WorldWideScience

Sample records for tissue polarities fundamental

  1. Fundamental research with polarized slow neutrons

    International Nuclear Information System (INIS)

    Krupchitsky, P.A.

    1987-01-01

    In the last twenty years polarized beams of slow neutrons have been used effectively in fundamental research in nuclear physics. This book gives a thorough introduction to these experimental methods including the most recent techniques of generating and analyzing polarized neutron beams. It clearly shows the close relationship between elementary particle physics and nuclear physics. The book not only addresses specialists but also those interested in the foundations of elementary particle and nuclear physics. With 42 figs

  2. Fundamentals of bladder tissue engineering | Mahfouz | African ...

    African Journals Online (AJOL)

    Fundamentals of bladder tissue engineering. ... could affect the bladder and lead to eventual loss of its integrity, with the need for replacement or repair. ... Tissue engineering relies upon three essential pillars; the scaffold, the cells seeded on ...

  3. Assessment of tissue viability by polarization spectroscopy

    Science.gov (United States)

    Nilsson, G.; Anderson, C.; Henricson, J.; Leahy, M.; O'Doherty, J.; Sjöberg, F.

    2008-09-01

    A new and versatile method for tissue viability imaging based on polarization spectroscopy of blood in superficial tissue structures such as the skin is presented in this paper. Linearly polarized light in the visible wavelength region is partly reflected directly by the skin surface and partly diffusely backscattered from the dermal tissue matrix. Most of the directly reflected light preserves its polarization state while the light returning from the deeper tissue layers is depolarized. By the use of a polarization filter positioned in front of a sensitive CCD-array, the light directly reflected from the tissue surface is blocked, while the depolarized light returning from the deeper tissue layers reaches the detector array. By separating the colour planes of the detected image, spectroscopic information about the amount of red blood cells (RBCs) in the microvascular network of the tissue under investigation can be derived. A theory that utilizes the differences in light absorption of RBCs and bloodless tissue in the red and green wavelength region forms the basis of an algorithm for displaying a colour coded map of the RBC distribution in a tissue. Using a fluid model, a linear relationship (cc. = 0.99) between RBC concentration and the output signal was demonstrated within the physiological range 0-4%. In-vivo evaluation using transepidermal application of acetylcholine by the way of iontophoresis displayed the heterogeneity pattern of the vasodilatation produced by the vasoactive agent. Applications of this novel technology are likely to be found in drug and skin care product development as well as in the assessment of skin irritation and tissue repair processes and even ultimately in a clinic case situation.

  4. POLARIZATION IMAGING AND SCATTERING MODEL OF CANCEROUS LIVER TISSUES

    Directory of Open Access Journals (Sweden)

    DONGZHI LI

    2013-07-01

    Full Text Available We apply different polarization imaging techniques for cancerous liver tissues, and compare the relative contrasts for difference polarization imaging (DPI, degree of polarization imaging (DOPI and rotating linear polarization imaging (RLPI. Experimental results show that a number of polarization imaging parameters are capable of differentiating cancerous cells in isotropic liver tissues. To analyze the contrast mechanism of the cancer-sensitive polarization imaging parameters, we propose a scattering model containing two types of spherical scatterers and carry on Monte Carlo simulations based on this bi-component model. Both the experimental and Monte Carlo simulated results show that the RLPI technique can provide a good imaging contrast of cancerous tissues. The bi-component scattering model provides a useful tool to analyze the contrast mechanism of polarization imaging of cancerous tissues.

  5. Induced Polarization Influences the Fundamental Forces in DNA Base Flipping

    OpenAIRE

    Lemkul, Justin A.; Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Base flipping in DNA is an important process involved in genomic repair and epigenetic control of gene expression. The driving forces for these processes are not fully understood, especially in the context of the underlying dynamics of the DNA and solvent effects. We studied double-stranded DNA oligomers that have been previously characterized by imino proton exchange NMR using both additive and polarizable force fields. Our results highlight the importance of induced polarization on the base...

  6. Polarized spectral features of human breast tissues through wavelet ...

    Indian Academy of Sciences (India)

    Abstract. Fluorescence characteristics of human breast tissues are investigated through wavelet transform and principal component analysis (PCA). Wavelet transform of polar- ized fluorescence spectra of human breast tissues is found to localize spectral features that can reliably differentiate different tissue types.

  7. Application of polarization OCT in tissue engineering

    Science.gov (United States)

    Yang, Ying; Ahearne, Mark; Bagnaninchi, Pierre O.; Hu, Bin; Hampson, Karen; El Haj, Alicia J.

    2008-02-01

    For tissue engineering of load-bearing tissues, such as bone, tendon, cartilage, and cornea, it is critical to generate a highly organized extracellular matrix. The major component of the matrix in these tissues is collagen, which usually forms a highly hierarchical structure with increasing scale from fibril to fiber bundles. These bundles are ordered into a 3D network to withstand forces such as tensile, compressive or shear. To induce the formation of organized matrix and create a mimic body environment for tissue engineering, in particular, tendon tissue engineering, we have fabricated scaffolds with features to support the formation of uniaxially orientated collagen bundles. In addition, mechanical stimuli were applied to stimulate tissue formation and matrix organization. In parallel, we seek a nondestructive tool to monitor the changes within the constructs in response to these external stimulations. Polarizationsensitive optical coherence tomography (PSOCT) is a non-destructive technique that provides functional imaging, and possesses the ability to assess in depth the organization of tissue. In this way, an engineered tissue construct can be monitored on-line, and correlated with the application of different stimuli by PSOCT. We have constructed a PSOCT using a superluminescent diode (FWHM 52nm) in this study and produced two types of tendon constructs. The matrix structural evolution under different mechanical stimulation has been evaluated by the PSOCT. The results in this study demonstrate that PSOCT was a powerful tool enabling us to monitor non-destructively and real time the progressive changes in matrix organization and assess the impact of various stimuli on tissue orientation and growth.

  8. Challenges and opportunities for tissue-engineering polarized epithelium.

    Science.gov (United States)

    Paz, Ana C; Soleas, John; Poon, James C H; Trieu, Dennis; Waddell, Thomas K; McGuigan, Alison P

    2014-02-01

    The epithelium is one of the most important tissue types in the body and the specific organization of the epithelial cells in these tissues is important for achieving appropriate function. Since many tissues contain an epithelial component, engineering functional epithelium and understanding the factors that control epithelial maturation and organization are important for generating whole artificial organ replacements. Furthermore, disruption of the cellular organization leads to tissue malfunction and disease; therefore, engineered epithelium could provide a valuable in vitro model to study disease phenotypes. Despite the importance of epithelial tissues, a surprisingly limited amount of effort has been focused on organizing epithelial cells into artificial polarized epithelium with an appropriate structure that resembles that seen in vivo. In this review, we provide an overview of epithelial tissue organization and highlight the importance of cell polarization to achieve appropriate epithelium function. We next describe the in vitro models that exist to create polarized epithelium and summarize attempts to engineer artificial epithelium for clinical use. Finally, we highlight the opportunities that exist to translate strategies from tissue engineering other tissues to generate polarized epithelium with a functional structure.

  9. Polarized Raman spectroscopy of bone tissue: watch the scattering

    Science.gov (United States)

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-02-01

    Polarized Raman spectroscopy is widely used in the study of molecular composition and orientation in synthetic and natural polymer systems. Here, we describe the use of Raman spectroscopy to extract quantitative orientation information from bone tissue. Bone tissue poses special challenges to the use of polarized Raman spectroscopy for measurement of orientation distribution functions because the tissue is turbid and birefringent. Multiple scattering in turbid media depolarizes light and is potentially a source of error. Using a Raman microprobe, we show that repeating the measurements with a series of objectives of differing numerical apertures can be used to assess the contributions of sample turbidity and depth of field to the calculated orientation distribution functions. With this test, an optic can be chosen to minimize the systematic errors introduced by multiple scattering events. With adequate knowledge of the optical properties of these bone tissues, we can determine if elastic light scattering affects the polarized Raman measurements.

  10. Polarized protein transport and lumen formation during epithelial tissue morphogenesis.

    Science.gov (United States)

    Blasky, Alex J; Mangan, Anthony; Prekeris, Rytis

    2015-01-01

    One of the major challenges in biology is to explain how complex tissues and organs arise from the collective action of individual polarized cells. The best-studied model of this process is the cross talk between individual epithelial cells during their polarization to form the multicellular epithelial lumen during tissue morphogenesis. Multiple mechanisms of apical lumen formation have been proposed. Some epithelial lumens form from preexisting polarized epithelial structures. However, de novo lumen formation from nonpolarized cells has recently emerged as an important driver of epithelial tissue morphogenesis, especially during the formation of small epithelial tubule networks. In this review, we discuss the latest findings regarding the mechanisms and regulation of de novo lumen formation in vitro and in vivo.

  11. Genetic control of organ shape and tissue polarity.

    Directory of Open Access Journals (Sweden)

    Amelia A Green

    2010-11-01

    Full Text Available The mechanisms by which genes control organ shape are poorly understood. In principle, genes may control shape by modifying local rates and/or orientations of deformation. Distinguishing between these possibilities has been difficult because of interactions between patterns, orientations, and mechanical constraints during growth. Here we show how a combination of growth analysis, molecular genetics, and modelling can be used to dissect the factors contributing to shape. Using the Snapdragon (Antirrhinum flower as an example, we show how shape development reflects local rates and orientations of tissue growth that vary spatially and temporally to form a dynamic growth field. This growth field is under the control of several dorsoventral genes that influence flower shape. The action of these genes can be modelled by assuming they modulate specified growth rates parallel or perpendicular to local orientations, established by a few key organisers of tissue polarity. Models in which dorsoventral genes only influence specified growth rates do not fully account for the observed growth fields and shapes. However, the data can be readily explained by a model in which dorsoventral genes also modify organisers of tissue polarity. In particular, genetic control of tissue polarity organisers at ventral petal junctions and distal boundaries allows both the shape and growth field of the flower to be accounted for in wild type and mutants. The results suggest that genetic control of tissue polarity organisers has played a key role in the development and evolution of shape.

  12. Theoretical-experimental study of the non-thermal effects of the polarized laser radiation in living tissues

    International Nuclear Information System (INIS)

    Ribeiro, M.S.

    1991-01-01

    In the present research we had as a fundamental objective to analyse the non-thermal effects of the laser polarized light in biological tissues. These effects were performed with low power laser output. The theoretical procedure consisted in looking for a simple model which connects the effect of light polarized with microscopically rough tissues using well established physical concepts. Experimentally, we created artificial wounds on the back of animals using liquid nitrogen (this method was chosen because it does not interfere in the biochemistry of the animal tissue). For the wound irradiation we have utilized a He-Ne attached to an optical system. (author)

  13. Quantitative polarized Raman spectroscopy in highly turbid bone tissue.

    Science.gov (United States)

    Raghavan, Mekhala; Sahar, Nadder D; Wilson, Robert H; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H; Morris, Michael D

    2010-01-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (pbones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  14. ROCK1-directed basement membrane positioning coordinates epithelial tissue polarity.

    Science.gov (United States)

    Daley, William P; Gervais, Elise M; Centanni, Samuel W; Gulfo, Kathryn M; Nelson, Deirdre A; Larsen, Melinda

    2012-01-01

    The basement membrane is crucial for epithelial tissue organization and function. However, the mechanisms by which basement membrane is restricted to the basal periphery of epithelial tissues and the basement membrane-mediated signals that regulate coordinated tissue organization are not well defined. Here, we report that Rho kinase (ROCK) controls coordinated tissue organization by restricting basement membrane to the epithelial basal periphery in developing mouse submandibular salivary glands, and that ROCK inhibition results in accumulation of ectopic basement membrane throughout the epithelial compartment. ROCK-regulated restriction of PAR-1b (MARK2) localization in the outer basal epithelial cell layer is required for basement membrane positioning at the tissue periphery. PAR-1b is specifically required for basement membrane deposition, as inhibition of PAR-1b kinase activity prevents basement membrane deposition and disrupts overall tissue organization, and suppression of PAR-1b together with ROCK inhibition prevents interior accumulations of basement membrane. Conversely, ectopic overexpression of wild-type PAR-1b results in ectopic interior basement membrane deposition. Significantly, culture of salivary epithelial cells on exogenous basement membrane rescues epithelial organization in the presence of ROCK1 or PAR-1b inhibition, and this basement membrane-mediated rescue requires functional integrin β1 to maintain epithelial cell-cell adhesions. Taken together, these studies indicate that ROCK1/PAR-1b-dependent regulation of basement membrane placement is required for the coordination of tissue polarity and the elaboration of tissue structure in the developing submandibular salivary gland.

  15. Numerical analysis of fundamental characteristics of superconducting magnetic bearings for a polarization modulator

    International Nuclear Information System (INIS)

    Terachi, Yusuke; Terao, Yutaka; Ohsaki, Hiroyuki; Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Utsunomiya, Shin; Kataza, Hirokazu; Yamamoto, Ryo

    2017-01-01

    We have carried out numerical analysis of mechanical properties of a superconducting magnetic bearing (SMB). A contactless bearing operating at below 10 K with low rotational energy loss is an attractive feature to be used as a rotational mechanism of a polarization modulator for a cosmic microwave background experiment. In such application, a rotor diameter of about 400 mm forces us to employ a segmented magnet. As a result, there is inevitable spatial gap between the segments. In order to understand the path towards the design optimizations, 2D and 3D FEM analyses were carried out to examine fundamental characteristics of the SMBs for a polarization modulator. Two axial flux type SMBs were dealt with in the analysis: (a) the SMB with axially magnetized permanent magnets (PMs), and (b) the SMB with radially magnetized PMs and steel components for magnetic flux paths. Magnetic flux lines and density distributions, electromagnetic force characteristics, spring constants, etc. were compared among some variations of the SMBs. From the numerical analysis results, it is discussed what type, configuration and design of SMBs are more suitable for a polarization modulator. (paper)

  16. Submicron scale tissue multifractal anisotropy in polarized laser light scattering

    Science.gov (United States)

    Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, Prasanta K.; Meglinski, Igor; Ghosh, Nirmalya

    2018-03-01

    The spatial fluctuations of the refractive index within biological tissues exhibit multifractal anisotropy, leaving its signature as a spectral linear diattenuation of scattered polarized light. The multifractal anisotropy has been quantitatively assessed by the processing of relevant Mueller matrix elements in the Fourier domain, utilizing the Born approximation and subsequent multifractal analysis. The differential scaling exponent and width of the singularity spectrum appear to be highly sensitive to the structural multifractal anisotropy at the micron/sub-micron length scales. An immediate practical use of these multifractal anisotropy parameters was explored for non-invasive screening of cervical precancerous alterations ex vivo, with the indication of a strong potential for clinical diagnostic purposes.

  17. Sex identification of polar bears from blood and tissue samples

    Science.gov (United States)

    Amstrup, Steven C.; Garner, G.W.; Cronin, M.A.; Patton, J.C.

    1993-01-01

    Polar bears (Ursus maritimus) can be adversely affected by hunting and other human perturbations because of low population densities and low reproduction rates. The sustainable take of adult females may be as low as 1.5% of the population. Females and accompanying young are most vulnerable to hunting, and hunters have not consistently reported the sex composition of the harvest, therefore a method to confirm the sexes of polar bears harvested in Alaska is needed. Evidence of the sex of harvested animals is often not available, but blood or other tissue samples often are. We extracted DNA from tissue and blood samples, and amplified segments of zinc finger (ZFX and ZFY) genes from both X and Y chromosomes with the polymerase chain reaction. Digestion of amplified portions of the X chromosome with the restriction enzyme HaeIII resulted in subdivision of the original amplified segment into four smaller fragments. Digestion with HaeIII did not subdivide the original segment amplified from the Y chromosome. The differing fragment sizes produced patterns in gel electrophoresis that distinguished samples from male and female bears 100% of the time. This technique is applicable to the investigation of many wildlife management and research questions.

  18. The Role of polarized positrons and electrons in revealing fundamental interactions at the linear collider

    CERN Document Server

    Moortgat-Pick, G.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, Tyler McMillan; Dreiner, H.K.; Eberl, H.; Ellis, John R.; Flottmann, K.; Fraas, H.; Franco-Sollova, F.; Franke, F.; Freitas, A.; Goodson, J.; Gray, J.; Han, A.; Heinemeyer, S.; Hesselbach, S.; Hirose, T.; Hohenwarter-Sodek, K.; Juste, A.; Kalinowski, J.; Kernreiter, T.; Kittel, O.; Kraml, S.; Langenfeld, U.; Majerotto, W.; Martinez, A.; Martyn, H.U.; Mikhailichenko, A.; Milstene, C.; Menges, W.; Meyners, N.; Monig, K.; Moffeit, K.; Moretti, S.; Nachtmann, O.; Nagel, F.; Nakanishi, T.; Nauenberg, U.; Nowak, H.; Omori, T.; Osland, P.; Pankov, A.A.; Paver, N.; Pitthan, R.; Poschl, R.; Porod, W.; Proulx, J.; Richardson, P.; Riemann, S.; Rindani, S.D.; Rizzo, T.G.; Schalicke, A.; Schuler, P.; Schwanenberger, C.; Scott, D.; Sheppard, J.; Singh, R.K.; Sopczak, A.; Spiesberger, H.; Stahl, A.; Steiner, H.; Wagner, A.; Weber, A.M.; Weiglein, G.; Wilson, G.W.; Woods, M.; Zerwas, P.; Zhang, J.; Zomer, F.

    2008-01-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  19. The Role of polarized positrons and electrons in revealing fundamental interactions at the linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Moortgat-Pick, G.; /CERN /Durham U., IPPP; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke,; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.; /CERN /Durham U., IPPP /Colorado U. /Tel-Aviv

    2005-07-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  20. Revealing Fundamental Interactions: the Role of Polarized Positrons and Electrons at the Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Moortgat-Pick, G.; /CERN /Durham U., IPPP; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke,; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.; /CERN /Durham U., IPPP /Colorado U. /Tel-Aviv

    2005-07-06

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  1. Revealing Fundamental Interactions: the Role of Polarized Positrons and Electrons at the Linear Collider

    International Nuclear Information System (INIS)

    Moortgat-Pick, G.; CERN, Durham U. IPPP; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.

    2005-01-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization

  2. Polarity in Mammalian Epithelial Morphogenesis

    OpenAIRE

    Roignot, Julie; Peng, Xiao; Mostov, Keith

    2013-01-01

    Cell polarity is fundamental for the architecture and function of epithelial tissues. Epithelial polarization requires the intervention of several fundamental cell processes, whose integration in space and time is only starting to be elucidated. To understand what governs the building of epithelial tissues during development, it is essential to consider the polarization process in the context of the whole tissue. To this end, the development of three-dimensional organotypic cell culture model...

  3. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms

    Directory of Open Access Journals (Sweden)

    Katherine A. Sharp

    2016-03-01

    Full Text Available Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing and the posterior abdomen (P-abd. We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.

  4. Imaging of human breast tissue using polarization sensitive optical coherence tomography

    Science.gov (United States)

    Verma, Y.; Gautam, M.; Divakar Rao, K.; Swami, M. K.; Gupta, P. K.

    2011-12-01

    We report a study on the use of polarization sensitive optical coherence tomography (PSOCT) for discriminating malignant (invasive ductal carcinoma), benign (fibroadenoma) and normal (adipocytes) breast tissue sites. The results show that while conventional OCT, that utilizes only the intensity of light back-scattered from tissue microstructures, is able to discriminate breast tissues as normal (adipocytes) and abnormal (malignant and benign) tissues, PS-OCT helps in discriminating between malignant and benign tissue sites also. The estimated values of birefringence obtained from the PSOCT imaging show that benign breast tissue samples have significantly higher birefringence as compared to the malignant tissue samples.

  5. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification

    Science.gov (United States)

    Bertazzo, Sergio; Gentleman, Eileen; Cloyd, Kristy L.; Chester, Adrian H.; Yacoub, Magdi H.; Stevens, Molly M.

    2013-06-01

    The accumulation of calcified material in cardiovascular tissue is thought to involve cytochemical, extracellular matrix and systemic signals; however, its precise composition and nanoscale architecture remain largely unexplored. Using nano-analytical electron microscopy techniques, we examined valves, aortae and coronary arteries from patients with and without calcific cardiovascular disease and detected spherical calcium phosphate particles, regardless of the presence of calcific lesions. We also examined lesions after sectioning with a focused ion beam and found that the spherical particles are composed of highly crystalline hydroxyapatite that crystallographically and structurally differs from bone mineral. Taken together, these data suggest that mineralized spherical particles may play a fundamental role in calcific lesion formation. Their ubiquitous presence in varied cardiovascular tissues and from patients with a spectrum of diseases further suggests that lesion formation may follow a common process. Indeed, applying materials science techniques to ectopic and orthotopic calcification has great potential to lend critical insights into pathophysiological processes underlying calcific cardiovascular disease.

  6. Impact of polarized e- and e+ beams at a future linear collider and a Z-factory. Pt. I. Fundamentals in polarization and electroweak precision physics

    International Nuclear Information System (INIS)

    Moortgat-Pick, Gudrid

    2010-12-01

    The main goal of new physics searches at a future Linear Collider is the precise determination of the underlying new physics model. The physics potential of the ILC as well as the multi-TeV option collider CLIC have to be optimized with regard to expected results from the LHC. The exploitation of spin effects plays a crucial role in this regard. After a short status report of the Linear Collider design and physics requirements, this article explains fundamentals in polarization and provides an overview of the impact of these spin effects in electroweak precision physics. (orig.)

  7. Polarization of electron-positron vacuum by strong magnetic field in theory with fundamental mass

    International Nuclear Information System (INIS)

    Kadyshevskij, V.G.; ); Rodionov, V.N.

    2003-01-01

    The exact Lagrangian function of the intensive constant magnetic field, replacing the Heisenberg-Euler Lagrangian in the traditional quantum electrodynamics, is calculated within the frames of the theory with the fundamental mass in the single-loop approximation. It is established that the obtained generalization of the Lagrangian function is substantial by arbitrary values of the magnetic field. The calculated Lagrangian in the weak field coincides with the known Heisenberg-Euler formula. The Lagrangian dependence on the field in the extremely strong fields completely disappears and it tends in this area to the threshold value, which is determined by the fundamental and lepton mass ratio [ru

  8. Electrically polarized PLLA nanofibers as neural tissue engineering scaffolds with improved neuritogenesis.

    Science.gov (United States)

    Barroca, Nathalie; Marote, Ana; Vieira, Sandra I; Almeida, Abílio; Fernandes, Maria H V; Vilarinho, Paula M; da Cruz E Silva, Odete A B

    2018-07-01

    Tissue engineering is evolving towards the production of smart platforms exhibiting stimulatory cues to guide tissue regeneration. This work explores the benefits of electrical polarization to produce more efficient neural tissue engineering platforms. Poly (l-lactic) acid (PLLA)-based scaffolds were prepared as solvent cast films and electrospun aligned nanofibers, and electrically polarized by an in-lab built corona poling device. The characterization of the platforms by thermally stimulated depolarization currents reveals a polarization of 60 × 10 -10 C cm -2 that is stable on poled electrospun nanofibers for up to 6 months. Further in vitro studies using neuroblastoma cells reveals that platforms' polarization potentiates Retinoic Acid-induced neuronal differentiation. Additionally, in differentiating embryonic cortical neurons, poled aligned nanofibers further increased neurite outgrowth by 30% (+70 μm) over non-poled aligned nanofibers, and by 50% (+100 μm) over control conditions. Therefore, the synergy of topographical cues and electrical polarization of poled aligned nanofibers places them as promising biocompatible and bioactive platforms for neural tissue regeneration. Given their long lasting induced polarization, these PLLA poled nanofibrous scaffolds can be envisaged as therapeutic devices of long shelf life for neural repair applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization

    Energy Technology Data Exchange (ETDEWEB)

    Errard, Josquin [Sorbonne Universités, Institut Lagrange de Paris (ILP), 98 bis Boulevard Arago, 75014 Paris (France); Feeney, Stephen M.; Jaffe, Andrew H. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Peiris, Hiranya V., E-mail: josquin.errard@lpnhe.in2p3.fr, E-mail: s.feeney@imperial.ac.uk, E-mail: h.peiris@ucl.ac.uk, E-mail: a.jaffe@imperial.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-03-01

    Recent results from the BICEP, Keck Array and Planck Collaborations demonstrate that Galactic foregrounds are an unavoidable obstacle in the search for evidence of inflationary gravitational waves in the cosmic microwave background (CMB) polarization. Beyond the foregrounds, the effect of lensing by intervening large-scale structure further obscures all but the strongest inflationary signals permitted by current data. With a plethora of ongoing and upcoming experiments aiming to measure these signatures, careful and self-consistent consideration of experiments' foreground- and lensing-removal capabilities is critical in obtaining credible forecasts of their performance. We investigate the capabilities of instruments such as Advanced ACTPol, BICEP3 and Keck Array, CLASS, EBEX10K, PIPER, Simons Array, SPT-3G and SPIDER, and projects as COrE+, LiteBIRD-ext, PIXIE and Stage IV, to clean contamination due to polarized synchrotron and dust from raw multi-frequency data, and remove lensing from the resulting co-added CMB maps (either using iterative CMB-only techniques or through cross-correlation with external data). Incorporating these effects, we present forecasts for the constraining power of these experiments in terms of inflationary physics, the neutrino sector, and dark energy parameters. Made publicly available through an online interface, this tool enables the next generation of CMB experiments to foreground-proof their designs, optimize their frequency coverage to maximize scientific output, and determine where cross-experimental collaboration would be most beneficial. We find that analyzing data from ground, balloon and space instruments in complementary combinations can significantly improve component separation performance, delensing, and cosmological constraints over individual datasets. In particular, we find that a combination of post-2020 ground- and space-based experiments could achieve constraints such as σ(r)∼1.3×10{sup −4}, σ(n{sub t})∼0

  10. Polarization image segmentation of radiofrequency ablated porcine myocardial tissue.

    Directory of Open Access Journals (Sweden)

    Iftikhar Ahmad

    Full Text Available Optical polarimetry has previously imaged the spatial extent of a typical radiofrequency ablated (RFA lesion in myocardial tissue, exhibiting significantly lower total depolarization at the necrotic core compared to healthy tissue, and intermediate values at the RFA rim region. Here, total depolarization in ablated myocardium was used to segment the total depolarization image into three (core, rim and healthy zones. A local fuzzy thresholding algorithm was used for this multi-region segmentation, and then compared with a ground truth segmentation obtained from manual demarcation of RFA core and rim regions on the histopathology image. Quantitative comparison of the algorithm segmentation results was performed with evaluation metrics such as dice similarity coefficient (DSC = 0.78 ± 0.02 and 0.80 ± 0.02, sensitivity (Sn = 0.83 ± 0.10 and 0.91 ± 0.08, specificity (Sp = 0.76 ± 0.17 and 0.72 ± 0.17 and accuracy (Acc = 0.81 ± 0.09 and 0.71 ± 0.10 for RFA core and rim regions, respectively. This automatic segmentation of parametric depolarization images suggests a novel application of optical polarimetry, namely its use in objective RFA image quantification.

  11. Dynamics of cell polarity in tissue morphogenesis: a comparative view from Drosophila and Ciona [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Michael T. Veeman

    2016-06-01

    Full Text Available Tissues in developing embryos exhibit complex and dynamic rearrangements that shape forming organs, limbs, and body axes. Directed migration, mediolateral intercalation, lumen formation, and other rearrangements influence the topology and topography of developing tissues. These collective cell behaviors are distinct phenomena but all involve the fine-grained control of cell polarity. Here we review recent findings in the dynamics of polarized cell behavior in both the Drosophila ovarian border cells and the Ciona notochord. These studies reveal the remarkable reorganization of cell polarity during organ formation and underscore conserved mechanisms of developmental cell polarity including the Par/atypical protein kinase C (aPKC and planar cell polarity pathways. These two very different model systems demonstrate important commonalities but also key differences in how cell polarity is controlled in tissue morphogenesis. Together, these systems raise important, broader questions on how the developmental control of cell polarity contributes to morphogenesis of diverse tissues across the metazoa.

  12. Imaging and modeling of collagen architecture in living tissue with polarized light transfer (Conference Presentation)

    Science.gov (United States)

    Ramella-Roman, Jessica C.; Stoff, Susan; Chue-Sang, Joseph; Bai, Yuqiang

    2016-03-01

    The extra-cellular space in connective tissue of animals and humans alike is comprised in large part of collagen. Monitoring of collagen arrangement and cross-linking has been utilized to diagnose a variety of medical conditions and guide surgical intervention. For example, collagen monitoring is useful in the assessment and treatment of cervical cancer, skin cancer, myocardial infarction, and non-arteritic anterior ischemic optic neuropathy. We have developed a suite of tools and models based on polarized light transfer for the assessment of collagen presence, cross-linking, and orientation in living tissue. Here we will present some example of such approach applied to the human cervix. We will illustrate a novel Mueller Matrix (MM) imaging system for the study of cervical tissue; furthermore we will show how our model of polarized light transfer through cervical tissue compares to the experimental findings. Finally we will show validation of the methodology through histological results and Second Harmonic imaging microscopy.

  13. Comparison of quality of ultrasonographic image of the pancreas: Tissue harmonic image vs. Fundamental image

    International Nuclear Information System (INIS)

    Seo, Young Lan; Choi, Chul Soon; Kim, Ho Chul; Yoon, Dae Young; Han, Dae Hee; Bae, Sang Hoon

    2002-01-01

    To compare the quality of ultrasonographic (US) images, tissue harmonic image (THI) versus fundamental image (FI), of the pancreas. During a recent 2 month period, forty one patients with the normal pancreas on US were included. All of them were free of abnormal clinical and laboratory findings suggestive of pancreatic disease, US was performed by an abdominal radiologist with a 2.5-5 MHz convex-array transducer (Sequoia 512: Acuson, Mountain View, Calif.U.S.A.). Comparison of THI and FI of the pancreas was done for the following parameters:conspicuity, intermal architecture, and delineation range. Grading was made by the consensus of two abdominal radiologist witha three-point scale. Statistical analysis was done using Wilcox signed rank sum test. For the evaluation of the US image quality of the pancreas THI showed better conspicuity (p=0.0130), clearer internal architecture (p=0.0029) and superior delineation range (p=0.0191) than those of FI. THI appears to show a superior image quality than FI in evaluation of the pancreas.

  14. Fatty acids of polar lipids in heart tissue are good taxonomic markers ...

    African Journals Online (AJOL)

    The fatty acid profiles in total, neutral and polar lipids in the heart tissues of five freshwater fish species (Nile perch Lates niloticus, Nile tilapia Oreochromis niloticus, marbled lungfish Protopterus aethiopicus, Bagrus docmak and African catfish Clarias gariepinus) from Lakes Victoria and Kyoga were determined ...

  15. Modeling optical behavior of birefringent biological tissues for evaluation of quantitative polarized light microscopy

    NARCIS (Netherlands)

    Turnhout, van M.C.; Kranenbarg, S.; Leeuwen, van J.L.

    2009-01-01

    Quantitative polarized light microscopy (qPLM) is a popular tool for the investigation of birefringent architectures in biological tissues. Collagen, the most abundant protein in mammals, is such a birefringent material. Interpretation of results of qPLM in terms of collagen network architecture and

  16. Assessment of tissue polarimetric properties using Stokes polarimetric imaging with circularly polarized illumination.

    Science.gov (United States)

    Qi, Ji; He, Honghui; Lin, Jianyu; Dong, Yang; Chen, Dongsheng; Ma, Hui; Elson, Daniel S

    2018-04-01

    Tissue-depolarization and linear-retardance are the main polarization characteristics of interest for bulk tissue characterization, and are normally interpreted from Mueller polarimetry. Stokes polarimetry can be conducted using simpler instrumentation and in a shorter time. Here, we use Stokes polarimetric imaging with circularly polarized illumination to assess the circular-depolarization and linear-retardance properties of tissue. Results obtained were compared with Mueller polarimetry in transmission and reflection geometry, respectively. It is found that circular-depolarization obtained from these 2 methods is very similar in both geometries, and that linear-retardance is highly quantitatively similar for transmission geometry and qualitatively similar for reflection geometry. The majority of tissue circular-depolarization and linear-retardance image information (represented by local image contrast features) obtained from Mueller polarimetry is well preserved from Stokes polarimetry in both geometries. These findings can be referred to for further understanding tissue Stokes polarimetric data, and for further application of Stokes polarimetry under the circumstances where short acquisition time or low optical system complexity is a priority, such as polarimetric endoscopy and microscopy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Adipocyte fetuin-A contributes to macrophage migration into adipose tissue and polarization of macrophages.

    Science.gov (United States)

    Chatterjee, Priyajit; Seal, Soma; Mukherjee, Sandip; Kundu, Rakesh; Mukherjee, Sutapa; Ray, Sukanta; Mukhopadhyay, Satinath; Majumdar, Subeer S; Bhattacharya, Samir

    2013-09-27

    Macrophage infiltration into adipose tissue during obesity and their phenotypic conversion from anti-inflammatory M2 to proinflammatory M1 subtype significantly contributes to develop a link between inflammation and insulin resistance; signaling molecule(s) for these events, however, remains poorly understood. We demonstrate here that excess lipid in the adipose tissue environment may trigger one such signal. Adipose tissue from obese diabetic db/db mice, high fat diet-fed mice, and obese diabetic patients showed significantly elevated fetuin-A (FetA) levels in respect to their controls; partially hepatectomized high fat diet mice did not show noticeable alteration, indicating adipose tissue to be the source of this alteration. In adipocytes, fatty acid induces FetA gene and protein expressions, resulting in its copious release. We found that FetA could act as a chemoattractant for macrophages. To simulate lipid-induced inflammatory conditions when proinflammatory adipose tissue and macrophages create a niche of an altered microenvironment, we set up a transculture system of macrophages and adipocytes; the addition of fatty acid to adipocytes released FetA into the medium, which polarized M2 macrophages to M1. This was further confirmed by direct FetA addition to macrophages. Taken together, lipid-induced FetA from adipocytes is an efficient chemokine for macrophage migration and polarization. These findings open a new dimension for understanding obesity-induced inflammation.

  18. Connective Tissue Characteristics around Healing Abutments of Different Geometries: New Methodological Technique under Circularly Polarized Light.

    Science.gov (United States)

    Delgado-Ruiz, Rafael Arcesio; Calvo-Guirado, Jose Luis; Abboud, Marcus; Ramirez-Fernandez, Maria Piedad; Maté-Sánchez de Val, José Eduardo; Negri, Bruno; Gomez-Moreno, Gerardo; Markovic, Aleksa

    2015-08-01

    To describe contact, thickness, density, and orientation of connective tissue fibers around healing abutments of different geometries by means of a new method using coordinates. Following the bilateral extraction of mandibular premolars (P2, P3, and P4) from six fox hound dogs and a 2-month healing period, 36 titanium implants were inserted, onto which two groups of healing abutments of different geometry were screwed: Group A (concave abutments) and Group B (wider healing abutment). After 3 months the animals were sacrificed and samples extracted containing each implant and surrounding soft and hard tissues. Histological analysis was performed without decalcifying the samples by means of circularly polarized light under optical microscope and a system of vertical and horizontal coordinates across all the connective tissue in an area delimited by the implant/abutment, epithelium, and bone tissue. In no case had the connective tissue formed a connection to the healing abutment/implant in the internal zone; a space of 35 ± 10 μm separated the connective tissue fibers from the healing abutment surface. The total thickness of connective tissue in the horizontal direction was significantly greater in the medial zone in Group B than in Group A (p connective tissue thickness. © 2013 Wiley Periodicals, Inc.

  19. Mercury speciation in brain tissue of polar bears (Ursus maritimus) from the Canadian Arctic.

    Science.gov (United States)

    Krey, Anke; Kwan, Michael; Chan, Hing Man

    2012-04-01

    Methylmercury (MeHg) is a neurotoxicant that has been found at elevated concentrations in the Arctic ecosystem. Little is known about its internal dose in wildlife such as polar bears. We measured concentrations of mercury (Hg) in three different brain regions (cerebellum, frontal lobe and brain stem) of 24 polar bears collected from the Nunavik, Canada between 2000 and 2003. Speciation of Hg was measured by High Performance Liquid Chromatography coupled to Inductively Coupled Plasma Mass Spectroscopy (HPLC-ICP-MS). Concentrations of mean total Hg in brain tissue were up to 625 times lower (0.28 ± 0.07 mg kg(-1) dry weight (dw) in frontal lobe, 0.23 ± 0.07 mg kg(-1) dw in cerebellum and 0.12 ± 0.0 3mg kg(-1) dw in brain stem) than the mean total Hg concentration previously reported in polar bear liver collected from Eastern Baffin Island. Methylmercury (MeHg) accounted for 100% of the Hg found in all three brain regions analyzed. These results suggest that polar bear might reduce the toxic effects of Hg by limiting the uptake into the brain and/or decrease the rate of demethylation so that Hg can be excreted from the brain more easily. The toxicokinetics and the blood-brain-barrier mechanisms of polar bears are still unknown and further research is required. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Extracellular Matrix components regulate cellular polarity and tissue structure in the developing and mature Retina

    Directory of Open Access Journals (Sweden)

    Shweta Varshney

    2015-01-01

    Full Text Available While genetic networks and other intrinsic mechanisms regulate much of retinal development, interactions with the extracellular environment shape these networks and modify their output. The present review has focused on the role of one family of extracellular matrix molecules and their signaling pathways in retinal development. In addition to their effects on the developing retina, laminins play a role in maintaining Müller cell polarity and compartmentalization, thereby contributing to retinal homeostasis. This article which is intended for the clinical audience, reviews the fundamentals of retinal development, extracellular matrix organization and the role of laminins in retinal development. The role of laminin in cortical development is also briefly discussed.

  1. CHARACTERISTIC FEATURES OF MUELLER MATRIX PATTERNS FOR POLARIZATION SCATTERING MODEL OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    E DU

    2014-01-01

    Full Text Available We developed a model to describe polarized photon scattering in biological tissues. In this model, tissues are simplified to a mixture of scatterers and surrounding medium. There are two types of scatterers in the model: solid spheres and infinitely long solid cylinders. Variables related to the scatterers include: the densities and sizes of the spheres and cylinders, the orientation and angular distribution of cylinders. Variables related to the surrounding medium include: the refractive index, absorption coefficient and birefringence. In this paper, as a development we introduce an optical activity effect to the model. By comparing experiments and Monte Carlo simulations, we analyze the backscattering Mueller matrix patterns of several tissue-like media, and summarize the different effects coming from anisotropic scattering and optical properties. In addition, we propose a possible method to extract the optical activity values for tissues. Both the experimental and simulated results show that, by analyzing the Mueller matrix patterns, the microstructure and optical properties of the medium can be obtained. The characteristic features of Mueller matrix patterns are potentially powerful tools for studying the contrast mechanisms of polarization imaging for medical diagnosis.

  2. Energetic soft-tissue treatment technologies: an overview of procedural fundamentals and safety factors

    NARCIS (Netherlands)

    van de Berg, N. J.; van den Dobbelsteen, J. J.; Jansen, F. W.; Grimbergen, C. A.; Dankelman, J.

    2013-01-01

    Energy administered during soft-tissue treatments may cauterize, coagulate, seal, or otherwise affect underlying structures. A general overview of the functionality, procedural outcomes, and associated risks of these treatments, however, is not yet generally available. In addition, literature is

  3. Field metabolic rate and PCB adipose tissue deposition efficiency in East Greenland polar bears derived from contaminant monitoring data.

    Science.gov (United States)

    Pavlova, Viola; Nabe-Nielsen, Jacob; Dietz, Rune; Svenning, Jens-Christian; Vorkamp, Katrin; Rigét, Frank Farsø; Sonne, Christian; Letcher, Robert J; Grimm, Volker

    2014-01-01

    Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus). Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB) congener, 2,2',4,4',55-hexaCB (CB153) in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR) and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears.

  4. Field metabolic rate and PCB adipose tissue deposition efficiency in East Greenland polar bears derived from contaminant monitoring data.

    Directory of Open Access Journals (Sweden)

    Viola Pavlova

    Full Text Available Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus. Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB congener, 2,2',4,4',55-hexaCB (CB153 in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears.

  5. Tissue-specific concentrations and patterns of perfluoroalkyl carboxylates and sulfonates in East Greenland polar bears.

    Science.gov (United States)

    Greaves, Alana K; Letcher, Robert J; Sonne, Christian; Dietz, Rune; Born, Erik W

    2012-11-06

    Several perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) of varying chain length are bioaccumulative in biota. However, wildlife reports have focused on liver and with very little examination of other tissues, and thus there is a limited understanding of their distribution and potential effects in the mammalian body. In the present study, the comparative accumulation of C(6) to C(15) PFCAs, C(4), C(6), C(8) and C(10) PFSAs, and select precursors were examined in the liver, blood, muscle, adipose, and brain of 20 polar bears (Ursus maritimus) from Scoresby Sound, Central East Greenland. Overall, PFSA and PFCA concentrations were highest in liver followed by blood > brain > muscle ≈ adipose. Liver and blood samples contained proportionally more of the shorter/medium chain length (C(6) to C(11)) PFCAs, whereas adipose and brain samples were dominated by longer chain (C(13) to C(15)) PFCAs. PFCAs with lower lipophilicities accumulated more in the liver, whereas the brain accumulated PFCAs with higher lipophilicities. The concentration ratios (±SE) between perfluorooctane sulfonate and its precursor perfluorooctane sulfonamide varied among tissues from 9 (±1):1 (muscle) to 36 (±7):1 (liver). PFCA and PFSA patterns in polar bears indicate that the pharmacokinetics of these compounds are to some extent tissue-specific, and are the result of several factors that may include differing protein interactions throughout the body.

  6. Polarized light microscopy for 3-dimensional mapping of collagen fiber architecture in ocular tissues.

    Science.gov (United States)

    Yang, Bin; Jan, Ning-Jiun; Brazile, Bryn; Voorhees, Andrew; Lathrop, Kira L; Sigal, Ian A

    2018-04-06

    Collagen fibers play a central role in normal eye mechanics and pathology. In ocular tissues, collagen fibers exhibit a complex 3-dimensional (3D) fiber orientation, with both in-plane (IP) and out-of-plane (OP) orientations. Imaging techniques traditionally applied to the study of ocular tissues only quantify IP fiber orientation, providing little information on OP fiber orientation. Accurate description of the complex 3D fiber microstructures of the eye requires quantifying full 3D fiber orientation. Herein, we present 3dPLM, a technique based on polarized light microscopy developed to quantify both IP and OP collagen fiber orientations of ocular tissues. The performance of 3dPLM was examined by simulation and experimental verification and validation. The experiments demonstrated an excellent agreement between extracted and true 3D fiber orientation. Both IP and OP fiber orientations can be extracted from the sclera and the cornea, providing previously unavailable quantitative 3D measures and insight into the tissue microarchitecture. Together, the results demonstrate that 3dPLM is a powerful imaging technique for the analysis of ocular tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Novel Role of Endogenous Catalase in Macrophage Polarization in Adipose Tissue.

