, medial collateral ligament, achilles tendon and rotator cuff. To develop novel biomechanically stable and host integrated tissue engineered tendon/ligament needs more further micro and macro studies, combined with product development and clinical application, which will give new hope to patients with tendon/ligament injury.

  19. Cancer-related aspects of regeneration research: a review

    International Nuclear Information System (INIS)

    Donaldson, D.J.; Mason, J.M.

    1975-01-01

    Tissue regeneration is simply the replacement of lost cells of a tissue by those remaining. Epimorphic regeneration involves dedifferentiation of many tissues and their organization into a blastema which eventually differentiates into the missing part, usually an appendage. A detailed comparison of the cell membrane changes occurring in epimorphic regeneration, tissue regeneration and cancer can contribute to greater understanding of the differences between normal and tumor cells. Further, there is evidence that epimorphic regeneration fields may in some instances suppress tumor induction and control existing tumors. This influence may be mediated by bioelectric fields, which are ubiquitous in nature and appear to control many cellular events. Disruption of these bioelectric fields suppresses epimorphic regeneration and may lead to cancer in mammals, while applied electric fields alter regenerative events and cause tumor regression. Studies on x-radioinduced regeneration suppression in relation to mutagenesis are also reviewed

  20. 3D Printing of Scaffolds for Tissue Regeneration Applications

    Science.gov (United States)

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M.; Salem, Aliasger K.

    2015-01-01

    The current need for organ and tissue replacement, repair and regeneration for patients is continually growing such that supply is not meeting the high demand primarily due to a paucity of donors as well as biocompatibility issues that lead to immune rejection of the transplant. In an effort to overcome these drawbacks, scientists working in the field of tissue engineering and regenerative medicine have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired a growing interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity and precision, where fine details can be included at a micron level. In this review, we discuss the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering. A hybrid approach, employing both natural and synthetic materials, as well as multiple printing processes may be the key to yielding an ECM-like scaffold with high mechanical strength, porosity, interconnectivity, biocompatibility, biodegradability, and high processability. Creating such biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. PMID:26097108

  1. Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration

    Science.gov (United States)

    Wertheimer, Tobias; Velardi, Enrico; Tsai, Jennifer; Cooper, Kirsten; Xiao, Shiyun; Kloss, Christopher C.; Ottmüller, Katja J.; Mokhtari, Zeinab; Brede, Christian; deRoos, Paul; Kinsella, Sinéad; Palikuqi, Brisa; Ginsberg, Michael; Young, Lauren F.; Kreines, Fabiana; Lieberman, Sophia R.; Lazrak, Amina; Guo, Peipei; Malard, Florent; Smith, Odette M.; Shono, Yusuke; Jenq, Robert R.; Hanash, Alan M.; Nolan, Daniel J.; Butler, Jason M.; Beilhack, Andreas; Manley, Nancy R.; Rafii, Shahin; Dudakov, Jarrod A; van den Brink, Marcel RM

    2018-01-01

    The thymus is extremely sensitive to damage but also has a remarkable ability to repair itself. However, the mechanisms underlying this endogenous regeneration remain poorly understood and this capacity diminishes considerably with age. Here we show that thymic endothelial cells (ECs) comprise a critical pathway of regeneration, via their production of BMP4. ECs increased their production of BMP4 after thymic damage, and abrogating BMP4 signalling or production by either pharmacologic or genetic inhibition impaired thymic repair. EC-derived BMP4 acted on thymic epithelial cells (TECs) to increase their expression of Foxn1, a key transcription factor involved in TEC development, maintenance and regeneration; and its downstream targets such as Dll4, itself a key mediator of thymocyte development and regeneration. These studies demonstrate the importance of the BMP4 pathway in endogenous tissue regeneration and offer a potential clinical approach to enhance T cell immunity. PMID:29330161

  2. Possible role of mechanical force in regulating regeneration of the vascularized fat flap inside a tissue engineering chamber.

    Science.gov (United States)

    Ye, Yuan; Yuan, Yi; Lu, Feng; Gao, Jianhua

    2015-12-01

    In plastic and reconstructive surgery, adipose tissue is widely used as effective filler for tissue defects. Strategies for treating soft tissue deficiency, which include free adipose tissue grafts, use of hyaluronic acid, collagen injections, and implantation of synthetic materials, have several clinical limitations. With the aim of overcoming these limitations, researchers have recently utilized tissue engineering chambers to produce large volumes of engineered vascularized fat tissue. However, the process of growing fat tissue in a chamber is still relatively limited, and can result in unpredictable or dissatisfactory final tissue volumes. Therefore, detailed understanding of the process is both necessary and urgent. Many studies have shown that mechanical force can change the function of cells via mechanotransduction. Here, we hypothesized that, besides the inflammatory response, one of the key factors to control the regeneration of vascularized fat flap inside a tissue engineering chamber might be the balance of mechanical forces. To test our hypothesis, we intend to change the balance of forces by means of measures in order to make the equilibrium point in favor of the direction of regeneration. If those measures proved to be feasible, they could be applied in clinical practice to engineer vascularized adipose tissue of predictable size and shape, which would in turn help in the advancement of tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice.

    Science.gov (United States)

    Hu, Jingchao; Cao, Yu; Xie, Yilin; Wang, Hua; Fan, Zhipeng; Wang, Jinsong; Zhang, Chunmei; Wang, Jinsong; Wu, Chu-Tse; Wang, Songlin

    2016-09-09

    Periodontitis, one of the most prevalent infectious diseases in humans, results in the destruction of tooth-supporting tissues. The purpose of the present study is to evaluate the effect of cell injection and cell sheet transplantation on periodontal regeneration in a swine model. In the present study, human dental pulp stem cells (hDPSCs) were transplanted into a swine model for periodontal regeneration. Twelve miniature pigs were used to generate periodontitis with bone defects of 5 mm in width, 7 mm in length, and 3 mm in depth. hDPSCs were obtained for bone regeneration using cell injection or cell sheet transplantation. After 12 weeks, clinical, radiological, and histological assessments of regenerated periodontal tissues were performed to compare periodontal regeneration treated with xenogeneic cell injection and cell sheet implantation. Our study showed that translating hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. After 12 weeks, both the hDPSC sheet treatment and hDPSC injection significantly improved periodontal tissue healing clinically in comparison with the control group. The volume of regenerative bone in the hDPSC sheet group (52.7 ± 4.1 mm(3)) was significantly larger than in the hDPSC injection group (32.4 ± 5.1 mm(3)) (P cell sheet transplantation significantly regenerated periodontal bone in swine. The hDPSC sheet had more bone regeneration capacity compared with hDPSC injection.

  4. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review.

    NARCIS (Netherlands)

    Behring, J.; Junker, R.; Walboomers, X.F.; Chessnut, B.; Jansen, J.A.

    2008-01-01

    Collagen barrier membranes are frequently used in both guided tissue regeneration (GTR) and guided bone regeneration (GBR). Collagen used for these devices is available from different species and is often processed to alter the properties of the final product. This is necessary because unprocessed

  5. Seismomorphogenesis: a novel approach to acclimatization of tissue culture regenerated plants.

    Science.gov (United States)

    Sarmast, Mostafa Khoshhal; Salehi, Hassan; Khosh-Khui, Morteza

    2014-12-01

    Plantlets under in vitro conditions transferred to ex vivo conditions are exposed to biotic and abiotic stresses. Furthermore, in vitro regenerated plants are typically frail and sometimes difficult to handle subsequently increasing their risk to damage and disease; hence acclimatization of these plantlets is the most important step in tissue culture techniques. An experiment was conducted under in vitro conditions to study the effects of shaking duration (twice daily at 6:00 a.m. and 9:00 p.m. for 2, 4, 8, and 16 min at 250 rpm for 14 days) on Sansevieria trifasciata L. as a model plant. Results showed that shaking improved handling, total plant height, and leaf characteristics of the model plant. Forty-eight hours after 14 days of shaking treatments with increasing shaking time, leaf length decreased but proline content of leaf increased. However, 6 months after starting the experiment different results were observed. In explants that received 16 min of shaking treatment, leaf length and area and photosynthesis rate were increased compared with control plantlets. Six months after starting the experiment, control plantlets had 12.5 % mortality; however, no mortality was observed in other treated explants. The results demonstrated that shaking improved the explants' root length and number and as a simple, cost-effective, and non-chemical novel approach may be substituted for other prevalent acclimatization techniques used for tissue culture regenerated plantlets. Further studies with sensitive plants are needed to establish this hypothesis.

  6. Effects of growth factors and cytokins on soft tissue regeneration in patients with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Ekaterina Leonidovna Zaytseva

    2014-03-01

    Full Text Available Delayed wound healing is characteristic of a glycemic disorder and often results in trophic ulcer formation, ? a process still poorly understood but likely multifaceted. Current review addresses latest reports from cellular and molecular studies of soft tissue regeneration in patients with diabetes mellitus.

  7. Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model.

    Directory of Open Access Journals (Sweden)

    Yookyung Jung

    Full Text Available Peripheral nerve injury (PNI, a common injury in both the civilian and military arenas, is usually associated with high healthcare costs and with patients enduring slow recovery times, diminished quality of life, and potential long-term disability. Patients with PNI typically undergo complex interventions but the factors that govern optimal response are not fully characterized. A fundamental understanding of the cellular and tissue-level events in the immediate postoperative period is essential for improving treatment and optimizing repair. Here, we demonstrate a comprehensive imaging approach to evaluate peripheral nerve axonal regeneration in a rodent PNI model using a tissue clearing method to improve depth penetration while preserving neural architecture. Sciatic nerve transaction and end-to-end repair were performed in both wild type and thy-1 GFP rats. The nerves were harvested at time points after repair before undergoing whole mount immunofluorescence staining and tissue clearing. By increasing the optic depth penetration, tissue clearing allowed the visualization and evaluation of Wallerian degeneration and nerve regrowth throughout entire sciatic nerves with subcellular resolution. The tissue clearing protocol did not affect immunofluorescence labeling and no observable decrease in the fluorescence signal was observed. Large-area, high-resolution tissue volumes could be quantified to provide structural and connectivity information not available from current gold-standard approaches for evaluating axonal regeneration following PNI. The results are suggestive of observed behavioral recovery in vivo after neurorrhaphy, providing a method of evaluating axonal regeneration following repair that can serve as an adjunct to current standard outcomes measurements. This study demonstrates that tissue clearing following whole mount immunofluorescence staining enables the complete visualization and quantitative evaluation of axons throughout

  8. β2-Adrenoceptor is involved in connective tissue remodeling in regenerating muscles by decreasing the activity of MMP-9.

    Science.gov (United States)

    Silva, Meiricris T; Nascimento, Tábata L; Pereira, Marcelo G; Siqueira, Adriane S; Brum, Patrícia C; Jaeger, Ruy G; Miyabara, Elen H

    2016-07-01

    We investigated the role of β2-adrenoceptors in the connective tissue remodeling of regenerating muscles from β2-adrenoceptor knockout (β2KO) mice. Tibialis anterior muscles from β2KO mice were cryolesioned and analyzed after 3, 10, and 21 days. Regenerating muscles from β2KO mice showed a significant increase in the area density of the connective tissue and in the amount of collagen at 10 days compared with wild-type (WT) mice. A greater increase occurred in the expression levels of collagen I, III, and IV in regenerating muscles from β2KO mice evaluated at 10 days compared with WT mice; this increase continued at 21 days, except for collagen III. Matrix metalloproteinase (MMP-2) activity increased to a similar extent in regenerating muscles from both β2KO and WT mice at 3 and 10 days. This was also the case for MMP-9 activity in regenerating muscles from both β2KO and WT mice at 3 days; however, at 10 days post-cryolesion, this activity returned to baseline levels only in WT mice. MMP-3 activity was unaltered in regenerating muscles at 10 days. mRNA levels of tumor necrosis factor-α increased in regenerating muscles from WT and β2KO mice at 3 days and, at 10 days post-cryolesion, returned to baseline only in WT mice. mRNA levels of interleukin-6 increased in muscles from WT mice at 3 days post-cryolesion and returned to baseline at 10 days post-cryolesion but were unchanged in β2KO mice. Our results suggest that the β2-adrenoceptor contributes to collagen remodeling during muscle regeneration by decreasing MMP-9 activity.

  9. Scaffold of chitosan-sodium alginate and hydroxyapatite with application potential for bone regeneration

    International Nuclear Information System (INIS)

    Rebelo, Marcia de A.; Alves, Thais F.R.; Lopes, Francielly C.C.N; Oliveira Junior, Jose Martins de; Pontes, Katiusca S.; Fogaca, Bruna A.C.; Chaud, Marco V.

    2015-01-01

    Scaffold for organic tissue regeneration are architectural, three-dimensional, porous, biocompatible and biodegradable devices. The first challenges to be met in the development of these devices to mimic the biomechanical properties of the target tissue. The aim of this study was to develop and to characterize scaffolds composed of chitosan (Ch), sodium alginate (SA), hydroxyapatite (HA). The scaffolds were obtained by lyophilization. HA has been incorporated into the polymer dispersion in Ch-AS concentration of 20 and 60%. The mechanical properties of the scaffold were determined by tensile and compression tests. Swelling capacity was assessed in the presence of simulated saliva, purified water, HCl 0.01M, NaOH 0.01M. The calcium content was quantified using fluorescence X-rays. Analysis of the results indicates that the Qt-AS-HA-60% scaffold obtained by lyophilization meets promising properties for bone tissue regeneration. (author)

  10. Towards Regeneration of Articular Cartilage

    Science.gov (United States)

    Iwamoto, Masahiro; Ohta, Yoichi; Larmour, Colleen; Enomoto-Iwamoto, Motomi

    2014-01-01

    Articular cartilage is classified into permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in growth plate. In the process of synovial joint development, articular cartilage is originated from the interzone, developing at the edge of the cartilaginous anlagen, it establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators such as Wnts, GDF5, Erg, and PTHLH coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracerllular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier’s groove, the intra-articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Further, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site. PMID:24078496

  11. Pulp regeneration after non-infected and infected necrosis, what type of tissue do we want?

    DEFF Research Database (Denmark)

    Andreasen, Jens O; Bakland, Leif K

    2012-01-01

    Regeneration (revitalization) of infected necrotic pulp tissue has been an important issue in endodontics for more than a decade. Based on a series of case reports, there appears to be evidence that new soft tissue can enter the root canal with a potential for subsequent hard tissue deposition...... that such events may take place in four variants: (i) Revascularization of the pulp with accelerated dentin formation leading to pulp canal obliteration. This event has a good long-term prognosis. (ii) Ingrowth of cementum and periodontal ligament (PDL). The long-term prognosis for this event is not known. (iii...

  12. Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage?

    NARCIS (Netherlands)

    Alexander, B.E.; Achlatis, M.; Osinga, R.; van der Geest, H.G.; Cleutjens, J.P.M.; Schutte, B.; de Goeij, J.M.

    2015-01-01

    Sponges have a remarkable capacity to rapidly regenerate in response to wound infliction. In addition, sponges rapidly renew their filter systems (choanocytes) to maintain a healthy population of cells. This study describes the cell kinetics of choanocytes in the encrusting reef sponge Halisarca

  13. TOPICAL REVIEW: Stem cell technology using bioceramics: hard tissue regeneration towards clinical application

    Science.gov (United States)

    Ohnishi, Hiroe; Oda, Yasuaki; Ohgushi, Hajime

    2010-02-01

    Mesenchymal stem cells (MSCs) are adult stem cells which show differentiation capabilities toward various cell lineages. We have already used MSCs for treatments of osteoarthritis, bone necrosis and bone tumor. For this purpose, culture expanded MSCs were combined with various ceramics and then implanted. Because of rejection response to allogeneic MSC implantation, we have utilized patients' own MSCs for the treatment. Bone marrow is a good cell source of MSCs, although the MSCs also exist in adipose tissue. When comparing osteogenic differentiation of these MSCs, bone marrow MSCs show more extensive bone forming capability than adipose MSCs. Thus, the bone marrow MSCs are useful for bone tissue regeneration. However, the MSCs show limited proliferation and differentiation capabilities that hindered clinical applications in some cases. Recent advances reveal that transduction of plural transcription factors into human adult cells results in generation of new type of stem cells called induced pluripotent stem cells (iPS cells). A drawback of the iPS cells for clinical applications is tumor formation after their in vivo implantation; therefore it is difficult to use iPS cells for the treatment. To circumvent the problem, we transduced a single factor of either SOX2 or NANOG into the MSCs and found high proliferation as well as osteogenic differentiation capabilities of the MSCs. The stem cells could be combined with bioceramics for clinical applications. Here, we summarize our recent technologies using adult stem cells in viewpoints of bone tissue regeneration.

  14. Perfluorodecalin and bone regeneration

    Directory of Open Access Journals (Sweden)

    F Tamimi

    2013-01-01

    Full Text Available Perfluorodecalin (PFD is a chemically and biologically inert biomaterial and, as many perfluorocarbons, is also hydrophobic, radiopaque and has a high solute capacity for gases such as oxygen. In this article we have demonstrated, both in vitro and in vivo, that PFD may significantly enhance bone regeneration. Firstly, the potential benefit of PFD was demonstrated by prolonging the survival of bone marrow cells cultured in anaerobic conditions. These findings translated in vivo, where PFD incorporated into bone-marrow-loaded 3D-printed scaffolds substantially improved their capacity to regenerate bone. Secondly, in addition to biological applications, we have also shown that PFD improves the radiopacity of bone regeneration biomaterials, a key feature required for the visualisation of biomaterials during and after surgical implantation. Finally, we have shown how the extreme hydrophobicity of PFD enables the fabrication of highly cohesive self-setting injectable biomaterials for bone regeneration. In conclusion, perfluorocarbons would appear to be highly beneficial additives to a number of regenerative biomaterials, especially those for bone regeneration.

  15. Improvement of two-stage GM refrigerator performance using a hybrid regenerator

    International Nuclear Information System (INIS)

    Ke, G.; Makuuchi, H.; Hashimoto, T.; Onishi, A.; Li, R.; Satoh, T.; Kanazawa, Y.

    1994-01-01

    To improve the performance of two-stage GM refrigerators, a hybrid regenerator with magnetic materials of Er 3 Ni and ErNi 0.9 Co 0.1 was used in the 2nd stage regenerator because of its large heat exchange capacity. The largest refrigeration capacity achieved with the hybrid regenerator was 0.95W at helium liquefied temperature of 4.2K. This capacity is 15.9% greater than the 0.82W refrigerator with only Er 3 Ni as the 2nd regenerator material. Use of the hybrid regenerator not only increases the refrigeration capacity at 4.2K, but also allows the 4K GM refrigerator to be used with large 1st stage refrigeration capacity, thus making it more practical

  16. Pulp regeneration: Current approaches and future challenges

    Directory of Open Access Journals (Sweden)

    Jingwen eYANG

    2016-03-01

    Full Text Available Regenerative endodontics aims to replace inflamed/necrotic pulp tissues with regenerated pulp-like tissues to revitalize teeth and improve life quality. Pulp revascularization case reports, which showed successful clinical and radiographic outcomes, indicated the possible clinical application of pulp regeneration via cell homing strategy. From a clinical point of view, functional pulp-like tissues should be regenerated with the characterization of vascularization, re-innervation, and dentin deposition with a regulated rate similar to that of normal pulp. Efficient root canal disinfection and proper size of the apical foramen are the two requisite preconditions for pulp regeneration. Progress has been made on pulp regeneration via cell homing strategies. This review focused on the requisite preconditions and cell homing strategies for pulp regeneration. In addition to the traditionally used mechanical preparation and irrigation, antibiotics, irrigation assisted with EndoVac apical negative-pressure system, and ultrasonic and laser irradiation are now being used in root canal disinfection. In addition, pulp-like tissues could be formed with the apical foramen less than 1 mm, although more studies are needed to determine the appropriate size. Moreover, signaling molecules including stromal cell derived factor (SDF-1α, basic Fibroblast Growth Factor (bFGF, Platelet Derived Growth Factor (PDGF, stem cell factor (SCF, and Granulocyte Colony-Stimulating Factor (G-CSF were used to achieve pulp-like tissue formation via a cell homing strategy. Studies on the cell sources of pulp regeneration might give some indications on the signaling molecular selection. The active recruitment of endogenous cells into root canals to regenerate pulp-like tissues is a novel concept that may offer an unprecedented opportunity for the near-term clinical translation of current biology-based therapies for dental pulp regeneration.

  17. Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration.

    Science.gov (United States)

    Glaser, Talita; Cappellari, Angélica Regina; Pillat, Micheli Mainardi; Iser, Isabele Cristiana; Wink, Márcia Rosângela; Battastini, Ana Maria Oliveira; Ulrich, Henning

    2012-09-01

    Replacement of lost or dysfunctional tissues by stem cells has recently raised many investigations on therapeutic applications. Purinergic signaling has been shown to regulate proliferation, differentiation, cell death, and successful engraftment of stem cells originated from diverse origins. Adenosine triphosphate release occurs in a controlled way by exocytosis, transporters, and lysosomes or in large amounts from damaged cells, which is then subsequently degraded into adenosine. Paracrine and autocrine mechanisms induced by immune responses present critical factors for the success of stem cell therapy. While P1 receptors generally exert beneficial effects including anti-inflammatory activity, P2 receptor-mediated actions depend on the subtype of stimulated receptors and localization of tissue repair. Pro-inflammatory actions and excitatory tissue damages mainly result from P2X7 receptor activation, while other purinergic receptor subtypes participate in proliferation and differentiation, thereby providing adequate niches for stem cell engraftment and novel mechanisms for cell therapy and endogenous tissue repair. Therapeutic applications based on regulation of purinergic signaling are foreseen for kidney and heart muscle regeneration, Clara-like cell replacement for pulmonary and bronchial epithelial cells as well as for induction of neurogenesis in case of neurodegenerative diseases.

  18. IL-22: An Evolutionary Missing-Link Authenticating the Role of the Immune System in Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Pawan Kumar, Kamalakannan Rajasekaran, Jeanne M Palmer, Monica S Thakar, Subramaniam Malarkannan

    2013-01-01

    Full Text Available Tissue regeneration is a critical component of organ maintenance. The ability of lymphocytes to kill pathogen-infected cells has been well-studied. However, the necessity for lymphocytes to participate in reconstruction of destroyed tissues has not been explored until recently. Interleukin (IL-22, a newly defined cytokine exclusively produced by subsets of lymphocytes, provides the strongest proof yet for the tissue regenerative potentials of the immune system. IL-22 plays an obligatory role in epithelial homeostasis in the gut, liver and lung. The receptor for IL-22 (IL-22R1 and IL-10R2 is predominantly expressed by epithelial cells. While the pro-inflammatory effect is questioned, the pro-constructive potential of IL-22 is well established. It is evident from the response to IL-22, that epithelial cells not only produce anti-microbial peptides but also actively proliferate. Aryl hydrocarbon receptor (AhR and retinoic acid-related orphan receptor (RORγt transcription factor are required for IL-22 generation from Lymphoid Tissue inducer cells LTi, Th22 and NK-like cells. However, IL-22 production from conventional NK cells is independent of AhR and RORγt. In this review, we present a case for a paradigm shift in how we define the function of the immune system. This would include tissue regeneration as a legitimate immune function.

  19. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes.

    Science.gov (United States)

    Xue, Jiajia; He, Min; Liu, Hao; Niu, Yuzhao; Crawford, Aileen; Coates, Phil D; Chen, Dafu; Shi, Rui; Zhang, Liqun

    2014-11-01

    Infection is the major reason for guided tissue regeneration/guided bone regeneration (GTR/GBR) membrane failure in clinical application. In this work, we developed GTR/GBR membranes with localized drug delivery function to prevent infection by electrospinning of poly(ε-caprolactone) (PCL) and gelatin blended with metronidazole (MNA). Acetic acid (HAc) was introduced to improve the miscibility of PCL and gelatin to fabricate homogeneous hybrid nanofiber membranes. The effects of the addition of HAc and the MNA content (0, 1, 5, 10, 20, 30, and 40 wt.% of polymer) on the properties of the membranes were investigated. The membranes showed good mechanical properties, appropriate biodegradation rate and barrier function. The controlled and sustained release of MNA from the membranes significantly prevented the colonization of anaerobic bacteria. Cells could adhere to and proliferate on the membranes without cytotoxicity until the MNA content reached 30%. Subcutaneous implantation in rabbits for 8 months demonstrated that MNA-loaded membranes evoked a less severe inflammatory response depending on the dose of MNA than bare membranes. The biodegradation time of the membranes was appropriate for tissue regeneration. These results indicated the potential for using MNA-loaded PCL/gelatin electrospun membranes as anti-infective GTR/GBR membranes to optimize clinical application of GTR/GBR strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Preparation of biodegradable PLA/PLGA membranes with PGA mesh and their application for periodontal guided tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Jin; Kang, Inn-Kyu [Department of Polymer Science, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701 (Korea, Republic of); Yoon, Suk Joon [Department of Biology, Sookmyung Women' s University, Hyochangwongil 52, Yongsan-gu, Seoul 140-742 (Korea, Republic of); Yeo, Guw-Dong; Pai, Chaul-Min, E-mail: ikkang@knu.ac.k [Samyang Central R and D Center, 63-2 Hwaam-dong, Yusung-gu, Daejeon 305-717 (Korea, Republic of)

    2009-10-15

    A biodegradable polylactic acid (PLA)/poly(glycolide-co-lactide) copolymer (PLGA) membrane with polyglycolic acid (PGA) mesh was prepared to aid the effective regeneration of defective periodontal tissues. The microporous membrane used in this study consists of biodegradable polymers, and seems to have a structure to provide appropriate properties for periodontal tissue regeneration. Based on the albumin permeation test, it is known that the biodegradable membrane exhibits the suitable permeability of nutrients. The membrane maintained its physical integrity for 6-8 weeks, which could be sufficient to retain space in the periodontal pocket. Cell attachment and cytotoxicity tests were performed with respect to the evaluation of biocompatibility of the membrane. As a result, the membrane did not show any cytotoxicity. The safety and therapeutic efficacies of the biodegradable membranes were confirmed in animal tests.

  1. Asymmetric PDLLA membranes containing Bioglass(R) for guided tissue regeneration: characterization and in vitro biological behavior

    NARCIS (Netherlands)

    Leal, A.I.; Caridade, S.G.; Ma, J.; Yu, N.; Gomes, M.; Reis, R.L.; Jansen, J.A.; Walboomers, X.F.; Mano, J.F.

    2013-01-01

    OBJECTIVE: In the treatment of periodontal defects, composite membranes might be applied to protect the injured area and simultaneously stimulate tissue regeneration. This work describes the development and characterization of poly(d,l-lactic acid)/Bioglass(R) (PDLLA/BG) composite membranes with

  2. Molecular Mechanisms of Soft Tissue Regeneration and Bone Formation in Mice: Implications in Fracture Repair and Wound Healing in Humans

    National Research Council Canada - National Science Library

    Baylink, David

    2003-01-01

    The primary goal of the project funded by the U.S. Army is to identify genes which play an anabolic role in bone tissue and soft tissue function, particularly during regeneration, and to clarify the function of these genes...

  3. Behaviour of telomere and telomerase during aging and regeneration in zebrafish.

    Science.gov (United States)

    Anchelin, Monique; Murcia, Laura; Alcaraz-Pérez, Francisca; García-Navarro, Esther M; Cayuela, María L

    2011-02-09

    Telomere length and telomerase activity are important factors in the pathobiology of human diseases. Age-related diseases and premature aging syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. The zebrafish (Danio rerio) offers multiple experimental manipulation advantages over other vertebrate models and, therefore, it has been recently considered as a potential model for aging, cancer, and regeneration studies. However, it has only partially been exploited to shed light on these fundamental biological processes. The aim of this study was, therefore, to investigate telomere length and telomerase expression and activity in different strains of zebrafish obtained from different stock centres to determine whether they undergo any changes during aging and regeneration. We found that although both telomerase expression and telomere length increased from embryo to adulthood stages, they drastically declined in aged fish despite telomerase activity was detected in different tissues of old fish. In addition, we observed a weaker upregulation of telomerase expression in regenerating fins of old fish, which well correlates with their impaired regeneration capacity. Strikingly, telomeres were elongated or maintained during the fin regeneration process at all ages and after repeated amputations, likely to support high cell proliferation rates. We conclude that the expression of telomerase and telomere length are closely related during the entire life cycle of the fish and that these two parameters can be used as biomarkers of aging in zebrafish. Our results also reveal a direct relationship between the expression of telomerase, telomere length and the efficiency of tissue regeneration.

  4. Biomaterial property-controlled stem cell fates for cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Yanyi Xu

    2016-09-01

    Full Text Available Myocardial infarction (MI affects more than 8 million people in the United States alone. Due to the insufficient regeneration capacity of the native myocardium, one widely studied approach is cardiac tissue engineering, in which cells are delivered with or without biomaterials and/or regulatory factors to fully regenerate the cardiac functions. Specifically, in vitro cardiac tissue engineering focuses on using biomaterials as a reservoir for cells to attach, as well as a carrier of various regulatory factors such as growth factors and peptides, providing high cell retention and a proper microenvironment for cells to migrate, grow and differentiate within the scaffolds before implantation. Many studies have shown that the full establishment of a functional cardiac tissue in vitro requires synergistic actions between the seeded cells, the tissue culture condition, and the biochemical and biophysical environment provided by the biomaterials-based scaffolds. Proper electrical stimulation and mechanical stretch during the in vitro culture can induce the ordered orientation and differentiation of the seeded cells. On the other hand, the various scaffolds biochemical and biophysical properties such as polymer composition, ligand concentration, biodegradability, scaffold topography and mechanical properties can also have a significant effect on the cellular processes.

  5. Characterization and Bioactivity Evaluation of (Polyetheretherketone/Polyglycolicacid-Hydroyapatite Scaffolds for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Cijun Shuai

    2016-11-01

    Full Text Available Bioactivity and biocompatibility are crucial for tissue engineering scaffolds. In this study, hydroxyapatite (HAP was incorporated into polyetheretherketone/polyglycolicacid (PEEK/PGA hybrid to improve its biological properties, and the composite scaffolds were developed via selective laser sintering (SLS. The effects of HAP on physical and chemical properties of the composite scaffolds were investigated. The results demonstrated that HAP particles were distributed evenly in PEEK/PGA matrix when its content was no more than 10 wt %. Furthermore, the apatite-forming ability became better with increasing HAP content after immersing in simulated body fluid (SBF. Meanwhile, the composite scaffolds presented a greater degree of cell attachment and proliferation than PEEK/PGA scaffolds. These results highlighted the potential of (PEEK/PGA-HAP scaffolds for tissue regeneration.

  6. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury.

    Science.gov (United States)

    Aurora, Amit; Roe, Janet L; Corona, Benjamin T; Walters, Thomas J

    2015-10-01

    Extracellular matrix (ECM) derived scaffolds continue to be investigated for the treatment of volumetric muscle loss (VML) injuries. Clinically, ECM scaffolds have been used for lower extremity VML repair; in particular, MatriStem™, a porcine urinary bladder matrix (UBM), has shown improved functional outcomes and vascularization, but limited myogenesis. However, efficacy of the scaffold for the repair of traumatic muscle injuries has not been examined systematically. In this study, we demonstrate that the porcine UBM scaffold when used to repair a rodent gastrocnemius musculotendinous junction (MTJ) and tibialis anterior (TA) VML injury does not support muscle tissue regeneration. In the MTJ model, the scaffold was completely resorbed without tissue remodeling, suggesting that the scaffold may not be suitable for the clinical repair of muscle-tendon injuries. In the TA VML injury, the scaffold remodeled into a fibrotic tissue and showed functional improvement, but not due to muscle fiber regeneration. The inclusion of physical rehabilitation also did not improve functional response or tissue remodeling. We conclude that the porcine UBM scaffold when used to treat VML injuries may hasten the functional recovery through the mechanism of scaffold mediated functional fibrosis. Thus for appreciable muscle regeneration, repair strategies that incorporate myogenic cells, vasculogenic accelerant and a myoconductive scaffold need to be developed. Published by Elsevier Ltd.

  7. A new bi-layered scaffold for osteochondral tissue regeneration: In vitro and in vivo preclinical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, M. [Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Rizzoli Orthopedic Institute, Bologna (Italy); Pagani, S., E-mail: stefania.pagani@ior.it [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna (Italy); Ferrari, A. [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna (Italy); Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna (Italy); Costa, V.; Carina, V. [Innovative Technology Platform for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopedic Institute, Palermo (Italy); Figallo, E. [Fin-Ceramica Faenza SpA, Faenza, Ravenna (Italy); Maltarello, M.C. [Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna (Italy); Martini, L.; Fini, M. [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna (Italy); Giavaresi, G. [Innovative Technology Platform for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopedic Institute, Palermo (Italy)

    2017-01-01

    Current treatments for acute or degenerative chondral and osteochondral lesions are in need of improvement, as these types of injuries lead to disability and worsen the quality of life in a high percentage of patients. The aim of this study was to develop a new bi-layered scaffold for osteochondral tissue regeneration through a “biomimetic” and “bioinspired” approach. For chondral regeneration, the scaffold was realized with an organic compound (type I collagen), while for the regeneration of the subchondral layer, bioactive magnesium-doped hydroxyapatite (Mg/HA) crystals were co-precipitated with the organic component of the scaffold. The entire scaffold structure was stabilized with a cross-linking agent, highly reactive bis-epoxyde (1,4-butanediol diglycidyl ether – BDDGE 1 wt%). The developed scaffold was then characterized for its physico-chemical characteristics. Its structure and adhesion strength between the integrated layers were investigated. At the same time, in vitro cell culture studies were carried out to examine the ability of chondral and bone scaffold layers to separately support adhesion, proliferation and differentiation of human mesenchymal stem cells (hMSCs) into chondrocytes and osteoblasts, respectively. Moreover, an in vivo study with nude mice, transplanted with osteochondral scaffolds plain or engineered with undifferentiated hMSCs, was also set up with 4 and 8-week time points. The results showed that chondral and bone scaffold layers represented biocompatible scaffolds able to sustain hMSCs attachment and proliferation. Moreover, the association of scaffold stimuli and differentiation medium, induced hMSCs chondrogenic and osteogenic differentiation and deposition of extracellular matrix (ECM). The ectopic implantation of the engineered osteochondral scaffolds indicated that hMSCs were able to colonize the osteochondral scaffold in depth. The scaffold appeared permissive to tissue growth and penetration, ensuring the diffusion

  8. Complete cardiac regeneration in a mouse model of myocardial infarction.

    Science.gov (United States)

    Haubner, Bernhard Johannes; Adamowicz-Brice, Martyna; Khadayate, Sanjay; Tiefenthaler, Viktoria; Metzler, Bernhard; Aitman, Tim; Penninger, Josef M

    2012-12-01

    Cardiac remodeling and subsequent heart failure remain critical issues after myocardial infarction despite improved treatment and reperfusion strategies. Recently, complete cardiac regeneration has been demonstrated in fish and newborn mice following resection of the cardiac apex. However, it remained entirely unclear whether the mammalian heart can also completely regenerate following a complex cardiac ischemic injury. We established a protocol to induce a severe heart attack in one-day-old mice using left anterior descending artery (LAD) ligation. LAD ligation triggered substantial cardiac injury in the left ventricle defined by Caspase 3 activation and massive cell death. Ischemia-induced cardiomyocyte death was also visible on day 4 after LAD ligation. Remarkably, 7 days after the initial ischemic insult, we observed complete cardiac regeneration without any signs of tissue damage or scarring. This tissue regeneration translated into long-term normal heart functions as assessed by echocardiography. In contrast, LAD ligations in 7-day-old mice resulted in extensive scarring comparable to adult mice, indicating that the regenerative capacity for complete cardiac healing after heart attacks can be traced to the first week after birth. RNAseq analyses of hearts on day 1, day 3, and day 10 and comparing LAD-ligated and sham-operated mice surprisingly revealed a transcriptional programme of major changes in genes mediating mitosis and cell division between days 1, 3 and 10 postnatally and a very limited set of genes, including genes regulating cell cycle and extracellular matrix synthesis, being differentially regulated in the regenerating hearts. We present for the first time a mammalian model of complete cardiac regeneration following a severe ischemic cardiac injury. This novel model system provides the unique opportunity to uncover molecular and cellular pathways that can induce cardiac regeneration after ischemic injury, findings that one day could be translated

  9. In situ vascular regeneration using substance P-immobilised poly(L-lactide-co-ε-caprolactone scaffolds: stem cell recruitment, angiogenesis, and tissue regeneration

    Directory of Open Access Journals (Sweden)

    M Shafiq

    2011-11-01

    Full Text Available In situ tissue regeneration holds great promise for regenerative medicine and tissue engineering applications. However, to achieve control over long-term and localised presence of biomolecules, certain barriers must be overcome. The aim of this study was to develop electrospun scaffolds for the fabrication of artificial vascular grafts that can be remodelled within a host by endogenous cell recruitment. We fabricated scaffolds by mixing appropriate proportions of linear poly (l-lactide-co-ε-caprolactone (PLCL and substance P (SP-immobilised PLCL, using electrospinning to develop vascular grafts. Substance P was released in a sustained fashion from electrospun membranes for up to 30 d, as revealed by enzyme-linked immunosorbent assay. Immobilised SP remained bioactive and recruited human bone marrow-derived mesenchymal stem cells (hMSCs in an in vitro Trans-well migration assay. The biocompatibility and biological performance of the scaffolds were evaluated by in vivo experiments involving subcutaneous scaffold implantations in Sprague-Dawley rats for up to 28 d followed by histological and immunohistochemical studies. Histological analysis revealed a greater extent of accumulative host cell infiltration and collagen deposition in scaffolds containing higher contents of SP than observed in the control group at both time points. We also observed the presence of a large number of laminin-positive blood vessels and Von Willebrand factor (vWF+ cells in the explants containing SP. Additionally, scaffolds containing SP showed the existence of CD90+ and CD105+ MSCs. Collectively, these findings suggest that the methodology presented here may have broad applications in regenerative medicine, and the novel scaffolding materials can be used for in situ tissue regeneration of soft tissues.

  10. Localization and characterization of STRO-1 cells in the deer pedicle and regenerating antler.

    Directory of Open Access Journals (Sweden)

    Hans J Rolf

    2008-04-01

    Full Text Available The annual regeneration of deer antlers is a unique developmental event in mammals, which as a rule possess only a very limited capacity to regenerate lost appendages. Studying antler regeneration can therefore provide a deeper insight into the mechanisms that prevent limb regeneration in humans and other mammals, and, with regard to medical treatments, may possibly even show ways how to overcome these limitations. Traditionally, antler regeneration has been characterized as a process involving the formation of a blastema from de-differentiated cells. More recently it has, however, been hypothesized that antler regeneration is a stem cell-based process. Thus far, direct evidence for the presence of stem cells in primary or regenerating antlers was lacking. Here we demonstrate the presence of cells positive for the mesenchymal stem cell marker STRO-1 in the chondrogenic growth zone and the perivascular tissue of the cartilaginous zone in primary and regenerating antlers as well as in the pedicle of fallow deer (Dama dama. In addition, cells positive for the stem cell/progenitor cell markers STRO-1, CD133 and CD271 (LNGFR were isolated from the growth zones of regenerating fallow deer antlers as well as the pedicle periosteum and cultivated for extended periods of time. We found evidence that STRO-1(+ cells isolated from the different locations are able to differentiate in vitro along the osteogenic and adipogenic lineages. Our results support the view that the annual process of antler regeneration might depend on the periodic activation of mesenchymal progenitor cells located in the pedicle periosteum. The findings of the present study indicate that not only limited tissue regeneration, but also extensive appendage regeneration in a postnatal mammal can occur as a stem cell-based process.

  11. In vitro aging of mineralized collagen-based composite as guided tissue regeneration membrane

    Energy Technology Data Exchange (ETDEWEB)

    Pan, S.X. [Department of Prothodontics, School of Stomatology, Peking University, Beijing 100875 (China)]. E-mail: sx_pan@sina.com; Li, Y. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, H.L. [Department of Prothodontics, School of Stomatology, Peking University, Beijing 100875 (China); Bai, W. [Department of Prothodontics, School of Stomatology, Peking University, Beijing 100875 (China); Gu, Y.Y. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2006-05-15

    The technique of guided tissue regeneration (GTR) has been developed for the regeneration of periodontal tissues, bone around natural teeth and dental implants. The aim of this study is to investigate the biodegradability and mechanic behavior of a novel mineralized nano-hydroxyapatite/collagen/poly (lactic acid) (nHAC/PLA) composite as GTR membrane in vitro. The elastic modulus and maximum tensile strength of GTR film samples with different nHAC/PLA ratio were measured to get an optimal nHAC/PLA ratio. Thermogravimetric analysis was conducted to evaluate the change of the inorganic component in the samples during the process of in vitro aging. Morphology of samples was checked by using scanning electron microscopy. On the basis of the above results, it can be concluded that the GTR membranes maintained integrity and the original appearance throughout the 1-month in vitro aging. There is an active dissolution and deposition process of crystals which is propitious to the bone formation on the surface of the composite membrane. The optimal nHAC/PLA ratio of the novel membrane is 0.4:1. For a longer period of bone repair, PLA with higher molecular weight should be chosen as the scaffold for the GTR membrane.

