WorldWideScience

Sample records for tissue morphological parameters

  1. VISUALIZATION OF BIOLOGICAL TISSUE IMPEDANCE PARAMETERS

    Directory of Open Access Journals (Sweden)

    V. I. Bankov

    2016-01-01

    Full Text Available Objective. Investigation the opportunity for measurement of biological tissue impedance to visualize its parameters.Materials and methods. Studies were undertook on the experimental facility, consists of registrating measuring cell, constructed from flat inductors system, formed in oscillatory circuit, herewith investigated biological tissue is the part of this oscillatory circuit. An excitation of oscillatory circuit fulfilled by means of exciter inductor which forms impulse complex modulated electromagnetic field (ICM EMF. The measurement process and visualizations provided by set of certificated instruments: a digital oscillograph AKTAKOM ADS-2221MV, a digital generator АКТАКОМ AWG-4150 (both with software and a gauge RLC E7-22. Comparative dynamic studies of fixed volume and weight pig’s blood, adipose tissue, muscular tissue impedance were conducted by contact versus contactless methods. Contactless method in contrast to contact method gives opportunity to obtain the real morphological visualization of biological tissue irrespective of their nature.Results. Comparison of contact and contactless methods of impedance measurement shows that the inductance to capacitance ratio X(L / X(C was equal: 17 – for muscular tissue, 4 – for blood, 1 – for adipose tissue. It demonstrates the technical correspondence of both impedance registration methods. If propose the base relevance of X (L and X (C parameters for biological tissue impedance so contactless measurement method for sure shows insulating properties of adipose tissue and high conductivity for blood and muscular tissue in fixed volume-weight parameters. Registration of biological tissue impedance complex parameters by contactless method with the help of induced ICM EMF in fixed volume of biological tissue uncovers the most important informative volumes to characterize morphofunctional condition of biological tissue namely X (L / X (C.Conclusion. Contactless method of biological

  2. Morphology of urethral tissues

    Science.gov (United States)

    Müller, Bert; Schulz, Georg; Herzen, Julia; Mushkolaj, Shpend; Bormann, Therese; Beckmann, Felix; Püschel, Klaus

    2010-09-01

    Micro computed tomography has been developed to a powerful technique for the characterization of hard and soft human and animal tissues. Soft tissues including the urethra, however, are difficult to be analyzed, since the microstructures of interest exhibit X-ray absorption values very similar to the surroundings. Selective staining using highly absorbing species is a widely used approach, but associated with significant tissue modification. Alternatively, one can suitably embed the soft tissue, which requires the exchange of water. Therefore, the more recently developed phase contrast modes providing much better contrast of low X-ray absorbing species are especially accommodating in soft tissue characterization. The present communication deals with the morphological characterization of sheep, pig and human urethras on the micrometer scale taking advantage of micro computed tomography in absorption and phase contrast modes. The performance of grating-based tomography is demonstrated for freshly explanted male and female urethras in saline solution. The micro-morphology of the urethra is important to understand how the muscles close the urethra to reach continence. As the number of incontinent patients is steadily increasing, the function under static and, more important, under stress conditions has to be uncovered for the realization of artificial urinary sphincters, which needs sophisticated, biologically inspired concepts to become nature analogue.

  3. Functional and morphological parameters with tissue characterization of cardiovascular magnetic imaging in clinically verified ''infarct-like myocarditis''

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Johannes [Paracelsus Medical Univ., General Hospital Nuremberg (Germany). Dept. of Cardiology and Radiology; Rogg, H.J.; Pauschinger, M.; Fessele, K. [Paracelsus Medical Univ., General Hospital Nuremberg (Germany). Dept. of Cardiology; Bareiter, T.; Baer, I. [Paracelsus Medical Univ., General Hospital Nuremberg (Germany). Dept. of Cardiology and Neuroradiology; Loose, R. [Paracelsus Medical Univ., General Hospital Nuremberg (Germany). Dept. of Radiology

    2016-04-15

    Cardiac magnetic resonance (CMR) has increasingly proved to be a valuable diagnostic tool for evaluating patients with suspected myocarditis. The objective of this study was to evaluate the diagnostic value of functional and morphological parameters including tissue characterization in patients with ''infarct-like myocarditis''. 43 patients with clinically verified cases of ''infarct-like myocarditis'' (median time to MRI scanning after admission for acute symptoms 3 days) and 35 control patients matched by age and sex were included in this retrospective case control study. In this study we used a 1.5 T MRI scanner conducting steady-state-free-precession sequences, T2-weighted imaging, T1-weighted imaging before and after contrast administration and late gadolinium enhancement sequences. According to the recommendations for CMR diagnosis of myocarditis (Lake Louise consensus criteria), a scan was positive for acute myocarditis if 2 of 3 CMR criteria were present. 30 % of the patients with ''infarct-like myocarditis'' had a reduced left ventricular ejection fraction, 11 % had an increased LV end-diastolic volume index and 35 % had an increased LV mass index. The sensitivity of wall motion abnormalities was 63 % with a regional distribution in 49 %. In 47 % of cases regional wall motion abnormalities were present in the lateral left ventricular segments. Pericardial effusions were discovered in 65 % of cases with a circular appearance in 21 % and focal manifestation in 44 %. The diagnostic sensitivity, specificity, and accuracy of CMR in patients with ''infarct-like myocarditis'' were 67 %, 100 % and 82 %, respectively. The LGE alone was the most sensitive test parameter with 86 %, providing a specificity of 100 % and accuracy of 92 %. Our study results can be applied to the subgroup of patients with ''infarct-like myocarditis'', where we found that LGE alone was the

  4. Morphology parameters for intracranial aneurysm rupture risk assessment.

    Science.gov (United States)

    Dhar, Sujan; Tremmel, Markus; Mocco, J; Kim, Minsuok; Yamamoto, Junichi; Siddiqui, Adnan H; Hopkins, L Nelson; Meng, Hui

    2008-08-01

    The aim of this study is to identify image-based morphological parameters that correlate with human intracranial aneurysm (IA) rupture. For 45 patients with terminal or sidewall saccular IAs (25 unruptured, 20 ruptured), three-dimensional geometries were evaluated for a range of morphological parameters. In addition to five previously studied parameters (aspect ratio, aneurysm size, ellipticity index, nonsphericity index, and undulation index), we defined three novel parameters incorporating the parent vessel geometry (vessel angle, aneurysm [inclination] angle, and [aneurysm-to-vessel] size ratio) and explored their correlation with aneurysm rupture. Parameters were analyzed with a two-tailed independent Student's t test for significance; significant parameters (P 41; 95% confidence interval, 1.03-1.92) and undulation index (odds ratio, 1.51; 95% confidence interval, 1.08-2.11) had the strongest independent correlation with ruptured IA. From the receiver operating characteristic analysis, size ratio and aneurysm angle had the highest area under the curve values of 0.83 and 0.85, respectively. Size ratio and aneurysm angle are promising new morphological metrics for IA rupture risk assessment. Because these parameters account for vessel geometry, they may bridge the gap between morphological studies and more qualitative location-based studies.

  5. Assessment of morphological and hydrological parameters of Oyun ...

    African Journals Online (AJOL)

    The study involves evaluation of basin area, slopes, shape of the basin as morphological parameters and analysis of flow frequencies for flood and low flows, developing unit hydrograph and analysis of rainfall intensity distribution in the study area as hydrological parameters. The morphological analysis of the basin yielded ...

  6. Role of pore size and morphology in musculo-skeletal tissue regeneration

    International Nuclear Information System (INIS)

    Perez, Roman A.; Mestres, Gemma

    2016-01-01

    Biomaterials in the form of scaffolds hold great promise in the regeneration of diseased tissues. The scaffolds stimulate cellular adhesion, proliferation and differentiation. While the scaffold composition will dictate their biocompatibility, their porosity plays a key role in allowing proper cell penetration, nutrient diffusion as well as bone ingrowth. Porous scaffolds are processed with the help of a wide variety of techniques. Designing scaffolds with the appropriate porosity is a complex issue since this may jeopardize other physico-chemical properties. From a macroscopic point of view, parameters such as the overall architecture, pore morphology, interconnectivity and pore size distribution, have unique roles in allowing bone ingrowth to take place. From a microscopic perspective, the adsorption and retention of proteins in the microporosities of the material will dictate the subsequent cell adhesion. Therefore, the microstructure of the substrate can determine cell proliferation as well as the expression of specific osteogenic genes. This review aims at discussing the effect of micro- and macroporosity on the physico-chemical and biological properties of scaffolds for musculo-skeletal tissue regeneration. - Highlights: • Osteoconduction and osteoinduction of a biomaterial relies on its pattern of micro/macroporosity. • Size, morphology, distribution and interconnection of the pores influence both mechanical and biological properties. • Macroporosity (pores > 50 μm) determines cell colonization and therefore growth of vascular and bone tissue. • Micropores (< 50 μm) are crucial for proteins adsorption, which in turn can determine cell fate.

  7. Role of pore size and morphology in musculo-skeletal tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Roman A., E-mail: romanp@dankook.ac.kr [Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Mestres, Gemma [Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala (Sweden)

    2016-04-01

    Biomaterials in the form of scaffolds hold great promise in the regeneration of diseased tissues. The scaffolds stimulate cellular adhesion, proliferation and differentiation. While the scaffold composition will dictate their biocompatibility, their porosity plays a key role in allowing proper cell penetration, nutrient diffusion as well as bone ingrowth. Porous scaffolds are processed with the help of a wide variety of techniques. Designing scaffolds with the appropriate porosity is a complex issue since this may jeopardize other physico-chemical properties. From a macroscopic point of view, parameters such as the overall architecture, pore morphology, interconnectivity and pore size distribution, have unique roles in allowing bone ingrowth to take place. From a microscopic perspective, the adsorption and retention of proteins in the microporosities of the material will dictate the subsequent cell adhesion. Therefore, the microstructure of the substrate can determine cell proliferation as well as the expression of specific osteogenic genes. This review aims at discussing the effect of micro- and macroporosity on the physico-chemical and biological properties of scaffolds for musculo-skeletal tissue regeneration. - Highlights: • Osteoconduction and osteoinduction of a biomaterial relies on its pattern of micro/macroporosity. • Size, morphology, distribution and interconnection of the pores influence both mechanical and biological properties. • Macroporosity (pores > 50 μm) determines cell colonization and therefore growth of vascular and bone tissue. • Micropores (< 50 μm) are crucial for proteins adsorption, which in turn can determine cell fate.

  8. ultrasound reflecting the morphological properties in soft tissue

    DEFF Research Database (Denmark)

    Lorentzen, Torben; Larsen, Torben; Court-Payen, Michel

    2014-01-01

    Ultrasound (US) is an image modality providing the examiner with real-time images which reflect the morphological properties in soft tissue. Different types of transducers are used for different kind of exams. US is cheap, fast, and safe. US is widely used in abdominal imaging including obstetrics...

  9. Global and nonglobal parameters of horizontal-branch morphology of globular clusters

    International Nuclear Information System (INIS)

    Milone, A. P.; Marino, A. F.; Dotter, A.; Norris, J. E.; Jerjen, H.; Asplund, M.

    2014-01-01

    The horizontal-branch (HB) morphology of globular clusters (GCs) is mainly determined by metallicity. However, the fact that GCs with almost the same metallicity exhibit different HB morphologies demonstrates that at least one more parameter is needed to explain the HB morphology. It has been suggested that one of these should be a global parameter that varies from GC to GC and the other a nonglobal parameter that varies within the GC. In this study we provide empirical evidence corroborating this idea. We used the photometric catalogs obtained with the Advanced Camera for Surveys of the Hubble Space Telescope and analyze the color-magnitude diagrams of 74 GCs. The HB morphology of our sample of GCs has been investigated on the basis of the two new parameters L1 and L2 that measure the distance between the red giant branch and the coolest part of the HB and the color extension of the HB, respectively. We find that L1 correlates with both metallicity and age, whereas L2 most strongly correlates with the mass of the hosting GC. The range of helium abundance among the stars in a GC, characterized by ΔY and associated with the presence of multiple stellar populations, has been estimated in a few GCs to date. In these GCs we find a close relationship among ΔY, GC mass, and L2. We conclude that age and metallicity are the main global parameters, while the range of helium abundance within a GC is the main nonglobal parameter defining the HB morphology of Galactic GCs.

  10. Morphological parameters associated with ruptured posterior communicating aneurysms.

    Science.gov (United States)

    Ho, Allen; Lin, Ning; Charoenvimolphan, Nareerat; Stanley, Mary; Frerichs, Kai U; Day, Arthur L; Du, Rose

    2014-01-01

    The rupture risk of unruptured intracranial aneurysms is known to be dependent on the size of the aneurysm. However, the association of morphological characteristics with ruptured aneurysms has not been established in a systematic and location specific manner for the most common aneurysm locations. We evaluated posterior communicating artery (PCoA) aneurysms for morphological parameters associated with aneurysm rupture in that location. CT angiograms were evaluated to generate 3-D models of the aneurysms and surrounding vasculature. Univariate and multivariate analyses were performed to evaluate morphological parameters including aneurysm volume, aspect ratio, size ratio, distance to ICA bifurcation, aneurysm angle, vessel angles, flow angles, and vessel-to-vessel angles. From 2005-2012, 148 PCoA aneurysms were treated in a single institution. Preoperative CTAs from 63 patients (40 ruptured, 23 unruptured) were available and analyzed. Multivariate logistic regression revealed that smaller volume (p = 0.011), larger aneurysm neck diameter (0.048), and shorter ICA bifurcation to aneurysm distance (p = 0.005) were the most strongly associated with aneurysm rupture after adjusting for all other clinical and morphological variables. Multivariate subgroup analysis for patients with visualized PCoA demonstrated that larger neck diameter (p = 0.018) and shorter ICA bifurcation to aneurysm distance (p = 0.011) were significantly associated with rupture. Intracerebral hemorrhage was associated with smaller volume, larger maximum height, and smaller aneurysm angle, in addition to lateral projection, male sex, and lack of hypertension. We found that shorter ICA bifurcation to aneurysm distance is significantly associated with PCoA aneurysm rupture. This is a new physically intuitive parameter that can be measured easily and therefore be readily applied in clinical practice to aid in the evaluation of patients with PCoA aneurysms.

  11. Chemical and morphological gradient scaffolds to mimic hierarchically complex tissues: From theoretical modeling to their fabrication.

    Science.gov (United States)

    Marrella, Alessandra; Aiello, Maurizio; Quarto, Rodolfo; Scaglione, Silvia

    2016-10-01

    Porous multiphase scaffolds have been proposed in different tissue engineering applications because of their potential to artificially recreate the heterogeneous structure of hierarchically complex tissues. Recently, graded scaffolds have been also realized, offering a continuum at the interface among different phases for an enhanced structural stability of the scaffold. However, their internal architecture is often obtained empirically and the architectural parameters rarely predetermined. The aim of this work is to offer a theoretical model as tool for the design and fabrication of functional and structural complex graded scaffolds with predicted morphological and chemical features, to overcome the time-consuming trial and error experimental method. This developed mathematical model uses laws of motions, Stokes equations, and viscosity laws to describe the dependence between centrifugation speed and fiber/particles sedimentation velocity over time, which finally affects the fiber packing, and thus the total porosity of the 3D scaffolds. The efficacy of the theoretical model was tested by realizing engineered graded grafts for osteochondral tissue engineering applications. The procedure, based on combined centrifugation and freeze-drying technique, was applied on both polycaprolactone (PCL) and collagen-type-I (COL) to test the versatility of the entire process. A functional gradient was combined to the morphological one by adding hydroxyapatite (HA) powders, to mimic the bone mineral phase. Results show that 3D bioactive morphologically and chemically graded grafts can be properly designed and realized in agreement with the theoretical model. Biotechnol. Bioeng. 2016;113: 2286-2297. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Influences of image resolution on herbaceous root morphological parameters

    Directory of Open Access Journals (Sweden)

    ZHANG Zeyou

    2014-06-01

    Full Text Available Root images of four herbaceous species (including Plantago virginica,Solidago canadensis,Conyza canadensis and Erigeron philadelphicus were obtained by using EPSON V7000 scanner with different resolutions.Root morphological parameters including root length,diameter,volume and area were determined by using a WinRhizo root analyzing software.The results show a distinct influence of image resolution on root morphological parameter.For different herbaceous species,the optimal resolutions of root images,which would produce an acceptable precision with relative short time,vary with different species.For example,a resolution of 200 dpi was recommended for the root images of Plantago virginica and S.Canadensis, while 400 dpi for Conyza canadensis and Erigeron philadelphicus.

  13. Tracheal CT morphology: correlation with distribution and extent of thoracic adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Ap Dafydd, Derfel [Imperial College Healthcare NHS Trust, Department of Radiology, Charing Cross Hospital, London (United Kingdom); Desai, Sujal R. [King' s College Hospital NHS Foundation Trust, King' s College London, King' s Health Partners, London (United Kingdom); Gordon, Fabiana; Copley, Susan J. [Imperial College, London (United Kingdom)

    2016-10-15

    To evaluate the relationship between adipose tissue measurements and anterior bowing of the posterior tracheal wall in a large nonselected group of patients undergoing CT pulmonary angiography (CTPA). Consecutive patients undergoing CTPA over a 4-month period were analyzed retrospectively. Using an adapted scoring system (posterior bowing, flattening, mild/moderate or severe anterior bowing of the posterior tracheal membrane), the axial morphology and cross-sectional area of the trachea at the narrowest point and 1 cm above the aortic arch were evaluated. Measurements of adipose tissue were taken (anterior mediastinal fat width, sagittal upper abdominal diameter and subcutaneous fat thickness at the level of the costophrenic angle). Relationships between tracheal morphology and measurements of adipose tissue were analyzed. 296 patients were included (120 males, 176 females, mean age 59 years, range 19-90). Severe anterior bowing of the posterior tracheal wall correlated with increasing sagittal upper abdominal diameter (p = 0.002). Mild/moderate and severe anterior bowing of the posterior tracheal wall correlated with increasing mediastinal fat width (p = 0.000 and p = 0.031, respectively). Tracheal cross-sectional area was inversely correlated with increasing subcutaneous fat thickness (p = 0.022). The findings demonstrate a statistically significant relationship between CT tracheal morphology and adipose tissue measurements in a large nonselected population. (orig.)

  14. Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner

    Science.gov (United States)

    Forney, Laura A.; Lenard, Natalie R.; Stewart, Laura K.

    2018-01-01

    Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD)-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE) containing quercetin on subcutaneous (inguinal, IWAT) vs. visceral (epididymal, EWAT) white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms. PMID:29562620

  15. Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner

    Directory of Open Access Journals (Sweden)

    Laura A. Forney

    2018-03-01

    Full Text Available Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE containing quercetin on subcutaneous (inguinal, IWAT vs. visceral (epididymal, EWAT white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms.

  16. Morphologic alterations in normal and neoplastic tissues following hyperthermia treatment

    International Nuclear Information System (INIS)

    Badylak, S.F.; Babbs, C.F.

    1984-01-01

    The sequential morphologic alterations in normal skeletal muscle in rats, Walker 256 tumors in rats, and transmissible venereal tumors (TVT) in dogs following microwave-induced hyperthermia (43 0 C and 45 0 for 20 minutes) were studied by light and electron microscopy. Normal muscle and Walker 256 tumors showed vascular damage at 5 minutes post-heating (PH), followed by suppuration and thrombosis at 6 and 48 hours PH, and by regeneration and repair at 7 days PH. Endothelial damage and parenchymal degeneration were present 5 minutes PH. Progressive ischemic injury occurred for at least 48 hours PH. Two hyperthermia treatments, separated by a 30 or 60 minute cooling interval, were applied to rats implanted with Walker 256 tumors. Increased selective heating of tumor tissue versus surrounding normal tissue, and increased intratumoral temperatures were found during the second hyperthermia treatment. Canine TVTs were resistant to hyperthermia damage. These results characterized the sequential morphologic alterations following hyperthermia treatment and showed that: 1) vascular damage contributed to the immediate and latent cytotoxic effects of hyperthermia, 2) selective heating occurred in the neoplastic tissue disrupted by prior heat treatment, and 3) not all neoplasms are responsive to hyperthermia treatment

  17. Biomechanical and morphological multi-parameter photoacoustic endoscope for identification of early esophageal disease

    Science.gov (United States)

    Jin, Dayang; Yang, Fen; Chen, Zhongjiang; Yang, Sihua; Xing, Da

    2017-09-01

    The combination of phase-sensitive photoacoustic (PA) imaging of tissue viscoelasticity with the esophagus-adaptive PA endoscope (PAE) technique allows the characterization of the biomechanical and morphological changes in the early stage of esophageal disease with high accuracy. In this system, the tissue biomechanics and morphology are obtained by detecting the PA phase and PA amplitude information, respectively. The PAE has a transverse resolution of approximately 37 μm and an outer diameter of 1.2 mm, which is suitable for detecting rabbit esophagus. Here, an in-situ biomechanical and morphological study of normal and diseased rabbit esophagus (tumors of esophagus and reflux esophagitis) was performed. The in-situ findings were highly consistent with those observed by histology. In summary, we demonstrated the potential application of PAE for early clinical detection of esophageal diseases.