    Science.gov (United States)

    Park, Ye Seul; Uddin, Md Jamal; Piao, Lingjuan; Hwang, Inah; Lee, Jung Hwa; Ha, Hunjoo

    2016-01-01

    Macrophages are important components of adipose tissue inflammation, which results in metabolic diseases such as insulin resistance. Notably, obesity induces a proinflammatory phenotypic switch in adipose tissue macrophages, and oxidative stress facilitates this switch. Thus, we examined the role of endogenous catalase, a key regulator of oxidative stress, in the activity of adipose tissue macrophages in obese mice. Catalase knockout (CKO) exacerbated insulin resistance, amplified oxidative stress, and accelerated macrophage infiltration into epididymal white adipose tissue in mice on normal or high-fat diet. Interestingly, catalase deficiency also enhanced classical macrophage activation (M1) and inflammation but suppressed alternative activation (M2) regardless of diet. Similarly, pharmacological inhibition of catalase activity using 3-aminotriazole induced the same phenotypic switch and inflammatory response in RAW264.7 macrophages. Finally, the same phenotypic switch and inflammatory responses were observed in primary bone marrow-derived macrophages from CKO mice. Taken together, the data indicate that endogenous catalase regulates the polarization of adipose tissue macrophages and thereby inhibits inflammation and insulin resistance.

  8. Interaction of low-intensity linearly polarized laser radiation with living tissues: effects on tissular acceleration of skin wound healing

    International Nuclear Information System (INIS)

    Ribeiro, Martha Simoes

    2000-01-01

    According to the Maxwell's equations to optical properties of surfaces, the energy deposition efficiency in a microroughness interface depends on the electrical field polarization component. Considering a linearly polarized beam, this efficiency will depend on the roughness parameters to p-polarized light and it will not depend on such parameters to s-polarized light. In this work it was investigated the effects of low-intensity, linearly polarized He-Ne laser beam on skin wounds healing, considering two orthogonal directions of polarization. We have considered a preferential axis as the animals' spinal column and we aligned the linear laser polarization first parallel, then perpendicular to this direction. Burns about 6 mm in diameter were created with liquid N 2 on the back of the animals and the lesions were irradiated on days 3, 7, 10 and 14 post-wounding, D= 1,0 J/cm 2 . Control lesions were not irradiated. The theoretical model consisted in describing linearly polarized light propagation in biological tissues using transport theory. The degree of polarization was measured in normal and pathological skin samples. It was verified that linearly polarized light can survive in the superficial layers of skin and it can be more preserved in skin under pathological condition when compared with health skin. The analysis of skin wound healing process has demonstrated that the relative direction of the laser polarization plays an important role on the wound healing process by light microscopy, transmission electron microscopy and radioautography. (author)

  9. Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.; Bissell,Mina J.

    2006-09-29

    Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.

  10. The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers.

    Science.gov (United States)

    Liu, Jian-Hua; Jing, Dong-Yang; Wang, Liang-Liang; Li, Yang; Quan, Wei; Fang, Jian-Cheng; Liu, Wu-Ming

    2017-07-28

    The hybrid optical pumping spin exchange relaxation free (SERF) atomic magnetometers can realize ultrahigh sensitivity measurement of magnetic field and inertia. We have studied the 85 Rb polarization of two types of hybrid optical pumping SERF magnetometers based on 39 K- 85 Rb- 4 He and 133 Cs- 85 Rb- 4 He respectively. Then we found that 85 Rb polarization varies with the number density of buffer gas 4 He and quench gas N 2 , pumping rate of pump beam and cell temperature respectively, which will provide an experimental guide for the design of the magnetometer. We obtain a general formula on the fundamental sensitivity of the hybrid optical pumping SERF magnetometer due to shot-noise. The formula describes that the fundamental sensitivity of the magnetometer varies with the number density of buffer gas and quench gas, the pumping rate of pump beam, external magnetic field, cell effective radius, measurement volume, cell temperature and measurement time. We obtain a highest fundamental sensitivity of 1.5073 aT/Hz 1/2 (1 aT = 10 -18 T) with 39 K- 85 Rb- 4 He magnetometer between above two types of magnetometers when 85 Rb polarization is 0.1116. We estimate the fundamental sensitivity limit of the hybrid optical pumping SERF magnetometer to be superior to 1.8359 × 10 -2 aT/Hz 1/2 , which is higher than the shot-noise-limited sensitivity of 1 aT/Hz 1/2 of K SERF atomic magnetometer.

  11. Polarized electron beams elastically scattered by atoms as a tool for testing fundamental predictions of quantum mechanics.

    Science.gov (United States)

    Dapor, Maurizio

    2018-03-29

    Quantum information theory deals with quantum noise in order to protect physical quantum bits (qubits) from its effects. A single electron is an emblematic example of a qubit, and today it is possible to experimentally produce polarized ensembles of electrons. In this paper, the theory of the polarization of electron beams elastically scattered by atoms is briefly summarized. Then the POLARe program suite, a set of computer programs aimed at the calculation of the spin-polarization parameters of electron beams elastically interacting with atomic targets, is described. Selected results of the program concerning Ar, Kr, and Xe atoms are presented together with the comparison with experimental data about the Sherman function for low kinetic energy of the incident electrons (1.5eV-350eV). It is demonstrated that the quantum-relativistic theory of the polarization of electron beams elastically scattered by atoms is in good agreement with experimental data down to energies smaller than a few eV.

  12. In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Walther, Julia; Golde, Jonas; Kirsten, Lars; Tetschke, Florian; Hempel, Franz; Rosenauer, Tobias; Hannig, Christian; Koch, Edmund

    2017-12-01

    Since optical coherence tomography (OCT) provides three-dimensional high-resolution images of biological tissue, the benefit of polarization contrast in the field of dentistry is highlighted in this study. Polarization-sensitive OCT (PS OCT) with phase-sensitive recording is used for imaging dental and mucosal tissues in the human oral cavity in vivo. An enhanced polarization contrast of oral structures is reached by analyzing the signals of the co- and crosspolarized channels of the swept source PS OCT system quantitatively with respect to reflectivity, retardation, optic axis orientation, and depolarization. The calculation of these polarization parameters enables a high tissue-specific contrast imaging for the detailed physical interpretation of human oral hard and soft tissues. For the proof-of-principle, imaging of composite restorations and mineralization defects at premolars as well as gingival, lingual, and labial oral mucosa was performed in vivo within the anterior oral cavity. The achieved contrast-enhanced results of the investigated human oral tissues by means of polarization-sensitive imaging are evaluated by the comparison with conventional intensity-based OCT.

  13. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    International Nuclear Information System (INIS)

    Fujii, Masakazu; Inoguchi, Toyoshi; Batchuluun, Battsetseg; Sugiyama, Naonobu; Kobayashi, Kunihisa; Sonoda, Noriyuki; Takayanagi, Ryoichi

    2013-01-01

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent

  14. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Masakazu, E-mail: masakazu731079@yahoo.co.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Inoguchi, Toyoshi, E-mail: toyoshi@intmed3.med.kyushu-u.ac.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Batchuluun, Battsetseg, E-mail: battsetseg.batchuluun@gmail.com [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Sugiyama, Naonobu, E-mail: nao1@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Kobayashi, Kunihisa, E-mail: nihisak@fukuoka-u.ac.jp [Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino, Fukuoka 818-8502 (Japan); Sonoda, Noriyuki, E-mail: noriyuki@intmed3.med.kyushu-u.ac.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Takayanagi, Ryoichi, E-mail: takayana@intmed3.med.kyushu-u.ac.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2013-08-16

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.

  15. A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues.

    Science.gov (United States)

    Parsons, Linda M; Grzeschik, Nicola A; Amaratunga, Kasun; Burke, Peter; Quinn, Leonie M; Richardson, Helena E

    2017-08-07

    In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila "cell polarity" eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the "nutrient sensing" kinases Salt Inducible Kinase 2 and 3 ( SIK2 and 3 ) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development. Copyright © 2017 Parsons et al.

  16. A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues

    NARCIS (Netherlands)

    Parsons, Linda M.; Grzeschik, Nicola A; Amaratunga, Kasun; Burke, Peter; Quinn, Leonie M; Richardson, Helena E

    2017-01-01

    In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein

  17. Tissue-specific congener composition of organohalogen and metabolite contaminants in East Greenland polar bears (Ursus maritimus)

    International Nuclear Information System (INIS)

    Gebbink, Wouter A.; Sonne, Christian; Dietz, Rune; Kirkegaard, Maja; Riget, Frank F.; Born, Erik W.; Muir, Derek C.G.; Letcher, Robert J.

    2008-01-01

    Congener patterns of the major organohalogen contaminant classes of PCBs, PBDEs and their metabolites and/or by-products (OH-PCBs, MeSO 2 -PCBs, OH-PBDEs and MeO-PBDEs) were examined in adipose tissue, liver, brain and blood of East Greenland polar bears (Ursus maritimus). PCB, OH-PCB, MeSO 2 -PCB and PBDE congener patterns showed significant differences (p ≤ 0.05) mainly in the liver and the brain relative to the adipose tissue and the blood. OH-PBDEs and MeO-PBDEs were not detected in the brain and liver, but had different patterns in blood versus the adipose tissue. Novel OH-polybrominated biphenyls (OH-PBBs), one tri- and two tetra-brominated OH-PBBs were detected in all tissues and blood. Congener pattern differences among tissues and blood are likely due to a combination of factors, e.g., biotransformation and retention in the liver, retention in the blood and blood-brain barrier transport. Our findings suggest that different congener pattern exposures to these classes of contaminants should be considered with respect to potential target tissue-specific effects in East Greenland polar bears. - Tissues-specific (adipose tissue, liver, brain and blood) differences exist for the congener patterns of PCBs, PBDEs and their metabolites/degradation products in East Greenland polar bears

  18. Wavelet analysis of polarization azimuths maps for laser images of myocardial tissue for the purpose of diagnosing acute coronary insufficiency

    Science.gov (United States)

    Wanchuliak, O. Ya.; Peresunko, A. P.; Bakko, Bouzan Adel; Kushnerick, L. Ya.

    2011-09-01

    This paper presents the foundations of a large scale - localized wavelet - polarization analysis - inhomogeneous laser images of histological sections of myocardial tissue. Opportunities were identified defining relations between the structures of wavelet coefficients and causes of death. The optical model of polycrystalline networks of myocardium protein fibrils is presented. The technique of determining the coordinate distribution of polarization azimuth of the points of laser images of myocardium histological sections is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order) parameters are presented which characterize distributions of wavelet - coefficients polarization maps of myocardium layers and death reasons.

  19. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity.

    Science.gov (United States)

    Xiong, Xiao-Qing; Geng, Zhi; Zhou, Bing; Zhang, Feng; Han, Ying; Zhou, Ye-Bo; Wang, Jue-Jin; Gao, Xing-Ya; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2018-06-01

    Obesity-induced chronic inflammation is critical in the pathogenesis of insulin resistance, and the recruitment and proinflammatory activation of adipose tissue macrophages (ATMs) is important for the development of this process. Here, we examined the effects of fibronectin type III domain-containing 5 (FNDC5) on inflammation and insulin resistance in high-fat diet-induced obese mice. Male wild-type (WT) and FNDC5 -/- mice were fed with standard chow (Ctrl) or high fat diet (HFD) for 20 weeks to induce obesity and insulin resistance. Firstly, effects of FNDC5 gene deletion on obesity, insulin resistance, macrophage accumulation and polarization and adipose tissue inflammation were determined in mice. Secondly, the macrophage polarity shift was further examined with flow cytometry in isolated stromal vascular fraction (SVF). Thirdly, the effects of exogenous FNDC5 on lipopolysaccharide (LPS)-induced macrophage polarization, inflammation and the underlying signaling mechanism were investigated in RAW264.7 macrophages and primary mouse peritoneal cavity macrophages (PMs). Finally, the therapeutic effects of FNDC5 overexpression were examined in HFD-induced obese WT and FNDC5 -/- mice. FNDC5 gene deletion aggravated obesity, insulin resistance, fat accumulation and inflammation accompanied with enhanced AMPK inhibition, macrophages recruitment and M1 polarization in mice fed with HFD. Exogenous FNDC5 inhibited LPS-induced M1 macrophage polarization and inflammatory cytokine production via AMPK phosphorylation in both RAW264.7 macrophages and PMs. FNDC5 overexpression attenuated insulin resistance, AMPK inhibition, M1 macrophage polarization and inflammatory cytokine production in adipose tissue of obese WT and FNDC5 -/- mice. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in HFD-induced obesity. FNDC5 plays several beneficial roles in obesity and may be used as a therapeutic regimen for preventing

  20. Diffuse reflectance spectroscopy and optical polarization imaging of in-vivo biological tissue

    Science.gov (United States)

    Mora-Núñez, A.; Castillejos, Y.; García-Torales, G.; Martínez-Ponce, G.

    2013-11-01

    A number of optical techniques have been reported in the scientific literature as accomplishable methodologies to diagnose diseases in biological tissue, for instance, diffuse reflectance spectroscopy (DRS) and optical polarization imaging (OPI). The skin is the largest organ in the body and consists of three primary layers, namely, the epidermis (the outermost layer exposed to the world), the dermis, and the hypodermis. The epidermis changes from to site to site, mainly because of difference in hydration. A lower water content increase light scattering and reduce the penetration depth of radiation. In this work, two hairless mice have been selected to evaluate their skin features by using DRS and OPI. Four areas of the specimen body were chosen to realize the comparison: back, abdomen, tail, and head. From DRS, it was possible to distinguish the skin nature because of different blood irrigation at dermis. In the other hand, OPI shows pseudo-depolarizing regions in the measured Mueller images related to a spatially varying propagation of the scattered light. This provides information about the cell size in the irradiated skin.

  1. The Antarctic Master Directory - a fundamental data management element for the International Polar Year 2007-2008

    Science.gov (United States)

    Scharfen, G.; Bauer, R.

    2004-12-01

    A successful International Polar Year (IPY) in 2007-2008 will extend the scientific spirit of international collaboration and exploration first undertaken in earlier IPYs and the 1957/58 International Geophysical Year (IGY) to the current era of advanced collection and analysis technology. The IGY not only led to a number of important scientific achievements; it also established an enduring data system - the World Data Centers - which continues today. Effective utilization of the vast arrays of data which will result from the coming IPY will challenge data managers and scientists alike. Coordinating the collection, assembly, archival and international exchange of disparate and voluminous data sets requires advance planning and the involvement of the relevant science agencies and data managers to utilize and extend existing capabilities. The IPY Planning Group has identified key objectives indicating that data management is an essential part of the IPY planning process including: - Ensure data collected under the IPY are made available in an open and timely manner - Intensify the recovery of relevant historical data and ensure that these also are made openly available - Develop and embrace new technological and logistical capabilities The Scientific Committee on Antarctic Research (SCAR) and Committee of Managers of National Antarctic Programmes (COMNAP) have established the Joint Committee on Antarctic Data Management (JCADM) to develop the Antarctic Master Directory (AMD) to enable scientists to find and access the data sets collected more than 22 countries in the Antarctic. Incorporating concepts developed as part of the AMD and extending them to cover the scope of the IPY is an important part of a successful IPY data management program. This paper identifies major aspects of the AMD and how it can serve the IPY.

  2. Study of polarization colors in the connective tissue wall of odontogenic cysts using picrosirius red stain

    Directory of Open Access Journals (Sweden)

    Anusha Shetty

    2015-01-01

    Full Text Available Background: Lesions of odontogenic origin comprise the heterogeneous group ranging from hamartomatous proliferations, cysts to benign and malignant tumors. Interplay between the epithelium and connective tissue can be assumed to play a significant role in the pathogenesis of odontogenic cysts. Aims and Objectives: A study was taken up to show the role of picrosirius red (PSR stain to demonstrate the fibers and also to assess the difference in the nature of the fibers (different color patterns and to find out the role of it, if any in the pathogenesis and biological behavior of the commonly occurring odontogenic cysts. Materials and Methods: Collagen fibers of 30 cases of odontogenic cysts (10 radicular cysts, 10 odontogenic keratocysts (OKC′s, and 10 dentigerous cysts were studied by staining the sections with PSR stain and examining them under bright field and polarizing microscope. Results: Sixty-seven percentage of the thin collagen fibers and 55% of the thick fibers in radicular cyst showed green-yellow birefringence. Fifty-seven percentage of the thin collagen fibers and 15% of the thick fibers in OKC showed green-yellow birefringence. Eighty-two percentage of the thin collagen fibers and 66% of the thick fibers in dentigerous cysts showed green-yellow birefringence. Rest of the fibers showed orange-red birefringence. Statistical analysis with one-way ANOVA was significant with a P < 0.01 only for thick fibers. Moreover, comparison of polarization colors of thick fibers of odontogenic cysts with duration of the lesion gave statistically significant results. Conclusion: The observations in the present study with respect to color profiles of the collagen fibers in the three commonly occurring odontogenic cysts possibly explain the biological behavior of the lesions. The predominant orange-red birefringence in OKC′s in comparison to radicular and dentigerous cysts suggests that OKC′s exhibit well organized and tightly packed fibers. This

  3. Polarization Imaging Apparatus for Cell and Tissue Imaging and Diagnostics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in a novel visible-near infrared Stokes polarization imaging technology based on high performance fast...

  4. Polarization Imaging Apparatus for Cell and Tissue Imaging and Diagnostics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In recent years there has been an increasing interest in the propagation of polarized light in randomly scattering media. The investigation of backscattered light is...

  5. Implementation of biological tissue Mueller matrix for polarization-sensitive optical coherence tomography based on LabVIEW

    Science.gov (United States)

    Lin, Yongping; Zhang, Xiyang; He, Youwu; Cai, Jianyong; Li, Hui

    2018-02-01

    The Jones matrix and the Mueller matrix are main tools to study polarization devices. The Mueller matrix can also be used for biological tissue research to get complete tissue properties, while the commercial optical coherence tomography system does not give relevant analysis function. Based on the LabVIEW, a near real time display method of Mueller matrix image of biological tissue is developed and it gives the corresponding phase retardant image simultaneously. A quarter-wave plate was placed at 45 in the sample arm. Experimental results of the two orthogonal channels show that the phase retardance based on incident light vector fixed mode and the Mueller matrix based on incident light vector dynamic mode can provide an effective analysis method of the existing system.

  6. Endothelial Cell Migration and Vascular Endothelial Growth Factor Expression Are the Result of Loss of Breast Tissue Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Amy; Cuevas, Ileana; Kenny, Paraic A; Miyake, Hiroshi; Mace, Kimberley; Ghajar, Cyrus; Boudreau, Aaron; Bissell, Mina; Boudreau, Nancy

    2009-05-26

    Recruiting a new blood supply is a rate-limiting step in tumor progression. In a three-dimensional model of breast carcinogenesis, disorganized, proliferative transformed breast epithelial cells express significantly higher expression of angiogenic genes compared with their polarized, growth-arrested nonmalignant counterparts. Elevated vascular endothelial growth factor (VEGF) secretion by malignant cells enhanced recruitment of endothelial cells (EC) in heterotypic cocultures. Significantly, phenotypic reversion of malignant cells via reexpression of HoxD10, which is lost in malignant progression, significantly attenuated VEGF expression in a hypoxia-inducible factor 1{alpha}-independent fashion and reduced EC migration. This was due primarily to restoring polarity: forced proliferation of polarized, nonmalignant cells did not induce VEGF expression and EC recruitment, whereas disrupting the architecture of growth-arrested, reverted cells did. These data show that disrupting cytostructure activates the angiogenic switch even in the absence of proliferation and/or hypoxia and restoring organization of malignant clusters reduces VEGF expression and EC activation to levels found in quiescent nonmalignant epithelium. These data confirm the importance of tissue architecture and polarity in malignant progression.

  7. High contributions of sea ice derived carbon in polar bear (Ursus maritimus tissue.

    Directory of Open Access Journals (Sweden)

    Thomas A Brown

    Full Text Available Polar bears (Ursus maritimus rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated, rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72-100%; 99% CI, n = 55, irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems.

  8. High contributions of sea ice derived carbon in polar bear (Ursus maritimus) tissue.

    Science.gov (United States)

    Brown, Thomas A; Galicia, Melissa P; Thiemann, Gregory W; Belt, Simon T; Yurkowski, David J; Dyck, Markus G

    2018-01-01

    Polar bears (Ursus maritimus) rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print) approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated), rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72-100%; 99% CI, n = 55), irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems.

  9. Near infrared spectral polarization imaging of prostate cancer tissues using Cybesin: a receptor-targeted contrast agent

    Science.gov (United States)

    Pu, Yang; Wang, W. B.; Tang, G. C.; Liang, Kexian; Achilefu, S.; Alfano, R. R.

    2013-03-01

    Cybesin, a smart contrast agent to target cancer cells, was investigated using a near infrared (NIR) spectral polarization imaging technique for prostate cancer detection. The approach relies on applying a contrast agent that can target cancer cells. Cybesin, as a small ICG-derivative dye-peptide, emit fluorescence between 750 nm and 900 nm, which is in the "tissue optical window". Cybesin was reported targeting the over-expressed bombesin receptors in cancer cells in animal model and the human prostate cancers over-expressing bombesin receptors. The NIR spectral polarization imaging study reported here demonstrated that Cybesin can be used as a smart optical biomarker and as a prostate cancer receptor targeted contrast agent.

  10. Polarized Raman anisotropic response of collagen in tendon: towards 3D orientation mapping of collagen in tissues.

    Directory of Open Access Journals (Sweden)

    Leonardo Galvis

    Full Text Available In this study, polarized Raman spectroscopy (PRS was used to characterize the anisotropic response of the amide I band of collagen as a basis for evaluating three-dimensional collagen fibril orientation in tissues. Firstly, the response was investigated theoretically by applying classical Raman theory to collagen-like peptide crystal structures. The theoretical methodology was then tested experimentally, by measuring amide I intensity anisotropy in rat tail as a function of the orientation of the incident laser polarization. For the theoretical study, several collagen-like triple-helical peptide crystal structures obtained from the Protein Data Bank were rotated "in plane" and "out of plane" to evaluate the role of molecular orientation on the intensity of the amide I band. Collagen-like peptides exhibit a sinusoidal anisotropic response when rotated "in plane" with respect to the polarized incident laser. Maximal intensity was obtained when the polarization of the incident light is perpendicular to the molecule and minimal when parallel. In the case of "out of plane" rotation of the molecular structure a decreased anisotropic response was observed, becoming completely isotropic when the structure was perpendicular to the plane of observation. The theoretical Raman response of collagen was compared to that of alpha helical protein fragments. In contrast to collagen, alpha helices have a maximal signal when incident light is parallel to the molecule and minimal when perpendicular. For out-of-plane molecular orientations alpha-helix structures display a decreased average intensity. Results obtained from experiments on rat tail tendon are in excellent agreement with the theoretical predictions, thus demonstrating the high potential of PRS for experimental evaluation of the three-dimensional orientation of collagen fibers in biological tissues.

  11. Overexpression of PTPN2 in Visceral Adipose Tissue Ameliorated Atherosclerosis via T Cells Polarization Shift in Diabetic Apoe-/- Mice

    Directory of Open Access Journals (Sweden)

    Ya Li

    2018-03-01

    Full Text Available Background/Aims: Dysregulated inflammation in adipose tissue, marked by increased pro-inflammatory T-cell accumulation and reduced regulatory T cells (Treg, contributes to diabetes-associated insulin resistance and atherosclerosis. However, the molecular mechanisms underlying T-cell-mediated inflammation in adipose tissue remain largely unknown. Methods: Sixty apolipoprotein E (ApoE-/- mice were randomly divided into chow and diabetes groups. Diabetes was induced by a high-fat and high-sugar diet combined with low-dose streptozotocin. Then we transferred a recombinant adenovirus carrying the protein tyrosine phosphatase non-receptor type 2 (PTPN2 gene into epididymal white adipose tissue (EWAT of ApoE-/- mice. After transfection, all mice were euthanized to evaluate the effects of PTPN2 on T cells polarization and atherosclerosis. Results: PTPN2 was downregulated in EWAT of diabetic ApoE-/- mice. PTPN2 overexpression in EWAT reversed the high Th1/Treg and Th17/Treg ratios in EWAT of diabetic mice. In addition, PTPN2 overexpression in EWAT could significantly reduce macrophages infiltration, the ratio of M1/M2 macrophages and the expression of pro-inflammatory cytokines in EWAT, improving insulin resistance. In aortic root lesions, the vulnerability index were significantly decreased by overexpression of PTPN2 in EWAT. Conclusion: These data suggested that PTPN2 overexpression in EWAT would inhibit systemic inflammation and increase the plaque stability via T cells polarization shift in diabetic mice.

  12. pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies.

    Science.gov (United States)

    Angelova, Miglena I; Bitbol, Anne-Florence; Seigneuret, Michel; Staneva, Galya; Kodama, Atsuji; Sakuma, Yuka; Kawakatsu, Toshihiro; Imai, Masayuki; Puff, Nicolas

    2018-03-06

    Most biological molecules contain acido-basic groups that modulate their structure and interactions. A consequence is that pH gradients, local heterogeneities and dynamic variations are used by cells and organisms to drive or regulate specific biological functions including energetic metabolism, vesicular traffic, migration and spatial patterning of tissues in development. While the direct or regulatory role of pH in protein function is well documented, the role of hydrogen and hydroxyl ions in modulating the properties of lipid assemblies such as bilayer membranes is only beginning to be understood. Here, we review approaches using artificial lipid vesicles that have been instrumental in providing an understanding of the influence of pH gradients and local variations on membrane vectorial motional processes: migration, membrane curvature effects promoting global or local deformations, crowding generation by segregative polarization processes. In the case of pH induced local deformations, an extensive theoretical framework is given and an application to a specific biological issue, namely the structure and stability of mitochondrial cristae, is described. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Fundamentals of MALDI-ToF-MS analysis applications in bio-diagnosis, tissue engineering and drug delivery

    CERN Document Server

    Hosseini, Samira

    2017-01-01

    This book presents the fundamentals and applications of Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-ToF-MS) technique. It highlights the basic principles, the history of invention as well as the mechanism of ionization and mass determination using this technique. It describes the fundamental principles and methods for MALDI spectra interpretation and determination of exact chemical structures from experimental data. This book guides the reader through the interpretation of MALDI data where complex macromolecular spectra are simplified in order to present the major principles behind data interpretation. In addition, each chapter describes how MALDI-ToF-MS analysis provides necessary understanding of the copolymer systems that have been designed for specialized biomedical applications.

  14. Fundamental ecology is fundamental.

    Science.gov (United States)

    Courchamp, Franck; Dunne, Jennifer A; Le Maho, Yvon; May, Robert M; Thébaud, Christophe; Hochberg, Michael E

    2015-01-01

    The primary reasons for conducting fundamental research are satisfying curiosity, acquiring knowledge, and achieving understanding. Here we develop why we believe it is essential to promote basic ecological research, despite increased impetus for ecologists to conduct and present their research in the light of potential applications. This includes the understanding of our environment, for intellectual, economical, social, and political reasons, and as a major source of innovation. We contend that we should focus less on short-term, objective-driven research and more on creativity and exploratory analyses, quantitatively estimate the benefits of fundamental research for society, and better explain the nature and importance of fundamental ecology to students, politicians, decision makers, and the general public. Our perspective and underlying arguments should also apply to evolutionary biology and to many of the other biological and physical sciences. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Determination of scattering coefficient considering wavelength and absorption dependence of anisotropy factor measured by polarized beam for biological tissues

    Science.gov (United States)

    Fukutomi, D.; Ishii, K.; Awazu, K.

    2015-12-01

    Anisotropy factor g, one of the optical properties of biological tissues, is the most important parameter to accurately determine scattering coefficient μs in the inverse Monte Carlo (iMC) simulation. It has been reported that g has wavelength and absorption dependence, however, there are few attempts in order to calculate μs of biological tissue considering the wavelength and absorption dependence of g. In this study, the scattering angular distributions of biological tissue phantoms were measured in order to determine g by using goniometric measurements with three polarization conditions at strongly and weakly absorbing wavelengths of hemoglobin. Then, optical properties, especially, μs were measured by integrating sphere measurements and iMC simulation in order to confirm the influence of measured g on optical properties in comparison of with general value of g (0.9) for soft biological tissue. Consequently, it was found that μs was overestimated at strongly absorbing wavelength, however, μs was underestimated at weakly absorbing wavelength if the g was not considered its wavelength and absorption dependence.

  16. Linear and branched perfluorooctane sulfonate (PFOS) isomer patterns differ among several tissues and blood of polar bears.

    Science.gov (United States)

    Greaves, Alana K; Letcher, Robert J

    2013-09-01

    Perfluorooctane sulfonate (PFOS) is a globally distributed persistent organic pollutant that has been found to bioaccumulate and biomagnify in aquatic food webs. Although principally in its linear isomeric configuration, 21-35% of the PFOS manufactured via electrochemical fluorination is produced as a branched structural isomer. PFOS isomer patterns were investigated in multiple tissues of polar bears (Ursus maritimus) from East Greenland. The liver (n = 9), blood (n = 19), brain (n = 16), muscle (n = 5), and adipose (n = 5) were analyzed for linear PFOS (n-PFOS), as well as multiple mono- and di-trifluoromethyl-substituted branched isomers. n-PFOS accounted for 93.0 ± 0.5% of Σ-PFOS isomer concentrations in the liver, whereas the proportion was significantly lower (p<0.05) in the blood (85.4 ± 0.5%). Branched isomers were quantifiable in the liver and blood, but not in the brain, muscle, or adipose. In both the liver and blood, 6-perfluoromethylheptane sulfonate (P6MHpS) was the dominant branched isomer (2.61 ± 0.10%, and 3.26 ± 0.13% of Σ-PFOS concentrations, respectively). No di-trifluoromethyl-substituted isomers were detectable in any of the tissues analyzed. These tissue-specific isomer patterns suggest isomer-specific pharmacokinetics, perhaps due to differences in protein affinities, and thus differences in protein interactions, as well transport, absorption, and/or metabolism in the body. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. A comparison of left ventricular mass between two-dimensional echocardiography, using fundamental and tissue harmonic imaging, and cardiac MRI in patients with hypertension

    International Nuclear Information System (INIS)

    Alfakih, Khaled; Bloomer, Tim; Bainbridge, Samantha; Bainbridge, Gavin; Ridgway, John; Williams, Gordon; Sivananthan, Mohan

    2004-01-01

    Purpose: To compare left ventricular mass (LVM) as measured by two-dimensional (2D) echocardiography using two different calculation methods: truncated ellipse (TE) and area length (AL), in both fundamental and tissue harmonic imaging frequencies, to LVM as measured by, the current gold standard, cardiac magnetic resonance imaging (MRI). Turbo gradient echo (TGE) pulse sequence was utilized for MRI. Materials and methods: Thirty-two subjects with history of hypertension were recruited. The images were acquired, contours were traced and the LVM was calculated for all four different echocardiography methods as well as for the cardiac MRI method. The intra-observer variabilities were calculated. The four different echocardiography methods were compared to cardiac MRI using the method described by Bland and Altman. Results: Twenty-five subjects had adequate paired data sets. The mean LVM as measured by cardiac MRI was 162±55 g and for the four different echocardiography methods were: fundamental AL 165±55 g, harmonic AL 168±53 g, fundamental TE 148±50 g, harmonic TE 149±45 g. The intra-observer variability for cardiac MRI method, expressed as bias ± 1 standard deviation of the difference (S.D.D.), was 2.3±9.2 g and for the four different echocardiography methods were: fundamental TE 0.4±26.8 g, fundamental AL 0.6±27.0 g, harmonic TE 6.7±21.8 g, harmonic AL 6.4±22.9 g. The mean LVM for the AL method was closest to the cardiac MRI technique, while TE underestimated LVM. The 95% limits of agreement were consistently wide for all the 2D echocardiography modalities when compared with the cardiac MRI technique. Conclusion: The intra-observer variability in measurements of 2D echocardiographic LVM, together with the wide limits of agreement when compared to the gold standard (cardiac MRI) are sufficiently large to make serial estimates of LVM, of single patients or small groups of subjects, by 2D echocardiography, unreliable

  18. MR image enhancement as a function of tissue gadolinium concentration, measured with polarized X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Wang, S.C.; Morita, Y.; White, D.L.; Kaufman, L.; Brasch, R.C.

    1988-01-01

    MR imaging contrast agents alter intensities nonlinearly relative to their tissue concentrations. To extract Gd concentrations from image intensity data, a 13-tube phantom (Gd-DTPA dilutions, 0-10/sup -2/M) was imaged (2 T, 3 mm, spin echo, 300 = msec repetition time, 15 = msec echo time, 128 X 256, four excitations). Also, 18 rats were studied with Gd-DTPA or albumin-(Gd-DTPA)/sub 19/ (nine each, three doses). Liver and renal cortex were imaged before and 10 minutes after contrast material administration, with immediate killing and harvesting, and enhancement was calculated. These samples were assayed by x-ray fluorescent excitation analysis (150-kVp beam, B/sub 4/C ceramic polarizer, Mo-Cu-Ni filter, Si[Li] detector). Gd levels as low as 0.5 ppm (--3.18 x 10/sup -6/M) could be detected in liquid or solid samples. Enhancement increased with a nonlinear relationship to Gd in the range measured. This assay for Gd permits empiric assessment of the relationship between pulse variables, intensity, and paramagnet concentration, allowing Gd values to be estimated from image intensities

  19. Complexation-mediated electromembrane extraction of highly polar basic drugs – a fundamental study with catecholamines in urine as model system

    DEFF Research Database (Denmark)

    Fernández, Elena; Vårdal, Linda; Vidal, Lorena

    2017-01-01

    Complexation-mediated electromembrane extraction (EME) of highly polar basic drugs (log P ... as complexation reagent, and selectively formed boronate esters by reversible covalent binding with the model analytes at the sample/SLM interface. This enhanced the mass transfer of the highly polar model analytes across the SLM, and EME of basic drugs with log P in the range -1 to -2 was shown for the first...... chromatography coupled to tandem mass spectrometry and evaluated for quantification of epinephrine and dopamine. Standard addition calibration was applied to a pooled human urine sample. Calibration curves using standards between 25 and 125 μg L-1 gave a high level of linearity with a correlation coefficient...

  20. High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues.

    Science.gov (United States)

    Yang, Jingwei; Wang, Li; Wu, Xianyou; Cheng, Tingqing; Jiang, Haihe

    2014-06-30

    An electro-optically Q-switched high-energy Er:YAG laser with two polarizers is proposed. By using two Al(2)O(3) polarizing plates and a LiNbO(3) crystal with Brewster angle, the polarization efficiency is significantly improved. As a result, 226 mJ pulse energy with 62 ns pulse width is achieved at the repetition rate of 3 Hz, the corresponding peak power is 3.6 MW. To our knowledge, such a high peak power has not been reported in literature. With our designed laser, in-vitro teeth were irradiated under Q-switched and free-running modes. Results of a laser ablation experiment on hard dental tissue with the high-peak-power laser demonstrates that the Q-switched Er:YAG laser has higher ablation precision and less thermal damage than the free-running Er:YAG laser.

  1. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  2. Polarized electron sources

    International Nuclear Information System (INIS)

    Prepost, R.

    1994-01-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented

  3. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  4. Thyroid hormones and deiodinase activity in plasma and tissues in relation to high levels of organohalogen contaminants in East Greenland polar bears (Ursus maritimus).

    Science.gov (United States)

    Gabrielsen, Kristin Møller; Krokstad, Julie Stene; Villanger, Gro Dehli; Blair, David A D; Obregon, Maria-Jesus; Sonne, Christian; Dietz, Rune; Letcher, Robert J; Jenssen, Bjørn Munro

    2015-01-01

    Previous studies have shown relationships between organohalogen contaminants (OHCs) and circulating levels of thyroid hormones (THs) in arctic wildlife. However, there is a lack of knowledge concerning the possible functional effects of OHCs on TH status in target tissues for TH-dependent activity. The relationships between circulating (plasma) levels of OHCs and various TH variables in plasma as well as in liver, muscle and kidney tissues from East Greenland sub-adult polar bears (Ursus maritimus) sampled in 2011 (n=7) were therefore investigated. The TH variables included 3.3',5.5'-tetraiodothyronine or thyroxine (T4), 3.3',5-triiodothyronine (T3) and type 1 (D1) and type 2 (D2) deiodinase activities. Principal component analysis (PCA) combined with correlation analyses demonstrated negative relationships between individual polychlorinated biphenyls (PCBs) and their hydroxylated (OH-) metabolites and T4 in both plasma and muscle. There were both positive and negative relationships between individual OHCs and D1 and D2 activities in muscle, liver and kidney tissues. In general, PCBs, OH-PCBs and polybrominated dipehenyl ethers (PBDEs) were positively correlated to D1 and D2 activities, whereas organochlorine pesticides and byproducts (OCPs) were negatively associated with D1 and D2 activities. These results support the hypothesis that OHCs can affect TH status and action in the target tissues of polar bears. TH levels and deiodinase activities in target tissues can be sensitive endpoints for exposure of TH-disrupting compounds in arctic wildlife, and thus, tissue-specific responses in target organs should be further considered when assessing TH disruption in wildlife studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Tissue

    Directory of Open Access Journals (Sweden)

    David Morrissey

    2012-01-01

    Full Text Available Purpose. In vivo gene therapy directed at tissues of mesenchymal origin could potentially augment healing. We aimed to assess the duration and magnitude of transene expression in vivo in mice and ex vivo in human tissues. Methods. Using bioluminescence imaging, plasmid and adenoviral vector-based transgene expression in murine quadriceps in vivo was examined. Temporal control was assessed using a doxycycline-inducible system. An ex vivo model was developed and optimised using murine tissue, and applied in ex vivo human tissue. Results. In vivo plasmid-based transgene expression did not silence in murine muscle, unlike in liver. Although maximum luciferase expression was higher in muscle with adenoviral delivery compared with plasmid, expression reduced over time. The inducible promoter cassette successfully regulated gene expression with maximum levels a factor of 11 greater than baseline. Expression was re-induced to a similar level on a temporal basis. Luciferase expression was readily detected ex vivo in human muscle and tendon. Conclusions. Plasmid constructs resulted in long-term in vivo gene expression in skeletal muscle, in a controllable fashion utilising an inducible promoter in combination with oral agents. Successful plasmid gene transfection in human ex vivo mesenchymal tissue was demonstrated for the first time.

  6. Radiology fundamentals

    CERN Document Server

    Singh, Harjit

    2011-01-01

    ""Radiology Fundamentals"" is a concise introduction to the dynamic field of radiology for medical students, non-radiology house staff, physician assistants, nurse practitioners, radiology assistants, and other allied health professionals. The goal of the book is to provide readers with general examples and brief discussions of basic radiographic principles and to serve as a curriculum guide, supplementing a radiology education and providing a solid foundation for further learning. Introductory chapters provide readers with the fundamental scientific concepts underlying the medical use of imag

  7. Spatial and temporal trends of selected trace elements in liver tissue from polar bears (Ursus maritimus) from Alaska, Canada and Greenland

    Science.gov (United States)

    Routti, H.; Letcher, R.J.; Born, E.W.; Branigan, M.; Dietz, R.; Evans, T.J.; Fisk, A.T.; Peacock, E.; Sonne, C.

    2011-01-01

    Spatial trends and comparative changes in time of selected trace elements were studied in liver tissue from polar bears from ten different subpopulation locations in Alaska, Canadian Arctic and East Greenland. For nine of the trace elements (As, Cd, Cu, Hg, Mn, Pb, Rb, Se and Zn) spatial trends were investigated in 136 specimens sampled during 2005-2008 from bears from these ten subpopulations. Concentrations of Hg, Se and As were highest in the (northern and southern) Beaufort Sea area and lowest in (western and southern) Hudson Bay area and Chukchi/Bering Sea. In contrast, concentrations of Cd showed an increasing trend from east to west. Minor or no spatial trends were observed for Cu, Mn, Rb and Zn. Spatial trends were in agreement with previous studies, possibly explained by natural phenomena. To assess temporal changes of Cd, Hg, Se and Zn concentrations during the last decades, we compared our results to previously published data. These time comparisons suggested recent Hg increase in East Greenland polar bears. This may be related to Hg emissions and/or climate-induced changes in Hg cycles or changes in the polar bear food web related to global warming. Also, Hg:Se molar ratio has increased in East Greenland polar bears, which suggests there may be an increased risk for Hg 2+-mediated toxicity. Since the underlying reasons for spatial trends or changes in time of trace elements in the Arctic are still largely unknown, future studies should focus on the role of changing climate and trace metal emissions on geographical and temporal trends of trace elements. ?? 2011 The Royal Society of Chemistry.

  8. Spatial and temporal trends of selected trace elements in liver tissue from polar bears (Ursus maritimus) from Alaska, Canada and Greenland.

    Science.gov (United States)

    Routti, Heli; Letcher, Robert J; Born, Erik W; Branigan, Marsha; Dietz, Rune; Evans, Thomas J; Fisk, Aaron T; Peacock, Elizabeth; Sonne, Christian

    2011-08-01

    Spatial trends and comparative changes in time of selected trace elements were studied in liver tissue from polar bears from ten different subpopulation locations in Alaska, Canadian Arctic and East Greenland. For nine of the trace elements (As, Cd, Cu, Hg, Mn, Pb, Rb, Se and Zn) spatial trends were investigated in 136 specimens sampled during 2005-2008 from bears from these ten subpopulations. Concentrations of Hg, Se and As were highest in the (northern and southern) Beaufort Sea area and lowest in (western and southern) Hudson Bay area and Chukchi/Bering Sea. In contrast, concentrations of Cd showed an increasing trend from east to west. Minor or no spatial trends were observed for Cu, Mn, Rb and Zn. Spatial trends were in agreement with previous studies, possibly explained by natural phenomena. To assess temporal changes of Cd, Hg, Se and Zn concentrations during the last decades, we compared our results to previously published data. These time comparisons suggested recent Hg increase in East Greenland polar bears. This may be related to Hg emissions and/or climate-induced changes in Hg cycles or changes in the polar bear food web related to global warming. Also, Hg:Se molar ratio has increased in East Greenland polar bears, which suggests there may be an increased risk for Hg(2+)-mediated toxicity. Since the underlying reasons for spatial trends or changes in time of trace elements in the Arctic are still largely unknown, future studies should focus on the role of changing climate and trace metal emissions on geographical and temporal trends of trace elements.