  12. Engineering bone regeneration with novel cell-laden hydrogel microfiber-injectable calcium phosphate scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang [Department of Prosthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong (China); Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Zhang, Chi [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 (China); Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Wang, Ping, E-mail: dentistping@gmail.com [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Wang, Lin [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130011 (China); Bao, Chunyun [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 (China); Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Weir, Michael D.; Reynolds, Mark A. [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Ren, Ke [Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, University of Maryland, Baltimore, MD 21201 (United States); Zhao, Liang, E-mail: lzhaonf@126.com [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515 (China); and others

    2017-06-01

    Cell-based tissue engineering is promising to create living functional tissues for bone regeneration. The implanted cells should be evenly distributed in the scaffold, be fast-released to the defect and maintain high viability in order to actively participate in the regenerative process. Herein, we report an injectable calcium phosphate cement (CPC) scaffold containing cell-encapsulating hydrogel microfibers with desirable degradability that could deliver cells in a timely manner and maintain cell viability. Microfibers were synthesized using partially-oxidized alginate with various concentrations (0–0.8%) of fibrinogen to optimize the degradation rate of the alginate-fibrin microfibers (Alg-Fb MF). A fibrin concentration of 0.4% in Alg-Fb MF resulted in the greatest enhancement of cell migration, release and proliferation. Interestingly, a significant amount of cell–cell contact along the long-axis of the microfibers was established in Alg-0.4%Fb MF as early as day 2. The injectable tissue engineered construct for bone reconstruct was fabricated by mixing the fast-degradable Alg-0.4%Fb MF with CPC paste at 1:1 volume ratio. In vitro study showed that cells re-collected from the construct maintained good viability and osteogenic potentials. In vivo study demonstrated that the hBMSC-encapsulated CPC-MF tissue engineered construct displayed a robust capacity for bone regeneration. At 12 weeks after implantation, osseous bridge in the rat mandibular defect was observed in CPC-MF-hBMSCs group with a new bone area fraction of (42.1 ± 7.8) % in the defects, which was > 3-fold that of the control group. The novel tissue-engineered construct presents an excellent prospect for a wide range of dental, craniofacial and orthopedic applications. - Highlights: • Microfibers protected cells during CPC mixing and injection, and supported the viability, migration and differentiation of encapsulated cells. • Cells re-collected from the construct maintained good viability

  13. Engineering bone regeneration with novel cell-laden hydrogel microfiber-injectable calcium phosphate scaffold

    International Nuclear Information System (INIS)

    Song, Yang; Zhang, Chi; Wang, Ping; Wang, Lin; Bao, Chunyun; Weir, Michael D.; Reynolds, Mark A.; Ren, Ke; Zhao, Liang

    2017-01-01

    Cell-based tissue engineering is promising to create living functional tissues for bone regeneration. The implanted cells should be evenly distributed in the scaffold, be fast-released to the defect and maintain high viability in order to actively participate in the regenerative process. Herein, we report an injectable calcium phosphate cement (CPC) scaffold containing cell-encapsulating hydrogel microfibers with desirable degradability that could deliver cells in a timely manner and maintain cell viability. Microfibers were synthesized using partially-oxidized alginate with various concentrations (0–0.8%) of fibrinogen to optimize the degradation rate of the alginate-fibrin microfibers (Alg-Fb MF). A fibrin concentration of 0.4% in Alg-Fb MF resulted in the greatest enhancement of cell migration, release and proliferation. Interestingly, a significant amount of cell–cell contact along the long-axis of the microfibers was established in Alg-0.4%Fb MF as early as day 2. The injectable tissue engineered construct for bone reconstruct was fabricated by mixing the fast-degradable Alg-0.4%Fb MF with CPC paste at 1:1 volume ratio. In vitro study showed that cells re-collected from the construct maintained good viability and osteogenic potentials. In vivo study demonstrated that the hBMSC-encapsulated CPC-MF tissue engineered construct displayed a robust capacity for bone regeneration. At 12 weeks after implantation, osseous bridge in the rat mandibular defect was observed in CPC-MF-hBMSCs group with a new bone area fraction of (42.1 ± 7.8) % in the defects, which was > 3-fold that of the control group. The novel tissue-engineered construct presents an excellent prospect for a wide range of dental, craniofacial and orthopedic applications. - Highlights: • Microfibers protected cells during CPC mixing and injection, and supported the viability, migration and differentiation of encapsulated cells. • Cells re-collected from the construct maintained good viability

  14. Characteristic features of bone tissue regeneration in the vertebral bodies in the experiment with osteograft

    Science.gov (United States)

    Zaydman, A. M.; Predein, Yu. A.; Korel, A. V.; Shchelkunova, E. I.; Strokova, E. I.; Lastevskiy, A. D.; Rerikh, V. V.; Fomichev, N. G.; Falameeva, O. V.; Shevchenko, A. I.; Shevtcov, V. I.

    2017-09-01

    In the practice of orthopedic and trauma surgeons, there is a need to close bone tissue defects after removal of tumors or traumatic and dystrophic lesions. Currently, as cellular technologies are being developed, stem embryonic and pluripotent cells are widely introduced into practical medicine. The unpredictability of the spectrum of cell differentiations, up to oncogenesis, raised the question of creating biological structures committed toward osteogenic direction, capable of regenerating organo-specific graft at the optimal time. Such osteograft was created at the Novosibirsk Institute of Traumatology and Orthopaedics (patent RU 2574942). Its osteogenic orientation was confirmed by the morphological and immunohistochemical methods, and by the expression of bone genes. The regeneration potential of the osteograft was studied in the vertebral bodies of the mini piglet model. The study revealed that the regeneration of the vertebral body defect and the integration of the osteograft with the bed of the recipient proceeds according to the type of primary angiogenic osteogenesis within 30 days.

  15. Successful surgical management of palatogingival groove using platelet-rich fibrin and guided tissue regeneration: A novel approach

    Directory of Open Access Journals (Sweden)

    J V Karunakaran

    2017-01-01

    Full Text Available Palatogingival groove also known as radicularlingual groove is a developmental anomaly involving the lingual surface of the maxillary incisors. They are inconspicuous, funnel-shaped, extend for varying distances on root surface and occur due to infolding of the hertwigs epithelial root sheath. This encourages adherence of microorganisms and plaque to levels significant for pathological changes resulting in endodontic and periodontal lesions. The variations in anatomy of the tooth as a cause of pulp necrosis in teeth of anterior maxillary segment should be considered by the clinician when other etiological factors are ruled out. Recognition of palatogingival groove is critical, especially because of its diagnostic complexity and the problems that may arise if it is not properly interpreted and treated. Regeneration is a new emerging approach in endodontics. Choukroun et al. were among the pioneers for using platelet-rich fibrin (PRF to improve bone healing. PRF is rich in platelet cytokines and growth factors. Numerous techniques have been used to eliminate or seal the groove and regenerate endodontic and periodontal tissues. In this case report of two cases, a novel combination therapy involving ultrasonics, blend of PRF with bone graft, guided tissue regeneration membrane was used in the treatment of a palatogingival groove with an endoperio lesion to ensure arrest of disease progression and promote regeneration. The groove was cleaned and prepared ultrasonically and sealed with a bioactive dentin substitute.

  16. Immunology Guides Skeletal Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    F. Andrea Sass

    2018-03-01

    Full Text Available Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues.

  17. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  18. Plant Regeneration Through Tissue Culture Of Pear Millet ...

    African Journals Online (AJOL)

    1. 1. 2,5), MS(5) and N6(1.100.25) culture media, calli embryogenic potential and fertile plants regeneration were conserved for more than 12 months. Characteristics of regenerated plants were similar to control. It appears that dissected shoot ...

  19. The Use of Endothelial Progenitor Cells for the Regeneration of Musculoskeletal and Neural Tissues

    Directory of Open Access Journals (Sweden)

    Naosuke Kamei

    2017-01-01

    Full Text Available Endothelial progenitor cells (EPCs derived from bone marrow and blood can differentiate into endothelial cells and promote neovascularization. In addition, EPCs are a promising cell source for the repair of various types of vascularized tissues and have been used in animal experiments and clinical trials for tissue repair. In this review, we focused on the kinetics of endogenous EPCs during tissue repair and the application of EPCs or stem cell populations containing EPCs for tissue regeneration in musculoskeletal and neural tissues including the bone, skeletal muscle, ligaments, spinal cord, and peripheral nerves. EPCs can be mobilized from bone marrow and recruited to injured tissue to contribute to neovascularization and tissue repair. In addition, EPCs or stem cell populations containing EPCs promote neovascularization and tissue repair through their differentiation to endothelial cells or tissue-specific cells, the upregulation of growth factors, and the induction and activation of endogenous stem cells. Human peripheral blood CD34(+ cells containing EPCs have been used in clinical trials of bone repair. Thus, EPCs are a promising cell source for the treatment of musculoskeletal and neural tissue injury.

  20. Analysis of Cell Proliferation in Newt (Pleurodeles waltl) Tissue Regeneration during Spaceflight in Foton M-2

    Science.gov (United States)

    Almeida, E. A. C.; Roden, C.; Phillips, J. A.; Yusuf, R.; Globus, R. K.; Searby, N.; Vercoutere, W.; Morey-Holton, E.; Tairbekov, M.; Grigoryan, N.; hide

    2006-01-01

    Terrestrial organisms exposed to microgravity during spaceflight expe rience musculoskeletal degeneration. It is still not understood if lo nger-term exposures to microgravity induce degeneration in other tiss ues, and if these effects are also observed in neutrally buoyant aqu atic organisms that may be pre-adapted to mechanical unloading. The " Regeneration" experiment conducted collaboratively between Russian an d US scientists for 16 days in the Russian Foton M-2 spaceflight soug ht to test the hypothesis that microgravity alters the proliferation of cells in regenerating tail tissue of the newt Pleurodeles waltl. Our initial results indicate that we successfUlly delivered the proli feration marker 5-bromo-2'-deoxy Uridine (BrdU) during spaceflight, and that it was incorporated in the nuclei of cells in regenerating tis sues. Cells in spaceflight tail regenerates proliferated at a slight ly slower rate and were more undifferentiated than those in ground sy nchronous controls. In addition, the size of regenerating tails from spaceflight was smaller than synchronous controls. However, onboard temperature recordings show that the temperature in spaceflight was a bout 2 C lower than ground synchronous controls, possibly explaining the observed differences. Additional post-facto ground controls at ma tched temperatures will correctly determine the effects of spaceflig ht on regenerative cell proliferation in the newt.

  1. Chimeric autologous/allogeneic constructs for skin regeneration.

    Science.gov (United States)

    Rasmussen, Cathy Ann; Tam, Joshua; Steiglitz, Barry M; Bauer, Rebecca L; Peters, Noel R; Wang, Ying; Anderson, R Rox; Allen-Hoffmann, B Lynn

    2014-08-01

    The ideal treatment for severe cutaneous injuries would eliminate the need for autografts and promote fully functional, aesthetically pleasing autologous skin regeneration. NIKS progenitor cell-based skin tissues have been developed to promote healing by providing barrier function and delivering wound healing factors. Independently, a device has recently been created to "copy" skin by harvesting full-thickness microscopic tissue columns (MTCs) in lieu of autografts traditionally harvested as sheets. We evaluated the feasibility of combining these two technologies by embedding MTCs in NIKS-based skin tissues to generate chimeric autologous/allogeneic constructs. Chimeric constructs have the potential to provide immediate wound coverage, eliminate painful donor site wounds, and promote restoration of a pigmented skin tissue possessing hair follicles, sweat glands, and sebaceous glands. After MTC insertion, chimeric constructs and controls were reintroduced into air-interface culture and maintained in vitro for several weeks. Tissue viability, proliferative capacity, and morphology were evaluated after long-term culture. Our results confirmed successful MTC insertion and integration, and demonstrated the feasibility of generating chimeric autologous/allogeneic constructs that preserved the viability, proliferative capacity, and structure of autologous pigmented skin. These feasibility studies established the proof-of-principle necessary to further develop chimeric autologous/allogeneic constructs for the treatment of complex skin defects. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  2. Comparison of tissue processing methods for microvascular visualization in axolotls.

    Science.gov (United States)

    Montoro, Rodrigo; Dickie, Renee

    2017-01-01

    The vascular system, the pipeline for oxygen and nutrient delivery to tissues, is essential for vertebrate development, growth, injury repair, and regeneration. With their capacity to regenerate entire appendages throughout their lifespan, axolotls are an unparalleled model for vertebrate regeneration, but they lack many of the molecular tools that facilitate vascular imaging in other animal models. The determination of vascular metrics requires high quality image data for the discrimination of vessels from background tissue. Quantification of the vasculature using perfused, cleared specimens is well-established in mammalian systems, but has not been widely employed in amphibians. The objective of this study was to optimize tissue preparation methods for the visualization of the microvascular network in axolotls, providing a basis for the quantification of regenerative angiogenesis. To accomplish this aim, we performed intracardiac perfusion of pigment-based contrast agents and evaluated aqueous and non-aqueous clearing techniques. The methods were verified by comparing the quality of the vascular images and the observable vascular density across treatment groups. Simple and inexpensive, these tissue processing techniques will be of use in studies assessing vascular growth and remodeling within the context of regeneration. Advantages of this method include: •Higher contrast of the vasculature within the 3D context of the surrounding tissue •Enhanced detection of microvasculature facilitating vascular quantification •Compatibility with other labeling techniques.

  3. New perspectives in cell delivery systems for tissue regeneration: natural-derived injectable hydrogels.

    Science.gov (United States)

    Munarin, Fabiola; Petrini, Paola; Bozzini, Sabrina; Tanzi, Maria Cristina

    2012-09-27

    Natural polymers, because of their biocompatibility, availability, and physico-chemical properties have been the materials of choice for the fabrication of injectable hydrogels for regenerative medicine. In particular, they are appealing materials for delivery systems and provide sustained and controlled release of drugs, proteins, gene, cells, and other active biomolecules immobilized.In this work, the use of hydrogels obtained from natural source polymers as cell delivery systems is discussed. These materials were investigated for the repair of cartilage, bone, adipose tissue, intervertebral disc, neural, and cardiac tissue. Papers from the last ten years were considered, with a particular focus on the advances of the last five years. A critical discussion is centered on new perspectives and challenges in the regeneration of specific tissues, with the aim of highlighting the limits of current systems and possible future advancements.

  4. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities.

    Science.gov (United States)

    Pavlath, G K; Thaloor, D; Rando, T A; Cheong, M; English, A W; Zheng, B

    1998-08-01

    Skeletal muscle has a remarkable capacity to regenerate after injury, although studies of muscle regeneration have heretofore been limited almost exclusively to limb musculature. Muscle precursor cells in skeletal muscle are responsible for the repair of damaged muscle. Heterogeneity exists in the growth and differentiation properties of muscle precursor cell (myoblast) populations throughout limb development but whether the muscle precursor cells differ among adult skeletal muscles is unknown. Such heterogeneity among myoblasts in the adult may give rise to skeletal muscles with different regenerative capacities. Here we compare the regenerative response of a masticatory muscle, the masseter, to that of limb muscles. After exogenous trauma (freeze or crush injuries), masseter muscle regenerated much less effectively than limb muscle. In limb muscle, normal architecture was restored 12 days after injury, whereas in masseter muscle, minimal regeneration occurred during the same time period. Indeed, at late time points, masseter muscles exhibited increased fibrous connective tissue in the region of damage, evidence of ineffective muscle regeneration. Similarly, in response to endogenous muscle injury due to a muscular dystrophy, widespread evidence of impaired regeneration was present in masseter muscle but not in limb muscle. To explore the cellular basis of these different regenerative capacities, we analyzed the myoblast populations of limb and masseter muscles both in vivo and in vitro. From in vivo analyses, the number of myoblasts in regenerating muscle was less in masseter compared with limb muscle. Assessment of population growth in vitro indicated that masseter myoblasts grow more slowly than limb myoblasts under identical conditions. We conclude that the impaired regeneration in masseter muscles is due to differences in the intrinsic myoblast populations compared to limb muscles.

  5. Regeneration of baroafferents after implantation into different vessels

    NARCIS (Netherlands)

    Stevens, Markus F.; Hermanns, Henning; Freynhagen, Rainer; Novotny, Gerd E. K.; Lipfert, Peter

    2007-01-01

    Regeneration of peripheral nerves involves an essential contribution by surrounding tissues. This study focuses on the role of the target tissue on the regeneration of afferent peripheral nerves. We hypothesized that nerves implanted into the appropriate target tissue regain their function, whereas

  6. The effect of endogenous hydrogen peroxide induced by cold treatment in the improvement of tissue regeneration efficiency

    NARCIS (Netherlands)

    Szechynska-Hebda, M.; Skrzypek, E.; Dabrowska, G.; Wedzony, M.; Lammeren, van A.A.M.

    2012-01-01

    We propose that oxidative stress resulting from an imbalance between generation and scavenging hydrogen peroxide contributes to tissue regeneration efficiency during somatic embryogenesis of hexaploid winter wheat (Triticum aestivum cv. Kamila) and organogenesis of faba bean (Vicia faba ssp. minor

  7. Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective.

    Science.gov (United States)

    Huang, George T-J; Al-Habib, Mey; Gauthier, Philippe

    2013-03-01

    There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic.

  8. Periodontal tissue regeneration with PRP incorporated gelatin hydrogel sponges

    International Nuclear Information System (INIS)

    Nakajima, Dai; Tabata, Yasuhiko; Sato, Soh

    2015-01-01

    Gelatin hydrogels have been designed and prepared for the controlled release of the transforming growth factor (TGF-b1) and the platelet-derived growth factor (PDGF-BB). PRP (Platelet rich plasma) contains many growth factors including the PDGF and TGF-b1. The objective of this study was to evaluate the regeneration of periodontal tissue following the controlled release of growth factors in PRP. For the periodontal ligament cells and osteoblast, PRP of different concentrations was added. The assessment of DNA, mitochondrial activity and ALP activity were measured. To evaluate the TGF-β1 release from PRP incorporated gelatin sponge, amounts of TGF-β1 in each supernatant sample were determined by the ELISA. Transplantation experiments to prepare a bone defect in a rat alveolar bone were an implanted gelatin sponge incorporated with different concentration PRP. In DNA assay and MTT assay, after the addition of PRP to the periodontal ligament cells and osteoblast, the cell count and mitochondrial activity had increased the most in the group with the addition of 5  ×  PRP. In the ALP assay, after the addition of PRP to the periodontal ligament cells, the cell activity had increased the most in the group with the addition of 3  ×  PRP. In the transplantation, the size of the bone regenerated in the defect with 3  ×  PRP incorporated gelatin sponge was larger than that of the other group. (paper)

  9. Periodontal tissue regeneration with PRP incorporated gelatin hydrogel sponges.

    Science.gov (United States)

    Nakajima, Dai; Tabata, Yasuhiko; Sato, Soh

    2015-10-20

    Gelatin hydrogels have been designed and prepared for the controlled release of the transforming growth factor (TGF-b1) and the platelet-derived growth factor (PDGF-BB). PRP (Platelet rich plasma) contains many growth factors including the PDGF and TGF-b1. The objective of this study was to evaluate the regeneration of periodontal tissue following the controlled release of growth factors in PRP. For the periodontal ligament cells and osteoblast, PRP of different concentrations was added. The assessment of DNA, mitochondrial activity and ALP activity were measured. To evaluate the TGF-β1 release from PRP incorporated gelatin sponge, amounts of TGF-β1 in each supernatant sample were determined by the ELISA. Transplantation experiments to prepare a bone defect in a rat alveolar bone were an implanted gelatin sponge incorporated with different concentration PRP. In DNA assay and MTT assay, after the addition of PRP to the periodontal ligament cells and osteoblast, the cell count and mitochondrial activity had increased the most in the group with the addition of 5  ×  PRP. In the ALP assay, after the addition of PRP to the periodontal ligament cells, the cell activity had increased the most in the group with the addition of 3  ×  PRP. In the transplantation, the size of the bone regenerated in the defect with 3  ×  PRP incorporated gelatin sponge was larger than that of the other group.

  10. Effect of x-ray irradiation on maize inbred line B73 tissue cultures and regenerated plants

    International Nuclear Information System (INIS)

    Wang, A.S.; Cheng, D.S.K.; Milcic, J.B.; Yang, T.C.

    1988-01-01

    In order to enhance variation induced by the tissue culture process and to obtain agronomically desirable mutants, friable embryogenic tissue cultures of maize (Zea mays L.) inbred line B73 were x-ray irradiated with 11 doses [0-8.4 kilorads (kR)]. Reductions in callus growth rate and embryogenic callus formation occurred with increasing x-ray doses 20 d and 3 months after irradiation. Callus irradiated with 0.8 kR showed a significant increase in growth rate and a 20% increase in embryogenic callus 9 months after irradiation. A total of 230 R 0 plants were regenerated for evaluation. Pollen fertility and seed set of R 0 plants decreased with increasing x-ray dosage. Days to anthesis and plant height of R 0 plants varied among x-ray treatments but were generally reduced with higher dosages. The number of chromosomal aberrations increased with x-ray dosage. The R 1 seeds taken from R 0 plants were also grown and tested for mutant segregation. Plants regenerated from irradiated calli had a two- to 10-fold increase in mutations over plants regenerated from unirradiated control callus. Germination frequency of seeds from R 0 plants decreased with increasing x-ray dosage. Although chlorophyll mutants were most frequently observed, a number of vigorous plants with earlier anthesis date were also recovered

  11. Behaviour of telomere and telomerase during aging and regeneration in zebrafish.

    Directory of Open Access Journals (Sweden)

    Monique Anchelin

    Full Text Available Telomere length and telomerase activity are important factors in the pathobiology of human diseases. Age-related diseases and premature aging syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. The zebrafish (Danio rerio offers multiple experimental manipulation advantages over other vertebrate models and, therefore, it has been recently considered as a potential model for aging, cancer, and regeneration studies. However, it has only partially been exploited to shed light on these fundamental biological processes. The aim of this study was, therefore, to investigate telomere length and telomerase expression and activity in different strains of zebrafish obtained from different stock centres to determine whether they undergo any changes during aging and regeneration. We found that although both telomerase expression and telomere length increased from embryo to adulthood stages, they drastically declined in aged fish despite telomerase activity was detected in different tissues of old fish. In addition, we observed a weaker upregulation of telomerase expression in regenerating fins of old fish, which well correlates with their impaired regeneration capacity. Strikingly, telomeres were elongated or maintained during the fin regeneration process at all ages and after repeated amputations, likely to support high cell proliferation rates. We conclude that the expression of telomerase and telomere length are closely related during the entire life cycle of the fish and that these two parameters can be used as biomarkers of aging in zebrafish. Our results also reveal a direct relationship between the expression of telomerase, telomere length and the efficiency of tissue regeneration.

  12. Structural diversity, its components and regenerating capacity of lesser Himalayan forests vegetation of Nikyal valley District Kotli (A.K), Pakistan.

    Science.gov (United States)

    Amjad, Muhammad Shoaib; Arshad, Muhammad; Chaudhari, Sunbal Khalil

    2014-09-01

    To report the patterns of species diversity, and regenerating capacity in the forest of Nikyal valley in relation to environmental variables and underlying anthropogenic influence. A study area was selected in a traditionally managed mountain woody pasture during July 2012 to June 2013. The area was sampled by quadrat method. The quadrats were laid down at regular intervals of 150 m. The size of quadrats was kept 10×10, 5×5 and 1×1 m(2) for trees, shrubs and herbs respectively. Density, frequency and cover were recorded. Importance value index of each plant species was calculated and plant communities were named after the plant species having the highest IV. Then diversity, its components and regenerating capacity were calculated with their formulas. Shannon's diversity ranged from 2.75 to 3.31, Simpson's diversity, 0.90 to 0.95; Menhinick's diversity, 0.83 to 1.19; evenness, 0.41 to 0.65; species richness, 4.89 to 6.08 and maturity index, 30 to 44 species distribution pattern. Diversity values were similar to the other Himalayan forests. Pinus roxburghaii was the only regenerating species whereas the remaining four tree species including Qurecus dilatata regenerate up to 100 cm; they are at extreme risk of elimination due to anthropogenic factors. Nikyal valley is under severe deforestation pressure for fuel and timber value. There is an urgent need to promote the ethics among the people that improvement and conservation of natural resources are critical for land and soil management. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  13. In vitro evaluation of various bioabsorbable and nonresorbable barrier membranes for guided tissue regeneration

    Directory of Open Access Journals (Sweden)

    Smeets Ralf

    2008-10-01

    Full Text Available Abstract Background Different types of bioabsorbable and nonresorbable membranes have been widely used for guided tissue regeneration (GTR with its ultimate goal of regenerating lost periodontal structures. The purpose of the present study was to evaluate the biological effects of various bioabsorbable and nonresorbable membranes in cultures of primary human gingival fibroblasts (HGF, periodontal ligament fibroblasts (PDLF and human osteoblast-like (HOB cells in vitro. Methods Three commercially available collagen membranes [TutoDent® (TD, Resodont® (RD and BioGide® (BG] as well as three nonresorbable polytetrafluoroethylene (PTFE membranes [ACE (AC, Cytoplast® (CT and TefGen-FD® (TG] were tested. Cells plated on culture dishes (CD served as positive controls. The effect of the barrier membranes on HGF, PDLF as well as HOB cells was assessed by the Alamar Blue fluorometric proliferation assay after 1, 2.5, 4, 24 and 48 h time periods. The structural and morphological properties of the membranes were evaluated by scanning electron microscopy (SEM. Results The results showed that of the six barriers tested, TD and RD demonstrated the highest rate of HGF proliferation at both earlier (1 h and later (48 h time periods (P P ≤ 0.001. In HOB cell culture, the highest rate of cell proliferation was also calculated for TD at all time periods (P Conclusion Results from the present study suggested that GTR membrane materials, per se, may influence cell proliferation in the process of periodontal tissue/bone regeneration. Among the six membranes examined, the bioabsorbable membranes demonstrated to be more suitable to stimulate cellular proliferation compared to nonresorbable PTFE membranes.

  14. Lung regeneration by fetal lung tissue implantation in a mouse pulmonary emphysema model.

    Science.gov (United States)

    Uyama, Koh; Sakiyama, Shoji; Yoshida, Mitsuteru; Kenzaki, Koichiro; Toba, Hiroaki; Kawakami, Yukikiyo; Okumura, Kazumasa; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira

    2016-01-01

    The mortality and morbidity of chronic obstructive pulmonary disease are high. However, no radical therapy has been developed to date. The purpose of this study was to evaluate whether fetal mouse lung tissue can grow and differentiate in the emphysematous lung. Fetal lung tissue from green fluorescent protein C57BL/6 mice at 16 days' gestation was used as donor material. Twelve-month-old pallid mice were used as recipients. Donor lungs were cut into small pieces and implanted into the recipient left lung by performing thoracotomy under anesthesia. The recipient mice were sacrificed at day 7, 14, and 28 after implantation and used for histological examination. Well-developed spontaneous pulmonary emphysema was seen in 12-month-old pallid mice. Smooth and continuous connection between implanted fetal lung tissue and recipient lung was recognized. Air space expansion and donor tissue differentiation were observed over time. We could clearly distinguish the border zones between injected tissue and native tissue by the green fluorescence of grafts. Fetal mouse lung fragments survived and differentiated in the emphysematous lung of pallid mice. Implantation of fetal lung tissue in pallid mice might lead to further lung regeneration research from the perspective of respiratory and exercise function. J. Med. Invest. 63: 182-186, August, 2016.

  15. Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration

    Science.gov (United States)

    Zhu, Wei; Kuo, Dwight; Nathanson, Jason; Satoh, Akira; Pao, Gerald M.; Yeo, Gene W.; Bryant, Susan V.; Voss, S. Randal; Gardiner, David M.; Hunter, Tony

    2012-01-01

    Salamanders possess an extraordinary capacity for tissue and organ regeneration when compared to mammals. In our effort to characterize the unique transcriptional fingerprint emerging during the early phase of salamander limb regeneration, we identified transcriptional activation of some germline-specific genes within the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells into a germline-like state. In this work, we focus on one of these genes, the long interspersed nucleotide element-1 (LINE-1) retrotransposon, which is usually active in germ cells and silent in most of the somatic tissues in other organisms. LINE-1 was found to be dramatically upregulated during regeneration. In addition, higher genomic LINE-1 content was also detected in the limb regenerate when compared to that before amputation indicating that LINE-1 retrotransposition is indeed active during regeneration. Active LINE-1 retrotransposition has been suggested to have a potentially deleterious impact on genomic integrity. Silencing of activated LINE-1 by small RNAs has been reported to be part of the machinery aiming to maintain genomic integrity. Indeed, we were able to identify putative LINE-1-related piRNAs in the limb blastema. Transposable element-related piRNAs have been identified frequently in the germline in other organisms. Thus, we present here a scenario in which a unique germline-like state is established during axolotl limb regeneration, and the re-activation of LINE-1 may serve as a marker for cellular dedifferentiation in the early-stage of limb regeneration. PMID:22913491

  16. Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia.

    Directory of Open Access Journals (Sweden)

    Germana Zaccagnini

    Full Text Available Magnetic resonance imaging (MRI provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time, diffusion-tensor imaging (Fractional Anisotropy and perfusion by Dynamic Contrast-Enhanced MRI (K-trans were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1 T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2 Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3 K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.

  17. Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia.

    Science.gov (United States)

    Zaccagnini, Germana; Palmisano, Anna; Canu, Tamara; Maimone, Biagina; Lo Russo, Francesco M; Ambrogi, Federico; Gaetano, Carlo; De Cobelli, Francesco; Del Maschio, Alessandro; Esposito, Antonio; Martelli, Fabio

    2015-01-01

    Magnetic resonance imaging (MRI) provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time), diffusion-tensor imaging (Fractional Anisotropy) and perfusion by Dynamic Contrast-Enhanced MRI (K-trans) were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1) T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2) Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3) K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.

  18. Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration.

    Science.gov (United States)

    Salgado, Christiane Laranjo; Grenho, Liliana; Fernandes, Maria Helena; Colaço, Bruno Jorge; Monteiro, Fernando Jorge

    2016-01-01

    Designing biomimetic biomaterials inspired by the natural complex structure of bone and other hard tissues is still a challenge nowadays. The control of the biomineralization process onto biomaterials should be evaluated before clinical application. Aiming at bone regeneration applications, this work evaluated the in vitro biodegradation and interaction between human bone marrow stromal cells (HBMSC) cultured on different collagen/nanohydroxyapatite cryogels. Cell proliferation, differentiation, morphology, and metabolic activity were assessed through different protocols. All the biocomposite materials allowed physiologic apatite deposition after incubation in simulated body fluid and the cryogel with the highest nanoHA content showed to have the highest mechanical strength (DMA). The study clearly showed that the highest concentration of nanoHA granules on the cryogels were able to support cell type's survival, proliferation, and individual functionality in a monoculture system, for 21 days. In fact, the biocomposites were also able to differentiate HBMSCs into osteoblastic phenotype. The composites behavior was also assessed in vivo through subcutaneous and bone implantation in rats to evaluate its tissue-forming ability and degradation rate. The cryogels Coll/nanoHA (30 : 70) promoted tissue regeneration and adverse reactions were not observed on subcutaneous and bone implants. The results achieved suggest that scaffolds of Coll/nanoHA (30 : 70) should be considered promising implants for bone defects that present a grotto like appearance with a relatively small access but a wider hollow inside. This material could adjust to small dimensions and when entering into the defect, it could expand inside and remain in close contact with the defect walls, thus ensuring adequate osteoconductivity. © 2015 Wiley Periodicals, Inc.

  19. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries

    Directory of Open Access Journals (Sweden)

    Oscar A. Carballo-Molina

    2015-02-01

    Full Text Available Damage caused to neural tissue by disease or injury frequently produces a discontinuity in the nervous system. Such damage generates diverse alterations that are commonly permanent, due to the limited regeneration capacity of the adult nervous system, particularly the Central Nervous System (CNS. The cellular reaction to noxious stimulus leads to several events such as the formation of glial and fibrous scars, which inhibit axonal regeneration in both the CNS and the Peripheral Nervous System (PNS. Although in the PNS there is some degree of nerve regeneration, it is common that the growing axons reinnervate incorrect areas, causing mismatches. Providing a permissive substrate for axonal regeneration in combination with delivery systems for the release of molecules, which enhances axonal growth, could increase regeneration and the recovery of functions in the CNS or the PNS. Currently, there are no effective vehicles to supply growth factors or cells to the damaged/diseased nervous system. Hydrogels are polymers that are biodegradable, biocompatible and have the capacity to deliver a large range of molecules in situ. The inclusion of cultured neural cells into hydrogels forming three-dimensional structures allows the formation of synapses and neuronal survival. There is also evidence showing that hydrogels constitute an amenable substrate for axonal growth of endogenous or grafted cells, overcoming the presence of axonal regeneration inhibitory molecules, in both the central and peripheral nervous systems. Recent experiments suggest that hydrogels can carry and deliver several proteins relevant for improving neuronal survival and axonal growth. Although the use of hydrogels is appealing, its effectiveness is still a matter of discussion, and more results are needed to achieve consistent recovery using different parameters. This review also discusses areas of opportunity where hydrogels can be applied, in order to promote axonal regeneration of

  20. Treatment of a large periradicular defect using guided tissue regeneration: A case report of 2 years follow-up and surgical re-entry

    Directory of Open Access Journals (Sweden)

    Abhijit Ningappa Gurav

    2015-01-01

    Full Text Available Periradicular (PR bone defects are common sequelae of chronic endodontic lesions. Sometimes, conventional root canal therapy is not adequate for complete resolution of the lesion. PR surgeries may be warranted in such selected cases. PR surgery provides a ready access for the removal of pathologic tissue from the periapical region, assisting in healing. Recently, the regeneration of the destroyed PR tissues has gained more attention rather than repair. In order to promote regeneration after apical surgery, the principle of guided tissue regeneration (GTR has proved to be useful. This case presents the management of a large PR lesion in a 42-year-old male subject. The PR lesion associated with 21, 11 and 12 was treated using GTR membrane, fixated with titanium minipins. The case was followed up for 2 years radiographically, and a surgical re-entry confirmed the re-establishment of the lost labial plate. Thus, the principle of GTR may immensely improve the clinical outcome and prognosis of an endodontically involved tooth with a large PR defect.

  1. Treatment of a large periradicular defect using guided tissue regeneration: A case report of 2 years follow-up and surgical re-entry

    Science.gov (United States)

    Gurav, Abhijit Ningappa; Shete, Abhijeet Rajendra; Naiktari, Ritam

    2015-01-01

    Periradicular (PR) bone defects are common sequelae of chronic endodontic lesions. Sometimes, conventional root canal therapy is not adequate for complete resolution of the lesion. PR surgeries may be warranted in such selected cases. PR surgery provides a ready access for the removal of pathologic tissue from the periapical region, assisting in healing. Recently, the regeneration of the destroyed PR tissues has gained more attention rather than repair. In order to promote regeneration after apical surgery, the principle of guided tissue regeneration (GTR) has proved to be useful. This case presents the management of a large PR lesion in a 42-year-old male subject. The PR lesion associated with 21, 11 and 12 was treated using GTR membrane, fixated with titanium minipins. The case was followed up for 2 years radiographically, and a surgical re-entry confirmed the re-establishment of the lost labial plate. Thus, the principle of GTR may immensely improve the clinical outcome and prognosis of an endodontically involved tooth with a large PR defect. PMID:26941526

  2. Nanoparticles for tendon healing and regeneration: literature review.

    Directory of Open Access Journals (Sweden)

    Paolo Domenico Parchi

    2016-08-01

    Full Text Available Tendon injuries are commonly met in the emergency department. Unfortunately, tendon tissue has limited regeneration potential and usually the consequent formation of scar tissue causes inferior mechanical properties Nanoparticles could be used in different way to improve tendon healing and regeneration, ranging from scaffolds manufacturing (increasing the strength and endurance or anti-adhesions, anti-microbial and anti-inflammatory properties to gene therapy. This paper aims to summarize the most relevant studies showing the potential application of nanoparticles for tendon tissue regeneration

  3. Fine-tuning Cartilage Tissue Engineering by Applying Principles from Embryonic Development

    OpenAIRE

    Hellingman, Catharine

    2012-01-01

    textabstractCartilage has a very poor capacity for regeneration in vivo. In head and neck surgery cartilage defects are usually reconstructed with autologous cartilage from for instance the external ear or the ribs. Cartilage tissue engineering may be a promising alternative to supply tissue for cartilage reconstructions in otorhinolaryngology as well as in plastic surgery and orthopaedics. The aim of this thesis is to find new tools by which cartilage tissue engineering can be better control...

  4. Role of chondroitin sulphate tethered silk scaffold in cartilaginous disc tissue regeneration.

    Science.gov (United States)

    Bhattacharjee, Maumita; Chawla, Shikha; Chameettachal, Shibu; Murab, Sumit; Bhavesh, Neel Sarovar; Ghosh, Sourabh

    2016-04-12

    Strategies for tissue engineering focus on scaffolds with tunable structure and morphology as well as optimum surface chemistry to simulate the anatomy and functionality of the target tissue. Silk fibroin has demonstrated its potential in supporting cartilaginous tissue formation both in vitro and in vivo. In this study, we investigate the role of controlled lamellar organization and chemical composition of biofunctionalized silk scaffolds in replicating the structural properties of the annulus region of an intervertebral disc using articular chondrocytes. Covalent attachment of chondroitin sulfate (CS) to silk is characterized. CS-conjugated silk constructs demonstrate enhanced cellular metabolic activity and chondrogenic redifferentiation potential with significantly improved mechanical properties over silk-only constructs. A matrix-assisted laser desorption ionization-time of flight analysis and protein-protein interaction studies help to generate insights into how CS conjugation can facilitate the production of disc associated matrix proteins, compared to a silk-only based construct. An in-depth understanding of the interplay between such extra cellular matrix associated proteins should help in designing more rational scaffolds for cartilaginous disc regeneration needs.

  5. Role of chondroitin sulphate tethered silk scaffold in cartilaginous disc tissue regeneration

    International Nuclear Information System (INIS)

    Bhattacharjee, Maumita; Chawla, Shikha; Chameettachal, Shibu; Murab, Sumit; Ghosh, Sourabh; Bhavesh, Neel Sarovar

    2016-01-01

    Strategies for tissue engineering focus on scaffolds with tunable structure and morphology as well as optimum surface chemistry to simulate the anatomy and functionality of the target tissue. Silk fibroin has demonstrated its potential in supporting cartilaginous tissue formation both in vitro and in vivo. In this study, we investigate the role of controlled lamellar organization and chemical composition of biofunctionalized silk scaffolds in replicating the structural properties of the annulus region of an intervertebral disc using articular chondrocytes. Covalent attachment of chondroitin sulfate (CS) to silk is characterized. CS-conjugated silk constructs demonstrate enhanced cellular metabolic activity and chondrogenic redifferentiation potential with significantly improved mechanical properties over silk-only constructs. A matrix-assisted laser desorption ionization-time of flight analysis and protein–protein interaction studies help to generate insights into how CS conjugation can facilitate the production of disc associated matrix proteins, compared to a silk-only based construct. An in-depth understanding of the interplay between such extra cellular matrix associated proteins should help in designing more rational scaffolds for cartilaginous disc regeneration needs. (paper)

  6. Use of the carbon dioxide laser in guided tissue regeneration wound healing in the beagle dog

    Science.gov (United States)

    Rossmann, Jeffrey A.; Parlar, Ates; Abdel-Ghaffar, Khaled A.; El-Khouli, Amr M.; Israel, Michael

    1996-04-01

    The concept of guided tissue regeneration (GTR) allowing cells from the periodontal ligament and alveolar bone to repopulate the treated root surface has shown the ability to obtain periodontal new attachment. Healing studies have also shown that conventional GTR therapy still does not exclude all the epithelium. This epithelial proliferation apically interferes with the establishment of the new connective tissue attachment to the root surface. The objective of this research study was to examine whether controlled de-epithelialization with the carbon dioxide laser during the healing phase after periodontal surgery, would retard the apical migration of the epithelium and thereby enhance the results obtained through guided tissue regeneration. Eight beagle dogs were used, the experimental side received de-epithelialization with the CO2 laser in conjunction with flap reflection and surgically created buccal osseous defects. Selected defects on each side were treated with ePTFE periodontal membranes. The laser de-epithelialization was repeated every 10 days until removal of the membranes. The control side received the same surgical treatment without laser application. This experimental design allowed histologic study of the new attachment obtained in defects treated with flap debridement with or without laser de-epithelialization and with or without ePTFE membranes. A statistical analysis was performed on the histometric data from 48 teeth in the 8 dogs after 4 months of healing. The results showed significant amounts of new attachment obtained from all four treatment modalities with no statistically significant differences for any one treatment. However, the trend towards enhanced regeneration with the combined treatment of laser and membrane vs. membrane alone or debridement alone was evident. The histologic analysis revealed a significant amount of newly formed `fat cementum' seen only on the laser treated teeth. This feature was the most remarkable finding of the

  7. Platelet-Rich Plasma in Bone Regeneration: Engineering the Delivery for Improved Clinical Efficacy

    Directory of Open Access Journals (Sweden)

    Isaac A. Rodriguez

    2014-01-01

    Full Text Available Human bone is a tissue with a fairly remarkable inherent capacity for regeneration; however, this regenerative capacity has its limitations, and defects larger than a critical size lack the ability to spontaneously heal. As such, the development and clinical translation of effective bone regeneration modalities are paramount. One regenerative medicine approach that is beginning to gain momentum in the clinical setting is the use of platelet-rich plasma (PRP. PRP therapy is essentially a method for concentrating platelets and their intrinsic growth factors to stimulate and accelerate a healing response. While PRP has shown some efficacy in both in vitro and in vivo scenarios, to date its use and delivery have not been optimized for bone regeneration. Issues remain with the effective delivery of the platelet-derived growth factors to a localized site of injury, the activation and temporal release of the growth factors, and the rate of growth factor clearance. This review will briefly describe the physiological principles behind PRP use and then discuss how engineering its method of delivery may ultimately impact its ability to successfully translate to widespread clinical use.

  8. Strategies to Improve Regeneration of the Soft Palate Muscles After Cleft Palate Repair

    Science.gov (United States)

    Carvajal Monroy, Paola L.; Grefte, Sander; Kuijpers-Jagtman, Anne Marie; Wagener, Frank A.D.T.G.