  18. Morphological changes in paraurethral area after introduction of tissue engineering construct on the basis of adipose tissue stromal cells.

    Science.gov (United States)

    Makarov, A V; Arutyunyan, I V; Bol'shakova, G B; Volkov, A V; Gol'dshtein, D V

    2009-10-01

    We studied morphological changes in the paraurethral area of Wistar rats after introduction of tissue engineering constructs on the basis of multipotent mesenchymal stem cells and gelatin sponge. The tissue engineering construct containing autologous culture of the stromal fraction of the adipose tissue was most effective. After introduction of this construct we observed more rapid degradation of the construct matrix and more intensive formation of collagen fibers.

  19. A Novel Nonlinear Parameter Estimation Method of Soft Tissues

    Directory of Open Access Journals (Sweden)

    Qianqian Tong

    2017-12-01

    Full Text Available The elastic parameters of soft tissues are important for medical diagnosis and virtual surgery simulation. In this study, we propose a novel nonlinear parameter estimation method for soft tissues. Firstly, an in-house data acquisition platform was used to obtain external forces and their corresponding deformation values. To provide highly precise data for estimating nonlinear parameters, the measured forces were corrected using the constructed weighted combination forecasting model based on a support vector machine (WCFM_SVM. Secondly, a tetrahedral finite element parameter estimation model was established to describe the physical characteristics of soft tissues, using the substitution parameters of Young’s modulus and Poisson’s ratio to avoid solving complicated nonlinear problems. To improve the robustness of our model and avoid poor local minima, the initial parameters solved by a linear finite element model were introduced into the parameter estimation model. Finally, a self-adapting Levenberg–Marquardt (LM algorithm was presented, which is capable of adaptively adjusting iterative parameters to solve the established parameter estimation model. The maximum absolute error of our WCFM_SVM model was less than 0.03 Newton, resulting in more accurate forces in comparison with other correction models tested. The maximum absolute error between the calculated and measured nodal displacements was less than 1.5 mm, demonstrating that our nonlinear parameters are precise.

  20. URBAN MORPHOLOGY AND AIR QUALITY IN DENSE RESIDENTIAL ENVIRONMENTS: CORRELATIONS BETWEEN MORPHOLOGICAL PARAMETERS AND AIR POLLUTION AT STREET-LEVEL

    Directory of Open Access Journals (Sweden)

    PRIYANTHA EDUSSURIYA

    2014-02-01

    Full Text Available This study is the second part of the series that identifies whether site-specific urban morphological parameters are correlated with air quality. This study aims to identify the most important urban morphological parameters that affects air quality at street level that affect air quality in metropolis like Hong Kong through field measurements and statistical analyses. The study considers 20 urban residential areas in five major districts of Hong Kong and real-time street level air pollutant and microclimatic data are collected from these areas. 21 morphological variables are identified and calculated based on the geometry of the urban fabric. Using principal component analyses, it is shown that out of the many urban morphological factors, only five morphological variables (plan area density, occlusivity, aerodynamic roughness height, mean built volume, compactness factor and four land development factors (aspect ratio, distance between building, mean building height and standard deviation of building height correlate with particulate matter. Besides mineralisation factor, contiguity and canyon ratio marginally correlate with particulate matter. On the other hand, nine variables (plan area density, compactness factor, occlusivity, aerodynamic roughness height, average size of building volume, aspect ratio, distance between buildings, mean building height and standard deviations of building heights correlate with NOx. All others play insignificant roles in street-level pollution effect. Moreover statistical analyses show little correlation between CO and ozone with urban morphological parameters. It is also established that the key microclimatic variables that connects PM and NOx with the urban morphological factors are northerly wind, relative humidity and temperature, which in turn translates to affecting the street-level air pollution.

  1. Extracting morphologies from third harmonic generation images of structurally normal human brain tissue

    NARCIS (Netherlands)

    Zhang, Zhiqing; Kuzmin, Nikolay V.; Groot, Marie Louise; de Munck, Jan C.

    2017-01-01

    Motivation: The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering,

  2. Determination of crack morphology parameters from service failures for leak-rate analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Ghadiali, N.; Paul, D. [Battelle Memorial Institute, Columbus, OH (United States)] [and others

    1997-04-01

    In leak-rate analyses described in the literature, the crack morphology parameters are typically not well agreed upon by different investigators. This paper presents results on a review of crack morphology parameters determined from examination of service induced cracks. Service induced cracks were found to have a much more tortuous flow path than laboratory induced cracks due to crack branching associated with the service induced cracks. Several new parameters such as local and global surface roughnesses, as well as local and global number of turns were identified. The effect of each of these parameters are dependent on the crack-opening displacement. Additionally, the crack path is typically assumed to be straight through the pipe thickness, but the service data show that the flow path can be longer due to the crack following a fusion line, and/or the number of turns, where the number of turns in the past were included as a pressure drop term due to the turns, but not the longer flow path length. These parameters were statistically evaluated for fatigue cracks in air, corrosion-fatigue, IGSCC, and thermal fatigue cracks. A refined version of the SQUIRT leak-rate code was developed to account for these variables. Sample calculations are provided in this paper that show how the crack size can vary for a given leak rate and the statistical variation of the crack morphology parameters.

  3. Altered morphology of liver and pancreas tissues of offsprings of ...

    African Journals Online (AJOL)

    The relationship between consumption of charred meat, which is believed to be rich in nitrosamine by pregnant mothers and the adverse effects on the growth of their offsprings, alterations in morphology of tissues like liver and pancreas were studied. Meat was subjected to charcoal fire roasting without curing and was ...

  4. Suitable parameter choice on quantitative morphology of A549 cell in epithelial–mesenchymal transition

    Science.gov (United States)

    Ren, Zhou-Xin; Yu, Hai-Bin; Li, Jian-Sheng; Shen, Jun-Ling; Du, Wen-Sen

    2015-01-01

    Evaluation of morphological changes in cells is an integral part of study on epithelial to mesenchymal transition (EMT), however, only a few papers reported the changes in quantitative parameters and no article compared different parameters for demanding better parameters. In the study, the purpose was to investigate suitable parameters for quantitative evaluation of EMT morphological changes. A549 human lung adenocarcinoma cell line was selected for the study. Some cells were stimulated by transforming growth factor-β1 (TGF-β1) for EMT, and other cells were as control without TGF-β1 stimulation. Subsequently, cells were placed in phase contrast microscope and three arbitrary fields were captured and saved with a personal computer. Using the tools of Photoshop software, some cells in an image were selected, segmented out and exchanged into unique hue, and other part in the image was shifted into another unique hue. The cells were calculated with 29 morphological parameters by Image Pro Plus software. A parameter between cells with or without TGF-β1 stimulation was compared statistically and nine parameters were significantly different between them. Receiver operating characteristic curve (ROC curve) of a parameter was described with SPSS software and F-test was used to compare two areas under the curves (AUCs) in Excel. Among them, roundness and radius ratio were the most AUCs and were significant higher than the other parameters. The results provided a new method with quantitative assessment of cell morphology during EMT, and found out two parameters, roundness and radius ratio, as suitable for quantification. PMID:26182364

  5. Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue.

    Science.gov (United States)

    Ho, Chen-Ta; Lin, Ruei-Zeng; Chen, Rong-Jhe; Chin, Chung-Kuang; Gong, Song-En; Chang, Hwan-You; Peng, Hwei-Ling; Hsu, Long; Yew, Tri-Rung; Chang, Shau-Feng; Liu, Cheng-Hsien

    2013-09-21

    A lobule-mimetic cell-patterning technique for on-chip reconstruction of centimetre-scale liver tissue of heterogeneous hepatic and endothelial cells via an enhanced field-induced dielectrophoresis (DEP) trap is demonstrated and reported. By mimicking the basic morphology of liver tissue, the classic hepatic lobule, the lobule-mimetic-stellate-electrodes array was designed for cell patterning. Through DEP manipulation, well-defined and enhanced spatial electric field gradients were created for in-parallel manipulation of massive individual cells. With this liver-cell patterning labchip design, the original randomly distributed hepatic and endothelial cells inside the microfluidic chamber can be manipulated separately and aligned into the desired pattern that mimicks the morphology of liver lobule tissue. Experimental results showed that both hepatic and endothelial cells were orderly guided, snared, and aligned along the field-induced orientation to form the lobule-mimetic pattern. About 95% cell viability of hepatic and endothelial cells was also observed after cell-patterning demonstration via a fluorescent assay technique. The liver function of CYP450-1A1 enzyme activity showed an 80% enhancement for our engineered liver tissue (HepG2+HUVECs) compared to the non-patterned pure HepG2 for two-day culturing.

  6. Comparison of regional pancreatic tissue fluid pressure and endoscopic retrograde pancreatographic morphology in chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P

    1990-01-01

    The relation between pancreatic tissue fluid pressure measured by the needle method and pancreatic duct morphology was studied in 16 patients with chronic pancreatitis. After preoperative endoscopic retrograde pancreatography (ERP) the patients were submitted to a drainage operation. The predrain......The relation between pancreatic tissue fluid pressure measured by the needle method and pancreatic duct morphology was studied in 16 patients with chronic pancreatitis. After preoperative endoscopic retrograde pancreatography (ERP) the patients were submitted to a drainage operation...

  7. Morphology of the Interstitial Tissue of Active and Resting Testis of the Guinea Fowl

    OpenAIRE

    Dharani, Palanisamy; Kumary, S. Usha; Sundaram, Venkatesan; Joseph, Cecilia; Ramesh, Geetha

    2017-01-01

    SUMMARY: The morphology of the interstitial tissue of sexually active and resting testis of the guinea fowl were studied. Six adult health birds of active and resting phases of reproductive cycle were used for this study. The interstitial tissue consisted of loose connective tissue, interstitial cells (Leydig cells), few connective cells, blood vessels and adrenergic nerve fibres in the present study in both active and resting testes. The interstitial tissue was compact in sexually active tes...

  8. MR imaging of experimental subdural bleeding. Correlates of brain deformation and tissue water content, and changes in vital physiological parameters

    International Nuclear Information System (INIS)

    Orlin, J.R.; Thuomas, K.Aa.; Ponten, U.; Bergstroem, K.; Zwetnow, N.N.

    1997-01-01

    Purpose: To evaluate morphological and physiological changes during acute lethal subdural bleeding in 2 models of anaesthetized dogs. Material and Methods: In model I, blood from the aorta was led into a collapsed subdural rubber balloon while in model II, the blood was directed into the subdural compartment over the left cerebral frontoparietal lobe. Eight vital physiological parameters were continuously registered. MR imaging visualized the compression and displacement of cerebral tissue, and assessed the dynamic changes in cerebral tissue water. Results: In model I, tissue herniation and compression of cerebral ventricles led to death at a haematoma volume corresponding to 8% of the intracranial volume. In model II, the extravasated blood progressed infratentorially and into the spinal sac with a volume that was 3 times larger than that of the lethal haematoma. Tissue water increased almost linearly during bleeding in both models. (orig.)

  9. Morphology and parameters of crystallization the blend PE/Epoxy/PE-co-PEG

    International Nuclear Information System (INIS)

    Becker, Daniela; Coelho, Luiz Antonio Ferreira; Nack, Fernanda; Silva, Bruna Louise

    2014-01-01

    This study aims to evaluate the morphology and crystallization parameters of high density polyethylene (HDPE) with different concentrations of epoxy (DGEBA / OTBG), and the compatibility of this system was used and the copolymer polyethylene-block-poly (ethylene glycol) (PEG-co-PE). The blends were obtained by mechanical mixing on a torque rheometer (Haake). Determined the crystallization parameters of the test matrix differential scanning calorimetry (DSC) and by X-ray diffraction (XRD). The morphology of the system was analyzed by transmission electron microscopy (TEM). It was observed by XRD analysis that the addition of compatibilizer and epoxy resins do not interfere with the crystal structure of HDPE, indicating that the increase in crystallinity associated with the crystallization kinetics. It was observed that the compatibilizing helped the adhesion, reducing the size of the dispersed phase becomes a more stable morphology and obtaining a distribution of the dispersed epoxy phase. (author)

  10. Morphological abnormalities and apoptosis in lamellar tissue of equines after intestinal obstruction and treatment with hydrocortisone

    Directory of Open Access Journals (Sweden)

    L.M Laskoski

    2010-12-01

    Full Text Available Four experimental groups of equines were used in order to study morphological abnormalities and apoptosis in lamellar tissue. Group Cg (control was composed of animals without any surgical procedure; group Ig (instrumented, animals that underwent enterotomy; group Tg (treated, animals that were subjected to intestinal obstruction and were treated with hydrocortisone; and group Ug (untreated, animals that were subjected to intestinal obstruction without treatment. The lamellar tissue was analyzed regarding the presence of tissue abnormalities and apoptosis. No morphological abnormalities were observed in animals of surgical groups, and no difference in apoptosis was observed between groups. It was concluded that intestinal obstruction allowed laminitis to develop, probably by systemic activation, and that the maneuvers performed in the enterotomy aggravated the process. Hydrocortisone did not aggravate the lesions of the lamellar tissue

  11. Engineering Parameters in Bioreactor's Design: A Critical Aspect in Tissue Engineering

    Science.gov (United States)

    Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors. PMID:24000327

  12. Engineering parameters in bioreactor's design: a critical aspect in tissue engineering.

    Science.gov (United States)

    Salehi-Nik, Nasim; Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Anisi, Fatemeh; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.

  13. Automatic estimation of elasticity parameters in breast tissue

    Science.gov (United States)

    Skerl, Katrin; Cochran, Sandy; Evans, Andrew

    2014-03-01

    Shear wave elastography (SWE), a novel ultrasound imaging technique, can provide unique information about cancerous tissue. To estimate elasticity parameters, a region of interest (ROI) is manually positioned over the stiffest part of the shear wave image (SWI). The aim of this work is to estimate the elasticity parameters i.e. mean elasticity, maximal elasticity and standard deviation, fully automatically. Ultrasonic SWI of a breast elastography phantom and breast tissue in vivo were acquired using the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France). First, the SWI within the ultrasonic B-mode image was detected using MATLAB then the elasticity values were extracted. The ROI was automatically positioned over the stiffest part of the SWI and the elasticity parameters were calculated. Finally all values were saved in a spreadsheet which also contains the patient's study ID. This spreadsheet is easily available for physicians and clinical staff for further evaluation and so increase efficiency. Therewith the efficiency is increased. This algorithm simplifies the handling, especially for the performance and evaluation of clinical trials. The SWE processing method allows physicians easy access to the elasticity parameters of the examinations from their own and other institutions. This reduces clinical time and effort and simplifies evaluation of data in clinical trials. Furthermore, reproducibility will be improved.

  14. A primer of statistical methods for correlating parameters and properties of electrospun poly(l -lactide) scaffolds for tissue engineering-PART 1: Design of experiments

    KAUST Repository

    Seyedmahmoud, Rasoul

    2014-03-20

    Tissue engineering scaffolds produced by electrospinning are of enormous interest, but still lack a true understanding about the fundamental connection between the outstanding functional properties, the architecture, the mechanical properties, and the process parameters. Fragmentary results from several parametric studies only render some partial insights that are hard to compare and generally miss the role of parameters interactions. To bridge this gap, this article (Part-1 of 2) features a case study on poly-l-lactide scaffolds to demonstrate how statistical methods such as design of experiments can quantitatively identify the correlations existing between key scaffold properties and control parameters, in a systematic, consistent, and comprehensive manner disentangling main effects from interactions. The morphological properties (i.e., fiber distribution and porosity) and mechanical properties (Young\\'s modulus) are "charted" as a function of molecular weight (MW) and other electrospinning process parameters (the Xs), considering the single effect as well as interactions between Xs. For the first time, the major role of the MW emerges clearly in controlling all scaffold properties. The correlation between mechanical and morphological properties is also addressed.

  15. Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation

    Directory of Open Access Journals (Sweden)

    Richard eBeare

    2016-03-01

    Full Text Available Measuring the distribution of brain tissue types (tissue classification in neonates is necessary for studying typical and atypical brain development, such as that associated with preterm birth, and may provide biomarkers for neurodevelopmental outcomes. Compared with magnetic resonance images of adults, neonatal images present specific challenges that require the development of specialized, population-specific methods. This paper introduces MANTiS (Morphologically Adaptive Neonatal Tissue Segmentation, which extends the unified segmentation approach to tissue classification implemented in Statistical Parametric Mapping (SPM software to neonates. MANTiS utilizes a combination of unified segmentation, template adaptation via morphological segmentation tools and topological filtering, to segment the neonatal brain into eight tissue classes: cortical gray matter, white matter, deep nuclear gray matter, cerebellum, brainstem, cerebrospinal fluid (CSF, hippocampus and amygdala. We evaluated the performance of MANTiS using two independent datasets. The first dataset, provided by the NeoBrainS12 challenge, consisted of coronal T2-weighted images of preterm infants (born ≤30 weeks’ gestation acquired at 30 weeks’ corrected gestational age (n= 5, coronal T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5 and axial T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5. The second dataset, provided by the Washington University NeuroDevelopmental Research (WUNDeR group, consisted of T2-weighted images of preterm infants (born <30 weeks’ gestation acquired shortly after birth (n= 12, preterm infants acquired at term-equivalent age (n= 12, and healthy term-born infants (born ≥38 weeks’ gestation acquired within the first nine days of life (n= 12. For the NeoBrainS12 dataset, mean Dice scores comparing MANTiS with manual segmentations were all above 0.7, except for

  16. A morphological study of bronchi and lung tissues in long-term survived dogs

    OpenAIRE

    松本, 伸

    1984-01-01

    Morphological changes of the bronchus and lung tissue of ten adult dogs were examined at various intervals after sleeve resection of the left upper lobe was performed in combination with bronchoplasty and pulmonary artery angioplasty. Postoperative changes in the bronchus and pulmonary artery were investigated by bronchoscopy and pulmonary angiography 8 months to 14 months after the operation. The dogs were sacrificed 9 months to 32 months after the operation, and the bronchus and lung tissue...

  17. Tracking mechanical and morphological dynamics of regenerating Hydra tissue fragments using a two fingered micro-robotic hand

    Science.gov (United States)

    Veschgini, M.; Gebert, F.; Khangai, N.; Ito, H.; Suzuki, R.; Holstein, T. W.; Mae, Y.; Arai, T.; Tanaka, M.

    2016-03-01

    Regeneration of a tissue fragment of freshwater polyp Hydra is accompanied by significant morphological fluctuations, suggesting the generation of active forces. In this study, we utilized a two fingered micro-robotic hand to gain insights into the mechanics of regenerating tissues. Taking advantage of a high force sensitivity (˜1 nN) of our micro-hand, we non-invasively acquired the bulk elastic modulus of tissues by keeping the strain levels low (ɛ < 0.15). Moreover, by keeping the strain at a constant level, we monitored the stress relaxation of the Hydra tissue and determined both viscous modulus and elastic modulus simultaneously, following a simple Maxwell model. We further investigated the correlation between the frequency of force fluctuation and that of morphological fluctuation by monitoring one "tweezed" tissue and the other "intact" tissue at the same time. The obtained results clearly indicated that the magnitude and periodicity of the changes in force and shape are directly correlated, confirming that our two fingered micro-hand can precisely quantify the mechanics of soft, dynamic tissue during the regeneration and development in a non-invasive manner.

  18. Application of morphological and physiological parameters representative of a sample Brazilian population in the human respiratory tract model

    International Nuclear Information System (INIS)

    Reis, A.A.; Cardoso, J.C.S.; Lourenco, M.C.