  9. Fundamental Astronomy

    CERN Document Server

    Karttunen, Hannu; Oja, Heikki; Poutanen, Markku; Donner, Karl Johan

    2007-01-01

    Fundamental Astronomy gives a well-balanced and comprehensive introduction to the topics of classical and modern astronomy. While emphasizing both the astronomical concepts and the underlying physical principles, the text provides a sound basis for more profound studies in the astronomical sciences. The fifth edition of this successful undergraduate textbook has been extensively modernized and extended in the parts dealing with the Milky Way, extragalactic astronomy and cosmology as well as with extrasolar planets and the solar system (as a consequence of recent results from satellite missions and the new definition by the International Astronomical Union of planets, dwarf planets and small solar-system bodies). Furthermore a new chapter on astrobiology has been added. Long considered a standard text for physical science majors, Fundamental Astronomy is also an excellent reference and entrée for dedicated amateur astronomers.

  10. Fundamental length

    International Nuclear Information System (INIS)

    Pradhan, T.

    1975-01-01

    The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)

  11. Spin polarized atom traps and fundamental symmetries

    International Nuclear Information System (INIS)

    Haeusser, O.

    1994-10-01

    Plans are described to couple a neutral atom trap to an upgraded version of TRIUMF's TISOL on-line mass separator. The unique properties of trapped and cooled atoms promise improvements of some symmetry tests of the Standard Model of the electroweak and strong interactions. (author). 33 refs., 3 figs

  12. Soybean polar lipids differently impact adipose tissue inflammation and the endotoxin transporters LBP and sCD14 in flaxseed vs. palm oil-rich diets.

    Science.gov (United States)

    Lecomte, Manon; Couëdelo, Leslie; Meugnier, Emmanuelle; Loizon, Emmanuelle; Plaisancié, Pascale; Durand, Annie; Géloën, Alain; Joffre, Florent; Vaysse, Carole; Michalski, Marie-Caroline; Laugerette, Fabienne

    2017-05-01

    Obesity and type 2 diabetes are nutritional pathologies, characterized by a subclinical inflammatory state. Endotoxins are now well recognized as an important factor implicated in the onset and maintain of this inflammatory state during fat digestion in high-fat diet. As a preventive strategy, lipid formulation could be optimized to limit these phenomena, notably regarding fatty acid profile and PL emulsifier content. Little is known about soybean polar lipid (SPL) consumption associated to oils rich in saturated FA vs. anti-inflammatory omega-3 FA such as α-linolenic acid on inflammation and metabolic endotoxemia. We then investigated in mice the effect of different synthetic diets enriched with two different oils, palm oil or flaxseed oil and containing or devoid of SPL on adipose tissue inflammation and endotoxin receptors. In both groups containing SPL, adipose tissue (WAT) increased compared with groups devoid of SPL and an induction of MCP-1 and LBP was observed in WAT. However, only the high-fat diet in which flaxseed oil was associated with SPL resulted in both higher WAT inflammation and higher circulating sCD14 in plasma. In conclusion, we have demonstrated that LPS transporters LBP and sCD14 and adipose tissue inflammation can be modulated by SPL in high fat diets differing in oil composition. Notably high-flaxseed oil diet exerts a beneficial metabolic impact, however blunted by PL addition. Our study suggests that nutritional strategies can be envisaged by optimizing dietary lipid sources in manufactured products, including fats/oils and polar lipid emulsifiers, in order to limit the inflammatory impact of palatable foods. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Fundamental safety principles. Safety fundamentals

    International Nuclear Information System (INIS)

    2006-01-01

    This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purpose. The fundamental safety objective - to protect people and the environment from harmful effects of ionizing radiation - applies to all circumstances that give rise to radiation risks. The safety principles are applicable, as relevant, throughout the entire lifetime of all facilities and activities - existing and new - utilized for peaceful purposes, and to protective actions to reduce existing radiation risks. They provide the basis for requirements and measures for the protection of people and the environment against radiation risks and for the safety of facilities and activities that give rise to radiation risks, including, in particular, nuclear installations and uses of radiation and radioactive sources, the transport of radioactive material and the management of radioactive waste

  14. Fundamental safety principles. Safety fundamentals

    International Nuclear Information System (INIS)

    2007-01-01

    This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purpose. The fundamental safety objective - to protect people and the environment from harmful effects of ionizing radiation - applies to all circumstances that give rise to radiation risks. The safety principles are applicable, as relevant, throughout the entire lifetime of all facilities and activities - existing and new - utilized for peaceful purposes, and to protective actions to reduce existing radiation risks. They provide the basis for requirements and measures for the protection of people and the environment against radiation risks and for the safety of facilities and activities that give rise to radiation risks, including, in particular, nuclear installations and uses of radiation and radioactive sources, the transport of radioactive material and the management of radioactive waste

  15. Marketing fundamentals.

    Science.gov (United States)

    Redmond, W H

    2001-01-01

    This chapter outlines current marketing practice from a managerial perspective. The role of marketing within an organization is discussed in relation to efficiency and adaptation to changing environments. Fundamental terms and concepts are presented in an applied context. The implementation of marketing plans is organized around the four P's of marketing: product (or service), promotion (including advertising), place of delivery, and pricing. These are the tools with which marketers seek to better serve their clients and form the basis for competing with other organizations. Basic concepts of strategic relationship management are outlined. Lastly, alternate viewpoints on the role of advertising in healthcare markets are examined.

  16. Coordinate Transcriptomic and Metabolomic Effects of the Insulin Sensitizer Rosiglitazone on Fundamental Metabolic Pathways in Liver, Soleus Muscle, and Adipose Tissue in Diabetic db/db Mice

    Directory of Open Access Journals (Sweden)

    Sabrina Le Bouter

    2010-01-01

    Full Text Available Rosiglitazone (RSG, developed for the treatment of type 2 diabetes mellitus, is known to have potent effects on carbohydrate and lipid metabolism leading to the improvement of insulin sensitivity in target tissues. To further assess the capacity of RSG to normalize gene expression in insulin-sensitive tissues, we compared groups of 18-day-treated db/db mice with increasing oral doses of RSG (10, 30, and 100 mg/kg/d with untreated non-diabetic littermates (db/+. For this aim, transcriptional changes were measured in liver, inguinal adipose tissue (IAT and soleus muscle using microarrays and real-time PCR. In parallel, targeted metabolomic assessment of lipids (triglycerides (TGs and free fatty acids (FFAs in plasma and tissues was performed by UPLC-MS methods. Multivariate analyses revealed a relationship between the differential gene expressions in liver and liver trioleate content and between blood glucose levels and a combination of differentially expressed genes measured in liver, IAT, and muscle. In summary, we have integrated gene expression and targeted metabolomic data to present a comprehensive overview of RSG-induced changes in a diabetes mouse model and improved the molecular understanding of how RSG ameliorates diabetes through its effect on the major insulin-sensitive tissues.

  17. Fundamentals of radiological protection

    International Nuclear Information System (INIS)

    Charles, M.W.; Wells, J.; Mill, A.J.

    1978-04-01

    A brief review is presented of the early and late effects of ionising radiation on man, with particular emphasis on those aspects of importance in radiological protection. The terminology and dose response curves, are explained. Early effects on cells, tissues and whole organs are discussed. Late somatic effects considered include cancer and life-span shortening. Genetic effects are examined. The review is the third of a series of reports which present the fundamentals necessary for an understanding of the basis of regulatory criteria, such as those of the ICRP. (u.K.)

  18. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  19. Instrumentation with polarized neutrons

    International Nuclear Information System (INIS)

    Boeni, P.; Muenzer, W.; Ostermann, A.

    2009-01-01

    Neutron scattering with polarization analysis is an indispensable tool for the investigation of novel materials exhibiting electronic, magnetic, and orbital degrees of freedom. In addition, polarized neutrons are necessary for neutron spin precession techniques that path the way to obtain extremely high resolution in space and time. Last but not least, polarized neutrons are being used for fundamental studies as well as very recently for neutron imaging. Many years ago, neutron beam lines were simply adapted for polarized beam applications by adding polarizing elements leading usually to unacceptable losses in neutron intensity. Recently, an increasing number of beam lines are designed such that an optimum use of polarized neutrons is facilitated. In addition, marked progress has been obtained in the technology of 3 He polarizers and the reflectivity of large-m supermirrors. Therefore, if properly designed, only factors of approximately 2-3 in neutron intensity are lost. It is shown that S-benders provide neutron beams with an almost wavelength independent polarization. Using twin cavities, polarized beams with a homogeneous phase space and P>0.99 can be produced without significantly sacrificing intensity. It is argued that elliptic guides, which are coated with large m polarizing supermirrors, provide the highest flux.

  20. Polarization-preserving holey fibers

    DEFF Research Database (Denmark)

    Broeng, Jes; Mogilevtsev, Dmitri; Libori, Stig E. Barkou

    2001-01-01

    In this work we suggest and discuss a microstructure of air capillaries with elliptical cross-section in a tread of glass that gives opportunity for Creation of polarization-preserving fiber with very small beat length between the fundamental modes of different polarization......In this work we suggest and discuss a microstructure of air capillaries with elliptical cross-section in a tread of glass that gives opportunity for Creation of polarization-preserving fiber with very small beat length between the fundamental modes of different polarization...

  1. Organophosphate esters in East Greenland polar bears and ringed seals: Adipose tissue concentrations and in vitro depletion and metabolite formation.

    Science.gov (United States)

    Strobel, Adelle; Willmore, William G; Sonne, Christian; Dietz, Rune; Letcher, Robert J

    2018-04-01

    East Greenland is a contamination "hot spot" for long-range transported anthropogenic chemicals, including organophosphate esters (OPEs). High concentrations of OPEs have been reported in arctic air while very little is known for wildlife where OPE tissue residues levels appear to be strongly influenced by biotransformation. In the present study, the hepatic in vitro metabolism of six environmentally relevant organophosphate (OP) triesters and corresponding OP diester formation were investigated in East Greenland polar bears (PBs) and ringed seals (RSs). The in vitro metabolism assay results were compared to adipose levels in field samples from the same individuals. In vitro OP triester metabolism was generally rapid and structure-dependent, where PBs metabolized OPEs more rapidly than RSs. Exceptions were the lack of triethyl phosphate (TEP) metabolism and slow metabolism of tris(2-ethylhexyl) phosphate (TEHP) in both species. OP diester metabolites were also formed with the exception of TEP which was not metabolized at all. Tris(1,3-dichloro-2-propyl) phosphate was completely converted to its corresponding diester. However, the mass balances showed that OP diester formation corresponding to TEHP, tri(n-butyl) phosphate, and tris(2-butyoxyethyl) phosphate did not account for 100% of the OP triester depletion, which indicated alternate pathways of OP triester metabolism had occurred. Triphenyl phosphate was completely converted to its OP diester metabolite in PBs but not in RSs suggesting species-specific differences. The results demonstrated that OP triester bioaccumulation and fate in PBs versus their RS prey is substantially influenced by biotransformation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Degrees of polarization for a quantum field

    International Nuclear Information System (INIS)

    Sanchez-Soto, L L; Soederholm, J; Yustas, E C; Klimov, A B; Bjoerk, G

    2006-01-01

    Unpolarized light is invariant with respect to any SU(2) polarization transformation. Since this fully characterizes the set of density matrices representing unpolarized states, we introduce the degree of polarization of a quantum state as its distance to the set of unpolarized states. We discuss different candidates of distance, and show that they induce fundamentally different degrees of polarization

  3. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  4. Exchange Rates and Fundamentals.

    Science.gov (United States)

    Engel, Charles; West, Kenneth D.

    2005-01-01

    We show analytically that in a rational expectations present-value model, an asset price manifests near-random walk behavior if fundamentals are I (1) and the factor for discounting future fundamentals is near one. We argue that this result helps explain the well-known puzzle that fundamental variables such as relative money supplies, outputs,…

  5. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM)

    Science.gov (United States)

    Steinbach, G.; Pawlak, K.; Pomozi, I.; Tóth, E. A.; Molnár, A.; Matkó, J.; Garab, G.

    2014-03-01

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316-25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM.

  6. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM)

    International Nuclear Information System (INIS)

    Steinbach, G; Pawlak, K; Garab, G; Pomozi, I; Tóth, E A; Molnár, A; Matkó, J

    2014-01-01

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316–25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM. (paper)

  7. Vectorial optical fields fundamentals and applications

    CERN Document Server

    2014-01-01

    Polarization is a vector nature of light that plays an important role in optical science and engineering. While existing textbook treatments of light assume beams with spatially homogeneous polarization, there is an increasing interest in vectorial optical fields with spatially engineered states of polarization. New effects and phenomena have been predicted and observed for light beams with these unconventional polarization states. This edited review volume aims to provide a comprehensive overview and summarize the latest developments in this important emerging field of optics. This book will cover the fundamentals including mathematical and physical descriptions, experimental generation, manipulation, focusing, propagation, and the applications of the engineered vectorial optical fields in focal field engineering, plasmonic focusing and optical antenna, single molecular imaging, optical tweezers/trapping, as well as optical measurements and instrumentations. Readership: Students, professionals, post-graduat...

  8. Islamic fundamentalism in Indonesia

    OpenAIRE

    Nagy, Sandra L.

    1996-01-01

    This is a study of Islamic fundamentalism in Indonesia. Islamic fundamentalism is defined as the return to the foundations and principles of Islam including all movements based on the desire to create a more Islamic society. After describing the practices and beliefs of Islam, this thesis examines the three aspects of universal Islamic fundamentalism: revivalism, resurgence, and radicalism. It analyzes the role of Islam in Indonesia under Dutch colonial rule, an alien Christian imperialist po...

  9. Transplantation of an LGR6+ Epithelial Stem Cell-Enriched Scaffold for Repair of Full-Thickness Soft-Tissue Defects: The In Vitro Development of Polarized Hair-Bearing Skin.

    Science.gov (United States)

    Lough, Denver M; Wetter, Nathan; Madsen, Christopher; Reichensperger, Joel; Cosenza, Nicole; Cox, Lisa; Harrison, Carrie; Neumeister, Michael W

    2016-02-01

    Recent literature has shown that full-thickness wounds, devoid of the stem cell niche, can subsequently be reconstructed with functional skin elements following migration of the LGR6 epithelial stem cell into the wound bed. In this study, the authors use a variety of LGR6 epithelial stem cell-seeded scaffolds to determine therapeutic utility and regenerative potential in the immediate reconstruction of full-thickness wounds. Isolated LGR6 epithelial stem cells were seeded onto a spectrum of acellular matrices and monitored in both in vitro and in vivo settings to determine their relative capacity to regenerate tissues and heal wounds. Wound beds containing LGR6 stem cell-seeded scaffolds showed significantly augmented rates of healing, epithelialization, and hair growth compared with controls. Gene and proteomic expression studies indicate that LGR6 stem cell-seeded constructs up-regulate WNT, epidermal growth factor, and angiogenesis pathways. Finally, the addition of stromal vascular fraction to LGR6 stem cell-seeded constructs induces polarized tissue formation, nascent hair growth, and angiogenesis within wounds. LGR6 stem cells are able to undergo proliferation, differentiation, and migration following seeding onto a variety of collagen-based scaffolding. In addition, deployment of these constructs induces epithelialization, hair growth, and angiogenesis within wound beds. The addition of stromal vascular fraction to LGR6 stem cell-containing scaffolds initiated an early form of tissue polarization, providing for the first time a clinically applicable stem cell-based construct that is capable of the repair of full-thickness wounds and hair regeneration. Therapeutic, V.

  10. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  11. Fundamentals of gas dynamics

    CERN Document Server

    Babu, V

    2014-01-01

    Fundamentals of Gas Dynamics, Second Edition isa comprehensively updated new edition and now includes a chapter on the gas dynamics of steam. It covers the fundamental concepts and governing equations of different flows, and includes end of chapter exercises based on the practical applications. A number of useful tables on the thermodynamic properties of steam are also included.Fundamentals of Gas Dynamics, Second Edition begins with an introduction to compressible and incompressible flows before covering the fundamentals of one dimensional flows and normal shock wav

  12. Polarized proton beams since the ZGS

    International Nuclear Information System (INIS)

    Krisch, A.D.

    1994-01-01

    The author discusses research involving polarized proton beams since the ZGS's demise. He begins by reminding the attendee that in 1973 the ZGS accelerated the world's first high energy polarized proton beam; all in attendance at this meeting can be proud of this accomplishment. A few ZGS polarized proton beam experiments were done in the early 1970's; then from about 1976 until 1 October 1979, the majority of the ZGS running time was polarized running. A great deal of fundamental physics was done with the polarized beam when the ZGS ran as a dedicated polarized proton beam from about Fall 1977 until it shut down on 1 October 1979. The newly created polarization enthusiats then dispersed; some spread polarized seeds al over the world by polarizing beams elsewhere; some wound up running the High Energy and SSC programs at DOE

  13. Materials Fundamentals of Gate Dielectrics

    CERN Document Server

    Demkov, Alexander A

    2006-01-01

    This book presents materials fundamentals of novel gate dielectrics that are being introduced into semiconductor manufacturing to ensure the continuous scalling of the CMOS devices. This is a very fast evolving field of research so we choose to focus on the basic understanding of the structure, thermodunamics, and electronic properties of these materials that determine their performance in device applications. Most of these materials are transition metal oxides. Ironically, the d-orbitals responsible for the high dielectric constant cause sever integration difficulties thus intrinsically limiting high-k dielectrics. Though new in the electronics industry many of these materials are wel known in the field of ceramics, and we describe this unique connection. The complexity of the structure-property relations in TM oxides makes the use of the state of the art first-principles calculations necessary. Several chapters give a detailed description of the modern theory of polarization, and heterojunction band discont...

  14. The fundamentals of stellar astrophysics

    International Nuclear Information System (INIS)

    Collins, G.W. II.

    1989-01-01

    A broad overview of theoretical stellar astrophysics is presented in a textbook intended for graduate students. Chapters are devoted to fundamental principles, assumptions, theorems, and polytropes; energy sources and sinks; the flow of energy through the star and the construction of stellar models; the theory of stellar evolution; relativistic stellar structure; the structure of distorted stars; stellar pulsation and oscillation. Also discussed are the flow of radiation through the stellar atmosphere, the solution of the radiative-transfer equation, the environment of the radiation field, the construction of a stellar model atmosphere, the formation and shape of spectral lines, LTE breakdown, illuminated and extended stellar atmospheres, and the transfer of polarized radiation. Diagrams, graphs, and sample problems are provided. 164 refs

  15. Interleukin-9 Overexpression and Th9 Polarization Characterize the Inflamed Gut, the Synovial Tissue, and the Peripheral Blood of Patients With Psoriatic Arthritis

    NARCIS (Netherlands)

    Ciccia, Francesco; Guggino, Giuliana; Ferrante, Angelo; Raimondo, Stefania; Bignone, Rodolfo; Rodolico, Vito; Peralta, Sergio; van Tok, Melissa; Cannizzaro, Alessandra; Schinocca, Claudia; Ruscitti, Piero; Cipriani, Paola; Giacomelli, Roberto; Alessandro, Riccardo; Dieli, Francesco; Rizzo, Aroldo; Baeten, Dominique; Triolo, Giovanni

    2016-01-01

    To investigate the expression and tissue distribution of Th9-related cytokines in patients with psoriatic arthritis (PsA). Quantitative gene expression analysis of Th1, Th17, and Th9 cytokines was performed in intestinal biopsy samples obtained from patients with PsA, HLA-B27-positive patients with

  16. Fundamental neutron physics

    International Nuclear Information System (INIS)

    Deslattes, R.; Dombeck, T.; Greene, G.; Ramsey, N.; Rauch, H.; Werner, S.

    1984-01-01

    Fundamental physics experiments of merit can be conducted at the proposed intense neutron sources. Areas of interest include: neutron particle properties, neutron wave properties, and fundamental physics utilizing reactor produced γ-rays. Such experiments require intense, full-time utilization of a beam station for periods ranging from several months to a year or more

  17. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  18. Measuring the sea quark polarization

    International Nuclear Information System (INIS)

    Makdisi, Y.

    1993-01-01

    Spin is a fundamental degree of freedom and measuring the spin structure functions of the nucleon should be a basic endeavor for hadron physics. Polarization experiments have been the domain of fixed target experiments. Over the years large transverse asymmetries have been observed where the prevailing QCD theories predicted little or no asymmetries, and conversely the latest deep inelastic scattering experiments of polarized leptons from polarized targets point to the possibility that little of the nucleon spin is carried by the valence quarks. The possibility of colliding high luminosity polarized proton beams in the Brookhaven Relativistic Heavy Ion Collider (RHIC) provides a great opportunity to extend these studies and systematically probe the spin dependent parton distributions specially to those reactions that are inaccessible to current experiments. This presentation focuses on the measurement of sea quark and possibly the strange quark polarization utilizing the approved RHIC detectors

  19. Relativities of fundamentality

    Science.gov (United States)

    McKenzie, Kerry

    2017-08-01

    S-dualities have been held to have radical implications for our metaphysics of fundamentality. In particular, it has been claimed that they make the fundamentality status of a physical object theory-relative in an important new way. But what physicists have had to say on the issue has not been clear or consistent, and in particular seems to be ambiguous between whether S-dualities demand an anti-realist interpretation of fundamentality talk or merely a revised realism. This paper is an attempt to bring some clarity to the matter. After showing that even antecedently familiar fundamentality claims are true only relative to a raft of metaphysical, physical, and mathematical assumptions, I argue that the relativity of fundamentality inherent in S-duality nevertheless represents something new, and that part of the reason for this is that it has both realist and anti-realist implications for fundamentality talk. I close by discussing the broader significance that S-dualities have for structuralist metaphysics and for fundamentality metaphysics more generally.

  20. Fundamental studies of molecular multiphoton ionization

    International Nuclear Information System (INIS)

    Miller, J.C.; Compton, R.N.

    1984-04-01

    For several years the authors have performed fundamental studies of molecular multiphoton ionization (MPI). We will present a potpourri of techniques and results chosen to illustrate the interesting complexities of molecular MPI. Techniques used include time-of-flight mass spectroscopy, photoelectron spectroscopy, supersonic expansion cooling of molecular beams, harmonic generation, two-color laser MPI, and polarization spectroscopy. Whenever possible the relevance of these results to resonance ionization spectroscopy schemes will be delineated. 23 references, 10 figures

  1. Fundamentals of electronics

    CERN Document Server

    Schubert, Thomas F

    2015-01-01

    This book, Electronic Devices and Circuit Application, is the first of four books of a larger work, Fundamentals of Electronics. It is comprised of four chapters describing the basic operation of each of the four fundamental building blocks of modern electronics: operational amplifiers, semiconductor diodes, bipolar junction transistors, and field effect transistors. Attention is focused on the reader obtaining a clear understanding of each of the devices when it is operated in equilibrium. Ideas fundamental to the study of electronic circuits are also developed in the book at a basic level to

  2. Polarization recovery through scattering media.

    Science.gov (United States)

    de Aguiar, Hilton B; Gigan, Sylvain; Brasselet, Sophie

    2017-09-01

    The control and use of light polarization in optical sciences and engineering are widespread. Despite remarkable developments in polarization-resolved imaging for life sciences, their transposition to strongly scattering media is currently not possible, because of the inherent depolarization effects arising from multiple scattering. We show an unprecedented phenomenon that opens new possibilities for polarization-resolved microscopy in strongly scattering media: polarization recovery via broadband wavefront shaping. We demonstrate focusing and recovery of the original injected polarization state without using any polarizing optics at the detection. To enable molecular-level structural imaging, an arbitrary rotation of the input polarization does not degrade the quality of the focus. We further exploit the robustness of polarization recovery for structural imaging of biological tissues through scattering media. We retrieve molecular-level organization information of collagen fibers by polarization-resolved second harmonic generation, a topic of wide interest for diagnosis in biomedical optics. Ultimately, the observation of this new phenomenon paves the way for extending current polarization-based methods to strongly scattering environments.

  3. Fundamentals of electrochemical science

    CERN Document Server

    Oldham, Keith

    1993-01-01

    Key Features* Deals comprehensively with the basic science of electrochemistry* Treats electrochemistry as a discipline in its own right and not as a branch of physical or analytical chemistry* Provides a thorough and quantitative description of electrochemical fundamentals

  4. Fundamentals of ion exchange

    International Nuclear Information System (INIS)

    Townsend, R.P.

    1993-01-01

    In this paper the fundamentals of ion exchange mechanisms and their thermodynamics are described. A range of ion exchange materials is considered and problems of communication and technology transfer between scientists working in the field are discussed. (UK)

  5. Land Prices and Fundamentals

    OpenAIRE

    Koji Nakamura; Yumi Saita

    2007-01-01

    This paper examines the long-term relationship between macro economic fundamentals and the weighted-average land price indicators, which are supposed to be more appropriate than the official land price indicators when analyzing their impacts on the macro economy. In many cases, we find the cointegrating relationships between the weighted-average land price indicators and the discounted present value of land calculated based on the macro economic fundamentals indicators. We also find that the ...

  6. Fundamentals of structural dynamics

    CERN Document Server

    Craig, Roy R

    2006-01-01

    From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics.This edition updates Professor Craig's classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element-based computational methods, and dynamic testing methods, this Second Edition includes new and e

  7. Information security fundamentals

    CERN Document Server

    Peltier, Thomas R

    2013-01-01

    Developing an information security program that adheres to the principle of security as a business enabler must be the first step in an enterprise's effort to build an effective security program. Following in the footsteps of its bestselling predecessor, Information Security Fundamentals, Second Edition provides information security professionals with a clear understanding of the fundamentals of security required to address the range of issues they will experience in the field.The book examines the elements of computer security, employee roles and r

  8. Religious fundamentalism and conflict

    OpenAIRE

    Muzaffer Ercan Yılmaz

    2006-01-01

    This study provides an analytical discussion for the issue of religious fundamentalism and itsrelevance to conflict, in its broader sense. It is stressed that religious fundamentalism manifests itself in twoways: nonviolent intolerance and violent intolerance. The sources of both types of intolerance and theirconnection to conflict are addressed and discussed in detail. Further research is also suggested on conditionsconnecting religion to nonviolent intolerance so as to cope with the problem...

  9. Fundamentals of statistics

    CERN Document Server

    Mulholland, Henry

    1968-01-01

    Fundamentals of Statistics covers topics on the introduction, fundamentals, and science of statistics. The book discusses the collection, organization and representation of numerical data; elementary probability; the binomial Poisson distributions; and the measures of central tendency. The text describes measures of dispersion for measuring the spread of a distribution; continuous distributions for measuring on a continuous scale; the properties and use of normal distribution; and tests involving the normal or student's 't' distributions. The use of control charts for sample means; the ranges

  10. Fundamentalism and science

    Directory of Open Access Journals (Sweden)

    Massimo Pigliucci

    2006-06-01

    Full Text Available The many facets of fundamentalism. There has been much talk about fundamentalism of late. While most people's thought on the topic go to the 9/11 attacks against the United States, or to the ongoing war in Iraq, fundamentalism is affecting science and its relationship to society in a way that may have dire long-term consequences. Of course, religious fundamentalism has always had a history of antagonism with science, and – before the birth of modern science – with philosophy, the age-old vehicle of the human attempt to exercise critical thinking and rationality to solve problems and pursue knowledge. “Fundamentalism” is defined by the Oxford Dictionary of the Social Sciences1 as “A movement that asserts the primacy of religious values in social and political life and calls for a return to a 'fundamental' or pure form of religion.” In its broadest sense, however, fundamentalism is a form of ideological intransigence which is not limited to religion, but includes political positions as well (for example, in the case of some extreme forms of “environmentalism”.

  11. Ionic polarization

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1992-01-01

    Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory

  12. Polarization experiments

    International Nuclear Information System (INIS)

    Halzen, F.

    1977-02-01

    In a theoretical review of polarization experiments two important points are emphasized: (a) their versatility and their relevance to a large variety of aspects of hadron physics (tests of basic symmetries; a probe of strong interaction dynamics; a tool for hadron spectroscopy); (b) the wealth of experimental data on polarization parameters in pp and np scattering in the Regge language and in the diffraction language. (author)

  13. PPAR-gamma activation is associated with reduced liver ischemia-reperfusion injury and altered tissue-resident macrophages polarization in a mouse model.

    Science.gov (United States)

    Linares, Ivan; Farrokhi, Kaveh; Echeverri, Juan; Kaths, Johan Moritz; Kollmann, Dagmar; Hamar, Matyas; Urbanellis, Peter; Ganesh, Sujani; Adeyi, Oyedele A; Yip, Paul; Selzner, Markus; Selzner, Nazia

    2018-01-01

    PPAR-gamma (γ) is highly expressed in macrophages and its activation affects their polarization. The effect of PPAR-γ activation on Kupffer cells (KCs) and liver ischemia-reperfusion injury (IRI) has not yet been evaluated. We investigated the effect of PPAR-γ activation on KC-polarization and IRI. Seventy percent (70%) liver ischemia was induced for 60mins. PPAR-γ-agonist or vehicle was administrated before reperfusion. PPAR-γ-antagonist was used to block PPAR-γ activation. Liver injury, necrosis, and apoptosis were assessed post-reperfusion. Flow-cytometry determined KC-phenotypes (pro-inflammatory Nitric Oxide +, anti-inflammatory CD206+ and anti-inflammatory IL-10+). Liver injury assessed by serum AST was significantly decreased in PPAR-γ-agonist versus control group at all time points post reperfusion (1hr: 3092±105 vs 4469±551; p = 0.042; 6hr: 7041±1160 vs 12193±1143; p = 0.015; 12hr: 5746±328 vs 8608±1259; p = 0.049). Furthermore, liver apoptosis measured by TUNEL-staining was significantly reduced in PPAR-γ-agonist versus control group post reperfusion (1hr:2.46±0.49 vs 6.90±0.85%;p = 0.001; 6hr:26.40±2.93 vs 50.13±8.29%; p = 0.048). H&E staining demonstrated less necrosis in PPAR-γ-agonist versus control group (24hr:26.66±4.78 vs 45.62±4.57%; p = 0.032). The percentage of pro-inflammatory NO+ KCs was significantly lower at all post reperfusion time points in the PPAR-γ-agonist versus control group (1hr:28.49±4.99 vs 53.54±9.15%; p = 0.040; 6hr:5.51±0.54 vs 31.12±9.58%; p = 0.009; 24hr:4.15±1.50 vs 17.10±4.77%; p = 0.043). In contrast, percentage of anti-inflammatory CD206+ KCs was significantly higher in PPAR-γ-agonist versus control group prior to IRI (8.62±0.96 vs 4.88 ±0.50%; p = 0.04). Administration of PPAR-γ-antagonist reversed the beneficial effects on AST, apoptosis, and pro-inflammatory NO+ KCs. PPAR-γ activation reduces IRI and decreases the pro-inflammatory NO+ Kupffer cells. PPAR-γ activation can become an

  14. Interaction of low-intensity linearly polarized laser radiation with living tissues: effects on tissular acceleration of skin wound healing; Interacao da radiacao laser linearmente polarizada de baixa intensidade com tecidos vivos: efeitos na acelaracao de cicatrizacao tissular em lesoes de pele

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Martha Simoes

    2000-07-01

    According to the Maxwell's equations to optical properties of surfaces, the energy deposition efficiency in a microroughness interface depends on the electrical field polarization component. Considering a linearly polarized beam, this efficiency will depend on the roughness parameters to p-polarized light and it will not depend on such parameters to s-polarized light. In this work it was investigated the effects of low-intensity, linearly polarized He-Ne laser beam on skin wounds healing, considering two orthogonal directions of polarization. We have considered a preferential axis as the animals' spinal column and we aligned the linear laser polarization first parallel, then perpendicular to this direction. Burns about 6 mm in diameter were created with liquid N{sub 2} on the back of the animals and the lesions were irradiated on days 3, 7, 10 and 14 post-wounding, D= 1,0 J/cm{sup 2}. Control lesions were not irradiated. The theoretical model consisted in describing linearly polarized light propagation in biological tissues using transport theory. The degree of polarization was measured in normal and pathological skin samples. It was verified that linearly polarized light can survive in the superficial layers of skin and it can be more preserved in skin under pathological condition when compared with health skin. The analysis of skin wound healing process has demonstrated that the relative direction of the laser polarization plays an important role on the wound healing process by light microscopy, transmission electron microscopy and radioautography. (author)

  15. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  16. Fundamentals of turbomachines

    CERN Document Server

    Dick, Erik

    2015-01-01

    This book explores the working principles of all kinds of turbomachines. The same theoretical framework is used to analyse the different machine types. Fundamentals are first presented and theoretical concepts are then elaborated for particular machine types, starting with the simplest ones.For each machine type, the author strikes a balance between building basic understanding and exploring knowledge of practical aspects. Readers are invited through challenging exercises to consider how the theory applies to particular cases and how it can be generalised.   The book is primarily meant as a course book. It teaches fundamentals and explores applications. It will appeal to senior undergraduate and graduate students in mechanical engineering and to professional engineers seeking to understand the operation of turbomachines. Readers will gain a fundamental understanding of turbomachines. They will also be able to make a reasoned choice of turbomachine for a particular application and to understand its operation...

  17. Arguing against fundamentality

    Science.gov (United States)

    McKenzie, Kerry

    This paper aims to open up discussion on the relationship between fundamentality and naturalism, and in particular on the question of whether fundamentality may be denied on naturalistic grounds. A historico-inductive argument for an anti-fundamentalist conclusion, prominent within the contemporary metaphysical literature, is examined; finding it wanting, an alternative 'internal' strategy is proposed. By means of an example from the history of modern physics - namely S-matrix theory - it is demonstrated that (1) this strategy can generate similar (though not identical) anti-fundamentalist conclusions on more defensible naturalistic grounds, and (2) that fundamentality questions can be empirical questions. Some implications and limitations of the proposed approach are discussed.

  18. Fundamentals of piping design

    CERN Document Server

    Smith, Peter

    2013-01-01

    Written for the piping engineer and designer in the field, this two-part series helps to fill a void in piping literature,since the Rip Weaver books of the '90s were taken out of print at the advent of the Computer Aid Design(CAD) era. Technology may have changed, however the fundamentals of piping rules still apply in the digitalrepresentation of process piping systems. The Fundamentals of Piping Design is an introduction to the designof piping systems, various processes and the layout of pipe work connecting the major items of equipment forthe new hire, the engineering student and the vetera

  19. Infosec management fundamentals

    CERN Document Server

    Dalziel, Henry

    2015-01-01

    Infosec Management Fundamentals is a concise overview of the Information Security management concepts and techniques, providing a foundational template for both experienced professionals and those new to the industry. This brief volume will also appeal to business executives and managers outside of infosec who want to understand the fundamental concepts of Information Security and how it impacts their business decisions and daily activities. Teaches ISO/IEC 27000 best practices on information security management Discusses risks and controls within the context of an overall information securi

  20. Homeschooling and religious fundamentalism

    Directory of Open Access Journals (Sweden)

    Robert Kunzman

    2010-10-01

    Full Text Available This article considers the relationship between homeschooling and religious fundamentalism by focusing on their intersection in the philosophies and practices of conservative Christian homeschoolers in the United States. Homeschooling provides an ideal educational setting to support several core fundamentalist principles: resistance to contemporary culture; suspicion of institutional authority and professional expertise; parental control and centrality of the family; and interweaving of faith and academics. It is important to recognize, however, that fundamentalism exists on a continuum; conservative religious homeschoolers resist liberal democratic values to varying degrees, and efforts to foster dialogue and accommodation with religious homeschoolers can ultimately help strengthen the broader civic fabric.

  1. Fundamentals of continuum mechanics

    CERN Document Server

    Rudnicki, John W

    2014-01-01

    A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally.  This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energ

  2. Pragmatic electrical engineering fundamentals

    CERN Document Server

    Eccles, William

    2011-01-01

    Pragmatic Electrical Engineering: Fundamentals introduces the fundamentals of the energy-delivery part of electrical systems. It begins with a study of basic electrical circuits and then focuses on electrical power. Three-phase power systems, transformers, induction motors, and magnetics are the major topics.All of the material in the text is illustrated with completely-worked examples to guide the student to a better understanding of the topics. This short lecture book will be of use at any level of engineering, not just electrical. Its goal is to provide the practicing engineer with a practi

  3. Fundamentals of reactor chemistry

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1981-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)

  4. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  5. Bioelectric modulation of macrophage polarization

    Science.gov (United States)

    Li, Chunmei; Levin, Michael; Kaplan, David L.

    2016-02-01

    Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells’ resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine.

  6. Fundamentals of astrodynamics

    NARCIS (Netherlands)

    Wakker, K.F.

    2015-01-01

    This book deals with the motion of the center of mass of a spacecraft; this discipline is generally called astrodynamics. The book focuses on an analytical treatment of the motion of spacecraft and provides insight into the fundamentals of spacecraft orbit dynamics. A large number of topics are

  7. Safety analysis fundamentals

    International Nuclear Information System (INIS)

    Wright, A.C.D.

    2002-01-01

    This paper discusses the safety analysis fundamentals in reactor design. This study includes safety analysis done to show consequences of postulated accidents are acceptable. Safety analysis is also used to set design of special safety systems and includes design assist analysis to support conceptual design. safety analysis is necessary for licensing a reactor, to maintain an operating license, support changes in plant operations

  8. Fundamentals and Optimal Institutions

    DEFF Research Database (Denmark)

    Gonzalez-Eiras, Martin; Harmon, Nikolaj Arpe; Rossi, Martín

    2016-01-01

    of regulatory institutions such as revenue sharing, salary caps or luxury taxes. We show, theoretically and empirically, that these large differences in adopted institutions can be rationalized as optimal responses to differences in the fundamental characteristics of the sports being played. This provides...

  9. Fundamentals of convolutional coding

    CERN Document Server

    Johannesson, Rolf

    2015-01-01

    Fundamentals of Convolutional Coding, Second Edition, regarded as a bible of convolutional coding brings you a clear and comprehensive discussion of the basic principles of this field * Two new chapters on low-density parity-check (LDPC) convolutional codes and iterative coding * Viterbi, BCJR, BEAST, list, and sequential decoding of convolutional codes * Distance properties of convolutional codes * Includes a downloadable solutions manual

  10. Industrial separation processes : fundamentals

    NARCIS (Netherlands)

    Haan, de A.B.; Bosch, Hans

    2013-01-01

    Separation processes on an industrial scale comprise well over half of the capital and operating costs. They are basic knowledge in every chemical engineering and process engineering study. This book provides comprehensive and fundamental knowledge of university teaching in this discipline,

  11. Fundamental partial compositeness

    DEFF Research Database (Denmark)

    Sannino, Francesco; Strumia, Alessandro; Tesi, Andrea

    2016-01-01

    We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Unde...

  12. Grenoble Fundamental Research Department

    International Nuclear Information System (INIS)

    1979-01-01

    A summary of the various activities of the Fundamental Research Institute, Grenoble, France is given. The following fields are covered: Nuclear physics, solid state physics, physical chemistry, biology and advanced techniques. Fore more detailed descriptions readers are referred to scientific literature [fr

  13. Fundamentals of Fire Phenomena

    DEFF Research Database (Denmark)

    Quintiere, James

    analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...

  14. Fundamental Metallurgy of Solidification

    DEFF Research Database (Denmark)

    Tiedje, Niels

    2004-01-01

    The text takes the reader through some fundamental aspects of solidification, with focus on understanding the basic physics that govern solidification in casting and welding. It is described how the first solid is formed and which factors affect nucleation. It is described how crystals grow from...

  15. Fundamentals of Diesel Engines.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the fundamentals of diesel engine mechanics. Addressed in the three individual units of the course are the following topics: basic principles of diesel mechanics; principles, mechanics, and…

  16. Introduction and fundamentals

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1980-01-01

    This introduction discusses advances in the fundamental sciences which underlie the applied science of health physics and radiation protection. Risk assessments in nuclear medicine are made by defining the conditions of exposure, identification of adverse effects, relating exposure with effect, and estimation of the overall risk for ionizing radiations

  17. Fundamentals of plasma physics

    CERN Document Server

    Bittencourt, J A

    1986-01-01

    A general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory. Its clarity and completeness make it suitable for self-learning and self-paced courses. Problems are included.

  18. Fast fundamental frequency estimation

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Jensen, Tobias Lindstrøm; Jensen, Jesper Rindom

    2017-01-01

    Modelling signals as being periodic is common in many applications. Such periodic signals can be represented by a weighted sum of sinusoids with frequencies being an integer multiple of the fundamental frequency. Due to its widespread use, numerous methods have been proposed to estimate the funda...

  19. Physics with polarized electron beams

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-01-01

    As a distinct field, elementary particle physics is now approximately forty years old. In all that time, only a few of the thousands of experiments that have been performed have made use of spin polarized particle beams (with apologies to those who have studied neutrino interactions, polarized beam are defined to refer to the case in which the experimenter has control over the polarization direction). If the discussion is restricted to spin polarized electron beams, the number of experiments becomes countable with the fingers of one hand (with several to spare). There are two reasons for this lack of interest. The first is that spin polarized beams are difficult to produce, accelerate, and transport. The second reason is that any physical process that can occur during the collision of a polarized particle with another (polarized or not) can also occur during the collision of unpolarized particles. One might ask then, why has any effort been expended on the subject. The answer, at least in the case of polarized electron beams, is that electron accelerators and storage rings have in recent years achieved sufficient energy to begin to probe the weak interaction directly. The weak interaction distinguishes between left- and right-handed fermionic currents. Left-handed particles interact in a fundamentally different way than their right-handed counterparts. If the experimenter wishes to explore or exploit this difference, he (or she) must either prepare the spin state of the incident particles or analyze the spin state of outgoing particles. For reasons of genearlity and improved statistical precision, the former is usually preferable to the latter. The first of these lectures will review some of the techniques necessary for the production, transport, and monitoring of polarized electron (or positron) beams. The second lecture will survey some of the physics possibilities of polarized electron-positron collisions

  20. Polarization study

    International Nuclear Information System (INIS)

    Nurushev, S.B.

    1989-01-01

    Brief review is presented of the high energy polarization study including experimental data and the theoretical descriptions. The mostimportant proposals at the biggest accelerators and the crucial technical developments are also listed which may become a main-line of spin physics. 35 refs.; 10 figs.; 4 tabs

  1. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  2. CMB polarization at large angular scales: Data analysis of the POLAR experiment

    International Nuclear Information System (INIS)

    O'Dell, Christopher W.; Keating, Brian G.; Oliveira-Costa, Angelica de; Tegmark, Max; Timbie, Peter T.