    2012-01-01

    Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. These patients are unable to separate the nasal from the oral cavity leading to air loss during speech. Although surgical repair ameliorates soft palate function by joining the clefted muscles of the soft palate, optimal function is often not achieved. The regeneration of muscles in the soft palate after surgery is hampered because of (1) their low intrinsic regenerative capacity, (2) the muscle properties related to clefting, and (3) the development of fibrosis. Adjuvant strategies based on tissue engineering may improve the outcome after surgery by approaching these specific issues. Therefore, this review will discuss myogenesis in the noncleft and cleft palate, the characteristics of soft palate muscles, and the process of muscle regeneration. Finally, novel therapeutic strategies based on tissue engineering to improve soft palate function after surgical repair are presented. PMID:22697475

  9. A rapid and efficient in vitro regeneration system for lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Armas, Isabel; Pogrebnyak, Natalia; Raskin, Ilya

    2017-01-01

    Successful biotechnological improvement of crop plants requires a reliable and efficient in vitro regeneration system. Lettuce ( Lactuca sativa L.), one the most important vegetable crops worldwide, is strongly genotype-dependent in terms of regeneration capacity, limiting the potential for biotechnological improvement of cultivars which show recalcitrance under currently available protocols. The effect of different nutrient sources, plant hormone combinations and activated charcoal supplementation on shoot induction efficiency was evaluated on the cultivar 'RSL NFR', which had previously shown poor regeneration efficiency. Multiple shoot organogenesis from cotyledon explants was recorded at the highest frequency and speed on Murashige and Skoog regeneration medium supplemented with 200 mg/l of activated charcoal, 3% sucrose, 10 mg/l benzylaminopurine and 0.5 mg/l naphthaleneacetic acid, which induced shoots through direct regeneration in 90.8 ± 7.9% of explants. High shoot induction efficiency was also observed, albeit not quantified, when using this medium on some other cultivars. This activated charcoal-containing regeneration medium might offer a rapid and efficient option for direct shoot induction in some lettuce genotypes that do not respond well to common lettuce regeneration protocols. This is also the first report of the effect of activated charcoal in lettuce tissue culture.

  10. Histone deacetylases and their roles in mineralized tissue regeneration

    Directory of Open Access Journals (Sweden)

    Nam Cong-Nhat Huynh

    2017-12-01

    Full Text Available Histone acetylation is an important epigenetic mechanism that controls expression of certain genes. It includes non-sequence-based changes of chromosomal regional structure that can alter the expression of genes. Acetylation of histones is controlled by the activity of two groups of enzymes: the histone acetyltransferases (HATs and histone deacetylases (HDACs. HDACs remove acetyl groups from the histone tail, which alters its charge and thus promotes compaction of DNA in the nucleosome. HDACs render the chromatin structure into a more compact form of heterochromatin, which makes the genes inaccessible for transcription. By altering the transcriptional activity of bone-associated genes, HDACs control both osteogenesis and osteoclastogenesis. This review presents an overview of the function of HDACs in the modulation of bone formation. Special attention is paid to the use of HDAC inhibitors in mineralized tissue regeneration from cells of dental origin.

  11. Biocompatible nanocomposite of TiO2 incorporated bi-polymer for articular cartilage tissue regeneration: A facile material.

    Science.gov (United States)

    Cao, Lei; Wu, Xiaofeng; Wang, Qiugen; Wang, Jiandong

    2018-01-01

    The development and design of polymeric hydrogels for articular cartilage tissue engineering have been a vital biomedical research for recent days. Organic/inorganic combined hydrogels with improved surface activity have shown potential for the repair and regeneration of hard tissues, but have not been broadly studied for articular cartilage tissue engineering applications. In this work, bi-polymeric hydrogel composite was designed with the incorporation some quantities of stick-like TiO 2 nanostructures for favorable surface behavior and enhancement of osteoblast adhesions. The microscopic investigations clearly exhibited that the stick-like TiO 2 nanostructured materials are highly inserted into the PVA/PVP bi-polymeric matrix, due to the long-chain PVA molecules are promoted to physical crosslinking density in hydrogel network. The results of improved surface topography of hydrogel matrixes show that more flatted cell morphologies and enhanced osteoblast attachment on the synthesized nanocomposites. The crystalline bone and stick-like TiO 2 nanocomposites significantly improved the bioactivity via lamellipodia and filopodia extension of osteoblast cells, due to its excellent intercellular connection and regulated cell responses. Consequently, these hydrogel has been enhanced the antibacterial activity against Staphylococcus aureus and Escherichia coli bacterial pathogens. Hence it is concluded that these hydrogel nanocomposite with improved morphology, osteoblast behavior and bactericidal activity have highly potential candidates for articular cartilage tissue regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bone tissue engineering and regeneration: from discovery to the clinic--an overview.

    Science.gov (United States)

    O'Keefe, Regis J; Mao, Jeremy

    2011-12-01

    A National Institutes of Health sponsored workshop "Bone Tissue Engineering and Regeneration: From Discovery to the Clinic" gathered thought leaders from medicine, science, and industry to determine the state of art in the field and to define the barriers to translating new technologies to novel therapies to treat bone defects. Tissue engineering holds enormous promise to improve human health through prevention of disease and the restoration of healthy tissue functions. Bone tissue engineering, similar to that for other tissues and organs, requires integration of multiple disciplines such as cell biology, stem cells, developmental and molecular biology, biomechanics, biomaterials science, and immunology and transplantation science. Although each of the research areas has undergone enormous advances in last decade, the translation to clinical care and the development of tissue engineering composites to replace human tissues has been limited. Bone, similar to other tissue and organs, has complex structure and functions and requires exquisite interactions between cells, matrices, biomechanical forces, and gene and protein regulatory factors for sustained function. The process of engineering bone, thus, requires a comprehensive approach with broad expertise. Although in vitro and preclinical animal studies have been pursued with a large and diverse collection of scaffolds, cells, and biomolecules, the field of bone tissue engineering remains fragmented up to the point that a clear translational roadmap has yet to emerge. Translation is particularly important for unmet clinical needs such as large segmental defects and medically compromised conditions such as tumor removal and infection sites. Collectively, manuscripts in this volume provide luminary examples toward identification of barriers and strategies for translation of fundamental discoveries into clinical therapeutics. © Mary Ann Liebert, Inc.

  13. Bone Tissue Engineering and Regeneration: From Discovery to the Clinic—An Overview

    Science.gov (United States)

    2011-01-01

    A National Institutes of Health sponsored workshop “Bone Tissue Engineering and Regeneration: From Discovery to the Clinic” gathered thought leaders from medicine, science, and industry to determine the state of art in the field and to define the barriers to translating new technologies to novel therapies to treat bone defects. Tissue engineering holds enormous promise to improve human health through prevention of disease and the restoration of healthy tissue functions. Bone tissue engineering, similar to that for other tissues and organs, requires integration of multiple disciplines such as cell biology, stem cells, developmental and molecular biology, biomechanics, biomaterials science, and immunology and transplantation science. Although each of the research areas has undergone enormous advances in last decade, the translation to clinical care and the development of tissue engineering composites to replace human tissues has been limited. Bone, similar to other tissue and organs, has complex structure and functions and requires exquisite interactions between cells, matrices, biomechanical forces, and gene and protein regulatory factors for sustained function. The process of engineering bone, thus, requires a comprehensive approach with broad expertise. Although in vitro and preclinical animal studies have been pursued with a large and diverse collection of scaffolds, cells, and biomolecules, the field of bone tissue engineering remains fragmented up to the point that a clear translational roadmap has yet to emerge. Translation is particularly important for unmet clinical needs such as large segmental defects and medically compromised conditions such as tumor removal and infection sites. Collectively, manuscripts in this volume provide luminary examples toward identification of barriers and strategies for translation of fundamental discoveries into clinical therapeutics. PMID:21902614

  14. Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells.

    Science.gov (United States)

    Yoshida, Keita; Hozumi, Akiko; Treen, Nicholas; Sakuma, Tetsushi; Yamamoto, Takashi; Shirae-Kurabayashi, Maki; Sasakura, Yasunori

    2017-03-15

    The ascidian Ciona intestinalis has a high regeneration capacity that enables the regeneration of artificially removed primordial germ cells (PGCs) from somatic cells. We utilized PGC regeneration to establish efficient methods of germ line mutagenesis with transcription activator-like effector nucleases (TALENs). When PGCs were artificially removed from animals in which a TALEN pair was expressed, somatic cells harboring mutations in the target gene were converted into germ cells, this germ cell population exhibited higher mutation rates than animals not subjected to PGC removal. PGC regeneration enables us to use TALEN expression vectors of specific somatic tissues for germ cell mutagenesis. Unexpectedly, cis elements for epidermis, neural tissue and muscle could be used for germ cell mutagenesis, indicating there are multiple sources of regenerated PGCs, suggesting a flexibility of differentiated Ciona somatic cells to regain totipotency. Sperm and eggs of a single hermaphroditic, PGC regenerated animal typically have different mutations, suggesting they arise from different cells. PGCs can be generated from somatic cells even though the maternal PGCs are not removed, suggesting that the PGC regeneration is not solely an artificial event but could have an endogenous function in Ciona. This study provides a technical innovation in the genome-editing methods, including easy establishment of mutant lines. Moreover, this study suggests cellular mechanisms and the potential evolutionary significance of PGC regeneration in Ciona. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Mesenchymal Stem/Progenitor Cells Derived from Articular Cartilage, Synovial Membrane and Synovial Fluid for Cartilage Regeneration: Current Status and Future Perspectives.

    Science.gov (United States)

    Huang, Yi-Zhou; Xie, Hui-Qi; Silini, Antonietta; Parolini, Ornella; Zhang, Yi; Deng, Li; Huang, Yong-Can

    2017-10-01

    Large articular cartilage defects remain an immense challenge in the field of regenerative medicine because of their poor intrinsic repair capacity. Currently, the available medical interventions can relieve clinical symptoms to some extent, but fail to repair the cartilaginous injuries with authentic hyaline cartilage. There has been a surge of interest in developing cell-based therapies, focused particularly on the use of mesenchymal stem/progenitor cells with or without scaffolds. Mesenchymal stem/progenitor cells are promising graft cells for tissue regeneration, but the most suitable source of cells for cartilage repair remains controversial. The tissue origin of mesenchymal stem/progenitor cells notably influences the biological properties and therapeutic potential. It is well known that mesenchymal stem/progenitor cells derived from synovial joint tissues exhibit superior chondrogenic ability compared with those derived from non-joint tissues; thus, these cell populations are considered ideal sources for cartilage regeneration. In addition to the progress in research and promising preclinical results, many important research questions must be answered before widespread success in cartilage regeneration is achieved. This review outlines the biology of stem/progenitor cells derived from the articular cartilage, the synovial membrane, and the synovial fluid, including their tissue distribution, function and biological characteristics. Furthermore, preclinical and clinical trials focusing on their applications for cartilage regeneration are summarized, and future research perspectives are discussed.

  16. Combination of Bioactive Polymeric Membranes and Stem Cells for Periodontal Regeneration: In Vitro and In Vivo Analyses.

    Science.gov (United States)

    Gonçalves, Flávia; de Moraes, Míriam Santos; Ferreira, Lorraine Braga; Carreira, Ana Cláudia Oliveira; Kossugue, Patrícia Mayumi; Boaro, Letícia Cristina Cidreira; Bentini, Ricardo; Garcia, Célia Regina da Silva; Sogayar, Mari Cleide; Arana-Chavez, Victor Elias; Catalani, Luiz Henrique

    2016-01-01

    Regeneration of periodontal tissues requires a concerted effort to obtain consistent and predictable results in vivo. The aim of the present study was to test a new family of bioactive polymeric membranes in combination with stem cell therapy for periodontal regeneration. In particular, the novel polyester poly(isosorbide succinate-co-L-lactide) (PisPLLA) was compared with poly(L-lactide) (PLLA). Both polymers were combined with collagen (COL), hydroxyapatite (HA) and the growth factor bone morphogenetic protein-7 (BMP7), and their osteoinductive capacity was evaluated via in vitro and in vivo experiments. Membranes composed of PLLA/COL/HA or PisPLLA/COL/HA were able to promote periodontal regeneration and new bone formation in fenestration defects in rat jaws. According to quantitative real-time polymerase chain reaction (qRT-PCR) and Alizarin Red assays, better osteoconductive capacity and increased extracellular mineralization were observed for PLLA/COL/HA, whereas better osteoinductive properties were associated with PisPLLA/COL/HA. We concluded that membranes composed of either PisPLLA/COL/HA or PLLA/COL/HA present promising results in vitro as well as in vivo and that these materials could be potentially applied in periodontal regeneration.

  17. Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain

    International Nuclear Information System (INIS)

    Wei, Y T; Tian, W M; Yu, X; Cui, F Z; Hou, S P; Xu, Q Y; Lee, In-Seop

    2007-01-01

    A biocompatible hydrogel of hyaluronic acid with the neurite-promoting peptide sequence of IKVAV was synthesized. The characterization of the hydrogel shows an open porous structure and a large surface area available for cell interaction. Its ability to promote tissue repair and axonal regeneration in the lesioned rat cerebrum is also evaluated. After implantation, the polymer hydrogel repaired the tissue defect and formed a permissive interface with the host tissue. Axonal growth occurred within the microstructure of the network. Within 6 weeks the polymer implant was invaded by host-derived tissue, glial cells, blood vessels and axons. Such a hydrogel matrix showed the properties of neuron conduction. It has the potential to repair tissue defects in the central nervous system by promoting the formation of a tissue matrix and axonal growth by replacing the lost tissue

  18. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    OpenAIRE

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental p...

  19. Silk-fibrin/hyaluronic acid composite gels for nucleus pulposus tissue regeneration.

    Science.gov (United States)

    Park, Sang-Hyug; Cho, Hongsik; Gil, Eun Seok; Mandal, Biman B; Min, Byoung-Hyun; Kaplan, David L

    2011-12-01

    Scaffold designs are critical for in vitro culture of tissue-engineered cartilage in three-dimensional environments to enhance cellular differentiation for tissue engineering and regenerative medicine. In the present study we demonstrated silk and fibrin/hyaluronic acid (HA) composite gels as scaffolds for nucleus pulposus (NP) cartilage formation, providing both biochemical support for NP outcomes as well as fostering the retention of size of the scaffold during culture due to the combined features of the two proteins. Passage two (P2) human chondrocytes cultured in 10% serum were encapsulated within silk-fibrin/HA gels. Five study groups with fibrin/HA gel culture (F/H) along with varying silk concentrations (2% silk gel only, fibrin/HA gel culture with 1% silk [F/H+1S], 1.5% silk [F/H+1.5S], and 2% silk [F/H+2S]) were cultured in serum-free chondrogenic defined media (CDM) for 4 weeks. Histological examination with alcian blue showed a defined chondrogenic area at 1 week in all groups that widened homogenously until 4 weeks. In particular, chondrogenic differentiation observed in the F/H+1.5S had no reduction in size throughout the culture period. The results of biochemical and molecular biological evaluations supported observations made during histological examination. Mechanical strength measurements showed that the silk mixed gels provided stronger mechanical properties for NP tissue than fibrin/HA composite gels in CDM. This effect could potentially be useful in the study of in vitro NP tissue engineering as well as for clinical implications for NP tissue regeneration.

  20. Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury.

    Science.gov (United States)

    Mackey, Abigail L; Kjaer, Michael

    2017-03-01

    Human skeletal muscle has the potential to regenerate completely after injury induced under controlled experimental conditions. The events inside the myofibers as they undergo necrosis, followed closely by satellite cell-mediated myogenesis, have been mapped in detail. Much less is known about the adaptation throughout this process of both the connective tissue structures surrounding the myofibers and the fibroblasts, the cells responsible for synthesizing this connective tissue. However, the few studies investigating muscle connective tissue remodeling demonstrate a strong response that appears to be sustained for a long time after the major myofiber responses have subsided. While the use of electrical stimulation to induce eccentric contractions vs. voluntary eccentric contractions appears to lead to a greater extent of myofiber necrosis and regenerative response, this difference is not apparent when the muscle connective tissue responses are compared, although further work is required to confirm this. Pharmacological agents (growth hormone and angiotensin II type I receptor blockers) are considered in the context of accelerating the muscle connective tissue adaptation to loading. Cautioning against this, however, is the association between muscle matrix protein remodeling and protection against reinjury, which suggests that a (so far undefined) period of vulnerability to reinjury may exist during the remodeling phases. The role of individual muscle matrix components and their spatial interaction during adaptation to eccentric contractions is an unexplored field in human skeletal muscle and may provide insight into the optimal timing of rest vs. return to activity after muscle injury. Copyright © 2017 the American Physiological Society.

  1. Periodontal regeneration.

    Science.gov (United States)

    Ivanovski, S

    2009-09-01

    The ultimate goal of periodontal therapy is the regeneration of the tissues destroyed as a result of periodontal disease. Currently, two clinical techniques, based on the principles of "guided tissue regeneration" (GTR) or utilization of the biologically active agent "enamel matrix derivative" (EMD), can be used for the regeneration of intrabony and Class II mandibular furcation periodontal defects. In cases where additional support and space-making requirements are necessary, both of these procedures can be combined with a bone replacement graft. There is no evidence that the combined use of GTR and EMD results in superior clinical results compared to the use of each material in isolation. Great variability in clinical outcomes has been reported in relation to the use of both EMD and GTR, and these procedures can be generally considered to be unpredictable. Careful case selection and treatment planning, including consideration of patient, tooth, site and surgical factors, is required in order to optimize the outcomes of treatment. There are limited data available for the clinical effectiveness of other biologically active molecules, such as growth factors and platelet concentrates, and although promising results have been reported, further clinical trials are required in order to confirm their effectiveness. Current active areas of research are centred on tissue engineering and gene therapy strategies which may result in more predictable regenerative outcomes in the future.

  2. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole.

    Science.gov (United States)

    Taniguchi, Yuka; Watanabe, Kenji; Mochii, Makoto

    2014-06-18

    Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans.

  3. Effects of honey to mobilize endogenous stem cells in efforts intestinal and ovarian tissue regeneration in rats with protein energy malnutrition

    Directory of Open Access Journals (Sweden)

    R. Heru Prasetyo

    2016-05-01

    Conclusions: Expression of CD34+ and CD45+, which significantly different in treatment 2 (2. Furthermore, increase of immune response (decrease Hsp70 expression and increased PGE2 in intestinal tissue. Increased immune response causes expression of GDF-9 in ovarian tissue. Decreased of Hsp70 expression, increased PGE2 and increased GDF-9 followed the process of regeneration of the intestinal and ovarian tissue.

  4. A numerical analysis of a reciprocating Active Magnetic Regenerator with a parallel-plate regenerator geometry

    DEFF Research Database (Denmark)

    Petersen, Thomas Frank; Pryds, Nini; Smith, Anders

    2007-01-01

    We have developed a two-dimensional model of a reciprocating Active Magnetic Regenerator(AMR) with a regenerator made of parallel plates arranged in a stack configuration. The time dependent,two-dimensional model solves the Navier-Stokes equations for the heat transfer fluid and the coupled heat...... transfer equations for the regenerator and the fluid. The model is implemented using the Finite Element Method. The model can be used to study both transient and steady-state phenomena in the AMR for any ratio of regenerator to fluid heat capacity. Results on the AMR performance for different design...

  5. Common cellular events occur during wound healing and organ regeneration in the sea cucumber Holothuria glaberrima

    Directory of Open Access Journals (Sweden)

    García-Arrarás José E

    2007-10-01

    Full Text Available Abstract Background All animals possess some type of tissue repair mechanism. In some species, the capacity to repair tissues is limited to the healing of wounds. Other species, such as echinoderms, posses a striking repair capability that can include the replacement of entire organs. It has been reported that some mechanisms, namely extracellular matrix remodeling, appear to occur in most repair processes. However, it remains unclear to what extent the process of organ regeneration, particularly in animals where loss and regeneration of complex structures is a programmed natural event, is similar to wound healing. We have now used the sea cucumber Holothuria glaberrima to address this question. Results Animals were lesioned by making a 3–5 mm transverse incision between one of the longitudinal muscle pairs along the bodywall. Lesioned tissues included muscle, nerve, water canal and dermis. Animals were allowed to heal for up to four weeks (2, 6, 12, 20, and 28 days post-injury before sacrificed. Tissues were sectioned in a cryostat and changes in cellular and tissue elements during repair were evaluated using classical dyes, immmuohistochemistry and phalloidin labeling. In addition, the temporal and spatial distribution of cell proliferation in the animals was assayed using BrdU incorporation. We found that cellular events associated with wound healing in H. glaberrima correspond to those previously shown to occur during intestinal regeneration. These include: (1 an increase in the number of spherule-containing cells, (2 remodeling of the extracellular matrix, (3 formation of spindle-like structures that signal dedifferentiation of muscle cells in the area flanking the lesion site and (4 intense cellular division occurring mainly in the coelomic epithelium after the first week of regeneration. Conclusion Our data indicate that H. glaberrima employs analogous cellular mechanisms during wound healing and organ regeneration. Thus, it is possible

  6. Theoretical study for solar air pretreatment collector/regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Peng Donggen; Zhang Xiaosong; Yin Yonggao [School of Energy and Environment, Southeast Univ., Nanjing (China)

    2008-07-01

    A new liquid regeneration equipment - solar air pretreatment collector/regenerator for liquid desiccant cooling system is put forward in this paper, which is preferable to solution regeneration in hot and moist climate in South China. The equipment can achieve liquid regeneration in lower temperature. When the solution and the air are in ''match'' state in collector/ regenerator, a match air to salt mass ratio ASMR* is found by theoretical study in which there is the largest theoretical storage capacity SC{sub max}. After two new concepts of the effective solution proportion (EPS) and the effective storage capacity (ESC) are defined, it is found by theoretical calculation that when ESP drops from 100% to 67%, ESC raises lowly, not drops and liquid outlet concentration C{sub str} {sub sol} increases from 40% to 49% in which its increment totals to 90%. All these data explain fully that air pretreatment liquid regeneration equipment enables to improve the performance of liquid desiccant cooling system. (orig.)

  7. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration.

    Science.gov (United States)

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS) combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  8. Guided tissue regeneration for periodontal infra-bony defects.

    Science.gov (United States)

    Needleman, I G; Worthington, H V; Giedrys-Leeper, E; Tucker, R J

    2006-04-19

    Conventional treatment of destructive periodontal (gum) disease arrests the disease but does not usually regain the bone support or connective tissue lost in the disease process. Guided tissue regeneration (GTR) is a surgical procedure that specifically aims to regenerate the periodontal tissues when the disease is advanced and could overcome some of the limitations of conventional therapy. To assess the efficacy of GTR in the treatment of periodontal infra-bony defects measured against conventional surgery (open flap debridement (OFD)) and factors affecting outcomes. We conducted an electronic search of the Cochrane Oral Health Group Trials Register, MEDLINE and EMBASE up to April 2004. Handsearching included Journal of Periodontology, Journal of Clinical Periodontology, Journal of Periodontal Research and bibliographies of all relevant papers and review articles up to April 2004. In addition, we contacted experts/groups/companies involved in surgical research to find other trials or unpublished material or to clarify ambiguous or missing data and posted requests for data on two periodontal electronic discussion groups. Randomised, controlled trials (RCTs) of at least 12 months duration comparing guided tissue regeneration (with or without graft materials) with open flap debridement for the treatment of periodontal infra-bony defects. Furcation involvements and studies specifically treating aggressive periodontitis were excluded. Screening of possible studies and data extraction was conducted independently. The methodological quality of studies was assessed in duplicate using individual components and agreement determined by Kappa scores. Methodological quality was used in sensitivity analyses to test the robustness of the conclusions. The Cochrane Oral Health Group statistical guidelines were followed and the results expressed as mean differences (MD and 95% CI) for continuous outcomes and risk ratios (RR and 95% CI) for dichotomous outcomes calculated using

  9. Infection and Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Sahng G. Kim

    2016-03-01

    Full Text Available The regeneration of the pulp-dentin complex has been a great challenge to both scientists and clinicians. Previous work has shown that the presence of prior infection may influence the characteristics of tissues formed in the root canal space after regenerative endodontic treatment. The formation of ectopic tissues such as periodontal ligament, bone, and cementum has been observed in the root canal space of immature necrotic teeth with apical periodontitis, while the regeneration of dentin and pulp has been identified in previously non-infected teeth. The current regenerative endodontic therapy utilizes disinfection protocols, which heavily rely on chemical irrigation using conventional disinfectants. From a microbiological point of view, the current protocols may not allow a sufficiently clean root canal microenvironment, which is critical for dentin and pulp regeneration. In this article, the significance of root canal disinfection in regenerating the pulp-dentin complex, the limitations of the current regenerative endodontic disinfection protocols, and advanced disinfection techniques designed to reduce the microorganisms and biofilms in chronic infection are discussed.

  10. Water deficit affects primary metabolism differently in two Lolium multiflorum/Festuca arundinacea introgression forms with a distinct capacity for photosynthesis and membrane regeneration.

    Directory of Open Access Journals (Sweden)

    Dawid Perlikowski

    2016-07-01

    Full Text Available Understanding how plants respond to drought at different levels of cell metabolism is an important aspect of research on the mechanisms involved in stress tolerance. Furthermore, a dissection of drought tolerance into its crucial components by the use of plant introgression forms facilitates to analyze this trait more deeply. The important components of plant drought tolerance are the capacity for photosynthesis under drought conditions, and the ability of cellular membrane regeneration after stress cessation. Two closely related introgression forms of Lolium multiflorum/Festuca arundinacea, differing in the level of photosynthetic capacity during stress, and in the ability to regenerate their cellular membranes after stress cessation, were used as forage grass models in a primary metabolome profiling and in an evaluation of chloroplast 1,6-bisphosphate aldolase accumulation level and activity, during 11 days of water deficit, followed by 10 days of rehydration. It was revealed here that the introgression form, characterized by the ability to regenerate membranes after rehydration, contained higher amounts of proline, melibiose, galactaric acid, myo-inositol and myo-inositol-1-phosphate involved in osmoprotection and stress signaling under drought. Moreover, during the rehydration period, this form also maintained elevated accumulation levels of most the primary metabolites, analyzed here. The other introgression form, characterized by the higher capacity for photosynthesis, revealed a higher accumulation level and activity of chloroplast aldolase under drought conditions, and higher accumulation levels of most photosynthetic products during control and drought periods. The potential impact of the observed metabolic alterations on cellular membrane recovery after stress cessation, and on a photosynthetic capacity under drought conditions in grasses, are discussed.

  11. Can stem cells really regenerate the human heart? Use your noggin, dickkopf! Lessons from developmental biology.

    Science.gov (United States)

    Sommer, Paula

    2013-06-01

    The human heart is the first organ to develop and its development is fairly well characterised. In theory, the heart has the capacity to regenerate, as its cardiomyocytes may be capable of cell division and the adult heart contains a cardiac stem cell niche, presumably capable of differentiating into cardiomyocytes and other cardiac-associated cell types. However, as with most other organs, these mechanisms are not activated upon serious injury. Several experimental options to induce regeneration of the damaged heart tissue are available: activate the endogenous cardiomyocytes to divide, coax the endogenous population of stem cells to divide and differentiate, or add exogenous cell-based therapy to replace the lost cardiac tissue. This review is a summary of the recent research into all these avenues, discussing the reasons for the limited successes of clinical trials using stem cells after cardiac injury and explaining new advances in basic science. It concludes with a reiteration that chances of successful regeneration would be improved by understanding and implementing the basics of heart development and stem cell biology.

  12. In vitro somatic embryogenesis and plant regeneration of cassava.

    Science.gov (United States)

    Szabados, L; Hoyos, R; Roca, W

    1987-06-01

    An efficient and reproducible plant regeneration system, initiated in somatic tissues, has been devised for cassava (Manihot esculenta Crantz). Somatic embryogenesis has been induced from shoot tips and immature leaves of in vitro shoot cultures of 15 cassava genotypes. Somatic embryos developed directly on the explants when cultured on a medium containing 4-16 mg/l 2,4-D. Differences were observed with respect to the embryogenic capacity of the explants of different varieties. Secondary embryogenesis has been induced by subculture on solid or liquid induction medium. Long term cultures were established and maintained for up to 18 months by repeated subculture of the proliferating somatic embryos. Plantlets developed from primary and secondary embryos in the presence of 0.1 mg/l BAP, 1mg/l GA3, and 0.01 mg/l 2,4-D. Regenerated plants were transferred to the field, and were grown to maturity.

  13. Hair cell regeneration in sensory epithelia from the inner ear of a urodele amphibian.

    Science.gov (United States)

    Taylor, Ruth R; Forge, Andrew

    2005-03-28

    The capacity of urodele amphibians to regenerate a variety of body parts is providing insight into mechanisms of tissue regeneration in vertebrates. In this study the ability of the newt, Notophthalmus viridescens, to regenerate inner ear hair cells in vitro was examined. Intact otic capsules were maintained in organotypic culture. Incubation in 2 mM gentamicin for 48 hours resulted in ablation of all hair cells from the saccular maculae. Thus, any hair cell recovery was not due to repair of damaged hair cells. Immature hair cells were subsequently observed at approximately 12 days posttreatment. Their number increased over the following 7-14 days to reach approximately 30% of the normal number. Following incubation of damaged tissue with bromodeoxyuridine (BrdU), labeled nuclei were confined strictly within regions of hair cell loss, indicating that supporting cells entered S-phase. Double labeling of tissue with two different hair cell markers and three different antibodies to BrdU in various combinations, however, all showed that the nuclei of cells that labeled with hair cell markers did not label for BrdU. This suggested that the new hair cells were not derived from those cells that had undergone mitosis. When mitosis was blocked with aphidicolin, new hair cells were still generated. The results suggest that direct phenotypic conversion of supporting cells into hair cells without an intervening mitotic event is a major mechanism of hair cell regeneration in the newt. A similar mechanism has been proposed for the hair cell recovery phenomenon observed in the vestibular organs of mammals. Copyright 2005 Wiley-Liss, Inc.

  14. Regeneration of Cartilage in Human Knee Osteoarthritis with Autologous Adipose Tissue-Derived Stem Cells and Autologous Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Jaewoo Pak

    2016-08-01

    Full Text Available This clinical case series demonstrates that percutaneous injections of autologous adipose tissue-derived stem cells (ADSCs and homogenized extracellular matrix (ECM in the form of adipose stromal vascular fraction (SVF, along with hyaluronic acid (HA and platelet-rich plasma (PRP activated by calcium chloride, could regenerate cartilage-like tissue in human knee osteoarthritis (OA patients. Autologous lipoaspirates were obtained from adipose tissue of the abdominal origin. Afterward, the lipoaspirates were minced to homogenize the ECM. These homogenized lipoaspirates were then mixed with collagenase and incubated. The resulting mixture of ADSCs and ECM in the form of SVF was injected, along with HA and PRP activated by calcium chloride, into knees of three Korean patients with OA. The same affected knees were reinjected weekly with additional PRP activated by calcium chloride for 3 weeks. Pretreatment and post-treatment magnetic resonance imaging (MRI data, functional rating index, range of motion (ROM, and pain score data were then analyzed. All patients' MRI data showed cartilage-like tissue regeneration. Along with MRI evidence, the measured physical therapy outcomes in terms of ROM, subjective pain, and functional status were all improved. This study demonstrates that percutaneous injection of ADSCs with ECM contained in autologous adipose SVF, in conjunction with HA and PRP activated by calcium chloride, is a safe and potentially effective minimally invasive therapy for OA of human knees.

  15. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.

    Science.gov (United States)

    Kim, Ju-Ang; Lim, Jiwon; Naren, Raja; Yun, Hui-Suk; Park, Eui Kyun

    2016-10-15

    Similar to calcium phosphates, magnesium phosphate (MgP) ceramics have been shown to be biocompatible and support favorable conditions for bone cells. Micropores below 25μm (MgP25), between 25 and 53μm (MgP53), or no micropores (MgP0) were introduced into MgP scaffolds using different sizes of an NaCl template. The porosities of MgP25 and MgP53 were found to be higher than that of MgP0 because of their micro-sized pores. Both in vitro and in vivo analysis showed that MgP scaffolds with high porosity promoted rapid biodegradation. Implantation of the MgP0, MgP25, and MgP53 scaffolds into rabbit calvarial defects (with 4- and 6-mm diameters) was assessed at two times points (4 and 8weeks), followed by analysis of bone regeneration. The micro-CT and histologic analyses of the 4-mm defect showed that the MgP25 and MgP53 scaffolds were degraded completely at 4weeks with simultaneous bone and marrow-like structure regeneration. For the 6-mm defect, a similar pattern of regeneration was observed. These results indicate that the rate of degradation is associated with bone regeneration. The MgP25 and MgP53 scaffold-implanted bone showed a better lamellar structure and enhanced calcification compared to the MgP0 scaffold because of their porosity and degradation rate. Tartrate-resistant acid phosphatase (TRAP) staining indicated that the newly formed bone was undergoing maturation and remodeling. Overall, these data suggest that the pore architecture of MgP ceramic scaffolds greatly influence bone formation and remodeling activities and thus should be considered in the design of new scaffolds for long-term bone tissue regeneration. The pore structural conditions of scaffold, including porosity, pore size, pore morphology, and pore interconnectivity affect cell ingrowth, mechanical properties and biodegradabilities, which are key components of scaffold in bone tissue regeneration. In this study, we designed hierarchical pore structure of the magnesium phosphate (Mg

  16. Regeneration of neural crest derivatives in the Xenopus tadpole tail

    Directory of Open Access Journals (Sweden)

    Slack Jonathan MW

    2007-05-01

    Full Text Available Abstract Background After amputation of the Xenopus tadpole tail, a functionally competent new tail is regenerated. It contains spinal cord, notochord and muscle, each of which has previously been shown to derive from the corresponding tissue in the stump. The regeneration of the neural crest derivatives has not previously been examined and is described in this paper. Results Labelling of the spinal cord by electroporation, or by orthotopic grafting of transgenic tissue expressing GFP, shows that no cells emigrate from the spinal cord in the course of regeneration. There is very limited regeneration of the spinal ganglia, but new neurons as well as fibre tracts do appear in the regenerated spinal cord and the regenerated tail also contains abundant peripheral innervation. The regenerated tail contains a normal density of melanophores. Cell labelling experiments show that melanophores do not arise from the spinal cord during regeneration, nor from the mesenchymal tissues of the skin, but they do arise by activation and proliferation of pre-existing melanophore precursors. If tails are prepared lacking melanophores, then the regenerates also lack them. Conclusion On regeneration there is no induction of a new neural crest similar to that seen in embryonic development. However there is some regeneration of neural crest derivatives. Abundant melanophores are regenerated from unpigmented precursors, and, although spinal ganglia are not regenerated, sufficient sensory systems are produced to enable essential functions to continue.

  17. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Lei Hu

    2017-01-01

    Full Text Available Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  18. Applications of Metals for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Kristina Glenske

    2018-03-01

    Full Text Available The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP-based substitute materials based on natural (allo- and xenografts and synthetic origins (alloplastic materials are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.

  19. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends.

    Science.gov (United States)

    Qazi, Taimoor H; Mooney, David J; Pumberger, Matthias; Geissler, Sven; Duda, Georg N

    2015-01-01

    Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions

  20. Rapid tissue regeneration induced by intracellular ATP delivery-A preliminary mechanistic study.

    Directory of Open Access Journals (Sweden)

    Harshini Sarojini

    Full Text Available We have reported a new phenomenon in acute wound healing following the use of intracellular ATP delivery-extremely rapid tissue regeneration, which starts less than 24 h after surgery, and is accompanied by massive macrophage trafficking, in situ proliferation, and direct collagen production. This unusual process bypasses the formation of the traditional provisional extracellular matrix and significantly shortens the wound healing process. Although macrophages/monocytes are known to play a critical role in the initiation and progression of wound healing, their in situ proliferation and direct collagen production in wound healing have never been reported previously. We have explored these two very specific pathways during wound healing, while excluding confounding factors in the in vivo environment by analyzing wound samples and performing in vitro studies. The use of immunohistochemical studies enabled the detection of in situ macrophage proliferation in ATP-vesicle treated wounds. Primary human macrophages and Raw 264.7 cells were used for an in vitro study involving treatment with ATP vesicles, free Mg-ATP alone, lipid vesicles alone, Regranex, or culture medium. Collagen type 1α 1, MCP-1, IL-6, and IL-10 levels were determined by ELISA of the culture supernatant. The intracellular collagen type 1α1 localization was determined with immunocytochemistry. ATP-vesicle treated wounds showed high immunoreactivity towards BrdU and PCNA antigens, indicating in situ proliferation. Most of the cultured macrophages treated with ATP-vesicles maintained their classic phenotype and expressed high levels of collagen type 1α1 for a longer duration than was observed with cells treated with Regranex. These studies provide the first clear evidence of in situ macrophage proliferation and direct collagen production during wound healing. These findings provide part of the explanation for the extremely rapid tissue regeneration, and this treatment may hold

  1. Callus induction and plant regeneration by Brazilian new elite wheat genotypes

    Directory of Open Access Journals (Sweden)

    Eliane Cristina Gruszka Vendruscolo

    2008-01-01

    Full Text Available The distinction of genotypes responsive to tissue culture and the development of an efficient regenerationsystem are the first steps towards transgenic plant production. Nine Brazilian wheat (Triticum aestivum L. genotypes werecultivated in vitro to evaluate the embryogenetic capacity. The explants (immature zygotic embryos were tested in twodifferent culture media, MS (Murashige and Skoog 1962 and modified MS - MMS (Zhou et al. 1995 with decreasing dosagesof hormone regulators. Three distinct phases were observed in each medium: induction, maintenance and regeneration. Afterinduction, the somatic embryogenesis of calli was evaluated every 21 days. Genotypes responded differently to the differentculture media. The embryogenic response of genotype CD104 was best in both culture media tested. On MMS, the values ofcallus induction, plant regeneration and ratio of regenerated plantlets per rescued embryo of this genotype were 100%, 99.5%and 1.1%, respectively. Genotypes CD104, CD200126 and CDFAPA 2001129 were most responsive on MS (regenerationcapacity of 37.5%, 33.5% and 33% respectively, and therefore interesting for genetic transformation in plant breedingprograms that develop new elite cultivars with a commercial purpose.

  2. Multilayer Ceramic Regenerator Materials for 4 K Cooling

    International Nuclear Information System (INIS)

    Numazawa, T.; Kamiya, K.; Satoh, T.; Nozawa, H.; Yanagitani, T.

    2006-01-01

    The ceramics oxide magnetic materials have shown excellent properties for use as regenerator materials used in 4 K crycoolers. Currently four kinds of oxide magnetic materials GdVO4, GAP=GdAlO3, GOS=Gd2O2S and Tb2O2S are available for applications for regenerators or thermal anchors from 2 K to 8 K. This paper focused on controlling the heat capacity of the (GdxTb1-x)2O2S system to cover the refrigeration temperatures between 6 K and 8 K. A concept of multilayer regenerator material consisting of multicomponent magnetic materials has been proposed and investigated. Two-layer ceramic material including two kinds of magnetic materials (Gd0.1Tb0.9)2O2S+Tb2O2S was successfully fabricated in the form of regenerator particles with an average diameter of 0.25 mm. Measured heat capacity data showed that it had twin peaks relating to those of (Gd0.1Tb0.9)2O2S and Tb2O2S, and the entire curve became broader and wider. The mechanical properties of strength and hardness of the two-layer ceramic material were the same as other ceramic regenerator materials like GOS. Thus, it is concluded that the multilayer ceramic material is very useful to control the heat capacity of the regenerator particles. The cooling tests using the two-layer ceramic material with HoCu2 and GOS have been done to investigate the 2nd stage regenerator configuration

  3. Isolation and Characterization of the Progenitor Cells From the Blastema Tissue Formed at Experimentally-Created Rabbit Ear Hole

    OpenAIRE

    Baghaban Eslaminejad, Mohamadreza; Bordbar, Sima

    2013-01-01

      Objective(s): Throughout evolution, mammalians have increasingly lost their ability to regenerate structures however rabbits are exceptional since they develop a blastema in their ear wound for regeneration purposes. Blastema consists of a group of undifferentiated cells capable of dividing and differentiating into the ear tissue. The objective of the present study is to isolate, culture expand, and characterize blastema progenitor cells in terms of their in vitro differentiation capacity. ...

  4. Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with L-ascorbic acid, as materials for soft tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Kucinska-Lipka, J., E-mail: juskucin@pg.gda.pl [Gdank University of Technology, Faculty of Chemistry, Department of Polymer Technology, Narutowicza St. 11/12, 80-233 Gdansk (Poland); Gubanska, I.; Strankowski, M. [Gdank University of Technology, Faculty of Chemistry, Department of Polymer Technology, Narutowicza St. 11/12, 80-233 Gdansk (Poland); Cieśliński, H.; Filipowicz, N. [Gdansk University of Technology, Faculty of Chemistry, Department of Microbiology, Narutowicza St. 11/12, 80-233 Gdansk (Poland); Janik, H. [Gdank University of Technology, Faculty of Chemistry, Department of Polymer Technology, Narutowicza St. 11/12, 80-233 Gdansk (Poland)

    2017-06-01

    In this paper we described synthesis and characteristic of obtained hydrophilic polyurethanes (PURs) modified with ascorbic acid (commonly known as vitamin C). Such materials may find an application in the biomedical field, for example in the regenerative medicine of soft tissues, according to ascorbic acid wide influence on tissue regeneration Flora (2009), Szymańska-Pasternak et al. (2011), Taikarimi and Ibrahim (2011), Myrvik and Volk (1954), Li et al. (2001), Cursino et al. (2005) . Hydrophilic PURs were obtained with the use of amorphous α,ω-dihydroxy(ethylene-butylene adipate) (dHEBA) polyol, 1,4-butanediol (BDO) chain extender and aliphatic 4,4′-methylenebis(cyclohexyl isocyanate) (HMDI). HMDI was chosen as a nontoxic diisocyanate, suitable for biomedical PUR synthesis. Modification with L-ascorbic acid (AA) was performed to improve obtained PUR materials biocompatibility. Chemical structure of obtained PURs was provided and confirmed by Fourier transform infrared spectroscopy (FTIR) and Proton nuclear magnetic resonance spectroscopy ({sup 1}HNMR). Differential scanning calorimetry (DSC) was used to indicate the influence of ascorbic acid modification on such parameters as glass transition temperature, melting temperature and melting enthalpies of obtained materials. To determine how these materials may potentially behave, after implementation in tissue, degradation behavior of obtained PURs in various chemical environments, which were represented by canola oil, saline solution, distilled water and phosphate buffered saline (PBS) was estimated. The influence of AA on hydrophilic-hydrophobic character of obtained PURs was established by contact angle study. This experiment revealed that ascorbic acid significantly improves hydrophilicity of obtained PUR materials and the same cause that they are more suitable candidates for biomedical applications. Good hemocompatibility characteristic of studied PUR materials was confirmed by the hemocompatibility test

  5. Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with L-ascorbic acid, as materials for soft tissue regeneration

    International Nuclear Information System (INIS)

    Kucinska-Lipka, J.; Gubanska, I.; Strankowski, M.; Cieśliński, H.; Filipowicz, N.; Janik, H.