    2005-01-01

    Full text: The Human Respiratory Tract Model (HRTM) proposed in ICRP Publication 66 account for the morphology and physiology of the respiratory tract. The characteristics of air drawn into the lungs and exhaled are greatly influenced by the morphology of the respiratory tract, which causes numerous changes in pressure, flow rate, direction and humidity as air moves into and out of the lungs. These changing characteristics can influence the rates and the sites of deposition. Concerning the respiratory physiological parameters the breathing characteristics influence the volume, the inhalation rate of air and the portion that enters through the nose and the mouth. These characteristics are important to determine the fractional deposition. The HRTM model uses morphological and physiological parameters from the Caucasian man to establish deposition fractions in the respiratory tract regions. lt is known that the morphology and physiology are influenced by environmental, occupational and economic conditions. The ICRP recommends for a reliable evaluation of the regional deposition the use of parameters from a local population when information is available. The main purpose of this study is to verify the influence in using the morphology and physiology parameters representative of a sample of the Brazilian population on the deposition model of ICRP Publication 66. The morphological and physiological data were obtained from the literature. The software EXCEL for Windows (version 2000) was used in order to implement the deposition model and also to allow the changes in parameters of interest. Initially, the implemented model was checked using the parameters defined in ICRP and the results of the fraction deposition in the respiratory tract compartments were compared. Finally, morphological and physiological parameters from Brazilian adult male were applied and the fractional deposition calculated. The respiratory values at different levels of activity for ages varying from

  19. Significance of combined nutritional and morphological precaecal parameters for feed evaluations in non-ruminants

    NARCIS (Netherlands)

    Leeuwen, van P.

    2002-01-01

    In this thesis the hypothesis is tested that the nutritional evaluation of dietary formulations in non-ruminants requires both functional-nutritional and functional-morphological parameters. The functional-nutritional parameters provide data on the outcome of the

  20. Material parameter identification and inverse problems in soft tissue biomechanics

    CERN Document Server

    Evans, Sam

    2017-01-01

    The articles in this book review hybrid experimental-computational methods applied to soft tissues which have been developed by worldwide specialists in the field. People developing computational models of soft tissues and organs will find solutions for calibrating the material parameters of their models; people performing tests on soft tissues will learn what to extract from the data and how to use these data for their models and people worried about the complexity of the biomechanical behavior of soft tissues will find relevant approaches to address this complexity.

  1. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue.

    Science.gov (United States)

    Cooper, Colin S; Eeles, Rosalind; Wedge, David C; Van Loo, Peter; Gundem, Gunes; Alexandrov, Ludmil B; Kremeyer, Barbara; Butler, Adam; Lynch, Andrew G; Camacho, Niedzica; Massie, Charlie E; Kay, Jonathan; Luxton, Hayley J; Edwards, Sandra; Kote-Jarai, ZSofia; Dennis, Nening; Merson, Sue; Leongamornlert, Daniel; Zamora, Jorge; Corbishley, Cathy; Thomas, Sarah; Nik-Zainal, Serena; O'Meara, Sarah; Matthews, Lucy; Clark, Jeremy; Hurst, Rachel; Mithen, Richard; Bristow, Robert G; Boutros, Paul C; Fraser, Michael; Cooke, Susanna; Raine, Keiran; Jones, David; Menzies, Andrew; Stebbings, Lucy; Hinton, Jon; Teague, Jon; McLaren, Stuart; Mudie, Laura; Hardy, Claire; Anderson, Elizabeth; Joseph, Olivia; Goody, Victoria; Robinson, Ben; Maddison, Mark; Gamble, Stephen; Greenman, Christopher; Berney, Dan; Hazell, Steven; Livni, Naomi; Fisher, Cyril; Ogden, Christopher; Kumar, Pardeep; Thompson, Alan; Woodhouse, Christopher; Nicol, David; Mayer, Erik; Dudderidge, Tim; Shah, Nimish C; Gnanapragasam, Vincent; Voet, Thierry; Campbell, Peter; Futreal, Andrew; Easton, Douglas; Warren, Anne Y; Foster, Christopher S; Stratton, Michael R; Whitaker, Hayley C; McDermott, Ultan; Brewer, Daniel S; Neal, David E

    2015-04-01

    Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases.

  2. Biochemical and morphological changes in rat lung tissue under the influence of external ionizing radiation

    International Nuclear Information System (INIS)

    Uzlenkova, N.Je.; Mamotyuk, Je.M.; Gusakova, V.A.; Kononenko, O.K.

    2006-01-01

    Single external x-ray exposure at minimum and mean lethal doses was established to cause a long activation of biochemical processes in the connective tissue of the rat lungs. Morphological and ultrastructure changes in the tissue of the lungs at early terms after x-ray and gamma-radiation exposure were due to development of destructive and degenerative reactions. The long-term changes were characterized by growth of connective tissue and formation of areas of fibrous changes in the structure of the lungs

  3. Engineering Parameters in Bioreactor’s Design: A Critical Aspect in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Nasim Salehi-Nik

    2013-01-01

    Full Text Available Bioreactors are important inevitable part of any tissue engineering (TE strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.

  4. Characterization of Some Morphological Parameters of Orbicularis Oculi Motor Neurons in the Monkey

    OpenAIRE

    McNeal, DW; Ge, J; Herrick, JL; Stilwell-Morecraft, KS; Morecraft, RJ

    2007-01-01

    The primate facial nucleus is a prominent brainstem structure that is composed of cell bodies giving rise to axons forming the facial nerve. It is musculotopically organized, but we know little about the morphological features of its motor neurons. Using the Lucifer yellow intracellular filling method, we examined 17 morphological parameters of motor neurons innervating the monkey orbicularis oculi (OO) muscle, which plays an important role in eye lid closure and voluntary and emotional facia...

  5. Hemodynamic parameters change earlier than tissue oxygen tension in hemorrhage.

    Science.gov (United States)

    Pestel, Gunther J; Fukui, Kimiko; Kimberger, Oliver; Hager, Helmut; Kurz, Andrea; Hiltebrand, Luzius B

    2010-05-15

    Untreated hypovolemia results in impaired outcome. This study tests our hypothesis whether general hemodynamic parameters detect acute blood loss earlier than monitoring parameters of regional tissue beds. Eight pigs (23-25 kg) were anesthetized and mechanically ventilated. A pulmonary artery catheter and an arterial catheter were inserted. Tissue oxygen tension was measured with Clark-type electrodes in the jejunal and colonic wall, in the liver, and subcutaneously. Jejunal microcirculation was assessed by laser Doppler flowmetry (LDF). Intravascular volume was optimized using difference in pulse pressure (dPP) to keep dPP below 13%. Sixty minutes after preparation, baseline measurements were taken. At first, 5% of total blood volume was withdrawn, followed by another 5% increment, and then in 10% increments until death. After withdrawal of 5% of estimated blood volume, dPP increased from 6.1% +/- 3.0% to 20.8% +/- 2.7% (P < 0.01). Mean arterial pressure (MAP), mean pulmonary artery pressure (PAP) and pulmonary artery occlusion pressure (PAOP) decreased with a blood loss of 10% (P < 0.01). Cardiac output (CO) changed after a blood loss of 20% (P < 0.05). Tissue oxygen tension in central organs, and blood flow in the jejunal muscularis decreased (P < 0.05) after a blood loss of 20%. Tissue oxygen tension in the skin, and jejunal mucosa blood flow decreased (P < 0.05) after a blood loss of 40% and 50%, respectively. In this hemorrhagic pig model systemic hemodynamic parameters were more sensitive to detect acute hypovolemia than tissue oxygen tension measurements or jejunal LDF measurements. Acute blood loss was detected first by dPP. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  6. A primer of statistical methods for correlating parameters and properties of electrospun poly(L-lactide) scaffolds for tissue engineering--PART 1: design of experiments.

    Science.gov (United States)

    Seyedmahmoud, Rasoul; Rainer, Alberto; Mozetic, Pamela; Maria Giannitelli, Sara; Trombetta, Marcella; Traversa, Enrico; Licoccia, Silvia; Rinaldi, Antonio

    2015-01-01

    Tissue engineering scaffolds produced by electrospinning are of enormous interest, but still lack a true understanding about the fundamental connection between the outstanding functional properties, the architecture, the mechanical properties, and the process parameters. Fragmentary results from several parametric studies only render some partial insights that are hard to compare and generally miss the role of parameters interactions. To bridge this gap, this article (Part-1 of 2) features a case study on poly-L-lactide scaffolds to demonstrate how statistical methods such as design of experiments can quantitatively identify the correlations existing between key scaffold properties and control parameters, in a systematic, consistent, and comprehensive manner disentangling main effects from interactions. The morphological properties (i.e., fiber distribution and porosity) and mechanical properties (Young's modulus) are "charted" as a function of molecular weight (MW) and other electrospinning process parameters (the Xs), considering the single effect as well as interactions between Xs. For the first time, the major role of the MW emerges clearly in controlling all scaffold properties. The correlation between mechanical and morphological properties is also addressed. © 2014 Wiley Periodicals, Inc.

  7. An improved parameter estimation and comparison for soft tissue constitutive models containing an exponential function.

    Science.gov (United States)

    Aggarwal, Ankush

    2017-08-01

    Motivated by the well-known result that stiffness of soft tissue is proportional to the stress, many of the constitutive laws for soft tissues contain an exponential function. In this work, we analyze properties of the exponential function and how it affects the estimation and comparison of elastic parameters for soft tissues. In particular, we find that as a consequence of the exponential function there are lines of high covariance in the elastic parameter space. As a result, one can have widely varying mechanical parameters defining the tissue stiffness but similar effective stress-strain responses. Drawing from elementary algebra, we propose simple changes in the norm and the parameter space, which significantly improve the convergence of parameter estimation and robustness in the presence of noise. More importantly, we demonstrate that these changes improve the conditioning of the problem and provide a more robust solution in the case of heterogeneous material by reducing the chances of getting trapped in a local minima. Based upon the new insight, we also propose a transformed parameter space which will allow for rational parameter comparison and avoid misleading conclusions regarding soft tissue mechanics.

  8. Pathologic evaluation of normal and perfused term placental tissue

    DEFF Research Database (Denmark)

    Maroun, Lisa Leth; Mathiesen, Line; Hedegaard, Morten

    2014-01-01

    This study reports for the 1st time the incidence and interobserver variation of morphologic findings in a series of 34 term placentas from pregnancies with normal outcome used for perfusion studies. Histologic evaluation of placental tissue is challenging, especially when it comes to defining...... "normal tissue" versus "pathologic lesions." A scoring system for registration of abnormal morphologic findings was developed. Light microscopic examination was performed independently by 2 pathologists, and interobserver variation was analyzed. Findings in normal and perfused tissue were compared...... and selected findings were tested against success parameters from the perfusions. Finally, the criteria for frequent lesions with fair to poor interobserver variation in the nonperfused tissue were revised and reanalyzed. In the perfused tissue, the perfusion artefact "trophoblastic vacuolization," which...

  9. Influence of deposition parameters on morphological properties of biomedical calcium phosphate coatings prepared using electrostatic spray deposition

    International Nuclear Information System (INIS)

    Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Schoonman, J.; Jansen, J.A.

    2005-01-01

    In order to deposit biomedical calcium phosphate (CaP) coatings with a defined surface morphology, the electrostatic spray deposition (ESD) technique was used since this technique offers the possibility to deposit ceramic coatings with a variety of surface morphologies. A scanning electron microscopical study was performed in order to investigate the influence of several deposition parameters on the final morphology of the deposited coatings. The chemical characteristics of the coatings were studied by means of X-ray diffraction and Fourier-transform infrared spectroscopy. Regarding the chemical coating properties, the results showed that the coatings can be described as crystalline carbonate apatite coatings, a crystal phase which is similar to the mineral phase of bone and teeth. The morphology of CaP coatings, deposited using the ESD technique, was strongly dependent on the deposition parameters. By changing the nozzle-to-substrate distance, the precursor liquid flow rate and the deposition temperature, coating morphologies were deposited, which varied from dense to highly porous, reticular morphologies. The formation of various morphologies was the result of an equilibrium between the relative rates of CaP solute precipitation/reaction, solvent evaporation and droplet spreading onto the substrate surface

  10. A principle for the noninvasive measurement of steady-state heat transfer parameters in living tissues

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2014-01-01

    Full Text Available Measuring the parameters of biological tissues (include in vivo is of great importance for medical diagnostics. For example, the value of the blood perfusion parameter is associated with the state of the blood microcirculation system and its functioning affects the state of the tissues of almost all organs. This work describes a previously proposed principle [1] in generalized terms. The principle is intended for noninvasive measuring the parameters of stationary heat transfer in biological tissues. The results of some experiments (natural and numeric are also presented in the research.For noninvasive measurement of thermophysical parameters a number of techniques have been developed using non-stationary thermal process in biological tissue [2][3]. But these techniques require the collecting a lot of data to represent the time-dependent thermal signal. In addition, subsequent processing with specialized algorithms is required for optimal selecting the parameters. The goal of this research is to develop an alternative approach using stationary thermal process for non-invasive measuring the parameters of stationary heat transfer in living tissues.A general principle can be formulated for the measurement methods based on this approach. Namely, the variations (changes of two physical values are measured in the experiment at the transition from one thermal stationary state to another. One of these two physical values unambiguously determines the stationary thermal field into the biological tissue under specified experimental conditions while the other one is unambiguously determined through the thermal field. Then, the parameters can be found from the numerical (or analytical functional dependencies linking the measured variations because the dependencies contain unknown parameters.The dependencies are expressed in terms of the formula:dqi = fi({pj},Ui dUi,Here dqi is a variation of a physical value q which is unambiguously determined from the

  11. [Planning of esthetic oral rehabilitation according to correlative analysis of clinical and morphological features of the marginal gingiva].

    Science.gov (United States)

    Stafeev, A A; Zinov'ev, G I; Drozdov, D D

    2015-01-01

    The orthopedic restoration and related to its clinical stages (preparation, gingival retraction, impression) is often associated with complications which arise from the marginal gingiva. The technology of indirect ceramic restoration requires an assessment of the clinical and morphological parameters of periodontal tissues. The study outlines correlation between the type of periodontal histhology and inflammatory and degenerative complications that has been established after the analysis of morphofunctional state of periodontal tissue. Results of clinical studies and correlation analysis of clinical and morphological parameters of marginal gingiva has shown that important parameter influencing the choice of manufacturing technology are the position of restoration margin relatively to marginal gingiva and periodontal morphotype.

  12. Polyurethane/fluor-hydroxyapatite nanocomposite scaffolds for bone tissue engineering. Part I: morphological, physical, and mechanical characterization

    Science.gov (United States)

    Asefnejad, Azadeh; Behnamghader, Aliasghar; Khorasani, Mohammad Taghi; Farsadzadeh, Babak

    2011-01-01

    In this study, new nano-fluor-hydroxyapatite (nFHA)/polyurethane composite scaffolds were fabricated for potential use in bone tissue engineering. Polyester urethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and 1,4-butanediol as chain extender. Nano fluor-hydroxyapatite (nFHA) was successfully synthesized by sol-gel method. The solid–liquid phase separation and solvent sublimation methods were used for preparation of the porous composites. Mechanical properties, chemical structure, and morphological characteristics of the samples were investigated by compressive test, Fourier transform infrared, and scanning electron microscopy (SEM) techniques, respectively. The effect of nFHA powder content on porosity and pore morphology was investigated. SEM images demonstrated that the scaffolds were constituted of interconnected and homogeneously distributed pores. The pore size of the scaffolds was in the range 50–250 μm. The result obtained in this research revealed that the porosity and pore average size decreased and compressive modulus increased with nFHA percentage. Considering morphological, physical, and mechanical properties, the scaffold with a higher ratio of nFHA has suitable potential use in tissue regeneration. PMID:21289986

  13. Application of the physiological and morphological parameters of the brazilian population sample to the mathematical model of the human respiratory tract

    International Nuclear Information System (INIS)

    Reis, Arlene Alves dos

    2005-01-01

    The Human Respiratory Tract Model proposed by the ICRP Publication 66 accounts for the morphology and physiology of the respiratory tract. The characteristics of air drawn into the lungs and exhaled are greatly influenced by the morphology of the respiratory tract, which causes numerous changes in pressure, flow rate, direction and humidity as air moves into and out of the lungs. Concerning the respiratory physiological parameters the breathing characteristics influence the volume, the inhalation rate of air and the portion that enters through the nose and the mouth. These characteristics are important to determine the fractional deposition. The model uses morphological and physiological parameters from the Caucasian man to establish deposition fractions in the respiratory tract regions. It is known that the morphology and physiology are influenced by environmental, occupational and economic conditions. The ICRP recommends, for a reliable evaluation of the regional deposition, the use of parameters from a local population when information is available. The main purpose of this study is to verify the influence in using the morphology and physiology parameters representative of a sample of the Brazilian population on the deposition model of the ICRP Publication 66. The morphological and physiological data were obtained from the literature. The software EXCEL for Windows (version 2000) was used in order to implement the deposition model and also to allow the changes in parameters of interest. Initially, the implemented model was checked using the parameters defined by the ICRP and the results of the fraction deposition in the respiratory tract compartments were compared. Finally, morphological and physiological parameters from Brazilian adult male were applied and the fractional deposition calculated. The results suggest a significant variation in fractional deposition when Brazilian parameters are applied in the model. (author)

  14. Comparison of different morphological parameters with duration of obstruction created experimentally in unilateral upper ureters: an animal model.

    Science.gov (United States)

    Panda, Shasanka Shekhar; Bajpai, Minu; Mallick, Saumyaranjan; Sharma, Mehar C

    2014-01-01

    The objective of the following study is to determine and to compare the different morphological parameters with duration of obstruction created experimentally in unilateral upper ureters of rats. Unilateral upper ureteric obstruction was created in 60 adult Wistar rats that were reversed after predetermined intervals. Rats were sacrificed and ipsilateral kidneys were subjected for analysis of morphological parameters such as renal height, cranio-caudal diameter, antero-posterior diameter, lateral diameter, volume of the pelvis and average cortical thickness: Renal height. Renal height and cranio-caudal diameter of renal pelvis after ipsilateral upper ureteric obstruction started rising as early as 7 days of creating obstruction and were affected earlier than antero-posterior and lateral diameter and also were reversed earlier than other parameters after reversal of obstruction. Renal cortical thickness and volume of the pelvis were affected after prolonged obstruction (> 3 weeks) and were the late parameters to be reversed after reversal of obstruction. Cranio-caudal diameter and renal height were the early morphological parameters to be affected and reversed after reversal of obstruction in experimentally created ipsilateral upper ureteric obstruction.

  15. Application of morphological and physiological parameters representative of a Brazilian population sample in the respiratory tract model

    International Nuclear Information System (INIS)

    Dos Reis, A. A.; Cardoso, J. C. S.; Lourenco, M. C.

    2007-01-01

    The human respiratory tract model (HRTM) adopted by ICRP in its Publication 66 accounts for the morphology and physiology of the respiratory tract. The characteristics of air drawn into the lungs and exhaled are greatly influenced by the morphology of the respiratory tract, which causes numerous changes in pressure, flow rate, direction and humidity as air moves into and out of the lungs. These characteristics are important to determine the fractional deposition. It is known that the morphology and physiology are influenced by environmental, occupational and economic conditions. The ICRP recommends, for a reliable evaluation of the regional deposition, the use of parameters from a local population wherever such information is available. The main purpose of this study is to verify the influence of using the morphology and physiology parameters representative of a sample of the Brazilian population on the deposition model of the ICRP Publication 66 model. (authors)

  16. The Role of Large-Format Histopathology in Assessing Subgross Morphological Prognostic Parameters: A Single Institution Report of 1000 Consecutive Breast Cancer Cases

    Directory of Open Access Journals (Sweden)

    Tibor Tot

    2012-01-01

    Full Text Available Breast cancer subgross morphological parameters (disease extent, lesion distribution, and tumor size provide significant prognostic information and guide therapeutic decisions. Modern multimodality radiological imaging can determine these parameters with increasing accuracy in most patients. Large-format histopathology preserves the spatial relationship of the tumor components and their relationship to the resection margins and has clear advantages over traditional routine pathology techniques. We report a series of 1000 consecutive breast cancer cases worked up with large-format histology with detailed radiological-pathological correlation. We confirmed that breast carcinomas often exhibit complex subgross morphology in both early and advanced stages. Half of the cases were extensive tumors and occupied a tissue space ≥40 mm in its largest dimension. Because both in situ and invasive tumor components may exhibit unifocal, multifocal, and diffuse lesion distribution, 17 different breast cancer growth patterns can be observed. Combining in situ and invasive tumor components, most cases fall into three aggregate growth patterns: unifocal (36%, multifocal (35%, and diffuse (28%. Large-format histology categories of tumor size and disease extent were concordant with radiological measurements in approximately 80% of the cases. Noncalcified, low-grade in situ foci, and invasive tumor foci <5 mm were the most frequent causes of discrepant findings.