    2003-01-01

    The coming flood of cosmic microwave background (CMB) polarization experiments, spurred by the recent detection of CMB polarization by the DASI and WMAP instruments, will be confronted by many new analysis tasks specific to polarization. For the analysis of CMB polarization data sets, the devil is truly in the details. With this in mind, we present details of the data analysis for the POLAR experiment, which recently led to the tightest upper limits on the polarization of the cosmic microwave background radiation at large angular scales. We discuss the data selection process, map-making algorithms, offset removal, and likelihood analysis which were used to find upper limits on the polarization. Stated using the modern convention for reporting CMB Stokes parameters, these limits are 5.0 μK on both E- and B-type polarization at 95% confidence. Finally, we discuss simulations used to test our analysis techniques and to probe the fundamental limitations of the experiment

  3. Fundamentals of differential beamforming

    CERN Document Server

    Benesty, Jacob; Pan, Chao

    2016-01-01

    This book provides a systematic study of the fundamental theory and methods of beamforming with differential microphone arrays (DMAs), or differential beamforming in short. It begins with a brief overview of differential beamforming and some popularly used DMA beampatterns such as the dipole, cardioid, hypercardioid, and supercardioid, before providing essential background knowledge on orthogonal functions and orthogonal polynomials, which form the basis of differential beamforming. From a physical perspective, a DMA of a given order is defined as an array that measures the differential acoustic pressure field of that order; such an array has a beampattern in the form of a polynomial whose degree is equal to the DMA order. Therefore, the fundamental and core problem of differential beamforming boils down to the design of beampatterns with orthogonal polynomials. But certain constraints also have to be considered so that the resulting beamformer does not seriously amplify the sensors’ self noise and the mism...

  4. Fundamentals of Geophysics

    Science.gov (United States)

    Frohlich, Cliff

    Choosing an intermediate-level geophysics text is always problematic: What should we teach students after they have had introductory courses in geology, math, and physics, but little else? Fundamentals of Geophysics is aimed specifically at these intermediate-level students, and the author's stated approach is to construct a text “using abundant diagrams, a simplified mathematical treatment, and equations in which the student can follow each derivation step-by-step.” Moreover, for Lowrie, the Earth is round, not flat—the “fundamentals of geophysics” here are the essential properties of our Earth the planet, rather than useful techniques for finding oil and minerals. Thus this book is comparable in both level and approach to C. M. R. Fowler's The Solid Earth (Cambridge University Press, 1990).

  5. Fundamental superstrings as holograms

    International Nuclear Information System (INIS)

    Dabholkar, A.; Murthy, S.

    2007-06-01

    The worldsheet of a macroscopic fundamental superstring in the Green-Schwarz light-cone gauge is viewed as a possible boundary hologram of the near horizon region of a small black string. For toroidally compactified strings, the hologram has global symmetries of AdS 3 x S d-1 x T 8-d ( d = 3, . . . , 8), only some of which extend to local conformal symmetries. We construct the bulk string theory in detail for the particular case of d = 3. The symmetries of the hologram are correctly reproduced from this exact worldsheet description in the bulk. Moreover, the central charge of the boundary Virasoro algebra obtained from the bulk agrees with the Wald entropy of the associated small black holes. This construction provides an exact CFT description of the near horizon region of small black holes both in Type-II and heterotic string theory arising from multiply wound fundamental superstrings. (author)

  6. Fundamental superstrings as holograms

    International Nuclear Information System (INIS)

    Dabholkar, Atish; Murthy, Sameer

    2008-01-01

    The worldsheet of a macroscopic fundamental superstring in the Green-Schwarz light-cone gauge is viewed as a possible boundary hologram of the near horizon region of a small black string. For toroidally compactified strings, the hologram has global symmetries of AdS 3 x S d-1 x T 8-d (d = 3, ..., 8), only some of which extend to local conformal symmetries. We construct the bulk string theory in detail for the particular case of d = 3. The symmetries of the hologram are correctly reproduced from this exact worldsheet description in the bulk. Moreover, the central charge of the boundary Virasoro algebra obtained from the bulk agrees with the Wald entropy of the associated small black holes. This construction provides an exact CFT description of the near horizon region of small black holes both in Type-II and heterotic string theory arising from multiply wound fundamental superstrings

  7. What is Fundamental?

    CERN Multimedia

    2004-01-01

    Discussing what is fundamental in a variety of fields, biologist Richard Dawkins, physicist Gerardus 't Hooft, and mathematician Alain Connes spoke to a packed Main Auditorium at CERN 15 October. Dawkins, Professor of the Public Understanding of Science at Oxford University, explained simply the logic behind Darwinian natural selection, and how it would seem to apply anywhere in the universe that had the right conditions. 't Hooft, winner of the 1999 Physics Nobel Prize, outlined some of the main problems in physics today, and said he thinks physics is so fundamental that even alien scientists from another planet would likely come up with the same basic principles, such as relativity and quantum mechanics. Connes, winner of the 1982 Fields Medal (often called the Nobel Prize of Mathematics), explained how physics is different from mathematics, which he described as a "factory for concepts," unfettered by connection to the physical world. On 16 October, anthropologist Sharon Traweek shared anecdotes from her ...

  8. Fundamentals of gas counters

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1994-01-01

    The operation of gas counters used for detecting radiation is explained in terms of the four fundamental physical processes which govern their operation. These are 1) conversion of neutral radiation into charged particles, 2) ionization of the host gas by a fast charge particle 3) transport of the gas ions to the electrodes and 4) amplification of the electrons in a region of enhanced electric field. Practical implications of these are illustrated. (UK)

  9. Fundamentals of Filament Interaction

    Science.gov (United States)

    2017-05-19

    AFRL-AFOSR-VA-TR-2017-0110 FUNDAMENTALS OF FILAMENT INTERACTION Martin Richardson UNIVERSITY OF CENTRAL FLORIDA Final Report 06/02/2017 DISTRIBUTION...of Filament Interaction 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA95501110001 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Martin Richardson 5d. PROJECT...NAME OF RESPONSIBLE PERSON Martin Richardson a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code) 407-823-6819 Standard Form

  10. Fundamentals of radiological protection

    International Nuclear Information System (INIS)

    Wells, J.; Mill, A.J.; Charles, M.W.

    1978-05-01

    The basic processes of living cells which are relevant to an understanding of the interaction of ionizing radiation with man are described. Particular reference is made to cell death, cancer induction and genetic effects. This is the second of a series of reports which present the fundamentals necessary for an understanding of the bases of regulatory criteria such as those recommended by the International Commision on Radiological Protection (ICRP). Others consider basic radiation physics and the biological effects of ionizing radiation. (author)

  11. Fundamentals of linear algebra

    CERN Document Server

    Dash, Rajani Ballav

    2008-01-01

    FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.

  12. Fundamentals of queueing theory

    CERN Document Server

    Gross, Donald; Thompson, James M; Harris, Carl M

    2013-01-01

    Praise for the Third Edition ""This is one of the best books available. Its excellent organizational structure allows quick reference to specific models and its clear presentation . . . solidifies the understanding of the concepts being presented.""-IIE Transactions on Operations Engineering Thoroughly revised and expanded to reflect the latest developments in the field, Fundamentals of Queueing Theory, Fourth Edition continues to present the basic statistical principles that are necessary to analyze the probabilistic nature of queues. Rather than pre

  13. High voltage engineering fundamentals

    CERN Document Server

    Kuffel, E; Hammond, P

    1984-01-01

    Provides a comprehensive treatment of high voltage engineering fundamentals at the introductory and intermediate levels. It covers: techniques used for generation and measurement of high direct, alternating and surge voltages for general application in industrial testing and selected special examples found in basic research; analytical and numerical calculation of electrostatic fields in simple practical insulation system; basic ionisation and decay processes in gases and breakdown mechanisms of gaseous, liquid and solid dielectrics; partial discharges and modern discharge detectors; and over

  14. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  15. Fundamentals of Monte Carlo

    International Nuclear Information System (INIS)

    Wollaber, Allan Benton

    2016-01-01

    This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating @@), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.

  16. Fundamental concepts on energy

    International Nuclear Information System (INIS)

    Rodriguez, M.H.

    1998-01-01

    The fundamental concepts on energy and the different forms in which it is manifested are presented. Since it is possible to transform energy in a way to other, the laws that govern these transformations are discussed. The energy transformation processes are an essential compound in the capacity humanizes to survive and be developed. The energy use brings important economic aspects, technical and political. Because this, any decision to administer energy system will be key for our future life

  17. Fundamentals of powder metallurgy

    International Nuclear Information System (INIS)

    Khan, I.H.; Qureshi, K.A.; Minhas, J.I.

    1988-01-01

    This book is being presented to introduce the fundamentals of technology of powder metallurgy. An attempt has been made to present an overall view of powder metallurgy technology in the first chapter, whereas chapter 2 to 8 deal with the production of metal powders. The basic commercial methods of powder production are briefly described with illustrations. Chapter 9 to 12 describes briefly metal powder characteristics and principles of testing, mixing, blending, conditioning, compaction and sintering. (orig./A.B.)

  18. Fundamentals of Physical Volcanology

    Science.gov (United States)

    Marsh, Bruce

    2010-04-01

    Fundamentals haunt me. Certain words ignite unavoidable trains of thought, trains that begin in a cascade, unexpectedly leaping chasm after chasm, rushing from single words to whole paragraphs to full books to men's lives. So it is with me with seeing the word “fundamental” in print. I cannot evade the euphoric excitement of thinking that someone has found something terribly original and simple, understandable by every journeyman, explaining everything.

  19. Fundamentals of radiological protection

    International Nuclear Information System (INIS)

    Mill, A.J.; Charles, M.W.; Wells, J.

    1978-04-01

    A review is presented of basic radiation physics with particular relevance to radiological protection. The processes leading to the production and absorption of ionising radiation are outlined, and the important dosimetric quantities and their units of measurements. The review is the first of a series of reports presenting the fundamentals necessary for an understanding of the basis of regulatory criteria such as those recommended by the ICRP. (author)

  20. Fundamentals of Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Wollaber, Allan Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-16

    This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.

  1. Fundamentals of Structural Geology

    Science.gov (United States)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  2. Value of Fundamental Science

    Science.gov (United States)

    Burov, Alexey

    Fundamental science is a hard, long-term human adventure that has required high devotion and social support, especially significant in our epoch of Mega-science. The measure of this devotion and this support expresses the real value of the fundamental science in public opinion. Why does fundamental science have value? What determines its strength and what endangers it? The dominant answer is that the value of science arises out of curiosity and is supported by the technological progress. Is this really a good, astute answer? When trying to attract public support, we talk about the ``mystery of the universe''. Why do these words sound so attractive? What is implied by and what is incompatible with them? More than two centuries ago, Immanuel Kant asserted an inseparable entanglement between ethics and metaphysics. Thus, we may ask: which metaphysics supports the value of scientific cognition, and which does not? Should we continue to neglect the dependence of value of pure science on metaphysics? If not, how can this issue be addressed in the public outreach? Is the public alienated by one or another message coming from the face of science? What does it mean to be politically correct in this sort of discussion?

  3. Applications of polarized neutrons

    International Nuclear Information System (INIS)

    Mezei, F.

    1993-01-01

    The additional spin degree of freedom of the neutron can be made use of in neutron scattering work in two fundamental ways: (a) directly for the identification of magnetic scattering effects and (b) indirectly as a spectroscopic tool for modulating and analysing beams. Although strong magnetic scattering contributions can often be studied by unpolarized neutrons, a fully unambiguous separation of nuclear and magnetic phenomena can only be achieved by the additional information provided by polarized neutrons, especially if one of the two kinds of contributions is weak compared to the other. In the most general case a sample with both magnetic and nuclear features can be characterized by as many as 16 independent dynamic correlation functions instead of the single well known S(q, ω) for non-magnetic nuclear scattering only. Polarization analysis in principle allows one to determine all these 16 functions. The indirect applications of polarized neutrons are also steadily gaining importance. The most widely used method of this kind, the application of Larmor precessions for high resolution energy analysis in Neutron Spin Echo spectroscopy opened up a whole new domain in inelastic neutron scattering which was not accessible to any other spectroscopic method with or without neutrons before. (author)

  4. Beta particle measurement fundamentals

    International Nuclear Information System (INIS)

    Alvarez, J.L.

    1986-01-01

    The necessary concepts for understanding beta particle behavior are stopping power, range, and scattering. Dose as a consequence of beta particle interaction with tissue can be derived and explained by these concepts. Any calculations of dose, however, assume or require detailed knowledge of the beta spectrum at the tissue depth of calculation. A rudimentary knowledge of the incident spectrum can be of use in estimating dose, interpretating dose measuring devices and designing protection. The stopping power and range based on the csda will give a conservative estimate in cases of protection design, as scattering will reduce the range. Estimates of dose may be low because scattering effects were neglected

  5. FUNDAMENTALS OF BIOMECHANICS

    Directory of Open Access Journals (Sweden)

    Duane Knudson

    2007-09-01

    Full Text Available DESCRIPTION This book provides a broad and in-depth theoretical and practical description of the fundamental concepts in understanding biomechanics in the qualitative analysis of human movement. PURPOSE The aim is to bring together up-to-date biomechanical knowledge with expert application knowledge. Extensive referencing for students is also provided. FEATURES This textbook is divided into 12 chapters within four parts, including a lab activities section at the end. The division is as follows: Part 1 Introduction: 1.Introduction to biomechanics of human movement; 2.Fundamentals of biomechanics and qualitative analysis; Part 2 Biological/Structural Bases: 3.Anatomical description and its limitations; 4.Mechanics of the musculoskeletal system; Part 3 Mechanical Bases: 5.Linear and angular kinematics; 6.Linear kinetics; 7.Angular kinetics; 8.Fluid mechanics; Part 4 Application of Biomechanics in Qualitative Analysis :9.Applying biomechanics in physical education; 10.Applying biomechanics in coaching; 11.Applying biomechanics in strength and conditioning; 12.Applying biomechanics in sports medicine and rehabilitation. AUDIENCE This is an important reading for both student and educators in the medicine, sport and exercise-related fields. For the researcher and lecturer it would be a helpful guide to plan and prepare more detailed experimental designs or lecture and/or laboratory classes in exercise and sport biomechanics. ASSESSMENT The text provides a constructive fundamental resource for biomechanics, exercise and sport-related students, teachers and researchers as well as anyone interested in understanding motion. It is also very useful since being clearly written and presenting several ways of examples of the application of biomechanics to help teach and apply biomechanical variables and concepts, including sport-related ones

  6. Mathematical analysis fundamentals

    CERN Document Server

    Bashirov, Agamirza

    2014-01-01

    The author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric o

  7. Fundamentals of semiconductor devices

    CERN Document Server

    Lindmayer, Joseph

    1965-01-01

    Semiconductor properties ; semiconductor junctions or diodes ; transistor fundamentals ; inhomogeneous impurity distributions, drift or graded-base transistors ; high-frequency properties of transistors ; band structure of semiconductors ; high current densities and mechanisms of carrier transport ; transistor transient response and recombination processes ; surfaces, field-effect transistors, and composite junctions ; additional semiconductor characteristics ; additional semiconductor devices and microcircuits ; more metal, insulator, and semiconductor combinations for devices ; four-pole parameters and configuration rotation ; four-poles of combined networks and devices ; equivalent circuits ; the error function and its properties ; Fermi-Dirac statistics ; useful physical constants.

  8. Fundamental concepts of mathematics

    CERN Document Server

    Goodstein, R L

    Fundamental Concepts of Mathematics, 2nd Edition provides an account of some basic concepts in modern mathematics. The book is primarily intended for mathematics teachers and lay people who wants to improve their skills in mathematics. Among the concepts and problems presented in the book include the determination of which integral polynomials have integral solutions; sentence logic and informal set theory; and why four colors is enough to color a map. Unlike in the first edition, the second edition provides detailed solutions to exercises contained in the text. Mathematics teachers and people

  9. Fundamental composite electroweak dynamics

    DEFF Research Database (Denmark)

    Arbey, Alexandre; Cacciapaglia, Giacomo; Cai, Haiying

    2017-01-01

    Using the recent joint results from the ATLAS and CMS collaborations on the Higgs boson, we determine the current status of composite electroweak dynamics models based on the expected scalar sector. Our analysis can be used as a minimal template for a wider class of models between the two limitin...... space at the effective Lagrangian level. We show that a wide class of models of fundamental composite electroweak dynamics are still compatible with the present constraints. The results are relevant for the ongoing and future searches at the Large Hadron Collider....

  10. Fundamentals of Project Management

    CERN Document Server

    Heagney, Joseph

    2011-01-01

    With sales of more than 160,000 copies, Fundamentals of Project Management has helped generations of project managers navigate the ins and outs of every aspect of this complex discipline. Using a simple step-by-step approach, the book is the perfect introduction to project management tools, techniques, and concepts. Readers will learn how to: ò Develop a mission statement, vision, goals, and objectives ò Plan the project ò Create the work breakdown structure ò Produce a workable schedule ò Understand earned value analysis ò Manage a project team ò Control and evaluate progress at every stage.

  11. Fundamentals of calculus

    CERN Document Server

    Morris, Carla C

    2015-01-01

    Fundamentals of Calculus encourages students to use power, quotient, and product rules for solutions as well as stresses the importance of modeling skills.  In addition to core integral and differential calculus coverage, the book features finite calculus, which lends itself to modeling and spreadsheets.  Specifically, finite calculus is applied to marginal economic analysis, finance, growth, and decay.  Includes: Linear Equations and FunctionsThe DerivativeUsing the Derivative Exponential and Logarithmic Functions Techniques of DifferentiationIntegral CalculusIntegration TechniquesFunctions

  12. Fundamentals of attosecond optics

    CERN Document Server

    Chang, Zenghu

    2011-01-01

    Attosecond optical pulse generation, along with the related process of high-order harmonic generation, is redefining ultrafast physics and chemistry. A practical understanding of attosecond optics requires significant background information and foundational theory to make full use of these cutting-edge lasers and advance the technology toward the next generation of ultrafast lasers. Fundamentals of Attosecond Optics provides the first focused introduction to the field. The author presents the underlying concepts and techniques required to enter the field, as well as recent research advances th

  13. Scientific and technological fundamentals

    International Nuclear Information System (INIS)

    Roethemeyer, H.

    1991-01-01

    Specific ultimate repositories in a given geological formation have to be assessed on the basis of a safety analysis, taking into account the site specifics of the repository system 'Overall geological situation - ultimate disposal facility - waste forms'. The fundamental possibilities and limits of waste disposal are outlined. Orientation values up to about 10 6 years are derived for the isolation potential of ultimate disposal mines, and about 10 4 years for the calculation of effects of emplaced radioactive wastes also on man. (DG) [de

  14. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  15. Fundamental formulas of physics

    CERN Document Server

    1960-01-01

    The republication of this book, unabridged and corrected, fills the need for a comprehensive work on fundamental formulas of mathematical physics. It ranges from simple operations to highly sophisticated ones, all presented most lucidly with terms carefully defined and formulas given completely. In addition to basic physics, pertinent areas of chemistry, astronomy, meteorology, biology, and electronics are also included.This is no mere listing of formulas, however. Mathematics is integrated into text, for the most part, so that each chapter stands as a brief summary or even short textbook of

  16. Fundamentals of Cavitation

    CERN Document Server

    Franc, Jean-Pierre

    2005-01-01

    The present book is aimed at providing a comprehensive presentation of cavitation phenomena in liquid flows. It is further backed up by the experience, both experimental and theoretical, of the authors whose expertise has been internationally recognized. A special effort is made to place the various methods of investigation in strong relation with the fundamental physics of cavitation, enabling the reader to treat specific problems independently. Furthermore, it is hoped that a better knowledge of the cavitation phenomenon will allow engineers to create systems using it positively. Examples in the literature show the feasibility of this approach.

  17. Fundamentals of magnetism

    CERN Document Server

    Getzlaff, Mathias

    2007-01-01

    In the last decade a tremendous progress has taken place in understanding the basis of magnetism, especially in reduced dimensions. In the first part, the fundamentals of magnetism are conveyed for atoms and bulk-like solid-state systems providing a basis for the understanding of new phenomena which exclusively occur in low-dimensional systems as the giant magneto resistance. This wide field is discussed in the second part and illustrated by copious examples. This textbook is particularly suitable for graduate students in physical and materials sciences. It includes numerous examples, exercises, and references.

  18. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems

  19. Electronic circuits fundamentals & applications

    CERN Document Server

    Tooley, Mike

    2015-01-01

    Electronics explained in one volume, using both theoretical and practical applications.New chapter on Raspberry PiCompanion website contains free electronic tools to aid learning for students and a question bank for lecturersPractical investigations and questions within each chapter help reinforce learning Mike Tooley provides all the information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies and oscillators. The

  20. Nanomachines fundamentals and applications

    CERN Document Server

    Wang, Joseph

    2013-01-01

    This first-hand account by one of the pioneers of nanobiotechnology brings together a wealth of valuable material in a single source. It allows fascinating insights into motion at the nanoscale, showing how the proven principles of biological nanomotors are being transferred to artificial nanodevices.As such, the author provides engineers and scientists with the fundamental knowledge surrounding the design and operation of biological and synthetic nanomotors and the latest advances in nanomachines. He addresses such topics as nanoscale propulsions, natural biomotors, molecular-scale machin

  1. Fundamentals of photonics

    CERN Document Server

    Saleh, Bahaa E A

    2007-01-01

    Now in a new full-color edition, Fundamentals of Photonics, Second Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a logical blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of photons and atoms, and semiconductor optics. Presented at increasing levels of complexity, preliminary sections build toward more advan

  2. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids)

  3. Testing Our Fundamental Assumptions

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    Science is all about testing the things we take for granted including some of the most fundamental aspects of how we understand our universe. Is the speed of light in a vacuum the same for all photons regardless of their energy? Is the rest mass of a photon actually zero? A series of recent studies explore the possibility of using transient astrophysical sources for tests!Explaining Different Arrival TimesArtists illustration of a gamma-ray burst, another extragalactic transient, in a star-forming region. [NASA/Swift/Mary Pat Hrybyk-Keith and John Jones]Suppose you observe a distant transient astrophysical source like a gamma-ray burst, or a flare from an active nucleus and two photons of different energies arrive at your telescope at different times. This difference in arrival times could be due to several different factors, depending on how deeply you want to question some of our fundamental assumptions about physics:Intrinsic delayThe photons may simply have been emitted at two different times by the astrophysical source.Delay due to Lorentz invariance violationPerhaps the assumption that all massless particles (even two photons with different energies) move at the exact same velocity in a vacuum is incorrect.Special-relativistic delayMaybe there is a universal speed for massless particles, but the assumption that photons have zero rest mass is wrong. This, too, would cause photon velocities to be energy-dependent.Delay due to gravitational potentialPerhaps our understanding of the gravitational potential that the photons experience as they travel is incorrect, also causing different flight times for photons of different energies. This would mean that Einsteins equivalence principle, a fundamental tenet of general relativity (GR), is incorrect.If we now turn this problem around, then by measuring the arrival time delay between photons of different energies from various astrophysical sources the further away, the better we can provide constraints on these

  4. STEP and fundamental physics

    Science.gov (United States)

    Overduin, James; Everitt, Francis; Worden, Paul; Mester, John

    2012-09-01

    The Satellite Test of the Equivalence Principle (STEP) will advance experimental limits on violations of Einstein's equivalence principle from their present sensitivity of two parts in 1013 to one part in 1018 through multiple comparison of the motions of four pairs of test masses of different compositions in a drag-free earth-orbiting satellite. We describe the experiment, its current status and its potential implications for fundamental physics. Equivalence is at the heart of general relativity, our governing theory of gravity and violations are expected in most attempts to unify this theory with the other fundamental interactions of physics, as well as in many theoretical explanations for the phenomenon of dark energy in cosmology. Detection of such a violation would be equivalent to the discovery of a new force of nature. A null result would be almost as profound, pushing upper limits on any coupling between standard-model fields and the new light degrees of freedom generically predicted by these theories down to unnaturally small levels.

  5. STEP and fundamental physics

    International Nuclear Information System (INIS)

    Overduin, James; Everitt, Francis; Worden, Paul; Mester, John

    2012-01-01

    The Satellite Test of the Equivalence Principle (STEP) will advance experimental limits on violations of Einstein's equivalence principle from their present sensitivity of two parts in 10 13 to one part in 10 18 through multiple comparison of the motions of four pairs of test masses of different compositions in a drag-free earth-orbiting satellite. We describe the experiment, its current status and its potential implications for fundamental physics. Equivalence is at the heart of general relativity, our governing theory of gravity and violations are expected in most attempts to unify this theory with the other fundamental interactions of physics, as well as in many theoretical explanations for the phenomenon of dark energy in cosmology. Detection of such a violation would be equivalent to the discovery of a new force of nature. A null result would be almost as profound, pushing upper limits on any coupling between standard-model fields and the new light degrees of freedom generically predicted by these theories down to unnaturally small levels. (paper)

  6. Quivers, words and fundamentals

    International Nuclear Information System (INIS)

    Mattioli, Paolo; Ramgoolam, Sanjaye

    2015-01-01

    A systematic study of holomorphic gauge invariant operators in general N=1 quiver gauge theories, with unitary gauge groups and bifundamental matter fields, was recently presented in http://dx.doi.org/10.1007/JHEP04(2013)094. For large ranks a simple counting formula in terms of an infinite product was given. We extend this study to quiver gauge theories with fundamental matter fields, deriving an infinite product form for the refined counting in these cases. The infinite products are found to be obtained from substitutions in a simple building block expressed in terms of the weighted adjacency matrix of the quiver. In the case without fundamentals, it is a determinant which itself is found to have a counting interpretation in terms of words formed from partially commuting letters associated with simple closed loops in the quiver. This is a new relation between counting problems in gauge theory and the Cartier-Foata monoid. For finite ranks of the unitary gauge groups, the refined counting is given in terms of expressions involving Littlewood-Richardson coefficients.

  7. Fundamentals of Medical Ultrasonics

    CERN Document Server

    Postema, Michiel

    2011-01-01

    This book sets out the physical and engineering principles of acoustics and ultrasound as used for medical applications. It covers the basics of linear acoustics, wave propagation, non-linear acoustics, acoustic properties of tissue, transducer components, and ultrasonic imaging modes, as well as the most common diagnostic and therapeutic applications. It offers students and professionals in medical physics and engineering a detailed overview of the technical aspects of medical ultrasonic imaging, whilst serving as a reference for clinical and research staff.

  8. Polar Polygons

    Science.gov (United States)

    2005-01-01

    18 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-outlined polygons on a frost-covered surface in the south polar region of Mars. In summer, this surface would not be bright and the polygons would not have dark outlines--these are a product of the presence of seasonal frost. Location near: 77.2oS, 204.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  9. Fundamentals of Structural Engineering

    CERN Document Server

    Connor, Jerome J

    2013-01-01

    Fundamentals of Structural Engineering provides a balanced, seamless treatment of both classic, analytic methods and contemporary, computer-based techniques for conceptualizing and designing a structure. The book’s principle goal is to foster an intuitive understanding of structural behavior based on problem solving experience for students of civil engineering and architecture who have been exposed to the basic concepts of engineering mechanics and mechanics of materials. Making it distinct from many other undergraduate textbooks, the authors of this text recognize the notion that engineers reason about behavior using simple models and intuition they acquire through problem solving. The approach adopted in this text develops this type of intuition  by presenting extensive, realistic problems and case studies together with computer simulation, which allows rapid exploration of  how a structure responds to changes in geometry and physical parameters. This book also: Emphasizes problem-based understanding of...

  10. Making physics more fundamental

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-07-15

    The stellar death throes of supernovae have been seen and admired since time immemorial. However last year's was the first to come under the combined scrutiny of space-borne radiation detectors and underground neutrino monitors as well as terrestrial optical telescopes and even gravity wave antennae. The remarkable results underline the power of modern physics to explain and interrelate processes in the furthest reaches of the cosmos and the deep interior of nuclear particles. In recent years this common ground between 'Big Bang' cosmology and particle physics has been regularly trodden and retrodden in the light of fresh new insights and new experimental results, and thinking has steadily converged. In 1983, the first Symposium on Astronomy, Cosmology and Fundamental Physics, organized by CERN and the European Southern Observatory (ESO), was full of optimism, with new ideas ('inflation') to explain how the relatively small variations in the structure of the Universe could have arisen through the quantum structure of the initial cataclysm.

  11. Digital Fourier analysis fundamentals

    CERN Document Server

    Kido, Ken'iti

    2015-01-01

    This textbook is a thorough, accessible introduction to digital Fourier analysis for undergraduate students in the sciences. Beginning with the principles of sine/cosine decomposition, the reader walks through the principles of discrete Fourier analysis before reaching the cornerstone of signal processing: the Fast Fourier Transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Fundamentals" includes practice problems and thorough Appendices for the advanced reader. As a special feature, the book includes interactive applets (available online) that mirror the illustrations.  These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. For example, a real sine signal can be treated as a sum of clockwise and counter-clockwise rotating vectors. The applet illustration included with the book animates the rotating vectors and the resulting sine signal. By changing parameters such as amplitude and frequency, the reader ca...

  12. Fundamentals of sustainable neighbourhoods

    CERN Document Server

    Friedman, Avi

    2015-01-01

    This book introduces architects, engineers, builders, and urban planners to a range of design principles of sustainable communities and illustrates them with outstanding case studies. Drawing on the author’s experience as well as local and international case studies, Fundamentals of Sustainable Neighbourhoods presents planning concepts that minimize developments' carbon footprint through compact communities, adaptable and expandable dwellings, adaptable landscapes, and smaller-sized yet quality-designed housing. This book also: Examines in-depth global strategies for minimizing the residential carbon footprint, including district heating, passive solar gain, net-zero residences, as well as preserving the communities' natural assets Reconsiders conceptual approaches in building design and urban planning to promote a better connection between communities and nature Demonstrates practical applications of green architecture Focuses on innovative living spaces in urban environments

  13. Fundamental partial compositeness

    CERN Document Server

    Sannino, Francesco

    2016-11-07

    We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Successful models exist because gauge quantum numbers of Standard Model fermions admit a minimal enough 'square root'. Furthermore, right-handed SM fermions have an SU(2)$_R$-like structure, yielding a custodially-protected composite Higgs. Baryon and lepton numbers arise accidentally. Standard Model fermions acquire mass at tree level, while the Higgs potential and flavor violations are generated by quantum corrections. We further discuss accidental symmetries and other dynamical features stemming from the new strongly interacting scalars. If the same phenomenology can be obtained from models without our elementary scalars, they would reappear as composite states.

  14. Theory of fundamental interactions

    International Nuclear Information System (INIS)

    Pestov, A.B.

    1992-01-01

    In the present article the theory of fundamental interactions is derived in a systematic way from the first principles. In the developed theory there is no separation between space-time and internal gauge space. Main equations for basic fields are derived. In is shown that the theory satisfies the correspondence principle and gives rise to new notions in the considered region. In particular, the conclusion is made about the existence of particles which are characterized not only by the mass, spin, charge but also by the moment of inertia. These are rotating particles, the particles which represent the notion of the rigid body on the microscopical level and give the key for understanding strong interactions. The main concepts and dynamical laws for these particles are formulated. The basic principles of the theory may be examined experimentally not in the distant future. 29 refs

  15. Fundamentals of Geophysics

    Science.gov (United States)

    Lowrie, William

    1997-10-01

    This unique textbook presents a comprehensive overview of the fundamental principles of geophysics. Unlike most geophysics textbooks, it combines both the applied and theoretical aspects to the subject. The author explains complex geophysical concepts using abundant diagrams, a simplified mathematical treatment, and easy-to-follow equations. After placing the Earth in the context of the solar system, he describes each major branch of geophysics: gravitation, seismology, dating, thermal and electrical properties, geomagnetism, paleomagnetism and geodynamics. Each chapter begins with a summary of the basic physical principles, and a brief account of each topic's historical evolution. The book will satisfy the needs of intermediate-level earth science students from a variety of backgrounds, while at the same time preparing geophysics majors for continued study at a higher level.

  16. Fundamentals of PIXE analysis

    International Nuclear Information System (INIS)

    Ishii, Keizo

    1997-01-01

    Elemental analysis based on the particle induced x-ray emission (PIXE) is a novel technique to analyze trace elements. It is a very simple method, its sensitivity is very high, multiple elements in a sample can be simultaneously analyzed and a few 10 μg of a sample is enough to be analyzed. Owing to these characteristics, the PIXE analysis is now used in many fields (e.g. biology, medicine, dentistry, environmental pollution, archaeology, culture assets etc.). Fundamentals of the PIXE analysis are described here: the production of characteristic x-rays and inner shell ionization by heavy charged particles, the continuous background in PIXE spectrum, quantitative formulae of the PIXE analysis, the detection limit of PIXE analysis, etc. (author)

  17. Automotive electronics design fundamentals

    CERN Document Server

    Zaman, Najamuz

    2015-01-01

    This book explains the topology behind automotive electronics architectures and examines how they can be profoundly augmented with embedded controllers. These controllers serve as the core building blocks of today’s vehicle electronics. Rather than simply teaching electrical basics, this unique resource focuses on the fundamental concepts of vehicle electronics architecture, and details the wide variety of Electronic Control Modules (ECMs) that enable the increasingly sophisticated "bells & whistles" of modern designs.  A must-have for automotive design engineers, technicians working in automotive electronics repair centers and students taking automotive electronics courses, this guide bridges the gap between academic instruction and industry practice with clear, concise advice on how to design and optimize automotive electronics with embedded controllers.

  18. Fundamental partial compositeness

    International Nuclear Information System (INIS)

    Sannino, Francesco; Strumia, Alessandro; Tesi, Andrea; Vigiani, Elena

    2016-01-01

    We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Under certain assumptions on the dynamics of the scalars, successful models exist because gauge quantum numbers of Standard Model fermions admit a minimal enough ‘square root’. Furthermore, right-handed SM fermions have an SU(2)_R-like structure, yielding a custodially-protected composite Higgs. Baryon and lepton numbers arise accidentally. Standard Model fermions acquire mass at tree level, while the Higgs potential and flavor violations are generated by quantum corrections. We further discuss accidental symmetries and other dynamical features stemming from the new strongly interacting scalars. If the same phenomenology can be obtained from models without our elementary scalars, they would reappear as composite states.

  19. Fundamentals of quantum mechanics

    CERN Document Server

    House, J E

    2017-01-01

    Fundamentals of Quantum Mechanics, Third Edition is a clear and detailed introduction to quantum mechanics and its applications in chemistry and physics. All required math is clearly explained, including intermediate steps in derivations, and concise review of the math is included in the text at appropriate points. Most of the elementary quantum mechanical models-including particles in boxes, rigid rotor, harmonic oscillator, barrier penetration, hydrogen atom-are clearly and completely presented. Applications of these models to selected “real world” topics are also included. This new edition includes many new topics such as band theory and heat capacity of solids, spectroscopy of molecules and complexes (including applications to ligand field theory), and small molecules of astrophysical interest.

  20. Fundamentals of phosphors

    CERN Document Server

    Yen, William M; Yamamoto, Hajime

    2006-01-01

    Drawing from the second edition of the best-selling Handbook of Phosphors, Fundamentals of Phosphors covers the principles and mechanisms of luminescence in detail and surveys the primary phosphor materials as well as their optical properties. The book addresses cutting-edge developments in phosphor science and technology including oxynitride phosphors and the impact of lanthanide level location on phosphor performance.Beginning with an explanation of the physics underlying luminescence mechanisms in solids, the book goes on to interpret various luminescence phenomena in inorganic and organic materials. This includes the interpretation of the luminescence of recently developed low-dimensional systems, such as quantum wells and dots. The book also discusses the excitation mechanisms by cathode-ray and ionizing radiation and by electric fields to produce electroluminescence. The book classifies phosphor materials according to the type of luminescence centers employed or the class of host materials used and inte...

  1. Fundamentals of thinking, patterns

    Science.gov (United States)

    Gafurov, O. M.; Gafurov, D. O.; Syryamkin, V. I.

    2018-05-01

    The authors analyze the fundamentals of thinking and propose to consider a model of the brain based on the presence of magnetic properties of gliacytes (Schwann cells) because of their oxygen saturation (oxygen has paramagnetic properties). The authors also propose to take into account the motion of electrical discharges through synapses causing electric and magnetic fields as well as additional effects such as paramagnetic resonance, which allows combining multisensory object-related information located in different parts of the brain. Therefore, the events of the surrounding world are reflected and remembered in the cortex columns, thus, creating isolated subnets with altered magnetic properties (patterns) and subsequently participate in recognition of objects, form a memory, and so on. The possibilities for the pattern-based thinking are based on the practical experience of applying methods and technologies of artificial neural networks in the form of a neuroemulator and neuromorphic computing devices.

  2. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  3. Major advances in fundamental dairy cattle nutrition.

    Science.gov (United States)

    Drackley, J K; Donkin, S S; Reynolds, C K

    2006-04-01

    Fundamental nutrition seeks to describe the complex biochemical reactions involved in assimilation and processing of nutrients by various tissues and organs, and to quantify nutrient movement (flux) through those processes. Over the last 25 yr, considerable progress has been made in increasing our understanding of metabolism in dairy cattle. Major advances have been made at all levels of biological organization, including the whole animal, organ systems, tissues, cells, and molecules. At the whole-animal level, progress has been made in delineating metabolism during late pregnancy and the transition to lactation, as well as in whole-body use of energy-yielding substrates and amino acids for growth in young calves. An explosion of research using multicatheterization techniques has led to better quantitative descriptions of nutrient use by tissues of the portal-drained viscera (digestive tract, pancreas, and associated adipose tissues) and liver. Isolated tissue preparations have provided important information on the interrelationships among glucose, fatty acid, and amino acid metabolism in liver, adipose tissue, and mammary gland, as well as the regulation of these pathways during different physiological states. Finally, the last 25 yr has witnessed the birth of "molecular biology" approaches to understanding fundamental nutrition. Although measurements of mRNA abundance for proteins of interest already have provided new insights into regulation of metabolism, the next 25 yr will likely see remarkable advances as these techniques continue to be applied to problems of dairy cattle biology. Integration of the "omics" technologies (functional genomics, proteomics, and metabolomics) with measurements of tissue metabolism obtained by other methods is a particularly exciting prospect for the future. The result should be improved animal health and well being, more efficient dairy production, and better models to predict nutritional requirements and provide rations to meet

  4. Polarization versus Temperature in Pyridinium Ionic Liquids

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    Electronic polarization and charge transfer effects play a crucial role in thermodynamic, structural, and transport properties of room-temperature ionic liquids (RTILs). These nonadditive interactions constitute a useful tool for tuning physical chemical behavior of RTILs. Polarization and charge...... interactions changes negligibly between 300 and 900 K, while the average dipole moment increases due to thermal fluctuations of geometries. Our results contribute to the fundamental understanding of electronic effects in the condensed phase of ionic systems and foster progress in physical chemistry...

  5. Fundamentals of ergonomic exoskeleton robots

    NARCIS (Netherlands)

    Schiele, A.

    2008-01-01

    This thesis is the first to provide the fundamentals of ergonomic exoskeleton design. The fundamental theory as well as technology necessary to analyze and develop ergonomic wearable robots interacting with humans is established and validated by experiments and prototypes. The fundamentals are (1) a

  6. Polarized secondary radioactive beams

    International Nuclear Information System (INIS)

    Zaika, N.I.

    1992-01-01

    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  7. Polar crane

    International Nuclear Information System (INIS)

    Makosinski, S.

    1981-01-01

    In many applications polar cranes have to be repeatedly positioned with high accuracy. A guidance system is disclosed which has two pairs of guides. Each guide consists of two rollers carried by a sheave rotatable mounted on the crane bridge, the rollers being locatable one on each side of a guideway, e.g. the circular track on which the bridge runs. The pairs of guides are interconnected by respective rope loops which pass around and are locked to the respective pairs of sheaves in such a manner that movement of one guide results in equal movement of the other guide in a sense to maintain the repeatability of positioning of the centre of the bridge. A hydraulically-linked guide system is also described. (author)

  8. Fundamental Physics with Antihydrogen

    Science.gov (United States)

    Hangst, J. S.

    Antihydrogen—the antimatter equivalent of the hydrogen atom—is of fundamental interest as a test bed for universal symmetries—such as CPT and the Weak Equivalence Principle for gravitation. Invariance under CPT requires that hydrogen and antihydrogen have the same spectrum. Antimatter is of course intriguing because of the observed baryon asymmetry in the universe—currently unexplained by the Standard Model. At the CERN Antiproton Decelerator (AD) [1], several groups have been working diligently since 1999 to produce, trap, and study the structure and behaviour of the antihydrogen atom. One of the main thrusts of the AD experimental program is to apply precision techniques from atomic physics to the study of antimatter. Such experiments complement the high-energy searches for physics beyond the Standard Model. Antihydrogen is the only atom of antimatter to be produced in the laboratory. This is not so unfortunate, as its matter equivalent, hydrogen, is one of the most well-understood and accurately measured systems in all of physics. It is thus very compelling to undertake experimental examinations of the structure of antihydrogen. As experimental spectroscopy of antihydrogen has yet to begin in earnest, I will give here a brief introduction to some of the ion and atom trap developments necessary for synthesizing and trapping antihydrogen, so that it can be studied.

  9. Strings and fundamental physics

    International Nuclear Information System (INIS)

    Baumgartl, Marco; Brunner, Ilka; Haack, Michael

    2012-01-01

    The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view particles as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions - which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook. (orig.)

  10. Fundamentals of precision medicine

    Science.gov (United States)

    Divaris, Kimon

    2018-01-01

    Imagine a world where clinicians make accurate diagnoses and provide targeted therapies to their patients according to well-defined, biologically-informed disease subtypes, accounting for individual differences in genetic make-up, behaviors, cultures, lifestyles and the environment. This is not as utopic as it may seem. Relatively recent advances in science and technology have led to an explosion of new information on what underlies health and what constitutes disease. These novel insights emanate from studies of the human genome and microbiome, their associated transcriptomes, proteomes and metabolomes, as well as epigenomics and exposomics—such ‘omics data can now be generated at unprecedented depth and scale, and at rapidly decreasing cost. Making sense and integrating these fundamental information domains to transform health care and improve health remains a challenge—an ambitious, laudable and high-yield goal. Precision dentistry is no longer a distant vision; it is becoming part of the rapidly evolving present. Insights from studies of the human genome and microbiome, their associated transcriptomes, proteomes and metabolomes, and epigenomics and exposomics have reached an unprecedented depth and scale. Much more needs to be done, however, for the realization of precision medicine in the oral health domain. PMID:29227115

  11. Strings and fundamental physics

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartl, Marco [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Brunner, Ilka; Haack, Michael (eds.) [Muenchen Univ. (Germany). Fakultaet fuer Physik

    2012-07-01

    The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view particles as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions - which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook. (orig.)

  12. Fundamentals of klystron testing

    International Nuclear Information System (INIS)

    Caldwell, J.W. Jr.