    2017-01-01

    In this paper we described synthesis and characteristic of obtained hydrophilic polyurethanes (PURs) modified with ascorbic acid (commonly known as vitamin C). Such materials may find an application in the biomedical field, for example in the regenerative medicine of soft tissues, according to ascorbic acid wide influence on tissue regeneration Flora (2009), Szymańska-Pasternak et al. (2011), Taikarimi and Ibrahim (2011), Myrvik and Volk (1954), Li et al. (2001), Cursino et al. (2005) . Hydrophilic PURs were obtained with the use of amorphous α,ω-dihydroxy(ethylene-butylene adipate) (dHEBA) polyol, 1,4-butanediol (BDO) chain extender and aliphatic 4,4′-methylenebis(cyclohexyl isocyanate) (HMDI). HMDI was chosen as a nontoxic diisocyanate, suitable for biomedical PUR synthesis. Modification with L-ascorbic acid (AA) was performed to improve obtained PUR materials biocompatibility. Chemical structure of obtained PURs was provided and confirmed by Fourier transform infrared spectroscopy (FTIR) and Proton nuclear magnetic resonance spectroscopy ( 1 HNMR). Differential scanning calorimetry (DSC) was used to indicate the influence of ascorbic acid modification on such parameters as glass transition temperature, melting temperature and melting enthalpies of obtained materials. To determine how these materials may potentially behave, after implementation in tissue, degradation behavior of obtained PURs in various chemical environments, which were represented by canola oil, saline solution, distilled water and phosphate buffered saline (PBS) was estimated. The influence of AA on hydrophilic-hydrophobic character of obtained PURs was established by contact angle study. This experiment revealed that ascorbic acid significantly improves hydrophilicity of obtained PUR materials and the same cause that they are more suitable candidates for biomedical applications. Good hemocompatibility characteristic of studied PUR materials was confirmed by the hemocompatibility test with

  6. On factors modifying reparative regeneration of epithelial tissue of small intestine in the presence of intestinal syndrome

    International Nuclear Information System (INIS)

    Kudryavtsev, V.D.

    1980-01-01

    In experiments on Wistar rats irradiated in dosages of 1000 and 1200 rad, the possibility of reparative regeneration of cryptae was demonstrated in the case when ''intestinal death'' was prevented by therapeutic means (kanamycin mixed with Ringer-Lock's solution). Shielding of part of the abdomen and extensive bone marrow region, and transplantation of homologous bone marrow elicit a stimulatory effect on postradiation recovery of small intestine epithelial tissue. When radiation dose increases up to 1400 rad reepithelization of the exposed region occurs only with the protection of 50-60% of the abdomen. The regenerating cryptae do not appear after irradiation of the whole body or whole abdomen though life expectancy of rats increases up to 6-7 days due to the therapeutic cure

  7. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    Science.gov (United States)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; hide

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, pcell homing to injured myocardium and suggest a strategy for directed stem-cell engraftment into injured tissues. Our findings also indicate that therapeutic strategies focused on stem-cell mobilisation for regeneration of myocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  8. Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing.

    Science.gov (United States)

    Cunniffe, Gráinne M; Vinardell, Tatiana; Murphy, J Mary; Thompson, Emmet M; Matsiko, Amos; O'Brien, Fergal J; Kelly, Daniel J

    2015-09-01

    Clinical translation of tissue engineered therapeutics is hampered by the significant logistical and regulatory challenges associated with such products, prompting increased interest in the use of decellularized extracellular matrix (ECM) to enhance endogenous regeneration. Most bones develop and heal by endochondral ossification, the replacement of a hypertrophic cartilaginous intermediary with bone. The hypothesis of this study is that a porous scaffold derived from decellularized tissue engineered hypertrophic cartilage will retain the necessary signals to instruct host cells to accelerate endogenous bone regeneration. Cartilage tissue (CT) and hypertrophic cartilage tissue (HT) were engineered using human bone marrow derived mesenchymal stem cells, decellularized and the remaining ECM was freeze-dried to generate porous scaffolds. When implanted subcutaneously in nude mice, only the decellularized HT-derived scaffolds were found to induce vascularization and de novo mineral accumulation. Furthermore, when implanted into critically-sized femoral defects, full bridging was observed in half of the defects treated with HT scaffolds, while no evidence of such bridging was found in empty controls. Host cells which had migrated throughout the scaffold were capable of producing new bone tissue, in contrast to fibrous tissue formation within empty controls. These results demonstrate the capacity of decellularized engineered tissues as 'off-the-shelf' implants to promote tissue regeneration. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Group C. Initiator paper. Periodontal regeneration--fact or fiction?

    Science.gov (United States)

    Bartold, P M

    2015-01-01

    Numerous techniques have been tried and tested to regenerate tissues lost to periodontal disease. While there has been some success to date, more work is required to move this to a reliable and clinically predictable procedure. Much of the future success for such treatments will rely largely on our understanding of the biology of both developmental and regenerative processes. Nonetheless, despite the noble goal of periodontal regeneration, the relevance of re-creation of a connective tissue attachment has been questioned. Since formation of a long junctional epithelial attachment to the tooth following a variety of periodontal treatment procedures has been shown to be no more susceptible to further breakdown than a non-diseased site, the question arises as to what purpose do we seek the ultimate outcome of periodontal regeneration? The answer lies in the "fact and fiction" of periodontal regeneration. There is no doubt that the regenerative procedures that have been developed can be shown to be biologically successful at the histological level. Furthermore, the results of periodontal regeneration (particularly guided tissue regeneration) have been stable over the long term (at least up to 10 years). However, the techniques currently under use which show the greatest promise (guided tissue regeneration and growth factors) are still clinically unpredictable because of their highly technique-sensitive nature. In addition, whether the slight clinical improvements offered by these procedures over routine open flap debridement procedures are of cost or patient benefit with regards to improved periodontal health and retention of teeth remains to be established. The next phase in regenerative technologies will undoubtedly involve a deeper understanding of the molecular signaling (both intra- and extra-cellular) and cellular differentiation processes involved in the regenerative processes. So in answer to the question of whether periodontal regeneration is fact or fiction

  10. Synthesis and characterization of polycaprolactone for anterior cruciate ligament regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Gurlek, Ayse Cansu; Sevinc, Burcu; Bayrak, Ece; Erisken, Cevat, E-mail: cerisken@etu.edu.tr

    2017-02-01

    Anterior cruciate ligament (ACL) is the most frequently torn ligament in the knee, and complete healing is unlikely due to lack of vascularization. Current approaches for the treatment of ACL injuries include surgical interventions and grafting, however recent reports show that surgeries have 94% recurrency, and that repaired tissues are biomechanically inferior to the native tissue. These necessitate the need for new strategies for scar-free repair/regeneration of ACL injuries. Polycaprolactone (PCL) is a biodegradable and biocompatible synthetic polymer, which has been widely used in the connective tissue repair/regeneration attempts. Here, we report on the synthesis of PCL via ring opening polymerization using ε-caprolactone as the monomer, and ammonium heptamolybdate as a catalyst. The synthesized PCL was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. It was then processed using electrospinning to form nanofiber-based scaffolds. These scaffolds were characterized in terms of surface as well as mechanical properties, and compared to the properties of commercially available PCL, and of native ACL tissue harvested from sheep. In addition, scaffolds fabricated with synthesized PCL were evaluated regarding their cell attachment capacity using human bone marrow mesenchymal stem cells (hBMSCs). Our findings demonstrated that the synthesized PCL is similar to its commercially available counterpart in terms of surface morphology and mechanical properties. In addition, fibrous scaffolds generated with electrospinning showed weaker mechanical properties visa vis native ACL tissue in terms of ultimate stress, and elastic modulus. Also, the synthesized PCL can accommodate cell attachment when tested with hBMSCs. Putting together, these observations reveal that the PCL synthesized in this study could be a good candidate as a biomaterial for ligament repair or regeneration. - Highlights: • Synthesis of

  11. Synthesis and characterization of polycaprolactone for anterior cruciate ligament regeneration

    International Nuclear Information System (INIS)

    Gurlek, Ayse Cansu; Sevinc, Burcu; Bayrak, Ece; Erisken, Cevat

    2017-01-01

    Anterior cruciate ligament (ACL) is the most frequently torn ligament in the knee, and complete healing is unlikely due to lack of vascularization. Current approaches for the treatment of ACL injuries include surgical interventions and grafting, however recent reports show that surgeries have 94% recurrency, and that repaired tissues are biomechanically inferior to the native tissue. These necessitate the need for new strategies for scar-free repair/regeneration of ACL injuries. Polycaprolactone (PCL) is a biodegradable and biocompatible synthetic polymer, which has been widely used in the connective tissue repair/regeneration attempts. Here, we report on the synthesis of PCL via ring opening polymerization using ε-caprolactone as the monomer, and ammonium heptamolybdate as a catalyst. The synthesized PCL was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. It was then processed using electrospinning to form nanofiber-based scaffolds. These scaffolds were characterized in terms of surface as well as mechanical properties, and compared to the properties of commercially available PCL, and of native ACL tissue harvested from sheep. In addition, scaffolds fabricated with synthesized PCL were evaluated regarding their cell attachment capacity using human bone marrow mesenchymal stem cells (hBMSCs). Our findings demonstrated that the synthesized PCL is similar to its commercially available counterpart in terms of surface morphology and mechanical properties. In addition, fibrous scaffolds generated with electrospinning showed weaker mechanical properties visa vis native ACL tissue in terms of ultimate stress, and elastic modulus. Also, the synthesized PCL can accommodate cell attachment when tested with hBMSCs. Putting together, these observations reveal that the PCL synthesized in this study could be a good candidate as a biomaterial for ligament repair or regeneration. - Highlights: • Synthesis of

  12. Clinical comparison of guided tissue regeneration, with collagen membrane and bone graft, versus connective tissue graft in the treatment of gingival recessions

    Directory of Open Access Journals (Sweden)

    Haghighati F

    2006-06-01

    Full Text Available Background and Aim: Increasing patient demands for esthetic, put the root coverage procedures in particular attention. Periodontal regeneration with GTR based root coverage methods is the most common treatment used. The purpose of this study was to compare guided tissue regeneration (GTR with collagen membrane and a bone graft, with sub-epithelial connective tissue graft (SCTG, in treatment of gingival recession. Materials and Methods: In this randomized clinical trial study, eleven healthy patients with no systemic diseases who had miller’s class I or II recession defects (gingival recession  2mm were treated with SCTG or GTR using a collagen membrane and a bone graft. Clinical measurements were obtained at baseline and 6 months after surgery. These clinical measurements included recession depth (RD, recession width (RW, probing depth (PD, and clinical attachment level (CAL. Data were analyzed using independent t test with p<0.05 as the limit of significance. Results: Both treatment methods resulted in a statistically significant reduction of recession depth (SCTG=2.3mm, GTR=2.1mm; P<0.0001. CAL gain after 6 months was also improved in both groups (SCG= 2.5mm, GTR=2.1mm, compared to baseline (P<0.0001. No statistical differences were observed in RD, RW, CAL between test and control groups. Root coverage was similar in both methods (SCTG= 74.2%, GTR= 62.6%, P=0.87. Conclusion: Based on the results of this study, the two techniques are clinically comparable. Therefore the use of collagen membrane and a bovine derived xenograft may alleviate the need for connective tissue graft.

  13. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration.

    Science.gov (United States)

    Ma, Hongshi; Luo, Jian; Sun, Zhe; Xia, Lunguo; Shi, Mengchao; Liu, Mingyao; Chang, Jiang; Wu, Chengtie

    2016-12-01

    Primary bone cancer brings patients great sufferings. To deal with the bone defects resulted from cancer surgery, biomaterials with good bone-forming ability are necessary to repair bone defects. Meanwhile, in order to prevent possible tumor recurrence, it is essential that the remaining tumor cells around bone defects are completely killed. However, there are few biomaterials with the ability of both cancer therapy and bone regeneration until now. Here, we fabricated a 3D-printed bioceramic scaffold with a uniformly self-assembled Ca-P/polydopamine nanolayer surface. Taking advantage of biocompatibility, biodegradability and the excellent photothermal effect of polydopamine, the bifunctional scaffolds with mussel-inspired nanostructures could be used as a satisfactory and controllable photothermal agent, which effectively induced tumor cell death in vitro, and significantly inhibited tumor growth in mice. In addition, owing to the nanostructured surface, the prepared polydopamine-modified bioceramic scaffolds could support the attachment and proliferation of rabbit bone mesenchymal stem cells (rBMSCs), and significantly promoted the formation of new bone tissues in rabbit bone defects even under photothermal treatment. Therefore, the mussel-inspired nanostructures in 3D-printed bioceramic exhibited a remarkable capability for both cancer therapy and bone regeneration, offering a promising strategy to construct bifunctional biomaterials which could be widely used for therapy of tumor-induced tissue defects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs

    OpenAIRE

    Kuo Catherine K; Marturano Joseph E; Tuan Rocky S

    2010-01-01

    Abstract Tendon and ligaments have poor healing capacity and when injured often require surgical intervention. Tissue replacement via autografts and allografts are non-ideal strategies that can lead to future problems. As an alternative, scaffold-based tissue engineering strategies are being pursued. In this review, we describe design considerations and major recent advancements of scaffolds for tendon/ligament engineering. Specifically, we outline native tendon/ligament characteristics criti...

  15. Evaluation of the capacity for direct regeneration of maize inbreds of the Lancaster selection group

    Directory of Open Access Journals (Sweden)

    K. V. Derkach

    2013-11-01

    Full Text Available In connection with the necessity of bringing elite maize inbreds of the Lancaster germplasm group, which have potential for cultivation in Ukraine, into the system of genetic tranformation, the aim of this investigation is to identify the ability of maize inbreds of this group to regenerate by direct organogenesis and to determine the optimal mineral basis for their nutritional environment using segments of the node area of shoots. As explantats we used sterile 4-day old seedlings of 4 maize inbreds of Lancaster germplasm and model inbred Chi31 exotic germplasm. The seedlings were obtained by germination of sterile seeds in Petri dishes between two layers of moist sterile filter paper at a temperature of 27 ºC in dark conditions. A single 1 cmlong segment was cut from each from each seedling, running from 0.5 cmbefore the node to 0.5 cmafter the node. A cut was made in each segment of the node in order to create a wounded surface. Explantats were planted in a nutrient environment with mineral bases of MS or N6, modified by the addition of 10 mg/l silver nitrate, 100 mg/l casein hydrolyzate, 690 mg/l L-proline, 30 g/l sucrose, 1.0 mg/l 2,4-dychlorphenoksiacetic acid and 0,1 mg/l abscisic acid. Cultivation was carried out at 25–27 ºC in the light. Direct hemogenesis in this environment on the 14th day of cultivation in vitro reached 100% for each line. This meant that all researched lines of Lancaster germplasm and the model line showed a high capacity for direct regeneration through direct hemogenesis, which does not depend on the composition of the mineral content of their nutritional environment. Callus formation was observed in all genotypes on the 14th day of cultivation in vitro and the extent of its formation increased during the following month of cultivation. The callus formation was observed only at the site of the wounded surface. The calluses were transparent. Although green areas appeared in these calluses, they were

  16. Application of detergents or high hydrostatic pressure as decellularization processes in uterine tissues and their subsequent effects on in vivo uterine regeneration in murine models.

    Directory of Open Access Journals (Sweden)

    Erna G Santoso

    Full Text Available Infertility caused by ovarian or tubal problems can be treated using In Vitro Fertilization and Embryo Transfer (IVF-ET; however, this is not possible for women with uterine loss and malformations that require uterine reconstruction for the treatment of their infertility. In this study, we are the first to report the usefulness of decellularized matrices as a scaffold for uterine reconstruction. Uterine tissues were extracted from Sprague Dawley (SD rats and decellularized using either sodium dodecyl sulfate (SDS or high hydrostatic pressure (HHP at optimized conditions. Histological staining and quantitative analysis showed that both SDS and HHP methods effectively removed cells from the tissues with, specifically, a significant reduction of DNA contents for HHP constructs. HHP constructs highly retained the collagen content, the main component of extracellular matrices in uterine tissue, compared to SDS constructs and had similar content levels of collagen to the native tissue. The mechanical strength of the HHP constructs was similar to that of the native tissue, while that of the SDS constructs was significantly elevated. Transmission electron microscopy (TEM revealed no apparent denaturation of collagen fibers in the HHP constructs compared to the SDS constructs. Transplantation of the decellularized tissues into rat uteri revealed the successful regeneration of the uterine tissues with a 3-layer structure 30 days after the transplantation. Moreover, a lot of epithelial gland tissue and Ki67 positive cells were detected. Immunohistochemical analyses showed that the regenerated tissues have a normal response to ovarian hormone for pregnancy. The subsequent pregnancy test after 30 days transplantation revealed successful pregnancy for both the SDS and HHP groups. These findings indicate that the decellularized matrix from the uterine tissue can be a potential scaffold for uterine regeneration.

  17. Shining Light on Nanotechnology to Help Repair and Regeneration

    Science.gov (United States)

    Gupta, Asheesh; Avci, Pinar; Sadasivam, Magesh; Chandran, Rakkiyappan; Parizotto, Nivaldo; Vecchio, Daniela; Antunes-Melo, Wanessa C; Dai, Tianhong; Chiang, Long Y.; Hamblin, Michael R.

    2012-01-01

    Phototherapy can be used in two completely different but complementary therapeutic applications. While low level laser (or light) therapy (LLLT) uses red or near-infrared light alone to reduce inflammation, pain and stimulate tissue repair and regeneration, photodynamic therapy (PDT) uses the combination of light plus non-toxic dyes (called photosensitizers) to produce reactive oxygen species that can kill infectious microorganisms and cancer cells or destroy unwanted tissue (neo-vascularization in the choroid, atherosclerotic plaques in the arteries). The recent development of nanotechnology applied to medicine (nanomedicine) has opened a new front of advancement in the field of phototherapy and has provided hope for the development of nanoscale drug delivery platforms for effective killing of pathological cells and to promote repair and regeneration. Despite the well-known beneficial effects of phototherapy and nanomaterials in producing the killing of unwanted cells and promoting repair and regeneration, there are few reports that combine all three elements i.e. phototherapy, nanotechnology and, tissue repair and regeneration. However, these areas in all possible binary combinations have been addressed by many workers. The present review aims at highlighting the combined multi-model applications of phototherapy, nanotechnology and, reparative and regeneration medicine and outlines current strategies, future applications and limitations of nanoscale-assisted phototherapy for the management of cancers, microbial infections and other diseases, and to promote tissue repair and regeneration. PMID:22951919

  18. Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh, Zeeshan [Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, 150 College Street, Toronto, ON M5S 3E2 (Canada); School of Engineering and Materials Science, Queen Mary, University of London, Mile End Rd, London, E1 4NS (United Kingdom); Khan, Abdul Samad, E-mail: draskhan@ciitlahore.edu.pk [Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Roohpour, Nima [Oral Care R& D, GSK St., Georges Ave., Weybridge KT13 8PA (United Kingdom); Glogauer, Michael [Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, 150 College Street, Toronto, ON M5S 3E2 (Canada); Rehman, Ihtesham u [Department of Materials Science and Engineering, The Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2016-11-01

    Periodontal disease if left untreated can result in creation of defects within the alveolar ridge. Barrier membranes are frequently used with or without bone replacement graft materials for achieving periodontal guided tissue regeneration (GTR). Surface properties of barrier membranes play a vital role in their functionality and clinical success. In this study polyetherurethane (PEU) membranes were synthesized by using 4,4′-methylene-diphenyl diisocyanate (MDI), polytetramethylene oxide (PTMO) and 1,4-butane diol (BDO) as a chain extender via solution polymerization. Hydroxyl terminated polydimethylsiloxane (PDMS) due to having inherent surface orientation towards air was used for surface modification of PEU on one side of the membranes. This resulting membranes had one surface being PEU and the other being PDMS coated PEU. The prepared membranes were treated with solutions of bovine serum albumin (BSA) in de-ionized water at 37 °C at a pH of 7.2. The surface protein adsorptive potential of PEU membranes was observed using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Raman spectroscopy and Confocal Raman spectroscopy. The contact angle measurement, tensile strength and modulus of prepared membranes were also evaluated. PEU membrane (89.86 ± 1.62°) exhibited less hydrophobic behavior than PEU-PDMS (105.87 ± 3.16°). The ultimate tensile strength and elastic modulus of PEU (27 ± 1 MPa and 14 ± 2 MPa) and PEU-PDMS (8 ± 1 MPa and 26 ± 1 MPa) membranes was in required range. The spectral analysis revealed adsorption of BSA proteins on the surface of non PDMS coated PEU surface. The PDMS modified PEU membranes demonstrated a lack of BSA adsorption. The non PDMS coated side of the membrane which adsorbs proteins could potentially be used facing towards the defect attracting growth factors for periodontal tissue regeneration. Whereas, the PDMS coated side could serve as an occlusive barrier for preventing gingival epithelial

  19. Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applications

    International Nuclear Information System (INIS)

    Sheikh, Zeeshan; Khan, Abdul Samad; Roohpour, Nima; Glogauer, Michael; Rehman, Ihtesham u

    2016-01-01

    Periodontal disease if left untreated can result in creation of defects within the alveolar ridge. Barrier membranes are frequently used with or without bone replacement graft materials for achieving periodontal guided tissue regeneration (GTR). Surface properties of barrier membranes play a vital role in their functionality and clinical success. In this study polyetherurethane (PEU) membranes were synthesized by using 4,4′-methylene-diphenyl diisocyanate (MDI), polytetramethylene oxide (PTMO) and 1,4-butane diol (BDO) as a chain extender via solution polymerization. Hydroxyl terminated polydimethylsiloxane (PDMS) due to having inherent surface orientation towards air was used for surface modification of PEU on one side of the membranes. This resulting membranes had one surface being PEU and the other being PDMS coated PEU. The prepared membranes were treated with solutions of bovine serum albumin (BSA) in de-ionized water at 37 °C at a pH of 7.2. The surface protein adsorptive potential of PEU membranes was observed using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Raman spectroscopy and Confocal Raman spectroscopy. The contact angle measurement, tensile strength and modulus of prepared membranes were also evaluated. PEU membrane (89.86 ± 1.62°) exhibited less hydrophobic behavior than PEU-PDMS (105.87 ± 3.16°). The ultimate tensile strength and elastic modulus of PEU (27 ± 1 MPa and 14 ± 2 MPa) and PEU-PDMS (8 ± 1 MPa and 26 ± 1 MPa) membranes was in required range. The spectral analysis revealed adsorption of BSA proteins on the surface of non PDMS coated PEU surface. The PDMS modified PEU membranes demonstrated a lack of BSA adsorption. The non PDMS coated side of the membrane which adsorbs proteins could potentially be used facing towards the defect attracting growth factors for periodontal tissue regeneration. Whereas, the PDMS coated side could serve as an occlusive barrier for preventing gingival epithelial

  20. Dental-derived Stem Cells and whole Tooth Regeneration: an Overview

    OpenAIRE

    Dannan, Aous

    2009-01-01

    The need for new dental tissue-replacement therapies is evident in recent reports which reveal startling statistics regarding the high incidence of tooth decay and tooth loss. Recent advances in the identification and characterization of dental stem cells, and in dental tissue-engineering strategies, suggest that bioengineering approaches may successfully be used to regenerate dental tissues and whole teeth. Interest in dental tissue-regeneration applications continues to increase as clinical...

  1. Regeneration of bone and periodontal ligament induced by recombinant amelogenin after periodontitis.

    Science.gov (United States)

    Haze, Amir; Taylor, Angela L; Haegewald, Stefan; Leiser, Yoav; Shay, Boaz; Rosenfeld, Eli; Gruenbaum-Cohen, Yael; Dafni, Leah; Zimmermann, Bernd; Heikinheimo, Kristiina; Gibson, Carolyn W; Fisher, Larry W; Young, Marian F; Blumenfeld, Anat; Bernimoulin, Jean P; Deutsch, Dan

    2009-06-01

    Regeneration of mineralized tissues affected by chronic diseases comprises a major scientific and clinical challenge. Periodontitis, one such prevalent disease, involves destruction of the tooth-supporting tissues, alveolar bone, periodontal-ligament and cementum, often leading to tooth loss. In 1997, it became clear that, in addition to their function in enamel formation, the hydrophobic ectodermal enamel matrix proteins (EMPs) play a role in the regeneration of these periodontal tissues. The epithelial EMPs are a heterogeneous mixture of polypeptides encoded by several genes. It was not clear, however, which of these many EMPs induces the regeneration and what mechanisms are involved. Here we show that a single recombinant human amelogenin protein (rHAM(+)), induced in vivo regeneration of all tooth-supporting tissues after creation of experimental periodontitis in a dog model. To further understand the regeneration process, amelogenin expression was detected in normal and regenerating cells of the alveolar bone (osteocytes, osteoblasts and osteoclasts), periodontal ligament, cementum and in bone marrow stromal cells. Amelogenin expression was highest in areas of high bone turnover and activity. Further studies showed that during the first 2 weeks after application, rHAM(+) induced, directly or indirectly, significant recruitment of mesenchymal progenitor cells, which later differentiated to form the regenerated periodontal tissues. The ability of a single protein to bring about regeneration of all periodontal tissues, in the correct spatio-temporal order, through recruitment of mesenchymal progenitor cells, could pave the way for development of new therapeutic devices for treatment of periodontal, bone and ligament diseases based on rHAM(+).

  2. Spallanzani's mouse: a model of restoration and regeneration.

    Science.gov (United States)

    Heber-Katz, E; Leferovich, J M; Bedelbaeva, K; Gourevitch, D

    2004-01-01

    The ability to regenerate is thought to be a lost phenotype in mammals, though there are certainly sporadic examples of mammalian regeneration. Our laboratory has identified a strain of mouse, the MRL mouse, which has a unique capacity to heal complex tissue in an epimorphic fashion, i.e., to restore a damaged limb or organ to its normal structure and function. Initial studies using through-and-through ear punches showed rapid full closure of the ear holes with cartilage growth, new hair follicles, and normal tissue architecture reminiscent of regeneration seen in amphibians as opposed to the scarring usually seen in mammals. Since the ear hole closure phenotype is a quantitative trait, this has been used to show-through extensive breeding and backcrossing--that the trait is heritable. Such analysis reveals that there is a complex genetic basis for this trait with multiple loci. One of the major phenotypes of the MRL mouse is a potent remodeling response with the absence or a reduced level of scarring. MRL healing is associated with the upregulation of the metalloproteinases MMP-2 and MMP-9 and the downregulation of their inhibitors TIMP-2 and TIMP-3, both present in inflammatory cells such as neutrophils and macrophages. This model has more recently been extended to the heart. In this case, a cryoinjury to the right ventricle leads to near complete scarless healing in the MRL mouse whereas scarring is seen in the control mouse. In the MRL heart, bromodeoxyuridine uptake by cardiomyocytes filling the wound site can be seen 60 days after injury. This does not occur in the control mouse. Function in the MRL heart, as measured by echocardiography, returns to normal.

  3. Public-private partnerships in urban regeneration projects: Organizational form or managerial capacity?

    NARCIS (Netherlands)

    M.B. Kort (Michiel); E-H. Klijn (Erik-Hans)

    2011-01-01

    markdownabstract__Abstract__ Urban regeneration companies (URCs) are public-private entities appearing across Europe. They are created specifically to manage and implement more effectively urban regeneration projects. Core ideas behind the establishment of these newly emerging partnerships aim to

  4. Eye Absence Does Not Regulate Planarian Stem Cells during Eye Regeneration.

    Science.gov (United States)

    LoCascio, Samuel A; Lapan, Sylvain W; Reddien, Peter W

    2017-02-27

    Dividing cells called neoblasts contain pluripotent stem cells and drive planarian flatworm regeneration from diverse injuries. A long-standing question is whether neoblasts directly sense and respond to the identity of missing tissues during regeneration. We used the eye to investigate this question. Surprisingly, eye removal was neither sufficient nor necessary for neoblasts to increase eye progenitor production. Neoblasts normally increase eye progenitor production following decapitation, facilitating regeneration. Eye removal alone, however, did not induce this response. Eye regeneration following eye-specific resection resulted from homeostatic rates of eye progenitor production and less cell death in the regenerating eye. Conversely, large head injuries that left eyes intact increased eye progenitor production. Large injuries also non-specifically increased progenitor production for multiple uninjured tissues. We propose a model for eye regeneration in which eye tissue production by planarian stem cells is not directly regulated by the absence of the eye itself. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Regeneration of Optic Nerve

    Directory of Open Access Journals (Sweden)

    Kwok-Fai So

    2011-05-01

    Full Text Available The optic nerve is part of the central nervous system (CNS and has a structure similar to other CNS tracts. The axons that form the optic nerve originate in the ganglion cell layer of the retina and extend through the optic tract. As a tissue, the optic nerve has the same organization as the white matter of the brain in regard to its glia. There are three types of glial cells: Oligodendrocytes, astrocytes, and microglia. Little structural and functional regeneration of the CNS takes place spontaneously following injury in adult mammals. In contrast, the ability of the mammalian peripheral nervous system (PNS to regenerate axons after injury is well documented. A number of factors are involved in the lack of CNS regeneration, including: (i the response of neuronal cell bodies against the damage; (ii myelin-mediated inhibition by oligodendrocytes; (iii glial scarring, by astrocytes; (iv macrophage infiltration; and (v insufficient trophic factor support. The fundamental difference in the regenerative capacity between CNS and PNS neuronal cell bodies has been the subject of intensive research. In the CNS the target normally conveys a retrograde trophic signal to the cell body. CNS neurons die because of trophic deprivation. Damage to the optic nerve disconnects the neuronal cell body from its target-derived trophic peptides, leading to the death of retinal ganglion cells. Furthermore, the axontomized neurons become less responsive to the peptide trophic signals they do receive. On the other hand, adult PNS neurons are intrinsically responsive to neurotrophic factors and do not lose trophic responsiveness after axotomy. In this talk different strategies to promote optic-nerve regeneration in adult mammals are reviewed. Much work is still needed to resolve many issues. This is a very important area of neuroregeneration and neuroprotection, as currently there is no cure after traumatic optic nerve injury or retinal disease such as glaucoma, which

  6. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model.

    Directory of Open Access Journals (Sweden)

    Darren Paul Burke

    Full Text Available Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.

  7. Deep-time evolution of regeneration and preaxial polarity in tetrapod limb development.

    Science.gov (United States)

    Fröbisch, Nadia B; Bickelmann, Constanze; Olori, Jennifer C; Witzmann, Florian

    2015-11-12

    Among extant tetrapods, salamanders are unique in showing a reversed preaxial polarity in patterning of the skeletal elements of the limbs, and in displaying the highest capacity for regeneration, including full limb and tail regeneration. These features are particularly striking as tetrapod limb development has otherwise been shown to be a highly conserved process. It remains elusive whether the capacity to regenerate limbs in salamanders is mechanistically and evolutionarily linked to the aberrant pattern of limb development; both are features classically regarded as unique to urodeles. New molecular data suggest that salamander-specific orphan genes play a central role in limb regeneration and may also be involved in the preaxial patterning during limb development. Here we show that preaxial polarity in limb development was present in various groups of temnospondyl amphibians of the Carboniferous and Permian periods, including the dissorophoids Apateon and Micromelerpeton, as well as the stereospondylomorph Sclerocephalus. Limb regeneration has also been reported in Micromelerpeton, demonstrating that both features were already present together in antecedents of modern salamanders 290 million years ago. Furthermore, data from lepospondyl 'microsaurs' on the amniote stem indicate that these taxa may have shown some capacity for limb regeneration and were capable of tail regeneration, including re-patterning of the caudal vertebral column that is otherwise only seen in salamander tail regeneration. The data from fossils suggest that salamander-like regeneration is an ancient feature of tetrapods that was subsequently lost at least once in the lineage leading to amniotes. Salamanders are the only modern tetrapods that retained regenerative capacities as well as preaxial polarity in limb development.

  8. Magnetotherapy: The quest for tendon regeneration.

    Science.gov (United States)

    Pesqueira, Tamagno; Costa-Almeida, Raquel; Gomes, Manuela E

    2018-05-09

    Tendons are mechanosensitive tissues that connect and transmit the forces generated by muscles to bones by allowing the conversion of mechanical input into biochemical signals. These physical forces perform the fundamental work of preserving tendon homeostasis assuring body movements. However, overloading causes tissue injuries, which leads us to the field of tendon regeneration. Recently published reviews have broadly shown the use of biomaterials and different strategies to attain tendon regeneration. In this review, our focus is the use of magnetic fields as an alternative therapy, which has demonstrated clinical relevance in tendon medicine because of their ability to modulate cell fate. Yet the underlying cellular and molecular mechanisms still need to be elucidated. While providing a brief outlook about specific signalling pathways and intracellular messengers as framework in play by tendon cells, application of magnetic fields as a subcategory of physical forces is explored, opening up a compelling avenue to enhance tendon regeneration. We outline here useful insights on the effects of magnetic fields both at in vitro and in vivo levels, particularly on the expression of tendon genes and inflammatory cytokines, ultimately involved in tendon regeneration. Subsequently, the potential of using magnetically responsive biomaterials in tendon tissue engineering is highlighted and future directions in magnetotherapy are discussed. © 2018 Wiley Periodicals, Inc.

  9. Periodontal regeneration around natural teeth.

    Science.gov (United States)

    Garrett, S

    1996-11-01

    1. Evidence is conclusive (Table 2) that periodontal regeneration in humans is possible following the use of bone grafts, guided tissue regeneration procedures, both without and in combination with bone grafts, and root demineralization procedures. 2. Clinically guided tissue regeneration procedures have demonstrated significant positive clinical change beyond that achieved with debridement alone in treating mandibular and maxillary (buccal only) Class II furcations. Similar data exist for intraosseous defects. Evidence suggests that the use of bone grafts or GTR procedures produce equal clinical benefit in treating intraosseous defects. Further research is necessary to evaluate GTR procedures compared to, or combined with, bone grafts in treating intraosseous defects. 3. Although there are some data suggesting hopeful results in Class II furcations, the clinical advantage of procedures combining present regenerative techniques remains to be demonstrated. Additional randomized controlled trials with sufficient power are needed to demonstrate the potential usefulness of these techniques. 4. Outcomes following regenerative attempts remain somewhat variable with differences in results between studies and individual subjects. Some of this variability is likely patient related in terms of compliance with plaque control and maintenance procedures, as well as personal habits; e.g., smoking. Variations in the defects selected for study may also affect predictability of outcomes along with other factors. 5. There is evidence to suggest that present regenerative techniques lead to significant amounts of regeneration at localized sites on specific teeth. However, if complete regeneration is to become a reality, additional stimuli to enhance the regenerative process are likely needed. Perhaps this will be accomplished in the future, with combined procedures that include appropriate polypeptide growth factors or tissue factors to provide additional stimulus.

  10. Lens regeneration from the cornea requires suppression of Wnt/β-catenin signaling.

    Science.gov (United States)

    Hamilton, Paul W; Sun, Yu; Henry, Jonathan J

    2016-04-01

    The frog, Xenopus laevis, possesses a high capacity to regenerate various larval tissues, including the lens, which is capable of complete regeneration from the cornea epithelium. However, the molecular signaling mechanisms of cornea-lens regeneration are not fully understood. Previous work has implicated the involvement of the Wnt signaling pathway, but molecular studies have been very limited. Iris-derived lens regeneration in the newt (Wolffian lens regeneration) has shown a necessity for active Wnt signaling in order to regenerate a new lens. Here we provide evidence that the Wnt signaling pathway plays a different role in the context of cornea-lens regeneration in Xenopus. We examined the expression of frizzled receptors and wnt ligands in the frog cornea epithelium. Numerous frizzled receptors (fzd1, fzd2, fzd3, fzd4, fzd6, fzd7, fzd8, and fzd10) and wnt ligands (wnt2b.a, wnt3a, wnt4, wnt5a, wnt5b, wnt6, wnt7b, wnt10a, wnt11, and wnt11b) are expressed in the cornea epithelium, demonstrating that this tissue is transcribing many of the ligands and receptors of the Wnt signaling pathway. When compared to flank epithelium, which is lens regeneration incompetent, only wnt11 and wnt11b are different (present only in the cornea epithelium), identifying them as potential regulators of cornea-lens regeneration. To detect changes in canonical Wnt/β-catenin signaling occurring within the cornea epithelium, axin2 expression was measured over the course of regeneration. axin2 is a well-established reporter of active Wnt/β-catenin signaling, and its expression shows a significant decrease at 24 h post-lentectomy. This decrease recovers to normal endogenous levels by 48 h. To test whether this signaling decrease was necessary for lens regeneration to occur, regenerating eyes were treated with either 6-bromoindirubin-3'-oxime (BIO) or 1-azakenpaullone - both activators of Wnt signaling - resulting in a significant reduction in the percentage of cases with successful

  11. A Radially Organized Multipatterned Device as a Diagnostic Tool for the Screening of Topographies in Tissue Engineering Biomaterials

    NARCIS (Netherlands)

    Babo, P.S.; Klymov, A.; Riet, J. te; Reis, R.L.; Jansen, J.A.; Gomes, M.E.; Walboomers, X.F.

    2016-01-01

    Micro- and nanotextured biomaterial surfaces have been widely studied for their capacity to drive the regeneration of organized tissues. Nanotopographical features in the shape of groove-ridge patterns aim at mimicking the extracellular matrix organization. However, to date, a wide array of groove

  12. Irradiation inhibits the regeneration of aneurogenic limbs

    International Nuclear Information System (INIS)

    Wallace, H.; Maden, M.

    1976-01-01

    The developing arms of axolotl larvae from the 2-digit stage onward and the aneurogenic arms of surgically denervated larvae maintained in parabiosis are able to regenerate after amputation. Such regeneration is uniformly inhibited by local irradiation of the arm, whether innervated or not. This demonstration refutes a recent hypothesis that x-rays interfere with a special activity of nerves required for regeneration, and supports the earlier concept that x-rays act directly on those cells which must proliferate to form the regenerated tissues

  13. Orthogonal muscle fibres have different instructive roles in planarian regeneration.

    Science.gov (United States)

    Scimone, M Lucila; Cote, Lauren E; Reddien, Peter W

    2017-11-30

    The ability to regenerate missing body parts exists throughout the animal kingdom. Positional information is crucial for regeneration, but how it is harboured and used by differentiated tissues is poorly understood. In planarians, positional information has been identified from study of phenotypes caused by RNA interference in which the wrong tissues are regenerated. For example, inhibition of the Wnt signalling pathway leads to regeneration of heads in place of tails. Characterization of these phenotypes has led to the identification of position control genes (PCGs)-genes that are expressed in a constitutive and regional manner and are associated with patterning. Most PCGs are expressed within planarian muscle; however, how muscle is specified and how different muscle subsets affect regeneration is unknown. Here we show that different muscle fibres have distinct regulatory roles during regeneration in the planarian Schmidtea mediterranea. myoD is required for formation of a specific muscle cell subset: the longitudinal fibres, oriented along the anterior-posterior axis. Loss of longitudinal fibres led to complete regeneration failure because of defects in regeneration initiation. A different transcription factor-encoding gene, nkx1-1, is required for the formation of circular fibres, oriented along the medial-lateral axis. Loss of circular fibres led to a bifurcated anterior-posterior axis with fused heads forming in single anterior blastemas. Whereas muscle is often viewed as a strictly contractile tissue, these findings reveal that different muscle types have distinct and specific regulatory roles in wound signalling and patterning to enable regeneration.

  14. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration

    Science.gov (United States)

    Castiglioni, Alessandra; Basso, Veronica; Vezzoli, Michela; Monno, Antonella; Almada, Albert E.; Mondino, Anna; Wagers, Amy J.; Manfredi, Angelo A.; Rovere-Querini, Patrizia

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue. PMID:26039259

  15. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish

    Science.gov (United States)

    Mokalled, Mayssa H.; Patra, Chinmoy; Dickson, Amy L.; Endo, Toyokazu; Stainier, Didier Y. R.; Poss, Kenneth D.

    2016-01-01

    Unlike mammals, zebrafish efficiently regenerate functional nervous system tissue after major spinal cord injury. Whereas glial scarring presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish form a bridge across severed spinal cord tissue and facilitate regeneration, a relatively unexplored process. Here, we performed a genome-wide profiling screen for secreted factors that are upregulated during zebrafish spinal cord regeneration. We find that connective tissue growth factor a (ctgfa) is induced in and around glial cells that participate in initial bridging events. Mutations in ctgfa disrupt spinal cord repair, while transgenic ctgfa overexpression and local human CTGF recombinant protein delivery accelerate bridging and functional regeneration. Our study reveals that CTGF is necessary and sufficient to stimulate glial bridging and natural spinal cord regeneration. PMID:27811277

  16. Production of Composite Scaffold Containing Silk Fibroin, Chitosan, and Gelatin for 3D Cell Culture and Bone Tissue Regeneration.

    Science.gov (United States)

    Li, Jianqing; Wang, Qiuke; Gu, Yebo; Zhu, Yu; Chen, Liang; Chen, Yunfeng

    2017-11-08

    BACKGROUND Bone tissue engineering, a powerful tool to treat bone defects, is highly dependent on use of scaffolds. Both silk fibroin (SF) and chitosan (Cs) are biocompatible and actively studied for reconstruction of tissue engineering. Gelatin (Gel) is also widely applied in the biomedical field due to its low antigenicity and physicochemical stability. MATERIAL AND METHODS In this study, 4 different types of scaffolds were constructed - SF, SF/Cs, SF/Gel, and SF/Cs/Gel - and we compared their physical and chemical properties as well as biological characterization of these scaffolds to determine the most suitable scaffold for use in bone regeneration. First, these scaffolds were produced via chemical cross-linking method and freeze-drying technique. Next, the characterization of internal structure was studied using scanning electron microscopy and the porosity was evaluated by liquid displacement method. Then, we compared physicochemical properties such as water absorption rate and degradation property. Finally, MC3T3-E1 cells were inoculated on the scaffolds to study the biocompatibility and osteogenesis of the three-dimensional (3D) scaffolds in vitro. RESULTS The composite scaffold formed by all 3 components was the best for use in bone regeneration. CONCLUSIONS We conclude that the best scaffold among the 4 studied for MC3T3-E1 cells is our SF/Cs/Gel scaffold, suggesting a new choice for bone regeneration that can be used to treat bone defects or fractures in clinical practice.