  17. Search for morphological parameters influential for prediction of the mechanical characteristics of an austeno-ferritic duplex stainless steel

    International Nuclear Information System (INIS)

    Messiaen, L.

    1997-01-01

    Duplex stainless steels are commonly used (among others in nuclear industry) for their good properties. However these steels may 'age' in service condition at high temperatures. As their mechanical properties (Charpy impact toughness, resistance to ductile tearing) are often very scattered and tend to decrease after ageing, it has become essential to predict them with high precision. For this, we propose to explain a part of the scattering of the mechanical properties with measurable parameters in relation with the particularly complicated two-phase morphology. The two-phase and bi-percolated morphology of the ferrite and austenite phases is first characterised from the observation of 2D images and from the reconstitution of a 3D image. At the same time we precise the genesis of the formation's mechanisms of the structure (germination and growth of the austenitic phase in the solidified ferri tic one) in relation with the literature. The morphological characteristics so observed corresponding with classical notions of mathematical morphology, - size, covariance, connexity -, we use morphological operators to measure morphological variables by image analysis. We establish then a link between toughness and a parameter measuring fineness of the morphology. The lack of data for very aged steels prevent us from proposing a model of toughness which could take this parameter into consideration at these ageing states, for which it is properly the more crucial to obtain specially precise predictions. A mathematical mo del of the 3D structure of the steel is finally proposed. We choose an homogeneous Markov chain of 3D spatial processes, whose evolution in time mimes the solidification. The morphology of the microstructure is so summarised with 8 parameters. This model is liable to be coupled with a model of toughness, for which it would so enlarge the possibilities of prediction. It could also be used to simulate subsequently the damage and the rupture of two

  18. Systematic study of influence of growth parameters on island morphology during molecular beam epitaxy growth: A Monte Carlo study

    International Nuclear Information System (INIS)

    Shankar Prasad Shrestha; Park, C.-Y.

    2006-05-01

    We have made a systematic study of influence of diffusion flux ratio (D/F), diffusional anisotropy (DA) and sticking anisotropy (SA) on island morphology to show the influence of each growth parameter on island morphology in presence of the other growth parameters. Our results show that the influence of D/F ratio and DA on island morphology depends on the sticking anisotropy of the adatoms. At the intermediate anisotropic case, increase in D/F ratio results in transition of the island morphology from 1d nature to 2 d nature. In anisotropic diffusion case, D/F ratio can change the growth direction of the island morphology. We also find that only sticking anisotropy is not sufficient to produce elongated islands, low D/F ratio is also essential. (author)

  19. Morphological and Metabolic Parameters of Red Blood Cells after Their Treatment with Ozone

    Directory of Open Access Journals (Sweden)

    Anna V. Deryugina

    2018-01-01

    Full Text Available The purpose of the study was to assess the morphology of red blood cells (RBC and the association of morphological parameters with lipid peroxidation processes and the content of organic phosphates in RBC when treating packed red blood cells with the ozonized saline solution (with an ozone concentration of 2 mg/l after different storage periods.Materials and methods. The morphology of human RBC, the concentration of malonic dialdehyde (MDA in RBC, the catalase activity, the concentration of ATP and 2,3-diphosphoglycerate (2,3-DPG were studied before and after treatment of RBC with the ozonized saline (with the ozone concentration of 2 mg/l after 7, 14, 21 and 30 days of storage.Results. The effect of ozone (2 ng/l in vitro on the packed red blood cells after 7–21 days of storage contributed to the recovery of RBC shape, increased the concentration of ATP and 2,3-DPG, and optimized the lipid peroxidation. Ozone did not demonstrate a pronounced positive effect on these parameters when the packed RBCs were stored for 30 days.Conclusion. The treatment of the packed RBCs with the ozonized saline solution (with the ozone concentration of 2 mg/l contributed to the recovery of the discocyte count due to optimization of lipid peroxidation processes in cell membranes and enhanced the synthesis of organic phosphates in cells due to the activation of glycolysis and the pentose phosphate pathway. This can be used to improve the morphological and metabolic status of the packed RBCs before their transfusion. 

  20. Optimal parameters for laser tissue soldering

    Science.gov (United States)

    McNally-Heintzelman, Karen M.; Sorg, Brian S.; Chan, Eric K.; Welch, Ashley J.; Dawes, Judith M.; Owen, Earl R.

    1998-07-01

    Variations in laser irradiance, exposure time, solder composition, chromophore type and concentration have led to inconsistencies in published results of laser-solder repair of tissue. To determine optimal parameters for laser tissue soldering, an in vitro study was performed using an 808-nm diode laser in conjunction with an indocyanine green (ICG)- doped albumin protein solder to weld bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The effects of laser irradiance and exposure time on tensile strength of the weld and temperature rise as well as the effect of hydration on bond stability were investigated. Optimum irradiance and exposure times were identified for each solder type. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the weld. A reduction in dye concentration from 2.5 mg/ml to 0.25 mg/ml was also found to result in an increase in tensile strength. The strongest welds were produced with an irradiance of 6.4 W/cm2 for 50 s using a solid protein solder composed of 60% BSA and 0.25 mg/ml ICG. Steady-state solder surface temperatures were observed to reach 85 plus or minus 5 degrees Celsius with a temperature gradient across the solid protein solder strips of between 15 and 20 degrees Celsius. Finally, tensile strength was observed to decrease significantly (20 to 25%) after the first hour of hydration in phosphate-buffered saline. No appreciable change was observed in the strength of the tissue bonds with further hydration.

  1. Identifiability of altimetry-based rating curve parameters in function of river morphological parameters

    Science.gov (United States)

    Paris, Adrien; André Garambois, Pierre; Calmant, Stéphane; Paiva, Rodrigo; Walter, Collischonn; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Bonnet, Marie-Paule; Seyler, Frédérique; Monnier, Jérôme

    2016-04-01

    elevation Z0is systematically well identified with relative errors on the order of a few %. Eventually, these altimetry-based rating curves provide morphological parameters of river reaches that can be used as inputs into hydraulic models and a priori information that could be useful for SWOT inversion algorithms.

  2. Differences in morphological parameters of judo athletes of different age groups and performance level

    Directory of Open Access Journals (Sweden)

    Miloš Štefanovský

    2017-12-01

    Full Text Available Background: Some studies have pointed out the influence of morphological parameters on judo performance, however the relationship between morphological variables and performance status have not yet been confirmed. In addition, there is a lack of studies focused on morphological comparison of different age categories. Objective: The aim of this study was to assess differences in the morphological parameters of judo athletes of different age and performance level. Methods: The research sample was composed of 47 male judokas (age 19.15 ± 2.93 years; body weight 77.16 ± 11.39 kg; height 178.91 ± 6.39 cm; sport age 11.47 ± 2.74 years. It was divided by: (1 age, into cadets (15-17 years, n = 19, juniors (18-20 years, n = 15, and seniors (21+ years, n = 13 category and (2 performance status (elite, n = 10; non-elite, n = 37. In all participants, body fat, and the circumference measurement of wrist, forearm, flexed arm, and calf were observed. A personal interview was used to gain information about the athlete's performance status. Results: We found out that there are significant differences in arm circumference between cadets and seniors, cadets and juniors, juniors and seniors; and in the circumference of forearm between cadets and seniors; cadets and juniors, as well. According to the performance status, we have discovered significantly higher circumference of forearm and wrist in the elite group compared to the non-elite group. Conclusion: Forearm and wrist circumference is a reliable discriminative factor and should be taken into consideration, especially when selecting judo athletes into elite teams. However, we did not confirm that subcutaneous fat is a parameter able to distinguish between judo athletes of different performance status across various age categories.

  3. Comparison of different morphological parameters with duration of obstruction created experimentally in unilateral upper ureters: An animal model

    Directory of Open Access Journals (Sweden)

    Shasanka Shekhar Panda

    2014-01-01

    Full Text Available Background: The objective of the following study is to determine and to compare the different morphological parameters with duration of obstruction created experimentally in unilateral upper ureters of rats. Materials and Methods: Unilateral upper ureteric obstruction was created in 60 adult Wistar rats that were reversed after predetermined intervals. Rats were sacrificed and ipsilateral kidneys were subjected for analysis of morphological parameters such as renal height, cranio-caudal diameter, antero-posterior diameter, lateral diameter, volume of the pelvis and average cortical thickness: Renal height. Results: Renal height and cranio-caudal diameter of renal pelvis after ipsilateral upper ureteric obstruction started rising as early as 7 days of creating obstruction and were affected earlier than antero-posterior and lateral diameter and also were reversed earlier than other parameters after reversal of obstruction. Renal cortical thickness and volume of the pelvis were affected after prolonged obstruction (> 3 weeks and were the late parameters to be reversed after reversal of obstruction. Conclusions: Cranio-caudal diameter and renal height were the early morphological parameters to be affected and reversed after reversal of obstruction in experimentally created ipsilateral upper ureteric obstruction.

  4. Optimization of tissue physical parameters for accurate temperature estimation from finite-element simulation of radiofrequency ablation

    International Nuclear Information System (INIS)

    Subramanian, Swetha; Mast, T Douglas

    2015-01-01

    Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature. (note)

  5. Optimization of tissue physical parameters for accurate temperature estimation from finite-element simulation of radiofrequency ablation.

    Science.gov (United States)

    Subramanian, Swetha; Mast, T Douglas

    2015-10-07

    Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature.

  6. Leg tissue composition and physico-chemical parameters of sheep meat fed annatto coproduct

    Directory of Open Access Journals (Sweden)

    Dorgival Morais de Lima Júnior

    2017-10-01

    Full Text Available Our objective was to evaluate leg tissue composition and physico-chemical quality parameters of sheep meat fed with increasing levels of annatto coproduct. 32 male uncastrated animals without a defined breed were randomized in four treatments (0, 100, 200 and 300 g kg-1 of annatto coproduct in the DM diet. After 78 days of confinement, the animals were slaughtered and body components were recorded. Reconstituted leg weight, total muscle weight, biceps weight and semitendinosus weight showed a negative linear behavior (P 0.05 were found for leg tissue composition (%, muscle:bone ratio, relative fat or leg muscle. Meat physico-chemical parameters (color, shear force, water retention capacity and cooking losses were not affected by the inclusion of the annatto coproduct in the diet. The annatto coproduct can be included in up to 300 g kg-1 of dietary dry matter without negative effects to the leg tissue composition (% and physical parameters of confined sheep meat.

  7. Effect of short-term scrotal hyperthermia on spermatological parameters, testicular blood flow and gonadal tissue in dogs.

    Science.gov (United States)

    Henning, H; Masal, C; Herr, A; Wolf, K; Urhausen, C; Beineke, A; Beyerbach, M; Kramer, S; Günzel-Apel, A-R

    2014-02-01

    The objective was to assess the effect of a short-term scrotal hyperthermia in dogs on quantitative and qualitative ejaculate parameters, testicular blood flow and testicular and epididymal histology. After a control period, the scrotum of seven normospermic adult beagle dogs was insulated with a self-made suspensory for 48 h. Nine weeks later, two animals were castrated, while in five animals, scrotal hyperthermia was repeated. Dogs were castrated either 10 or 40 days thereafter. In each phase of scrotal insulation, average scrotal surface temperature increased by 3.0°C. Semen was collected twice weekly throughout the experiment. Total sperm count did not change after the first hyperthermia, but it slightly decreased after the second (p sperm morphology and velocity parameters (CASA) rather indicated subtle physiological variations in sperm quality than effects of a local heat stress. Chromatin stability of ejaculated spermatozoa as indicated by SCSA remained constant throughout the experiment. Perfusion characteristics of the gonads, that is, systolic peak velocity, pulsatility and resistance index at the marginal location of the testicular artery, did not change due to hyperthermia (p > 0.05). Histological examination of excised testes and epididymides for apoptotic (TUNEL and activated caspase-3) and proliferating cells (Ki-67 antigen) indicated only marginal effects of scrotal insulation on tissue morphology. In conclusion, a mild short-term scrotal hyperthermia in dogs does not cause substantial changes in sperm quantity and quality. In contrast to other species, canine testes and epididymides may have a higher competence to compensate such thermal stress. © 2013 Blackwell Verlag GmbH.

  8. Imaging the morphological change of tissue structure during the early phase of esophageal tumor progression using multiphoton microscopy

    Science.gov (United States)

    Xu, Jian; Kang, Deyong; Xu, Meifang; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2012-12-01

    Esophageal cancer is a common malignancy with a very poor prognosis. Successful strategies for primary prevention and early detection are critically needed to control this disease. Multiphoton microscopy (MPM) is becoming a novel optical tool of choice for imaging tissue architecture and cellular morphology by two-photon excited fluorescence. In this study, we used MPM to image microstructure of human normal esophagus, carcinoma in situ (CIS), and early invasive carcinoma in order to establish the morphological features to differentiate these tissues. The diagnostic features such as the appearance of cancerous cells, the significant loss of stroma, the absence of the basement membrane were extracted to distinguish between normal and cancerous esophagus tissue. These results correlated well with the paired histological findings. With the advancement of clinically miniaturized MPM and the multi-photon probe, combining MPM with standard endoscopy will therefore allow us to make a real-time in vivo diagnosis of early esophageal cancer at the cellular level.

  9. THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. IX. HORIZONTAL BRANCH MORPHOLOGY AND THE SECOND PARAMETER PHENOMENON

    International Nuclear Information System (INIS)

    Dotter, Aaron; Sarajedini, Ata; Anderson, Jay; Bedin, Luigi R.; Paust, Nathaniel; Reid, I. Neill; Aparicio, Antonio; MarIn-Franch, A.; Rosenberg, Alfred; Chaboyer, Brian; Majewski, Steven; Milone, Antonino; Piotto, Giampaolo; Siegel, Michael

    2010-01-01

    The horizontal branch (HB) morphology of globular clusters (GCs) is most strongly influenced by metallicity. The second parameter phenomenon, first described in the 1960s, acknowledges that metallicity alone is not enough to describe the HB morphology of all GCs. In particular, astronomers noticed that the outer Galactic halo contains GCs with redder HBs at a given metallicity than are found inside the solar circle. Thus, at least a second parameter was required to characterize HB morphology. While the term 'second parameter' has since come to be used in a broader context, its identity with respect to the original problem has not been conclusively determined. Here we analyze the median color difference between the HB and the red giant branch, hereafter denoted as Δ(V - I), measured from Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) photometry of 60 GCs within ∼20 kpc of the Galactic center. Analysis of this homogeneous data set reveals that, after the influence of metallicity has been removed from the data, the correlation between Δ(V - I) and age is stronger than that of any other parameter considered. Expanding the sample to include HST ACS and Wide Field Planetary Camera 2 photometry of the six most distant Galactic GCs lends additional support to the correlation between Δ(V - I) and age. This result is robust with respect to the adopted metallicity scale and the method of age determination, but must bear the caveat that high-quality, detailed abundance information is not available for a significant fraction of the sample. Furthermore, when a subset of GCs with similar metallicities and ages is considered, a correlation between Δ(V - I) and central luminosity density is exposed. With respect to the existence of GCs with anomalously red HBs at a given metallicity, we conclude that age is the second parameter and central density is most likely the third. Important problems related to HB morphology in GCs, notably multi-modal distributions

  10. Study on Material Parameters Identification of Brain Tissue Considering Uncertainty of Friction Coefficient

    Science.gov (United States)

    Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu; Zhu, Feng

    2017-10-01

    Accurate material parameters are critical to construct the high biofidelity finite element (FE) models. However, it is hard to obtain the brain tissue parameters accurately because of the effects of irregular geometry and uncertain boundary conditions. Considering the complexity of material test and the uncertainty of friction coefficient, a computational inverse method for viscoelastic material parameters identification of brain tissue is presented based on the interval analysis method. Firstly, the intervals are used to quantify the friction coefficient in the boundary condition. And then the inverse problem of material parameters identification under uncertain friction coefficient is transformed into two types of deterministic inverse problem. Finally the intelligent optimization algorithm is used to solve the two types of deterministic inverse problems quickly and accurately, and the range of material parameters can be easily acquired with no need of a variety of samples. The efficiency and convergence of this method are demonstrated by the material parameters identification of thalamus. The proposed method provides a potential effective tool for building high biofidelity human finite element model in the study of traffic accident injury.

  11. Misonidazole neurotoxicity in the mouse: evaluation of functional, pharmacokinetic, electrophysiologic and morphologic parameters

    International Nuclear Information System (INIS)

    Conroy, P.J.; Von Burg, R.; Passalacqua, W.; Penney, D.P.; Sutherland, R.M.

    1979-01-01

    The neurotoxic effects of chronic administration of misonidazole (0.3 mg/g/day, 5 times weekly) were investigated in Balb/cKa mice over 12 weeks; a variety of measurements were used, including functional and clinical performance, morphologic, electrophysiologic and pharmacokinetic parameters. The half life of drug for a single dose was greater in brain (3 hrs) compared to serum (1.2 hrs); these values decreased to 1.9 hrs and 1.0 hrs respectively after 3 weeks. Misonidazole induced a peripheral lesion after three weeks with a total administered dose of 13.5 g/m 2 or exposure dose of 57 to 75 mM X hrs, which is similar to the doses that cause neuropathy in humans. There was some suggestion of a central neurological deficit related to locomotor control and balance; however, no gross morphological damage was found in the brain. The sequence of effects demonstrated began at 3 to 4 weeks and included: 1) morphologic damage to peripheral nerves; 2) hyperactivity and listlessness; 3) a decrease in rotarod retention time which reached a value 50% of that of saline injected control mice at 8 to 10 weeks; 4) walking on tip-toes with a slightly hunched back (4 to 6 weeks); and 5) an increase in hind foot splay (6 to 7 weeks). The morphologic damage primarily involved the more distal portions of the nerves supplying the interosseous muscles and footpads of the hind limbs. The damage was more severe and progressed more rapidly with time in these distal areas compared to the more proximal regions of the nerves. No marked changes were found in nerve conduction velocity although neuropathy produced by acrylamide produced significant decreases. The changes in neurological parameters reported here may be useful in the further evaluation of hypoxic cell radiosensitizers

  12. Correlation of radiographic and MRI parameters to morphological and biochemical assessment of intervertebral disc degeneration

    OpenAIRE

    Benneker, Lorin M.; Heini, Paul F.; Anderson, Suzanne E.; Alini, Mauro; Ito, Keita

    2004-01-01

    Degenerative disc disease (DDD) is a common finding in MRI scans and X-rays. However, their correlation to morphological and biochemical changes is not well established. In this study, radiological and MRI parameters of DDD were assessed and compared with morphological and biochemical findings of disc degeneration. Thirty-nine human lumbar discs (L1–S1), age 19–86 years, were harvested from eight cadavers. Within 48 h postmortem, MRIs in various spin-echo sequences and biplanar radiographs of...

  13. A Voxel-Based Method for Automated Identification and Morphological Parameters Estimation of Individual Street Trees from Mobile Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Hongxing Liu

    2013-01-01

    Full Text Available As an important component of urban vegetation, street trees play an important role in maintenance of environmental quality, aesthetic beauty of urban landscape, and social service for inhabitants. Acquiring accurate and up-to-date inventory information for street trees is required for urban horticultural planning, and municipal urban forest management. This paper presents a new Voxel-based Marked Neighborhood Searching (VMNS method for efficiently identifying street trees and deriving their morphological parameters from Mobile Laser Scanning (MLS point cloud data. The VMNS method consists of six technical components: voxelization, calculating values of voxels, searching and marking neighborhoods, extracting potential trees, deriving morphological parameters, and eliminating pole-like objects other than trees. The method is validated and evaluated through two case studies. The evaluation results show that the completeness and correctness of our method for street tree detection are over 98%. The derived morphological parameters, including tree height, crown diameter, diameter at breast height (DBH, and crown base height (CBH, are in a good agreement with the field measurements. Our method provides an effective tool for extracting various morphological parameters for individual street trees from MLS point cloud data.