    1978-08-01

    Fundamentals of klystron testing is a text primarily intended for the indoctrination of new klystron group test stand operators. It should significantly reduce the familiarization time of a new operator, making him an asset to the group sooner than has been experienced in the past. The new employee must appreciate the mission of SLAC before he can rightfully be expected to make a meaningful contribution to the group's effort. Thus, the introductory section acquaints the reader with basic concepts of accelerators in general, then briefly describes major physical aspects of the Stanford Linear Accelerator. Only then is his attention directed to the klystron, with its auxiliary systems, and the rudiments of klystron tube performance checks. It is presumed that the reader is acquainted with basic principles of electronics and scientific notation. However, to preserve the integrity of an indoctrination guide, tedious technical discussions and mathematical analysis have been studiously avoided. It is hoped that the new operator will continue to use the text for reference long after his indoctrination period is completed. Even the more experienced operator should find that particular sections will refresh his understanding of basic principles of klystron testing

  13. Making physics more fundamental

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The stellar death throes of supernovae have been seen and admired since time immemorial. However last year's was the first to come under the combined scrutiny of space-borne radiation detectors and underground neutrino monitors as well as terrestrial optical telescopes and even gravity wave antennae. The remarkable results underline the power of modern physics to explain and interrelate processes in the furthest reaches of the cosmos and the deep interior of nuclear particles. In recent years this common ground between 'Big Bang' cosmology and particle physics has been regularly trodden and retrodden in the light of fresh new insights and new experimental results, and thinking has steadily converged. In 1983, the first Symposium on Astronomy, Cosmology and Fundamental Physics, organized by CERN and the European Southern Observatory (ESO), was full of optimism, with new ideas ('inflation') to explain how the relatively small variations in the structure of the Universe could have arisen through the quantum structure of the initial cataclysm

  14. Fundamental Safety Principles

    International Nuclear Information System (INIS)

    Abdelmalik, W.E.Y.

    2011-01-01

    This work presents a summary of the IAEA Safety Standards Series publication No. SF-1 entitled F UDAMENTAL Safety PRINCIPLES p ublished on 2006. This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purposes. Safety measures and security measures have in common the aim of protecting human life and health and the environment. These safety principles are: 1) Responsibility for safety, 2) Role of the government, 3) Leadership and management for safety, 4) Justification of facilities and activities, 5) Optimization of protection, 6) Limitation of risks to individuals, 7) Protection of present and future generations, 8) Prevention of accidents, 9)Emergency preparedness and response and 10) Protective action to reduce existing or unregulated radiation risks. The safety principles concern the security of facilities and activities to the extent that they apply to measures that contribute to both safety and security. Safety measures and security measures must be designed and implemented in an integrated manner so that security measures do not compromise safety and safety measures do not compromise security.

  15. Fundamentals of Quantum Mechanics

    Science.gov (United States)

    Tang, C. L.

    2005-06-01

    Quantum mechanics has evolved from a subject of study in pure physics to one with a wide range of applications in many diverse fields. The basic concepts of quantum mechanics are explained in this book in a concise and easy-to-read manner emphasising applications in solid state electronics and modern optics. Following a logical sequence, the book is focused on the key ideas and is conceptually and mathematically self-contained. The fundamental principles of quantum mechanics are illustrated by showing their application to systems such as the hydrogen atom, multi-electron ions and atoms, the formation of simple organic molecules and crystalline solids of practical importance. It leads on from these basic concepts to discuss some of the most important applications in modern semiconductor electronics and optics. Containing many homework problems and worked examples, the book is suitable for senior-level undergraduate and graduate level students in electrical engineering, materials science and applied physics. Clear exposition of quantum mechanics written in a concise and accessible style Precise physical interpretation of the mathematical foundations of quantum mechanics Illustrates the important concepts and results by reference to real-world examples in electronics and optoelectronics Contains homeworks and worked examples, with solutions available for instructors

  16. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  17. Physics with polarized electron beams

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-06-01

    As a distinct field, elementary particle physics is now approximately forty years old. In all that time, only a few of the thousands of experiments that have been performed have made use of spin polarized particle beams. There are two reasons for this lack of interest. The first is that spin polarized beams are difficult to produce, accelerate, and transport. The second reason is that any physical process that can occur during the collision of a polarized particle with another (polarized or not) can also occur during the collision of unpolarized particles. One might ask then, why has any effort been expended on the subject? The answer, at least in the case of polarized electron beams, is that electron accelerators and storage rings have in recent years achieved sufficient energy to begin to probe the weak interaction directly. The weak interaction distinguishes between left- and right-handed fermionic currents. Left-handed particles interact in a fundamentally different way than their right-handed counterparts. If the experimenter wishes to explore or exploit this difference, he (or she) must either prepare the spin state of the incident particles or analyze the spin state of outgoing particles. For reasons, of generality and improved statistical precision, the former is usually preferable to the latter. The first of these lectures will review some of the techniques necessary for the production, transport, and monitoring of polarized electron (or positron) beams. The second lecture will survey some of the physics possibilities of polarized electron--positron collisions. 33 refs., 26 figs., 5 tabs

  18. Fundamentals - longitudinal motion

    International Nuclear Information System (INIS)

    Weng, W.T.

    1989-01-01

    There are many ways to accelerate charged particles to high energy for physics research. Each has served its purpose but eventually has encountered fundamental limitations of one kind or another. Looking at the famous Livingston curve, the initial birth and final level-off of all types of accelerators is seen. In fact, in the mid-80s we personally witnessed the creation of a new type of collider - the Stanford Linear Collider. Also witnessed, was the resurgence of study into novel methods of acceleration. This paper will cover acceleration and longitudinal motion in a synchrotron. A synchrotron is a circular accelerator with the following three characteristics: (1) Magnetic guiding (dipole) and confinement (quadrupole) components are placed in a small neighborhood around the equilibrium orbit. (2) Particles are kept in resonance with the radio-frequency electric field indefinitely to achieve acceleration to higher energies. (3) Magnetic fields are varied adiabatically with the energy of the particle. D. Edwards described the transverse oscillations of particles in a synchrotron. Here the author talks about the longitudinal oscillations of particles. The phase stability principle was invented by V. Veksler and E. McMillan independently in 1945. The phase stability and strong focusing principle, invented by Courant and Livingston in 1952, enabled the steady energy gain of accelerators and storage rings witnessed during the past 30 years. This paper is a unified overview of the related rf subjects in an accelerator and a close coupling between accelerator physics and engineering practices, which is essential for the major progress in areas such as high intensity synchrotrons, a multistage accelerator complex, and anti-proton production and cooling, made possible in the past 20 years

  19. Theoretical model of polar cap auroral arcs

    International Nuclear Information System (INIS)

    Kan, J.R.; Burke, W.J.; USAF, Bedford, MA)

    1985-01-01

    A theory of the polar cap auroral arcs is proposed under the assumption that the magnetic field reconnection occurs in the cusp region on tail field lines during northward interplanetary magnetic field (IMF) conditions. Requirements of a convection model during northward IMF are enumerated based on observations and fundamental theoretical considerations. The theta aurora can be expected to occur on the closed field lines convecting sunward in the central polar cap, while the less intense regular polar cap arcs can occur either on closed or open field lines. The dynamo region for the polar cap arcs is required to be on closed field lines convecting tailward in the plasma sheet which is magnetically connected to the sunward convection in the central polar cap. 43 references

  20. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    International Nuclear Information System (INIS)

    Goodson, Boyd M.

    1999-01-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI

  1. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    Energy Technology Data Exchange (ETDEWEB)

    Goodson, Boyd McLean [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  2. Fundamentals of nonlinear optical materials

    Indian Academy of Sciences (India)

    Nonlinear optics; nonlinear polarization; optical fiber communication; optical switch- ing. PACS Nos 42.65Tg; ... The importance of nonlinear optics is to understand the nonlinear behavior in the induced polarization and to ..... but much work in material development and characterization remains to be done. 16. Conclusion.

  3. Maximum Entropy Fundamentals

    Directory of Open Access Journals (Sweden)

    F. Topsøe

    2001-09-01

    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  4. Fundamentals of Space Medicine

    Science.gov (United States)

    Clément, Gilles

    2005-03-01

    A total of more than 240 human space flights have been completed to date, involving about 450 astronauts from various countries, for a combined total presence in space of more than 70 years. The seventh long-duration expedition crew is currently in residence aboard the International Space Station, continuing a permanent presence in space that began in October 2000. During that time, investigations have been conducted on both humans and animal models to study the bone demineralization and muscle deconditioning, space motion sickness, the causes and possible treatment of postflight orthostatic intolerance, the changes in immune function, crew and crew-ground interactions, and the medical issues of living in a space environment, such as the effects of radiation or the risk of developing kidney stones. Some results of these investigations have led to fundamental discoveries about the adaptation of the human body to the space environment. Gilles Clément has been active in this research. This readable text presents the findings from the life science experiments conducted during and after space missions. Topics discussed in this book include: adaptation of sensory-motor, cardio-vascular, bone, and muscle systems to the microgravity of spaceflight; psychological and sociological issues of living in a confined, isolated, and stressful environment; operational space medicine, such as crew selection, training and in-flight health monitoring, countermeasures and support; results of space biology experiments on individual cells, plants, and animal models; and the impact of long-duration missions such as the human mission to Mars. The author also provides a detailed description of how to fly a space experiment, based on his own experience with research projects conducted onboard Salyut-7, Mir, Spacelab, and the Space Shuttle. Now is the time to look at the future of human spaceflight and what comes next. The future human exploration of Mars captures the imagination of both the

  5. Indian summer monsoon forcing on the deglacial polar cold reversals

    Indian Academy of Sciences (India)

    Virupaxa K Banakar

    2017-09-01

    Sep 1, 2017 ... because CO2, the fundamental forcing for deglaciation, and Atlantic meridional overturning circulation, ... The role of CO2 in causing these deglacial cold ..... Temperature changes in the polar regions with reference to their ...

  6. Wide-band polarization controller for Si photonic integrated circuits.

    Science.gov (United States)

    Velha, P; Sorianello, V; Preite, M V; De Angelis, G; Cassese, T; Bianchi, A; Testa, F; Romagnoli, M

    2016-12-15

    A circuit for the management of any arbitrary polarization state of light is demonstrated on an integrated silicon (Si) photonics platform. This circuit allows us to adapt any polarization into the standard fundamental TE mode of a Si waveguide and, conversely, to control the polarization and set it to any arbitrary polarization state. In addition, the integrated thermal tuning allows kilohertz speed which can be used to perform a polarization scrambler. The circuit was used in a WDM link and successfully used to adapt four channels into a standard Si photonic integrated circuit.

  7. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    “Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  8. Nuclear polarization and neutrons

    International Nuclear Information System (INIS)

    Glaettli, H.

    1985-01-01

    Different possibilities for the use of polarized nuclei in thermal neutron scattering on condensed matter are reviewed. Highly polarized nuclei are the starting point for studying dipolar magnetic order. Systematic measurement of spin-dependent scattering lengths is possible on samples with polarized nuclei. Highly polarized hydrogen should help to unravel complicated structures in chemistry and biology. The use of polarized proton targets as an energy-independent neutron polarizer in the thermal and epithermal region should be considered afresh. (author)

  9. Communication technology update and fundamentals

    CERN Document Server

    Grant, August E

    2010-01-01

    New communication technologies are being introduced at an astonishing rate. Making sense of these technologies is increasingly difficult. Communication Technology Update and Fundamentals is the single best source for the latest developments, trends, and issues in communication technology. Featuring the fundamental framework along with the history and background of communication technologies, Communication Technology Update and Fundamentals, 12th edition helps you stay ahead of these ever-changing and emerging technologies.As always, every chapter ha

  10. Fundamentals of ergonomic exoskeleton robots

    OpenAIRE

    Schiele, A.

    2008-01-01

    This thesis is the first to provide the fundamentals of ergonomic exoskeleton design. The fundamental theory as well as technology necessary to analyze and develop ergonomic wearable robots interacting with humans is established and validated by experiments and prototypes. The fundamentals are (1) a new theoretical framework for analyzing physical human robot interaction (pHRI) with exoskeletons, and (2) a clear set of design rules of how to build wearable, portable exoskeletons to easily and...

  11. LINEARLY POLARIZED PROBES OF SURFACE CHIRALITY

    NARCIS (Netherlands)

    VERBIEST, T; KAURANEN, M; MAKI, JJ; TEERENSTRA, MN; SCHOUTEN, AJ; NOLTE, RJM; PERSOONS, A

    1995-01-01

    We present a new nonlinear optical technique to study surface chirality. We demonstrate experimentally that the efficiency of second-harmonic generation from isotropic chiral surfaces is different for excitation with fundamental light that is +45 degrees and -45 degrees linearly polarized with

  12. Neutron polarization in polarized 3He targets

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.

    1990-01-01

    Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering

  13. How It's Made - Polarized Proton Beam (444th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Zelenski, Anatoli

    2008-01-01

    Experiments with polarized beams at RHIC will provide fundamental tests of QCD, and the electro-weak interaction reveal the spin structure of the proton. Polarization asymmetries and parity violation are the strong signatures for identification of the fundamental processes, which are otherwise inaccessible. Such experiments require the maximum available luminosity and therefore polarization must be obtained as an extra beam quality without sacrificing intensity. There are proposals to polarize the high-energy proton beam in the storage rings by the Stern-Gerlach effect or spin-filter techniques. But so far, the only practically available option is acceleration of the polarized beam produced in the source and taking care of polarization survival during acceleration and storage. Two major innovations -- the 'Siberian Snake' technique for polarization preservation during acceleration and high current polarized proton sources make spin physics with the high-energy polarized beams feasible. The RHIC is the first high-energy collider, where the 'Siberian Snake' technique allowed of polarized proton beam acceleration up-to 250 GeV energy. The RHIC unique Optically Pumped Polarized Ion Source produces sufficient polarized beam intensity for complete saturation of the RHIC acceptance. This polarization technique is based on spin-transfer collisions between a proton or atomic hydrogen beam of a few keV beam energy and optically pumped alkali metal vapors. From the first proposal and feasibility studies to the operational source this development can be considered as example of successful unification of individual scientists ingenuity, international collaboration and modern technology application for creation of a new polarization technique, which allowed of two-to-three order of magnitude polarized beam intensity increase sufficient for loading the RHIC to its full capacity for polarization studies.

  14. Polar Applications of Spaceborne Scatterometers

    Science.gov (United States)

    Long, David G.

    2017-01-01

    Wind scatterometers were originally developed for observation of near-surface winds over the ocean. They retrieve wind indirectly by measuring the normalized radar cross section (σo) of the surface, and estimating the wind via a geophysical model function relating σo to the vector wind. The σo measurements have proven to be remarkably capable in studies of the polar regions where they can map snow cover; detect the freeze/thaw state of forest, tundra, and ice; map and classify sea ice; and track icebergs. Further, a long time series of scatterometer σo observations is available to support climate studies. In addition to fundamental scientific research, scatterometer data are operationally used for sea-ice mapping to support navigation. Scatterometers are, thus, invaluable tools for monitoring the polar regions. In this paper, a brief review of some of the polar applications of spaceborne wind scatterometer data is provided. The paper considers both C-band and Ku-band scatterometers, and the relative merits of fan-beam and pencil-beam scatterometers in polar remote sensing are discussed. PMID:28919936

  15. Fundamental volatility is regime specific

    NARCIS (Netherlands)

    Arnold, I.J.M.; MacDonald, R.; Vries, de C.G.

    2006-01-01

    A widely held notion holds that freely floating exchange rates are excessively volatile when judged against fundamentals and when moving from fixed to floating exchange rates. We re-examine the data and conclude that the disparity between the fundamentals and exchange rate volatility is more

  16. Polarization phenomena in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1994-03-01

    The author discusses a number of interrelated hadronic spin effects which test fundamental features of perturbative and non-perturbative QCD. For example, the anomalous magnetic moment of the proton and the axial coupling g A on the nucleon are shown to be related to each other for fixed proton radius, independent of the form of the underlying three-quark relativistic quark wavefunction. The renormalization scale and scheme ambiguities for the radiative corrections to the Bjorken sum rule for the polarized structure functions can be eliminated by using commensurate scale relations with other observables. Other examples include (a) new constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton at large and small x bj ; (b) consequences of the principle of hadron helicity retention in high x F inclusive reactions; (c) applications of hadron helicity conservation to high momentum transfer exclusive reactions; and (d) the dependence of nuclear structure functions and shadowing on virtual photon polarization. He also discusses the implications of a number of measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A NN observed in large angle proton-proton scattering, the anomalously large ρπ branching ratio of the J/ψ, and the rapidly changing polarization dependence of both J/ψ and continuum lepton pair hadroproduction observed at large x F . The azimuthal angular dependence of the Drell-Yan process is shown to be highly sensitive to the projectile distribution amplitude, the fundamental valence light-cone wavefunction of the hadron

  17. Polarization phenomena in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J. [Stanford Univ., CA (United States)

    1994-12-01

    The author discusses a number of interrelated hadronic spin effects which test fundamental features of perturbative and nonperturbative QCD. For example, the anomalous magnetic moment of the proton and the axial coupling g{sub A} on the nucleon are shown to be related to each other for fixed proton radius, independent of the form of the underlying three-quark relativistic quark wavefunction. The renormalization scale and scheme ambiguities for the radiative corrections to the Bjorken sum rule for the polarized structure functions can be eliminated by using commensurate scale relations with other observables. Other examples include (a) new constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton at large and small x{sub bj}; (b) consequences of the principle of hadron retention in high x{sub F} inclusive reactions; (c) applications of hadron helicity conservation to high momentum transfer exclusive reactions; and (d) the dependence of nuclear structure functions and shadowing on virtual photon polarization. The author also discusses the implications of a number of measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A{sub NN} observed in large angle proton-proton scattering, the anomalously large {rho}{pi} branching ratio of the J/{psi}, and the rapidly changing polarization dependence of both J/{psi} and continuum lepton pair hadroproduction observed at large x{sub F}. The azimuthal angular dependence of the Drell-Yan process is shown to be highly sensitive to the projectile distribution amplitude, the fundamental valence light-cone wavefunction of the hadron.

  18. The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond

    Directory of Open Access Journals (Sweden)

    Fubito Nakatsu

    2014-11-01

    Full Text Available The selective transport of proteins or lipids by vesicular transport is a fundamental process supporting cellular physiology. The budding process involves cargo sorting and vesicle formation at the donor membrane and constitutes an important process in vesicular transport. This process is particularly important for the polarized sorting in epithelial cells, in which the cargo molecules need to be selectively sorted and transported to two distinct destinations, the apical or basolateral plasma membrane. Adaptor protein (AP-1, a member of the AP complex family, which includes the ubiquitously expressed AP-1A and the epithelium-specific AP-1B, regulates polarized sorting at the trans-Golgi network and/or at the recycling endosomes. A growing body of evidence, especially from studies using model organisms and animals, demonstrates that the AP-1-mediated polarized sorting supports the development and physiology of multi-cellular units as functional organs and tissues (e.g., cell fate determination, inflammation and gut immune homeostasis. Furthermore, a possible involvement of AP-1B in the pathogenesis of human diseases, such as Crohn’s disease and cancer, is now becoming evident. These data highlight the significant contribution of AP-1 complexes to the physiology of multicellular organisms, as master regulators of polarized sorting in epithelial cells.

  19. Predicting Achievable Fundamental Frequency Ranges in Vocalization Across Species.

    Directory of Open Access Journals (Sweden)

    Ingo Titze

    2016-06-01

    Full Text Available Vocal folds are used as sound sources in various species, but it is unknown how vocal fold morphologies are optimized for different acoustic objectives. Here we identify two main variables affecting range of vocal fold vibration frequency, namely vocal fold elongation and tissue fiber stress. A simple vibrating string model is used to predict fundamental frequency ranges across species of different vocal fold sizes. While average fundamental frequency is predominantly determined by vocal fold length (larynx size, range of fundamental frequency is facilitated by (1 laryngeal muscles that control elongation and by (2 nonlinearity in tissue fiber tension. One adaptation that would increase fundamental frequency range is greater freedom in joint rotation or gliding of two cartilages (thyroid and cricoid, so that vocal fold length change is maximized. Alternatively, tissue layers can develop to bear a disproportionate fiber tension (i.e., a ligament with high density collagen fibers, increasing the fundamental frequency range and thereby vocal versatility. The range of fundamental frequency across species is thus not simply one-dimensional, but can be conceptualized as the dependent variable in a multi-dimensional morphospace. In humans, this could allow for variations that could be clinically important for voice therapy and vocal fold repair. Alternative solutions could also have importance in vocal training for singing and other highly-skilled vocalizations.

  20. Polarized neutron spectrometer

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Novitskij, V.V.; Alfimenkov, V.P.; Galinskij, E.M.; Mareev, Yu.D.; Pikel'ner, L.B.; Chernikov, A.N.; Lason', L.; Tsulaya, V.M.; Tsulaya, M.I.

    2000-01-01

    The polarized neutron spectrometer, intended for studying the interaction of polarized neutrons with nuclei and condensed media in the area of energies from thermal up to several electron-volt, is developed at the IBR-2 reactor (JINR, Dubna). Diffraction on the Co(92%)-Fe(8%) magnetized monocrystals is used for the neutron polarization and polarization analysis. The neutron polarization within the whole energy range equals ∼ 95% [ru

  1. Fundamental symmetry studies at Los Alamos using epithermal neutrons

    International Nuclear Information System (INIS)

    Bowman, C.D.; Bowman, J.D.; Yuan, V.W.

    1988-01-01

    Fundamental symmetry studies using intense polarized beams of epithermal neutrons are underway at the LANSCE facility of the Los Alamos National Laboratory. Three classes of symmetry experiments can be explored: parity violation, and time reversal invariance violation for both parity-violating and parity-conserved observables. The experimental apparatus is described and performance illustrated with examples of recent measurements. Possible improvements in the facilities and prospective experiments are discussed. 15 refs., 10 figs

  2. Fundamental principles of heat transfer

    CERN Document Server

    Whitaker, Stephen

    1977-01-01

    Fundamental Principles of Heat Transfer introduces the fundamental concepts of heat transfer: conduction, convection, and radiation. It presents theoretical developments and example and design problems and illustrates the practical applications of fundamental principles. The chapters in this book cover various topics such as one-dimensional and transient heat conduction, energy and turbulent transport, forced convection, thermal radiation, and radiant energy exchange. There are example problems and solutions at the end of every chapter dealing with design problems. This book is a valuable int

  3. Fundamental number theory with applications

    CERN Document Server

    Mollin, Richard A

    2008-01-01

    An update of the most accessible introductory number theory text available, Fundamental Number Theory with Applications, Second Edition presents a mathematically rigorous yet easy-to-follow treatment of the fundamentals and applications of the subject. The substantial amount of reorganizing makes this edition clearer and more elementary in its coverage. New to the Second Edition           Removal of all advanced material to be even more accessible in scope           New fundamental material, including partition theory, generating functions, and combinatorial number theory           Expa

  4. Biomaterials for tissue engineering applications.

    Science.gov (United States)

    Keane, Timothy J; Badylak, Stephen F

    2014-06-01

    With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community. Copyright © 2014. Published by Elsevier Inc.

  5. Tissue polarimetry: concepts, challenges, applications, and outlook.

    Science.gov (United States)

    Ghosh, Nirmalya; Vitkin, I Alex

    2011-11-01

    Polarimetry has a long and successful history in various forms of clear media. Driven by their biomedical potential, the use of the polarimetric approaches for biological tissue assessment has also recently received considerable attention. Specifically, polarization can be used as an effective tool to discriminate against multiply scattered light (acting as a gating mechanism) in order to enhance contrast and to improve tissue imaging resolution. Moreover, the intrinsic tissue polarimetry characteristics contain a wealth of morphological and functional information of potential biomedical importance. However, in a complex random medium-like tissue, numerous complexities due to multiple scattering and simultaneous occurrences of many scattering and polarization events present formidable challenges both in terms of accurate measurements and in terms of analysis of the tissue polarimetry signal. In order to realize the potential of the polarimetric approaches for tissue imaging and characterization/diagnosis, a number of researchers are thus pursuing innovative solutions to these challenges. In this review paper, we summarize these and other issues pertinent to the polarized light methodologies in tissues. Specifically, we discuss polarized light basics, Stokes-Muller formalism, methods of polarization measurements, polarized light modeling in turbid media, applications to tissue imaging, inverse analysis for polarimetric results quantification, applications to quantitative tissue assessment, etc.

  6. Quantum mechanics I the fundamentals

    CERN Document Server

    Rajasekar, S

    2015-01-01

    Quantum Mechanics I: The Fundamentals provides a graduate-level account of the behavior of matter and energy at the molecular, atomic, nuclear, and sub-nuclear levels. It covers basic concepts, mathematical formalism, and applications to physically important systems.

  7. Are fundamental constants really constant

    International Nuclear Information System (INIS)

    Norman, E.B.

    1986-01-01

    Reasons for suspecting that fundamental constants might change with time are reviewed. Possible consequences of such variations are examined. The present status of experimental tests of these ideas is discussed

  8. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2010-01-01

    This introduction to the principles of unsteady aerodynamics covers all the core concepts, provides readers with a review of the fundamental physics, terminology and basic equations, and covers hot new topics such as the use of flapping wings for propulsion.

  9. Fundamentals of electronic image processing

    CERN Document Server

    Weeks, Arthur R

    1996-01-01

    This book is directed to practicing engineers and scientists who need to understand the fundamentals of image processing theory and algorithms to perform their technical tasks. It is intended to fill the gap between existing high-level texts dedicated to specialists in the field and the need for a more practical, fundamental text on image processing. A variety of example images are used to enhance reader understanding of how particular image processing algorithms work.

  10. Qualitative insights on fundamental mechanics

    OpenAIRE

    Mardari, G. N.

    2002-01-01

    The gap between classical mechanics and quantum mechanics has an important interpretive implication: the Universe must have an irreducible fundamental level, which determines the properties of matter at higher levels of organization. We show that the main parameters of any fundamental model must be theory-independent. They cannot be predicted, because they cannot have internal causes. However, it is possible to describe them in the language of classical mechanics. We invoke philosophical reas...

  11. Polarized targets and beams

    International Nuclear Information System (INIS)

    Meyer, W.

    1985-01-01

    First the experimental situation of the single-pion photoproduction and the photodisintegration of the deuteron is briefly discussed. Then a description of the Bonn polarization facilities is given. The point of main effort is put on the polarized target which plays a vital role in the program. A facility for photon induced double polarization experiments at ELSA will be presented in section 4. Properties of a tensor polarized deuteron target are discussed in section 5. The development in the field of polarized targets, especially on new target materials, enables a new generation of polarized target experiments with (polarized) electrons. Some comments on the use of a polarized target in combination with electron beams will be discussed in section 6. Electron deuteron scattering from a tensor polarized deuteron target is considered and compared with other experimental possibilities. (orig./HSI)

  12. Polarization of very cold neutron using a permanent magnet quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Tamaki, E-mail: tyosioka@post.kek.j [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Mishima, Kenji; Ino, Takashi; Taketani, Kaoru; Muto, Suguru; Morishima, Takahiro; Shimizu, Hirohiko M. [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Oku, Takayuki; Suzuki, Junichi; Shinohara, Takenao; Sakai, Kenji [Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Sato, Hiromi; Hirota, Katsuya; Otake, Yoshie [RIKEN, Saitama 351-0198 (Japan); Kitaguchi, Masaaki; Hino, Masahiro [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Seki, Yoshichika [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Iwashita, Yoshihisa; Yamada, Masako [Institute for Chemical Research, Kyoto University, Kyoto 611-0011 (Japan); Ichikawa, Masahiro [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2011-04-01

    For the future fundamental physics experiments by using cold neutrons, we are developing a device which can measure the neutron polarization degree by accuracy significantly below 10{sup -3}. A quadrupole magnet is one of the promising candidate to measure the neutron polarization degree by such extremely high precision. We have performed a polarization experiment by using the quadrupole magnets at the Very Cold Neutron (VCN) port of the PF-2 in the Institute Laue-Langevin (ILL). As a result, we obtained the polarization degree P with very high accuracy P=0.9994{+-}0.0001(stat.){+-}0.0003(syst.), which meet our requirement significantly.

  13. Stem cell bioprocessing: fundamentals and principles.

    Science.gov (United States)

    Placzek, Mark R; Chung, I-Ming; Macedo, Hugo M; Ismail, Siti; Mortera Blanco, Teresa; Lim, Mayasari; Cha, Jae Min; Fauzi, Iliana; Kang, Yunyi; Yeo, David C L; Ma, Chi Yip Joan; Polak, Julia M; Panoskaltsis, Nicki; Mantalaris, Athanasios

    2009-03-06

    In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the 'omics' technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical-failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications.

  14. Scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Schweizer, J.

    2007-01-01

    In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)

  15. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  16. Techniques in polarization physics

    International Nuclear Information System (INIS)

    Clausnitzer, G.

    1974-01-01

    A review of the current status of the technical tools necessary to perform different kinds of polarization experiments is presented, and the absolute and relative accuracy with which data can be obtained is discussed. A description of polarized targets and sources of polarized fast neutrons is included. Applications of polarization techniques to other fields is mentioned briefly. (14 figures, 3 tables, 110 references) (U.S.)

  17. Fundamental physics in particle traps

    International Nuclear Information System (INIS)

    Quint, Wolfgang; Vogel, Manuel

    2014-01-01

    The individual topics are covered by leading experts in the respective fields of research. Provides readers with present theory and experiments in this field. A useful reference for researchers. This volume provides detailed insight into the field of precision spectroscopy and fundamental physics with particles confined in traps. It comprises experiments with electrons and positrons, protons and antiprotons, antimatter and highly charged ions, together with corresponding theoretical background. Such investigations represent stringent tests of quantum electrodynamics and the Standard model, antiparticle and antimatter research, test of fundamental symmetries, constants, and their possible variations with time and space. They are key to various aspects within metrology such as mass measurements and time standards, as well as promising to further developments in quantum information processing. The reader obtains a valuable source of information suited for beginners and experts with an interest in fundamental studies using particle traps.

  18. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam.

    Science.gov (United States)

    Li, Xiangping; Lan, Tzu-Hsiang; Tien, Chung-Hao; Gu, Min

    2012-01-01

    The interplay between light polarization and matter is the basis of many fundamental physical processes and applications. However, the electromagnetic wave nature of light in free space sets a fundamental limit on the three-dimensional polarization orientation of a light beam. Although a high numerical aperture objective can be used to bend the wavefront of a radially polarized beam to generate the longitudinal polarization state in the focal volume, the arbitrary three-dimensional polarization orientation of a beam has not been achieved yet. Here we present a novel technique for generating arbitrary three-dimensional polarization orientation by a single optically configured vectorial beam. As a consequence, by applying this technique to gold nanorods, orientation-unlimited polarization encryption with ultra-security is demonstrated. These results represent a new landmark of the orientation-unlimited three-dimensional polarization control of the light-matter interaction.

  19. Polarized Moessbauer transitions

    International Nuclear Information System (INIS)

    Barb, D.

    1975-01-01

    Theoretical aspects of the emission, absorption and scattering of polarized gamma rays are reviewed for a general case of combined magnetic and electric hyperfine interactions; various possibilities of obtaining polarized gamma sources are described and examples are given of the applications of Moessbauer spectroscopy with polarized gamma rays in solving problems of solid state physics. (A.K.)

  20. Geographical Income Polarization

    DEFF Research Database (Denmark)

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live...

  1. Calculation of polarization effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1983-09-01

    Basically there are two areas of accelerator applications that involve beam polarization. One is the acceleration of a polarized beam (most likely a proton beam) in a synchrotron. Another concerns polarized beams in an electron storage ring. In both areas, numerical techniques have been very useful

  2. RFID design fundamentals and applications

    CERN Document Server

    Lozano-Nieto, Albert

    2010-01-01

    RFID is an increasingly pervasive tool that is now used in a wide range of fields. It is employed to substantiate adherence to food preservation and safety standards, combat the circulation of counterfeit pharmaceuticals, and verify authenticity and history of critical parts used in aircraft and other machinery-and these are just a few of its uses. Goes beyond deployment, focusing on exactly how RFID actually worksRFID Design Fundamentals and Applications systematically explores the fundamental principles involved in the design and characterization of RFID technologies. The RFID market is expl

  3. Fundamentals of multicore software development

    CERN Document Server

    Pankratius, Victor; Tichy, Walter F

    2011-01-01

    With multicore processors now in every computer, server, and embedded device, the need for cost-effective, reliable parallel software has never been greater. By explaining key aspects of multicore programming, Fundamentals of Multicore Software Development helps software engineers understand parallel programming and master the multicore challenge. Accessible to newcomers to the field, the book captures the state of the art of multicore programming in computer science. It covers the fundamentals of multicore hardware, parallel design patterns, and parallel programming in C++, .NET, and Java. It

  4. Qualitative insights on fundamental mechanics

    International Nuclear Information System (INIS)

    Mardari, Ghenadie N

    2007-01-01

    The gap between classical mechanics and quantum mechanics has an important interpretive implication: the Universe must have an irreducible fundamental level, which determines the properties of matter at higher levels of organization. We show that the main parameters of any fundamental model must be theory-independent. Moreover, such models must also contain discrete identical entities with constant properties. These conclusions appear to support the work of Kaniadakis on subquantum mechanics. A qualitative analysis is offered to suggest compatibility with relevant phenomena, as well as to propose new means for verification

  5. Astrophysical probes of fundamental physics

    International Nuclear Information System (INIS)

    Martins, C.J.A.P.

    2009-01-01

    I review the motivation for varying fundamental couplings and discuss how these measurements can be used to constrain fundamental physics scenarios that would otherwise be inaccessible to experiment. I highlight the current controversial evidence for varying couplings and present some new results. Finally I focus on the relation between varying couplings and dark energy, and explain how varying coupling measurements might be used to probe the nature of dark energy, with some advantages over standard methods. In particular I discuss what can be achieved with future spectrographs such as ESPRESSO and CODEX.

  6. Astrophysical probes of fundamental physics

    Energy Technology Data Exchange (ETDEWEB)

    Martins, C.J.A.P. [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2009-10-15

    I review the motivation for varying fundamental couplings and discuss how these measurements can be used to constrain fundamental physics scenarios that would otherwise be inaccessible to experiment. I highlight the current controversial evidence for varying couplings and present some new results. Finally I focus on the relation between varying couplings and dark energy, and explain how varying coupling measurements might be used to probe the nature of dark energy, with some advantages over standard methods. In particular I discuss what can be achieved with future spectrographs such as ESPRESSO and CODEX.

  7. The fundamentals of mathematical analysis

    CERN Document Server

    Fikhtengol'ts, G M

    1965-01-01

    The Fundamentals of Mathematical Analysis, Volume 1 is a textbook that provides a systematic and rigorous treatment of the fundamentals of mathematical analysis. Emphasis is placed on the concept of limit which plays a principal role in mathematical analysis. Examples of the application of mathematical analysis to geometry, mechanics, physics, and engineering are given. This volume is comprised of 14 chapters and begins with a discussion on real numbers, their properties and applications, and arithmetical operations over real numbers. The reader is then introduced to the concept of function, i

  8. The fundamental interactions of matter

    International Nuclear Information System (INIS)

    Falla, D.F.

    1977-01-01

    Elementary particles are here discussed, in the context of the extent to which the fundamental interactions are related to the elementary constituents of matter. The field quanta related to the four fundamental interactions (electromagnetic, strong,weak and gravitational) are discussed within an historical context beginning with the conception of the photon. The discovery of the mesons and discoveries relevant to the nature of the heavy vector boson are considered. Finally a few recent speculations on the properties of the graviton are examined. (U.K.)

  9. Acceleration of polarized particles

    International Nuclear Information System (INIS)

    Buon, J.

    1992-05-01

    The spin kinetics of polarized beams in circular accelerators is reviewed in the case of spin-1/2 particles (electrons and protons) with emphasis on the depolarization phenomena. The acceleration of polarized proton beams in synchrotrons is described together with the cures applied to reduce depolarization, including the use of 'Siberian Snakes'. The in-situ polarization of electrons in storage rings due to synchrotron radiation is studied as well as depolarization in presence of ring imperfections. The applications of electron polarization to accurately calibrate the rings in energy and to use polarized beams in colliding-beam experiments are reviewed. (author) 76 refs., 19 figs., 1 tab

  10. Prostate Cancer Detection Using Near Infrared Spectral Polarization Imaging

    National Research Council Canada - National Science Library

    Alfano, R. R; Wang, W. B

    2005-01-01

    .... The technique is based on the spectral and polarization properties of light scattered, absorbed and emitted from prostate cancerous and normal tissues, and contrast agents targeted to the prostate cancers. Results of finding...

  11. Another argument against fundamental scalars

    International Nuclear Information System (INIS)

    Joglekar, S.D.

    1990-01-01

    An argument, perhaps not as strong, which is based on the inclusion of interaction with external gravity into a theory describing strong, electromagnetic and weak interactions is presented. The argument is related to the basis of the common belief which favours a renormalizable action against a non-renormalizable action as a candidate for a fundamental theory. (author). 12 refs

  12. Fundamentals of Welding. Teacher Edition.

    Science.gov (United States)

    Fortney, Clarence; And Others

    These instructional materials assist teachers in improving instruction on the fundamentals of welding. The following introductory information is included: use of this publication; competency profile; instructional/task analysis; related academic and workplace skills list; tools, materials, and equipment list; and 27 references. Seven units of…

  13. Composing Europe's Fundamental Rights Area

    DEFF Research Database (Denmark)

    Storgaard, Louise Halleskov

    2015-01-01

    The article offers a perspective on how the objective of a strong and coherent European protection standard pursued by the fundamental rights amendments of the Lisbon Treaty can be achieved, as it proposes a discursive pluralistic framework to understand and guide the relationship between the EU...

  14. Summary: fundamental interactions and processes

    International Nuclear Information System (INIS)

    Koltun, D.S.

    1982-01-01

    The subjects of the talks of the first day of the workshop are discussed in terms of fundamental interactions, dynamical theory, and relevant degrees of freedom. Some general considerations are introduced and are used to confront the various approaches taken in the earlier talks

  15. Fundamental Composite (Goldstone) Higgs Dynamics

    DEFF Research Database (Denmark)

    Cacciapaglia, G.; Sannino, Francesco

    2014-01-01

    We provide a unified description, both at the effective and fundamental Lagrangian level, of models of composite Higgs dynamics where the Higgs itself can emerge, depending on the way the electroweak symmetry is embedded, either as a pseudo-Goldstone boson or as a massive excitation of the conden...... searches of new physics at the Large Hadron Collider....

  16. Fundamentals of Biomass pellet production

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Henriksen, Ulrik Birk; Hustad, Johan Einar

    2005-01-01

    Pelletizing experiments along with modelling of the pelletizing process have been carried out with the aim of understanding the fundamental physico-chemical mechanisms that control the quality and durability of biomass pellets. A small-scale California pellet mill (25 kg/h) located with the Biomass...

  17. Energy informatics: Fundamentals and standardization

    Directory of Open Access Journals (Sweden)

    Biyao Huang

    2017-06-01

    Full Text Available Based on international standardization and power utility practices, this paper presents a preliminary and systematic study on the field of energy informatics and analyzes boundary expansion of information and energy system, and the convergence of energy system and ICT. A comprehensive introduction of the fundamentals and standardization of energy informatics is provided, and several key open issues are identified.

  18. Experiments in Fundamental Neutron Physics

    OpenAIRE

    Nico, J. S.; Snow, W. M.

    2006-01-01

    Experiments using slow neutrons address a growing range of scientific issues spanning nuclear physics, particle physics, astrophysics, and cosmology. The field of fundamental physics using neutrons has experienced a significant increase in activity over the last two decades. This review summarizes some of the recent developments in the field and outlines some of the prospects for future research.

  19. Brake Fundamentals. Automotive Articulation Project.

    Science.gov (United States)

    Cunningham, Larry; And Others

    Designed for secondary and postsecondary auto mechanics programs, this curriculum guide contains learning exercises in seven areas: (1) brake fundamentals; (2) brake lines, fluid, and hoses; (3) drum brakes; (4) disc brake system and service; (5) master cylinder, power boost, and control valves; (6) parking brakes; and (7) trouble shooting. Each…

  20. FUNdamental Movement in Early Childhood.

    Science.gov (United States)

    Campbell, Linley

    2001-01-01

    Noting that the development of fundamental movement skills is basic to children's motor development, this booklet provides a guide for early childhood educators in planning movement experiences for children between 4 and 8 years. The booklet introduces a wide variety of appropriate practices to promote movement skill acquisition and increased…

  1. Fundamentals: IVC and Computer Science

    NARCIS (Netherlands)

    Gozalvez, Javier; Haerri, Jerome; Hartenstein, Hannes; Heijenk, Geert; Kargl, Frank; Petit, Jonathan; Scheuermann, Björn; Tieler, Tessa; Altintas, O.; Dressler, F.; Hartenstein, H.; Tonguz, O.K.

    The working group on “Fundamentals: IVC and Computer Science‿ discussed the lasting value of achieved research results as well as potential future directions in the field of inter- vehicular communication. Two major themes ‘with variations’ were the dependence on a specific technology (particularly

  2. Different Variants of Fundamental Portfolio

    Directory of Open Access Journals (Sweden)

    Tarczyński Waldemar

    2014-06-01

    Full Text Available The paper proposes the fundamental portfolio of securities. This portfolio is an alternative for the classic Markowitz model, which combines fundamental analysis with portfolio analysis. The method’s main idea is based on the use of the TMAI1 synthetic measure and, in limiting conditions, the use of risk and the portfolio’s rate of return in the objective function. Different variants of fundamental portfolio have been considered under an empirical study. The effectiveness of the proposed solutions has been related to the classic portfolio constructed with the help of the Markowitz model and the WIG20 market index’s rate of return. All portfolios were constructed with data on rates of return for 2005. Their effectiveness in 2006- 2013 was then evaluated. The studied period comprises the end of the bull market, the 2007-2009 crisis, the 2010 bull market and the 2011 crisis. This allows for the evaluation of the solutions’ flexibility in various extreme situations. For the construction of the fundamental portfolio’s objective function and the TMAI, the study made use of financial and economic data on selected indicators retrieved from Notoria Serwis for 2005.

  3. Credit cycles and macro fundamentals

    NARCIS (Netherlands)

    Koopman, S.J.; Kraeussl, R.G.W.; Lucas, A.; Monteiro, A.

    2009-01-01

    We use an intensity-based framework to study the relation between macroeconomic fundamentals and cycles in defaults and rating activity. Using Standard and Poor's U.S. corporate rating transition and default data over the period 1980-2005, we directly estimate the default and rating cycle from micro

  4. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  5. Experimental tests of fundamental symmetries

    NARCIS (Netherlands)

    Jungmann, K. P.