  17. Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs.

    Science.gov (United States)

    McCusker, Catherine D; Diaz-Castillo, Carlos; Sosnik, Julian; Q Phan, Anne; Gardiner, David M

    2016-08-01

    The Mexican Axolotl is one of the few tetrapod species that is capable of regenerating complete skeletal elements in injured adult limbs. Whether the skeleton (bone and cartilage) plays a role in the patterning and contribution to the skeletal regenerate is currently unresolved. We tested the induction of pattern formation, the effect on cell proliferation, and contributions of skeletal tissues (cartilage, bone, and periosteum) to the regenerating axolotl limb. We found that bone tissue grafts from transgenic donors expressing GFP fail to induce pattern formation and do not contribute to the newly regenerated skeleton. Periosteum tissue grafts, on the other hand, have both of these activities. These observations reveal that skeletal tissue does not contribute to the regeneration of skeletal elements; rather, these structures are patterned by and derived from cells of non-skeletal connective tissue origin. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Successive Release of Tissue Inhibitors of Metalloproteinase-1 Through Graphene Oxide-Based Delivery System Can Promote Skin Regeneration

    Science.gov (United States)

    Zhong, Cheng; Shi, Dike; Zheng, Yixiong; Nelson, Peter J.; Bao, Qi

    2017-09-01

    The purpose of this study was to testify the hypothesis that graphene oxide (GO) could act as an appropriate vehicle for the release of tissue inhibitors of metalloproteinase-1 (TIMP-1) protein in the context of skin repair. GO characteristics were observed by scanning electron microscopy, atomic force microscopy, and thermal gravimetric analysis. After TIMP-1 absorbing GO, the release profiles of various concentrations of TIMP-1 from GO were compared. GO biocompatibility with fibroblast viability was assessed by measuring cell cycle and apoptosis. In vivo wound healing assays were used to determine the effect of TIMP-1-GO on skin regeneration. The greatest intensity of GO was 1140 nm, and the most intensity volume was 10,674.1 nm (nanometer). TIMP-1 was shown to be continuously released for at least 40 days from GO. The proliferation and viability of rat fibroblasts cultured with TIMP-1-GO were not significantly different as compared with the cells grown in GO or TIMP-1 alone ( p > 0.05). Skin defect of rats treated with TIMP-1 and TIMP-1-GO showed significant differences in histological and immunohistochemical scores ( p tissue regeneration in skin defect.

  19. Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems

    International Nuclear Information System (INIS)

    James, R; Kumbar, S G; Laurencin, C T; Balian, G; Chhabra, A B

    2011-01-01

    Tendon tissue engineering with a biomaterial scaffold that mimics the tendon extracellular matrix (ECM) and is biomechanically suitable, and when combined with readily available autologous cells, may provide successful regeneration of defects in tendon. Current repair strategies using suitable autografts and freeze-dried allografts lead to a slow repair process that is sub-optimal and fails to restore function, particularly in difficult clinical situations such as zone II flexor tendon injuries of the hand. We have investigated the effect of GDF-5 on cell proliferation and gene expression by primary rat adipose-derived stem cells (ADSCs) that were cultured on a poly(dl-lactide-co-glycolide) PLAGA fiber scaffold and compared to a PLAGA 2D film scaffold. The electrospun scaffold mimics the collagen fiber bundles present in native tendon tissue, and supports the adhesion and proliferation of multipotent ADSCs. Gene expression of scleraxis, the neotendon marker, was upregulated seven- to eightfold at 1 week with GDF-5 treatment when cultured on a 3D electrospun scaffold, and was significantly higher at 2 weeks compared to 2D films with or without GDF-5 treatment. Expression of the genes that encode the major tendon ECM protein, collagen type I, was increased by fourfold starting at 1 week on treatment with 100 ng mL -1 GDF-5, and at all time points the expression was significantly higher compared to 2D films irrespective of GDF-5 treatment. Thus stimulation with GDF-5 can modulate primary ADSCs on a PLAGA fiber scaffold to produce a soft, collagenous musculoskeletal tissue that fulfills the need for tendon regeneration.

  20. Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems.

    Science.gov (United States)

    James, R; Kumbar, S G; Laurencin, C T; Balian, G; Chhabra, A B

    2011-04-01

    Tendon tissue engineering with a biomaterial scaffold that mimics the tendon extracellular matrix (ECM) and is biomechanically suitable, and when combined with readily available autologous cells, may provide successful regeneration of defects in tendon. Current repair strategies using suitable autografts and freeze-dried allografts lead to a slow repair process that is sub-optimal and fails to restore function, particularly in difficult clinical situations such as zone II flexor tendon injuries of the hand. We have investigated the effect of GDF-5 on cell proliferation and gene expression by primary rat adipose-derived stem cells (ADSCs) that were cultured on a poly(DL-lactide-co-glycolide) PLAGA fiber scaffold and compared to a PLAGA 2D film scaffold. The electrospun scaffold mimics the collagen fiber bundles present in native tendon tissue, and supports the adhesion and proliferation of multipotent ADSCs. Gene expression of scleraxis, the neotendon marker, was upregulated seven- to eightfold at 1 week with GDF-5 treatment when cultured on a 3D electrospun scaffold, and was significantly higher at 2 weeks compared to 2D films with or without GDF-5 treatment. Expression of the genes that encode the major tendon ECM protein, collagen type I, was increased by fourfold starting at 1 week on treatment with 100 ng mL(-1) GDF-5, and at all time points the expression was significantly higher compared to 2D films irrespective of GDF-5 treatment. Thus stimulation with GDF-5 can modulate primary ADSCs on a PLAGA fiber scaffold to produce a soft, collagenous musculoskeletal tissue that fulfills the need for tendon regeneration.

  1. Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems

    Energy Technology Data Exchange (ETDEWEB)

    James, R [Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908 (United States); Kumbar, S G; Laurencin, C T [Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030 (United States); Balian, G; Chhabra, A B, E-mail: ac2h@hscmail.mcc.virginia.edu [Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908 (United States)

    2011-04-15

    Tendon tissue engineering with a biomaterial scaffold that mimics the tendon extracellular matrix (ECM) and is biomechanically suitable, and when combined with readily available autologous cells, may provide successful regeneration of defects in tendon. Current repair strategies using suitable autografts and freeze-dried allografts lead to a slow repair process that is sub-optimal and fails to restore function, particularly in difficult clinical situations such as zone II flexor tendon injuries of the hand. We have investigated the effect of GDF-5 on cell proliferation and gene expression by primary rat adipose-derived stem cells (ADSCs) that were cultured on a poly(dl-lactide-co-glycolide) PLAGA fiber scaffold and compared to a PLAGA 2D film scaffold. The electrospun scaffold mimics the collagen fiber bundles present in native tendon tissue, and supports the adhesion and proliferation of multipotent ADSCs. Gene expression of scleraxis, the neotendon marker, was upregulated seven- to eightfold at 1 week with GDF-5 treatment when cultured on a 3D electrospun scaffold, and was significantly higher at 2 weeks compared to 2D films with or without GDF-5 treatment. Expression of the genes that encode the major tendon ECM protein, collagen type I, was increased by fourfold starting at 1 week on treatment with 100 ng mL{sup -1} GDF-5, and at all time points the expression was significantly higher compared to 2D films irrespective of GDF-5 treatment. Thus stimulation with GDF-5 can modulate primary ADSCs on a PLAGA fiber scaffold to produce a soft, collagenous musculoskeletal tissue that fulfills the need for tendon regeneration.

  2. Effect of miR-146a/bFGF/PEG-PEI Nanoparticles on Inflammation Response and Tissue Regeneration of Human Dental Pulp Cells

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2016-01-01

    Full Text Available Introduction. Inflammation in dental pulp cells (DPCs initiated by Lipopolysaccharide (LPS results in dental pulp necrosis. So far, whether there is a common system regulating inflammation response and tissue regeneration remains unknown. miR-146a is closely related to inflammation. Basic fibroblast growth factor (bFGF is an important regulator for differentiation. Methods. To explore the effect of miR-146a/bFGF on inflammation and tissue regeneration, polyethylene glycol-polyethyleneimine (PEG-PEI was synthesized, and physical characteristics were analyzed by dynamic light scattering and gel retardation analysis. Cell absorption, transfection efficiency, and cytotoxicity were assessed. Alginate gel was combined with miR-146a/PEG-PEI nanoparticles and bFGF. Drug release ratio was measured by ultraviolet spectrophotography. Proliferation and odontogenic differentiation of DPCs with 1 μg/mL LPS treatment were determined. Results. PEG-PEI prepared at N/P 2 showed complete gel retardation and smallest particle size and zeta potential. Transfection efficiency of PEG-PEI was higher than lipo2000. Cell viability decreased as N/P ratio increased. Drug release rate amounted to 70% at the first 12 h and then maintained slow release afterwards. Proliferation and differentiation decreased in DPCs with LPS treatment, whereas they increased in miR-146a/bFGF gel group. Conclusions. PEG-PEI is a promising vector for gene therapy. miR-146a and bFGF play critical roles in inflammation response and tissue regeneration of DPCs.

  3. Development of Tissue-Engineered Ligaments: Elastin Promotes Regeneration of the Rabbit Medial Collateral Ligament.

    Science.gov (United States)

    Hirukawa, Masaki; Katayama, Shingo; Sato, Tatsuya; Yamada, Masayoshi; Kageyama, Satoshi; Unno, Hironori; Suzuki, Yoshiaki; Miura, Yoshihiro; Shiratsuchi, Eri; Hasegawa, Masahiro; Miyamoto, Keiichi; Horiuchi, Takashi

    2017-12-21

    When ligaments are injured, reconstructive surgery is sometimes required to restore function. Methods of reconstructive surgery include transplantation of an artificial ligament and autotransplantation of a tendon. However, these methods have limitations related to the strength of the bone-ligament insertion and biocompatibility of the transplanted tissue after surgery. Therefore, it is necessary to develop new reconstruction methods and pursue the development of artificial ligaments. Elastin is a major component of elastic fibers and ligaments. However, the role of elastin in ligament regeneration has not been described. Here, we developed a rabbit model of a medial collateral ligament (MCL) rupture and treated animal knees with exogenous elastin [100 µg/(0.5 mL·week)] for 6 or 12 weeks. Elastin treatment increased gene expression and protein content of collagen and elastin (gene expression, 6-fold and 42-fold, respectively; protein content, 1.6-fold and 1.9-fold, respectively), and also increased the elastic modulus of MCL increased with elastin treatment (2-fold) compared with the controls. Our data suggest that elastin is involved in the regeneration of damaged ligaments. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Effects of Human Mesenchymal Stem Cells Isolated from Wharton's Jelly of the Umbilical Cord and Conditioned Media on Skeletal Muscle Regeneration Using a Myectomy Model.

    Science.gov (United States)

    Pereira, T; Armada-da Silva, P A S; Amorim, I; Rêma, A; Caseiro, A R; Gärtner, A; Rodrigues, M; Lopes, M A; Bártolo, P J; Santos, J D; Luís, A L; Maurício, A C

    2014-01-01

    Skeletal muscle has good regenerative capacity, but the extent of muscle injury and the developed fibrosis might prevent complete regeneration. The in vivo application of human mesenchymal stem cells (HMSCs) of the umbilical cord and the conditioned media (CM) where the HMSCs were cultured and expanded, associated with different vehicles to induce muscle regeneration, was evaluated in a rat myectomy model. Two commercially available vehicles and a spherical hydrogel developed by our research group were used. The treated groups obtained interesting results in terms of muscle regeneration, both in the histological and in the functional assessments. A less evident scar tissue, demonstrated by collagen type I quantification, was present in the muscles treated with HMSCs or their CM. In terms of the histological evaluation performed by ISO 10993-6 scoring, it was observed that HMSCs apparently have a long-term negative effect, since the groups treated with CM presented better scores. CM could be considered an alternative to the in vivo transplantation of these cells, as it can benefit from the local tissue response to secreted molecules with similar results in terms of muscular regeneration. Searching for an optimal vehicle might be the key point in the future of skeletal muscle tissue engineering.

  5. Changes in Regenerative Capacity through Lifespan

    Directory of Open Access Journals (Sweden)

    Maximina H. Yun

    2015-10-01

    Full Text Available Most organisms experience changes in regenerative abilities through their lifespan. During aging, numerous tissues exhibit a progressive decline in homeostasis and regeneration that results in tissue degeneration, malfunction and pathology. The mechanisms responsible for this decay are both cell intrinsic, such as cellular senescence, as well as cell-extrinsic, such as changes in the regenerative environment. Understanding how these mechanisms impact on regenerative processes is essential to devise therapeutic approaches to improve tissue regeneration and extend healthspan. This review offers an overview of how regenerative abilities change through lifespan in various organisms, the factors that underlie such changes and the avenues for therapeutic intervention. It focuses on established models of mammalian regeneration as well as on models in which regenerative abilities do not decline with age, as these can deliver valuable insights for our understanding of the interplay between regeneration and aging.

  6. Optimization for zeolite regeneration and nitrogen removal performance of a hypochlorite-chloride regenerant.

    Science.gov (United States)

    Zhang, Wei; Zhou, Zhen; An, Ying; Du, Silu; Ruan, Danian; Zhao, Chengyue; Ren, Ning; Tian, Xiaoce

    2017-07-01

    Simultaneous zeolites regeneration and nitrogen removal were investigated by using a mixed solution of NaClO and NaCl (NaClO-NaCl solution), and effects of the regenerant on ammonium removal performance and textural properties of zeolites were analyzed by long-term adsorption and regeneration operations. Mixed NaClO-NaCl solution removed more NH 4 + exchanged on zeolites and converted more of them to nitrogen than using NaClO or NaCl solution alone. Response surface methodological analysis indicated that molar ratio of hypochlorite and nitrogen (ClO - /N), NaCl concentration and pH value all had significant effects on zeolites regeneration and NH 4 + conversion to nitrogen, and the optimum condition was obtained at ClO - /N of 1.75, NaCl concentration of 20 g/L and pH of 10.0. Zeolites regenerated by mixed NaClO-NaCl solution showed higher ammonium adsorption rate and lower capacity than unused zeolites. Zeolites and the regeneration solution were both effective even after 20 cycles of use. Composition and morphological analysis revealed that the main mineral species and surface morphology of zeolites before and after NaClO-NaCl regeneration were unchanged. Textural analysis indicated that NaClO-NaCl regeneration leads to an increased surface area of zeolites, especially the microporosity. The results indicated that NaClO-NaCl regeneration is an attractive method to achieve sustainable removal of nitrogen from wastewater through zeolite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Covalent binding of bone morphogenetic protein-2 and transforming growth factor-β3 to 3D plotted scaffolds for osteochondral tissue regeneration

    NARCIS (Netherlands)

    Di Luca, Andrea; Klein Gunnewiek, Michel; Vancso, Julius; van Blitterswijk, Clemens; Benetti, Edmondo Maria; Moroni, Lorenzo

    2017-01-01

    Engineering the osteochondral tissue presents some challenges mainly relying in its function of transition from the subchondral bone to articular cartilage and the gradual variation in several biological, mechanical, and structural features. A possible solution for osteochondral regeneration might

  8. Müller stem cell dependent retinal regeneration.

    Science.gov (United States)

    Chohan, Annu; Singh, Usha; Kumar, Atul; Kaur, Jasbir

    2017-01-01

    Müller Stem cells to treat ocular diseases has triggered enthusiasm across all medical and scientific communities. Recent development in the field of stem cells has widened the prospects of applying cell based therapies to regenerate ocular tissues that have been irreversibly damaged by disease or injury. Ocular tissues such as the lens and the retina are now known to possess cell having remarkable regenerative abilities. Recent studies have shown that the Müller glia, a cell found in all vertebrate retinas, is the primary source of new neurons, and therefore are considered as the cellular basis for retinal regeneration in mammalian retinas. Here, we review the current status of retinal regeneration of the human eye by Müller stem cells. This review elucidates the current status of retinal regeneration by Müller stem cells, along with major retinal degenerative diseases where these stem cells play regenerative role in retinal repair and replacement. Copyright © 2016. Published by Elsevier B.V.

  9. Internodal function in normal and regenerated mammalian axons

    DEFF Research Database (Denmark)

    Moldovan, M; Krarup, C

    2007-01-01

    AIM: Following Wallerian degeneration, peripheral myelinated axons have the ability to regenerate and, given a proper pathway, establish functional connections with targets. In spite of this capacity, the clinical outcome of nerve regeneration remains unsatisfactory. Early studies have found...... that regenerated internodes remain persistently short though this abnormality did not seem to influence recovery in conduction. It remains unclear to which extent abnormalities in axonal function itself may contribute to the poor outcome of nerve regeneration. METHODS: We review experimental evidence indicating...... that internodes play an active role in axonal function. RESULTS: By investigating internodal contribution to axonal excitability we have found evidence that axonal function may be permanently compromised in regenerated nerves. Furthermore, we illustrate that internodal function is also abnormal in regenerated...

  10. Tendon tissue engineering: Adipose 1 derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems

    Science.gov (United States)

    James, R; Kumbar, S G; Laurencin, C T; Balian, G; Chhabra, A B

    2011-01-01

    Tendon tissue engineering with a biomaterial scaffold that mimics the tendon extracellular matrix (ECM) and is biomechanically suitable when combined with readily available autologous cells may provide successful regeneration of defects in tendon. Current repair strategies using suitable autografts and freeze-dried allografts lead to a slow repair process that is sub-optimal and fails to restore function, particularly in difficult clinical situations such as zone II flexor tendon injuries of the hand. We have investigated the effect of GDF-5 on cell proliferation and gene expression by primary rat adipose-derived stromal cells (ADSCs) that were cultured on poly(DL-lactide-co-glycolide) PLAGA fiber scaffold and compared to PLAGA 2D film scaffold. The electrospun scaffold mimics the collagen fiber bundles present in native tendon tissue, and supports the adhesion and proliferation of multipotent ADSCs. Gene expression of scleraxis, the neotendon marker was upregulated 7 – 8 fold at 1 week with GDF-5 treatment when cultured on 3D electrospun scaffold, and was significantly higher at 2 weeks compared to 2D films with or without GDF-5 treatment. Expression of the genes that encode the major tendon ECM protein, collagen type I, was increased by 4 fold starting at 1 week on treatment with 100ng/mL GDF-5, and at all time points the expression was significantly higher compared to 2D films irrespective of GDF-5 treatment. Thus stimulation with GDF-5 can modulate primary ADSCs on PLAGA fiber scaffold to produce a soft, collagenous musculoskeletal tissue that fulfills the need for tendon regeneration. PMID:21436509

  11. Using Ambystoma mexicanum (Mexican axolotl) embryos, chemical genetics, and microarray analysis to identify signaling pathways associated with tissue regeneration.

    Science.gov (United States)

    Ponomareva, Larissa V; Athippozhy, Antony; Thorson, Jon S; Voss, S Randal

    2015-12-01

    Amphibian vertebrates are important models in regenerative biology because they present exceptional regenerative capabilities throughout life. However, it takes considerable effort to rear amphibians to juvenile and adult stages for regeneration studies, and the relatively large sizes that frogs and salamanders achieve during development make them difficult to use in chemical screens. Here, we introduce a new tail regeneration model using late stage Mexican axolotl embryos. We show that axolotl embryos completely regenerate amputated tails in 7days before they exhaust their yolk supply and begin to feed. Further, we show that axolotl embryos can be efficiently reared in microtiter plates to achieve moderate throughput screening of soluble chemicals to investigate toxicity and identify molecules that alter regenerative outcome. As proof of principle, we identified integration 1 / wingless (Wnt), transforming growth factor beta (Tgf-β), and fibroblast growth factor (Fgf) pathway antagonists that completely block tail regeneration and additional chemicals that significantly affected tail outgrowth. Furthermore, we used microarray analysis to show that inhibition of Wnt signaling broadly affects transcription of genes associated with Wnt, Fgf, Tgf-β, epidermal growth factor (Egf), Notch, nerve growth factor (Ngf), homeotic gene (Hox), rat sarcoma/mitogen-activated protein kinase (Ras/Mapk), myelocytomatosis viral oncogene (Myc), tumor protein 53 (p53), and retinoic acid (RA) pathways. Punctuated changes in the expression of genes known to regulate vertebrate development were observed; this suggests the tail regeneration transcriptional program is hierarchically structured and temporally ordered. Our study establishes the axolotl as a chemical screening model to investigate signaling pathways associated with tissue regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Harnessing biomechanics to develop cartilage regeneration strategies.

    Science.gov (United States)

    Athanasiou, Kyriacos A; Responte, Donald J; Brown, Wendy E; Hu, Jerry C

    2015-02-01

    As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. This article provides a review of important steps toward regeneration of articular cartilage with suitable biomechanical properties. As a first step, biomechanical and biochemical characterization studies at the tissue level were used to provide design criteria for engineering neotissues. Extending this work to the single cell and subcellular levels has helped to develop biochemical and mechanical stimuli for tissue engineering studies. This strong mechanobiological foundation guided studies on regenerating hyaline articular cartilage, the knee meniscus, and temporomandibular joint (TMJ) fibrocartilage. Initial tissue engineering efforts centered on developing biodegradable scaffolds for cartilage regeneration. After many years of studying scaffold-based cartilage engineering, scaffoldless approaches were developed to address deficiencies of scaffold-based systems, resulting in the self-assembling process. This process was further improved by employing exogenous stimuli, such as hydrostatic pressure, growth factors, and matrix-modifying and catabolic agents, both singly and in synergistic combination to enhance neocartilage functional properties. Due to the high cell needs for tissue engineering and the limited supply of native articular chondrocytes, costochondral cells are emerging as a suitable cell source. Looking forward, additional cell sources are investigated to render these technologies more translatable. For example, dermis isolated adult stem (DIAS) cells show potential as a source of

  13. Post-irradiation thymocyte regeneration after bone marrow transplantation

    International Nuclear Information System (INIS)

    Boersma, W.; Betel, I.; Daculsi, R.; Westen, G. van der

    1981-01-01

    Growth kinetics of the donor-type thymus cell population after transplantation of bone marrow into irradiated syngeneic recipient mice is biphasic. During the first rapid phase of regeneration, lasting until day 19 after transplantation, the rate of development of the donor cells is independent of the number of bone marrow cells inoculated. The second slow phase is observed only when low numbers of bone marrow cells (2.5 x 10 4 ) are transplanted. The decrease in the rate of development is attributed to an efflux of donor cells from the thymus because, at the same time, the first immunologically competent cells are found in spleen. After bone marrow transplantation the regeneration of thymocyte progenitor cells in the marrow is delayed when compared to regeneration of CFUs. Therefore, regenerating marrow has a greatly reduced capacity to restore the thymus cell population. One week after transplantation of 3 x 10 6 cells, 1% of normal capacity of bone marrow is found. It is concluded that the regenerating thymus cells population after bone marrow transplantation is composed of the direct progeny of precursor cells in the inoculum. (author)

  14. Cell-State Transitions Regulated by SLUG Are Critical for Tissue Regeneration and Tumor Initiation

    Directory of Open Access Journals (Sweden)

    Sarah Phillips

    2014-05-01

    Full Text Available Perturbations in stem cell activity and differentiation can lead to developmental defects and cancer. We use an approach involving a quantitative model of cell-state transitions in vitro to gain insights into how SLUG/SNAI2, a key developmental transcription factor, modulates mammary epithelial stem cell activity and differentiation in vivo. In the absence of SLUG, stem cells fail to transition into basal progenitor cells, while existing basal progenitor cells undergo luminal differentiation; together, these changes result in abnormal mammary architecture and defects in tissue function. Furthermore, we show that in the absence of SLUG, mammary stem cell activity necessary for tissue regeneration and cancer initiation is lost. Mechanistically, SLUG regulates differentiation and cellular plasticity by recruiting the chromatin modifier lysine-specific demethylase 1 (LSD1 to promoters of lineage-specific genes to repress transcription. Together, these results demonstrate that SLUG plays a dual role in repressing luminal epithelial differentiation while unlocking stem cell transitions necessary for tumorigenesis.

  15. Research Note Effects of previous cultivation on regeneration of ...

    African Journals Online (AJOL)

    We investigated the effects of previous cultivation on regeneration potential under miombo woodlands in a resettlement area, a spatial product of Zimbabwe's land reforms. We predicted that cultivation would affect population structure, regeneration, recruitment and potential grazing capacity of rangelands. Plant attributes ...

  16. Use of rat mature adipocyte-derived dedifferentiated fat cells as a cell source for periodontal tissue regeneration

    Directory of Open Access Journals (Sweden)

    Daisuke eAkita

    2016-02-01

    Full Text Available Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs on mesenchymal stem cellsWe obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3 and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration.

  17. Nanomaterials for Craniofacial and Dental Tissue Engineering.

    Science.gov (United States)

    Li, G; Zhou, T; Lin, S; Shi, S; Lin, Y

    2017-07-01

    Tissue engineering shows great potential as a future treatment for the craniofacial and dental defects caused by trauma, tumor, and other diseases. Due to the biomimetic features and excellent physiochemical properties, nanomaterials are of vital importance in promoting cell growth and stimulating tissue regeneration in tissue engineering. For craniofacial and dental tissue engineering, the frequently used nanomaterials include nanoparticles, nanofibers, nanotubes, and nanosheets. Nanofibers are attractive for cell invasion and proliferation because of their resemblance to extracellular matrix and the presence of large pores, and they have been used as scaffolds in bone, cartilage, and tooth regeneration. Nanotubes and nanoparticles improve the mechanical and chemical properties of scaffold, increase cell attachment and migration, and facilitate tissue regeneration. In addition, nanofibers and nanoparticles are also used as a delivery system to carry the bioactive agent in bone and tooth regeneration, have better control of the release speed of agent upon degradation of the matrix, and promote tissue regeneration. Although applications of nanomaterials in tissue engineering remain in their infancy with numerous challenges to face, the current results indicate that nanomaterials have massive potential in craniofacial and dental tissue engineering.

  18. Pulmonary tissue volume, cardiac output, and diffusing capacity in sustained microgravity

    Science.gov (United States)

    Verbanck, S.; Larsson, H.; Linnarsson, D.; Prisk, G. K.; West, J. B.; Paiva, M.

    1997-01-01

    In microgravity (microG) humans have marked changes in body fluids, with a combination of an overall fluid loss and a redistribution of fluids in the cranial direction. We investigated whether interstitial pulmonary edema develops as a result of a headward fluid shift or whether pulmonary tissue fluid volume is reduced as a result of the overall loss of body fluid. We measured pulmonary tissue volume (Vti), capillary blood flow, and diffusing capacity in four subjects before, during, and after 10 days of exposure to microG during spaceflight. Measurements were made by rebreathing a gas mixture containing small amounts of acetylene, carbon monoxide, and argon. Measurements made early in flight in two subjects showed no change in Vti despite large increases in stroke volume (40%) and diffusing capacity (13%) consistent with increased pulmonary capillary blood volume. Late in-flight measurements in four subjects showed a 25% reduction in Vti compared with preflight controls (P volume, to the extent that it was no longer significantly different from preflight control. Diffusing capacity remained elevated (11%; P pulmonary perfusion and pulmonary capillary blood volume, interstitial pulmonary edema does not result from exposure to microG.

  19. Untersuchungen zur Regeneration des Hinterendes bei Anaitides mucosa (Polychaeta, Phyllodocidae)

    Science.gov (United States)

    Röhrkasten, A.

    1983-06-01

    Caudal regeneration was investigated in decerebrate Anaitides mucosa and in brain-intact individuals. Both groups show an identical capacity to regenerate lost caudal segments. Furthermore there is no difference in males and females. Low temperature (5 °C) inhibits the regeneration of caudal segments, but it is necessary for normal oogenesis. Under conditions of high temperature (15 °C), caudal regeneration is very extensive. At the same time degeneration of most oocytes occurs.

  20. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhuoyue [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Song, Yue [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Zhang, Jing [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province, 710069 (China); Liu, Wei [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Cui, Jihong, E-mail: cjh@nwu.edu.cn [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province, 710069 (China); and others

    2017-03-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2 months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration. - Highlights: • We laminated the nHA/PHB layers to obtain a scaffold for bone tissue engineering. • The laminated scaffold performed optimized cell-loading capacity. • MSCs exhibited osteogenic phenotypes on the laminated scaffold. • Osteoid tissue formed throughout the laminated scaffold after 2 months in vivo. The laminated bio-composite scaffolds can be applied to bone regeneration.

  1. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering

    International Nuclear Information System (INIS)

    Chen, Zhuoyue; Song, Yue; Zhang, Jing; Liu, Wei; Cui, Jihong

    2017-01-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2 months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration. - Highlights: • We laminated the nHA/PHB layers to obtain a scaffold for bone tissue engineering. • The laminated scaffold performed optimized cell-loading capacity. • MSCs exhibited osteogenic phenotypes on the laminated scaffold. • Osteoid tissue formed throughout the laminated scaffold after 2 months in vivo. The laminated bio-composite scaffolds can be applied to bone regeneration.

  2. Micromanaging cardiac regeneration : Targeted delivery of microRNAs for cardiac repair and regeneration

    NARCIS (Netherlands)

    Kamps, Jan A.A.M.; Krenning, Guido

    2016-01-01

    The loss of cardiomyocytes during injury and disease can result in heart failure and sudden death, while the adult heart has a limited capacity for endogenous regeneration and repair. Current stem cell-based regenerative medicine approaches modestly improve cardiomyocyte survival, but offer

  3. Neurotrophic regulation of fibroblast dedifferentiation during limb skeletal regeneration in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Satoh, Akira; Cummings, Gillian M C; Bryant, Susan V; Gardiner, David M

    2010-01-15

    The ability of animals to repair tissue damage is widespread and impressive. Among tissues, the repair and remodeling of bone occurs during growth and in response to injury; however, loss of bone above a threshold amount is not regenerated, resulting in a "critical-size defect" (CSD). The development of therapies to replace or regenerate a CSD is a major focus of research in regenerative medicine and tissue engineering. Adult urodeles (salamanders) are unique in their ability to regenerate complex tissues perfectly, yet like mammals do not regenerate a CSD. We report on an experimental model for the regeneration of a CSD in the axolotl (the Excisional Regeneration Model) that allows for the identification of signals to induce fibroblast dedifferentiation and skeletal regeneration. This regenerative response is mediated in part by BMP signaling, as is the case in mammals; however, a complete regenerative response requires the induction of a population of undifferentiated, regeneration-competent cells. These cells can be induced by signaling from limb amputation to generate blastema cells that can be grafted to the wound, as well as by signaling from a nerve and a wound epithelium to induce blastema cells from fibroblasts within the wound environment. Copyright 2009 Elsevier Inc. All rights reserved.

  4. Callus regeneration from stem explants of Pseudarthira viscida (L ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... regeneration frequency have come from tissue culture work done in ... Table 1. In vitro responses from stem callus of Psudarthria viscida Wight & Arn. Growth .... plantlets regeneration from cotyledonary callus of Tomato.

  5. Development of an efficient plant regeneration protocol for sweet ...

    African Journals Online (AJOL)

    UKZN

    2012-10-18

    Oct 18, 2012 ... explants produced highly recalcitrant callus that did not regenerate into ... Key words: Tissue culture, regeneration, sweet potato, genetic transformation. .... sterilized in 5% (v/v) sodium hypochlorite solution for 20 min and.

  6. Comparison of Engineered Peptide-Glycosaminoglycan Microfibrous Hybrid Scaffolds for Potential Applications in Cartilage Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Steven M. Romanelli

    2015-07-01

    Full Text Available Advances in tissue engineering have enabled the ability to design and fabricate biomaterials at the nanoscale that can actively mimic the natural cellular environment of host tissue. Of all tissues, cartilage remains difficult to regenerate due to its avascular nature. Herein we have developed two new hybrid polypeptide-glycosaminoglycan microfibrous scaffold constructs and compared their abilities to stimulate cell adhesion, proliferation, sulfated proteoglycan synthesis and soluble collagen synthesis when seeded with chondrocytes. Both constructs were designed utilizing self-assembled Fmoc-protected valyl cetylamide nanofibrous templates. The peptide components of the constructs were varied. For Construct I a short segment of dentin sialophosphoprotein followed by Type I collagen were attached to the templates using the layer-by-layer approach. For Construct II, a short peptide segment derived from the integrin subunit of Type II collagen binding protein expressed by chondrocytes was attached to the templates followed by Type II collagen. To both constructs, we then attached the natural polymer N-acetyl glucosamine, chitosan. Subsequently, the glycosaminoglycan chondroitin sulfate was then attached as the final layer. The scaffolds were characterized by Fourier transform infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC, atomic force microscopy and scanning electron microscopy. In vitro culture studies were carried out in the presence of chondrocyte cells for both scaffolds and growth morphology was determined through optical microscopy and scanning electron microscopy taken at different magnifications at various days of culture. Cell proliferation studies indicated that while both constructs were biocompatible and supported the growth and adhesion of chondrocytes, Construct II stimulated cell adhesion at higher rates and resulted in the formation of three dimensional cell-scaffold matrices within 24 h. Proteoglycan

  7. [Research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration].

    Science.gov (United States)

    Liang, Hang; Deng, Xiangyu; Shao, Zengwu

    2017-10-01

    To summarize the research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration and deduce the therapeutic potential of endogenous repair for intervertebral disc degeneration. The original articles about intervertebral disc endogenous stem cells for intervertebral disc regeneration were extensively reviewed; the reparative potential in vivo and the extraction and identification in vitro of intervertebral disc endogenous stem cells were analyzed; the prospect of endogenous stem cells for intervertebral disc regeneration was predicted. Stem cell niche present in the intervertebral discs, from which stem cells migrate to injured tissues and contribute to tissues regeneration under certain specific microenvironment. Moreover, the migration of stem cells is regulated by chemokines system. Tissue specific progenitor cells have been identified and successfully extracted and isolated. The findings provide the basis for biological therapy of intervertebral disc endogenous stem cells. Intervertebral disc endogenous stem cells play a crucial role in intervertebral disc regeneration. Therapeutic strategy of intervertebral disc endogenous stem cells is proven to be a promising biological approach for intervertebral disc regeneration.

  8. Calcium phosphate coatings for bone regeneration

    NARCIS (Netherlands)

    Yang, Liang

    2010-01-01

    As a novel approach to repair and regenerate damaged and degraded bone tissue, tissue engineering has recorded tremendous growth for the last thirty years. This is an emerging interdisciplinary field applying the principles of biology and engineering to the development of viable substitutes that

  9. Importance of inverse correlation between ALDH3A1 and PPARγ in tumor cells and tissue regeneration.

    Science.gov (United States)

    Oraldi, M; Saracino, S; Maggiora, M; Chiaravalloti, A; Buemi, C; Martinasso, G; Paiuzzi, E; Thompson, D; Vasiliou, V; Canuto, R A

    2011-05-30

    Aldehyde dehydrogenase (ALDH) enzymes are involved in maintaining cellular homeostasis by metabolizing both endogenous and exogenous reactive aldehydes. They modulate several cell functions including proliferation, differentiation, survival as well as cellular response to oxidative stress. We previously reported that ALDH3A1 expression is inversely correlated with the activation of PPARs (Peroxisome Proliferators-Activated Receptors), a category of orphan nuclear hormone receptors, in both rat and human cells. PPARγ is involved in cell proliferation. In this study, we have used PPARγ transfection and inhibition to examine the relationship between ALDH3A1 and PPARγ and their role as regulators of cell proliferation. Induction of PPARγ in A549 and NCTC 2544 cells by transfection caused a decrease in ALDH3A1 and inhibition of cell proliferation, a result we obtained previously using ligands that induce PPARγ. A reduction of PPARγ expression using siRNA increased ALDH3A1 expression and cell proliferation. In cells induced to proliferate in a model of tissue regeneration, ALDH3A1 expression increased during the period of proliferation, whereas PPARγ expression decreased. In conclusion, through modulation of PPARγ or ALDH3A1, it may be possible to reduce cell proliferation in tumor cells or stimulate cell proliferation in normal cells during tissue regeneration. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Restoring nervous system structure and function using tissue engineered living scaffolds

    Institute of Scientific and Technical Information of China (English)

    Laura A Struzyna; James P Harris; Kritika S Katiyar; H Isaac Chen; D KacyCullen

    2015-01-01

    Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following ner-vous system injury or neurodegenerative disease. Disconnection of axon pathways – the long-distance ifbers connecting specialized regions of the central nervous system or relaying peripheral signals – is a common feature of many neurological disorders and injury. However, functional axonal regenera-tion rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function. To address this need, we are pursuing multiple strategies using tissue engi-neered “living scaffolds”, which are preformed three-dimensional constructs consisting of living neural cells in a deifned, often anisotropic architecture. Living scaffolds are designed to restore function by serving as a living labeled pathway for targeted axonal regeneration – mimicking key developmental mechanisms– or by restoring lost neural circuitry via direct replacement of neurons and axonal tracts. We are currently utilizing preformed living scaffolds consisting of neuronal clusters spanned by long axonal tracts as regenerative bridges to facilitate long-distance axonal regeneration and for targeted neurosurgical reconstruction of local circuits in the brain. Although there are formidable challenges in preclinical and clinical advancement, these living tissue engineered constructs represent a promising strategy to facilitate nervous system repair and functional recovery.

  11. Restoring nervous system structure and function using tissue engineered living scaffolds

    Directory of Open Access Journals (Sweden)

    Laura A Struzyna

    2015-01-01

    Full Text Available Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following nervous system injury or neurodegenerative disease. Disconnection of axon pathways - the long-distance fibers connecting specialized regions of the central nervous system or relaying peripheral signals - is a common feature of many neurological disorders and injury. However, functional axonal regeneration rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function. To address this need, we are pursuing multiple strategies using tissue engineered "living scaffolds", which are preformed three-dimensional constructs consisting of living neural cells in a defined, often anisotropic architecture. Living scaffolds are designed to restore function by serving as a living labeled pathway for targeted axonal regeneration - mimicking key developmental mechanisms- or by restoring lost neural circuitry via direct replacement of neurons and axonal tracts. We are currently utilizing preformed living scaffolds consisting of neuronal clusters spanned by long axonal tracts as regenerative bridges to facilitate long-distance axonal regeneration and for targeted neurosurgical reconstruction of local circuits in the brain. Although there are formidable challenges in preclinical and clinical advancement, these living tissue engineered constructs represent a promising strategy to facilitate nervous system repair and functional recovery.

  12. Three-Dimensional-Bioprinted Dopamine-Based Matrix for Promoting Neural Regeneration.

    Science.gov (United States)

    Zhou, Xuan; Cui, Haitao; Nowicki, Margaret; Miao, Shida; Lee, Se-Jun; Masood, Fahed; Harris, Brent T; Zhang, Lijie Grace

    2018-03-14

    Central nerve repair and regeneration remain challenging problems worldwide, largely because of the extremely weak inherent regenerative capacity and accompanying fibrosis of native nerves. Inadequate solutions to the unmet needs for clinical therapeutics encourage the development of novel strategies to promote nerve regeneration. Recently, 3D bioprinting techniques, as one of a set of valuable tissue engineering technologies, have shown great promise toward fabricating complex and customizable artificial tissue scaffolds. Gelatin methacrylate (GelMA) possesses excellent biocompatible and biodegradable properties because it contains many arginine-glycine-aspartic acids (RGD) and matrix metalloproteinase sequences. Dopamine (DA), as an essential neurotransmitter, has proven effective in regulating neuronal development and enhancing neurite outgrowth. In this study, GelMA-DA neural scaffolds with hierarchical structures were 3D-fabricated using our custom-designed stereolithography-based printer. DA was functionalized on GelMA to synthesize a biocompatible printable ink (GelMA-DA) for improving neural differentiation. Additionally, neural stem cells (NSCs) were employed as the primary cell source for these scaffolds because of their ability to terminally differentiate into a variety of cell types including neurons, astrocytes, and oligodendrocytes. The resultant GelMA-DA scaffolds exhibited a highly porous and interconnected 3D environment, which is favorable for supporting NSC growth. Confocal microscopy analysis of neural differentiation demonstrated that a distinct neural network was formed on the GelMA-DA scaffolds. In particular, the most significant improvements were the enhanced neuron gene expression of TUJ1 and MAP2. Overall, our results demonstrated that 3D-printed customizable GelMA-DA scaffolds have a positive role in promoting neural differentiation, which is promising for advancing nerve repair and regeneration in the future.

  13. [Study on treatment of methylene blue wastewater by fly ash adsorption-Fenton and thermal regeneration].

    Science.gov (United States)

    Bai, Yu-Jie; Zhang, Ai-Li; Zhou, Ji-Ti

    2012-07-01

    The physicochemical properties of water-washed fly ash (FA) and acid modified fly ash (M-FA) were investigated. The adsorption of methylene blue by FA and M-FA were studied by batch experiments. Two methods, Fenton-drive oxidation regeneration and thermal regeneration, were used for regeneration of the used FA and M-FA. The result showed that the rate of adsorption process followed the second order kinetics and the adsorption followed Langmuir isotherms. The adsorption equilibrium time was 30 min, and the equilibrium adsorption capacity of FA and M-FA were 4.22 mg x g(-1) and 5.98 mg x g(-1) respectively. The adsorption capability of M-FA was higher than that of FA. In the range of pH 2-12, the adsorption capacity of M-FA increased with the increase of pH, whereas the adsorption capacity of FA decreased slowly until the pH 8 and then increased. Electrostatic adsorption was the major factor on the adsorption capacity. Around 61% and 55% percentage regeneration (PR) were obtained for FA and M-FA respectively when 78.4 mmol x L(-1) H2O2 and 0.72 mmol x L(-1) Fe2+ were used. When the condition of thermal regeneration was 400 degrees C and 2 h, a positive correlation can be found between the PRs of FA and regeneration times, the PRs were 102%, 104% and 107% in three cycles of adsorption-thermal regeneration process. However a negative correlation can be found between the PRs of M-FA and regeneration times, the PRs were 82%, 75% and 74% in three cycles of adsorption-thermal regeneration process. The PR of FA was higher than that of M-FA, and thermal regeneration was superior to Fenton-drive regeneration.