  14. [Morphology of basement membrane and associated matrix proteins in normal and pathological tissues].

    Science.gov (United States)

    Nerlich, A

    1995-01-01

    Basement membranes (BM) are specialized structures of the extracellular matrix. Their composition is of particular importance for the maintenance of normal morphological and functional properties of a multitude of organs and tissue systems and it is thus required for regular homeostasis of body function. Generally, they possess three main functions, i.e. participation in the maintenance of tissue structure, control of fluid and substrate exchange, and regulation of cell growth and differentiation. BMs are made up by various components which are in part specifically localized within the BM zone, or which represent ubiquitous matrix constituents with specific quantitative and/or qualitative differences in their localization. On the basis of a thorough immunohistochemical analysis of normal and diseased tissues, we provide here a concept of "functional morphology/pathomorphology" of the different BM components analyzed: 1.) The ubiquitous BM-constituent collagen IV primarily stabilizes the BM-zone and thus represents the "backbone" of the BM providing mechanical strength. Its loss leads to cystic tissue transformation as it is evidenced from the analysis of polycystic nephropathies. Thus, in other cystic tissue transformations a similar formal pathogenesis may be present. 2.) The specific localization of collagen VII as the main structural component of anchoring fibrils underlines the mechanical anchoring function of this collagenous protein. Defects in this protein lead to hereditary epidermolysis. The rapid re-occurrence of epidermal collagen VII during normal human wound healing indicates a quick reconstitution of the mechanical tensile strength of healing wounds. 3.) The BM-specific heparan sulfate proteoglycan (HSPG, Perlecan) with its highly negative anionic charge can be assumed to exert filter control. This assumption is corroborated by the localizatory findings of a preferential deposition of HSPG in endothelial and particularly in glomerular BM. Similarly

  15. Reference tissue modeling with parameter coupling: application to a study of SERT binding in HIV

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Christopher J; Pomper, Martin G [Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231 (United States); Hammoud, Dima A, E-mail: endres@jhmi.edu [Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, Bethesda, MD (United States)

    2011-04-21

    When applicable, it is generally preferred to evaluate positron emission tomography (PET) studies using a reference tissue-based approach as that avoids the need for invasive arterial blood sampling. However, most reference tissue methods have been shown to have a bias that is dependent on the level of tracer binding, and the variability of parameter estimates may be substantially affected by noise level. In a study of serotonin transporter (SERT) binding in HIV dementia, it was determined that applying parameter coupling to the simplified reference tissue model (SRTM) reduced the variability of parameter estimates and yielded the strongest between-group significant differences in SERT binding. The use of parameter coupling makes the application of SRTM more consistent with conventional blood input models and reduces the total number of fitted parameters, thus should yield more robust parameter estimates. Here, we provide a detailed evaluation of the application of parameter constraint and parameter coupling to [{sup 11}C]DASB PET studies. Five quantitative methods, including three methods that constrain the reference tissue clearance (k{sup r}{sub 2}) to a common value across regions were applied to the clinical and simulated data to compare measurement of the tracer binding potential (BP{sub ND}). Compared with standard SRTM, either coupling of k{sup r}{sub 2} across regions or constraining k{sup r}{sub 2} to a first-pass estimate improved the sensitivity of SRTM to measuring a significant difference in BP{sub ND} between patients and controls. Parameter coupling was particularly effective in reducing the variance of parameter estimates, which was less than 50% of the variance obtained with standard SRTM. A linear approach was also improved when constraining k{sup r}{sub 2} to a first-pass estimate, although the SRTM-based methods yielded stronger significant differences when applied to the clinical study. This work shows that parameter coupling reduces the

  16. Assessment of estrous cycle, ovarian and uterine tissue and fetal parameters of Wistar rats treated with Topiramate

    Directory of Open Access Journals (Sweden)

    Isabel Cristina Cherici Camargo

    2017-01-01

    Full Text Available Topiramate (TPM is included in the newer generation of antiepileptic drugs and is known to have multiple mechanisms of action. The drug has also been used for reducing body weight. Its effect on reproductive tissues and estrous cycle deserve greater attention. Then, this study aimed to investigate possible effects of the drug on ovarian and uterine tissues, estrous cycle and some fetal parameters of non-epileptic Wistar rats. In Experiment I, females received tap water (C - Control group; n=8 or Topiramate (TPM group; 100 mg/kg; n=8, orally for 6 weeks. The estrous cycle and food consumption were monitored. Ovarian and uterine sections were examined under light microscopy. In Experiment II, pregnant rats of C and TPM groups received treatments during the pre-implantation, implantation or organogenesis period. In females of Experiment I, TPM had no effect on the food consumption, final body weight, weekly body weight and estrous cycle. Ovarian and uterine weight was similar in both groups. The kinetics of folliculogenesis was unaffected by treatment with the drug. There was a significant (p<0.05 decrease in endometrial thickness of TPM-group. In Experiment II, fetal weight was decreased (p<0.05 in all periods of TPM exposure. There was no effect of treatment on fetal external morphology. In conclusion, the findings indicate that TPM promotes discrete alterations in the uterine tissue, and causes decrease on the fetus weight after exposure in different gestational periods.

  17. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    Science.gov (United States)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  18. Non-Directional Radiation Spread Modeling and Non-Invasive Estimating the Radiation Scattering and Absorption Parameters in Biological Tissue

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2015-01-01

    Full Text Available The article dwells on a development of new non-invasive measurement methods of optical parameters of biological tissues, which are responsible for the scattering and absorption of monochromatic radiation. It is known from the theory of radiation transfer [1] that for strongly scattering media, to which many biological tissues pertain, such parameters are parameters of diffusion approximation, as well as a scattering coefficient and an anisotropy parameter.Based on statistical modeling the paper examines a spread of non-directional radiation from a Lambert light beam with the natural polarization that illuminates a surface of the biological tissue. Statistical modeling is based on the Monte Carlo method [2]. Thus, to have the correct energy coefficient values of Fresnel reflection and transmission in simulation of such radiation by Monte Carlo method the author uses his finding that is a function of the statistical representation for the incidence of model photons [3]. The paper describes in detail a principle of fixing the power transmitted by the non-directional radiation into biological tissue [3], and the equations of a power balance in this case.Further, the paper describes the diffusion approximation of a radiation transfer theory, often used in simulation of radiation propagation in strongly scattering media and shows its application in case of fixing the power transmitted into the tissue. Thus, to represent an uneven power distribution is used an approximating expression in conditions of fixing a total input power. The paper reveals behavior peculiarities of solution on the surface of the biological tissue inside and outside of the incident beam. It is shown that the solution in the region outside of the incident beam (especially far away from it, essentially, depends neither on the particular power distribution across the surface, being a part of the tissue, nor on the refractive index of the biological tissue. It is determined only by

  19. The Effect of Field Dodder (Cuscuta campestris Yunck. on Morphological and Fluorescence Parameters of Giant Ragweed (Ambrosia trifida L.

    Directory of Open Access Journals (Sweden)

    Sava Vrbničanin

    2013-01-01

    Full Text Available The effect of the parasitic flowering plant known as field dodder (Cuscuta campestrisYunck. on morphological and fluorescence parameters of infested giant ragweed(Ambrosia trifida L. plants was examined under controlled conditions. The parameters ofchlorophyll fluorescence (Fo, Fv/Fm, ΦPSII, Fv, Fm, ETR and IF were measured on infested (Iand non-infested (N A. trifida plants over a period of seven days, beginning with the day ofinfestation. Morphological parameters (plant height, dry and fresh weight were measuredon the last day of fluorescence measurements. C. campestris was found to affect the height,fresh and dry weight of the infested A. trifida plants, causing significant reduction in plantheight and dry weight. Field dodder also affected several parameters of chlorophyll fluorescence(Fo, Fv/Fm, ΦPSII and Fv in infested A. trifida plants.

  20. Changes in tendon spatial frequency parameters with loading.

    Science.gov (United States)

    Pearson, Stephen J; Engel, Aaron J; Bashford, Gregory R

    2017-05-24

    To examine and compare the loading related changes in micro-morphology of the patellar tendon. Fifteen healthy young males (age 19±3yrs, body mass 83±5kg) were utilised in a within subjects matched pairs design. B mode ultrasound images were taken in the sagittal plane of the patellar tendon at rest with the knee at 90° flexion. Repeat images were taken whilst the subjects were carrying out maximal voluntary isometric contractions. Spatial frequency parameters related to the tendon morphology were determined within regions of interest (ROI) from the B mode images at rest and during isometric contractions. A number of spatial parameters were observed to be significantly different between resting and contracted images (Peak spatial frequency radius (PSFR), axis ratio, spatial Q-factor, PSFR amplitude ratio, and the sum). These spatial frequency parameters were indicative of acute alterations in the tendon micro-morphology with loading. Acute loading modifies the micro-morphology of the tendon, as observed via spatial frequency analysis. Further research is warranted to explore its utility with regard to different loading induced micro-morphological alterations, as these could give valuable insight not only to aid strengthening of this tissue but also optimization of recovery from injury and treatment of conditions such as tendinopathies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Influence of anodization parameters on the morphology of TiO 2 nanotube arrays

    Science.gov (United States)

    Omidvar, Hamid; Goodarzi, Saba; Seif, Ahmad; Azadmehr, Amir R.

    2011-07-01

    TiO 2 nanotube arrays can be fabricated by electrochemical anodization in organic and inorganic electrolytes. Morphology of these nanotube arrays changes when anodization parameters such as applied voltage, type of electrolyte, time and temperature are varied. Nanotube arrays fabricated by anodization of commercial titanium in electrolytes containing NH 4F solution and either sulfuric or phosphoric acid were studied at room temperature; time of anodization was kept constant. Applied voltage, fluoride ion concentration, and acid concentrations were varied and their influences on TiO 2 nanotubes were investigated. The current density of anodizing was recorded by computer controlled digital multimeter. The surface morphology (top-view) of nanotube arrays were observed by SEM. The nanotube arrays in this study have inner diameters in range of 40-80 nm.

  2. Effects of gamma rays on rat testis tissue according to the morphological parameters and immunohistochemistry: radioprotective role of silymarin.

    Science.gov (United States)

    Marzban, Mohsen; Anjamshoa, Maryam; Jafari, Parnia; Masoumi, Hossien; Ahadi, Reza; Fatehi, Daryoush

    2017-06-01

    To determine the radioprotective effects of Silymarin in adult male Sprague-Dawley rats irradiated with γ-rays. The present experimental study was performed in Tehran University of Medical Sciences, Tehran, Iran from December 2009 to March 2010. The study was performed on 40 rats, which were randomly and equally divided into four groups: 1) control group: neither received Silymarin nor irradiated with γ-rays; 2) γ-irradiation group: testis region exposed to 2Gy of γ-rays; 3) Silymarin & γ-irradiation: rats received 100 mg/kg of Silymarin 24hrs before exposure to 2Gy of γ-rays; 4) Silymarin & γ-irradiation: rats received 200 mg/kg of Silymarin 24hrs before exposure to 2Gy of γ-rays. After animal experiments and preparing the tissue sections, different histological and histomorphological parameters of seminiferous tubules and the biological characteristics of Leydig cells were evaluated applying quantitative assessment, Johnson scoring, and Leydig cell apoptosis assay by TUNEL method. The data were analyzed applying ANOVA and Tukey's post hoc test, using SPSS software (V.19). Irradiation of 2 Gy γ-rays to the testis of the rats significantly affected the frequency of spermatogonia, primary spermatocyte, round spermatid, spermatozoa, seminiferous tube and lumen diameters, thickness of the epithelium, Leydig cell nuclear diameter and volume, epithelium height, and apoptotic cells (p<0.05). However, administration of Silymarin improved the mentioned parameters specifically in 200 mg/kg of dosage. Silymarin could act as a potent radioprotector and it can be used in modulation as well as improvement to radiation therapy to prevent male reproductive function, specifically seminiferous tubules in an animal model; however, its molecular mechanism is still not clear and needs more molecular researches.

  3. Fractionation parameters for human tissues and tumors

    International Nuclear Information System (INIS)

    Thames, H.D.; Turesson, I.; Bogaert, W. van den

    1989-01-01

    Time-dose factors such as fractionation sensitivity (α/β) can sometimes be estimated from clinical data, when there is a wide variation in dose, fraction size, treatment time, etc. This report summarizes estimates of fractionation parameters derived from clinical results. Consistent with the animal data, α/β is higher for acutely responding than for late-responding normal tissues. While many human tumors seem to be characterized by high α/β values, there are exceptions (e.g. melanomas). Repair kinetics may be slower in human than in rodent skin and mucosa, but there are no hard and fast estimates of the repair halftime. Regeneration in head and neck tumors is equivalent to a daily dose of 1 Gy or less, while in the mucosa it is equivalent to approximately 1.8 Gy/day. (author)

  4. Morphological and functional development of the interbranchial lymphoid tissue (ILT) in Atlantic salmon (Salmo salar L).

    Science.gov (United States)

    Dalum, Alf Seljenes; Griffiths, David James; Valen, Elin Christine; Amthor, Karoline Skaar; Austbø, Lars; Koppang, Erling Olaf; Press, Charles McLean; Kvellestad, Agnar

    2016-11-01

    The interbranchial lymphoid tissue (ILT) of Atlantic salmon originates from an embryological location that in higher vertebrates gives rise to both primary and secondary lymphoid tissues. Still much is unknown about the morphological and functional development of the ILT. In the present work a standardized method of organ volume determination was established to study its development in relation to its containing gill and the thymus. Based on morphological findings and gene transcription data, the ILT shows no signs of primary lymphoid function. In contrast to the thymus, an ILT-complex first became discernible after the yolk-sac period. After its appearance, the ILT-complex constitutes 3-7% of the total volume of the gill (excluding the gill arch) with the newly described distal ILT constituting a major part, and in adult fish it is approximately 13 times larger than the thymus. Confined regions of T-cell proliferation are present within the ILT. Communication with systemic circulation through the distal ILT is also highly plausible thus offering both internal and external recruitment of immune cells in the growing ILT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of electrolysis parameters on the morphologies of copper powder obtained at high current densities

    Directory of Open Access Journals (Sweden)

    Orhan Gökhan

    2012-01-01

    Full Text Available The effects of copper ion concentrations and electrolyte temperature on the morphologies and on the apparent densities of electrolytic copper powders at high current densities under galvanostatic regime were examined. These parameters were evaluated by the current efficiency of hydrogen evolution. In addition, scanning electron microscopy was used for analyzing the morphology of the copper powders. It was found that the morphology was dependent over the copper ion concentration and electrolyte temperature under same current density (CD conditions. At 150 mA cm-2 and the potential of 1000±20 mV (vs. SCE, porous and disperse copper powders were obtained at low concentrations of Cu ions (0.120 M Cu2+ in 0.50 M H2SO4. Under this condition, high rate of hydrogen evolution reaction took place parallel to copper electrodeposition. The morphology was changed from porous, disperse and cauliflower-like to coral-like, shrub-like and stalk-stock like morphology with the increasing of Cu ion concentrations towards 0.120 M, 0.155 M, 0.315 M, 0.475 M and 0.630 M Cu2+ in 0.5 M H2SO4 respectively at the same CD. Similarly, as the temperature was increased, powder morphology and apparent density were observed to be changed. The apparent density values of copper powders were found to be suitable for many of the powder metallurgy applications.

  6. Morphological, clinical and radiological aspects in diagnostics of bronchopulmonary diseases and their complications in children with dysplasia of connective tissue

    Directory of Open Access Journals (Sweden)

    Palchik S.M.

    2016-06-01

    Full Text Available The article provides an overview of the literature devoted to study of radiological, morphological and clinical aspects of diagnostics of respiratory diseases and their complications in children with dysplasia of connective tissue nowadays. We made an analysis of the role of connective tissue disorders in pathogenesis of bronchopulmonary diseases. Theoretically was substantiated the importance of radiological methods in early diagnostics of this disease in children.

  7. Roentgenodiagnostics of soft tissue condition in achondroplasia cases in limb lengthening after Ilizarov

    International Nuclear Information System (INIS)

    D'yachkova, G.V.

    1995-01-01

    Muscles and subcutaneous cellular tissue of upper and lower limbs have been studied in 14 patients with achondroplasia treated after Ilizarov in various periods of lengthening employing contrast roentgenography. The technique applied has allowed to reveal anatomic and topographic features of muscles and subcutaneous cellular tissue in achodroplasia cases and observe changes of morphological parameters in different stages of elongation. 8 refs.; 8 figs

  8. Effect of physical and chemical mutagens on morphological parameters in garlic

    International Nuclear Information System (INIS)

    Choudhary, A.D.; Dnyansagar, V.R.

    1980-01-01

    Cloves of garlic (Allium sativum Linn.) were treated with various doses of gamma rays and different concentrations of ethylmethane sulphonate, diethyl sulphate and ethyleneimine. The effect of mutagens was studied in respect of morphological parameters such as sprouting, survival, sprout height, plant height, number and size of leaves, number of cloves and weight of bulb. In case of mutagen treatment the percentage of sprouting and survival as well as sprout height were found to be decreased with an increase in the dose/concentration of the mutagen. The effect of mutagen on leaf size and number was inhibitory. However, the number of cloves and weight of bulb were found to be increased at lower dose concentration of mutagens. (author)

  9. Evaluation of Perfusion and Thermal Parameters of Skin Tissue Using Cold Provocation and Thermographic Measurements

    Directory of Open Access Journals (Sweden)

    Strąkowska Maria

    2016-09-01

    Full Text Available Measurement of the perfusion coefficient and thermal parameters of skin tissue using dynamic thermography is presented in this paper. A novel approach based on cold provocation and thermal modelling of skin tissue is presented. The measurement was performed on a person’s forearm using a special cooling device equipped with the Peltier module. The proposed method first cools the skin, and then measures the changes of its temperature matching the measurement results with a heat transfer model to estimate the skin perfusion and other thermal parameters. In order to assess correctness of the proposed approach, the uncertainty analysis was performed.

  10. Influence of plant root morphology and tissue composition on phenanthrene uptake: Stepwise multiple linear regression analysis

    International Nuclear Information System (INIS)

    Zhan, Xinhua; Liang, Xiao; Xu, Guohua; Zhou, Lixiang

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that reside mainly in surface soils. Dietary intake of plant-based foods can make a major contribution to total PAH exposure. Little information is available on the relationship between root morphology and plant uptake of PAHs. An understanding of plant root morphologic and compositional factors that affect root uptake of contaminants is important and can inform both agricultural (chemical contamination of crops) and engineering (phytoremediation) applications. Five crop plant species are grown hydroponically in solutions containing the PAH phenanthrene. Measurements are taken for 1) phenanthrene uptake, 2) root morphology – specific surface area, volume, surface area, tip number and total root length and 3) root tissue composition – water, lipid, protein and carbohydrate content. These factors are compared through Pearson's correlation and multiple linear regression analysis. The major factors which promote phenanthrene uptake are specific surface area and lipid content. -- Highlights: •There is no correlation between phenanthrene uptake and total root length, and water. •Specific surface area and lipid are the most crucial factors for phenanthrene uptake. •The contribution of specific surface area is greater than that of lipid. -- The contribution of specific surface area is greater than that of lipid in the two most important root morphological and compositional factors affecting phenanthrene uptake

  11. Integration of functional and morphological MR data for preoperative 3D visualisation of tumours. Cervical carcinoma

    International Nuclear Information System (INIS)

    Evers, H.; Meinzer, H.P.; Hawighorst, H.; Kaick, G. van; Knapstein, P.G.