    2014-01-01

    Ongoing experiments and projects to test our understanding of fundamental inter- actions and symmetries in nature have progressed significantly in the past few years. At high energies the long searched for Higgs boson has been found; tests of gravity for antimatter have come closer to reality;

  6. Escola de ensino fundamental(s em movimento – movimento na escola de ensino fundamental

    Directory of Open Access Journals (Sweden)

    Reiner Hildebrandt-Stramann

    2007-12-01

    Full Text Available A escola de ensino fundamental na Alemanha sofreu movimento nos últimos 15 anos, porque, entre outros motivos, entrou movimento nessas escolas. Esse jogo de palavras chama atenção a duas linhas de trabalho que determinam a discussão na atual pedagogia escolar. O presente trabalho revela essas duas perspectivas. Uma das linhas está relacionada ao atual processo de mudança na pedagogia escolar. Essa prediz que a escola de ensino fundamental deve ser um lugar de aprendizagem e de vivência para as crianças. A outra linha tem a ver com o jogo de palavras ancorado a esses processos da pedagogia do movimento, a qual ganha cada vez maiores dimensões. A escola de ensino fundamental deve ser vista sob a perspectiva do movimento e transformada em um lugar de movimento.

  7. Biological Studies with Laser-Polarized ^129Xe

    Science.gov (United States)

    Tseng, C. H.; Oteiza, E. R.; Wong, G. A.; Walsworth, R. L.; Albert, M. S.; Nascimben, L.; Peled, S.; Sakai, K.; Jolesz, F. A.

    1996-05-01

    We have studied several biological systems using laser-polarized ^129Xe. In certain tissues magnetic resonance imaging (MRI) using inhaled laser-polarized noble gases may provide images superior to those from conventional proton MRI. High resolution laser-polarized ^3He images of air spaces in the human lung were recently obtained by the Princeton/Duke group. However, ^3He is not very soluble in tissue. Therefore, we are using laser polarized ^129Xe (tissue-soluble), with the long term goal of biomedical functional imaging. We have investigated multi-echo and multi-excitation magnetic resonance detection schemes to exploit the highly non-thermal ^129Xe magnetization produced by the laser polarization technique. We have inhalated live rats with laser-polarized ^129Xe gas and measured three distinct ^129Xe tissue resonances that last 20 to 40 sec. As a demonstration, we obtained a laser polarized ^129Xe image of the human oral cavity. Currently we are measuring the polarization lifetime of ^129Xe dissolved in human blood, the biological transporting medium. These studies and other recent developments will be reported.

  8. Polarization effects. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.

    1981-01-01

    The use of polarized proton beams in ISABELLE is important for several general reasons: (1) With a single longitudinally polarized proton beam, effects involving parity violation can be identified and hence processes involving weak interactions can be separated from those involving strong and electromagnetic interactions. (2) Spin effects are important in the strong interactions and can be useful for testing QCD. The technique for obtaining polarized proton beams in ISABELLE appears promising, particularly in view of the present development of a polarized proton beam for the AGS. Projections for the luminosity in ISABELLE for collisions of polarized protons - one or both beams polarized with longitudinal or transverse polarization - range from 1/100 to 1 times the luminosity for unpolarized protons.

  9. The Physics of Polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  10. NMR-Based Identification of Metabolites in Polar and Non-Polar Extracts of Avian Liver.

    Science.gov (United States)

    Fathi, Fariba; Brun, Antonio; Rott, Katherine H; Falco Cobra, Paulo; Tonelli, Marco; Eghbalnia, Hamid R; Caviedes-Vidal, Enrique; Karasov, William H; Markley, John L

    2017-11-16

    Metabolites present in liver provide important clues regarding the physiological state of an organism. The aim of this work was to evaluate a protocol for high-throughput NMR-based analysis of polar and non-polar metabolites from a small quantity of liver tissue. We extracted the tissue with a methanol/chloroform/water mixture and isolated the polar metabolites from the methanol/water layer and the non-polar metabolites from the chloroform layer. Following drying, we re-solubilized the fractions for analysis with a 600 MHz NMR spectrometer equipped with a 1.7 mm cryogenic probe. In order to evaluate the feasibility of this protocol for metabolomics studies, we analyzed the metabolic profile of livers from house sparrow ( Passer domesticus ) nestlings raised on two different diets: livers from 10 nestlings raised on a high protein diet (HP) for 4 d and livers from 12 nestlings raised on the HP diet for 3 d and then switched to a high carbohydrate diet (HC) for 1 d. The protocol enabled the detection of 52 polar and nine non-polar metabolites in ¹H NMR spectra of the extracts. We analyzed the lipophilic metabolites by one-way ANOVA to assess statistically significant concentration differences between the two groups. The results of our studies demonstrate that the protocol described here can be exploited for high-throughput screening of small quantities of liver tissue (approx. 100 mg wet mass) obtainable from small animals.

  11. Localization of IAA transporting tissue by tissue printing and autoradiography

    International Nuclear Information System (INIS)

    Mee-Rye Cha; Evans, M.L.; Hangarter, R.P.

    1991-01-01

    Tissue printing on nitrocellulose membranes provides a useful technique for visualizing anatomical details of tissue morphology of cut ends of stem segments. Basal ends of Coleus stem and corn coleoptile segments that were transporting 14 C-IAA were gently blotted onto DEAE-nitrocellulose for several minutes to allow 14 C-IAA to efflux from the tissue. Because of the anion exchange properties of DEAE-nitrocellulose the 14 C-IAA remains on the membrane at the point it leaves the transporting tissue. Autoradiography of the DEAE membrane allowed indirect visualization of the tissues preferentially involved in auxin transport. The authors observed that polar transport through the stem segments occurred primarily through or in association with vascular tissues. However, in Coleus stems, substantial amounts of the label appeared to move through the tissue by diffusion as well as by active transport

  12. Generation of circular polarization of the cosmic microwave background

    International Nuclear Information System (INIS)

    Alexander, Stephon; Ochoa, Joseph; Kosowsky, Arthur

    2009-01-01

    The standard cosmological model, which includes only Compton scattering photon interactions at energy scales near recombination, results in zero primordial circular polarization of the cosmic microwave background. In this paper we consider a particular renormalizable and gauge-invariant standard model extension coupling photons to an external vector field via a Chern-Simons term, which arises as a radiative correction if gravitational torsion couples to fermions. We compute the transport equations for polarized photons from a Boltzmann-like equation, showing that such a coupling will source circular polarization of the microwave background. For the particular coupling considered here, the circular polarization effect is always negligible compared to the rotation of the linear polarization orientation, also derived using the same formalism. We note the possibility that limits on microwave background circular polarization may probe other photon interactions and related fundamental effects such as violations of Lorentz invariance.

  13. Activation of natural killer T cells promotes M2 macrophage polarization in adipose tissue and improves systemic glucose tolerance via the IL-4/STAT6 signaling axis in obesity

    NARCIS (Netherlands)

    Ji, Yewei; Sun, Shengyi; Xu, Aimin; Yang, Liu; Bhargava, Prerna; Lam, Karen S.; Gao, Bin; Lee, Chih-Hao; Kersten, Sander; Qi, Ling

    2012-01-01

    Natural killer T (NKT) cells are important therapeutic targets in various disease models and under clinical trials for cancer patients. However, their function in obesity and type 2 diabetes remains unclear. Our data show that adipose tissues of both mice and humans contain a population of type-1

  14. Activation of natural killer T Cells promotes M2 macrophage polarization in adipose tissue and improves systemic glucose tolerance via interleukin-4 (IL-4)/STAT6 protein signalling axis in obesity

    NARCIS (Netherlands)

    Ji, Y.; Sun, S.; Xu, Aimin; Bhargava, P.; Yang, Liu; Lam, K.S.L.; Gao, Bin; Lee, Chih-Hao; Kersten, A.H.; Qi, L.

    2012-01-01

    Natural killer T (NKT) cells are important therapeutic targets in various disease models and are under clinical trials for cancer patients. However, their function in obesity and type 2 diabetes remains unclear. Our data show that adipose tissues of both mice and humans contain a population of type

  15. Workshop on polarized neutron filters and polarized pulsed neutron experiments

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2004-07-01

    The workshop was held in KEK by thirty-three participants on April 26, 2004. The polarized neutron filter method was only discussed. It consists of three parts; the first part was discussed on the polarized neutron methods, the second part on the polarized neutron experiments and the third on the pulse neutron spectrometer and polarized neutron experiments. The six papers were presented such as the polarized 3 He neutron spin filter, neutron polarization by proton polarized filter, soft master and neutron scattering, polarized neutron in solid physics, polarization experiments by chopper spectroscope and neutron polarization system in superHRPD. (S.Y.)

  16. Fundamentals of condensed matter physics

    CERN Document Server

    Cohen, Marvin L

    2016-01-01

    Based on an established course and covering the fundamentals, central areas, and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure as a starting point to understand many properties of condensed matter systems - electronic, structural, vibrational, thermal, optical, transport, magnetic and superconductivity - and methods to calculate them. Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features 200 illustrations, 40 worked examples and 150 homework problems for students to test their understanding. Solutions to the problems for instructors are available at w...

  17. DOE Fundamentals Handbook: Classical Physics

    International Nuclear Information System (INIS)

    1992-06-01

    The Classical Physics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of physical forces and their properties. The handbook includes information on the units used to measure physical properties; vectors, and how they are used to show the net effect of various forces; Newton's Laws of motion, and how to use these laws in force and motion applications; and the concepts of energy, work, and power, and how to measure and calculate the energy involved in various applications. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility systems and equipment

  18. Fundamentals of estuarine physical oceanography

    CERN Document Server

    Bruner de Miranda, Luiz; Kjerfve, Björn; Castro Filho, Belmiro Mendes de

    2017-01-01

    This book provides an introduction to the complex system functions, variability and human interference in ecosystem between the continent and the ocean. It focuses on circulation, transport and mixing of estuarine and coastal water masses, which is ultimately related to an understanding of the hydrographic and hydrodynamic characteristics (salinity, temperature, density and circulation), mixing processes (advection and diffusion), transport timescales such as the residence time and the exposure time. In the area of physical oceanography, experiments using these water bodies as a natural laboratory and interpreting their circulation and mixing processes using theoretical and semi-theoretical knowledge are of fundamental importance. Small-scale physical models may also be used together with analytical and numerical models. The book highlights the fact that research and theory are interactive, and the results provide the fundamentals for the development of the estuarine research.

  19. Protection of fundamental rights today

    International Nuclear Information System (INIS)

    Meyer-Abich, K.M.

    1984-01-01

    Technical developments can both change the methods of dealing with existing conflicts, and cause new conflicts. Meyer-Abich analyzes five conflicts caused by the technological development in the solution of which the constitutional, liberal, and democratic protection of fundamental rights is not at all guaranteed. Meyer-Abich thinks that these new conflicts can be solved in the framework of the liberal constitutional state, if legal and political consequences are taken in order to guarantee the uncharged protection of fundamental rights under changing conditions. The necessary reforms can, however, only be realized if the way how state and science see themselves changes. Both have to give up their one-sidedness into which have been pushed by conflict which havbe been caused by the scientific and technical development. Only then it will be possible to solve the jemerging conflicts without eopardizing the integritiy of the society. (orig.) [de

  20. THE FUNDAMENTS OF EXPLANATORY CAUSES

    Directory of Open Access Journals (Sweden)

    Lavinia Mihaela VLĂDILĂ

    2015-07-01

    Full Text Available The new Criminal Code in the specter of the legal life the division of causes removing the criminal feature of the offence in explanatory causes and non-attributable causes. This dichotomy is not without legal and factual fundaments and has been subjected to doctrinaire debates even since the period when the Criminal Code of 1969 was still in force. From our perspective, one of the possible legal fundaments of the explanatory causes results from that the offence committed is based on the protection of a right at least equal with the one prejudiced by the action of aggression, salvation, by the legal obligation imposed or by the victim’s consent.

  1. Modern measurements fundamentals and applications

    CERN Document Server

    Petri, D; Carbone, P; Catelani, M

    2015-01-01

    This book explores the modern role of measurement science for both the technically most advanced applications and in everyday and will help readers gain the necessary skills to specialize their knowledge for a specific field in measurement. Modern Measurements is divided into two parts. Part I (Fundamentals) presents a model of the modern measurement activity and the already recalled fundamental bricks. It starts with a general description that introduces these bricks and the uncertainty concept. The next chapters provide an overview of these bricks and finishes (Chapter 7) with a more general and complex model that encompasses both traditional (hard) measurements and (soft) measurements, aimed at quantifying non-physical concepts, such as quality, satisfaction, comfort, etc. Part II (Applications) is aimed at showing how the concepts presented in Part I can be usefully applied to design and implement measurements in some very impor ant and broad fields. The editors cover System Identification (Chapter 8...

  2. Fundamental investigations of catalyst nanoparticles

    DEFF Research Database (Denmark)

    Elkjær, Christian Fink

    and economic development in the 20th century. There is however a downside to this development and we are seeing significant pollution and pressure on resources. Catalysis therefore has an increasingly important role in limiting pollution and optimizing the use of resources. This development will depend on our...... fundamental understanding of catalytic processes and our ability to make use of that understanding. This thesis presents fundamental studies of catalyst nanoparticles with particular focus on dynamic processes. Such studies often require atomic-scale characterization, because the catalytic conversion takes...... important that we only study intrinsic structures and phenomena and not those that may be induced by the high energy electrons used to image the specimen. This requires careful consideration of the influence of the electron beam in order to understand, control and minimize that influence. I present four...

  3. Fundamentals of electronic systems design

    CERN Document Server

    Lienig, Jens

    2017-01-01

    This textbook covers the design of electronic systems from the ground up, from drawing and CAD essentials to recycling requirements. Chapter by chapter, it deals with the challenges any modern system designer faces: the design process and its fundamentals, such as technical drawings and CAD, electronic system levels, assembly and packaging issues and appliance protection classes, reliability analysis, thermal management and cooling, electromagnetic compatibility (EMC), all the way to recycling requirements and environmental-friendly design principles. Enables readers to face various challenges of designing electronic systems, including coverage from various engineering disciplines; Written to be accessible to readers of varying backgrounds; Uses illustrations extensively to reinforce fundamental concepts; Organized to follow essential design process, although chapters are self-contained and can be read in any order.

  4. Fundamental research in developing countries

    International Nuclear Information System (INIS)

    Moravesik, M.J.

    1964-01-01

    Technical assistance is today a widespread activity. Large numbers of persons with special qualifications in the applied sciences go to the developing countries to work on specific research and development projects, as do educationists on Fulbright or other programmes - usually to teach elementary or intermediate courses. But I believe that until now it has been rare for a person primarily interested in fundamental research to go to one of these countries to help build up advanced education and pure research work. Having recently returned from such an assignment, and having found it a most stimulating and enlightening experience, I feel moved to urge strongly upon others who may be in a position to do so that they should seek similar experience themselves. The first step is to show that advanced education and fundamental research are badly needed in the under-developed countries.

  5. Fundamentals of plastic optical fibers

    CERN Document Server

    Koike, Yasuhiro

    2014-01-01

    Polymer photonics is an interdisciplinary field which demands excellence both in optics (photonics) and materials science (polymer). However, theses disciplines have developed independently, and therefore the demand for a comprehensive work featuring the fundamentals of photonic polymers is greater than ever.This volume focuses on Polymer Optical Fiber and their applications. The first part of the book introduces typical optical fibers according to their classifications of material, propagating mode, and structure. Optical properties, the high bandwidth POF and transmission loss are discussed,

  6. DOE fundamentals handbook: Material science

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the two modules: structure of metals (bonding, common lattic types, grain structure/boundary, polymorphis, alloys, imperfections in metals) and properties of metals (stress, strain, Young modulus, stress-strain relation, physical properties, working of metals, corrosion, hydrogen embrittlement, tritium/material compatibility)

  7. Fundamental requirements for petrochemical development

    International Nuclear Information System (INIS)

    Flint, G. B.

    1999-01-01

    The development of NOVA Chemicals over the past 20 years is described as an illustration of how the petrochemical industry provides markets for natural gas, natural gas liquids and the products of crude oil distillation, and functions as a conduit for upgrading products which would otherwise be sold into the fuel market. Some fundamental characteristics of the business which are foundations for competitiveness are reviewed in the process. These fundamentals help to understand why the industry locates in certain geographic regions of the world, which are often remote from end-use markets. Chief among these fundamentals is access to an adequate supply of appropriately priced feedstock; this is the single most important reason why chemical companies continue to emphasize developments in areas of the world where feedstock are advantageously priced. The cost of operations is equally significant. Cost depends not so much on location but on the scale of operations, hence the tendency towards large scale plants. Plant and product rationalization, technology and product development synergies and leverage with suppliers are all opportunities for cost reduction throughout the product supply chain. The combination of lower natural gas cost in Alberta, the lower fixed cost of extraction and the economies of scale achieved by large scale operation (five billion pounds per year of polyethylene production capacity) are the crucial factors that will enable NOVA Chemicals to maintain its competitive position and to weather the highs and lows in industry price fluctuations

  8. Multiphoton polarization Bremsstrahlung effect

    International Nuclear Information System (INIS)

    Golovinskij, P.A.

    2001-01-01

    A general approach to induced polarization effects was formulated on the basis of theory of many particles in a strong periodic field. Correlation with the perturbation theory is shown and the types of effective polarization potentials both for isolated atoms and ions, and for ions in plasma, are provided. State of art in the theory of forced polarization Bremsstrahlung effect is analyzed and some outlooks for further experimental and theoretical studies are outlined [ru

  9. General multimode polarization splitter design in uniaxial media

    Science.gov (United States)

    Teixeira, Poliane A.; Silva, Daniely G.; Gabrielli, Lucas H.; Spadoti, Danilo H.; Junqueira, Mateus A. F. C.

    2018-03-01

    Quasiconformal transformation optics is used to design two-dimensional polarization beam splitters. The resulting media present inhomogeneous uniaxial permittivity and nonmagnetic response. The compact devices are theoretically designed and investigated for symmetrical and asymmetrical geometries, with footprint of 64 and 110 μm2, respectively. The polarization splitter performance is evaluated for the fundamental mode and third mode, exhibiting an insertion loss closer to 0 dB and extinction ratio above 40 dB over a broad wavelength range.

  10. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  11. Polarization of Be stars

    International Nuclear Information System (INIS)

    Johns, M.W.

    1975-01-01

    Linear polarization of starlight may be produced by electron scattering in the extended atmospheres of early type stars. Techniques are investigated for the measurement and interpretation of this polarization. Polarimetric observations were made of twelve visual double star systems in which at least one member was a B type star as a means of separating the intrinsic stellar polarization from the polarization produced in the interstellar medium. Four of the double stars contained a Be star. Evidence for intrinsic polarization was found in five systems including two of the Be systems, one double star with a short period eclipsing binary, and two systems containing only normal early type stars for which emission lines have not been previously reported. The interpretation of these observations in terms of individual stellar polarizations and their wavelength dependence is discussed. The theoretical basis for the intrinsic polarization of early type stars is explored with a model for the disk-like extended atmospheres of Be stars. Details of a polarimeter for the measurement of the linear polarization of astronomical point sources are also presented with narrow band (Δ lambda = 100A) measurements of the polarization of γ Cas from lambda 4000 to lambda 5800

  12. Polarization at SLC

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs

  13. The interdependence of the Rho GTPases and apicobasal cell polarity.

    Science.gov (United States)

    Mack, Natalie Ann; Georgiou, Marios

    2014-01-01

    Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease.

  14. Polarized lepton-nucleon scattering

    International Nuclear Information System (INIS)

    Hughes, E.

    1994-01-01

    The author provides a summary of the proposed and published statistical (systematic) uncertainties from the world experiments on nucleon spin structure function integrals. By the time these programs are complete, there will be a vast resource of data on nucleon spin structure functions. Each program has quite different experimental approaches regarding the beams, targets, and spectrometers thus ensuring systematically independent tests of the spin structure function measurements. Since the field of spin structure function measurements began, there has been a result appearing approximately every five years. With advances in polarized target technology and high polarization in virtually all of the lepton beams, results are now coming out each year; this is a true signature of the growth in the field. Hopefully, the experiments will provide a consistent picture of nucleon spin structure at their completion. In summary, there are still many open questions regarding the internal spin structure of the nucleon. Tests of QCD via the investigation of the Bjorken sum rule is a prime motivator for the field, and will continue with the next round of precision experiments. The question of the origin of spin is still a fundamental problem. Researchers hope is that high-energy probes using spin will shed light on this intriguing mystery, in addition to characterizing the spin structure of the nucleon

  15. Polarized lepton-nucleon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, E. [Stanford Univ., CA (United States)

    1994-12-01

    The author provides a summary of the proposed and published statistical (systematic) uncertainties from the world experiments on nucleon spin structure function integrals. By the time these programs are complete, there will be a vast resource of data on nucleon spin structure functions. Each program has quite different experimental approaches regarding the beams, targets, and spectrometers thus ensuring systematically independent tests of the spin structure function measurements. Since the field of spin structure function measurements began, there has been a result appearing approximately every five years. With advances in polarized target technology and high polarization in virtually all of the lepton beams, results are now coming out each year; this is a true signature of the growth in the field. Hopefully, the experiments will provide a consistent picture of nucleon spin structure at their completion. In summary, there are still many open questions regarding the internal spin structure of the nucleon. Tests of QCD via the investigation of the Bjorken sum rule is a prime motivator for the field, and will continue with the next round of precision experiments. The question of the origin of spin is still a fundamental problem. Researchers hope is that high-energy probes using spin will shed light on this intriguing mystery, in addition to characterizing the spin structure of the nucleon.

  16. Fundamental solutions of singular SPDEs

    International Nuclear Information System (INIS)

    Selesi, Dora

    2011-01-01

    Highlights: → Fundamental solutions of linear SPDEs are constructed. → Wick-convolution product is introduced for the first time. → Fourier transformation maps Wick-convolution into Wick product. → Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. → Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P(ω, D) ◊ u(x, ω) = A(x, ω) are considered, where A is a singular generalized stochastic process and P(ω, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A ◊ I ◊(-1) , where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.

  17. Continuum mechanics using Mathematica fundamentals, methods, and applications

    CERN Document Server

    Romano, Antonio

    2014-01-01

    This textbook's methodological approach familiarizes readers with the mathematical tools required to correctly define and solve problems in continuum mechanics. Covering essential principles and fundamental applications, this second edition of Continuum Mechanics using Mathematica® provides a solid basis for a deeper study of more challenging and specialized problems related to nonlinear elasticity, polar continua, mixtures, piezoelectricity, ferroelectricity, magneto-fluid mechanics, and state changes (see A. Romano, A. Marasco, Continuum Mechanics: Advanced Topics and Research Trends, Springer (Birkhäuser), 2010, ISBN 978-0-8176-4869-5). Key topics and features: * Concise presentation strikes a balance between fundamentals and applications * Requisite mathematical background carefully collected in two introductory chapters and one appendix * Recent developments highlighted through coverage of more significant applications to areas such as wave propagation, fluid mechanics, porous media, linear elasticity....

  18. Communication technology update and fundamentals

    CERN Document Server

    Grant, August E

    2014-01-01

    A classic now in its 14th edition, Communication Technology Update and Fundamentals is the single best resource for students and professionals looking to brush up on how these technologies have developed, grown, and converged, as well as what's in store for the future. It begins by developing the communication technology framework-the history, ecosystem, and structure-then delves into each type of technology, including everything from mass media, to computers and consumer electronics, to networking technologies. Each chapter is written by faculty and industry experts who p

  19. Quantum Uncertainty and Fundamental Interactions

    Directory of Open Access Journals (Sweden)

    Tosto S.

    2013-04-01

    Full Text Available The paper proposes a simplified theoretical approach to infer some essential concepts on the fundamental interactions between charged particles and their relative strengths at comparable energies by exploiting the quantum uncertainty only. The worth of the present approach relies on the way of obtaining the results, rather than on the results themselves: concepts today acknowledged as fingerprints of the electroweak and strong interactions appear indeed rooted in the same theoretical frame including also the basic principles of special and general relativity along with the gravity force.

  20. Photovoltaics fundamentals, technology and practice

    CERN Document Server

    Mertens, Konrad

    2013-01-01

    Concise introduction to the basic principles of solar energy, photovoltaic systems, photovoltaic cells, photovoltaic measurement techniques, and grid connected systems, overviewing the potential of photovoltaic electricity for students and engineers new to the topic After a brief introduction to the topic of photovoltaics' history and the most important facts, Chapter 1 presents the subject of radiation, covering properties of solar radiation, radiation offer, and world energy consumption. Chapter 2 looks at the fundamentals of semiconductor physics. It discusses the build-up of semiconducto

  1. Plasma expansion: fundamentals and applications

    International Nuclear Information System (INIS)

    Engeln, R; Mazouffre, S; Vankan, P; Bakker, I; Schram, D C

    2002-01-01

    The study of plasma expansion is interesting from a fundamental point of view as well as from a more applied point of view. We here give a short overview of the way properties like density, velocity and temperature behave in an expanding thermal plasma. Experimental data show that the basic phenomena of plasma expansion are to some extent similar to those of the expansion of a hot neutral gas. From the application point of view, we present first results on the use of an expanding thermal plasma in the plasma-activated catalysis of ammonia, from N 2 -H 2 mixtures

  2. Fundamentals of gas particle flow

    CERN Document Server

    Rudinger, G

    1980-01-01

    Fundamentals of Gas-Particle Flow is an edited, updated, and expanded version of a number of lectures presented on the "Gas-Solid Suspensions” course organized by the von Karman Institute for Fluid Dynamics. Materials presented in this book are mostly analytical in nature, but some experimental techniques are included. The book focuses on relaxation processes, including the viscous drag of single particles, drag in gas-particles flow, gas-particle heat transfer, equilibrium, and frozen flow. It also discusses the dynamics of single particles, such as particles in an arbitrary flow, in a r

  3. Testing Fundamental Gravitation in Space

    Energy Technology Data Exchange (ETDEWEB)

    Turyshev, Slava G.

    2013-10-15

    General theory of relativity is a standard theory of gravitation; as such, it is used to describe gravity when the problems in astronomy, astrophysics, cosmology, and fundamental physics are concerned. The theory is also relied upon in many modern applications involving spacecraft navigation, geodesy, and time transfer. Here we review the foundations of general relativity and discuss its current empirical status. We describe both the theoretical motivation and the scientific progress that may result from the new generation of high-precision tests that are anticipated in the near future.

  4. Current challenges in fundamental physics

    Science.gov (United States)

    Egana Ugrinovic, Daniel

    The discovery of the Higgs boson at the Large Hadron Collider completed the Standard Model of particle physics. The Standard Model is a remarkably successful theory of fundamental physics, but it suffers from severe problems. It does not provide an explanation for the origin or stability of the electroweak scale nor for the origin and structure of flavor and CP violation. It predicts vanishing neutrino masses, in disagreement with experimental observations. It also fails to explain the matter-antimatter asymmetry of the universe, and it does not provide a particle candidate for dark matter. In this thesis we provide experimentally testable solutions for most of these problems and we study their phenomenology.

  5. Short-range fundamental forces

    International Nuclear Information System (INIS)

    Antoniadis, I.; Baessler, S.; Buchner, M.; Fedorov, V.V.; Hoedl, S.; Nesvizhevsky, V.V.; Pignol, G.; Protasov, K.V.; Lambrecht, A.; Reynaud, S.; Sobolev, Y.

    2010-01-01

    We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: 1) spin-independent forces; 2) spin-dependent axion-like forces. Different experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experiments. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments

  6. Fundamentals of affinity cell separations.

    Science.gov (United States)

    Zhang, Ye; Lyons, Veronica; Pappas, Dimitri

    2018-03-01

    Cell separations using affinity methods continue to be an enabling science for a wide variety of applications. In this review, we discuss the fundamental aspects of affinity separation, including the competing forces for cell capture and elution, cell-surface interactions, and models for cell adhesion. Factors affecting separation performance such as bond affinity, contact area, and temperature are presented. We also discuss and demonstrate the effects of nonspecific binding on separation performance. Metrics for evaluating cell separations are presented, along with methods of comparing separation techniques for cell isolation using affinity capture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fundamentals of liquid crystal devices

    CERN Document Server

    Yang, Deng-Ke

    2014-01-01

    Revised throughout to cover the latest developments in the fast moving area of display technology, this 2nd edition of Fundamentals of Liquid Crystal Devices, will continue to be a valuable resource for those wishing to understand the operation of liquid crystal displays. Significant updates include new material on display components, 3D LCDs and blue-phase displays which is one of the most promising new technologies within the field of displays and it is expected that this new LC-technology will reduce the response time and the number of optical components of LC-modules. Prof. Yang is a pion

  8. DOE fundamentals handbook: Material science

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the following modules: thermal shock (thermal stress, pressurized thermal shock), brittle fracture (mechanism, minimum pressurization-temperature curves, heatup/cooldown rate limits), and plant materials (properties considered when selecting materials, fuel materials, cladding and reflectors, control materials, nuclear reactor core problems, plant material problems, atomic displacement due to irradiation, thermal and displacement spikes due to irradiation, neutron capture effect, radiation effects in organic compounds, reactor use of aluminum)

  9. Fundamental Vibration of Molecular Hydrogen

    Science.gov (United States)

    Dickenson, G. D.; Niu, M. L.; Salumbides, E. J.; Komasa, J.; Eikema, K. S. E.; Pachucki, K.; Ubachs, W.

    2013-05-01

    The fundamental ground tone vibration of H2, HD, and D2 is determined to an accuracy of 2×10-4cm-1 from Doppler-free laser spectroscopy in the collisionless environment of a molecular beam. This rotationless vibrational splitting is derived from the combination difference between electronic excitation from the X1Σg+, v=0, and v=1 levels to a common EF1Σg+, v=0 level. Agreement within 1σ between the experimental result and a full ab initio calculation provides a stringent test of quantum electrodynamics in a chemically bound system.

  10. Foam engineering fundamentals and applications

    CERN Document Server

    2012-01-01

    Containing contributions from leading academic and industrial researchers, this book provides a much needed update of foam science research. The first section of the book presents an accessible summary of the theory and fundamentals of foams. This includes chapters on morphology, drainage, Ostwald ripening, coalescence, rheology, and pneumatic foams. The second section demonstrates how this theory is used in a wide range of industrial applications, including foam fractionation, froth flotation and foam mitigation. It includes chapters on suprafroths, flotation of oil sands, foams in enhancing petroleum recovery, Gas-liquid Mass Transfer in foam, foams in glass manufacturing, fire-fighting foam technology and consumer product foams.

  11. Fundamental aspects of cathodic sputtering

    International Nuclear Information System (INIS)

    Harman, R.

    1979-01-01

    The main fundamental aspects and problems of cathodic sputtering used mainly for thin film deposition and sputter etching are discussed. Among many types of known sputtering techniques the radiofrequency /RF/ diode sputtering is the most universal one and is used for deposition of metals, alloys, metallic compounds, semiconductors and insulators. It seems that nowadays the largest number of working sputtering systems is of diode type. Sometimes also the dc or rf triode sputtering systems are used. The problems in these processes are practically equivalent and comparable with the problems in the diode method and therefore our discussion will be, in most cases applicable for both, the diode and triode methods

  12. Computing fundamentals digital literacy edition

    CERN Document Server

    Wempen, Faithe

    2014-01-01

    Computing Fundamentals has been tailor made to help you get up to speed on your Computing Basics and help you get proficient in entry level computing skills. Covering all the key topics, it starts at the beginning and takes you through basic set-up so that you'll be competent on a computer in no time.You'll cover: Computer Basics & HardwareSoftwareIntroduction to Windows 7Microsoft OfficeWord processing with Microsoft Word 2010Creating Spreadsheets with Microsoft ExcelCreating Presentation Graphics with PowerPointConnectivity and CommunicationWeb BasicsNetwork and Internet Privacy and Securit

  13. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  14. Fundamental principles of quantum theory

    International Nuclear Information System (INIS)

    Bugajski, S.

    1980-01-01

    After introducing general versions of three fundamental quantum postulates - the superposition principle, the uncertainty principle and the complementarity principle - the question of whether the three principles are sufficiently strong to restrict the general Mackey description of quantum systems to the standard Hilbert-space quantum theory is discussed. An example which shows that the answer must be negative is constructed. An abstract version of the projection postulate is introduced and it is demonstrated that it could serve as the missing physical link between the general Mackey description and the standard quantum theory. (author)

  15. Macroscopic fundamental strings in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Aharonov, Y; Englert, F; Orloff, J

    1987-12-24

    We show that, when D greater than or equal to 4, theories of closed strings of closed strings in D, non-compact space-time dimensions exhibit a phase transition. The high-temperature phase is characterized by a condensate of arbitrarily long strings with Hausdorff dimension two (area filling curves). We suggest that this stringy phase is the ancestor of the adiabatic era. Fundamental strings could then both drive the inflation and seed, in a way reminiscent of the cosmic string mechanism, the large structures in the universe.

  16. La nouvelle vague in polarized neutron scattering

    International Nuclear Information System (INIS)

    Mezei, F.

    1986-01-01

    Polarized neutron research, like many other subjects in neutron scattering developed in the footsteps of Cliff Shull. The classical polarized neutron technique he pioneered was generalized around 1970 to vectorial beam polarizations and this opened up the way to a ''nouvelle vague'' of neutron scattering experiments. In this paper I will first reexamine the old controversy on the question whether the nature of the neutron magnetic moment is that of a microscopic dipole or of an Amperian current loop. The problem is not only of historical interest, but also of relevance to modern applications. This will be followed by a review of the fundamentals on spin coherence effects in neutron beams and scattering, which are the basis of vectorial beam polarization work. As an example of practical importance, paramagnetic scattering will be discussed. The paper concludes with some examples of applications of the vector polarization techniques, such as study of ferromagnetic domains by neutron beam depolarization and Neutron Spin Echo high resolution inelastic spectroscopy. The sample results presented demonstrate the new opportunities this novel approach opened up in neutrons scattering research. (orig.)

  17. Observation of Polarization Vortices in Momentum Space

    Science.gov (United States)

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-01

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  18. A bistable model of cell polarity.

    Directory of Open Access Journals (Sweden)

    Matteo Semplice

    Full Text Available Ultrasensitivity, as described by Goldbeter and Koshland, has been considered for a long time as a way to realize bistable switches in biological systems. It is not as well recognized that when ultrasensitivity and reinforcing feedback loops are present in a spatially distributed system such as the cell plasmamembrane, they may induce bistability and spatial separation of the system into distinct signaling phases. Here we suggest that bistability of ultrasensitive signaling pathways in a diffusive environment provides a basic mechanism to realize cell membrane polarity. Cell membrane polarization is a fundamental process implicated in several basic biological phenomena, such as differentiation, proliferation, migration and morphogenesis of unicellular and multicellular organisms. We describe a simple, solvable model of cell membrane polarization based on the coupling of membrane diffusion with bistable enzymatic dynamics. The model can reproduce a broad range of symmetry-breaking events, such as those observed in eukaryotic directional sensing, the apico-basal polarization of epithelium cells, the polarization of budding and mating yeast, and the formation of Ras nanoclusters in several cell types.

  19. Tissue architecture: the ultimate regulator of breast epithelial function

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Rizki, Aylin; Mian, Saira

    2003-10-20

    A problem in developmental biology that continues to take center stage is how higher organisms generate diverse tissues and organs given the same cellular genotype. In cell and tumor biology, the key question is not the production of form, but its preservation: how do tissues and organs maintain homeostasis, and how do cells within tissues lose or overcome these controls in cancer? Undoubtedly, mechanisms that maintain tissue specificity should share features with those employed to drive formation of the tissues. However, they are unlikely to be identical. At a simplistic level, developmental pathways may be thought of as a series of extremely rapid short-term events. Each new step depends on what came before, and the outcome is the organism itself at birth. All organs, with a few notable exceptions, such as the mammary gland and the brain, 'arrive' together and are complete when the organism is born. In mice and humans, these events occur in a mere 21 days and 9 months respectively. The stability of the differentiated state and the homeostasis of the organism, on the other hand, will last 40-110 times longer. How does the organism achieve this feat? How are tissues maintained? These questions also relate fundamentally to how tissues become malignant and, although not discussed here, to aging. While there is much literature on differentiation - loosely defined as the gain of a single or a series of functions - we know much less about the forces and the pathways that maintain organ morphology and function as a unit. This may be partly because it is difficult to study a tissue as a unit in vivo and there are few techniques that allow maintenance of organs in vitro long enough and in such a way as to make cell and molecular biology experiments possible. Techniques for culturing cells in three-dimensional gels (3D) as a surrogate for tissues, however, have been steadily improving and the method is now used by several laboratories. In this commentary we

  20. TRANSVERSELY POLARIZED Λ PRODUCTION

    International Nuclear Information System (INIS)

    BORER, D.

    2000-01-01

    Transversely polarized Λ production in hard scattering processes is discussed in terms of a leading twist T-odd fragmentation function which describes the fragmentation of an unpolarized quark into a transversely polarized Λ. We focus on the properties of this function and its relevance for the RHIC and HERMES experiments

  1. Our Polar Past

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2009-01-01

    The study of polar exploration is fascinating and offers students insights into the history, culture, and politics that affect the developing sciences at the farthest ends of Earth. Therefore, the authors think there is value in incorporating polar exploration accounts within modern science classrooms, and so they conducted research to test their…

  2. Marine polar steroids

    International Nuclear Information System (INIS)

    Stonik, Valentin A

    2001-01-01

    Structures, taxonomic distribution and biological activities of polar steroids isolated from various marine organisms over the last 8-10 years are considered. The peculiarities of steroid biogenesis in the marine biota and their possible biological functions are discussed. Syntheses of some highly active marine polar steroids are described. The bibliography includes 254 references.

  3. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  4. A laboratory scale fundamental time?

    International Nuclear Information System (INIS)

    Mendes, R.V.

    2012-01-01

    The existence of a fundamental time (or fundamental length) has been conjectured in many contexts. However, the ''stability of physical theories principle'' seems to be the one that provides, through the tools of algebraic deformation theory, an unambiguous derivation of the stable structures that Nature might have chosen for its algebraic framework. It is well-known that c and ℎ are the deformation parameters that stabilize the Galilean and the Poisson algebra. When the stability principle is applied to the Poincare-Heisenberg algebra, two deformation parameters emerge which define two time (or length) scales. In addition there are, for each of them, a plus or minus sign possibility in the relevant commutators. One of the deformation length scales, related to non-commutativity of momenta, is probably related to the Planck length scale but the other might be much larger and already detectable in laboratory experiments. In this paper, this is used as a working hypothesis to look for physical effects that might settle this question. Phase-space modifications, resonances, interference, electron spin resonance and non-commutative QED are considered. (orig.)

  5. Polarization Optics in Telecommunications

    CERN Document Server

    Damask, Jay N

    2005-01-01

    The strong investments into optical telecommunications in the late 1990s resulted in a wealth of new research, techniques, component designs, and understanding of polarization effects in fiber. Polarization Optics in Telecommunications brings together recent advances in the field to create a standard, practical reference for component designers and optical fiber communication engineers. Beginning with a sound foundation in electromagnetism, the author offers a dissertation of the spin-vector formalism of polarization and the interaction of light with media. Applications discussed include optical isolators, optical circulators, fiber collimators, and a variety of applied waveplate and prism combinations. Also included in an extended discussion of polarization-mode dispersion (PMD) and polarization-dependent loss (PDL), their representation, behavior, statistical properties, and measurement. This book draws extensively from the technical and patent literature and is an up-to-date reference for researchers and c...

  6. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-17

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  7. Prospects of polarized fixed target Drell-Yan experiments

    International Nuclear Information System (INIS)

    Liu, M X; Jiang, X; Crabb, D G; Chen, J P; Bai, M

    2011-01-01

    It has been proposed that the Siverse transverse single spin asymmetry in Drell-Yan production in transversely polarized p+p collisions would have an opposite sign compared to what has been observed in the polarized Semi-Inclusive Deep Inelastic Scattering (SIDIS) experiments. Experimental confirmation or disproval of this prediction would provide a novel fundamental test of QCD and shed new light on our theoretical understanding of the transverse spin physics phenomena. We discuss the prospects and physics sensitivities of polarized fixed target Drell-Yan experiments that could utilize the existing proton and other hadron beams at Fermilab, and polarized proton beams at RHIC with a polarized solid proton and/or neutron target option. We show that if realized, the new experiments would provide critical measurements of not only the sign change (or not) of Sivers functions, but also the information of quark and antiquark's Sivers distributions over a wide kinematic range.

  8. Building AN International Polar Data Coordination Network

    Science.gov (United States)

    Pulsifer, P. L.; Yarmey, L.; Manley, W. F.; Gaylord, A. G.; Tweedie, C. E.

    2013-12-01

    In the spirit of the World Data Center system developed to manage data resulting from the International Geophysical Year of 1957-58, the International Polar Year 2007-2009 (IPY) resulted in significant progress towards establishing an international polar data management network. However, a sustained international network is still evolving. In this paper we argue that the fundamental building blocks for such a network exist and that the time is right to move forward. We focus on the Arctic component of such a network with linkages to Antarctic network building activities. A review of an important set of Network building blocks is presented: i) the legacy of the IPY data and information service; ii) global data management services with a polar component (e.g. World Data System); iii) regional systems (e.g. Arctic Observing Viewer; iv) nationally focused programs (e.g. Arctic Observing Viewer, Advanced Cooperative Arctic Data and Information Service, Polar Data Catalogue, Inuit Knowledge Centre); v) programs focused on the local (e.g. Exchange for Local Observations and Knowledge of the Arctic, Geomatics and Cartographic Research Centre). We discuss current activities and results with respect to three priority areas needed to establish a strong and effective Network. First, a summary of network building activities reports on a series of productive meetings, including the Arctic Observing Summit and the Polar Data Forum, that have resulted in a core set of Network nodes and participants and a refined vision for the Network. Second, we recognize that interoperability for information sharing fundamentally relies on the creation and adoption of community-based data description standards and data delivery mechanisms. There is a broad range of interoperability frameworks and specifications available; however, these need to be adapted for polar community needs. Progress towards Network interoperability is reviewed, and a prototype distributed data systems is demonstrated. We

  9. Molecular electron recollision dynamics in intense circularly polarized laser pulses

    Science.gov (United States)

    Bandrauk, André D.; Yuan, Kai-Jun

    2018-04-01

    Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.

  10. Radiation modification of polymers: fundamentals and applications

    International Nuclear Information System (INIS)

    Clough, R.L.