  14. A Comparative Study of Bio artificial Bone Tissue Poly-L-lactic Acid/Polycaprolactone and PLLA Scaffolds Applied in Bone Regeneration

    International Nuclear Information System (INIS)

    Weng, W.; Song, Sh.; Cao, L.; Chen, X.; Cai, Y.; Li, H.; Zhou, Q.; Zhang, J.; Su, J.

    2014-01-01

    Bio artificial bone tissue engineering is an increasingly popular technique to repair bone defect caused by injury or disease. This study aimed to investigate the feasibility of PLLA/PCL (poly-L-lactic acid/polycaprolactone) by a comparison study of PLLA/PCL and PLLA scaffolds applied in bone regeneration. Thirty healthy mature New Zealand rabbits on which 15 mm distal ulna defect model had been established were selected and then were divided into three groups randomly: group A (repaired with PLLA scaffold), group B (repaired with PLLA/PCL scaffold), and group C (no scaffold) to evaluate the bone-remodeling ability of the implants. Micro-CT examination revealed the prime bone regeneration ability of group B in three groups. Bone mineral density of surgical site in group B was higher than group A but lower than group C. Meanwhile, the bone regeneration in both groups A and B proceeded with signs of inflammation for the initial fast degradation of scaffolds. As a whole, PLLA/PCL scaffolds in vivo initially degrade fast and were better suited to repair bone defect than PLLA in New Zealand rabbits. Furthermore, for the low mineral density of new bone and rapid degradation of the scaffolds, more researches were necessary to optimize the composite for bone regeneration.

  15. New insight into regenerated air heat pump cycle

    International Nuclear Information System (INIS)

    Zhang, Chun-Lu; Yuan, Han; Cao, Xiang

    2015-01-01

    Regenerated air (reverse Brayton) cycle has unique potentials in heat pump applications compared to conventional vapor-compression cycles. To better understand the regenerated air heat pump cycle characteristics, a thermodynamic model with new equivalent parameters was developed in this paper. Equivalent temperature ratio and equivalent isentropic efficiency of expander were introduced to represent the effect of regenerator, which made the regenerated air cycle in the same mathematical expressions as the basic air cycle and created an easy way to prove some important features that regenerated air cycle inherits from the basic one. Moreover, we proved in theory that the regenerator does not always improve the air cycle efficiency. Larger temperature ratio and lower effectiveness of regenerator could make the regenerated air cycle even worse than the basic air cycle. Lastly, we found that only under certain conditions the cycle could get remarkable benefits from a well-sized regenerator. These results would enable further study of the regenerated air cycle from a different perspective. - Highlights: • A thermodynamic model for regenerated air heat pump cycle was developed. • Equivalent temperature ratio and equivalent expander efficiency were introduced. • We proved regenerated air cycle can make heating capacity in line with heating load. • We proved the regenerator does not always improve the air cycle efficiency.

  16. Soft tissue regeneration using leukocyte-platelet rich fibrin after exeresis of hyperplastic gingival lesions: two case reports.

    Science.gov (United States)

    di Lauro, A E; Abbate, D; Dell'Angelo, B; Iannaccone, G A; Scotto, F; Sammartino, G

    2015-11-02

    Leukocyte-platelet rich fibrin belongs to a second generation of platelet concentrates that does not need biochemical blood manipulation. It is used for tissue healing and regeneration in periodontal and oral-maxillofacial surgery. We report two cases of hyperplastic gingival lesions treated by exeresis and application of leukocyte-platelet rich fibrin membranes in order to improve and accelerate tissue healing. Two patients (a 78-year-old Caucasian woman and a 30-year-old Caucasian man) were treated for hyperplastic gingival lesions. They underwent to exeresis of lesions and application of leukocyte-platelet rich fibrin membranes. Tissue healing was clinically evaluated after 1, 3, 7, 14 and 30 postoperative days. No recurrences were observed after 2 years of semi-annual follow up. We obtained rapid and good healing of soft tissues probably due to the elevated content of leukocytes, platelets and growth factors in the leukocyte-platelet rich fibrin. Based on our results we suggest the use of leukocyte-platelet rich fibrin to cover wounds after exeresis of oral neoformations such as hyperplastic gingival lesions.

  17. Soluble antioxidant compounds regenerate the antioxidants bound to insoluble parts of foods.

    Science.gov (United States)

    Çelik, Ecem Evrim; Gökmen, Vural; Fogliano, Vincenzo

    2013-10-30

    This study aimed to investigate the regeneration potential of antioxidant capacity of an insoluble food matrix. Investigations were performed in vitro with several food matrices rich in dietary fiber (DF) and bound antioxidants. After removal of the soluble fraction, the antioxidant capacity (AC) of the insoluble fraction was measured by the QUENCHER procedure using ABTS(•+) or DPPH(•) radicals. After measurement, the insoluble residue was washed out to remove the excess of radicals and treated with pure antioxidant solution or antioxidant-rich beverage to regenerate depleted antioxidants on the fiber. Results revealed that the antioxidant capacity of compounds chemically bound to the insoluble moiety could be reconstituted in the presence of other hydrogen-donating substances in the liquid phase. Regeneration efficiency was found to range between 21.5 and 154.3% depending on the type of insoluble food matrix and regeneration agent. Among the food matrices studied, cereal products were found to have slightly higher regeneration efficiency, whereas antioxidant-rich beverages were more effective than pure antioxidants as regeneration agents. Taking wheat bran as reference insoluble material, the regeneration abilities of beverages were in the following order: green tea > espresso coffee > black tea > instant coffee > orange juice > red wine. These results highlighted the possible physiological relevance of antioxidants bound to the insoluble food material in the gastrointestinal tract. During the digestion process they could react with the free radicals and at the same time they can be regenerated by other soluble antioxidant compounds present in the meal.

  18. Evaluation of microorganisms cultured from injured and repressed tissue regeneration sites in endangered giant aquatic Ozark Hellbender salamanders.

    Directory of Open Access Journals (Sweden)

    Cheryl A Nickerson

    Full Text Available Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury rates, disease, and habitat variables to adequately assess changes through time. We cultured and identified microorganisms isolated from abnormal/injured and repressed tissue regeneration sites of the endangered Ozark Hellbender, Cryptobranchus alleganiensis bishopi, to discover potential causative agents responsible for their significant decline in health and population. This organism and our study site were chosen because the population and habitat of C. a. bishopi have been intensively studied from 1969-2009, and the abnormality/injury rate and apparent lack of regeneration were established. Although many bacterial and fungal isolates recovered were common environmental organisms, several opportunistic pathogens were identified in association with only the injured tissues of C.a. bishopi. Bacterial isolates included Aeromonas hydrophila, a known amphibian pathogen, Granulicetella adiacens, Gordonai terrae, Stenotrophomonas maltophilia, Aerococcus viridans, Streptococcus pneumoniae and a variety of Pseudomonads, including Pseudomonas aeruginosa, P. stutzeri, and P. alcaligenes. Fungal isolates included species in the genera Penicillium, Acremonium, Cladosporium, Curvularia, Fusarium, Streptomycetes, and the Class Hyphomycetes. Many of the opportunistic pathogens identified are known to form biofilms. Lack of isolation of the same organism from all wounds suggests that the etiological agent responsible for the damage to C. a. bishopi may not be a single organism. To our knowledge, this is the first study to profile the external microbial consortia

  19. The effect of dentin on the pulp tissue dissolution capacity of sodium hypochlorite and calcium hydroxide.

    Science.gov (United States)

    Slutzky-Goldberg, Iris; Hanut, Aiham; Matalon, Shlomo; Baev, Valery; Slutzky, Hagay

    2013-08-01

    Sodium hypochlorite (NaOCl) and calcium hydroxide (Ca[OH]2) have tissue dissolution capacity. The aim of this study was to evaluate the potential effect of dentin on their tissue dissolution capacity in a novel dentin model. Dentin models were prepared from 25 freshly extracted human molar teeth; the crowns were separated from the roots, and a rectangular inner shape was prepared. Pulp tissue samples adjusted to similar weights of 6.5 ± 0.2 mg were randomly divided into 6 groups: NaOCl groups in test tubes or dentin models for 1 hour, Ca(OH)2 groups in test tubes or dentin models for 1 week, and control groups saline in test tubes or dentin models for 1 week. The final weights after the experimental period were checked and compared with the initial weights. The differences were statistically analyzed. The tissue dissolution capacity of Ca(OH)2 was affected by the presence of dentin. Similarly, NaOCl lost its effect on the pulp tissue after incubation in dentin. Comparison between all test groups showed highly significant differences (P interactions between local endodontic medicaments, dentin, and pulp tissue. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Dual-controlled release system of drugs for bone regeneration.

    Science.gov (United States)

    Kim, Yang-Hee; Tabata, Yasuhiko

    2015-11-01

    Controlled release systems have been noted to allow drugs to enhance their ability for bone regeneration. To this end, various biomaterials have been used as the release carriers of drugs, such as low-molecular-weight drugs, growth factors, and others. The drugs are released from the release carriers in a controlled fashion to maintain their actions for a long time period. Most research has been focused on the controlled release of single drugs to demonstrate the therapeutic feasibility. Controlled release of two combined drugs, so-called dual release systems, are promising and important for tissue regeneration. This is because the tissue regeneration process of bone formation is generally achieved by multiple bioactive molecules, which are produced from cells by other molecules. If two types of bioactive molecules, (i.e., drugs), are supplied in an appropriate fashion, the regeneration process of living bodies will be efficiently promoted. This review focuses on the bone regeneration induced by dual-controlled release of drugs. In this paper, various dual-controlled release systems of drugs aiming at bone regeneration are overviewed explaining the type of drugs and their release materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A novel amniote model of epimorphic regeneration: the leopard gecko, Eublepharis macularius.

    Science.gov (United States)

    McLean, Katherine E; Vickaryous, Matthew K

    2011-08-16

    Epimorphic regeneration results in the restoration of lost tissues and structures from an aggregation of proliferating cells known as a blastema. Among amniotes the most striking example of epimorphic regeneration comes from tail regenerating lizards. Although tail regeneration is often studied in the context of ecological costs and benefits, details of the sequence of tissue-level events are lacking. Here we investigate the anatomical and histological events that characterize tail regeneration in the leopard gecko, Eublepharis macularius. Tail structure and tissue composition were examined at multiple days following tail loss, revealing a conserved pattern of regeneration. Removal of the tail results in a consistent series of morphological and histological events. Tail loss is followed by a latent period of wound healing with no visible signs of regenerative outgrowth. During this latent period basal cells of the epidermis proliferate and gradually cover the wound. An additional aggregation of proliferating cells accumulates adjacent to the distal tip of the severed spinal cord marking the first appearance of the blastema. Continued growth of the blastema is matched by the initiation of angiogenesis, followed by the re-development of peripheral axons and the ependymal tube of the spinal cord. Skeletal tissue differentiation, corresponding with the expression of Sox9, and muscle re-development are delayed until tail outgrowth is well underway. We demonstrate that tail regeneration in lizards involves a highly conserved sequence of events permitting the establishment of a staging table. We show that tail loss is followed by a latent period of scar-free healing of the wound site, and that regeneration is blastema-mediated. We conclude that the major events of epimorphic regeneration are highly conserved across vertebrates and that a comparative approach is an invaluable biomedical tool for ongoing regenerative research.

  2. Extracellular matrix as a driver for lung regeneration.

    Science.gov (United States)

    Balestrini, Jenna L; Niklason, Laura E

    2015-03-01

    Extracellular matrix has manifold roles in tissue mechanics, guidance of cellular behavior, developmental biology, and regenerative medicine. Over the past several decades, various pre-clinical and clinical studies have shown that many connective tissues may be replaced and/or regenerated using suitable extracellular matrix scaffolds. More recently, decellularization of lung tissue has shown that gentle removal of cells can leave behind a "footprint" within the matrix that may guide cellular adhesion, differentiation and homing following cellular repopulation. Fundamental issues like understanding matrix composition and micro-mechanics remain difficult to tackle, largely because of a lack of available assays and tools for systematically characterizing intact matrix from tissues and organs. This review will critically examine the role of engineered and native extracellular matrix in tissue and lung regeneration, and provide insights into directions for future research and translation.

  3. Current Status and Future Development of Cell Transplantation Therapy for Periodontal Tissue Regeneration

    Science.gov (United States)

    Yoshida, Toshiyuki; Washio, Kaoru; Iwata, Takanori; Okano, Teruo; Ishikawa, Isao

    2012-01-01

    It has been shown that stem cell transplantation can regenerate periodontal tissue, and several clinical trials involving transplantation of stem cells into human patients have already begun or are in preparation. However, stem cell transplantation therapy is a new technology, and the events following transplantation are poorly understood. Several studies have reported side effects and potential risks associated with stem cell transplantation therapy. To protect patients from such risks, governments have placed regulations on stem cell transplantation therapies. It is important for the clinicians to understand the relevant risks and governmental regulations. This paper describes the ongoing clinical studies, basic research, risks, and governmental controls related to stem cell transplantation therapy. Then, one clinical study is introduced as an example of a government-approved periodontal cell transplantation therapy. PMID:22315604

  4. Current Status and Future Development of Cell Transplantation Therapy for Periodontal Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Toshiyuki Yoshida

    2012-01-01

    Full Text Available It has been shown that stem cell transplantation can regenerate periodontal tissue, and several clinical trials involving transplantation of stem cells into human patients have already begun or are in preparation. However, stem cell transplantation therapy is a new technology, and the events following transplantation are poorly understood. Several studies have reported side effects and potential risks associated with stem cell transplantation therapy. To protect patients from such risks, governments have placed regulations on stem cell transplantation therapies. It is important for the clinicians to understand the relevant risks and governmental regulations. This paper describes the ongoing clinical studies, basic research, risks, and governmental controls related to stem cell transplantation therapy. Then, one clinical study is introduced as an example of a government-approved periodontal cell transplantation therapy.

  5. Characterization of TGFβ signaling during tail regeneration in the leopard Gecko (Eublepharis macularius).

    Science.gov (United States)

    Gilbert, Richard W D; Vickaryous, Matthew K; Viloria-Petit, Alicia M

    2013-07-01

    The transforming growth factor beta (TGFβ)/activin signaling pathway has a number of documented roles during wound healing and is increasingly appreciated as an essential component of multi-tissue regeneration that occurs in amphibians and fish. Among amniotes (reptiles and mammals), less is known due in part to the lack of an appropriate model organism capable of multi-tissue regeneration. The leopard gecko Eublepharis macularius is able to spontaneously, and repeatedly, regenerate its tail following tail loss. We examined the expression and localization of several key components of the TGFβ/activin signaling pathway during tail regeneration of the leopard gecko. We observed a marked increase in phosphorylated Smad2 expression within the regenerate blastema indicating active TGFβ/activin signaling. Interestingly, during early regeneration, TGFβ1 expression is limited whereas activin-βA is strongly upregulated. We also observe the expression of EMT transcription factors Snail1 and Snail2 in the blastema. Combined, these observations provide strong support for the importance of different TGFβ ligands during multi-tissue regeneration and the potential role of TGFβ/activin-induced EMT programs during this process. Copyright © 2013 Wiley Periodicals, Inc.

  6. Bone regeneration and stem cells

    DEFF Research Database (Denmark)

    Arvidson, K; Abdallah, B M; Applegate, L A

    2011-01-01

    cells, use of platelet rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed.......This invited review covers research areas of central importance for orthopedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and fetal stem cells, effects of sex steroids on mesenchymal stem...

  7. Hydrostatic pressure in combination with topographical cues affects the fate of bone marrow‐derived human mesenchymal stem cells for bone tissue regeneration

    Science.gov (United States)

    El Haj, Alicia J.

    2017-01-01

    Abstract Topographical and mechanical cues are vital for cell fate, tissue development in vivo, and to mimic the native cell growth environment in vitro. To date, the combinatory effect of mechanical and topographical cues as not been thoroughly investigated. This study investigates the effect of PCL nanofiber alignment and hydrostatic pressure on stem cell differentiation for bone tissue regeneration. Bone marrow‐derived human mesenchymal stem cells were seeded onto standard tissue culture plastic and electrospun random and aligned nanofibers. These substrates were either cultured statically or subjected to intermittent hydrostatic pressure at 270 kPa, 1 Hz for 60 min daily over 21 days in osteogenic medium. Data revealed higher cell metabolic activities for all mechanically stimulated cell culture formats compared with non‐stimulated controls; and random fibers compared with aligned fibers. Fiber orientation influenced cell morphology and patterns of calcium deposition. Significant up‐regulation of Collagen‐I, ALP, and Runx‐2 were observed for random and aligned fibers following mechanical stimulation; highest levels of osteogenic markers were expressed when hydrostatic pressure was applied to random fibers. These results indicate that fiber alignment and hydrostatic pressure direct stem cell fate and are important stimulus for tissue regeneration. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: A: 629–640, 2018. PMID:28984025

  8. Wound repair during arm regeneration in the red starfish Echinaster sepositus

    KAUST Repository

    Ben Khadra, Yousra

    2015-06-24

    Starfish can regenerate entire arms following their loss by both autotomic and traumatic amputation. Although the overall regenerative process has been studied several times in different asteroid species, there is still a considerable gap of knowledge as far as the detailed aspects of the repair phase at tissue and cellular level are concerned, particularly in post-traumatic regeneration. The present work is focused on the arm regeneration model in the Mediterranean red starfish Echinaster sepositus; in order to describe the early cellular mechanisms of arm regeneration following traumatic amputation, different microscopy techniques were employed. In E. sepositus, the repair phase was characterized by prompt wound healing by a syncytial network of phagocytes and re-epithelialisation followed by a localized subepidermal oedematous area formation. Scattered and apparently undifferentiated cells, intermixed with numerous phagocytes, were frequently found in the wound area during these first stages of regeneration and extensive dedifferentiation phenomena were seen at the level of the stump, particularly in the muscle bundles. A true localized blastema did not form. Our results confirm that regeneration in asteroids mainly relies on morphallactic processes, consisting in extensive rearrangement of the existing tissues which contribute to the new tissues through cell dedifferentiation, re-differentiation and/or migration. This article is protected by copyright. All rights reserved.

  9. Proliferation zones in the axolotl brain and regeneration of the telencephalon

    Directory of Open Access Journals (Sweden)

    Maden Malcolm

    2013-01-01

    Full Text Available Abstract Background Although the brains of lower vertebrates are known to exhibit somewhat limited regeneration after incisional or stab wounds, the Urodele brain exhibits extensive regeneration after massive tissue removal. Discovering whether and how neural progenitor cells that reside in the ventricular zones of Urodeles proliferate to mediate tissue repair in response to injury may produce novel leads for regenerative strategies. Here we show that endogenous neural progenitor cells resident to the ventricular zone of Urodeles spontaneously proliferate, producing progeny that migrate throughout the telencephalon before terminally differentiating into neurons. These progenitor cells appear to be responsible for telencephalon regeneration after tissue removal and their activity may be up-regulated by injury through an olfactory cue. Results There is extensive proliferation of endogenous neural progenitor cells throughout the ventricular zone of the adult axolotl brain. The highest levels are observed in the telencephalon, especially the dorsolateral aspect, and cerebellum. Lower levels are observed in the mesencephalon and rhombencephalon. New cells produced in the ventricular zone migrate laterally, dorsally and ventrally into the surrounding neuronal layer. After migrating from the ventricular zone, the new cells primarily express markers of neuronal differentiative fates. Large-scale telencephalic tissue removal stimulates progenitor cell proliferation in the ventricular zone of the damaged region, followed by proliferation in the tissue that surrounds the healing edges of the wound until the telencephalon has completed regeneration. The proliferative stimulus appears to reside in the olfactory system, because telencephalic regeneration does not occur in the brains of olfactory bulbectomized animals in which the damaged neural tissue simply heals over. Conclusion There is a continual generation of neuronal cells from neural progenitor cells

  10. Original and regenerating lizard tail cartilage contain putative resident stem/progenitor cells.

    Science.gov (United States)

    Alibardi, Lorenzo

    2015-11-01

    Regeneration of cartilaginous tissues is limited in mammals but it occurs with variable extension in lizards (reptiles), including in their vertebrae. The ability of lizard vertebrae to regenerate cartilaginous tissue that is later replaced with bone has been analyzed using tritiated thymidine autoradiography and 5BrdU immunocytochemistry after single pulse or prolonged-pulse and chase experiments. The massive cartilage regeneration that can restore broad vertebral regions and gives rise to a long cartilaginous tube in the regenerating tail, depends from the permanence of some chondrogenic cells within adult vertebrae. Few cells that retain tritiated thymidine or 5-bromodeoxy-uridine for over 35 days are mainly localized in the inter-vertebral cartilage and in sparse chondrogenic regions of the neural arch of the vertebrae, suggesting that they are putative resident stem/progenitor cells. The study supports previous hypothesis indicating that the massive regeneration of the cartilaginous tissue in damaged vertebrae and in the regenerating tail of lizards derive from resident stem cells mainly present in the cartilaginous areas of the vertebrae including in the perichondrium that are retained in adult lizards as growing centers for most of their lifetime. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    M Pei

    2011-11-01

    Full Text Available Cell-based therapy is a promising biological approach for the treatment of cartilage defects. Due to the small size of autologous cartilage samples available for cell transplantation in patients, cells need to be expanded to yield a sufficient cell number for cartilage repair. However, chondrocytes and adult stem cells tend to become replicatively senescent once they are expanded on conventional plastic flasks. Many studies demonstrate that the loss of cell properties is concomitant with the decreased cell proliferation capacity. This is a significant challenge for cartilage tissue engineering and regeneration. Despite much progress having been made in cell expansion, there are still concerns over expanded cell size and quality for cell transplantation applications. Recently, in vivo investigations in stem cell niches have suggested the importance of developing an in vitro stem cell microenvironment for cell expansion and tissue-specific differentiation. Our and other investigators’ work indicates that a decellularized stem cell matrix (DSCM may provide such an expansion system to yield large-quantity and high-quality cells for cartilage tissue engineering and regeneration. This review briefly introduces key parameters in an in vivo stem cell niche and focuses on our recent work on DSCM for its rejuvenating or reprograming effect on various adult stem cells and chondrocytes. Since research in DSCM is still in its infancy, we are only able to discuss some potential mechanisms of DSCM on cell proliferation and chondrogenic potential. Further investigations of the underlying mechanism and in vivo regeneration capacity will allow this approach to be used in clinics.

  12. Rehydration Capacities and Rates for Various Porcine Tissues after Dehydration

    Science.gov (United States)

    Meyer, Jacob P.; McAvoy, Kieran E.; Jiang, Jack

    2013-01-01

    The biphasic effects of liquid on tissue biomechanics are well known in cartilage and vocal folds, yet not extensively in other tissue types. Past studies have shown that tissue dehydration significantly impacts biomechanical properties and that rehydration can restore these properties in certain tissue types. However, these studies failed to consider how temporal exposure to dehydrating or rehydrating agents may alter tissue rehydration capacity, as overexposure to dehydration may permanently prevent rehydration to the initial liquid volume. Select porcine tissues were dehydrated until they reached between 100% and 40% of their initial mass. Each sample was allowed to rehydrate for 5 hours in a 0.9% saline solution, and the percent change between the initial and rehydrated mass values was calculated. Spearman correlation tests indicated a greater loss in mass despite rehydration when tissues were previously exposed to greater levels of dehydration. Additionally, Pearson correlation tests indicated the total liquid mass of samples after complete rehydration decreased when previously exposed to higher levels of dehydration. Rehydration rates were found by dehydrating tissues to 40% of their initial mass followed by rehydration in a 0.9% saline solution for 60 minutes, with mass measurements occurring in 15 minute intervals. All tissues rehydrated nonlinearly, most increasing significantly in mass up to 30 minutes after initial soaking. This study suggests the ability for tissues to rehydrate is dependent on the level of initial dehydration exposure. In vitro rehydration experiments therefore require controlled dosage and temporal exposure to dehydrating and rehydrating agents to avoid incomplete rehydration, and caution should be taken when combining different tissue types in models of hydration. PMID:24023753

  13. Evaluation of the in vitro biocompatibility of polymeric materials for the regeneration of cutaneous tissue

    International Nuclear Information System (INIS)

    Escudero Castellanos, A.

    2016-01-01

    The problems associated with medical cases of functional tissue loss or organ failure are destructive and expensive, even more frequent than could be perceived, sometime if not properly treated, even deathly. Tissue engineering is an interdisciplinary field that emerged to address these clinical problems, it is based on researching and development of biomaterials that have evolved along with areas such as cell biology, molecular and materials science and engineering. Today, the technique is based on seeding cells onto prefabricated scaffold biomaterials, like the hydrogels, that are three-dimensional networks with hydrophilic properties. These materials are characterized as being porous and sticky, favoring the support for the proliferation of certain cells in order to lead the regeneration of injured tissue. As a prerequisite for the use of materials in tissue engineering is testing biocompatibility which is the ability of the bio material to allow contact with any tissue, existing a favorable host response, accepting it as their own and restoring previously lost function. The first step for evaluating biocompatibility is to perform the in vitro assays. These assays have been demonstrated more reproducibility and predictability than in vivo assays, therefore the in vitro assays are used to produce high quality scaffolds and testing on animals as less as possible. This test is essential to establish the benefits and limitations of biomaterials tested in order to improve the scaffolds. This work will focus on assessing the biocompatibility of three polymeric materials with potential use in tissue engineering by means of cytological compatibility tests and hemo compatibility tests. Furthermore, disinfection techniques and gamma sterilization were evaluated to produce sterile materials that can be used in tissue engineering. (Author)

  14. PLETHORA genes control regeneration by a two-step mechanism

    NARCIS (Netherlands)

    Kareem, Abdul; Durgaprasad, Kavya; Sugimoto, Kaoru; Du, Yujuan; Pulianmackal, Ajai J.; Trivedi, Zankhana B.; Abhayadev, Pazhoor V.; Pinon, Violaine; Meyerowitz, Elliot M.; Scheres, Ben; Prasad, Kalika

    2015-01-01

    Summary Regeneration, a remarkable example of developmental plasticity displayed by both plants and animals, involves successive developmental events driven in response to environmental cues. Despite decades of study on the ability of the plant tissues to regenerate a complete fertile shoot

  15. Validity of T2 mapping in characterization of the regeneration tissue by bone marrow derived cell transplantation in osteochondral lesions of the ankle

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, M., E-mail: milva.battaglia@ior.it [Service of Ecography and Radiology, Rizzoli Orthopaedic Institute, via Pupilli n. 1, 40136 Bologna (Italy); Rimondi, E. [Service of Ecography and Radiology, Rizzoli Orthopaedic Institute, via Pupilli n. 1, 40136 Bologna (Italy); Monti, C. [Service of CT and MRI, Casa di Cura Madre Fortunata Toniolo, Bologna (Italy); Guaraldi, F. [Department of Pathology, The Johns Hopkins University, School of Medicine, Baltimore, MD (United States); Sant' Andrea, A. [Service of CT and MRI, Casa di Cura Madre Fortunata Toniolo, Bologna (Italy); Buda, R.; Cavallo, M.; Giannini, S.; Vannini, F. [Clinical Orthopaedic and Traumatology Unit II, Rizzoli Orthopaedic Institute, Bologna (Italy)

    2011-11-15

    Objective: Bone marrow derived cell transplantation (BMDCT) has been recently suggested as a possible surgical technique to repair osteochondral lesions. To date, no qualitative MRI studies have evaluated its efficacy. The aim of our study is to investigate the validity of MRI T2-mapping sequence in characterizing the reparative tissue obtained and its ability to correlate with clinical results. Methods and materials: 20 patients with an osteochondral lesion of the talus underwent BMDCT and were evaluated at 2 years follow up using MRI T2-mapping sequence. 20 healthy volunteers were recruited as controls. MRI images were acquired using a protocol suggested by the International Cartilage Repair Society, MOCART scoring system and T2 mapping. Results were then correlated with AOFAS clinical score. Results: AOFAS score increased from 66.8 {+-} 14.5 pre-operatively to 91.2 {+-} 8.3 (p < 0.0005) at 2 years follow-up. T2-relaxation time value of 35-45 ms was derived from healthy ankles evaluation and assumed as normal hyaline cartilage value and used as a control. Regenerated tissue with a T2-relaxation time value comparable to hyaline cartilage was found in all the cases treated, covering a mean of 78% of the repaired lesion area. A high clinical score was related directly to isointense signal in DPFSE fat sat (p = 0.05), and percentage of regenerated hyaline cartilage (p = 0.05), inversely to the percentage of regenerated fibrocartilage. Lesion's depth negatively related to the integrity of the repaired tissue's surface (tau = -0.523, p = 0.007), and to the percentage of regenerated hyaline cartilage (rho = -0.546, p = 0.013). Conclusions: Because of its ability to detect cartilage's quality and to correlate to the clinical score, MRI T2-mapping sequence integrated with Mocart score represent a valid, non-invasive technique for qualitative cartilage assessment after regenerative surgical procedures.

  16. Bone regeneration and stem cells

    Science.gov (United States)

    Arvidson, K; Abdallah, B M; Applegate, L A; Baldini, N; Cenni, E; Gomez-Barrena, E; Granchi, D; Kassem, M; Konttinen, Y T; Mustafa, K; Pioletti, D P; Sillat, T; Finne-Wistrand, A

    2011-01-01

    Abstract This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed. PMID:21129153

  17. Biomineralization of Fucoidan-Peptide Blends and Their Potential Applications in Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Harrison T. Pajovich

    2017-09-01

    Full Text Available Fucoidan (Fuc, a natural polysaccharide derived from brown seaweed algae, and gelatin (Gel were conjugated to form a template for preparation of biomimetic scaffolds for potential applications in bone tissue regeneration. To the Fuc–Gel we then incorporated the peptide sequence MTNYDEAAMAIASLN (MTN derived from the E-F hand domain, known for its calcium binding properties. To mimic the components of the extracellular matrix of bone tissue, the Fuc–Gel–MTN assemblies were incubated in simulated body fluid (SBF to induce biomineralization, resulting in the formation of β-tricalcium phosphate, and hydroxyapatite (HAp. The formed Fuc–Gel–MTN–beta–TCP/HAP scaffolds were found to display an average Young’s Modulus value of 0.32 GPa (n = 5 with an average surface roughness of 91 nm. Rheological studies show that the biomineralized scaffold exhibited higher storage and loss modulus compared to the composites formed before biomineralization. Thermal phase changes were studied through DSC and TGA analysis. XRD and EDS analyses indicated a biphasic mixture of β-tricalcium phosphate and hydroxyapatite and the composition of the scaffold. The scaffold promoted cell proliferation, differentiation and displayed actin stress fibers indicating the formation of cell-scaffold matrices in the presence of MT3C3-E1 mouse preosteoblasts. Osteogenesis and mineralization were found to increase with Fuc–Gel–MTN–beta–TCP/HAP scaffolds. Thus, we have developed a novel scaffold for possible applications in bone tissue engineering.

  18. Regeneration of Vocal Fold Mucosa Using Tissue-Engineered Structures with Oral Mucosal Cells

    Science.gov (United States)

    Fukahori, Mioko; Chitose, Shun-ichi; Sato, Kiminori; Sueyoshi, Shintaro; Kurita, Takashi; Umeno, Hirohito; Monden, Yu; Yamakawa, Ryoji

    2016-01-01

    Objectives Scarred vocal folds result in irregular vibrations during phonation due to stiffness of the vocal fold mucosa. To date, a completely satisfactory corrective procedure has yet to be achieved. We hypothesize that a potential treatment option for this disease is to replace scarred vocal folds with organotypic mucosa. The purpose of this study is to regenerate vocal fold mucosa using a tissue-engineered structure with autologous oral mucosal cells. Study Design Animal experiment using eight beagles (including three controls). Methods A 3 mm by 3 mm specimen of canine oral mucosa was surgically excised and divided into epithelial and subepithelial tissues. Epithelial cells and fibroblasts were isolated and cultured separately. The proliferated epithelial cells were co-cultured on oriented collagen gels containing the proliferated fibroblasts for an additional two weeks. The organotypic cultured tissues were transplanted to the mucosa-deficient vocal folds. Two months after transplantation, vocal fold vibrations and morphological characteristics were observed. Results A tissue-engineered vocal fold mucosa, consisting of stratified epithelium and lamina propria, was successfully fabricated to closely resemble the normal layered vocal fold mucosa. Laryngeal stroboscopy revealed regular but slightly small mucosal waves at the transplanted site. Immunohistochemically, stratified epithelium expressed cytokeratin, and the distributed cells in the lamina propria expressed vimentin. Elastic Van Gieson staining revealed a decreased number of elastic fibers in the lamina propria of the transplanted site. Conclusion The fabricated mucosa with autologous oral mucosal cells successfully restored the vocal fold mucosa. This reconstruction technique could offer substantial clinical advantages for treating intractable diseases such as scarring of the vocal folds. PMID:26730600

  19. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration.

    Science.gov (United States)

    Lee, Sang Goo; Huang, Mingqian; Obholzer, Nikolaus D; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A; Megason, Sean G; Li, Huawei; Chen, Zheng-Yi

    2016-01-01

    Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration.

  20. Biomimetic approaches with smart interfaces for bone regeneration.

    Science.gov (United States)

    Sailaja, G S; Ramesh, P; Vellappally, Sajith; Anil, Sukumaran; Varma, H K

    2016-11-05

    A 'smart tissue interface' is a host tissue-biomaterial interface capable of triggering favourable biochemical events inspired by stimuli responsive mechanisms. In other words, biomaterial surface is instrumental in dictating the interface functionality. This review aims to investigate the fundamental and favourable requirements of a 'smart tissue interface' that can positively influence the degree of healing and promote bone tissue regeneration. A biomaterial surface when interacts synergistically with the dynamic extracellular matrix, the healing process become accelerated through development of a smart interface. The interface functionality relies equally on bound functional groups and conjugated molecules belonging to the biomaterial and the biological milieu it interacts with. The essential conditions for such a special biomimetic environment are discussed. We highlight the impending prospects of smart interfaces and trying to relate the design approaches as well as critical factors that determine species-specific functionality with special reference to bone tissue regeneration.

  1. Drosophila Wnt and STAT Define Apoptosis-Resistant Epithelial Cells for Tissue Regeneration after Irradiation.

    Directory of Open Access Journals (Sweden)

    Shilpi Verghese

    2016-09-01

    Full Text Available Drosophila melanogaster larvae irradiated with doses of ionizing radiation (IR that kill about half of the cells in larval imaginal discs still develop into viable adults. How surviving cells compensate for IR-induced cell death to produce organs of normal size and appearance remains an active area of investigation. We have identified a subpopulation of cells within the continuous epithelium of Drosophila larval wing discs that shows intrinsic resistance to IR- and drug-induced apoptosis. These cells reside in domains of high Wingless (Wg, Drosophila Wnt-1 and STAT92E (sole Drosophila signal transducer and activator of transcription [STAT] homolog activity and would normally form the hinge in the adult fly. Resistance to IR-induced apoptosis requires STAT and Wg and is mediated by transcriptional repression of the pro-apoptotic gene reaper. Lineage tracing experiments show that, following irradiation, apoptosis-resistant cells lose their identity and translocate to areas of the wing disc that suffered abundant cell death. Our findings provide a new paradigm for regeneration in which it is unnecessary to invoke special damage-resistant cell types such as stem cells. Instead, differences in gene expression within a population of genetically identical epithelial cells can create a subpopulation with greater resistance, which, following damage, survive, alter their fate, and help regenerate the tissue.

  2. Scaffold of chitosan-sodium alginate and hydroxyapatite with application potential for bone regeneration; Scaffold de quitosana-alginato de sodio e hidroxiapatita com potencial de aplicacao para regeneracao ossea

    Energy Technology Data Exchange (ETDEWEB)

    Rebelo, Marcia de A.; Alves, Thais F.R.; Lopes, Francielly C.C.N; Oliveira Junior, Jose Martins de; Pontes, Katiusca S.; Fogaca, Bruna A.C.; Chaud, Marco V., E-mail: marco.chaud@prof.uniso.br [Universidade de Sorocaba (LABNUS/UNISO), Sorocaba, SP (Brazil). Laboratorio de Biomateriais e Nanotecnologia

    2015-07-01

    Scaffold for organic tissue regeneration are architectural, three-dimensional, porous, biocompatible and biodegradable devices. The first challenges to be met in the development of these devices to mimic the biomechanical properties of the target tissue. The aim of this study was to develop and to characterize scaffolds composed of chitosan (Ch), sodium alginate (SA), hydroxyapatite (HA). The scaffolds were obtained by lyophilization. HA has been incorporated into the polymer dispersion in Ch-AS concentration of 20 and 60%. The mechanical properties of the scaffold were determined by tensile and compression tests. Swelling capacity was assessed in the presence of simulated saliva, purified water, HCl 0.01M, NaOH 0.01M. The calcium content was quantified using fluorescence X-rays. Analysis of the results indicates that the Qt-AS-HA-60% scaffold obtained by lyophilization meets promising properties for bone tissue regeneration. (author)

  3. Rapid granulation tissue regeneration by intracellular ATP delivery--a comparison with Regranex.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Howard

    Full Text Available This study tests a new intracellular ATP delivery technique for tissue regeneration and compares its efficacy with that of Regranex. Twenty-seven adult New Zealand white rabbits each underwent minimally invasive surgery to render one ear ischemic. Eight wounds were then created: four on the ischemic and four on the normal ear. Two wounds on one side of each ear were treated with Mg-ATP encapsulated lipid vesicles (ATP-vesicles while the two wounds on the other side were treated with Regranex. Wound healing time was shorter when ATP-vesicles were used. The most striking finding was that new tissue growth started to appear in less than 1 day when ATP-vesicles were used. The growth continued and covered the wound area within a few days, without the formation of a provisional matrix. Regranex-treated wounds did not have this growth pattern. In wounds treated by ATP-vesicles, histologic studies revealed extremely rich macrophage accumulation, along with active proliferating cell nuclear antigen (PCNA and positive BrdU staining, indicating in situ macrophage proliferation. Human macrophage culture suggested direct collagen production. These results support an entirely new healing process, which seems to have combined the conventional hemostasis, inflammation, and proliferation phases into a single one, thereby eliminating the lag time usually seen during healing process.

  4. Mesenchymal stem cell-mediated functional tooth regeneration in swine.

    Directory of Open Access Journals (Sweden)

    Wataru Sonoyama

    2006-12-01

    Full Text Available Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla. Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance.

  5. Poly(Lactic-co-Glycolic Acid: Applications and Future Prospects for Periodontal Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Xiaoyu Sun

    2017-06-01

    Full Text Available Periodontal tissue regeneration is the ultimate goal of the treatment for periodontitis-affected teeth. The success of regenerative modalities relies heavily on the utilization of appropriate biomaterials with specific properties. Poly (lactic-co-glycolic acid (PLGA, a synthetic aliphatic polyester, has been actively investigated for periodontal therapy due to its favorable mechanical properties, tunable degradation rates, and high biocompatibility. Despite the attractive characteristics, certain constraints associated with PLGA, in terms of its hydrophobicity and limited bioactivity, have led to the introduction of modification strategies that aimed to improve the biological performance of the polymer. Here, we summarize the features of the polymer and update views on progress of its applications as barrier membranes, bone grafts, and drug delivery carriers, which indicate that PLGA can be a good candidate material in the field of periodontal regenerative medicine.

  6. Multilayer scaffolds in orthopaedic tissue engineering.

    Science.gov (United States)

    Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A

    2016-07-01

    The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.

  7. Pathologic bladder microenvironment attenuates smooth muscle differentiation of skin derived precursor cells: implications for tissue regeneration.

    Directory of Open Access Journals (Sweden)

    Cornelia Tolg

    Full Text Available Smooth muscle cell containing organs (bladder, heart, blood vessels are damaged by a variety of pathological conditions necessitating surgery or organ replacement. Currently, regeneration of contractile tissues is hampered by lack of functional smooth muscle cells. Multipotent skin derived progenitor cells (SKPs can easily be isolated from adult skin and can be differentiated in vitro into contractile smooth muscle cells by exposure to FBS. Here we demonstrate an inhibitory effect of a pathologic contractile organ microenvironment on smooth muscle cell differentiation of SKPs. In vivo, urinary bladder strain induces microenvironmental changes leading to de-differentiation of fully differentiated bladder smooth muscle cells. Co-culture of SKPs with organoids isolated from ex vivo stretched bladders or exposure of SKPs to diffusible factors released by stretched bladders (e.g. bFGF suppresses expression of smooth muscle markers (alpha SMactin, calponin, myocardin, myosin heavy chain as demonstrated by qPCR and immunofluorescent staining. Rapamycin, an inhibitor of mTOR signalling, previously observed to prevent bladder strain induced de-differentiation of fully differentiated smooth muscle cells in vitro, inhibits FBS-induced smooth muscle cell differentiation of undifferentiated SKPs. These results suggest that intended precursor cell differentiation may be paradoxically suppressed by the disease context for which regeneration may be required. Organ-specific microenvironment contexts, particularly prevailing disease, may play a significant role in modulating or attenuating an intended stem cell phenotypic fate, possibly explaining the variable and inefficient differentiation of stem cell constructs in in vivo settings. These observations must be considered in drafting any regeneration strategies.

  8. Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity.