    1998-01-01

    Purpose: The goal of this exemplary study was to integrate morphological and functional MRI to establish computer-based, preoperative therapy planning for tumors, instancing cervical carcinoma. Results: Segmentation of organs and vessels as well as tissue differentiation yielded a morphological visualisation of anatomical structures that were overlaid with pharmacokinetic parameters derived from dynamic MRI, subsequently. Thereby, three-dimensional, arbitrary views on the functional data were displayed. Conclusions: Image analysis and visualisation of the acquired MR data establishes both a morphologic and functional evaluation of suspect lesions and adjacent organs. By integrating morphologic and functional MRI additional information can be gathered that possibly impinge on preoperative planning. (orig./AJ) [de

  12. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues

    Directory of Open Access Journals (Sweden)

    Polentarutti Maurizio

    2011-02-01

    Full Text Available Abstract Background Occupational or environmental exposure to asbestos fibres is associated with pleural and parenchymal lung diseases. A histopathologic hallmark of exposure to asbestos is the presence in lung parenchyma of the so-called asbestos bodies. They are the final product of biomineralization processes resulting in deposition of endogenous iron and organic matter (mainly proteins around the inhaled asbestos fibres. For shedding light on the formation mechanisms of asbestos bodies it is of fundamental importance to characterize at the same length scales not only their structural morphology and chemical composition but also to correlate them to the possible alterations in the local composition of the surrounding tissues. Here we report the first correlative morphological and chemical characterization of untreated paraffinated histological lung tissue samples with asbestos bodies by means of soft X-ray imaging and X-Ray Fluorescence (XRF microscopy, which reveals new features in the elemental lateral distribution. Results The X-ray absorption and phase contrast images and the simultaneously monitored XRF maps of tissue samples have revealed the location, distribution and elemental composition of asbestos bodies and associated nanometric structures. The observed specific morphology and differences in the local Si, Fe, O and Mg content provide distinct fingerprints characteristic for the core asbestos fibre and the ferruginous body. The highest Si content is found in the asbestos fibre, while the shell and ferruginous bodies are characterized by strongly increased content of Mg, Fe and O compared to the adjacent tissue. The XRF and SEM-EDX analyses of the extracted asbestos bodies confirmed an enhanced Mg deposition in the organic asbestos coating. Conclusions The present report demonstrates the potential of the advanced synchrotron-based X-ray imaging and microspectroscopy techniques for studying the response of the lung tissue to the

  13. [Morphological features of the myometrium in connective tissue dysplasia in women with uterine inertia].

    Science.gov (United States)

    Konovalov, P V; Mitrofanova, L B; Gorshkov, A N; Ovsyannikov, F A

    2015-01-01

    to reveal the morphological features of the lower uterine segment myometrium in connective tissue dysplasia (CTD) in women with uterine inertia. Histological, immunohistochemical (with antibodies against collagen types I and III, matrix metalloproteinases 1 and 9 (MMR-1, MMP-9), tissue inhibitor of metalloproteinase 1 (TIMP-1), fibronectin; fibulin-5, connexin-43), electron microscopic, and electron immunocytochemical studies with morphometry of myometrial fragments from 15 parturient women with CTD and uterine inertia (a study group) and those from 10 women without CTD (a control group). The myometrium in CTD exhibited the decreased expression of connextin-43, fibulin-5, TIMP-1, collagens types I and III with collagen type III predominance and the unchanged levels of fibronectin and MMP-1 and MMP-9. Electron microscopy and immunocytochemistry showed fewer intercellular contacts and the dramatically lower expression of connexin-43 than in the control. A set of found myometrial changes in women with uterine inertia is a manifestation of CTD.

  14. Three-dimensional assessment of brain tissue morphology

    Science.gov (United States)

    Müller, Bert; Germann, Marco; Jeanmonod, Daniel; Morel, Anne

    2006-08-01

    The microstructure of brain tissues becomes visible using different types of optical microscopy after the tissue sectioning. This preparation procedure introduces stress and strain in the anisotropic and inhomogeneous soft tissue slices, which are several 10 μm thick. Consequently, the three-dimensional dataset, generated out of the two-dimensional images with lateral submicrometer resolution, needs algorithms to correct the deformations, which can be significant for mellow tissue such as brain segments. The spatial resolution perpendicular to the slices is much worse with respect to the lateral sub-micrometer resolution. Therefore, we propose as complementary method the synchrotron-radiation-based micro computed tomography (SRμCT), which avoids any kind of preparation artifacts due to sectioning and histological processing and yields true micrometer resolution in the three orthogonal directions. The visualization of soft matter by the use of SRμCT, however, is often based on elaborate staining protocols, since the tissue exhibits (almost) the same x-ray absorption as the surrounding medium. Therefore, it is unexpected that human tissue from the pons and the medulla oblongata in phosphate buffer show several features such as the blood vessels and the inferior olivary nucleus without staining. The value of these tomograms lies especially in the precise non-rigid registration of the different sets of histological slices. Applications of this method to larger pieces of brain tissue, such as the human thalamus are planned in the context of stereotactic functional neurosurgery.

  15. Morphological integration of soft-tissue facial morphology in Down Syndrome and siblings.

    Science.gov (United States)

    Starbuck, John; Reeves, Roger H; Richtsmeier, Joan

    2011-12-01

    Down syndrome (DS), resulting from trisomy of chromosome 21, is the most common live-born human aneuploidy. The phenotypic expression of trisomy 21 produces variable, though characteristic, facial morphology. Although certain facial features have been documented quantitatively and qualitatively as characteristic of DS (e.g., epicanthic folds, macroglossia, and hypertelorism), all of these traits occur in other craniofacial conditions with an underlying genetic cause. We hypothesize that the typical DS face is integrated differently than the face of non-DS siblings, and that the pattern of morphological integration unique to individuals with DS will yield information about underlying developmental associations between facial regions. We statistically compared morphological integration patterns of immature DS faces (N = 53) with those of non-DS siblings (N = 54), aged 6-12 years using 31 distances estimated from 3D coordinate data representing 17 anthropometric landmarks recorded on 3D digital photographic images. Facial features are affected differentially in DS, as evidenced by statistically significant differences in integration both within and between facial regions. Our results suggest a differential affect of trisomy on facial prominences during craniofacial development. 2011 Wiley Periodicals, Inc.

  16. Quantifying morphological parameters of the terminal branching units in a mouse lung by phase contrast synchrotron radiation computed tomography.

    Directory of Open Access Journals (Sweden)

    Jeongeun Hwang

    Full Text Available An effective technique of phase contrast synchrotron radiation computed tomography was established for the quantitative analysis of the microstructures in the respiratory zone of a mouse lung. Heitzman's method was adopted for the whole-lung sample preparation, and Canny's edge detector was used for locating the air-tissue boundaries. This technique revealed detailed morphology of the respiratory zone components, including terminal bronchioles and alveolar sacs, with sufficiently high resolution of 1.74 µm isotropic voxel size. The technique enabled visual inspection of the respiratory zone components and comprehension of their relative positions in three dimensions. To check the method's feasibility for quantitative imaging, morphological parameters such as diameter, surface area and volume were measured and analyzed for sixteen randomly selected terminal branching units, each consisting of a terminal bronchiole and a pair of succeeding alveolar sacs. The four types of asymmetry ratios concerning alveolar sac mouth diameter, alveolar sac surface area, and alveolar sac volume are measured. This is the first ever finding of the asymmetry ratio for the terminal bronchioles and alveolar sacs, and it is noteworthy that an appreciable degree of branching asymmetry was observed among the alveolar sacs at the terminal end of the airway tree, despite the number of samples was small yet. The series of efficient techniques developed and confirmed in this study, from sample preparation to quantification, is expected to contribute to a wider and exacter application of phase contrast synchrotron radiation computed tomography to a variety of studies.

  17. Method for estimating optimal spectral and energy parameters of laser irradiation in photodynamic therapy of biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Lisenko, S A; Kugeiko, M M [Belarusian State University, Minsk (Belarus)

    2015-04-30

    We have solved the problem of layer-by-layer laser-light dosimetry in biological tissues and of selecting an individual therapeutic dose in laser therapy. A method is proposed for real-time monitoring of the radiation density in tissue layers in vivo, concentrations of its endogenous (natural) and exogenous (specially administered) chromophores, as well as in-depth distributions of the spectrum of light action on these chromophores. As the background information use is made of the spectrum of diffuse light reflected from a patient's tissue, measured by a fibre-optic spectrophotometer. The measured spectrum is quantitatively analysed by the method of approximating functions for fluxes of light multiply scattered in tissue and by a semi-analytical method for calculating the in-depth distribution of the light flux in a multi-layered medium. We have shown the possibility of employing the developed method for monitoring photosensitizer and oxyhaemoglobin concentrations in tissue, light power absorbed by chromophores in tissue layers at different depths and laser-induced changes in the tissue morphology (vascular volume content and ratios of various forms of haemoglobin) during photodynamic therapy. (biophotonics)

  18. Microscopic morphology and apoptosis of ovarian tissue after cryopreservation using a vitrification method in post-hatching turkey poults, Meleagris gallopavo

    Science.gov (United States)

    1. Microscopic morphology of ovarian tissue in post-hatching turkey poults at various ages was investigated. 2. Hematoxylin and eosin staining were used and the diameter of the oocytes and follicles were measured using microphotography. 3. Immediately after hatching, oocytes in one-day turkey pou...

  19. Retrieving the optical parameters of biological tissues using diffuse reflectance spectroscopy and Fourier series expansions. I. theory and application.

    Science.gov (United States)

    Muñoz Morales, Aarón A; Vázquez Y Montiel, Sergio

    2012-10-01

    The determination of optical parameters of biological tissues is essential for the application of optical techniques in the diagnosis and treatment of diseases. Diffuse Reflection Spectroscopy is a widely used technique to analyze the optical characteristics of biological tissues. In this paper we show that by using diffuse reflectance spectra and a new mathematical model we can retrieve the optical parameters by applying an adjustment of the data with nonlinear least squares. In our model we represent the spectra using a Fourier series expansion finding mathematical relations between the polynomial coefficients and the optical parameters. In this first paper we use spectra generated by the Monte Carlo Multilayered Technique to simulate the propagation of photons in turbid media. Using these spectra we determine the behavior of Fourier series coefficients when varying the optical parameters of the medium under study. With this procedure we find mathematical relations between Fourier series coefficients and optical parameters. Finally, the results show that our method can retrieve the optical parameters of biological tissues with accuracy that is adequate for medical applications.

  20. Regional Morphology and Transport of PAMAM Dendrimers Across Isolated Rat Intestinal Tissue.

    Science.gov (United States)

    Hubbard, Dallin; Bond, Tanner; Ghandehari, Hamidreza

    2015-12-01

    Intestinal permeability of PAMAM dendrimers has been observed, giving rationale for their use in oral drug delivery as potential carriers of associated molecules. This study assessed the apparent permeability coefficients (Papp) of dendrimers across isolated rat intestinal regional mucosae, along with estimation of the maximum non-toxic concentration. Caco-2 monolayers were also used to assess the comparative Papp values between isolated mucosae and cell culture models. Concentrations from 0.1 to 10 mM of anionic and cationic dendrimers were tested in mucosae to assess their Papp, membrane TEER, [(14)C]-mannitol Papp, and histology. 0.1 mM concentrations of dendrimers were assessed over 120 min in Caco-2 cell monolayers as concentrations above that were cytotoxic. Jejunal transport of dendrimers was higher than transport in colonic epithelium. Monolayer Papp values of dendrimers were comparable to those of jejunal mucosae. Mucosae exposed to dendrimer concentrations of 10 mM for 120 min caused significant reduction in TEER and changes in tissue morphology; however, G3.5 was the only analogue that caused significant TEER reduction and morphological changes at 1 mM concentrations. Transport in jejunal mucosae appears to be the greatest indicating that the small intestinal will be the most likely region to target for oral drug delivery using PAMAM dendrimers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Identification of immune cell infiltration in hematoxylin-eosin stained breast cancer samples: texture-based classification of tissue morphologies

    Science.gov (United States)

    Turkki, Riku; Linder, Nina; Kovanen, Panu E.; Pellinen, Teijo; Lundin, Johan

    2016-03-01

    The characteristics of immune cells in the tumor microenvironment of breast cancer capture clinically important information. Despite the heterogeneity of tumor-infiltrating immune cells, it has been shown that the degree of infiltration assessed by visual evaluation of hematoxylin-eosin (H and E) stained samples has prognostic and possibly predictive value. However, quantification of the infiltration in H and E-stained tissue samples is currently dependent on visual scoring by an expert. Computer vision enables automated characterization of the components of the tumor microenvironment, and texture-based methods have successfully been used to discriminate between different tissue morphologies and cell phenotypes. In this study, we evaluate whether local binary pattern texture features with superpixel segmentation and classification with support vector machine can be utilized to identify immune cell infiltration in H and E-stained breast cancer samples. Guided with the pan-leukocyte CD45 marker, we annotated training and test sets from 20 primary breast cancer samples. In the training set of arbitrary sized image regions (n=1,116) a 3-fold cross-validation resulted in 98% accuracy and an area under the receiver-operating characteristic curve (AUC) of 0.98 to discriminate between immune cell -rich and - poor areas. In the test set (n=204), we achieved an accuracy of 96% and AUC of 0.99 to label cropped tissue regions correctly into immune cell -rich and -poor categories. The obtained results demonstrate strong discrimination between immune cell -rich and -poor tissue morphologies. The proposed method can provide a quantitative measurement of the degree of immune cell infiltration and applied to digitally scanned H and E-stained breast cancer samples for diagnostic purposes.

  2. The role of apical contractility in determining cell morphology in multilayered epithelial sheets and tubes

    Science.gov (United States)

    Zhen Tan, Rui; Lai, Tanny; Chiam, K.-H.

    2017-08-01

    A multilayered epithelium is made up of individual cells that are stratified in an orderly fashion, layer by layer. In such tissues, individual cells can adopt a wide range of shapes ranging from columnar to squamous. From histological images, we observe that, in flat epithelia such as the skin, the cells in the top layer are squamous while those in the middle and bottom layers are columnar, whereas in tubular epithelia, the cells in all layers are columnar. We develop a computational model to understand how individual cell shape is governed by the mechanical forces within multilayered flat and curved epithelia. We derive the energy function for an epithelial sheet of cells considering intercellular adhesive and intracellular contractile forces. We determine computationally the cell morphologies that minimize the energy function for a wide range of cellular parameters. Depending on the dominant adhesive and contractile forces, we find four dominant cell morphologies for the multilayered-layered flat sheet and three dominant cell morphologies for the two-layered curved sheet. We study the transitions between the dominant cell morphologies for the two-layered flat sheet and find both continuous and discontinuous transitions and also the presence of multistable states. Matching our computational results with histological images, we conclude that apical contractile forces from the actomyosin belt in the epithelial cells is the dominant force determining cell shape in multilayered epithelia. Our computational model can guide tissue engineers in designing artificial multilayered epithelia, in terms of figuring out the cellular parameters needed to achieve realistic epithelial morphologies.

  3. Electrospinning of Nanofibers for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Haifeng Liu

    2013-01-01

    Full Text Available Electrospinning is a method in which materials in solution are formed into nano- and micro-sized continuous fibers. Recent interest in this technique stems from both the topical nature of nanoscale material fabrication and the considerable potential for use of these nanoscale fibres in a range of applications including, amongst others, a range of biomedical applications processes such as drug delivery and the use of scaffolds to provide a framework for tissue regeneration in both soft and hard tissue applications systems. The objectives of this review are to describe the theory behind the technique, examine the effect of changing the process parameters on fiber morphology, and discuss the application and impact of electrospinning on the fields of vascular, neural, bone, cartilage, and tendon/ligament tissue engineering.

  4. Functional and morphological alterations of the stomach in case of irradiation of the para-aortic area

    Energy Technology Data Exchange (ETDEWEB)

    Beyer-Enke, S.A.; Gladisch, R.; Heine, M.; Georgi, M.

    1987-12-01

    Six assays were conducted in order to determine some functional and morphological parameters of the gastric mucosa in patients who underwent Co/sup 60/ irradiations of the para-aortic area. Slight as well as marked morphological alterations were observed whereas the functional alterations were found to be marked in all cases. Basal gastric secretion and serum gastrin level showed a continous reduction, however, in case of severe gastritis the stimulated secretion was increased. A possible correlation with increased tissue histamine levels is discussed.

  5. SEM evaluation of the morphological changes in hard dental tissues prepared by Er: YAG laser and rotary instruments

    Directory of Open Access Journals (Sweden)

    Tomov Georgi

    2010-09-01

    Full Text Available Effective ablation of dental hard tissues by means of the erbium:yttrium-aluminum garnet (Er: YAG laser has been reported recently, and its application to caries removal and cavity preparation has been expected. However, few studies have investigated the morphological changes in hard dental tissues after Er: YAG laser caries treatment. In the present study the morphological changes in hard dental tissues after Er: YAG laser caries ablation in vitro was compared with that of conventional mechanical treatment. Thirty extracted human teeth with caries were used. Ten tooth was treated with the Er: YAG laser, and the other was treated with a conventional steel and diamond burs. Laser treatment was performed by means of a non-contact irradiation modes with cooling water spray, with a new Er: YAG laser (LiteTouch. Conventional bur treatment was conducted by means of a low-speed micromotor and air turbine with water cooling. Scanning electron microscope (SEM observations were performed for each treatment. The Er: YAG laser ablated carious dentin effectively with minimal thermal damage to the surrounding intact dentin, and removed infected and softened carious dentin to the same degree as the burtreatment. In addition, a lower degree of vibration was noted with the Er: YAG laser treatment. The SEM examination revealed characteristic micro-irregularities of the lased dentin and enamel surfaces with potential benefits for adhesive restorations. Our results show that the Er: YAG laser is promising as a new technical modality for caries treatment

  6. Influence of electromagnetic field parameters on the morphology of graphite in grey cast iron

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2009-01-01

    Full Text Available One way to improve the unification of the casting structure may be the application of forced convection of liquid metal during thecrystallization in the form or continuous casting mould. This paper presents the results describing the influence of selected parameters of rotating electromagnetic field enforcing the movement of liquid metal in the form on the morphology of graphite in grey cast iron. The results were fragmented graphite flakes in conditions of regulating the rate of cooling in the range of temperature TZAL

  7. One-Step Preservation of Phosphoproteins and Tissue Morphology at Room Temperature for Diagnostic and Research Specimens

    Science.gov (United States)

    Mueller, Claudius; Edmiston, Kirsten H.; Carpenter, Calvin; Gaffney, Eoin; Ryan, Ciara; Ward, Ronan; White, Susan; Memeo, Lorenzo; Colarossi, Cristina; Petricoin, Emanuel F.; Liotta, Lance A.; Espina, Virginia

    2011-01-01

    Background There is an urgent need to measure phosphorylated cell signaling proteins in cancer tissue for the individualization of molecular targeted kinase inhibitor therapy. However, phosphoproteins fluctuate rapidly following tissue procurement. Snap-freezing preserves phosphoproteins, but is unavailable in most clinics and compromises diagnostic morphology. Formalin fixation preserves tissue histomorphology, but penetrates tissue slowly, and is unsuitable for stabilizing phosphoproteins. We originated and evaluated a novel one-step biomarker and histology preservative (BHP) chemistry that stabilizes signaling protein phosphorylation and retains formalin-like tissue histomorphology with equivalent immunohistochemistry in a single paraffin block. Results Total protein yield extracted from BHP-fixed, routine paraffin-embedded mouse liver was 100% compared to snap-frozen tissue. The abundance of 14 phosphorylated proteins was found to be stable over extended fixation times in BHP fixed paraffin embedded human colon mucosa. Compared to matched snap-frozen tissue, 8 phosphoproteins were equally preserved in mouse liver, while AMPKβ1 Ser108 was slightly elevated after BHP fixation. More than 25 tissues from mouse, cat and human specimens were evaluated for preservation of histomorphology. Selected tissues were evaluated in a multi-site, independent pathology review. Tissue fixed with BHP showed equivalent preservation of cytoplasmic and membrane cytomorphology, with significantly better nuclear chromatin preservation by BHP compared to formalin. Immunohistochemical staining of 13 non-phosphorylated proteins, including estrogen receptor alpha, progesterone receptor, Ki-67 and Her2, was equal to or stronger in BHP compared to formalin. BHP demonstrated significantly improved immunohistochemical detection of phosphorylated proteins ERK Thr202/Tyr204, GSK3-α/β Ser21/Ser9, p38-MAPK Thr180/Tyr182, eIF4G Ser1108 and Acetyl-CoA Carboxylase Ser79. Conclusion In a single

  8. One-step preservation of phosphoproteins and tissue morphology at room temperature for diagnostic and research specimens.