    2003-01-01

    When polymers were first exposed to ionizing radiation some 50 years ago, the resultant changes were found to be complex and relatively non-selective. Most importantly, irradiation was seen to give a mix of bond forming and bond breaking processes, and different polymer types were classified into two groups according to which process predominated. For polymers in the 'crosslinking' category, large industrial applications emerged within the first two decades of the initiation of this field, including heat shrink products, high performance wire insulation and tire manufacturing. There has been continuing work toward development of a wide range of new applications based on polymers and radiation, and this field remains quite active today. One approach to finding new commercial processes has been to take advantage of a variety of different radiation-induced phenomena (for example, uses for chain scission have emerged for enhancing the processing properties of various bulk polymers, for recycling of rubber, and for microlithography and LIGA). Another approach has taken advantage of progress in the science of radiation chemistry, by employing our increasing knowledge to enhance and/or reduce competing processes through the use of additives, the design of specialized resins, controlling gaseous atmospheres, varying processing conditions such as temperature, post-irradiation treatments, etc. This presentation will survey some of the exciting developments in polymer radiation processing, and will point out some of the underlying phenomena that are being manipulated to further their success. We will finish by describing progress on fundamental isotope-labeling studies of one longstanding mechanistic complexity, oxidation chemistry, which is critical in many radiation processing applications, such as retarding post-irradiation degradation problems, enhancing chain scission where desired, altering surface polarity, and providing a useful pretreatment in grafting schemes

  11. The Big Science Questions About Mercury's Ice-Bearing Polar Deposits After MESSENGER

    Science.gov (United States)

    Chabot, N. L.; Lawrence, D. J.

    2018-05-01

    Mercury’s polar deposits provide many well-characterized locations that are known to have large expanses of exposed water ice and/or other volatile materials — presenting unique opportunities to address fundamental science questions.

  12. NOAA Climate Data Record (CDR) of AVHRR Polar Pathfinder (APP) Cryosphere

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This NOAA Climate Data Record (CDR) contains the AVHRR Polar Pathfinder (APP) product. APP is a fundamental CDR comprised of calibrated and navigated AVHRR channel...

  13. Fundamental processes in ion plating

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1980-01-01

    Ion plating is a generic term applied to film deposition processes in which the substrate surface and/or the depositing film is subjected to a flux of high energy particles sufficient to cause changes in the interfacial region of film properties compared to a nonbombarded deposition. Ion plating is being accepted as an alternative coating technique to sputter deposition, vacuum evaporation and electroplating. In order to intelligently choose between the various deposition techniques, the fundamental mechanisms, relating to ion plating, must be understood. This paper reviews the effects of low energy ion bombardment on surfaces, interface formation and film development as they apply to ion plating and the implementation and applications of the ion plating process

  14. Fluid mechanics fundamentals and applications

    CERN Document Server

    Cengel, Yunus

    2013-01-01

    Cengel and Cimbala's Fluid Mechanics Fundamentals and Applications, communicates directly with tomorrow's engineers in a simple yet precise manner. The text covers the basic principles and equations of fluid mechanics in the context of numerous and diverse real-world engineering examples. The text helps students develop an intuitive understanding of fluid mechanics by emphasizing the physics, using figures, numerous photographs and visual aids to reinforce the physics. The highly visual approach enhances the learning of Fluid mechanics by students. This text distinguishes itself from others by the way the material is presented - in a progressive order from simple to more difficult, building each chapter upon foundations laid down in previous chapters. In this way, even the traditionally challenging aspects of fluid mechanics can be learned effectively. McGraw-Hill is also proud to offer ConnectPlus powered by Maple with the third edition of Cengel/Cimbabla, Fluid Mechanics. This innovative and powerful new sy...

  15. Silicon photonics fundamentals and devices

    CERN Document Server

    Deen, M Jamal

    2012-01-01

    The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon and related alloys, the book includes: * Basic Properties of Silicon * Quantum Wells, Wires, Dots and Superlattices * Absorption Processes in Semiconductors * Light Emitters in Silicon * Photodetectors , Photodiodes and Phototransistors * Raman Lasers including Raman Scattering * Guided Lightwaves * Planar Waveguide Devices * Fabrication Techniques and Material Systems Silicon Photonics: Fundamentals and Devices outlines ...

  16. Fundamental Laser Welding Process Investigations

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1998-01-01

    In a number of systematic laboratory investigations the fundamental behavior of the laser welding process was analyzed by the use of normal video (30 Hz), high speed video (100 and 400 Hz) and photo diodes. Sensors were positioned to monitor the welding process from both the top side and the rear...... side of the specimen.Special attention has been given to the dynamic nature of the laser welding process, especially during unstable welding conditions. In one series of experiments, the stability of the process has been varied by changing the gap distance in lap welding. In another series...... video pictures (400 Hz), a clear impact on the seam characteristics has been identified when a hump occurs.Finally, a clear correlation between the position of the focus point, the resultant process type and the corresponding signal intensity and signal variation has been found for sheets welded...

  17. Queueing networks a fundamental approach

    CERN Document Server

    Dijk, Nico

    2011-01-01

    This handbook aims to highlight fundamental, methodological and computational aspects of networks of queues to provide insights and to unify results that can be applied in a more general manner.  The handbook is organized into five parts: Part 1 considers exact analytical results such as of product form type. Topics include characterization of product forms by physical balance concepts and simple traffic flow equations, classes of service and queue disciplines that allow a product form, a unified description of product forms for discrete time queueing networks, insights for insensitivity, and aggregation and decomposition results that allow subnetworks to be aggregated into single nodes to reduce computational burden. Part 2 looks at monotonicity and comparison results such as for computational simplification by either of two approaches: stochastic monotonicity and ordering results based on the ordering of the proces generators, and comparison results and explicit error bounds based on an underlying Markov r...

  18. Fundamental Travel Demand Model Example

    Science.gov (United States)

    Hanssen, Joel

    2010-01-01

    Instances of transportation models are abundant and detailed "how to" instruction is available in the form of transportation software help documentation. The purpose of this paper is to look at the fundamental inputs required to build a transportation model by developing an example passenger travel demand model. The example model reduces the scale to a manageable size for the purpose of illustrating the data collection and analysis required before the first step of the model begins. This aspect of the model development would not reasonably be discussed in software help documentation (it is assumed the model developer comes prepared). Recommendations are derived from the example passenger travel demand model to suggest future work regarding the data collection and analysis required for a freight travel demand model.

  19. Molecular imaging. Fundamentals and applications

    International Nuclear Information System (INIS)

    Tian, Jie

    2013-01-01

    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  20. Fundamentals of thermophotovoltaic energy conversion

    CERN Document Server

    Chubb, Donald L

    2007-01-01

    This is a text book presenting the fundamentals of thermophotovoltaic(TPV) energy conversion suitable for an upper undergraduate or first year graduate course. In addition it can serve as a reference or design aid for engineers developing TPV systems. Mathematica design programs for interference filters and a planar TPV system are included on a CD-Rom disk. Each chapter includes a summary and concludes with a set of problems. The first chapter presents the electromagnetic theory and radiation transfer theory necessary to calculate the optical properties of the components in a TPV optical cavity. Using a simplified model, Chapter 2 develops expressions for the maximum efficiency and power density for an ideal TPV system. The next three chapters consider the three major components in a TPV system; the emitter, filter and photovoltaic(PV) array. Chapter 3 applies the electromagnetic theory and radiation transfer theory presented in Chapter 1 in the calculation of spectral emittance. From the spectral emittance t...

  1. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2016-01-01

    In this book, the author introduces the concept of unsteady aerodynamics and its underlying principles. He provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references.   The treatment of these modern topics has been completely revised end expanded for the new edition. It now includes new numerical examples, a section on the ground effect, and state-space representation.

  2. Fundamental aspects of quantum theory

    International Nuclear Information System (INIS)

    Gorini, V.; Frigerio, A.

    1986-01-01

    This book presents information on the following topics: general problems and crucial experiments; the classical behavior of measuring instruments; quantum interference effect for two atoms radiating a single photon; quantization and stochastic processes; quantum Markov processes driven by Bose noise; chaotic behavior in quantum mechanics; quantum ergodicity and chaos; microscopic and macroscopic levels of description; fundamental properties of the ground state of atoms and molecules; n-level systems interacting with Bosons - semiclassical limits; general aspects of gauge theories; adiabatic phase shifts for neutrons and photons; the spins of cyons and dyons; round-table discussion the the Aharonov-Bohm effect; gravity in quantum mechanics; the gravitational phase transition; anomalies and their cancellation; a new gauge without any ghost for Yang-Mills Theory; and energy density and roughening in the 3-D Ising ferromagnet

  3. Green Manufacturing Fundamentals and Applications

    CERN Document Server

    2013-01-01

    Green Manufacturing: Fundamentals and Applications introduces the basic definitions and issues surrounding green manufacturing at the process, machine and system (including supply chain) levels. It also shows, by way of several examples from different industry sectors, the potential for substantial improvement and the paths to achieve the improvement. Additionally, this book discusses regulatory and government motivations for green manufacturing and outlines the path for making manufacturing more green as well as making production more sustainable. This book also: • Discusses new engineering approaches for manufacturing and provides a path from traditional manufacturing to green manufacturing • Addresses regulatory and economic issues surrounding green manufacturing • Details new supply chains that need to be in place before going green • Includes state-of-the-art case studies in the areas of automotive, semiconductor and medical areas as well as in the supply chain and packaging areas Green Manufactu...

  4. Microwave engineering concepts and fundamentals

    CERN Document Server

    Khan, Ahmad Shahid

    2014-01-01

    Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: •Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications •Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices •Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits •Addresses scattering parameters and their properties, as well a...

  5. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  6. Phononic crystals fundamentals and applications

    CERN Document Server

    Adibi, Ali

    2016-01-01

    This book provides an in-depth analysis as well as an overview of phononic crystals. This book discusses numerous techniques for the analysis of phononic crystals and covers, among other material, sonic and ultrasonic structures, hypersonic planar structures and their characterization, and novel applications of phononic crystals. This is an ideal book for those working with micro and nanotechnology, MEMS (microelectromechanical systems), and acoustic devices. This book also: Presents an introduction to the fundamentals and properties of phononic crystals Covers simulation techniques for the analysis of phononic crystals Discusses sonic and ultrasonic, hypersonic and planar, and three-dimensional phononic crystal structures Illustrates how phononic crystal structures are being deployed in communication systems and sensing systems.

  7. Multiphase flow dynamics 1 fundamentals

    CERN Document Server

    Kolev, Nikolay Ivanov

    2004-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the fundamentals of multiphase dynamics are provided. This third edition includes various updates, extensions and improvements in all book chapters.

  8. Fundamentals of reversible flowchart languages

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2016-01-01

    Abstract This paper presents the fundamentals of reversible flowcharts. They are intended to naturally represent the structure and control flow of reversible (imperative) programming languages in a simple computation model, in the same way classical flowcharts do for conventional languages......, structured reversible flowcharts are as expressive as unstructured ones, as shown by a reversible version of the classic Structured Program Theorem. We illustrate how reversible flowcharts can be concretized with two example programming languages, complete with syntax and semantics: a low-level unstructured...... language and a high-level structured language. We introduce concrete tools such as program inverters and translators for both languages, which follow the structure suggested by the flowchart model. To further illustrate the different concepts and tools brought together in this paper, we present two major...

  9. Islamic Fundamentalism in Modern Russia

    Directory of Open Access Journals (Sweden)

    Elena F. Parubochaya

    2017-09-01

    Full Text Available Nowadays Islam takes the stage of recovery associated with the peculiar issues associated with the Muslim society. These characteristics are expressed in the spread of ideas of Islamic fundamentalism and its supporters’ confrontation with the rest of the world. This process has affected the Russian Muslims as well, the trend developed after the collapse of the Soviet Union when the post soviet muslims began to realize themselves as part of one of the Muslim Ummah, coming into conflict with the secular law of the Russian Federation. After the Soviet Union’s disintegration, the radical Islamic ideas have begun to appear in Russia, in the conditions of the growth of nationalism these thoughts found a fertile ground. One of these ideas was associated with the construction of Sharia state in the Muslim autonomous republics of the Russian Federation and their subsequent withdrawal from Russian’s membership. The situation for the Russian state in the Muslim republics aggravated the war in Chechnya. Through Chechnya mercenaries from Arab countries started to penetrate to the Russian territory, they also brought the money for the destabilization of the internal situation in Russia. Nevertheless, separatism did not find the mass support in neighboring regions such as Dagestan, Kabardino-Balkaria, Karachay-Cherkessia and Ingushetia. It is evidently that international Jihad ideas were supported financially from abroad. The issue of funding is a key part of the development of Islamic fundamentalism in Russia, the international Islamic funds and organizations gave huge financial assistance to them. At the present moment Russian authorities lead a fruitful and a successful fight against terrorism. In the future, after the completion of the antiterrorist operation in the Middle East hundreds of terrorists may return to Russia with huge experience that can threaten the security of the Russian state.

  10. Polar bears at risk

    Energy Technology Data Exchange (ETDEWEB)

    Norris, S.; Rosentrater, L.; Eid, P.M. [WWF International Arctic Programme, Oslo (Norway)

    2002-05-01

    Polar bears, the world's largest terrestrial carnivore, spend much of their lives on the arctic sea ice. This is where they hunt and move between feeding, denning, and resting areas. The world population, estimated at 22,000 bears, is made up of 20 relatively distinct populations varying in size from a few hundred to a few thousand animals. About 60 per cent of all polar bears are found in Canada. In general, the status of this species is stable, although there are pronounced differences between populations. Reductions in the extent and thickness of sea ice has lead the IUCN Polar Bear Specialist Group to describe climate change as one of the major threats facing polar bears today. Though the long-term effects of climate change will vary in different areas of the Arctic, impacts on the condition and reproductive success of polar bears and their prey are likely to be negative. Longer ice-free periods resulting from earlier break-up of sea ice in the spring and later formation in the fall is already impacting polar bears in the southern portions of their range. In Canada's Hudson Bay, for example, bears hunt on the ice through the winter and into early summer, after which the ice melts completely, forcing bears ashore to fast on stored fat until freeze-up in the fall. The time bears have on the ice to hunt and build up their body condition is cut short when the ice melts early. Studies from Hudson Bay show that for every week earlier that ice break-up occurs, bears will come ashore 10 kg lighter and in poorer condition. It is likely that populations of polar bears dividing their time between land and sea will be severely reduced and local extinctions may occur as greenhouse gas emissions continue to rise and sea ice melts. Expected changes in regional weather patterns will also impact polar bears. Rain in the late winter can cause maternity dens to collapse before females and cubs have departed, thus exposing occupants to the elements and to predators. Such

  11. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  12. GUIDE FOR POLARIZED NEUTRONS

    Science.gov (United States)

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  13. Heidelberg polarized alkali source

    International Nuclear Information System (INIS)

    Kraemer, D.; Steffens, E.; Jaensch, H.; Philipps Universitaet, Marburg, Germany)

    1984-01-01

    A new atomic beam type polarized alkali ion source has been installed at Heidelberg. In order to improve the beam polarization considerably optical pumping is applied in combination with an adiabatic medium field transition which results in beams in single hyperfine sublevels. The m state population is determined by laser-induced fluorescence spectroscopy. Highly polarized beams (P/sub s/ > 0.9, s = z, zz) with intensities of 30 to 130 μA can be extracted for Li + and Na + , respectively

  14. Growth dynamics of Australia's polar dinosaurs.

    Directory of Open Access Journals (Sweden)

    Holly N Woodward

    Full Text Available Analysis of bone microstructure in ornithopod and theropod dinosaurs from Victoria, Australia, documents ontogenetic changes, providing insight into the dinosaurs' successful habitation of Cretaceous Antarctic environments. Woven-fibered bone tissue in the smallest specimens indicates rapid growth rates during early ontogeny. Later ontogeny is marked by parallel-fibered tissue, suggesting reduced growth rates approaching skeletal maturity. Bone microstructure similarities between the ornithopods and theropods, including the presence of LAGs in each group, suggest there is no osteohistologic evidence supporting the hypothesis that polar theropods hibernated seasonally. Results instead suggest high-latitude dinosaurs had growth trajectories similar to their lower-latitude relatives and thus, rapid early ontogenetic growth and the cyclical suspensions of growth inherent in the theropod and ornithopod lineages enabled them to successfully exploit polar regions.

  15. Growth dynamics of Australia's polar dinosaurs.

    Science.gov (United States)

    Woodward, Holly N; Rich, Thomas H; Chinsamy, Anusuya; Vickers-Rich, Patricia

    2011-01-01

    Analysis of bone microstructure in ornithopod and theropod dinosaurs from Victoria, Australia, documents ontogenetic changes, providing insight into the dinosaurs' successful habitation of Cretaceous Antarctic environments. Woven-fibered bone tissue in the smallest specimens indicates rapid growth rates during early ontogeny. Later ontogeny is marked by parallel-fibered tissue, suggesting reduced growth rates approaching skeletal maturity. Bone microstructure similarities between the ornithopods and theropods, including the presence of LAGs in each group, suggest there is no osteohistologic evidence supporting the hypothesis that polar theropods hibernated seasonally. Results instead suggest high-latitude dinosaurs had growth trajectories similar to their lower-latitude relatives and thus, rapid early ontogenetic growth and the cyclical suspensions of growth inherent in the theropod and ornithopod lineages enabled them to successfully exploit polar regions.

  16. The representation of neutron polarization

    International Nuclear Information System (INIS)

    Byrne, J.

    1979-01-01

    Neutron beam polarization representation is discussed under the headings; transfer matrices, coherent parity violation for neutrons, neutron spin rotation in helical magnetic fields, polarization and interference. (UK)

  17. Polarization sensitive optical coherence tomography detection method

    International Nuclear Information System (INIS)

    Colston, B W; DaSilva, L B; Everett, M J; Featherstone, J D B; Fried, D; Ragadio, J N; Sathyam, U S.

    1999-01-01

    This study demonstrates the potential of polarization sensitive optical coherence tomography (PS-OCT) for non-invasive in vivo detection and characterization of early, incipient caries lesions. PS-OCT generates cross-sectional images of biological tissue while measuring the effect of the tissue on the polarization state of incident light. Clear discrimination between regions of normal and demineralized enamel is first shown in PS-OCT images of bovine enamel blocks containing well-characterized artificial lesions. High-resolution, cross-sectional images of extracted human teeth are then generated that clearly discriminate between the normal and carious regions on both the smooth and occlusal surfaces. Regions of the teeth that appeared to be demineralized in the PS-OCT images were verified using histological thin sections examined under polarized light microscopy. The PS-OCT system discriminates between normal and carious regions by measuring the polarization state of the back-scattered 1310 nm light, which is affected by the state of demineralization of the enamel. Demineralization of enamel increases the scattering coefficient, thus depolarizing the incident light. This study shows that PS-OCT has great potential for the detection, characterization, and monitoring of incipient caries lesions

  18. Fundamental Principles of Stem Cell Banking.

    Science.gov (United States)

    Sun, Changbin; Yue, Jianhui; He, Na; Liu, Yaqiong; Zhang, Xi; Zhang, Yong

    2016-01-01

    Stem cells are highly promising resources for application in cell therapy, regenerative medicine, drug discovery, toxicology and developmental biology research. Stem cell banks have been increasingly established all over the world in order to preserve their cellular characteristics, prevent contamination and deterioration, and facilitate their effective use in basic and translational research, as well as current and future clinical application. Standardization and quality control during banking procedures are essential to allow researchers from different labs to compare their results and to develop safe and effective new therapies. Furthermore, many stem cells come from once-in-a-life time tissues. Cord blood for example, thrown away in the past, can be used to treat many diseases such as blood cancers nowadays. Meanwhile, these cells stored and often banked for long periods can be immediately available for treatment when needed and early treatment can minimize disease progression. This paper provides an overview of the fundamental principles of stem cell banking, including: (i) a general introduction of the construction and architecture commonly used for stem cell banks; (ii) a detailed section on current quality management practices; (iii) a summary of questions we should consider for long-term storage, such as how long stem cells can be stored stably, how to prevent contamination during long term storage, etc.; (iv) the prospects for stem cell banking.

  19. Fundamentals and Techniques of Nonimaging

    Energy Technology Data Exchange (ETDEWEB)

    O' Gallagher, J. J.; Winston, R.

    2003-07-10

    This is the final report describing a long term basic research program in nonimaging optics that has led to major advances in important areas, including solar energy, fiber optics, illumination techniques, light detectors, and a great many other applications. The term ''nonimaging optics'' refers to the optics of extended sources in systems for which image forming is not important, but effective and efficient collection, concentration, transport, and distribution of light energy is. Although some of the most widely known developments of the early concepts have been in the field of solar energy, a broad variety of other uses have emerged. Most important, under the auspices of this program in fundamental research in nonimaging optics established at the University of Chicago with support from the Office of Basic Energy Sciences at the Department of Energy, the field has become very dynamic, with new ideas and concepts continuing to develop, while applications of the early concepts continue to be pursued. While the subject began as part of classical geometrical optics, it has been extended subsequently to the wave optics domain. Particularly relevant to potential new research directions are recent developments in the formalism of statistical and wave optics, which may be important in understanding energy transport on the nanoscale. Nonimaging optics permits the design of optical systems that achieve the maximum possible concentration allowed by physical conservation laws. The earliest designs were constructed by optimizing the collection of the extreme rays from a source to the desired target: the so-called ''edge-ray'' principle. Later, new concentrator types were generated by placing reflectors along the flow lines of the ''vector flux'' emanating from lambertian emitters in various geometries. A few years ago, a new development occurred with the discovery that making the design edge-ray a functional of some

  20. Interplay between BRCA1 and RHAMM regulates epithelial apicobasal polarization and may influence risk of breast cancer.

    Directory of Open Access Journals (Sweden)

    Christopher A Maxwell

    2011-11-01

    Full Text Available Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((wHR = 1.09 (95% CI 1.02-1.16, p(trend = 0.017; and n = 3,965, (wHR = 1.04 (95% CI 0.94-1.16, p(trend = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.

  1. Interferometric polarization control

    International Nuclear Information System (INIS)

    Chuss, David T.; Wollack, Edward J.; Moseley, S. Harvey; Novak, Giles

    2006-01-01

    We develop the Jones and Mueller matrices for structures that allow control of the path length difference between two linear orthogonal polarizations and consider the effect of placing multiple devices in series. Specifically, we find that full polarization modulation (measurement of Stokes Q, U, and V) can be achieved by placing two such modulators in series if the relative angles of the beam-splitting grids with respect to the analyzer orientation are appropriately chosen. Such a device has several potential advantages over a spinning wave plate modulator for measuring astronomical polarization in the far infrared through millimeter: (i) The use of small, linear motions eliminates the need for cryogenic rotational bearings; (ii) the phase flexibility allows measurement of circular as well as linear polarization; and (iii) this architecture allows for both multiwavelength and broadband modulation. We also present initial laboratory results

  2. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  3. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  4. Virtual and composite fundamentals in the ERM

    NARCIS (Netherlands)

    Knot, KHW; Sturm, JE

    1999-01-01

    A latent-variable approach is applied to identify the appropriate driving process for fundamental exchange rates in the ERM. From the time-series characteristics of so-called "virtual fundamentals" and "composite fundamentals", a significant degree of mean reversion can be asserted. The relative

  5. Teaching the Politics of Islamic Fundamentalism.

    Science.gov (United States)

    Kazemzadeh, Masoud

    1998-01-01

    Argues that the rise of Islamic fundamentalism since the Iranian Revolution has generated a number of issues of analytical significance for political science. Describes three main models in teaching and research on Islamic fundamentalism: Islamic exceptionalism, comparative fundamentalisms, and class analysis. Discusses the construction of a…

  6. Plasma polarization spectroscopy

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Horimoto, Yasuhiro; Fujimoto, Takashi; Hasegawa, Noboru; Sukegawa, Kouta; Kawachi, Tetsuya

    2005-01-01

    The electron velocity distribution function (EVDF) in plasma can be anisotropic in laser-produced plasmas. We have developed a new technique to evaluate the polarization degree of the emission lines in the extreme vacuum ultra violet wavelength region. The polarization of the emission lines and the continuums from the lithium-like nitrogen and from helium- and hydrogen-like carbon in recombining plasma is evaluated. Particle simulation in the velocity space gives the time scale for relaxation of anisotropic EVDFs. (author)

  7. No More Polarization, Please!

    OpenAIRE

    Reinholt, Mia

    2006-01-01

    The organizational science literature on motivation has for long been polarized into two main positions; the organizational economic position focusing on extrinsic motivation and the organizational behavior position emphasizing intrinsic motivation. With the rise of the knowledge economy and the increasing levels of complexities it entails, such polarization is not fruitful in the attempt to explain motivation of organizational members. This paper claims that a more nuanced perspective on mot...

  8. Inertial polarization of dielectrics

    OpenAIRE

    Zavodovsky, A. G.

    2011-01-01

    It was proved that accelerated motion of a linear dielectric causes its polarization. Accelerated translational motion of a dielectric's plate leads to the positive charge of the surface facing the direction of motion. Metal plates of a capacitor were used to register polarized charges on a dielectric's surface. Potential difference between the capacitor plates is proportional to acceleration, when acceleration is constant potential difference grows with the increase of a dielectric's area, o...

  9. CLASSIFICATION FOR ANGLE-DEPENDENT POLARIZED PHOTOEMISSION SPECTRA USING MAGNETIC-MOMENTS ANALYSIS

    NARCIS (Netherlands)

    VANDERLAAN, G; THOLE, BT

    The angular distribution of photoelectrons from a core level or localized valence level excited with circularly or linearly polarized Xrays is shown to contain the complete one-electron information of the ground state of a magnetic polarized atom. We generalize the definition of the fundamental

  10. Fundamentals of the DIGES code

    Energy Technology Data Exchange (ETDEWEB)

    Simos, N.; Philippacopoulos, A.J.

    1994-08-01

    Recently the authors have completed the development of the DIGES code (Direct GEneration of Spectra) for the US Nuclear Regulatory Commission. This paper presents the fundamental theoretical aspects of the code. The basic modeling involves a representation of typical building-foundation configurations as multi degree-of-freedom dynamic which are subjected to dynamic inputs in the form of applied forces or pressure at the superstructure or in the form of ground motions. Both the deterministic as well as the probabilistic aspects of DIGES are described. Alternate ways of defining the seismic input for the estimation of in-structure spectra and their consequences in terms of realistically appraising the variability of the structural response is discussed in detaiL These include definitions of the seismic input by ground acceleration time histories, ground response spectra, Fourier amplitude spectra or power spectral densities. Conversions of one of these forms to another due to requirements imposed by certain analysis techniques have been shown to lead, in certain cases, in controversial results. Further considerations include the definition of the seismic input as the excitation which is directly applied at the foundation of a structure or as the ground motion of the site of interest at a given point. In the latter case issues related to the transferring of this motion to the foundation through convolution/deconvolution and generally through kinematic interaction approaches are considered.

  11. Gas cell neutralizers (Fundamental principles)

    International Nuclear Information System (INIS)

    Fuehrer, B.

    1985-06-01

    Neutralizing an ion-beam of the size and energy levels involved in the neutral-particle-beam program represents a considerable extension of the state-of-the-art of neutralizer technology. Many different mediums (e.g., solid, liquid, gas, plasma, photons) can be used to strip the hydrogen ion of its extra electron. A large, multidisciplinary R and D effort will no doubt be required to sort out all of the ''pros and cons'' of these various techniques. The purpose of this particular presentation is to discuss some basic configurations and fundamental principles of the gas type of neutralizer cell. Particular emphasis is placed on the ''Gasdynamic Free-Jet'' neutralizer since this configuration has the potential of being much shorter than other type of gas cells (in the beam direction) and it could operate in nearly a continuous mode (CW) if necessary. These were important considerations in the ATSU design which is discussed in some detail in the second presentation entitled ''ATSU Point Design''

  12. Fundamental studies of fusion plasmas

    International Nuclear Information System (INIS)

    Aamodt, R.E.; Catto, P.J.; D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.

    1992-01-01

    The major portion of this program is devoted to critical ICH phenomena. The topics include edge physics, fast wave propagation, ICH induced high frequency instabilities, and a preliminary antenna design for Ignitor. This research was strongly coordinated with the world's experimental and design teams at JET, Culham, ORNL, and Ignitor. The results have been widely publicized at both general scientific meetings and topical workshops including the speciality workshop on ICRF design and physics sponsored by Lodestar in April 1992. The combination of theory, empirical modeling, and engineering design in this program makes this research particularly important for the design of future devices and for the understanding and performance projections of present tokamak devices. Additionally, the development of a diagnostic of runaway electrons on TEXT has proven particularly useful for the fundamental understanding of energetic electron confinement. This work has led to a better quantitative basis for quasilinear theory and the role of magnetic vs. electrostatic field fluctuations on electron transport. An APS invited talk was given on this subject and collaboration with PPPL personnel was also initiated. Ongoing research on these topics will continue for the remainder fo the contract period and the strong collaborations are expected to continue, enhancing both the relevance of the work and its immediate impact on areas needing critical understanding

  13. Levitated Optomechanics for Fundamental Physics

    Science.gov (United States)

    Rashid, Muddassar; Bateman, James; Vovrosh, Jamie; Hempston, David; Ulbricht, Hendrik

    2015-05-01

    Optomechanics with levitated nano- and microparticles is believed to form a platform for testing fundamental principles of quantum physics, as well as find applications in sensing. We will report on a new scheme to trap nanoparticles, which is based on a parabolic mirror with a numerical aperture of 1. Combined with achromatic focussing, the setup is a cheap and readily straightforward solution to trapping nanoparticles for further study. Here, we report on the latest progress made in experimentation with levitated nanoparticles; these include the trapping of 100 nm nanodiamonds (with NV-centres) down to 1 mbar as well as the trapping of 50 nm Silica spheres down to 10?4 mbar without any form of feedback cooling. We will also report on the progress to implement feedback stabilisation of the centre of mass motion of the trapped particle using digital electronics. Finally, we argue that such a stabilised particle trap can be the particle source for a nanoparticle matterwave interferometer. We will present our Talbot interferometer scheme, which holds promise to test the quantum superposition principle in the new mass range of 106 amu. EPSRC, John Templeton Foundation.

  14. Nanostructured metals. Fundamentals to applications

    International Nuclear Information System (INIS)

    Grivel, J.-C.; Hansen, N.; Huang, X.; Juul Jensen, D.; Mishin, O.V.; Nielsen, S.F.; Pantleon, W.; Toftegaard, H.; Winther, G.; Yu, T.

    2009-01-01

    In the today's world, materials science and engineering must as other technical fields focus on sustainability. Raw materials and energy have to be conserved and metals with improved or new structural and functional properties must be invented, developed and brought to application. In this endeavour a very promising route is to reduce the structural scale of metallic materials, thereby bridging industrial metals of today with emerging nanometals of tomorrow, i.e. structural scales ranging from a few micrometres to the nanometre regime. While taking a focus on metals with structures in this scale regime the symposium spans from fundamental aspects towards applications, uniting materials scientists and technologists. A holistic approach characterizes the themes of the symposium encompassing synthesis, characterization, modelling and performance where in each area significant progress has been made in recent years. Synthesis now covers top-down processes, e.g. plastic deformation, and bottom-up processes, e.g. chemical and physical synthesis. In the area of structural and mechanical characterization advanced techniques are now widely applied and in-situ techniques for structural characterization under mechanical or thermal loading are under rapid development in both 2D and 3D. Progress in characterization techniques has led to a precise description of different boundaries (grain, dislocation, twin, phase), and of how they form and evolve, also including theoretical modelling and simulations of structures, properties and performance. (au)

  15. The water, fundamental ecological base?

    International Nuclear Information System (INIS)

    Bolivar, Luis Humberto

    1994-01-01

    To speak of ecology and the man's interaction with the environment takes, in fact implicit many elements that, actuating harmoniously generates a conducive entropy to a better to be, however it is necessary to hierarchy the importance of these elements, finding that the water, not alone to constitute sixty five percent of the total volume of the planet, or sixty percent of the human body, but to be the well called molecule of the life, it is constituted in the main element to consider in the study of the ecology. The water circulates continually through the endless hydrological cycle of condensation, precipitation, filtration, retention, evaporation, precipitation and so forth; however, due to the quick growth of the cities, its expansion of the green areas or its border lands, result of a demographic behavior and of inadequate social establishment; or of the advance industrial excessive, they produce irreparable alterations in the continuous processes of the water production, for this reason it is fundamental to know some inherent problems to the sources of water. The water, the most important in the renewable natural resources, essential for the life and for the achievement of good part of the man's goals in their productive function, it is direct or indirectly the natural resource more threatened by the human action

  16. Fundamentals of neurogastroenterology: basic science.

    Science.gov (United States)

    Grundy, David; Al-Chaer, Elie D; Aziz, Qasim; Collins, Stephen M; Ke, Meiyun; Taché, Yvette; Wood, Jackie D

    2006-04-01

    The focus of neurogastroenterology in Rome II was the enteric nervous system (ENS). To avoid duplication with Rome II, only advances in ENS neurobiology after Rome II are reviewed together with stronger emphasis on interactions of the brain, spinal cord, and the gut in terms of relevance for abdominal pain and disordered gastrointestinal function. A committee with expertise in selective aspects of neurogastroenterology was invited to evaluate the literature and provide a consensus overview of the Fundamentals of Neurogastroenterology textbook as they relate to functional gastrointestinal disorders (FGIDs). This review is an abbreviated version of a fuller account that appears in the forthcoming book, Rome III. This report reviews current basic science understanding of visceral sensation and its modulation by inflammation and stress and advances in the neurophysiology of the ENS. Many of the concepts are derived from animal studies in which the physiologic mechanisms underlying visceral sensitivity and neural control of motility, secretion, and blood flow are examined. Impact of inflammation and stress in experimental models relative to FGIDs is reviewed as is human brain imaging, which provides a means for translating basic science to understanding FGID symptoms. Investigative evidence and emerging concepts implicate dysfunction in the nervous system as a significant factor underlying patient symptoms in FGIDs. Continued focus on neurogastroenterologic factors that underlie the development of symptoms will lead to mechanistic understanding that is expected to directly benefit the large contingent of patients and care-givers who deal with FGIDs.

  17. The Polarization of Achernar

    Science.gov (United States)

    McDavid, D.

    2005-11-01

    Recent near-infrared measurements of the angular diameter of Achernar (the bright Be star alpha Eridani) with the ESO VLT interferometer have been interpreted as the detection of an extremely oblate photosphere, with a ratio of equatorial to polar radius of at least 1.56 ± 0.05 and a minor axis orientation of 39° ± 1° (from North to East). The optical linear polarization of this star during an emission phase in 1995 September was 0.12 ± 0.02% at position angle 37° ± 8° (in equatorial coordinates), which is the direction of the projection of the rotation axis on the plane of the sky according to the theory of polarization by electron scattering in an equatorially flattened circumstellar disk. These two independent determinations of the orientation of the rotation axis are therefore in agreement. The observational history of correlations between Hα emission and polarization as found in the literature is that of a typical Be star, with the exception of an interesting question raised by the contrast between Schröder's measurement of a small polarization perpendicular to the projected rotation axis in 1969--70 and Tinbergen's measurement of zero polarization in 1974.5, both at times when emission was reportedly absent.

  18. Fusion of a polarized projectile with a polarized target

    International Nuclear Information System (INIS)

    Christley, J.A.; Johnson, R.C.; Thompson, I.J.

    1995-01-01

    The fusion cross sections for a polarized target with both unpolarized and polarized projectiles are studied. Expressions for the observables are given for the case when both nuclei are polarized. Calculations for fusion of an aligned 165 Ho target with 16 O and polarized 7 Li beams are presented

  19. [Connective tissue and inflammation].

    Science.gov (United States)

    Jakab, Lajos

    2014-03-23

    The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.

  20. Tissue types (image)

    Science.gov (United States)

    ... are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports ... binds them together (bone, blood, and lymph tissues). Epithelial tissue provides a covering (skin, the linings of the ...

  1. Non-commutativity in polar coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, James P. [Universidad Michoacana de San Nicolas de Hidalgo, Ciudad Universitaria, Instituto de Fisica y Matematicas, Morelia, Michoacan (Mexico)

    2017-05-15

    We reconsider the fundamental commutation relations for non-commutative R{sup 2} described in polar coordinates with non-commutativity parameter θ. Previous analysis found that the natural transition from Cartesian coordinates to the traditional polar system led to a representation of [r, φ] as an everywhere diverging series. In this article we compute the Borel resummation of this series, showing that it can subsequently be extended throughout parameter space and hence provide an interpretation of this commutator. Our analysis provides a complete solution for arbitrary r and θ that reproduces the earlier calculations at lowest order and benefits from being generally applicable to problems in a two-dimensional non-commutative space. We compare our results to previous literature in the (pseudo-)commuting limit, finding a surprising spatial dependence for the coordinate commutator when θ >> r{sup 2}. Finally, we raise some questions for future study in light of this progress. (orig.)

  2. RHIC spin: The first polarized proton collider

    International Nuclear Information System (INIS)

    Roser, T.

    1994-01-01

    The very successful program of QCD and electroweak tests at the high energy hadron colliders have shown that the perturbative QCD has progressed towards becoming a ''precision'' theory. At the same time, it has been shown that with the help of Siberian Snakes it is feasible to accelerate polarized protons to high enough energies where the proven methods of collider physics can be used to probe the spin content of the proton but also where fundamental tests of the spin effects in the standard model are possible. With Siberian Snakes the Relativistic Heavy Ion Collider (RHIC) will be the first collider to allow for 250 GeV on 250 GeV polarized proton collisions

  3. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  4. When measured spin polarization is not spin polarization

    International Nuclear Information System (INIS)

    Dowben, P A; Wu Ning; Binek, Christian

    2011-01-01

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO 2 and Cr 2 O 3 illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)

  5. RMB identification based on polarization parameters inversion imaging

    Science.gov (United States)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang

    2016-10-01

    Social order is threatened by counterfeit money. Conventional anti-counterfeit technology is much too old to identify its authenticity or not. The intrinsic difference between genuine notes and counterfeit notes is its paper tissue. In this paper a new technology of detecting RMB is introduced, the polarization parameter indirect microscopic imaging technique. A conventional reflection microscopic system is used as the basic optical system, and inserting into it with polarization-modulation mechanics. The near-field structural characteristics can be delivered by optical wave and material coupling. According to coupling and conduction physics, calculate the changes of optical wave parameters, then get the curves of the intensity of the image. By analyzing near-field polarization parameters in nanoscale, finally calculate indirect polarization parameter imaging of the fiber of the paper tissue in order to identify its authenticity.

  6. The evolution of tensor polarization

    International Nuclear Information System (INIS)

    Huang, H.; Lee, S.Y.; Ratner, L.

    1993-01-01

    By using the equation of motion for the vector polarization, the spin transfer matrix for spin tensor polarization, the spin transfer matrix for spin tensor polarization is derived. The evolution equation for the tensor polarization is studied in the presence of an isolate spin resonance and in the presence of a spin rotor, or snake

  7. The polarization of fast neutrons

    International Nuclear Information System (INIS)

    Talov, V.V.

    2000-01-01

    The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li(p,n) 7 Be, and T(p,n) 3 He reactions. (authors)

  8. Polarized particles in storage rings

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Kondratenko, A.M.; Serednyakov, S.I.; Skrinskij, A.N.; Tumajkin, G.M.; Shatunov, Yu.M.

    1977-01-01

    Experiments with polarized beams on the VEPP-2M and SPEAK storage rings are described. Possible methods of producing polarized particle beams in storage rings as well as method of polarization monitoring are counted. Considered are the processes of radiation polarization of electrons and positrons. It is shown, that to preserve radiation polarization the introduction of regions with a strong sign-variable magnetic field is recommended. Methods of polarization measurement are counted. It is suggested for high energies to use dependence of synchrotron radiation power on transverse polarization of electrons and positrons. Examples of using polarizability of colliding beams in storage rings are presented

  9. Remote biopsy darting and marking of polar bears

    Science.gov (United States)

    Pagano, Anthony M.; Peacock, Elizabeth; McKinney, Melissa A.

    2014-01-01

    Remote biopsy darting of polar bears (Ursus maritimus) is less invasive and time intensive than physical capture and is therefore useful when capture is challenging or unsafe. We worked with two manufacturers to develop a combination biopsy and marking dart for use on polar bears. We had an 80% success rate of collecting a tissue sample with a single biopsy dart and collected tissue samples from 143 polar bears on land, in water, and on sea ice. Dye marks ensured that 96% of the bears were not resampled during the same sampling period, and we recovered 96% of the darts fired. Biopsy heads with 5 mm diameters collected an average of 0.12 g of fur, tissue, and subcutaneous adipose tissue, while biopsy heads with 7 mm diameters collected an average of 0.32 g. Tissue samples were 99.3% successful (142 of 143 samples) in providing a genetic and sex identification of individuals. We had a 64% success rate collecting adipose tissue and we successfully examined fatty acid signatures in all adipose samples. Adipose lipid content values were lower compared to values from immobilized or harvested polar bears, indicating that our method was not suitable for quantifying adipose lipid content.

  10. Polarized electrons at Jefferson laboratory

    International Nuclear Information System (INIS)

    Sinclair, C.K.

    1998-01-01

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously. Initial operational experience with the polarized source will be presented. copyright 1998 American Institute of Physics

  11. Polarized Electrons at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, C.K.

    1997-12-31

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented.

  12. Polarization: A Must for Fusion

    Directory of Open Access Journals (Sweden)

    Guidal M.

    2012-10-01

    Full Text Available Recent realistic simulations confirm that the polarization of the fuel would improve significantly the DT fusion efficiency. We have proposed an experiment to test the persistence of the polarization in a fusion process, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the neutrons and the change in the corresponding total cross section are related to the polarization persistence. The experimental polarization of DT fuel is a technological challenge. Possible paths for Magnetic Confinement Fusion (MCF and for Inertial Confinement Fusion (ICF are reviewed. For MCF, polarized gas can be used. For ICF, cryogenic targets are required. We consider both, the polarization of gas and the polarization of solid DT, emphasizing the Dynamic Nuclear polarization (DNP of HD and DT molecules.

  13. Astronomia Motivadora no Ensino Fundamental

    Science.gov (United States)

    Melo, J.; Voelzke, M. R.