    Science.gov (United States)

    Kawamoto, Kohei; Izumikawa, Masahiko; Beyer, Lisa A; Atkin, Graham M; Raphael, Yehoash

    2009-01-01

    Whereas most epithelial tissues turn-over and regenerate after a traumatic lesion, this restorative ability is diminished in the sensory epithelia of the inner ear; it is absent in the cochlea and exists only in a limited capacity in the vestibular epithelium. The extent of regeneration in vestibular hair cells has been characterized for several mammalian species including guinea pig, rat, and chinchilla, but not yet in mouse. As the fundamental model species for investigating hereditary disease, the mouse can be studied using a wide variety of genetic and molecular tools. To design a mouse model for vestibular hair cell regeneration research, an aminoglycoside-induced method of complete hair cell elimination was developed in our lab and applied to the murine utricle. Loss of utricular hair cells was observed using scanning electron microscopy, and corroborated by a loss of fluorescent signal in utricles from transgenic mice with GFP-positive hair cells. Regenerative capability was characterized at several time points up to six months following insult. Using scanning electron microscopy, we observed that as early as two weeks after insult, a few immature hair cells, demonstrating the characteristic immature morphology indicative of regeneration, could be seen in the utricle. As time progressed, larger numbers of immature hair cells could be seen along with some mature cells resembling surface morphology of type II hair cells. By six months post-lesion, numerous regenerated hair cells were present in the utricle, however, neither their number nor their appearance was normal. A BrdU assay suggested that at least some of the regeneration of mouse vestibular hair cells involved mitosis. Our results demonstrate that the vestibular sensory epithelium in mice can spontaneously regenerate, elucidate the time course of this process, and identify involvement of mitosis in some cases. These data establish a road map of the murine vestibular regenerative process, which can be

  9. Extracellular matrix scaffolds for cartilage and bone regeneration

    NARCIS (Netherlands)

    Benders, K.E.M.; van Weeren, P.R.; Badylak, S.F.; Saris, Daniël B.F.; Dhert, W.J.A.; Malda, J.

    2013-01-01

    Regenerative medicine approaches based on decellularized extracellular matrix (ECM) scaffolds and tissues are rapidly expanding. The rationale for using ECM as a natural biomaterial is the presence of bioactive molecules that drive tissue homeostasis and regeneration. Moreover, appropriately

  10. Natural Polymer-Cell Bioconstructs for Bone Tissue Engineering.

    Science.gov (United States)

    Titorencu, Irina; Albu, Madalina Georgiana; Nemecz, Miruna; Jinga, Victor V

    2017-01-01

    The major goal of bone tissue engineering is to develop bioconstructs which substitute the functionality of damaged natural bone structures as much as possible if critical-sized defects occur. Scaffolds that mimic the structure and composition of bone tissue and cells play a pivotal role in bone tissue engineering applications. First, composition, properties and in vivo synthesis of bone tissue are presented for the understanding of bone formation. Second, potential sources of osteoprogenitor cells have been investigated for their capacity to induce bone repair and regeneration. Third, taking into account that the main property to qualify one scaffold as a future bioconstruct for bone tissue engineering is the biocompatibility, the assessments which prove it are reviewed in this paper. Forth, various types of natural polymer- based scaffolds consisting in proteins, polysaccharides, minerals, growth factors etc, are discussed, and interaction between scaffolds and cells which proved bone tissue engineering concept are highlighted. Finally, the future perspectives of natural polymer-based scaffolds for bone tissue engineering are considered. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Immediate placement and provisionalization of maxillary anterior single implant with guided bone regeneration, connective tissue graft, and coronally positioned flap procedures.

    Science.gov (United States)

    Waki, Tomonori; Kan, Joseph Y K

    2016-01-01

    Immediate implant placement and provisionalization in the esthetic zone have been documented with success. The benefit of immediate implant placement and provisionalization is the preservation of papillary mucosa. However, in cases with osseous defects presenting on the facial bony plate, immediate implant placement procedures have resulted in facial gingival recession. Subepithelial connective tissue grafts for immediate implant placement and provisionalization procedures have been reported with a good esthetic outcome. Biotype conversion around implants with subepithelial connective tissue grafts have been advocated, and the resulting tissues appear to be more resistant to recession. The dimensions of peri-implant mucosa in a thick biotype were significantly greater than in a thin biotype. Connective tissue graft with coronally positioned flap procedures on natural teeth has also been documented with success. This article describes a technique combining immediate implant placement, provisionalization, guided bone regeneration (GBR), connective tissue graft, and a coronally positioned flap in order to achieve more stable peri-implant tissue in facial osseous defect situations.

  12. Biological regeneration of para-nitrophenol loaded activated carbon

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.; Martin, R.J.

    1997-01-01

    Biological regeneration is one of several methods that may be used to restore the adsorptive capacity of exhausted granular activated carbon (GAC). This study deals with in-situ biological regeneration on a pilot scale. The principal objective of this research was to ascertain whether biological regeneration of GAC could occur under conditions typical of water treatment. The important parameters which may have the greatest impact on bio regeneration of a given adsorbate were studied. The research investigated the extent of bio regeneration for para-nitrophenol (PNP) of concentration 50 mg/L. Bio regeneration in the total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initially exhausted with an adsorbate; it was then bio regenerated for para-nitrophenol (PNP) of concentration 50 mg/L. Bio regeneration in he total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initially exhausted with an adsorbate; it was then bio regenerated with a mixed culture of bacteria, and lastly the carbon was re-saturated. In the totally exhausted GAC system, the bio regeneration was enhanced by increasing the during of regeneration for a fixed initial biomass content of the bioreactor. The bio regeneration efficiency of the totally exhausted (with PNP) GAC the empty bed contact time (EBCT) and the initial concentration of the substrate had a profound effect on the bio regeneration efficiency. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. (author)

  13. Blastema Tissue Formed at Experimentally-Created Rabbit Ear Hole

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2013-02-01

    Full Text Available   Objective(s: Throughout evolution, mammalians have increasingly lost their ability to regenerate structures however rabbits are exceptional since they develop a blastema in their ear wound for regeneration purposes. Blastema consists of a group of undifferentiated cells capable of dividing and differentiating into the ear tissue. The objective of the present study is to isolate, culture expand, and characterize blastema progenitor cells in terms of their in vitro differentiation capacity.   Materials and Methods: Five New Zealand white male rabbits were used in the present study. Using a punching apparatus, a 4-mm hole was created in the animal ears. Following 4 days, the blastema ring which was created in the periphery of primary hole in the ears was removed and cultivated. The cells migrated from the blastema were expanded through 3 successive subcultures and characterized in terms of their potential differentiation, growth characteristics, and culture requirements. Results: The primary cultures tended to be morphologically heterogeneous having spindly-shaped fibroblast-like cells as well as flattened cells. Fibroblast-like cells survived and dominated the cultures. These cells tended to have the osteogenic, chondrogenic, and adipogenic differentiation potentials. They were highly colonogenic and maximum proliferation was achieved when the cells were plated at density of 100 cells/cm2 in a medium which contained 10% fetal bovine serum (FBS. Conclusion: Taken together, blastema tissue-derived stem cells from rabbit ear are of mesenchymal stem cell-like population. Studies similar to this will assist scientist better understanding the nature of blastema tissue formed at rabbit ear to regenerate the wound.

  14. Scaffold-free Prevascularized Microtissue Spheroids for Pulp Regeneration.

    Science.gov (United States)

    Dissanayaka, W L; Zhu, L; Hargreaves, K M; Jin, L; Zhang, C

    2014-12-01

    Creating an optimal microenvironment that mimics the extracellular matrix (ECM) of natural pulp and securing an adequate blood supply for the survival of cell transplants are major hurdles that need to be overcome in dental pulp regeneration. However, many currently available scaffolds fail to mimic essential functions of natural ECM. The present study investigated a novel approach involving the use of scaffold-free microtissue spheroids of dental pulp stem cells (DPSCs) prevascularized by human umbilical vein endothelial cells (HUVECs) in pulp regeneration. In vitro-fabricated microtissue spheroids were inserted into the canal space of tooth-root slices and were implanted subcutaneously into immunodeficient mice. Histological examination revealed that, after four-week implantation, tooth-root slices containing microtissue spheroids resulted in well-vascularized and cellular pulp-like tissues, compared with empty tooth-root slices, which were filled with only subcutaneous fat tissue. Immunohistochemical staining indicated that the tissue found in the tooth-root slices was of human origin, as characterized by the expression of human mitochondria, and contained odontoblast-like cells organized along the dentin, as assessed by immunostaining for nestin and dentin sialoprotein (DSP). Vascular structures formed by HUVECs in vitro were successfully anastomosed with the host vasculature upon transplantation in vivo, as shown by immunostaining for human CD31. Collectively, these findings demonstrate that prevascularized, scaffold-free, microtissue spheroids can successfully regenerate vascular dental pulp-like tissue and also highlight the significance of the microtissue microenvironment as an optimal environment for successful pulp-regeneration strategies. © International & American Associations for Dental Research.

  15. Integrating three-dimensional printing and nanotechnology for musculoskeletal regeneration

    Science.gov (United States)

    Nowicki, Margaret; Castro, Nathan J.; Rao, Raj; Plesniak, Michael; Zhang, Lijie Grace

    2017-09-01

    The field of tissue engineering is advancing steadily, partly due to advancements in rapid prototyping technology. Even with increasing focus, successful complex tissue regeneration of vascularized bone, cartilage and the osteochondral interface remains largely illusive. This review examines current three-dimensional printing techniques and their application towards bone, cartilage and osteochondral regeneration. The importance of, and benefit to, nanomaterial integration is also highlighted with recent published examples. Early-stage successes and challenges of recent studies are discussed, with an outlook to future research in the related areas.

  16. Hydrostatic pressure in combination with topographical cues affects the fate of bone marrow-derived human mesenchymal stem cells for bone tissue regeneration.

    Science.gov (United States)

    Reinwald, Yvonne; El Haj, Alicia J

    2018-03-01

    Topographical and mechanical cues are vital for cell fate, tissue development in vivo, and to mimic the native cell growth environment in vitro. To date, the combinatory effect of mechanical and topographical cues as not been thoroughly investigated. This study investigates the effect of PCL nanofiber alignment and hydrostatic pressure on stem cell differentiation for bone tissue regeneration. Bone marrow-derived human mesenchymal stem cells were seeded onto standard tissue culture plastic and electrospun random and aligned nanofibers. These substrates were either cultured statically or subjected to intermittent hydrostatic pressure at 270 kPa, 1 Hz for 60 min daily over 21 days in osteogenic medium. Data revealed higher cell metabolic activities for all mechanically stimulated cell culture formats compared with non-stimulated controls; and random fibers compared with aligned fibers. Fiber orientation influenced cell morphology and patterns of calcium deposition. Significant up-regulation of Collagen-I, ALP, and Runx-2 were observed for random and aligned fibers following mechanical stimulation; highest levels of osteogenic markers were expressed when hydrostatic pressure was applied to random fibers. These results indicate that fiber alignment and hydrostatic pressure direct stem cell fate and are important stimulus for tissue regeneration. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: A: 629-640, 2018. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  17. Engineering vascular development for tissue regeneration

    NARCIS (Netherlands)

    Rivron, N.C.

    2010-01-01

    Tissue engineering and regenerative medicine aim at restoring a damaged tissue by recreating in vitro or promoting its regeneratin in vovo. The vasculature is central to these therapies for the irrigation of the defective tissue (oxygen, nutrients or circulating regenerative cells) and as an

  18. Ionic Colloidal Molding as a Biomimetic Scaffolding Strategy for Uniform Bone Tissue Regeneration.

    Science.gov (United States)

    Zhang, Jian; Jia, Jinpeng; Kim, Jimin P; Shen, Hong; Yang, Fei; Zhang, Qiang; Xu, Meng; Bi, Wenzhi; Wang, Xing; Yang, Jian; Wu, Decheng

    2017-05-01

    Inspired by the highly ordered nanostructure of bone, nanodopant composite biomaterials are gaining special attention for their ability to guide bone tissue regeneration through structural and biological cues. However, bone malformation in orthopedic surgery is a lingering issue, partly due to the high surface energy of traditional nanoparticles contributing to aggregation and inhomogeneity. Recently, carboxyl-functionalized synthetic polymers have been shown to mimic the carboxyl-rich surface motifs of non-collagenous proteins in stabilizing hydroxyapatite and directing intrafibrillar mineralization in-vitro. Based on this biomimetic approach, it is herein demonstrated that carboxyl functionalization of poly(lactic-co-glycolic acid) can achieve great material homogeneity in nanocomposites. This ionic colloidal molding method stabilizes hydroxyapatite precursors to confer even nanodopant packing, improving therapeutic outcomes in bone repair by remarkably improving mechanical properties of nanocomposites and optimizing controlled drug release, resulting in better cell in-growth and osteogenic differentiation. Lastly, better controlled biomaterial degradation significantly improved osteointegration, translating to highly regular bone formation with minimal fibrous tissue and increased bone density in rabbit radial defect models. Ionic colloidal molding is a simple yet effective approach of achieving materials homogeneity and modulating crystal nucleation, serving as an excellent biomimetic scaffolding strategy to rebuild natural bone integrity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Emdogain--periodontal regeneration based on biomimicry.

    Science.gov (United States)

    Gestrelius, S; Lyngstadaas, S P; Hammarström, L

    2000-06-01

    Biomimicry has been introduced as a term for innovations inspired by nature [1]. Such innovations may appear in almost every part of modern society. This review on the effects of enamel matrix proteins on the formation of cementum and the development of emdogain for regeneration of periodontal tissues lost due to periodontitis shows an example of biomimicry in dentistry. Findings from clinical and laboratory investigations are summarized and the biological basis for enamel matrix-induced periodontal regeneration is discussed.

  20. Identification of regeneration-associated genes after central and peripheral nerve injury in the adult rat

    Directory of Open Access Journals (Sweden)

    Brook Gary A

    2003-05-01

    Full Text Available Abstract Background It is well known that neurons of the peripheral nervous system have the capacity to regenerate a severed axon leading to functional recovery, whereas neurons of the central nervous system do not regenerate successfully after injury. The underlying molecular programs initiated by axotomized peripheral and central nervous system neurons are not yet fully understood. Results To gain insight into the molecular mechanisms underlying the process of regeneration in the nervous system, differential display polymerase chain reaction has been used to identify differentially expressed genes following axotomy of peripheral and central nerve fibers. For this purpose, axotomy induced changes of regenerating facial nucleus neurons, and non-regenerating red nucleus and Clarke's nucleus neurons have been analyzed in an intra-animal side-to-side comparison. One hundred and thirty five gene fragments have been isolated, of which 69 correspond to known genes encoding for a number of different functional classes of proteins such as transcription factors, signaling molecules, homeobox-genes, receptors and proteins involved in metabolism. Sixty gene fragments correspond to genomic mouse sequences without known function. In situ-hybridization has been used to confirm differential expression and to analyze the cellular localization of these gene fragments. Twenty one genes (~15% have been demonstrated to be differentially expressed. Conclusions The detailed analysis of differentially expressed genes in different lesion paradigms provides new insights into the molecular mechanisms underlying the process of regeneration and may lead to the identification of genes which play key roles in functional repair of central nervous tissues.

  1. The blastema and epimorphic regeneration in mammals.

    Science.gov (United States)

    Seifert, Ashley W; Muneoka, Ken

    2018-01-15

    Studying regeneration in animals where and when it occurs is inherently interesting and a challenging research topic within developmental biology. Historically, vertebrate regeneration has been investigated in animals that display enhanced regenerative abilities and we have learned much from studying organ regeneration in amphibians and fish. From an applied perspective, while regeneration biologists will undoubtedly continue to study poikilothermic animals (i.e., amphibians and fish), studies focused on homeotherms (i.e., mammals and birds) are also necessary to advance regeneration biology. Emerging mammalian models of epimorphic regeneration are poised to help link regenerative biology and regenerative medicine. The regenerating rodent digit tip, which parallels human fingertip regeneration, and the regeneration of large circular defects through the ear pinna in spiny mice and rabbits, provide tractable, experimental systems where complex tissue structures are regrown through blastema formation and morphogenesis. Using these models as examples, we detail similarities and differences between the mammalian blastema and its classical counterpart to arrive at a broad working definition of a vertebrate regeneration blastema. This comparison leads us to conclude that regenerative failure is not related to the availability of regeneration-competent progenitor cells, but is most likely a function of the cellular response to the microenvironment that forms following traumatic injury. Recent studies demonstrating that targeted modification of this microenvironment can restrict or enhance regenerative capabilities in mammals helps provide a roadmap for eventually pushing the limits of human regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Lens regeneration in axolotl: new evidence of developmental plasticity

    Directory of Open Access Journals (Sweden)

    Suetsugu-Maki Rinako

    2012-12-01

    Full Text Available Abstract Background Among vertebrates lens regeneration is most pronounced in newts, which have the ability to regenerate the entire lens throughout their lives. Regeneration occurs from the dorsal iris by transdifferentiation of the pigment epithelial cells. Interestingly, the ventral iris never contributes to regeneration. Frogs have limited lens regeneration capacity elicited from the cornea during pre-metamorphic stages. The axolotl is another salamander which, like the newt, regenerates its limbs or its tail with the spinal cord, but up until now all reports have shown that it does not regenerate the lens. Results Here we present a detailed analysis during different stages of axolotl development, and we show that despite previous beliefs the axolotl does regenerate the lens, however, only during a limited time after hatching. We have found that starting at stage 44 (forelimb bud stage lens regeneration is possible for nearly two weeks. Regeneration occurs from the iris but, in contrast to the newt, regeneration can be elicited from either the dorsal or the ventral iris and, occasionally, even from both in the same eye. Similar studies in the zebra fish concluded that lens regeneration is not possible. Conclusions Regeneration of the lens is possible in the axolotl, but differs from both frogs and newts. Thus the axolotl iris provides a novel and more plastic strategy for lens regeneration.

  3. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury

    Science.gov (United States)

    Embree, Mildred C.; Chen, Mo; Pylawka, Serhiy; Kong, Danielle; Iwaoka, George M.; Kalajzic, Ivo; Yao, Hai; Shi, Chancheng; Sun, Dongming; Sheu, Tzong-Jen; Koslovsky, David A.; Koch, Alia; Mao, Jeremy J.

    2016-01-01

    Tissue regeneration using stem cell-based transplantation faces many hurdles. Alternatively, therapeutically exploiting endogenous stem cells to regenerate injured or diseased tissue may circumvent these challenges. Here we show resident fibrocartilage stem cells (FCSCs) can be used to regenerate and repair cartilage. We identify FCSCs residing within the superficial zone niche in the temporomandibular joint (TMJ) condyle. A single FCSC spontaneously generates a cartilage anlage, remodels into bone and organizes a haematopoietic microenvironment. Wnt signals deplete the reservoir of FCSCs and cause cartilage degeneration. We also show that intra-articular treatment with the Wnt inhibitor sclerostin sustains the FCSC pool and regenerates cartilage in a TMJ injury model. We demonstrate the promise of exploiting resident FCSCs as a regenerative therapeutic strategy to substitute cell transplantation that could be beneficial for patients suffering from fibrocartilage injury and disease. These data prompt the examination of utilizing this strategy for other musculoskeletal tissues. PMID:27721375

  4. Supercritical Regeneration of an Activated Carbon Fiber Exhausted with Phenol

    Directory of Open Access Journals (Sweden)

    M. Jesus Sanchez-Montero

    2018-01-01

    Full Text Available The properties of supercritical CO2 (SCCO2 and supercritical water (SCW turn them into fluids with a great ability to remove organic adsorbates retained on solids. These properties were used herein to regenerate an activated carbon fiber (ACF saturated with a pollutant usually contained in wastewater and drinking water, phenol. Severe regeneration conditions, up to 225 bar and 400 °C, had to be employed in SCCO2 regeneration to break the strong interaction established between phenol and the ACF. Under suitable conditions (regeneration temperature, time, and pressure, and flow of SCCO2 the adsorption capacity of the exhausted ACF was completely recovered, and even slightly increased. Most of the retained phenol was removed by thermal desorption, but the extra percentage removed by extraction allowed SCCO2 regeneration to be significantly more efficient than the classical thermal regeneration methods. SCCO2 regeneration and SCW regeneration were also compared for the first time. The use of SCW slightly improved regeneration, although SCW pressure was thrice SCCO2 pressure. The pathways that controlled SCW regeneration were also investigated.

  5. The muscle stem cell niche : regulation of satellite cells during regeneration

    NARCIS (Netherlands)

    Boonen, K.J.M.; Post, M.J.

    2008-01-01

    Satellite cells are considered to be adult skeletal muscle stem cells. Their ability to regenerate large muscle defects is highly dependent on their specific niche. When these cells are cultured in vitro, the loss of this niche leads to a loss of proliferative capacity and defective regeneration

  6. 3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration.

    Science.gov (United States)

    Nyberg, Ethan L; Farris, Ashley L; Hung, Ben P; Dias, Miguel; Garcia, Juan R; Dorafshar, Amir H; Grayson, Warren L

    2017-01-01

    The treatment of craniofacial defects can present many challenges due to the variety of tissue-specific requirements and the complexity of anatomical structures in that region. 3D-printing technologies provide clinicians, engineers and scientists with the ability to create patient-specific solutions for craniofacial defects. Currently, there are three key strategies that utilize these technologies to restore both appearance and function to patients: rehabilitation, reconstruction and regeneration. In rehabilitation, 3D-printing can be used to create prostheses to replace or cover damaged tissues. Reconstruction, through plastic surgery, can also leverage 3D-printing technologies to create custom cutting guides, fixation devices, practice models and implanted medical devices to improve patient outcomes. Regeneration of tissue attempts to replace defects with biological materials. 3D-printing can be used to create either scaffolds or living, cellular constructs to signal tissue-forming cells to regenerate defect regions. By integrating these three approaches, 3D-printing technologies afford the opportunity to develop personalized treatment plans and design-driven manufacturing solutions to improve aesthetic and functional outcomes for patients with craniofacial defects.

  7. The role of plastic regeneration state of transplanted skeletal muscle in its response to the effect of ionizing radiation

    International Nuclear Information System (INIS)

    Il'yasova, Sh.G.

    1978-01-01

    Irradiation of an intact muscle at 1000 R before its autotransplantation greatly affected the regeneration process, as if it is shown by histological examinations. This was also confirmed by studying the ratio between muscle and connective tissue in the grafts and the rate of resorption of necrotizing tissue. When the muscle was irradiated in the state of plastic regeneration, the rate of granular tissue formation and of the muscle tissue regeneration approached that in control animals, whose muscle was autografted without irradiation. In experiments with preirradiation of muscle to be autografted, the transplantational activity of muscle tissue was almost completely suppressed. At the same time, the muscle in the plastic state following transplantation continued to regenerate inspite of irradiation at 1000 R, and 2 months later a half of the organ formed consisted of muscle tissue. It is concluded that the muscle in the state of plastic regeneration is more resistant to ionizing radiation than normal muscle

  8. Drug intercalation in layered double hydroxide clay: Application in the development of a nanocomposite film for guided tissue regeneration

    DEFF Research Database (Denmark)

    Chakraborti, M.; Jackson, J.K.; Plackett, David

    2011-01-01

    It has been proposed that localized and controlled delivery of alendronate and tetracycline to periodontal pocket fluids via guided tissue regeneration (GTR) membranes may be a valuable adjunctive treatment for advanced periodontitis. The objectives of this work were to develop a co...... evidence of intercalation in the LDH clay particles. The dual drug loaded nanocomposite films were biocompatible with osteoblasts and after 5 week incubations, significant increase in alkaline phosphatase activity and bone nodule formation were observed....

  9. Regeneration and acclimatization of salt-tolerant arachis hypogaea plants through tissue culture

    International Nuclear Information System (INIS)

    Ghauri, E.G.

    2006-01-01

    Excised embryos of Arachis hypogaea were cultured on Murashige and Skoog's medium (MS medium) supplemented with different combinations of growth hormones. The highest frequency of callus proliferation (80%) was recorded on MS medium mixed with 1.0 mg/1 of 2,4-D and 0.5 mg/1 of BAP. These cultures were treated with 0.65 mg/l of trans-4-hydroxy-L-proline (HyP) a:1d various concentrations (0.1-0.5%) of NaCl. In all cases the presence of salt reduced the fresh mass of callus. Shoot regeneration in the cultures took place when transferred to MS medium supplemented with 1.0 mg/1 of kinetin (Kin) and 0.5 mg/1 of 6-benzyl aminopurine (BAP). Percentage of shoot regeneration decreased with the increase of NaCl (0.1- 0.5%) in the shoot regeneration medium. Root formation in these cultures took place when the cultures were nurtured on MS medium free of growth hormones. Regeneration, hardening and acclimatization of the salt tolerant plants was conducted. (author)

  10. Role of the epithelial cell rests of Malassez in the development, maintenance and regeneration of periodontal ligament tissues.

    Science.gov (United States)

    Xiong, Jimin; Gronthos, Stan; Bartold, P Mark

    2013-10-01

    Periodontitis is a highly prevalent inflammatory disease that results in damage to the tooth-supporting tissues, potentially leading to tooth loss. Periodontal tissue regeneration is a complex process that involves the collaboration of two hard tissues (cementum and alveolar bone) and two soft tissues (gingiva and periodontal ligament). To date, no periodontal-regenerative procedures provide predictable clinical outcomes. To understand the rational basis of regenerative procedures, a better understanding of the events associated with the formation of periodontal components will help to establish reliable strategies for clinical practice. An important aspect of this is the role of the Hertwig's epithelial root sheath in periodontal development and that of its descendants, the epithelial cell rests of Malassez, in the maintenance of the periodontium. An important structure during tooth root development, the Hertwig's epithelial root sheath is not only a barrier between the dental follicle and dental papilla cells but is also involved in determining the shape, size and number of roots and in the development of dentin and cementum, and may act as a source of mesenchymal progenitor cells for cementoblasts. In adulthood, the epithelial cell rests of Malassez are the only odontogenic epithelial population in the periodontal ligament. Although there is no general agreement on the functions of the epithelial cell rests of Malassez, accumulating evidence suggests that the putative roles of the epithelial cell rests of Malassez in adult periodontal ligament include maintaining periodontal ligament homeostasis to prevent ankylosis and maintain periodontal ligament space, to prevent root resorption, to serve as a target during periodontal ligament innervation and to contribute to cementum repair. Recently, ovine epithelial cell rests of Malassez cells have been shown to harbor clonogenic epithelial stem-cell populations that demonstrate similar properties to mesenchymal stromal

  11. Helium-neon laser used to stimulate regeneration of the skeletal muscle damaged by ionizing radiation

    International Nuclear Information System (INIS)

    Popova, M.F.; Bulyakova, N.V.; Azarova, V.S.

    1983-01-01

    A comparative study was made of the therapeutic effects of transplantation of the regenerating muscular tissue and helium-neon lazer rays on the skeletal muscle received 20 Gy x radiation. The results of four series of experiments showed that the effect of lazer rays on the irradiated transversely cut musculus gastrocnemius is simular to that of transplantation of the minced muscular tissue to the defect of the muscle. Regeneration of the muscle in both cases is normalized so that the regenerating muscular organ slightly differs from the control regenerate of unirradiated muscle

  12. 3D bioprinting: A new insight into the therapeutic strategy of neural tissue regeneration.

    Science.gov (United States)

    Hsieh, Fu-Yu; Hsu, Shan-hui

    2015-01-01

    Acute traumatic injuries and chronic degenerative diseases represent the world's largest unmet medical need. There are over 50 million people worldwide suffering from neurodegenerative diseases. However, there are only a few treatment options available for acute traumatic injuries and neurodegenerative diseases. Recently, 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. In this commentary, the newly developed 3D bioprinting technique involving neural stem cells (NSCs) embedded in the thermoresponsive biodegradable polyurethane (PU) bioink is reviewed. The thermoresponsive and biodegradable PU dispersion can form gel near 37 °C without any crosslinker. NSCs embedded within the water-based PU hydrogel with appropriate stiffness showed comparable viability and differentiation after printing. Moreover, in the zebrafish embryo neural deficit model, injection of the NSC-laden PU hydrogels promoted the repair of damaged CNS. In addition, the function of adult zebrafish with traumatic brain injury was rescued after implantation of the 3D-printed NSC-laden constructs. Therefore, the newly developed 3D bioprinting technique may offer new possibilities for future therapeutic strategy of neural tissue regeneration.

  13. The Influence of Time on Bearing Capacity of Driven Piles

    DEFF Research Database (Denmark)

    Jensen, J. Lysebjerg; Augustesen, A.; Sørensen, Carsten S.

    2004-01-01

    In Danish engineering practice, one of the ways to determine the ultimate bearing capacity of an axially loaded pile is by means of geostatic formulas. In the equation describing the contribution from the shaft friction to the total bearing capacity for piles located entirely or partly in clay......, a regeneration factor appears. The regeneration factor accounts for effects of dissipation of pore pressure due to pile driving and true time effects such as ageing on the ultimate bearing capacity. Normally the factor is 0.4 but in this paper, the influence of the undrained shear strength and time...... on the regeneration factor is investigated. A relation between the quantities is proposed, which in the end may imply an economical benefit in the design of pile foundations....

  14. [Guided bone regeneration: general survey].

    Science.gov (United States)

    Cosyn, Jan; De Bruyn, Hugo

    2009-01-01

    The principle of 'guided bone regeneration' was first described in 1988 on the basis of animal-experimental data. Six weeks after transmandibular defects had been created and protected by non-resorbable teflonmembranes, complete bone regeneration was found. The technique was based on the selective repopulation of the wound: every infiltration of cells outside the neighbouring bone tissue was prevented by the application of the membrane. Additional animal experiments showed that guided bone regeneration was a viable treatment option for local bone defects surrounding dental implants. Clinical practice, however, showed that premature membrane exposure was a common complication, which was responsible for a tremendous reduction in regenerated bone volume. In addition, a second surgical intervention was always necessary to remove the membrane. As a result, resorbable alternatives were developed. Since these are less rigid, bone fillers are usually used simultaneously. These comprise autogenous bone chips and bone substitutes from allogenic or xenogenic origine. Also alloplastic materials could be used for this purpose. Based on their characteristics this article provides an overview of the biomaterials that could be considered for guided bone regeneration. Specific attention goes to their application in clinical practice.

  15. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine.

    Science.gov (United States)

    Vapniarsky, Natalia; Arzi, Boaz; Hu, Jerry C; Nolta, Jan A; Athanasiou, Kyriacos A

    2015-10-01

    The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it provides

  16. Influence of low-intensity pulsed ultrasound on osteogenic tissue regeneration in a periodontal injury model: X-ray image alterations assessed by micro-computed tomography.

    Science.gov (United States)

    Wang, Yunji; Chai, Zhaowu; Zhang, Yuanyuan; Deng, Feng; Wang, Zhibiao; Song, Jinlin

    2014-08-01

    This study was conducted to evaluate, with micro-computed tomography, the influence of low-intensity pulsed ultrasound on wound-healing in periodontal tissues. Periodontal disease with Class II furcation involvement was surgically produced at the bilateral mandibular premolars in 8 adult male beagle dogs. Twenty-four teeth were randomly assigned among 4 groups (G): G1, periodontal flap surgery; G2, periodontal flap surgery+low-intensity pulsed ultrasound (LIPUS); G3, guided tissue regeneration (GTR) surgery; G4, GTR surgery plus LIPUS. The affected area in the experimental group was exposed to LIPUS. At 6 and 8weeks, the X-ray images of regenerated teeth were referred to micro-CT scanning for 3-D measurement. Bone volume (BV), bone surface (BS), and number of trabeculae (Tb) in G2 and G4 were higher than in G1 and G3 (pperiodontal flap surgery group. LIPUS irradiation increased the number, volume, and area of new alveolar bone trabeculae. LIPUS has the potential to promote the repair of periodontal tissue, and may work effectively if combined with GTR. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Polymeric membranes for guided bone regeneration.

    Science.gov (United States)

    Gentile, Piergiorgio; Chiono, Valeria; Tonda-Turo, Chiara; Ferreira, Ana M; Ciardelli, Gianluca

    2011-10-01

    In this review, different barrier membranes for guided bone regeneration (GBR) are described as a useful surgical technique to enhance bone regeneration in damaged alveolar sites before performing implants and fitting other dental appliances. The GBR procedure encourages bone regeneration through cellular exclusion and avoids the invasion of epithelial and connective tissues that grow at the defective site instead of bone tissue. The barrier membrane should satisfy various properties, such as biocompatibility, non-immunogenicity, non-toxicity, and a degradation rate that is long enough to permit mechanical support during bone formation. Other characteristics such as tissue integration, nutrient transfer, space maintenance and manageability are also of interest. In this review, various non-resorbable and resorbable commercially available membranes are described, based on expanded polytetrafluoroethylene, poly(lactic acid), poly(glycolic acid) and their copolymers. The polyester-based membranes are biodegradable, permit a single-stage procedure, and have higher manageability than non-resorbable membranes; however, they have shown poor biocompatibility. In contrast, membranes based on natural materials, such as collagen, are biocompatible but are characterized by poor mechanical properties and stability due to their early degradation. Moreover, new approaches are described, such as the use of multi-layered, graft-copolymer-based and composite membranes containing osteoconductive ceramic fillers as alternatives to conventional membranes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Castration-Resistant Lgr5+ Cells Are Long-Lived Stem Cells Required for Prostatic Regeneration

    Directory of Open Access Journals (Sweden)

    Bu-er Wang

    2015-05-01

    Full Text Available The adult prostate possesses a significant regenerative capacity that is of great interest for understanding adult stem cell biology. We demonstrate that leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5 is expressed in a rare population of prostate epithelial progenitor cells, and a castration-resistant Lgr5+ population exists in regressed prostate tissue. Genetic lineage tracing revealed that Lgr5+ cells and their progeny are primarily luminal. Lgr5+ castration-resistant cells are long lived and upon regeneration, both luminal Lgr5+ cells and basal Lgr5+ cells expand. Moreover, single Lgr5+ cells can generate multilineage prostatic structures in renal transplantation assays. Additionally, Lgr5+ cell depletion revealed that the regenerative potential of the castrated adult prostate depends on Lgr5+ cells. Together, these data reveal insights into the cellular hierarchy of castration-resistant Lgr5+ cells, indicate a requirement for Lgr5+ cells during prostatic regeneration, and identify an Lgr5+ adult stem cell population in the prostate.

  19. Regeneration of carbon nanotubes exhausted with dye reactive red 3BS using microwave irradiation

    International Nuclear Information System (INIS)

    Wang Jun; Peng Xianjia; Luan Zhaokun; Zhao Changwei

    2010-01-01

    Carbon nanotubes (CNTs) exhausted with dye reactive red 3BS were regenerated by microwave irradiation under N 2 atmosphere. High regeneration efficiency was achieved and the regeneration efficiency reached 92.8% after four cycles regeneration. The decrease in adsorption capacity was suggested to be due to the deposition of decomposition residues in CNT pores, which blocked the carbon porosity and decreased the specific surface area.

  20. Regeneración biológica: Secretos de la naturaleza Biological regeneration: Secrets of nature

    Directory of Open Access Journals (Sweden)

    Porfirio Hernández Ramírez

    2006-12-01

    capacity, both in the field of botany and of zoology. Among the new methods to improve the characteristics and dissemination of plants we find the regeneration techniques of plants in vitro, including the organogenesis and the somatic embriogenesis that give the possibility to form the so-called “artificial seeds”. In zoology, it has been observed the regenerative capacity of some animals, such as planarians, hydras, starfish and crustacean. Many vertebrates have lost, at least in a significant way, the regenerative potentiality of most of their organs and tissues. However, some have retained a marked regenerative ability, among them, the Teleostei, the Urodela (salamanders and tritons and other types of amphibia. The Chelonia, crocodriles and snakes have lost in general the capacity to regenerate lost parts. Alligators have the possibility to regenerate their tails. Mammals have also limitations, since they cannot regenerate extremities, organs and tissues as some inferior animals do. There are exceptions, as those found in stags, dolphins and some type of mice as the MRL mice. The human being expresses only some physiological regenerative processes, or before some injuries that are mainly manifested in the epidermal cells of the oral mucosa and of the respiratory tract, the blood cells, the hair, the nails, the muscular tissue, the skin and the bone tissue. The new knowledge on the stem cell opens a new era that offers man the possibility to influence therapeutically on the regeneration of organs and tissues

  1. Gene expression patterns specific to the regenerating limb of the Mexican axolotl

    Directory of Open Access Journals (Sweden)

    James R. Monaghan

    2012-07-01

    Salamander limb regeneration is dependent upon tissue interactions that are local to the amputation site. Communication among limb epidermis, peripheral nerves, and mesenchyme coordinate cell migration, cell proliferation, and tissue patterning to generate a blastema, which will form missing limb structures. An outstanding question is how cross-talk between these tissues gives rise to the regeneration blastema. To identify genes associated with epidermis-nerve-mesenchymal interactions during limb regeneration, we examined histological and transcriptional changes during the first week following injury in the wound epidermis and subjacent cells between three injury types; 1 a flank wound on the side of the animal that will not regenerate a limb, 2 a denervated limb that will not regenerate a limb, and 3 an innervated limb that will regenerate a limb. Early, histological and transcriptional changes were similar between the injury types, presumably because a common wound-healing program is employed across anatomical locations. However, some transcripts were enriched in limbs compared to the flank and are associated with vertebrate limb development. Many of these genes were activated before blastema outgrowth and expressed in specific tissue types including the epidermis, peripheral nerve, and mesenchyme. We also identified a relatively small group of transcripts that were more highly expressed in innervated limbs versus denervated limbs. These transcripts encode for proteins involved in myelination of peripheral nerves, epidermal cell function, and proliferation of mesenchymal cells. Overall, our study identifies limb-specific and nerve-dependent genes that are upstream of regenerative growth, and thus promising candidates for the regulation of blastema formation.

  2. Pulp regeneration in a full-length human tooth root using a hierarchical nanofibrous microsphere system.

    Science.gov (United States)

    Li, Xiangwei; Ma, Chi; Xie, Xiaohua; Sun, Hongchen; Liu, Xiaohua

    2016-04-15

    While pulp regeneration using tissue engineering strategy has been explored for over a decade, successful regeneration of pulp tissues in a full-length human root with a one-end seal that truly simulates clinical endodontic treatment has not been achieved. To address this challenge, we designed and synthesized a unique hierarchical growth factor-loaded nanofibrous microsphere scaffolding system. In this system, vascular endothelial growth factor (VEGF) binds with heparin and is encapsulated in heparin-conjugated gelatin nanospheres, which are further immobilized in the nanofibers of an injectable poly(l-lactic acid) (PLLA) microsphere. This hierarchical microsphere system not only protects the VEGF from denaturation and degradation, but also provides excellent control of its sustained release. In addition, the nanofibrous PLLA microsphere integrates the extracellular matrix-mimicking architecture with a highly porous injectable form, efficiently accommodating dental pulp stem cells (DPSCs) and supporting their proliferation and pulp tissue formation. Our in vivo study showed the successful regeneration of pulp-like tissues that fulfilled the entire apical and middle thirds and reached the coronal third of the full-length root canal. In addition, a large number of blood vessels were regenerated throughout the canal. For the first time, our work demonstrates the success of pulp tissue regeneration in a full-length root canal, making it a significant step toward regenerative endodontics. The regeneration of pulp tissues in a full-length tooth root canal has been one of the greatest challenges in the field of regenerative endodontics, and one of the biggest barriers for its clinical application. In this study, we developed a unique approach to tackle this challenge, and for the first time, we successfully regenerated living pulp tissues in a full-length root canal, making it a significant step toward regenerative endodontics. This study will make positive scientific

  3. Regenerating reptile retinas: a comparative approach to restoring retinal ganglion cell function.

    Science.gov (United States)

    Williams, D L

    2017-02-01

    Transection or damage to the mammalian optic nerve generally results in loss of retinal ganglion cells by apoptosis. This cell death is seen less in fish or amphibians where retinal ganglion cell survival and axon regeneration leads to recovery of sight. Reptiles lie somewhere in the middle of this spectrum of nerve regeneration, and different species have been reported to have a significant variation in their retinal ganglion cell regenerative capacity. The ornate dragon lizard Ctenophoris ornatus exhibits a profound capacity for regeneration, whereas the Tenerife wall lizard Gallotia galloti has a more variable response to optic nerve damage. Some individuals regain visual activity such as the pupillomotor responses, whereas in others axons fail to regenerate sufficiently. Even in Ctenophoris, although the retinal ganglion cell axons regenerate adequately enough to synapse in the tectum, they do not make long-term topographic connections allowing recovery of complex visually motivated behaviour. The question then centres on where these intraspecies differences originate. Is it variation in the innate ability of retinal ganglion cells from different species to regenerate with functional validity? Or is it variances between different species in the substrate within which the nerves regenerate, the extracellular environment of the damaged nerve or the supporting cells surrounding the regenerating axons? Investigations of retinal ganglion cell regeneration between different species of lower vertebrates in vivo may shed light on these questions. Or perhaps more interesting are in vitro studies comparing axon regeneration of retinal ganglion cells from various species placed on differing substrates.