    Directory of Open Access Journals (Sweden)

    Claudius Mueller

    Full Text Available BACKGROUND: There is an urgent need to measure phosphorylated cell signaling proteins in cancer tissue for the individualization of molecular targeted kinase inhibitor therapy. However, phosphoproteins fluctuate rapidly following tissue procurement. Snap-freezing preserves phosphoproteins, but is unavailable in most clinics and compromises diagnostic morphology. Formalin fixation preserves tissue histomorphology, but penetrates tissue slowly, and is unsuitable for stabilizing phosphoproteins. We originated and evaluated a novel one-step biomarker and histology preservative (BHP chemistry that stabilizes signaling protein phosphorylation and retains formalin-like tissue histomorphology with equivalent immunohistochemistry in a single paraffin block. RESULTS: Total protein yield extracted from BHP-fixed, routine paraffin-embedded mouse liver was 100% compared to snap-frozen tissue. The abundance of 14 phosphorylated proteins was found to be stable over extended fixation times in BHP fixed paraffin embedded human colon mucosa. Compared to matched snap-frozen tissue, 8 phosphoproteins were equally preserved in mouse liver, while AMPKβ1 Ser108 was slightly elevated after BHP fixation. More than 25 tissues from mouse, cat and human specimens were evaluated for preservation of histomorphology. Selected tissues were evaluated in a multi-site, independent pathology review. Tissue fixed with BHP showed equivalent preservation of cytoplasmic and membrane cytomorphology, with significantly better nuclear chromatin preservation by BHP compared to formalin. Immunohistochemical staining of 13 non-phosphorylated proteins, including estrogen receptor alpha, progesterone receptor, Ki-67 and Her2, was equal to or stronger in BHP compared to formalin. BHP demonstrated significantly improved immunohistochemical detection of phosphorylated proteins ERK Thr202/Tyr204, GSK3-α/β Ser21/Ser9, p38-MAPK Thr180/Tyr182, eIF4G Ser1108 and Acetyl-CoA Carboxylase Ser79

  9. Morphological characterisation and agronomical parameters of different species of Salvia sp. (Lamiaceae).

    Science.gov (United States)

    Mossi, A J; Cansian, R L; Paroul, N; Toniazzo, G; Oliveira, J V; Pierozan, M K; Pauletti, G; Rota, L; Santos, A C A; Serafini, L A

    2011-02-01

    The aim of this work is to assess the morphological characteristics and parameters of biomass production, such as fresh and dry matter weight (FMW and DMW, g/plant), yield of dry matter (YDM) in terms of ton/ha, essential oil content (EOC, mL/100 g) and yield of essential oils (YEO) expressed as L/ha of the following plants Salvia verbenaca, Salvia argentea, Salvia lavandulifolia, Salvia pratensis, Salvia sclarea, Salvia triloba and Salvia officinalis. Except for Salvia argentea (S2) all other species have adapted to the south Brazilian climate conditions, with morphological differences among the species evaluated. In terms of DMW and YDM, S. officinalis was found to be the most productive species with 445.83 g/plant and 11.14 ton/ha. The higher essential oil content and yield was observed for S. officinalis, affording 1.99 mL/100 g and 221.74 L/ha, respectively. Chemical characterisation of the essential oils obtained from hydrodistillation was performed through GC and GC/MSD analyses, which revealed for most of the species studied, α e β-thujone, camphor and 1,8-cineole as major compounds, apart from S. sclarea, for which linalool, linalyl acetate and α-terpineol were the major components.

  10. Morphological characterisation and agronomical parameters of different species of Salvia sp. (Lamiaceae

    Directory of Open Access Journals (Sweden)

    AJ Mossi

    Full Text Available The aim of this work is to assess the morphological characteristics and parameters of biomass production, such as fresh and dry matter weight (FMW and DMW, g/plant, yield of dry matter (YDM in terms of ton/ha, essential oil content (EOC, mL/100 g and yield of essential oils (YEO expressed as L/ha of the following plants Salvia verbenaca, Salvia argentea, Salvia lavandulifolia, Salvia pratensis, Salvia sclarea, Salvia triloba and Salvia officinalis. Except for Salvia argentea (S2 all other species have adapted to the south Brazilian climate conditions, with morphological differences among the species evaluated. In terms of DMW and YDM, S. officinalis was found to be the most productive species with 445.83 g/plant and 11.14 ton/ha. The higher essential oil content and yield was observed for S. officinalis, affording 1.99 mL/100 g and 221.74 L/ha, respectively. Chemical characterisation of the essential oils obtained from hydrodistillation was performed through GC and GC/MSD analyses, which revealed for most of the species studied, α e β-thujone, camphor and 1,8-cineole as major compounds, apart from S. sclarea, for which linalool, linalyl acetate and α-terpineol were the major components.

  11. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres.

    Science.gov (United States)

    Mao, Shirui; Xu, Jing; Cai, Cuifang; Germershaus, Oliver; Schaper, Andreas; Kissel, Thomas

    2007-04-04

    Using fluorescein isothiocyanate labeled dextran (FITC-dextran 40, FD40) as a hydrophilic model compound, microspheres were prepared by a WOW double emulsion technique. Influence of process parameters on microsphere morphology and burst release of FD40 from PLGA microspheres was studied. Internal morphology of microspheres was investigated by stereological method via cryo-cutting technique and scanning electron microscopy (SEM). Drug distribution in microspheres was observed with confocal laser scanning microscopy (CLSM). Polymer nature (RG503 and RG503H) had significant influence on the micro-morphology of microspheres. Increase in continuous water phase volume (W2) led to increased surface porosity but decreased internal porosity. By increasing PVA concentration in the continuous phase from 0.1 to 1%, particle size changed marginally but burst release decreased from 12.2 to 5.9%. Internal porosity of microspheres decreased considerably with increasing polymer concentration. Increase in homogenization speed during the primary emulsion preparation led to decreased internal porosity. Burst release decreased with increasing drug loading but increased with drug molecular weight. Drug distribution in microspheres depended on preparation method. The porosity of microspheres decreased with time in the diffusion stage, but internal morphology had no influence on the release behavior in the bioerosion stage. In summary, surface porosity and internal morphology play a significant role in the release of hydrophilic macromolecules from biodegradable microspheres in the initial release phase characterized by pore diffusion.

  12. Morphology Analysis and Process Research on Novel Metal Fused-coating Additive Manufacturing

    Science.gov (United States)

    Wang, Xin; Wei, Zheng ying; Du, Jun; Ren, Chuan qi; Zhang, Shan; Zhang, Zhitong; Bai, Hao

    2017-12-01

    Existing metal additive manufacturing equipment has high capital costs and slow throughput printing. In this paper, a new metal fused-coating additive manufacturing (MFCAM) was proposed. Experiments of single-track formation were conducted using MFCAM to validate the feasibility. The low melting alloy was selected as the forming material. Then, the effect of process parameters such as the flow rate, deposition velocity and initial distance on the forming morphology. There is a strong coupling effect between the single track forming morphology. Through the analysis of influencing factors to improve the forming quality of specimens. The experimental results show that the twice as forming efficiency as the metal droplet deposition. Additionally, the forming morphology and quality were analyzed by confocal laser scanning microscope and X-ray. The results show that the metal fused-coating process can achieve good surface morphology and without internal tissue defect.

  13. Investigation of liver tissue and biochemical parameters of adult wistar rats treated with Arctium lappa L.

    Directory of Open Access Journals (Sweden)

    Fabrícia Souza Predes

    2009-04-01

    Full Text Available This study was carried out to evaluate the effects of Arctium lappa L. (burdock on the liver of adult male Wistar rats as measured by light microscopy and biochemical parameters. The rats received the extract in water bottles at doses of 10 or 20 g/L daily for 40 days. There were no significant changes in the plasma levels of albumin, aspartate transaminase (AST, alanine transaminase (ALT, gamma glutamyl transferase (GGT, total protein, total cholesterol, urea, uric acid, triacylglycerol, calcium, phosphorus, chlorine and direct bilirubin. The morphological analysis did not reveal histopathological alterations in liver tissue. Both biochemical and morphological data did not indicate A. lappa toxicity.A bardana (Arctium lappa L é uma planta trazida do Japão e aclimatada no Brasil, e é extensamente utilizada na medicina popular em todo mundo. Este estudo foi realizado para avaliar os possíveis efeitos da A. lappa no fígado e nos parâmetros bioquímicos plasmáticos em ratos Wistar adultos. Estes receberam a infusão de bardana nas doses de 10 ou 20 g de folhas secas /L de água, por 40 dias. Não houve alteração significativa nos níveis plasmáticos de albumina, aspartato transaminase (AST, alanina transaminase (ALT, gamma glutamil transferase (GGT, proteínas totais, colesterol total, uréia, ácido úrico, triglicérides, cálcio, fósforo, bilirrubina direta e cloro. A análise morfológica não revelou alterações histopatológicas no fígado. Os dados bioquímicos e morfológicos não indicaram a toxicidade da bardana.

  14. Morphology of mucosa-associated lymphoid tissue in odontocetes.

    Science.gov (United States)

    Silva, Fernanda M O; Guimarães, Juliana P; Vergara-Parente, Jociery E; Carvalho, Vitor L; Carolina, Ana; Meirelles, O; Marmontel, Miriam; Oliveira, Bruno S S P; Santos, Silvanise M; Becegato, Estella Z; Evangelista, Janaina S A M; Miglino, Maria Angelica

    2016-09-01

    This study describes the mucosa-associated lymphoid tissue (MALT) in odontocetes from the Brazilian coast and freshwater systems. Seven species were evaluated and tissue samples were analyzed by light, scanning and transmission electron microscopy, and immunohistochemistry. Laryngeal tonsil was a palpable oval mass located in the larynx, composed of a lymphoepithelial complex. Dense collections of lymphocytes were found in the skin of male fetus and calf. Clusters of lymphoid tissue were found in the uterine cervix of a reproductively active juvenile female and along the pulmonary artery of an adult female. Lymphoid tissues associated with the gastrointestinal tract were characterized by diffusely arranged or organized lymphocytes. The anal tonsil was composed of an aggregate of lymphoid tissue occurring exclusively in the anal canal, being composed of squamous epithelium branches. MALT was present in different tissues and organic systems of cetaceans, providing constant protection against mucosal pathogens present in their environment. © 2016 Wiley Periodicals, Inc.

  15. Phenotypic clustering: a novel method for microglial morphology analysis.

    Science.gov (United States)

    Verdonk, Franck; Roux, Pascal; Flamant, Patricia; Fiette, Laurence; Bozza, Fernando A; Simard, Sébastien; Lemaire, Marc; Plaud, Benoit; Shorte, Spencer L; Sharshar, Tarek; Chrétien, Fabrice; Danckaert, Anne

    2016-06-17

    Microglial cells are tissue-resident macrophages of the central nervous system. They are extremely dynamic, sensitive to their microenvironment and present a characteristic complex and heterogeneous morphology and distribution within the brain tissue. Many experimental clues highlight a strong link between their morphology and their function in response to aggression. However, due to their complex "dendritic-like" aspect that constitutes the major pool of murine microglial cells and their dense network, precise and powerful morphological studies are not easy to realize and complicate correlation with molecular or clinical parameters. Using the knock-in mouse model CX3CR1(GFP/+), we developed a 3D automated confocal tissue imaging system coupled with morphological modelling of many thousands of microglial cells revealing precise and quantitative assessment of major cell features: cell density, cell body area, cytoplasm area and number of primary, secondary and tertiary processes. We determined two morphological criteria that are the complexity index (CI) and the covered environment area (CEA) allowing an innovative approach lying in (i) an accurate and objective study of morphological changes in healthy or pathological condition, (ii) an in situ mapping of the microglial distribution in different neuroanatomical regions and (iii) a study of the clustering of numerous cells, allowing us to discriminate different sub-populations. Our results on more than 20,000 cells by condition confirm at baseline a regional heterogeneity of the microglial distribution and phenotype that persists after induction of neuroinflammation by systemic injection of lipopolysaccharide (LPS). Using clustering analysis, we highlight that, at resting state, microglial cells are distributed in four microglial sub-populations defined by their CI and CEA with a regional pattern and a specific behaviour after challenge. Our results counteract the classical view of a homogenous regional resting

  16. InGaN quantum well epilayers morphological evolution under a wide range of MOCVD growth parameter sets

    International Nuclear Information System (INIS)

    Florescu, D.I.; Ting, S.M.; Merai, V.N.; Parekh, A.; Lee, D.S.; Armour, E.A.; Quinn, W.E.

    2006-01-01

    This study exemplifies the use of TappingMode trademark atomic force microscopy (AFM) surface morphology imaging to investigate and optimise the metalorganic chemical vapour deposition (MOCVD) growth conditions and post-growth stability of thin ( '' GaN templates grown on (0001) c-plane sapphire substrates. The morphological evolution of the InGaN material was studied utilising a DI3100 AFM tool. Surface morphology and its correlation with photoluminescence and X-ray diffraction results are discussed for every set of conditions employed. More specifically, the post-growth ambient exposure and thermal stability of the uncapped InGaN epilayers were investigated. In addition, the initial stage of subsequent GaN growth, which is an essential step towards the manufacture of LED active regions, was examined. Based on the above findings, a flexible MOCVD growth parameter space and improved LED constituent layer sequencing techniques have been established leading to more efficient and stable LED devices. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Quantitative tissue parameters of Achilles tendon and plantar fascia in healthy subjects using a handheld myotonometer.

    Science.gov (United States)

    Orner, Sarah; Kratzer, Wolfgang; Schmidberger, Julian; Grüner, Beate

    2018-01-01

    The aim of the study was to examine the quantitative tissue properties of the Achilles tendon and plantar fascia using a handheld, non-invasive MyotonPRO device, in order to generate normal values and examine the biomechanical relationship of both structures. Prospective study of a large, healthy sample population. The study sample included 207 healthy subjects (87 males and 120 females) for the Achilles tendon and 176 healthy subjects (73 males and 103 females) for the plantar fascia. For the correlations of the tissue parameters of the Achilles tendon and plantar fascia an intersection of both groups was formed which included 150 healthy subjects (65 males and 85 females). All participants were measured in a prone position. Consecutive measurements of the Achilles tendon and plantar fascia were performed by MyotonPRO device at defined sites. For the left and right Achilles tendons and plantar fasciae all five MyotonPRO parameters (Frequency [Hz], Decrement, Stiffness [N/m], Creep and Relaxation Time [ms]) were calculated of healthy males and females. The correlation of the tissue parameters of the Achilles tendon and plantar fascia showed a significant positive correlation of all parameters on the left as well as on the right side. The MyotonPRO is a feasible device for easy measurement of passive tissue properties of the Achilles tendon and plantar fascia in a clinical setting. The generated normal values of the Achilles tendon and plantar fascia are important for detecting abnormalities in patients with Achilles tendinopathy or plantar fasciitis in the future. Biomechanically, both structures are positively correlated. This may provide new aspects in the diagnostics and therapy of plantar fasciitis and Achilles tendinopathy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Pancreatic tissue fluid pressure and pain in chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N

    1992-01-01

    A casual relation between pancreatic pressure and pain has been searched for decades but lack of appropriate methods for pressure measurements has hindered progress. During the 1980's the needle method has been used for direct intraoperative pancreatic tissue fluid pressure measurements and later...... for percutaneous sonographically-guided pressure measurements. Clinical and experimental evaluation of the method showed comparable results at intraoperative and percutaneous measurements and little week-to-week variation. Furthermore, comparable pressures in duct and adjacent pancreatic tissue were found, i.......e. the needle pressure mirrors the intraductal pressure. Comparisons of pain registrations, morphological and functional parameters with pancreatic tissue fluid pressure measurements have revealed a relation between pressure and pain which probably is causal. In patients with pain the high pressures previously...

  19. HISTORICAL GIS DATA AND CHANGES IN URBAN MORPHOLOGICAL PARAMETERS FOR THE ANALYSIS OF URBAN HEAT ISLANDS IN HONG KONG

    Directory of Open Access Journals (Sweden)

    F. Peng

    2016-06-01

    Full Text Available Rapid urban development between the 1960 and 2010 decades have changed the urban landscape and pattern in the Kowloon Peninsula of Hong Kong. This paper aims to study the changes of urban morphological parameters between the 1985 and 2010 and explore their influences on the urban heat island (UHI effect. This study applied a mono-window algorithm to retrieve the land surface temperature (LST using Landsat Thematic Mapper (TM images from 1987 to 2009. In order to estimate the effects of local urban morphological parameters to LST, the global surface temperature anomaly was analysed. Historical 3D building model was developed based on aerial photogrammetry technique using aerial photographs from 1964 to 2010, in which the urban digital surface models (DSMs including elevations of infrastructures and buildings have been generated. Then, urban morphological parameters (i.e. frontal area index (FAI, sky view factor (SVF, vegetation fractional cover (VFC, global solar radiation (GSR, Normalized Difference Built-Up Index (NDBI, wind speed were derived. Finally, a linear regression method in Waikato Environment for Knowledge Analysis (WEKA was used to build prediction model for revealing LST spatial patterns. Results show that the final apparent surface temperature have uncertainties less than 1 degree Celsius. The comparison between the simulated and actual spatial pattern of LST in 2009 showed that the correlation coefficient is 0.65, mean absolute error (MAE is 1.24 degree Celsius, and root mean square error (RMSE is 1.51 degree Celsius of 22,429 pixels.

  20. Effect of process parameters on crystal size and morphology of lactose in ultrasound-assisted crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Patel, S.R.; Murthy, Z.V.P. [Chemical Engineering Department, S.V. National Institute of Technology, Surat - 395 007, Gujarat (India)

    2011-03-15

    {alpha}-lactose monohydrate is widely used as a pharmaceutical excipient. Drug delivery system requires the excipient to be of narrow particle size distribution with regular particle shape. Application of ultrasound is known to increase or decrease the growth rate of certain crystal faces and controls the crystal size distribution. In the present paper, effect of process parameters such as sonication time, anti-solvent concentration, initial lactose concentration and initial pH of sample on lactose crystal size, shape and thermal transition temperature was studied. The parameters were set according to the L{sub 9}-orthogonal array method at three levels and recovered lactose from whey by sonocrystallization. The recovered lactose was analyzed by particle size analyzer, scanning electron microscopy and differential scanning calorimeter. It was found that the morphology of lactose crystal was rod/needle like shape. Crystal size distribution of lactose was observed to be influenced by different process parameters. From the results of analysis of variance, the sonication time interval was found to be the most significant parameter affecting the volume median diameter of lactose with the highest percentage contribution (74.28%) among other parameters. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Quantitative 3D Analysis of Nuclear Morphology and Heterochromatin Organization from Whole-Mount Plant Tissue Using NucleusJ.

    Science.gov (United States)

    Desset, Sophie; Poulet, Axel; Tatout, Christophe

    2018-01-01

    Image analysis is a classical way to study nuclear organization. While nuclear organization used to be investigated by colorimetric or fluorescent labeling of DNA or specific nuclear compartments, new methods in microscopy imaging now enable qualitative and quantitative analyses of chromatin pattern, and nuclear size and shape. Several procedures have been developed to prepare samples in order to collect 3D images for the analysis of spatial chromatin organization, but only few preserve the positional information of the cell within its tissue context. Here, we describe a whole mount tissue preparation procedure coupled to DNA staining using the PicoGreen ® intercalating agent suitable for image analysis of the nucleus in living and fixed tissues. 3D Image analysis is then performed using NucleusJ, an open source ImageJ plugin, which allows for quantifying variations in nuclear morphology such as nuclear volume, sphericity, elongation, and flatness as well as in heterochromatin content and position in respect to the nuclear periphery.

  2. Effect of Irradiation Parameters on Morphology of Polishing DF2 (AISI-O1 Surface by Nd:YAG Laser

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2007-01-01

    Full Text Available Pulse Nd:YAG laser was used to polish DF2 cold work steel. Influence of irradiation parameters on the 3D surface morphology was studied by 3D profilometer, scanning electron microscopy (SEM, and atomic force microscope (AFM. Results among the tests showed when DF2 specimens were irradiated with parameters of (i laser input energy P=1 J, (ii pulse feedrate=300 mm/min, (iii pulse duration (PD =3 milliseconds, and (iv pulse frequency f=20∼25 Hz, laser polishing of DF2 cold work steel seemed to be successful.