    2008-09-01

    O objetivo principal deste trabalho é procurar desenvolver o interesse dos alunos pelas ciências através da Astronomia. Uma pesquisa com perguntas sobre Astronomia foi realizada junto a 161 alunos do Ensino Fundamental, com o intuito de descobrir conhecimentos prévios dos alunos sobre o assunto. Constatou-se, por exemplo, que 29,3% da 6ª série responderam corretamente o que é eclipse, 30,0% da 8ª série acertaram o que a Astronomia estuda, enquanto 42,3% dos alunos da 5ª série souberam definir o Sol. Pretende-se ampliar as turmas participantes e trabalhar, principalmente de forma prática com: dimensões e escalas no Sistema Solar, construção de luneta, questões como dia e noite, estações do ano e eclipses. Busca-se abordar, também, outros conteúdos de Física tais como a óptica na construção da luneta, e a mecânica no trabalho com escalas e medidas, e ao utilizar uma luminária para representar o Sol na questão do eclipse, e de outras disciplinas como a Matemática na transformação de unidades, regras de três; Artes na modelagem ou desenho dos planetas; a própria História com relação à busca pela origem do universo, e a Informática que possibilita a busca mais rápida por informações, além de permitir simulações e visualizações de imagens importantes. Acredita-se que a Astronomia é importante no processo ensino aprendizagem, pois permite a discussão de temas curiosos como, por exemplo, a origem do universo, viagens espaciais a existência ou não de vida em outros planetas, além de temas atuais como as novas tecnologias.

  14. Study by polarized muon

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu

    1977-01-01

    Experiments by using polarized muon beam are reported. The experiments were performed at Berkeley, U.S.A., and at Vancouver, Canada. The muon spin rotation is a useful method for the study of the spin polarization of conductive electrons in paramagnetic Pd metal. The muon Larmor frequency and the relaxation time can be obtained by measuring the time distribution of decay electrons of muon-electron process. The anomalous depolarization of negative muon spin rotation in the transitional metal was seen. The circular polarization of the negative muon X-ray was measured to make clear this phenomena. The experimental results show that the anomalous depolarization is caused at the 1-S-1/2 state. For the purpose to obtain the strong polarization of negative muon, a method of artificial polarization is proposed, and the test experiments are in progress. The study of the hyperfine structure of mu-mesic atoms is proposed. The muon capture rate was studied systematically. (Kato, T.)

  15. Polarized protons at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1990-12-01

    The Physics case is presented for the use of polarized protons at RHIC for one or two months each year. This would provide a facility with polarizations of approx-gt 50% high luminosity ∼2.0 x 10 32 cm -2 s -1 , the possibility of both longitudinal and transverse polarization at the interaction regions, and frequent polarization reversal for control of systematic errors. The annual integrated luminosity for such running (∼10 6 sec per year) would be ∫ Ldt = 2 x 10 38 cm -2 -- roughly 20 times the total luminosity integrated in ∼ 10 years of operation of the CERN Collider (∼10 inverse picobarns, 10 37 cm -2 ). This facility would be unique in the ability to perform parity-violating measurements and polarization test of QCD. Also, the existence of p-p collisions in a new energy range would permit the study of ''classical'' reactions like the total cross section and elastic scattering, etc., and serve as a complement to measurements from p-bar p colliders. 11 refs

  16. The Bochum Polarized Target

    International Nuclear Information System (INIS)

    Reicherz, G.; Goertz, S.; Harmsen, J.; Heckmann, J.; Meier, A.; Meyer, W.; Radtke, E.

    2001-01-01

    The Bochum 'Polarized Target' group develops the target material 6 LiD for the COMPASS experiment at CERN. Several different materials like alcohols, alcanes and ammonia are under investigation. Solid State Targets are polarized in magnetic fields higher than B=2.5T and at temperatures below T=1K. For the Dynamic Nuclear Polarization process, paramagnetic centers are induced chemically or by irradiation with ionizing beams. The radical density is a critical factor for optimization of polarization and relaxation times at adequate magnetic fields and temperatures. In a high sensitive EPR--apparatus, an evaporator and a dilution cryostat with a continuous wave NMR--system, the materials are investigated and optimized. To improve the polarization measurement, the Liverpool NMR-box is modified by exchanging the fixed capacitor for a varicap diode which not only makes the tuning very easy but also provides a continuously tuned circuit. The dependence of the signal area upon the circuit current is measured and it is shown that it follows a linear function

  17. A Simplified, Low-Cost Method for Polarized Light Microscopy

    Science.gov (United States)

    Maude, Richard J.; Buapetch, Wanchana; Silamut, Kamolrat

    2009-01-01

    Malaria pigment is an intracellular inclusion body that appears in blood and tissue specimens on microscopic examination and can help in establishing the diagnosis of malaria. In simple light microscopy, it can be difficult to discern from cellular background and artifacts. It has long been known that if polarized light microscopy is used, malaria pigment can be much easier to distinguish. However, this technique is rarely used because of the need for a relatively costly polarization microscope. We describe a simple and economical technique to convert any standard light microscope suitable for examination of malaria films into a polarization microscope. PMID:19861611

  18. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Science.gov (United States)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3 NH3 PbBr3 ) and all-inorganic (CsPbBr3 ) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3 .

  19. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3NH3PbBr3) and all-inorganic (CsPbBr3) leadhalide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-tohead Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3.

  20. Polarized source upgrading

    International Nuclear Information System (INIS)

    Clegg, T.B.; Rummel, R.L.; Carter, E.P.; Westerfeldt, C.R.; Lovette, A.W.; Edwards, S.E.

    1985-01-01

    The decision was made this past year to move the Lamb-shift polarized ion source which was first installed in the laboratory in 1970. The motivation was the need to improve the flexibility of spin-axis orientation by installing the ion source with a new Wien-filter spin precessor which is capable of rotating physically about the beam axis. The move of the polarized source was accomplished in approximately two months, with the accelerator being turned off for experiments during approximately four weeks of this time. The occasion of the move provided the opportunity to rewire completely the entire polarized ion source frame and to rebuild approximately half of the electronic chassis on the source. The result is an ion source which is now logically wired and carefully documented. Beams obtained from the source are much more stable than those previously available

  1. Spin polarized deuterium

    International Nuclear Information System (INIS)

    Glyde, H.R.; Hernadi, S.I.

    1986-01-01

    Several ground state properties of (electron) spin-polarized deuterium (D) such as the energy, single quasiparticle energies and lifetimes, Landau parameters and sound velocities are evaluated. The calculations begin with the Kolos-Wolneiwicz potential and use the Galitskii-FeynmanHartree-Fock (GFHF) approximation. The deuteron nucleas has spin I = 1, and spin states I/sub z/ = 1,0,-1. We explore D 1 , D 2 and D 3 in which, respectively, one spin state only is populated, two states are equally populated, and three states are equally populated. We find the GFHF describes D 1 well, but D 2 and D 3 less well. The Landau parameters, F/sub L/, are small compared to liquid 3 He and very small for doubly polarized D 1 (i.e. the F/sub L/ decrease with nuclear polarization)

  2. Polarized electron sources

    International Nuclear Information System (INIS)

    Clendenin, J.E.

    1995-05-01

    Polarized electron sources for high energy accelerators took a significant step forward with the introduction of a new laser-driven photocathode source for the SLC in 1992. With an electron beam polarization of >80% and with ∼99% uptime during continuous operation, this source is a key factor in the success of the current SLC high-energy physics program. The SLC source performance is used to illustrate both the capabilities and the limitations of solid-state sources. The beam requirements for future colliders are similar to that of the SLC with the addition in most cases of multiple-bunch operation. A design for the next generation accelerator source that can improve the operational characteristics and at least minimize some of the inherent limitations of present sources is presented. Finally, the possibilities for producing highly polarized electron beams for high-duty-factor accelerators are discussed

  3. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......, to reconstruct the distribution of the Cole-Cole parameters of the earth. The accurate modeling of the transmitter waveform had a strong influence on the forward response, and we showed that the difference between a solution using a step response and a solution using the accurate modeling often is above 100...

  4. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  5. Photon Entanglement Through Brain Tissue.

    Science.gov (United States)

    Shi, Lingyan; Galvez, Enrique J; Alfano, Robert R

    2016-12-20

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  6. Near-infrared spectroscopic tissue imaging for medical applications

    Science.gov (United States)

    Demos, Stavros [Livermore, CA; Staggs, Michael C [Tracy, CA

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  7. Tissue Classification

    DEFF Research Database (Denmark)

    Van Leemput, Koen; Puonti, Oula

    2015-01-01

    Computational methods for automatically segmenting magnetic resonance images of the brain have seen tremendous advances in recent years. So-called tissue classification techniques, aimed at extracting the three main brain tissue classes (white matter, gray matter, and cerebrospinal fluid), are now...... well established. In their simplest form, these methods classify voxels independently based on their intensity alone, although much more sophisticated models are typically used in practice. This article aims to give an overview of often-used computational techniques for brain tissue classification...

  8. Modelling Polar Self Assembly

    Science.gov (United States)

    Olvera de La Cruz, Monica; Sayar, Mehmet; Solis, Francisco J.; Stupp, Samuel I.

    2001-03-01

    Recent experimental studies in our group have shown that self assembled thin films of noncentrosymmetric supramolecular objects composed of triblock rodcoil molecules exhibit finite polar order. These aggregates have both long range dipolar and short range Ising-like interactions. We study the ground state of a simple model with these competing interactions. We find that the competition between Ising-like and dipolar forces yield a periodic domain structure, which can be controlled by adjusting the force constants and film thickness. When the surface forces are included in the potential, the system exhibits a finite macroscopic polar order.

  9. AGS polarized H- source

    International Nuclear Information System (INIS)

    Kponou, A.; Alessi, J.G.; Sluyters, T.

    1985-01-01

    The AGS polarized H - source is now operational. During a month-long experimental physics run in July 1984, pulses equivalent to 15 μA x 300 μs (approx. 3 x 10 10 protons) were injected into the RFQ preaccelerator. Beam polarization, measured at 200 MeV, was approx. 75%. After the run, a program to increase the H - yield of the source was begun and significant progress has been made. The H - current is now frequently 20 to 30 μA. A description of the source and some details of our operating experience are given. We also briefly describe the improvement program

  10. The polar mesosphere

    International Nuclear Information System (INIS)

    Morris, Ray; Murphy, Damian

    2008-01-01

    The mesosphere region, which lies at the edge of space, contains the coldest layer of the Earth's atmosphere, with summer temperatures as low as minus 130 °C. In this extreme environment ice aerosol layers have appeared since the dawn of industrialization—whose existence may arguably be linked to human influence—on yet another layer of the Earth's fragile atmosphere. Ground-based and space-based experiments conducted in the Arctic and Antarctic during the International Polar Year (IPY) aim to address limitations in our knowledge and to advance our understanding of thermal and dynamical processes at play in the polar mesosphere

  11. Imaging with Polarized Neutrons

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2018-01-01

    Full Text Available Owing to their zero charge, neutrons are able to pass through thick layers of matter (typically several centimeters while being sensitive to magnetic fields due to their intrinsic magnetic moment. Therefore, in addition to the conventional attenuation contrast image, the magnetic field inside and around a sample can be visualized by detecting changes of polarization in a transmitted beam. The method is based on the spatially resolved measurement of the cumulative precession angles of a collimated, polarized, monochromatic neutron beam that traverses a magnetic field or sample.

  12. Polarization splitter and polarization rotator designs based on transformation optics.

    Science.gov (United States)

    Kwon, Do-Hoon; Werner, Douglas H

    2008-11-10

    The transformation optics technique is employed in this paper to design two optical devices - a two-dimensional polarization splitter and a three-dimensional polarization rotator for propagating beams. The polarization splitter translates the TM- and the TE-polarized components of an incident beam in opposite directions (i.e., shifted up or shifted down). The polarization rotator rotates the polarization state of an incoming beam by an arbitrary angle. Both optical devices are reflectionless at the entry and exit interfaces. Design details and full-wave simulation results are provided.

  13. MDL, Collineations and the Fundamental Matrix

    OpenAIRE

    Maybank , Steve; Sturm , Peter

    1999-01-01

    International audience; Scene geometry can be inferred from point correspondences between two images. The inference process includes the selection of a model. Four models are considered: background (or null), collineation, affine fundamental matrix and fundamental matrix. It is shown how Minimum Description Length (MDL) can be used to compare the different models. The main result is that there is little reason for preferring the fundamental matrix model over the collineation model, even when ...

  14. Analysis of CMOS Compatible Cu-Based TM-Pass Optical Polarizer

    KAUST Repository

    Ng, Tien Khee

    2012-02-10

    A transverse-magnetic-pass (TM-pass) optical polarizer based on Cu complementary metal-oxide-semiconductor technology platform is proposed and analyzed using the 2-D method-of-lines numerical model. In designing the optimum configuration for the polarizer, it was found that the metal-insulator-metal (MIM) polarizer structure is superior compared to the insulator-metal-insulator polarizer structure due to its higher polarization extinction ratio (PER) and low insertion loss. An optimized MIM TM-pass polarizer exhibits simulated long wavelength pass filter characteristics of > ?1.2 ?m, with fundamental TM 0 and TE 0 mode transmissivity of >70% and <5%, respectively, and with PER ?11.5 dB in the wavelength range of 1.2-1.6 ?m. The subwavelength and submicrometer features of this TM-polarizer are potentially suitable for compact and low power photonics integrated circuit implementation on silicon-based substrates. © 1989-2012 IEEE.

  15. Dielectric polarization in random media

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1984-01-01

    The theory of dielectric polarization in random media is systematically formulated in terms of response kernels. The primary response kernel K(12) governs the mean dielectric response at the point r 1 to the external electric field at the point r 2 in an infinite system. The inverse of K(12) is denoted by L(12);. it is simpler and more fundamental than K(12) itself. Rigorous expressions are obtained for the effective dielectric constant epsilon( in terms of L(12) and K(12). The latter expression involves the Onsger-Kirkwood function (epsilon(-epsilon 0 (2epsilon(+epsilon 0 )/epsilon 0 epsilon( (where epsilon 0 is an arbitrary reference value), and appears to be new to the random medium context. A wide variety of series representations for epsilon( are generated by means of general perturbation expansions for K(12) and L(12). A discussion is given of certain pitfalls in the theory, most of which are related to the fact that the response kernels are long ranged. It is shown how the dielectric behavior of nonpolar molecular fluids may be treated as a special case of the general theory. The present results for epsilon( apply equally well to other effective phenomenological coefficients of the same generic type, such as thermal and electrical conductivity, magnetic susceptibility, and diffusion coefficients

  16. Arithmetic fundamental groups and moduli of curves

    International Nuclear Information System (INIS)

    Makoto Matsumoto

    2000-01-01

    This is a short note on the algebraic (or sometimes called arithmetic) fundamental groups of an algebraic variety, which connects classical fundamental groups with Galois groups of fields. A large part of this note describes the algebraic fundamental groups in a concrete manner. This note gives only a sketch of the fundamental groups of the algebraic stack of moduli of curves. Some application to a purely topological statement, i.e., an obstruction to the subjectivity of Johnson homomorphisms in the mapping class groups, which comes from Galois group of Q, is explained. (author)

  17. Proposed experiment to test fundamentally binary theories

    Science.gov (United States)

    Kleinmann, Matthias; Vértesi, Tamás; Cabello, Adán

    2017-09-01

    Fundamentally binary theories are nonsignaling theories in which measurements of many outcomes are constructed by selecting from binary measurements. They constitute a sensible alternative to quantum theory and have never been directly falsified by any experiment. Here we show that fundamentally binary theories are experimentally testable with current technology. For that, we identify a feasible Bell-type experiment on pairs of entangled qutrits. In addition, we prove that, for any n , quantum n -ary correlations are not fundamentally (n -1 ) -ary. For that, we introduce a family of inequalities that hold for fundamentally (n -1 ) -ary theories but are violated by quantum n -ary correlations.

  18. Constant physics and characteristics of fundamental constant

    International Nuclear Information System (INIS)

    Tarrach, R.

    1998-01-01

    We present some evidence which supports a surprising physical interpretation of the fundamental constants. First, we relate two of them through the renormalization group. This leaves as many fundamental constants as base units. Second, we introduce and a dimensional system of units without fundamental constants. Third, and most important, we find, while interpreting the units of the a dimensional system, that is all cases accessible to experimentation the fundamental constants indicate either discretization at small values or boundedness at large values of the corresponding physical quantity. (Author) 12 refs

  19. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  20. Polarized coincidence electroproduction

    International Nuclear Information System (INIS)

    Heimann, R.L.

    1975-03-01

    A study is made of the inclusive electroproduction of single hadrons off a polarized target. Bjorken scaling laws and the hadron azimuthal distribution are derived from the quark parton model. The polarization asymmetries scale when the target spin is along the direction of the virtual photon, and (apart from significant exception) vanish for transverse spin. These results have a simple explanation; emphasis is given both to the general mathematical formalism and to intuitive physical reasoning. Through this framework other cases are considered: quarks with anomalous magnetic moment; renormalization group effects and asymptotic freedom; production of vector mesons (whose spin state is analysed by their decay); relation to large transverse momentum hadron production; and a covariant parton model calculation. Spin 0 partons and Regge singularities are also considered. All of these cases (apart from the last two) modify the pattern of conclusions. Vector meson production shows polarization enhancements in the density matrix element rhosub(0+); the renormalization group approach does not lead to any significant suppressions. They are also less severe in parton models for large Psub(T) hadrons, and are not supported by the covariantly formulated calculation. The origins of these differences are isolated and used to exemplify the sensitivity polarized hadron electroproduction has to delicate detail that is otherwise concealed. (author)

  1. Fluorescence confocal polarizing microscopy

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  2. Optical neutron polarizers

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1990-01-01

    A neutron wave will be refracted by an appropriately varying potential. Optical neutron polarizers use spatially varying, spin- dependent potentials to refract neutrons of opposite spin states into different directions, so that an unpolarized beam will be split into two beams of complementary polarization by such a device. This paper will concentrate on two methods of producing spin-dependent potentials which are particularly well-suited to polarizing cold neutron beams, namely thin-film structures and field-gradient techniques. Thin-film optical devices, such as supermirror multilayer structures, are usually designed to deviate only one spin-state, so that they offer the possibility of making insertion (transmission) polarizers. Very good supermirrors may now be designed and fabricated, but it is not always straightforward to design mirror-based devices which are useful in real (divergent beam) applications, and some practical configurations will be discussed. Field-gradient devices, which are usually based on multipolar magnets, have tended to be too expensive for general use, but this may change with new developments in superconductivity. Dipolar and hexapolar configurations will be considered, with emphasis on the focusing characteristics of the latter. 21 refs., 7 figs

  3. Titan Polar Landscape Evolution

    Science.gov (United States)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  4. The polarized EMC effect

    Energy Technology Data Exchange (ETDEWEB)

    W. Bentz; I. C. Cloet; A. W. Thomas

    2007-02-01

    We calculate both the spin independent and spin dependent nuclear structure functions in an effective quark theory. The nucleon is described as a composite quark-diquark state, and the nucleus is treated in the mean field approximation. We predict a sizable polarized EMC effect, which could be confirmed in future experiments.

  5. Polarizer reflectivity variations

    International Nuclear Information System (INIS)

    Ozarski, R.G.; Prior, J.

    1980-01-01

    On Shiva the beam energy along the chain is monitored using available reflections and/or transmission through beam steering, splitting, and polarizing optics without the intrusion of any additional glass for diagnostics. On the preamp table the diagnostic signal is obtained from the signal transmitted through turning mirrors. At the input of each chain the signal is obtained from the transmission through one of the mirrors used for the chain input alignment sensor (CHIP). At the chain output the transmission through the final turning mirror is used. These diagnostics have proved stable and reliable. However, one of the prime diagnostic locations is at the output of the beta rod. The energy at this location is measured by collecting small reflections from the last polarizer surface of the beta Pockels cell polarizer package. Unfortunately, calibration of this diagnostic has varied randomly, seldom remaining stable for a week or more. The cause of this fluctuation has been investigated for the past year and'it has been discovered that polarizer reflectivity varies with humidity. This report will deal with the possible causes that were investigated, the evidence that humidity is causing the variation, and the associated mechanism

  6. Spin-polarized photoemission

    International Nuclear Information System (INIS)

    Johnson, Peter D.

    1997-01-01

    Spin-polarized photoemission has developed into a versatile tool for the study of surface and thin film magnetism. In this review, we examine the methodology of the technique and its application to a number of different problems, including both valence band and core level studies. After a detailed review of spin-polarization measurement techniques and the related experimental requirements we consider in detail studies of the bulk properties both above and below the Curie temperature. This section also includes a discussion of observations relating to unique metastable phases obtained via epitaxial growth. The application of the technique to the study of surfaces, both clean and adsorbate covered, is reviewed. The report then examines, in detail, studies of the spin-polarized electronic structure of thin films and the related interfacial magnetism. Finally, observations of spin-polarized quantum well states in non-magnetic thin films are discussed with particular reference to their mediation of the oscillatory exchange coupling in related magnetic multilayers. (author)

  7. Polarization of Bremsstrahlung

    International Nuclear Information System (INIS)

    Miller, J.

    1957-01-01

    The numerical results for the polarization of Bremsstrahlung are presented. The multiple scattering of electrons in the target is taken into account. The angular-and photon energy dependences are seen on the curves for an incident 25 MeV electron energy. (Author) [fr

  8. No More Polarization, Please!

    DEFF Research Database (Denmark)

    Hansen, Mia Reinholt

    and the increasing levels of complexities it entails, such polarization is not fruitful in the attempt to explain motivation of organizational members. This paper claims that a more nuanced perspective on motivation, acknowledging the co-existence of intrinsic and extrinsic motivation, the possible interaction...

  9. DESY: HERA polarization

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The new HERA electron-proton collider at DESY in Hamburg achieved the first luminosity for electron-proton collisions on 19 October last year. Only one month later, on 20 November, HERA passed another important milestone with the observation of transverse electron polarization

  10. Polarized Neutron Scattering

    OpenAIRE

    Roessli, B.; Böni, P.

    2000-01-01

    The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.

  11. DESY: HERA polarization

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-03-15

    The new HERA electron-proton collider at DESY in Hamburg achieved the first luminosity for electron-proton collisions on 19 October last year. Only one month later, on 20 November, HERA passed another important milestone with the observation of transverse electron polarization.

  12. Graphics of polar figure

    International Nuclear Information System (INIS)

    Macias B, L.R.

    1991-11-01

    The objective of this work, is that starting from a data file coming from a spectra that has been softened, and of the one that have been generated its coordinates to project it in stereographic form, to create the corresponding polar figure making use of the Cyber computer of the ININ by means of the GRAPHOS package. This work only requires a Beta, Fi and Intensity (I) enter data file. It starts of the existence of a softened spectra of which have been generated already with these data, making use of some language that in this case was FORTRAN for the Cyber computer, a program is generated supported in the Graphos package that allows starting of a reading of the Beta, Fi, I file, to generate the points in a stereographic projection and that it culminates with the graph of the corresponding polar figure. The program will request the pertinent information that is wanted to capture in the polar figure just as: date, name of the enter file, indexes of the polar figure, number of levels, radio of the stereographic projection (cms.), crystalline system to which belongs the sample, name the neuter graph file by create and to add the own general data. (Author)

  13. Polarized light and optical measurement

    CERN Document Server

    Clarke, D N; Ter Haar, D

    2013-01-01

    Polarized Light and Optical Measurement is a five-chapter book that begins with a self-consistent conceptual picture of the phenomenon of polarization. Chapter 2 describes a number of interactions of light and matter used in devising optical elements in polarization studies. Specific optical elements are given in Chapter 3. The last two chapters explore the measurement of the state of polarization and the various roles played in optical instrumentation by polarization and polarization-sensitive elements. This book will provide useful information in this field of interest for research workers,

  14. Polarized nuclear target based on parahydrogen induced polarization

    OpenAIRE

    Budker, D.; Ledbetter, M. P.; Appelt, S.; Bouchard, L. S.; Wojtsekhowski, B.

    2012-01-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ($\\sim$100 Hz) polarization reversal, and operation with large intensity of an electron beam.

  15. Fundamental Perspectives on Supply Chain Management

    NARCIS (Netherlands)

    Omta, S.W.F.; Hoenen, S.J.

    2012-01-01

    The aim of the present literature study is to find the fundamental perspectives/models in the realm of supply chain management and to investigate whether they can be extended based on recent literature findings. The fundamental perspectives were found using a two-tier snowball collection method,

  16. Individual differences in fundamental social motives.

    Science.gov (United States)

    Neel, Rebecca; Kenrick, Douglas T; White, Andrew Edward; Neuberg, Steven L

    2016-06-01

    Motivation has long been recognized as an important component of how people both differ from, and are similar to, each other. The current research applies the biologically grounded fundamental social motives framework, which assumes that human motivational systems are functionally shaped to manage the major costs and benefits of social life, to understand individual differences in social motives. Using the Fundamental Social Motives Inventory, we explore the relations among the different fundamental social motives of Self-Protection, Disease Avoidance, Affiliation, Status, Mate Seeking, Mate Retention, and Kin Care; the relationships of the fundamental social motives to other individual difference and personality measures including the Big Five personality traits; the extent to which fundamental social motives are linked to recent life experiences; and the extent to which life history variables (e.g., age, sex, childhood environment) predict individual differences in the fundamental social motives. Results suggest that the fundamental social motives are a powerful lens through which to examine individual differences: They are grounded in theory, have explanatory value beyond that of the Big Five personality traits, and vary meaningfully with a number of life history variables. A fundamental social motives approach provides a generative framework for considering the meaning and implications of individual differences in social motivation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. EU criminal law and fundamental rights

    NARCIS (Netherlands)

    de Hert, Paul; Mitsilegas, V.; Bergström, M.; Konstadinides, Th.

    2016-01-01

    The chapter first offers a background analysis to EU fundamental rights law, recalling the historical affirmation of the protection of fundamental rights as a EU concern, and the important innovation brought about by the Lisbon Treaty (section 2) and the multiplicity of actors involved in the system

  18. Fundamental symmetries and interactions-selected topics

    NARCIS (Netherlands)

    Jungmann, Klaus P.

    2015-01-01

    In the field of fundamental interactions and symmetries numerous experiments are underway or planned in order to verify the standard model in particle physics, to search for possible extensions to it or to exploit the standard model for extracting most precise values for fundamental constants. We

  19. Experiments with Fermilab polarized proton and polarized antiproton beams

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the π degree production at high p perpendicular and in the Λ (Σ degree), π ± , π degree production at large x F , and Δσ L (pp, bar pp) measurements. 18 refs

  20. NUCLEON POLARIZATION IN 3-BODY MODELS OF POLARIZED LI-6

    NARCIS (Netherlands)

    SCHELLINGERHOUT, NW; KOK, LP; COON, SA; ADAM, RM

    1993-01-01

    Just as He-3 --> can be approximately characterized as a polarized neutron target, polarized Li-6D has been advocated as a good isoscalar nuclear target for the extraction of the polarized gluon content of the nucleon. The original argument rests upon a presumed ''alpha + deuteron'' picture of Li-6,

  1. Country Fundamentals and Currency Excess Returns

    Directory of Open Access Journals (Sweden)

    Daehwan Kim

    2014-06-01

    Full Text Available We examine whether country fundamentals help explain the cross-section of currency excess returns. For this purpose, we consider fundamental variables such as default risk, foreign exchange rate regime, capital control as well as interest rate in the multi-factor model framework. Our empirical results show that fundamental factors explain a large part of the cross-section of currency excess returns. The zero-intercept restriction of the factor model is not rejected for most currencies. They also reveal that our factor model with country fundamentals performs better than a factor model with usual investment-style factors. Our main empirical results are based on 2001-2010 balanced panel data of 19 major currencies. This paper may fill the gap between country fundamentals and practitioners' strategies on currency investment.

  2. Program for studying fundamental interactions at the PIK reactor facilities

    International Nuclear Information System (INIS)

    Serebrov, A. P.; Vassiljev, A. V.; Varlamov, V. E.; Geltenbort, P.; Gridnev, K. A.; Dmitriev, S. P.; Dovator, N. A.; Egorov, A. I.; Ezhov, V. F.; Zherebtsov, O. M.; Zinoviev, V. G.; Ivochkin, V. G.; Ivanov, S. N.; Ivanov, S. A.; Kolomensky, E. A.; Konoplev, K. A.; Krasnoschekova, I. A.; Lasakov, M. S.; Lyamkin, V. A.; Martemyanov, V. P.

    2016-01-01

    A research program aimed at studying fundamental interactions by means of ultracold and polarized cold neutrons at the GEK-4-4′ channel of the PIK reactor is presented. The apparatus to be used includes a source of cold neutrons in the heavy-water reflector of the reactor, a source of ultracold neutrons based on superfluid helium and installed in a cold-neutron beam extracted from the GEK-4 channel, and a number of experimental facilities in neutron beams. An experiment devoted to searches for the neutron electric dipole moment and an experiment aimed at a measurement the neutron lifetime with the aid of a large gravitational trap are planned to be performed in a beam of ultracold neutrons. An experiment devoted to measuring neutron-decay asymmetries with the aid of a superconducting solenoid is planned in a beam of cold polarized neutrons from the GEK-4′ channel. The second ultracold-neutron source and an experiment aimed at measuring the neutron lifetime with the aid of a magnetic trap are planned in the neutron-guide system of the GEK-3 channel. In the realms of neutrino physics, an experiment intended for sterile-neutrino searches is designed. The state of affairs around the preparation of the experimental equipment for this program is discussed.

  3. Program for studying fundamental interactions at the PIK reactor facilities

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Vassiljev, A. V.; Varlamov, V. E. [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation); Geltenbort, P. [Institut Laue-Langevin (France); Gridnev, K. A. [St. Petersburg State University (Russian Federation); Dmitriev, S. P.; Dovator, N. A. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Egorov, A. I.; Ezhov, V. F.; Zherebtsov, O. M.; Zinoviev, V. G.; Ivochkin, V. G.; Ivanov, S. N.; Ivanov, S. A.; Kolomensky, E. A.; Konoplev, K. A.; Krasnoschekova, I. A.; Lasakov, M. S.; Lyamkin, V. A. [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation); Martemyanov, V. P. [National Research Center Kurchatov Institute (Russian Federation); and others

    2016-05-15

    A research program aimed at studying fundamental interactions by means of ultracold and polarized cold neutrons at the GEK-4-4′ channel of the PIK reactor is presented. The apparatus to be used includes a source of cold neutrons in the heavy-water reflector of the reactor, a source of ultracold neutrons based on superfluid helium and installed in a cold-neutron beam extracted from the GEK-4 channel, and a number of experimental facilities in neutron beams. An experiment devoted to searches for the neutron electric dipole moment and an experiment aimed at a measurement the neutron lifetime with the aid of a large gravitational trap are planned to be performed in a beam of ultracold neutrons. An experiment devoted to measuring neutron-decay asymmetries with the aid of a superconducting solenoid is planned in a beam of cold polarized neutrons from the GEK-4′ channel. The second ultracold-neutron source and an experiment aimed at measuring the neutron lifetime with the aid of a magnetic trap are planned in the neutron-guide system of the GEK-3 channel. In the realms of neutrino physics, an experiment intended for sterile-neutrino searches is designed. The state of affairs around the preparation of the experimental equipment for this program is discussed.

  4. Probing CPT violation with CMB polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xia Junqing, E-mail: xia@sissa.i [Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, I-34014 Trieste (Italy); Li Hong; Zhang Xinmin [Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-4, Beijing 100049 (China); Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Science (China)

    2010-04-12

    The electrodynamics modified by the Chern-Simons term L{sub cs}approxp{sub m}uA{sub n}uF-tilde{sup m}u{sup n}u with a non-vanishing p{sub m}u violates the Charge-Parity-Time Reversal symmetry (CPT) and rotates the linear polarizations of the propagating Cosmic Microwave Background (CMB) photons. In this Letter we measure the rotation angle DELTAalpha by performing a global analysis on the current CMB polarization measurements from the five-year Wilkinson Microwave Anisotropy Probe (WMAP5), BOOMERanG 2003 (B03), BICEP and QUaD using a Markov Chain Monte Carlo method. Neglecting the systematic errors of these experiments, we find that the results from WMAP5, B03 and BICEP all are consistent and their combination gives DELTAalpha=-2.62+-0.87deg (68% C.L.), indicating a 3sigma detection of the CPT violation. The QUaD data alone gives DELTAalpha=0.59+-0.42deg (68% C.L.) which has an opposite sign for the central value and smaller error bar compared to that obtained from WMAP5, B03 and BICEP. When combining all the polarization data together, we find DELTAalpha=0.09+-0.36deg (68% C.L.) which significantly improves the previous constraint on DELTAalpha and test the validity of the fundamental CPT symmetry at a higher level.

  5. Polarized Light Scattering from Perfect and Perturbed Surfaces and Fundamental Scattering Systems

    Science.gov (United States)

    1992-02-29

    ob- one frequency, an extension of it to multiple-field interac- served in the elastically scattered light emitted from glass tions would follow the...that 8. V CeIll . A. A. Maradudin, A. M. Marvin, and A. R. McGurn, can explain only gross scattering features. It is inde "Some aspects of light...and a surface of index n a 10.0 - 0.01. Such a surface could be made with a series of 1/4-wave dielectric layers on a glass substrate. It Is more

  6. Source of spin polarized electrons

    International Nuclear Information System (INIS)

    Pierce, D.T.; Meier, F.A.; Siegmann, H.C.

    1976-01-01

    A method is described of producing intense beams of polarized free electrons in which a semiconductor with a spin orbit split valence band and negative electron affinity is used as a photocathode and irradiated with circularly polarized light

  7. Linearly polarized photons at ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, Holger [Physikalisches Institut, Universitaet Bonn (Germany)

    2009-07-01

    To investigate the nucleon resonance regime in meson photoproduction, double polarization experiments are currently performed at the electron accelerator ELSA in Bonn. The experiments make use of a polarized target and circularly or linearly polarized photon beams. Linearly polarized photons are produced by coherent bremsstrahlung from an accurately aligned diamond crystal. The orientation of the crystal with respect to the electron beam is measured using the Stonehenge-Technique. Both, the energy of maximum polarization and the plane of polarization, can be deliberately chosen for the experiment. The linearly polarized beam provides the basis for the measurement of azimuthal beam asymmetries, such as {sigma} (unpolarized target) and G (polarized target). These observables are extracted in various single and multiple meson photoproduction channels.

  8. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    Directory of Open Access Journals (Sweden)

    Alice K. Harding

    2013-09-01

    Full Text Available Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. Particle acceleration and high-energy emission from the polar caps is expected to occur in connection with electron-positron pair cascades. I will review acceleration and gamma-ray emission from the pulsar polar cap and associated slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting, population synthesis and phase-resolved spectroscopy.

  9. North Polar Cap

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour. In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime. The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap. Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen

  10. Stanford polarized atomic beam target

    International Nuclear Information System (INIS)

    Mavis, D.G.; Dunham, J.S.; Hugg, J.W.; Glavish, H.F.

    1976-01-01

    A polarized atomic beam source was used to produce an atomic hydrogen beam which was in turn used as a polarized proton target. A target density of 2 x 10'' atoms/cm 3 and a target polarization of 0.37 without the use of rf transitions were measured. These measurements indicate that a number of experiments are currently feasible with a variety of polarized target beams

  11. Wnt signaling and polarity in freshwater sponges.

    Science.gov (United States)

    Windsor Reid, Pamela J; Matveev, Eugueni; McClymont, Alexandra; Posfai, Dora; Hill, April L; Leys, Sally P

    2018-02-02

    The Wnt signaling pathway is uniquely metazoan and used in many processes during development, including the formation of polarity and body axes. In sponges, one of the earliest diverging animal groups, Wnt pathway genes have diverse expression patterns in different groups including along the anterior-posterior axis of two sponge larvae, and in the osculum and ostia of others. We studied the function of Wnt signaling and body polarity formation through expression, knockdown, and larval manipulation in several freshwater sponge species. Sponge Wnts fall into sponge-specific and sponge-class specific subfamilies of Wnt proteins. Notably Wnt genes were not found in transcriptomes of the glass sponge Aphrocallistes vastus. Wnt and its signaling genes were expressed in archaeocytes of the mesohyl throughout developing freshwater sponges. Osculum formation was enhanced by GSK3 knockdown, and Wnt antagonists inhibited both osculum development and regeneration. Using dye tracking we found that the posterior poles of freshwater sponge larvae give rise to tissue that will form the osculum following metamorphosis. Together the data indicate that while components of canonical Wnt signaling may be used in development and maintenance of osculum tissue, it is likely that Wnt signaling itself occurs between individual cells rather than whole tissues or structures in freshwater sponges.

  12. BOOK REVIEWS: Quantum Mechanics: Fundamentals

    Science.gov (United States)

    Whitaker, A.

    2004-02-01

    mechanics, which is assumed, but to examine whether it gives a consistent account of measurement. The conclusion is that after a measurement, interference terms are ‘effectively’ absent; the set of ‘one-to-one correlations between states of the apparatus and the object’ has the same form as that of everyday statistics and is thus a probability distribution. This probability distribution refers to potentialities, only one of which is actually realized in any one trial. Opinions may differ on whether their treatment is any less vulnerable to criticisms such as those of Bell. To sum up, Gottfried and Yan’s book contains a vast amount of knowledge and understanding. As well as explaining the way in which quantum theory works, it attempts to illuminate fundamental aspects of the theory. A typical example is the ‘fable’ elaborated in Gottfried’s article in Nature cited above, that if Newton were shown Maxwell’s equations and the Lorentz force law, he could deduce the meaning of E and B, but if Maxwell were shown Schrödinger’s equation, he could not deduce the meaning of Psi. For use with a well-constructed course (and, of course, this is the avowed purpose of the book; a useful range of problems is provided for each chapter), or for the relative expert getting to grips with particular aspects of the subject or aiming for a deeper understanding, the book is certainly ideal. It might be suggested, though, that, even compared to the first edition, the isolated learner might find the wide range of topics, and the very large number of mathematical and conceptual techniques, introduced in necessarily limited space, somewhat overwhelming. The second book under consideration, that of Schwabl, contains ‘Advanced’ elements of quantum theory; it is designed for a course following on from one for which Gottfried and Yan, or Schwabl’s own `Quantum Mechanics' might be recommended. It is the second edition in English, and is a translation of the third German edition

  13. Three-photon polarization ququarts: polarization, entanglement and Schmidt decompositions

    International Nuclear Information System (INIS)

    Fedorov, M V; Miklin, N I

    2015-01-01

    We consider polarization states of three photons, propagating collinearly and having equal given frequencies but with arbitrary distributed horizontal or vertical polarizations of photons. A general form of such states is a superposition of four basic three-photon polarization modes, to be referred to as the three-photon polarization ququarts (TPPQ). All such states can be considered as consisting of one- and two-photon parts, which can be entangled with each other. The degrees of entanglement and polarization, as well as the Schmidt decomposition and Stokes vectors of TPPQ are found and discussed. (paper)

  14. Polarization effects in hadron fragmentation

    International Nuclear Information System (INIS)

    Lednicky, R.

    1984-01-01

    Hadron polarization (spin alignment) and polarization asymmetry are discussed in terms of the quark recombination model with the spin-orbit interaction taken into account. It is shown that predictions of this model are at least in qualitative agreement with experimental data. Various polarization mechanisms in terms of this model and the possibility of their checking are also discussed

  15. Detection of polar vapours

    International Nuclear Information System (INIS)

    Blyth, D.A.

    1980-01-01

    Apparatus for monitoring for polar vapours in a gas consists of (i) a body member defining a passage through which a continuous stream of the gas passes; (ii) an ionising source associated with a region of the passage such that ionization of the gas stream takes place substantially only within the region and also any polar vapour molecules present therein will react with the gas formed to generate ion clusters; and (iii) an electrode for collecting ions carried by the gas stream, the electrode being positioned in the passage downstream of the region and separated from the region by a sufficient distance to ensure that no substantial number of the gas ions formed in said region remains in the gas stream at the collector electrode whilst ensuring that a substantial proportion of the ion clusters formed in the region does remain in the gas stream at the collector electrode. (author)

  16. Perspectives for polarized antiprotons

    International Nuclear Information System (INIS)

    Lenisa, Paolo

    2012-01-01

    Polarized antiprotons would open a new window in hadron physics providing access to a wealth of single and double spin observables in proton-antiproton interactions. The PAX Collaboration aims to perform the first ever measurement of the spin-dependence of the proton-antiproton cross section at the AD ring at CERN. The spin-dependence of the cross section could in principle be exploited by the spin-filtering technique for the production of a polarized antiproton beam. As a preparatory phase to the experimentation at AD, the PAX Collaboration has initiated a series of dedicated studies with protons at the COSY-ring in Juelich (Germany), aimed at the commissioning of the experimental apparatus and confirmation of the predictions for spin-filtering with protons.

  17. The Polar Cusp

    International Nuclear Information System (INIS)

    Holtet, J.A.; Egeland, A.

    1985-01-01

    The upper atmosphere at high latitudes is often called the ''earth's window to outer space.'' Through various electrodynamic coupling processes, as well as direct transfer of particles, many of the geophysical effects displayed are direct manifestations of phenomena occurring in deep space. The high latitude ionosphere also exerts a feedback on the regions of the magnetosphere and atmosphere to which it is coupled. Of particular interest are the sections of the near space known as the Polar Cusp. A vast portion of the Earth's magnetic field envelope is electrically connected to these regions. This geometry results in a spatial mapping of the magnetospheric processes and a focusing on the ionosphere. In the Polar Cusps, the solar wind plasma also has direct access to the upper atmosphere

  18. Polarized electrogowdy spacetimes censored

    International Nuclear Information System (INIS)

    Nungesser, Ernesto

    2010-01-01

    A sketch of the proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this it is seen that the results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  19. Polarized electrogowdy spacetimes censored

    Energy Technology Data Exchange (ETDEWEB)

    Nungesser, Ernesto, E-mail: ernesto.nungesser@aei.mpg.d [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)

    2010-05-01

    A sketch of the proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this it is seen that the results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  20. Polarization of lanthanum nucleus by dynamic polarization method

    International Nuclear Information System (INIS)

    Adachi, Toshikazu; Ishimoto, Shigeru; Masuda, Yasuhiro; Morimoto, Kimio

    1989-01-01

    Preliminary studies have been carried out concerning the application of a dynamic polarization method to polarizing lanthanum fluoride single crystal to be employed as target in experiments with time reversal invariance. The present report briefly outlines the dynamic polarization method and describes some preliminary studies carried out so far. Dynamic polarization is of particular importance because no techniques are currently available that can produce highly polarized static nucleus. Spin interaction between electrons and protons (nuclei) plays a major role in the dynamic polarization method. In a thermal equilibrium state, electrons are polarized almost completely while most protons are not polarized. Positively polarized proton spin is produced by applying microwave to this system. The most hopeful candidate target material is single crystal of LaF 3 containing neodymium because the crystal is chemically stable and easy to handle. The spin direction is of great importance in experiments with time reversal invariance. The spin of neutrons in the target can be cancelled by adjusting the external magnetic field applied to a frozen polarized target. In a frozen spin state, the polarity decreases slowly with a relaxation time that depends on the external magnetic field and temperature. (N.K.)