  4. Enamel matrix derivative (Emdogain(R)) for periodontal tissue regeneration in intrabony defects.

    Science.gov (United States)

    Esposito, Marco; Grusovin, Maria Gabriella; Papanikolaou, Nikolaos; Coulthard, Paul; Worthington, Helen V

    2009-10-07

    Periodontitis is a chronic infective disease of the gums caused by bacteria present in dental plaque. This condition induces the breakdown of the tooth supporting apparatus until teeth are lost. Surgery may be indicated to arrest disease progression and regenerate lost tissues. Several surgical techniques have been developed to regenerate periodontal tissues including guided tissue regeneration (GTR), bone grafting (BG) and the use of enamel matrix derivative (EMD). EMD is an extract of enamel matrix and contains amelogenins of various molecular weights. Amelogenins are involved in the formation of enamel and periodontal attachment formation during tooth development. To test whether EMD is effective, and to compare EMD versus GTR, and various BG procedures for the treatment of intrabony defects. We searched the Cochrane Oral Health Group Trials Register, CENTRAL, MEDLINE and EMBASE. Several journals were handsearched. No language restrictions were applied. Authors of randomised controlled trials (RCTs) identified, personal contacts and the manufacturer were contacted to identify unpublished trials. Most recent search: February 2009. RCTs on patients affected by periodontitis having intrabony defects of at least 3 mm treated with EMD compared with open flap debridement, GTR and various BG procedures with at least 1 year follow up. The outcome measures considered were: tooth loss, changes in probing attachment levels (PAL), pocket depths (PPD), gingival recessions (REC), bone levels from the bottom of the defects on intraoral radiographs, aesthetics and adverse events. The following time-points were to be evaluated: 1, 5 and 10 years. Screening of eligible studies, assessment of the methodological quality of the trials and data extraction were conducted in duplicate and independently by two authors. Results were expressed as random-effects models using mean differences for continuous outcomes and risk ratios (RR) for dichotomous outcomes with 95% confidence intervals

  5. Whole meniscus regeneration using polymer scaffolds loaded with fibrochondrocytes

    Directory of Open Access Journals (Sweden)

    LU Hua-ding

    2012-02-01

    Full Text Available 【Abstract】Objective: To study the feasibility of regenerating a whole menisci using poly- (3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV scaffolds loaded with meniscal cells in rabbits undergoing total meniscectomy, and to explore its protective effect on cartilage degeneration. Methods: A solvent casting and particulate leaching technique was employed to fabricate biodegradable PHBV scaffolds into a meniscal shape. The proliferated meniscal cells were seeded onto the polymer scaffolds, transplanted into rabbit knee joints whose lateral menisci had been removed. Eight to 18 weeks after transplantation, the regenerated neomenisci were evaluated by gross and histological observations. Cartilage degeneration was assessed by Mankin score. Results: Eighteen weeks after transplantation, the implants formed neomenisci. Hematoxylin and eosin (HE staining of the neomenisci sections revealed regeneration of fibrocartilage. Type I collagen in the neomenisci was also proved similar to normal meniscal tissue by immunohistochemical analysis and Sirius scarlet trinitrophenol staining. Articular cartilage degeneration was observed 8 weeks after implantation. It was less severe as compared with that in total meniscectomy controls and no further degeneration was observed at 18 weeks. At that time, the regenerated neomenisci strongly resembled normal meniscal fibrocartilage in gross and histological appearance, and its mechani- cal property was also close to that of normal meniscus. Conclusions: The present study demonstrates the feasibility of tissue-engineering a whole meniscal structure in total meniscectomy rabbit models using biodegradable PHBV scaffolds together with cultured allogeneic meniscal cells. Cartilage degeneration is decreased. But long-term in vivo investigations on the histological structure and cartilage degeneration of the neomenisci regenerated by this method are still necessary to determine the clinical potential of this tissue

  6. Macrophages are necessary for epimorphic regeneration in African spiny mice.

    Science.gov (United States)

    Simkin, Jennifer; Gawriluk, Thomas R; Gensel, John C; Seifert, Ashley W

    2017-05-16

    How the immune system affects tissue regeneration is not well understood. In this study, we used an emerging mammalian model of epimorphic regeneration, the African spiny mouse, to examine cell-based inflammation and tested the hypothesis that macrophages are necessary for regeneration. By directly comparing inflammatory cell activation in a 4 mm ear injury during regeneration ( Acomys cahirinus ) and scarring ( Mus musculus ), we found that both species exhibited an acute inflammatory response, with scarring characterized by stronger myeloperoxidase activity. In contrast, ROS production was stronger and more persistent during regeneration. By depleting macrophages during injury, we demonstrate a functional requirement for these cells to stimulate regeneration. Importantly, the spatial distribution of activated macrophage subtypes was unique during regeneration with pro-inflammatory macrophages failing to infiltrate the regeneration blastema. Together, our results demonstrate an essential role for inflammatory cells to regulate a regenerative response.

  7. Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants.

    Science.gov (United States)

    Chen, M H; Wang, P J; Maeda, E

    1987-10-01

    The regeneration potential of shoot tip, stem, leaf, cotyledon and root explants of two papaya cultivars (Carica papaya cv. 'Solo' and cv. 'Sunrise') were studed. Callus induction of these two cultivars of papaya showed that the shoot tips and stems are most suitable for forming callus, while leaves, cotyledons and roots are comparatively difficult to induce callus. Callus induction also varied with the varities. Somatic embryogenesis was obtained from 3-month-old root cultures. A medium containing half strength of MS inorganic salts, 160 mg/l adenine sulfate, 1.0 mg/1 NAA, 0.5 mg/1 kinetin and 1.0 mg/1 GA3 was optimal for embryogenesis. The callus maintained high regenerative capacity after two years of culture on this medium. Plants derived from somatic embryos were obtained under green-house conditions.

  8. Heterogeneous fates and dynamic rearrangement of regenerative epidermis-derived cells during zebrafish fin regeneration.

    Science.gov (United States)

    Shibata, Eri; Ando, Kazunori; Murase, Emiko; Kawakami, Atsushi

    2018-04-13

    The regenerative epidermis (RE) is a specialized tissue that plays an essential role in tissue regeneration. However, the fate of the RE during and after regeneration is unknown. In this study, we performed Cre- loxP -mediated cell fate tracking and revealed the fates of a major population of the RE cells that express fibronectin 1b ( fn1b ) during zebrafish fin regeneration. Our study showed that these RE cells are mainly recruited from the inter-ray epidermis, and that they follow heterogeneous cell fates. Early recruited cells contribute to initial wound healing and soon disappear by apoptosis, while the later recruited cells contribute to the regenerated epidermis. Intriguingly, many of these cells are also expelled from the regenerated tissue by a dynamic caudal movement of the epidermis over time, and in turn the loss of epidermal cells is replenished by a global self-replication of basal and suprabasal cells in fin. De-differentiation of non-basal epidermal cells into the basal epidermal cells did not occur during regeneration. Overall, our study reveals the heterogeneous fates of RE cells and a dynamic rearrangement of the epidermis during and after regeneration. © 2018. Published by The Company of Biologists Ltd.

  9. Studies in the development of a bridging device for guiding regenerating axons

    Science.gov (United States)

    Wen, Xuejun

    At present there is no clinically effective treatment for injuries or pathological processes that disrupt the continuity of axons in the mature central nervous system. However, a number of studies suggest that a tremendous potential exists for developing therapies. In particular biomaterials in the form of bridging substrates been shown to support at least some level of axonal regeneration across the lesion site, but display a limited capacity for directing axons toward their targets. To influence the directionality of the regeneration process filaments and tubes appear promising but the technology is far from optimized. As a step toward optimization, we investigated various components of a tissue-engineered bridging device consisting of numerous filaments surrounded by a semipermeable biodegradable hollow fiber membrane (HFM). In the first part of the thesis, we studied the influence of filament diameter and various extracellular matrix coatings on neuron regeneration suing a dorsal root ganglion explant model. We found that laminin surface treated filaments that approached the size of spinal axons support significantly longer regenerative outgrowth than similarly treated filaments of larger diameter, and exceed outgrowth distance on similarly sized filaments treated with fibronectin. Such substrates also consistently supported the attachment and alignment of glial cells and directed the outgrowth of regenerating axons along the long axis of the filaments. In the last part of the thesis, biodegradable hollow fiber membranes were fabricated and their physical, chemical and degradation properties were analyzed. We found that it is possible to use phase inversion methods to fabricate hollow fiber membranes of widely varying properties that degrade of the course of several months. We then evaluated the biocompatibility of the new materials after implantation in the CNS using an adult rat model. We found that the implants were well tolerated and elicited a reaction

  10. Tissue sparing, behavioral recovery, supraspinal axonal sparing/regeneration following sub-acute glial transplantation in a model of spinal cord contusion.

    Science.gov (United States)

    Barbour, Helen R; Plant, Christine D; Harvey, Alan R; Plant, Giles W

    2013-09-27

    It has been shown that olfactory ensheathing glia (OEG) and Schwann cell (SCs) transplantation are beneficial as cellular treatments for spinal cord injury (SCI), especially acute and sub-acute time points. In this study, we transplanted DsRED transduced adult OEG and SCs sub-acutely (14 days) following a T10 moderate spinal cord contusion injury in the rat. Behaviour was measured by open field (BBB) and horizontal ladder walking tests to ascertain improvements in locomotor function. Fluorogold staining was injected into the distal spinal cord to determine the extent of supraspinal and propriospinal axonal sparing/regeneration at 4 months post injection time point. The purpose of this study was to investigate if OEG and SCs cells injected sub acutely (14 days after injury) could: (i) improve behavioral outcomes, (ii) induce sparing/regeneration of propriospinal and supraspinal projections, and (iii) reduce tissue loss. OEG and SCs transplanted rats showed significant increased locomotion when compared to control injury only in the open field tests (BBB). However, the ladder walk test did not show statistically significant differences between treatment and control groups. Fluorogold retrograde tracing showed a statistically significant increase in the number of supraspinal nuclei projecting into the distal spinal cord in both OEG and SCs transplanted rats. These included the raphe, reticular and vestibular systems. Further pairwise multiple comparison tests also showed a statistically significant increase in raphe projecting neurons in OEG transplanted rats when compared to SCs transplanted animals. Immunohistochemistry of spinal cord sections short term (2 weeks) and long term (4 months) showed differences in host glial activity, migration and proteoglycan deposits between the two cell types. Histochemical staining revealed that the volume of tissue remaining at the lesion site had increased in all OEG and SCs treated groups. Significant tissue sparing was

  11. Microwave regeneration of molecular sieves

    International Nuclear Information System (INIS)

    Singh, V.P.

    1984-05-01

    Molecular sieve driers have been included in the design of tritium handling systems for fusion reactors. In these systems there is a need to maintain extremely low exit dew points from the driers as well as a capability to rapidly reduce tritium concentrations following an accident. The required capacity of the driers is very high. The conventional method of regenerating these sieves after a water adsorption cycle is with hot air. However, because water is rapidly heated by microwave energy, this technology may be suitable for decreasing the bed regeneration time and hence may allow reduced capital and operating costs associated with a smaller bed. The present study was conducted to obtain preliminary information on the technical feasibility of regenerating molecular sieves with microwave energy. The study concentrated on Type 4A molecular sieve with a few tests on Type 13X sieve and also a silica gel adsorbent

  12. In Vivo Articular Cartilage Regeneration Using Human Dental Pulp Stem Cells Cultured in an Alginate Scaffold: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Manuel Mata

    2017-01-01

    Full Text Available Osteoarthritis is an inflammatory disease in which all joint-related elements, articular cartilage in particular, are affected. The poor regeneration capacity of this tissue together with the lack of pharmacological treatment has led to the development of regenerative medicine methodologies including microfracture and autologous chondrocyte implantation (ACI. The effectiveness of ACI has been shown in vitro and in vivo, but the use of other cell types, including bone marrow and adipose-derived mesenchymal stem cells, is necessary because of the poor proliferation rate of isolated articular chondrocytes. In this investigation, we assessed the chondrogenic ability of human dental pulp stem cells (hDPSCs to regenerate cartilage in vitro and in vivo. hDPSCs and primary isolated rabbit chondrocytes were cultured in chondrogenic culture medium and found to express collagen II and aggrecan. Both cell types were cultured in 3% alginate hydrogels and implanted in a rabbit model of cartilage damage. Three months after surgery, significant cartilage regeneration was observed, particularly in the animals implanted with hDPSCs. Although the results presented here are preliminary, they suggest that hDPSCs may be useful for regeneration of articular cartilage.

  13. In Vivo Articular Cartilage Regeneration Using Human Dental Pulp Stem Cells Cultured in an Alginate Scaffold: A Preliminary Study.

    Science.gov (United States)

    Mata, Manuel; Milian, Lara; Oliver, Maria; Zurriaga, Javier; Sancho-Tello, Maria; de Llano, Jose Javier Martin; Carda, Carmen

    2017-01-01

    Osteoarthritis is an inflammatory disease in which all joint-related elements, articular cartilage in particular, are affected. The poor regeneration capacity of this tissue together with the lack of pharmacological treatment has led to the development of regenerative medicine methodologies including microfracture and autologous chondrocyte implantation (ACI). The effectiveness of ACI has been shown in vitro and in vivo , but the use of other cell types, including bone marrow and adipose-derived mesenchymal stem cells, is necessary because of the poor proliferation rate of isolated articular chondrocytes. In this investigation, we assessed the chondrogenic ability of human dental pulp stem cells (hDPSCs) to regenerate cartilage in vitro and in vivo . hDPSCs and primary isolated rabbit chondrocytes were cultured in chondrogenic culture medium and found to express collagen II and aggrecan. Both cell types were cultured in 3% alginate hydrogels and implanted in a rabbit model of cartilage damage. Three months after surgery, significant cartilage regeneration was observed, particularly in the animals implanted with hDPSCs. Although the results presented here are preliminary, they suggest that hDPSCs may be useful for regeneration of articular cartilage.

  14. Preparation and Characterization of an Advanced Medical Device for Bone Regeneration

    OpenAIRE

    Dorati, Rossella; Colonna, Claudia; Genta, Ida; Bruni, Giovanna; Visai, Livia; Conti, Bice

    2013-01-01

    Tridimensional scaffolds can promote bone regeneration as a framework supporting the migration of cells from the surrounding tissue into the damaged tissue and as delivery systems for the controlled or prolonged release of cells, genes, and growth factors. The goal of the work was to obtain an advanced medical device for bone regeneration through coating a decellularized and deproteinized bone matrix of bovine origin with a biodegradable, biocompatible polymer, to improve the cell engraftment...

  15. Perspectives on stem cell therapy for cardiac regeneration. Advances and challenges.

    Science.gov (United States)

    Choi, Sung Hyun; Jung, Seok Yun; Kwon, Sang-Mo; Baek, Sang Hong

    2012-01-01

    Ischemic heart disease (IHD) accelerates cardiomyocyte loss, but the developing stem cell research could be useful for regenerating a variety of tissue cells, including cardiomyocytes. Diverse sources of stem cells for IHD have been reported, including embryonic stem cells, induced pluripotent stem cells, skeletal myoblasts, bone marrow-derived stem cells, mesenchymal stem cells, and cardiac stem cells. However, stem cells have unique advantages and disadvantages for cardiac tissue regeneration, which are important considerations in determining the specific cells for improving cell survival and long-term engraftment after transplantation. Additionally, the dosage and administration method of stem cells need to be standardized to increase stability and efficacy for clinical applications. Accordingly, this review presents a summary of the stem cell therapies that have been studied for cardiac regeneration thus far, and discusses the direction of future cardiac regeneration research for stem cells.

  16. Periodontal tissue engineering strategies based on nonoral stem cells.

    Science.gov (United States)

    Requicha, João Filipe; Viegas, Carlos Alberto; Muñoz, Fernando; Reis, Rui Luís; Gomes, Manuela Estima

    2014-01-01

    Periodontal disease is an inflammatory disease which constitutes an important health problem in humans due to its enormous prevalence and life threatening implications on systemic health. Routine standard periodontal treatments include gingival flaps, root planning, application of growth/differentiation factors or filler materials and guided tissue regeneration. However, these treatments have come short on achieving regeneration ad integrum of the periodontium, mainly due to the presence of tissues from different embryonic origins and their complex interactions along the regenerative process. Tissue engineering (TE) aims to regenerate damaged tissue by providing the repair site with a suitable scaffold seeded with sufficient undifferentiated cells and, thus, constitutes a valuable alternative to current therapies for the treatment of periodontal defects. Stem cells from oral and dental origin are known to have potential to regenerate these tissues. Nevertheless, harvesting cells from these sites implies a significant local tissue morbidity and low cell yield, as compared to other anatomical sources of adult multipotent stem cells. This manuscript reviews studies describing the use of non-oral stem cells in tissue engineering strategies, highlighting the importance and potential of these alternative stem cells sources in the development of advanced therapies for periodontal regeneration. Copyright © 2013 Wiley Periodicals, Inc.

  17. Feathers and fins: non-mammalian models for hair cell regeneration.

    Science.gov (United States)

    Brignull, Heather R; Raible, David W; Stone, Jennifer S

    2009-06-24

    Death of mechanosensory cells in the inner ear results in two profound disabilities: hearing loss and balance disorders. Although mammals lack the capacity to regenerate hair cells, recent studies in mice and other rodents have offered valuable insight into strategies for stimulating hair cell regeneration in mammals. Investigations of model organisms that retain the ability to form new hair cells after embryogenesis, such as fish and birds, are equally important and have provided clues as to the cellular and molecular mechanisms that may block hair cell regeneration in mammals. Here, we summarize studies on hair cell regeneration in the chicken and the zebrafish, discuss specific advantages of each model, and propose future directions for the use of non-mammalian models in understanding hair cell regeneration.

  18. Electronmicroscopical evaluation of short-term nerve regeneration through a thin-walled biodegradable poly(DLLA-epsilon-CL) nerve guide filled with modified denatured muscle tissue

    NARCIS (Netherlands)

    Meek, MF; Robinson, PH; Stokroos, [No Value; Blaauw, EH; Kors, G; den Dunnen, WFA

    The aim of this study was to evaluate short-term peripheral nerve regeneration across a 15-mm gap in the sciatic nerve of the rat, using a thin-walled biodegradable poly(DL-lactide-epsilon -caprolactone) nerve guide filled with modified denatured muscle tissue (MDMT). The evaluation was performed

  19. In Inflamed Intestinal Tissues and Epithelial Cells, Interleukin 22 Signaling Increases Expression of H19 Long Noncoding RNA, Which Promotes Mucosal Regeneration.

    Science.gov (United States)

    Geng, Hua; Bu, Heng-Fu; Liu, Fangyi; Wu, Longtao; Pfeifer, Karl; Chou, Pauline M; Wang, Xiao; Sun, Jiaren; Lu, Lu; Pandey, Ashutosh; Bartolomei, Marisa S; De Plaen, Isabelle G; Wang, Peng; Yu, Jindan; Qian, Jiaming; Tan, Xiao-Di

    2018-04-03

    Inflammation affects regeneration of the intestinal epithelia; long non-coding RNAs (lncRNAs) regulate cell functions, such as proliferation, differentiation, and migration. We investigated the mechanisms by which the lncRNA H19, imprinted maternally expressed transcript (H19) regulates regeneration of intestinal epithelium using cell cultures and mouse models of inflammation. We performed RNA-sequencing transcriptome analyses of intestinal tissues from mice with lipopolysaccharide (LPS)-induced sepsis to identify lncRNAs associated with inflammation; findings were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization analyses of intestinal tissues from mice with sepsis or dextran sulfate sodium (DSS)-induced mucosal wound healing and patients with ulcerative colitis compared to healthy individuals (controls). We screened cytokines for their ability to induce expression of H19 in HT-29 cells and intestinal epithelial cells (IECs), and confirmed findings in crypt epithelial organoids derived from mouse small intestine. IECs were incubated with different signal transduction inhibitors and effects on H19 lncRNA levels were measured. We assessed intestinal epithelial proliferation or regeneration in H19 ΔEx1/+ mice given LPS or DSS vs wild-type littermates (control mice). H19 was overexpressed in IECs using lentiviral vectors and cell proliferation was measured. We performed RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays to study functions of H19 in IECs. In RNA-sequencing transcriptome analysis of lncRNA expression in intestinal tissues from mice, we found levels of H19 only changed significantly with LPS exposure. Levels of H19 lncRNA increased in intestinal tissues of patients with ulcerative colitis, mice with LPS-induced sepsis, or mice with DSS-induced colitis, compared with controls. Increased H19 lncRNA localized to epithelial cells in the intestine, regardless of Lgr5 messenger RNA

  20. Regeneration of pilot-scale ion exchange columns for hexavalent chromium removal.

    Science.gov (United States)

    Korak, Julie A; Huggins, Richard; Arias-Paic, Miguel

    2017-07-01

    Due to stricter regulations, some drinking water utilities must implement additional treatment processes to meet potable water standards for hexavalent chromium (Cr(VI)), such as the California limit of 10 μg/L. Strong base anion exchange is effective for Cr(VI) removal, but efficient resin regeneration and waste minimization are important for operational, economic and environmental considerations. This study compared multiple regeneration methods on pilot-scale columns on the basis of regeneration efficiency, waste production and salt usage. A conventional 1-Stage regeneration using 2 N sodium chloride (NaCl) was compared to 1) a 2-Stage process with 0.2 N NaCl followed by 2 N NaCl and 2) a mixed regenerant solution with 2 N NaCl and 0.2 N sodium bicarbonate. All methods eluted similar cumulative amounts of chromium with 2 N NaCl. The 2-Stage process eluted an additional 20-30% of chromium in the 0.2 N fraction, but total resin capacity is unaffected if this fraction is recycled to the ion exchange headworks. The 2-Stage approach selectively eluted bicarbonate and sulfate with 0.2 N NaCl before regeneration using 2 N NaCl. Regeneration approach impacted the elution efficiency of both uranium and vanadium. Regeneration without co-eluting sulfate and bicarbonate led to incomplete uranium elution and potential formation of insoluble uranium hydroxides that could lead to long-term resin fouling, decreased capacity and render the resin a low-level radioactive solid waste. Partial vanadium elution occurred during regeneration due to co-eluting sulfate suppressing vanadium release. Waste production and salt usage were comparable for the 1- and 2-Stage regeneration processes with similar operational setpoints with respect to chromium or nitrate elution. Published by Elsevier Ltd.

  1. The regenerated tail of juvenile leopard geckos (Gekkota: Eublepharidae: Eublepharis macularius) preferentially stores more fat than the original.

    Science.gov (United States)

    Russell, Anthony P; Lynn, Sabrina E; Powell, G Lawrence; Cottle, Andrew

    2015-06-01

    The tail of many species of lizard is used as a site of fat storage, and caudal autotomy is a widespread phenomenon among lizards. This means that caudal fat stores are at risk of being lost if the tail is autotomized. For fat-tailed species, such as the leopard gecko, this may be particularly costly. Previous work has shown that tail regeneration in juveniles of this species is rapid and that it receives priority for energy allocation, even when dietary resources are markedly reduced. We found that the regenerated tails of juvenile leopard geckos are more massive than their original counterparts, regardless of dietary intake, and that they exhibit greater amounts of skeleton, inner fat, muscle and subcutaneous fat than original tails (as assessed through cross-sectional area measurements of positionally equivalent stations along the tail). Autotomy and regeneration result in changes in tail shape, mass and the pattern of tissue distribution within the tail. The regenerated tail exhibits enhanced fat storage capacity, even in the face of a diet that results in significant slowing of body growth. Body growth is thus sacrificed at the expense of rapid tail growth. Fat stores laid down rapidly in the regenerating tail may later be used to fuel body growth or reproductive investment. The regenerated tail thus seems to have adaptive roles of its own, and provides a potential vehicle for studying trade-offs that relate to life history strategy. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. β-Catenin acts in a position-independent regeneration response in the simple eumetazoan Hydra.

    Science.gov (United States)

    Gufler, S; Artes, B; Bielen, H; Krainer, I; Eder, M-K; Falschlunger, J; Bollmann, A; Ostermann, T; Valovka, T; Hartl, M; Bister, K; Technau, U; Hobmayer, B

    2018-01-15

    Wnt/β-Catenin signaling plays crucial roles in regenerative processes in eumetazoans. It also acts in regeneration and axial patterning in the simple freshwater polyp Hydra, whose morphallactic regenerative capacity is unparalleled in the animal kingdom. Previous studies have identified β-catenin as an early response gene activated within the first 30min in Hydra head regeneration. Here, we have studied the role of β-Catenin in more detail. First, we show that nuclear β-Catenin signaling is required for head and foot regeneration. Loss of nuclear β-Catenin function blocks head and foot regeneration. Transgenic Hydra tissue, in which β-Catenin is over-expressed, regenerates more heads and feet. In addition, we have identified a set of putative β-Catenin target genes by transcriptional profiling, and these genes exhibit distinct expression patterns in the hypostome, in the tentacles, or in an apical gradient in the body column. All of them are transcriptionally up-regulated in the tips of early head and foot regenerates. In foot regenerates, this is a transient response, and expression starts to disappear after 12-36h. ChIP experiments using an anti-HydraTcf antibody show Tcf binding at promoters of these targets. We propose that gene regulatory β-Catenin activity in the pre-patterning phase is generally required as an early regeneration response. When regenerates are blocked with iCRT14, initial local transcriptional activation of β-catenin and the target genes occurs, and all these genes remain upregulated at the site of both head and foot regeneration for the following 2-3 days. This indicates that the initial regulatory network is followed by position-specific programs that inactivate fractions of this network in order to proceed to differentiation of head or foot structures. brachyury1 (hybra1) has previously been described as early response gene in head and foot regeneration. The HyBra1 protein, however, appears in head regenerating tips not earlier

  3. Dental mesenchymal stem cells encapsulated in alginate hydrogel co-delivery microencapsulation system for cartilage regeneration

    Science.gov (United States)

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-01-01

    Dental-derived MSCs are promising candidates for cartilage regeneration, with high chondrogenic differentiation capacity. This property contributes to making dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating Periodontal Ligament Stem Cells (PDLSCs) or Gingival Mesenchymal Stem Cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs, GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSC) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by toluidine blue and safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (Palginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. PMID:23891740

  4. Analysis of the in vitro degradation and the in vivo tissue response to bi-layered 3D-printed scaffolds combining PLA and biphasic PLA/bioglass components – Guidance of the inflammatory response as basis for osteochondral regeneration

    Directory of Open Access Journals (Sweden)

    Mike Barbeck

    2017-12-01

    Altogether, the results showed that the addition of G5 enables to reduce scaffold weight loss and to increase mechanical strength. Furthermore, the addition of G5 lead to a higher vascularization of the implant bed required as basis for bone tissue regeneration mediated by higher numbers of BMGCs, while within the PLA parts a significantly lower vascularization was found optimally for chondral regeneration. Thus, this data show that the analyzed bi-layered scaffold may serve as an ideal basis for the regeneration of osteochondral tissue defects. Additionally, the results show that it might be able to reduce the number of experimental animals required as it may be possible to analyze the tissue response to more than one implant in one experimental animal.

  5. A fundamental study of a regenerator for an Ericsson magnetic refrigerator

    International Nuclear Information System (INIS)

    Matsumoto, K.; Ito, T.; Numazawa, T.; Hashimoto, T.; Kuriyama, T.; Nakagome, H.

    1986-01-01

    The authors studied an Ericsson magnetic refrigerator above 20 K. The magnetic working material passes through the regenerator during internal heat transfer processes. In the temperature range above 20 K, a solid is indispensable for a regenerator in need of the large volumetric heat capacity. Therefore lead is used for the testing regenerator. As thermal conduction of gaseous helium is expected to be useful for the heat transfer between the regenerator and the working material, the authors have made the gap between them small in order to achieve good heat transfer. They investigated the heat transfer process between working material and regenerator experimentally in the temperature from 25 K to 55 K

  6. Advances and perspectives in tooth tissue engineering.

    Science.gov (United States)

    Monteiro, Nelson; Yelick, Pamela C

    2017-09-01

    Bio-engineered teeth that can grow and remodel in a manner similar to that of natural teeth have the potential to serve as permanent replacements to the currently used prosthetic teeth, such as dental implants. A major challenge in designing functional bio-engineered teeth is to mimic both the structural and anisotropic mechanical characteristics of the native tooth. Therefore, the field of dental and whole tooth regeneration has advanced towards the molecular and nanoscale design of bio-active, biomimetic systems, using biomaterials, drug delivery systems and stem cells. The focus of this review is to discuss recent advances in tooth tissue engineering, using biomimetic scaffolds that provide proper architectural cues, exhibit the capacity to support dental stem cell proliferation and differentiation and sequester and release bio-active agents, such as growth factors and nucleic acids, in a spatiotemporal controlled manner. Although many in vitro and in vivo studies on tooth regeneration appear promising, before tooth tissue engineering becomes a reality for humans, additional research is needed to perfect methods that use adult human dental stem cells, as opposed to embryonic dental stem cells, and to devise the means to generate bio-engineered teeth of predetermined size and shape. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies.

    Science.gov (United States)

    Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal

    2015-01-01

    Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment.

  8. Sonochemical surface functionalization of exfoliated LDH: Effect on textural properties, CO2 adsorption, cyclic regeneration capacities and subsequent gas uptake for simultaneous methanol synthesis.

    Science.gov (United States)

    Ezeh, Collins I; Huang, Xiani; Yang, Xiaogang; Sun, Cheng-Gong; Wang, Jiawei

    2017-11-01

    To improve CO 2 adsorption, amine modified Layered double hydroxide (LDH) were prepared via a two stage process, SDS/APTS intercalation was supported by ultrasonic irradiation and then followed by MEA extraction. The prepared samples were characterised using Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDX), X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Temperature Programmed Desorption (TPD), Brunauer-Emmett-Teller (BET), and Thermogravimetric analysis (TGA), respectively. The characterisation results were compared with those obtained using the conventional preparation method with consideration to the effect of sonochemical functionalization on textural properties, adsorption capacity, regeneration and lifetime of the LDH adsorbent. It is found that LDHs prepared by sonochemical modification had improved pore structure and CO 2 adsorption capacity, depending on sonic intensity. This is attributed to the enhanced deprotonation of activated amino functional groups via the sonochemical process. Subsequently, this improved the amine loading and effective amine efficiency by 60% of the conventional. In addition, the sonochemical process improved the thermal stability of the adsorbent and also, reduced the irreversible CO 2 uptake, CUirrev, from 0.18mmol/g to 0.03mmol/g. Subsequently, improving the lifetime and ease of regenerating the adsorbent respectively. This is authenticated by subjecting the prepared adsorbents to series of thermal swing adsorption (TSA) cycles until its adsorption capacity goes below 60% of the original CO 2 uptake. While the conventional adsorbent underwent a 10 TSA cycles before breaking down, the sonochemically functionalized LDH went further than 30 TSA cycles. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Insights to regenerate materials: learning from nature

    Science.gov (United States)

    García-Aznar, J. M.; Valero, C.; Gómez-Benito, M. J.; Javierre, E.

    2016-08-01

    Self-healing materials, both biological and engineered, integrate the ability to repair themselves and recover their functionality using the resources inherently available to them. Although significant advances have been made, in recent years, for the design of different concepts of self-healing materials, this work aims to provide some insights into how living materials are able to regenerate or heal when a fracture or injury occurs. The main sensors that regulate this adaptive and regenerative behavior are the cells. These are able to sense the mechanical alterations in their surroundings and regulate their activity in order to remove dead tissue and/or create new tissue. Therefore, understanding how cells are able to regenerate tissues under complex and multiphysics conditions can define the biomimetics guidelines to heal through inert or traditional engineering materials. In this work, we present a combination of experiments and different kinds of multiscale and multiphysics models in order to understand how mechanics regulate some mechanisms at cell and tissue level. This combination of results aims to gain insight into the development of novel strategies for self-healing materials, mimicking the behavior induced by cells and biological tissues.

  10. Ion channel signaling influences cellular proliferation and phagocyte activity during axolotl tail regeneration.

    Science.gov (United States)

    Franklin, Brandon M; Voss, S Randal; Osborn, Jeffrey L

    2017-08-01

    Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, K V 2.1, K V 2.2, L-type Ca V channels and H/K ATPases) or completely (GlyR, GABA A R, K V 1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in tail muscle and mesenchymal regions. Inhibition of anoctamin 1/2 also altered the post-amputation transcriptional response of p44/42 MAPK signaling pathway genes, including decreased expression of erk1/erk2. We also found that complete inhibition via voltage gated K + channel blockade was associated with diminished phagocyte recruitment to the amputation site. The identification of H + pumps as required for axolotl tail regeneration supports findings in Xenopus and Planaria models, and more generally, the conservation of ion channels as regulators of tissue regeneration. This study provides a preliminary framework for an in-depth investigation of the mechanistic role of ion channels and their potential involvement in regulating cellular proliferation and other processes essential to wound healing, appendage regeneration, and tissue repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Regeneration and repair of human digits and limbs: fact and fiction.

    Science.gov (United States)

    Shieh, Shyh-Jou; Cheng, Tsun-Chih

    2015-08-01

    A variety of digit and limb repair and reconstruction methods have been used in different clinical settings, but regeneration remains an item on every plastic surgeon's "wish list." Although surgical salvage techniques are continually being improved, unreplantable digits and limbs are still abundant. We comprehensively review the structural and functional salvage methods in clinical practice, from the peeling injuries of small distal fingertips to multisegmented amputated limbs, and the developmental and tissue engineering approaches for regenerating human digits and limbs in the laboratory. Although surgical techniques have forged ahead, there are still situations in which digits and limbs are unreplantable. Advances in the field are delineated, and the regeneration processes of salamander limbs, lizard tails, and mouse digits and each component of tissue engineering approaches for digit- and limb-building are discussed. Although the current technology is promising, there are many challenges in human digit and limb regeneration. We hope this review inspires research on the critical gap between clinical and basic science, and leads to more sophisticated digit and limb loss rescue and regeneration innovations.

  12. Regeneration and repair of human digits and limbs: fact and fiction

    Science.gov (United States)

    Cheng, Tsun‐Chih

    2015-01-01

    Abstract A variety of digit and limb repair and reconstruction methods have been used in different clinical settings, but regeneration remains an item on every plastic surgeon's “wish list.” Although surgical salvage techniques are continually being improved, unreplantable digits and limbs are still abundant. We comprehensively review the structural and functional salvage methods in clinical practice, from the peeling injuries of small distal fingertips to multisegmented amputated limbs, and the developmental and tissue engineering approaches for regenerating human digits and limbs in the laboratory. Although surgical techniques have forged ahead, there are still situations in which digits and limbs are unreplantable. Advances in the field are delineated, and the regeneration processes of salamander limbs, lizard tails, and mouse digits and each component of tissue engineering approaches for digit‐ and limb‐building are discussed. Although the current technology is promising, there are many challenges in human digit and limb regeneration. We hope this review inspires research on the critical gap between clinical and basic science, and leads to more sophisticated digit and limb loss rescue and regeneration innovations. PMID:27499873

  13. In vivo bone regeneration using a novel porous bioactive composite

    Energy Technology Data Exchange (ETDEWEB)

    Xie En [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Hu Yunyu [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China)], E-mail: orth1@fmmn.edu.cn; Chen Xiaofeng [College of Materials Science and Engineering, South China University of Technology University, Guangzhou (China); Bai Xuedong; Li Dan [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Ren Li [College of Materials Science and Engineering, South China University of Technology University, Guangzhou (China); Zhang Ziru [Foreign Languages School, Northwest University Xi' an (China)

    2008-11-15

    Many commercial bone graft substitutes (BGS) and experimental bone tissue engineering scaffolds have been developed for bone repair and regeneration. This study reports the in vivo bone regeneration using a newly developed porous bioactive and resorbable composite that is composed of bioactive glass (BG), collagen (COL), hyaluronic acid (HYA) and phosphatidylserine (PS), BG-COL-HYA-PS. The composite was prepared by a combination of sol-gel and freeze-drying methods. A rabbit radius defect model was used to evaluate bone regeneration at time points of 2, 4 and 8 weeks. Techniques including radiography, histology, and micro-CT were applied to characterize the new bone formation. 8 weeks results showed that (1) nearly complete bone regeneration was achieved for the BG-COL-HYA-PS composite that was combined with a bovine bone morphogenetic protein (BMP); (2) partial bone regeneration was achieved for the BG-COL-HYA-PS composites alone; and (3) control remained empty. This study demonstrated that the novel BG-COL-HYA-PS, with or without the grafting of BMP incorporation, is a promising BGS or a tissue engineering scaffold for non-load bearing orthopaedic applications.

  14. In vivo bone regeneration using a novel porous bioactive composite

    International Nuclear Information System (INIS)

    Xie En; Hu Yunyu; Chen Xiaofeng; Bai Xuedong; Li Dan; Ren Li; Zhang Ziru

    2008-01-01

    Many commercial bone graft substitutes (BGS) and experimental bone tissue engineering scaffolds have been developed for bone repair and regeneration. This study reports the in vivo bone regeneration using a newly developed porous bioactive and resorbable composite that is composed of bioactive glass (BG), collagen (COL), hyaluronic acid (HYA) and phosphatidylserine (PS), BG-COL-HYA-PS. The composite was prepared by a combination of sol-gel and freeze-drying methods. A rabbit radius defect model was used to evaluate bone regeneration at time points of 2, 4 and 8 weeks. Techniques including radiography, histology, and micro-CT were applied to characterize the new bone formation. 8 weeks results showed that (1) nearly complete bone regeneration was achieved for the BG-COL-HYA-PS composite that was combined with a bovine bone morphogenetic protein (BMP); (2) partial bone regeneration was achieved for the BG-COL-HYA-PS composites alone; and (3) control remained empty. This study demonstrated that the novel BG-COL-HYA-PS, with or without the grafting of BMP incorporation, is a promising BGS or a tissue engineering scaffold for non-load bearing orthopaedic applications

  15. Active Nanomaterials to Meet the Challenge of Dental Pulp Regeneration.

    Science.gov (United States)

    Keller, Laetitia; Offner, Damien; Schwinté, Pascale; Morand, David; Wagner, Quentin; Gros, Catherine; Bornert, Fabien; Bahi, Sophie; Musset, Anne-Marie; Benkirane-Jessel, Nadia; Fioretti, Florence

    2015-11-05

    The vitality of the pulp is fundamental to the functional life of the tooth. For this aim, active and living biomaterials are required to avoid the current drastic treatment, which is the removal of all the cellular and molecular content regardless of its regenerative potential. The regeneration of the pulp tissue is the dream of many generations of dental surgeons and will revolutionize clinical practices. Recently, the potential of the regenerative medicine field suggests that it would be possible to achieve such complex regeneration. Indeed, three crucial steps are needed: the control of infection and inflammation and the regeneration of lost pulp tissues. For regenerative medicine, in particular for dental pulp regeneration, the use of nano-structured biomaterials becomes decisive. Nano-designed materials allow the concentration of many different functions in a small volume, the increase in the quality of targeting, as well as the control of cost and delivery of active molecules. Nanomaterials based on extracellular mimetic nanostructure and functionalized with multi-active therapeutics appear essential to reverse infection and inflammation and concomitantly to orchestrate pulp cell colonization and differentiation. This novel generation of nanomaterials seems very promising to meet the challenge of the complex dental pulp regeneration.

  16. Bioactive polymeric scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Scott Stratton

    2016-12-01

    Full Text Available A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined.

  17. Treatment of a Developmental Groove and Supernumerary Root Using Guided Tissue Regeneration Technique

    Directory of Open Access Journals (Sweden)

    Zahra Alizadeh Tabari

    2016-01-01

    Full Text Available Introduction. The radicular groove is a developmental groove which is usually found on the palatal or lateral aspects of the maxillary incisor teeth. The present case is a maxillary lateral incisor with a small second root and a deep radicular groove. The developmental groove caused a combined periodontal-endodontic lesion. Methods. Case was managed using a combined treatment procedure involving nonsurgical root canal therapy and surgical periodontal treatment. After completion of root canal treatment, guided tissue regeneration (GTR was carried out using decalcified freeze dried bone allograft (DFDBA and a bioabsorbable collagenous membrane. Tooth also was splinted for two months. Results. After 12 months the tooth was asymptomatic. The periapical radiolucency disappeared and probing depth did not exceed 3 mm. Conclusion. Combined treatment procedure involving nonsurgical root canal therapy and surgical periodontal regenerative treatment can be a predictable technique in treating combined endodontic-periodontal lesions caused by radicular groove.

  18. Antioxidant potential in regenerated tissues of medicinally important atropa accuminata

    International Nuclear Information System (INIS)

    Khan, F. A.; Abbasi, B. H.; Shinwari, Z. K.; Shah, S. H.

    2017-01-01

    Due to random exploitation from natural resources, an efficient regeneration system of medicinally important but rare plant species, Atropa acuminata for conservation was inevitable. Leaf explants were incubated on MS medium with different level of various plant growth regulators (PGRs) alone and in combination for callus induction and induced organogenesis. After 4 weeks of culture, callus induction was recorded with the highest frequency with 1.0 mg/l thidiazuron (TDZ) supplement. After 5 weeks of subsequent sub-culturing, optimum shoot induction frequency of 89% was achieved with 1.0 mg/l TDZ and 1.0 mg/l a-naphthaleneacetic acid (NAA) supplement. Highest number of shoots/explant (8.2) were recorded on MS medium with 2.0 mg/l 6-benzyladenine (BA)+1.0 mg/l NAA supplement. Shoots in elongation medium was recorded 5.8 cm long in two medium i.e., 1.0 mg/l TDZ supplement and 1.0 mg/l TDZ+1.0 mg/l NAA supplement. Successful In vitro rooting was induced on MS medium with all applied level of indole butyric acid (IBA). The regenerated shoots with well developed roots were successfully acclimatized in sterilized soil and transferred to greenhouse conditions. Furthermore higher activity for detoxifying DPPH free radical was shown by regenerated shoots in this medicinally important plant species. (author)

  19. Genotype dependent callus induction and shoot regeneration in ...

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    Jul 4, 2007 ... tems have been used for improvement of sunflower, but these techniques are mainly limited by the tissue culture response of commercial varieties (Nestares et al., 2002). In sunflower, reports on shoot regeneration from hypocotyls, cotyledons, leaves and meristematic tissues of young plantlets are available ...

  20. The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling.

    Science.gov (United States)

    Khan, Sumbul Jawed; Abidi, Syeda Nayab Fatima; Skinner, Andrea; Tian, Yuan; Smith-Bolton, Rachel K

    2017-07-01

    Regenerating tissue must initiate the signaling that drives regenerative growth, and sustain that signaling long enough for regeneration to complete. How these key signals are sustained is unclear. To gain a comprehensive view of the changes in gene expression that occur during regeneration, we performed whole-genome mRNAseq of actively regenerating tissue from damaged Drosophila wing imaginal discs. We used genetic tools to ablate the wing primordium to induce regeneration, and carried out transcriptional profiling of the regeneration blastema by fluorescently labeling and sorting the blastema cells, thus identifying differentially expressed genes. Importantly, by using genetic mutants of several of these differentially expressed genes we have confirmed that they have roles in regeneration. Using this approach, we show that high expression of the gene moladietz (mol), which encodes the Duox-maturation factor NIP, is required during regeneration to produce reactive oxygen species (ROS), which in turn sustain JNK signaling during regeneration. We also show that JNK signaling upregulates mol expression, thereby activating a positive feedback signal that ensures the prolonged JNK activation required for regenerative growth. Thus, by whole-genome transcriptional profiling of regenerating tissue we have identified a positive feedback loop that regulates the extent of regenerative growth.