  3. Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: Approach for tuning algorithm parameters

    Science.gov (United States)

    Mueller, Jenna L.; Harmany, Zachary T.; Mito, Jeffrey K.; Kennedy, Stephanie A.; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G.; Willett, Rebecca M.; Brown, J. Quincy; Ramanujam, Nimmi

    2013-02-01

    The combination of fluorescent contrast agents with microscopy is a powerful technique to obtain real time images of tissue histology without the need for fixing, sectioning, and staining. The potential of this technology lies in the identification of robust methods for image segmentation and quantitation, particularly in heterogeneous tissues. Our solution is to apply sparse decomposition (SD) to monochrome images of fluorescently-stained microanatomy to segment and quantify distinct tissue types. The clinical utility of our approach is demonstrated by imaging excised margins in a cohort of mice after surgical resection of a sarcoma. Representative images of excised margins were used to optimize the formulation of SD and tune parameters associated with the algorithm. Our results demonstrate that SD is a robust solution that can advance vital fluorescence microscopy as a clinically significant technology.

  4. Determination of the hydrodynamic and morphological parameters of the Luyano River using radiotracer techniques

    International Nuclear Information System (INIS)

    Valcarcel, Lino; Alberro, Nancy; Rodriguez, Maydel; Herrero, Zahily; Borroto, Jorge; Hernandez, Anel; Dominguez, Judith; Derivet, Milagros; Flores, Pedro; Cuesta, Jaime; Griffith, Jose

    2011-01-01

    The hydrodynamic and morphological parameters (the times of travel, velocities and flowrates of the waters, and the average widths, cross sections and depths) in the middle segment of the river Luyano were determined combining the employment of sodium pertechnectate (Na 99m TcO 4 ) as radiotracer with other conventional techniques. The results were used for the calibration of the expanded Streeter and Phelps model of the river. In the work, the methodology and the main results obtained during the journey realized between the second fortnight of March and the first of April 2009 are presented. (Author)

  5. Influence of electrical parameters on morphology of nanostructured TiO2 layers developed by electrochemical anodization

    Directory of Open Access Journals (Sweden)

    Strnad Gabriela

    2017-01-01

    Full Text Available Ti6Al4V alloy micro rough surfaces with TiO2 self-organized nanostructured layers were synthesized using electrochemical anodization in phosphate/fluoride electrolyte, at different end potentials (5V, 10V, 15V, and 20 V. The current – time characteristics were recorded, and the link between current evolution and the morphology of developing oxide layers was investigated. On flat surfaces of Ti6Al4V alloy we developed TiO2 layers with different morphologies (random pores, nanopores of 25…50 nm, and highly organized nanotubes of 50…100 nm in diameter depending on electrical parameters of anodization process. In our anodization cell, in optimized conditions, we are able to superimpose nanostructured oxide layers (nanotubular or nanoporous over micro structured surfaces of titanium based materials used for biomedical implants.

  6. Pancreatic tissue fluid pressure in chronic pancreatitis. Relation to pain, morphology, and function

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Bülow, J

    1990-01-01

    The relation between pancreatic tissue fluid pressure and pain, morphology, and function was studied in a cross-sectional investigation. Pressure measurements were performed by percutaneous fine-needle puncture. Thirty-nine patients with chronic pancreatitis were included, 25 with pain and 14...... without (p = 0.004 and p = 0.0003, respectively). The pressure was significantly related (inversely) to pancreatic duct diameter only in the group of 19 patients with earlier pancreatic surgery (R = -0.57, p = 0.02). The pressure was not related to functional factors or the presence of pancreatic...... without pain. The pressure was higher in patients with pain than in patients without pain (p = 0.000001), and this was significantly related to a pain score from a visual analogue scale (p less than 0.001). Patients with pancreatic pseudocysts had both higher pressure and higher pain score than patients...

  7. Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping

    International Nuclear Information System (INIS)

    Welsch, Goetz H.; Mamisch, Tallal C.; Quirbach, Sebastian; Trattnig, Siegfried; Zak, Lukas; Marlovits, Stefan

    2009-01-01

    The objective of this study was to use advanced MR techniques to evaluate and compare cartilage repair tissue after matrix-associated autologous chondrocyte transplantation (MACT) in the patella and medial femoral condyle (MFC). Thirty-four patients treated with MACT underwent 3-T MRI of the knee. Patients were treated on either patella (n = 17) or MFC (n = 17) cartilage and were matched by age and postoperative interval. For morphological evaluation, the MR observation of cartilage repair tissue (MOCART) score was used, with a 3D-True-FISP sequence. For biochemical assessment, T2 mapping was prepared by using a multiecho spin-echo approach with particular attention to the cartilage zonal structure. Statistical evaluation was done by analyses of variance. The MOCART score showed no significant differences between the patella and MFC (p ≥ 0.05). With regard to biochemical T2 relaxation, higher T2 values were found throughout the MFC (p < 0.05). The zonal increase in T2 values from deep to superficial was significant for control cartilage (p < 0.001) and cartilage repair tissue (p < 0.05), with an earlier onset in the repair tissue of the patella. The assessment of cartilage repair tissue of the patella and MFC afforded comparable morphological results, whereas biochemical T2 values showed differences, possibly due to dissimilar biomechanical loading conditions. (orig.)

  8. Effects of estradiol and medroxyprogesterone acetate on morphology, proliferation and apoptosis of human breast tissue in organ cultures

    International Nuclear Information System (INIS)

    Eigėlienė, Natalija; Härkönen, Pirkko; Erkkola, Risto

    2006-01-01

    Human breast tissue undergoes phases of proliferation, differentiation and regression regulated by changes of the levels of circulating sex hormones during the menstrual cycle or aging. Ovarian hormones also likely play a key role in the etiology and biology of breast cancer. Reports concerning the proliferative effects of steroid hormones on the normal epithelium of human breast have been conflicting. Some studies have shown that steroid hormones may predispose breast epithelial cells to malignant changes by stimulating their proliferation, which is known to be regulated tightly by stromal cells. The aim of this study was to investigate the effects of 17β-estradiol and medroxyprogesterone acetate on proliferation, apoptosis, expression of differentiation markers and steroid hormone receptors in breast epithelium using an in vitro model of freshly isolated human breast tissue, in which a proper interaction of breast epithelium and stroma has been maintained. Human breast tissues were obtained from women undergoing surgery for breast tumours. Peritumoral tissues were excised and explants were cultured for 3 weeks in medium supplemented with E 2 or MPA or with E 2 +MPA. Endpoints included histopathological, histomorphometric and immunohistochemical assessment of the breast explants. Culture of breast explants for 14 or 21 days with steroid hormones increased proliferative activity and the thickness of acinar and ductal epithelium. E 2 -treatment led to hyperplastic epithelial morphology, MPA to hypersecretory single-layered epithelium and E 2 +MPA to multilayered but organised epithelium. The proliferative response to E 2 in comparison to control (p < 0.001) was more pronounced than to MPA (p < 0.05) or E 2 +MPA (p < 0.05) at 7 and 14 days for Ki-67 and PCNA. E 2 treatment also decreased the proportion of apoptotic cells after 7 (p < 0.01) and 14 (p < 0.01) days. In addition, the relative number of ERα, ERβ and PR positive epithelial cells was decreased by all

  9. Chronic alcohol abuse in men alters bone mechanical properties by affecting both tissue mechanical properties and microarchitectural parameters.

    Science.gov (United States)

    Cruel, M; Granke, M; Bosser, C; Audran, M; Hoc, T

    2017-06-01

    Alcohol-induced secondary osteoporosis in men has been characterized by higher fracture prevalence and a modification of bone microarchitecture. Chronic alcohol consumption impairs bone cell activity and results in an increased fragility. A few studies highlighted effects of heavy alcohol consumption on some microarchitectural parameters of trabecular bone. But to date and to our knowledge, micro- and macro-mechanical properties of bone of alcoholic subjects have not been investigated. In the present study, mechanical properties and microarchitecture of trabecular bone samples from the iliac crest of alcoholic male patients (n=15) were analyzed and compared to a control group (n=8). Nanoindentation tests were performed to determine the tissue's micromechanical properties, micro-computed tomography was used to measure microarchitectural parameters, and numerical simulations provided the apparent mechanical properties of the samples. Compared to controls, bone tissue from alcoholic patients exhibited an increase of micromechanical properties at tissue scale, a significant decrease of apparent mechanical properties at sample scale, and significant changes in several microarchitectural parameters. In particular, a crucial role of structure model index (SMI) on mechanical properties was identified. 3D microarchitectural parameters are at least as important as bone volume fraction to predict bone fracture risk in the case of alcoholic patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, E H; Bayly, P V [Department of Mechanical Engineering and Materials Science, Washington University in St Louis, 1 Brookings Drive, Campus Box 1185, Saint Louis, MO 63130 (United States); Garbow, J R, E-mail: clayton@wustl.edu, E-mail: garbow@wustl.edu, E-mail: pvb@wustl.edu [Biomedical Magnetic Resonance Laboratory, Department of Radiology, Washington University in St Louis, 4525 Scott Avenue, Campus Box 8227, Saint Louis, MO 63110 (United States)

    2011-04-21

    Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo, using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive properties of induced shear waves. Key features of this study include (i) the development and application of a novel MR-compatible actuation system which transmits vibratory motion into the brain through an incisor bar, and (ii) the investigation of the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600-1800 Hz. Displacement fields due to propagating shear waves were measured during continuous, harmonic excitation of the skull. This protocol enabled characterization of the true steady-state patterns of shear wave propagation. Analysis of displacement fields obtained at different frequencies indicates that the viscoelastic properties of mouse brain tissue depend strongly on frequency. The average storage modulus (G') increased from approximately 1.6 to 8 kPa over this range; average loss modulus (G'') increased from approximately 1 to 3 kPa. Both moduli were well approximated by a power-law relationship over this frequency range. MRE may be a valuable addition to studies of disease in murine models, and to pre-clinical evaluations of therapies. Quantitative measurements of the viscoelastic parameters of brain tissue at high frequencies are also valuable for modeling and simulation of traumatic brain injury.

  11. The influence of supercritical foaming conditions on properties of polymer scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Kosowska Katarzyna

    2017-12-01

    Full Text Available The results of experimental investigations into foaming process of poly(ε-caprolactone using supercritical CO2 are presented. The objective of the study was to explore the aspects of fabrication of biodegradable and biocompatible scaffolds that can be applied as a temporary three-dimensional extracellular matrix analog for cells to grow into a new tissue. The influence of foaming process parameters, which have been proven previously to affect significantly scaffold bioactivity, such as pressure (8-18 MPa, temperature (323-373 K and time of saturation (1-6 h on microstructure and mechanical properties of produced polymer porous structures is presented. The morphology and mechanical properties of considered materials were analyzed using a scanning electron microscope (SEM, x-ray microtomography (μ-CT and a static compression test. A precise control over porosity and morphology of obtained polymer porous structures by adjusting the foaming process parameters has been proved. The obtained poly(ε-caprolactone solid foams prepared using scCO2 have demonstrated sufficient mechanical strength to be applied as scaffolds in tissue engineering.

  12. Redescription of Hepatozoon felis (Apicomplexa: Hepatozoidae) based on phylogenetic analysis, tissue and blood form morphology, and possible transplacental transmission.

    Science.gov (United States)

    Baneth, Gad; Sheiner, Alina; Eyal, Osnat; Hahn, Shelley; Beaufils, Jean-Pierre; Anug, Yigal; Talmi-Frank, Dalit

    2013-04-15

    A Hepatozoon parasite was initially reported from a cat in India in 1908 and named Leucocytozoon felis domestici. Although domestic feline hepatozoonosis has since been recorded from Europe, Africa, Asia and America, its description, classification and pathogenesis have remained vague and the distinction between different species of Hepatozoon infecting domestic and wild carnivores has been unclear. The aim of this study was to carry out a survey on domestic feline hepatozoonosis and characterize it morphologically and genetically. Hepatozoon sp. DNA was amplified by PCR from the blood of 55 of 152 (36%) surveyed cats in Israel and from all blood samples of an additional 19 cats detected as parasitemic by microscopy during routine hematologic examinations. Hepatozoon sp. forms were also characterized from tissues of naturally infected cats. DNA sequencing determined that all cats were infected with Hepatozoon felis except for two infected by Hepatozoon canis. A significant association (p = 0.00001) was found between outdoor access and H. felis infection. H. felis meronts containing merozoites were characterized morphologically from skeletal muscles, myocardium and lungs of H. felis PCR-positive cat tissues and development from early to mature meront was described. Distinctly-shaped gamonts were observed and measured from the blood of these H. felis infected cats. Two fetuses from H. felis PCR-positive queens were positive by PCR from fetal tissue including the lung and amniotic fluid, suggesting possible transplacental transmission. Genetic analysis indicated that H. felis DNA sequences from Israeli cats clustered together with the H. felis Spain 1 and Spain 2 sequences. These cat H. felis sequences clustered separately from the feline H. canis sequences, which grouped with Israeli and foreign dog H. canis sequences. H. felis clustered distinctly from Hepatozoon spp. of other mammals. Feline hepatozoonosis caused by H. felis is mostly sub-clinical as a high

  13. [Control parameters for high-intensity focused ultrasound (HIFU) for tissue ablation in the ex-vivo kidney].

    Science.gov (United States)

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E H; Kraut, O; Alken, P

    2002-01-01

    Therapeutic application of contactless thermoablation by high-intensity focused ultrasound (HIFU) demands precise physical definition of focal size and determination of control parameters. Our objective was to define the focal expansion of a new ultrasound generator and to evaluate the extent of tissue ablation under variable generator parameters in an ex vivo model. Axial and transversal distribution of ultrasound intensity in the area of the focal point was calculated by needle hydrophone. The extent of tissue necrosis after focused ultrasound was assessed in an ex vivo porcine kidney model applying generator power up to 400 Watt and pulse duration up to 8 s. The measurement of field distribution revealed a physical focal size of 32 x 4 mm. Sharp demarcation between coagulation necrosis and intact tissue was observed in our tissue model. Lesion size was kept under control by variation of both generator power and impulse duration. At a constant impulse duration of 2 s, generator power of 100 W remained below the threshold doses for induction of a reproducible lesion. An increase in power up to 200 W and 400 W, respectively, induced lesions with diameters up to 11.2 x 3 mm. Constant total energy (generator power x impulse duration) led to a larger lesion size under higher generator power. It is possible to induce sharply demarcated, reproducible thermonecrosis, which can be regulated by generator power and impulse duration, by means of a cylindrical piezo element with a paraboloid reflector at a focal distance of 10 cm. The variation of generator power was an especially suitable control parameter for the inducement of a defined lesion size.

  14. Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multi-layered tissue structures

    DEFF Research Database (Denmark)

    Thrane, Lars; Frosz, Michael Henoch; Tycho, Andreas

    2004-01-01

    A recently developed analytical optical coherence tomography (OCT) model [Thrane et al., J. Opt. Soc. Am. A 17, 484 (2000)] allows the extraction of optical scattering parameters from OCT images, thereby permitting attenuation compensation in those images. By expanding this theoretical model, we...... have developed a new method for extracting optical scattering parameters from multilayered tissue structures in vivo. To verify this, we used a Monte Carlo (MC) OCT model as a numerical phantom to simulate the OCT signal for het-erogeneous multilayered tissue. Excellent agreement between the extracted......, and the results hold promise for expanding the functional imaging capabilities of OCT....

  15. Morphological and agronomical characterization and estimates of genetic parameters of sesbania Scop. (Leguminosae accessions

    Directory of Open Access Journals (Sweden)

    Veasey E.A.

    1999-01-01

    Full Text Available Twenty-two accessions of seven Sesbania (Leguminosae species: S. emerus, S. rostrata, S. tetraptera, S. exasperata (annuals, S. grandiflora, S. sesban and S. virgata (perennials, used for ruminant fodder, firewood, wood products, soil improvement, and human food, were investigated, with the aim of characterizing both inter- and intraspecific genetic variability, estimating genetic parameters for the characters evaluated and appraising the forage potential of the accessions. These were planted at the Instituto de Zootecnia, Nova Odessa, SP, Brazil, in a randomized complete block design with 22 treatments and four replications. Seventeen morphological and 17 agronomic characters were evaluated. Genetic parameters coefficient of intraspecific genetic diversity (bi and coefficient of intraspecific genetic variation (CVgi were obtained for the species represented by more than one accession. Highly significant differences were observed among as well as within species for most characters, showing considerable genetic variability. S. exasperata showed intraspecific genetic variability for the largest number of morphological characters. The same was observed for S. sesban for the agronomic characters. Most of the characters gave high bi values, above 0.80, indicating the possibility of selecting superior genotypes. The CVgi values, on the other hand, which indicate the magnitude of the existing genetic variability relative to the character mean, varied according to the species and character evaluated. Differences between annual and perennial species were observed, with higher biomass yields presented by the annuals at the first cut and by the perennials after the second cut, reaching the highest yield at the third cut. The annual species had higher seed production. Accession NO 934 of S. sesban gave the highest biomass yields and regrowth vigor, showing promise as a forage legume plant.

  16. Surface morphological changes on the human dental enamel and cement after the Er:YAG laser irradiation at different incidence angles

    International Nuclear Information System (INIS)

    Tannous, Jose Trancoso

    2001-01-01

    This is a morphological analysis study through SEM of the differences of the laser tissue interaction as a function of the laser beam irradiation angle, under different parameters of energy. Fourteen freshly extracted molars stored in a 0,9% sodium chloride solution were divided in seven pairs and were irradiated with 100, 200, 300, 400, 500, 600 and 700 mJ per pulse, respectively. Each sample received three enamel irradiations and three cement irradiations, either in the punctual or in the contact mode, one near to the other, with respectively 30, 45 and 90 inclinations degrees of dental surface-laser-beam incidence. Four Er:YAG pulses (2,94 μm, 7-20 Hz, 0,1-1 J energy/pulse - Opus 20 - Opus Dent) with water cooling system (0,4 ml/s) were applied. After the laser irradiation the specimens were analysed through scanning electron microscope (SEM). The results were analysed by SEM micrographs showing a great difference on the laser tissue interaction characteristics as a function of the irradiation angle of the laser beam. All the observations led to conclude that, considering the laser parameters used, the incidence angle variation is a very important parameter regarding the desired morphological effects. This represents an extremely relevant detail on the technical description of the Er:YAG laser irradiation protocols on dental tissues. (author)

  17. Expanding the body mass range: associations between BMR and tissue morphology in wild type and mutant dwarf mice (David mice).

    Science.gov (United States)

    Meyer, Carola W; Neubronner, Juliane; Rozman, Jan; Stumm, Gabi; Osanger, Andreas; Stoeger, Claudia; Augustin, Martin; Grosse, Johannes; Klingenspor, Martin; Heldmaier, Gerhard

    2007-02-01

    We sought to identify associations of basal metabolic rate (BMR) with morphological traits in laboratory mice. In order to expand the body mass (BM) range at the intra-strain level, and to minimize relevant genetic variation, we used male and female wild type mice (C3HeB/FeJ) and previously unpublished ENU-induced dwarf mutant littermates (David mice), covering a body mass range from 13.5 g through 32.3 g. BMR was measured at 30 degrees C, mice were killed by means of CO(2 )overdose, and body composition (fat mass and lean mass) was subsequently analyzed by dual X-ray absorptiometry (DEXA), after which mice were dissected into 12 (males) and 10 (females) components, respectively. Across the 44 individuals, 43% of the variation in the basal rates of metabolism was associated with BM. The latter explained 47% to 98% of the variability in morphology of the different tissues. Our results demonstrate that sex is a major determinant of body composition and BMR in mice: when adjusted for BM, females contained many larger organs, more fat mass, and less lean mass compared to males. This could be associated with a higher mass adjusted BMR in females. Once the dominant effects of sex and BM on BMR and tissue mass were removed, and after accounting for multiple comparisons, no further significant association between individual variation in BMR and tissue mass emerged.

  18. Characteristics of Morphological Parameters of Donkeys in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Martina Kosťuková

    2015-01-01

    Full Text Available The donkey population in Central Europe and Czech Republic is very variation, which is a consequence of the donkeys originating from various areas of Europe. This has been proved to affect their body conformation. In this work, we are focusing on the population of donkeys in the Czech Republic and its analysis.The main aim of our work was to determine the values morphological parameters in the donkey population in the Czech Republic. Altogether, 23 body dimensions were taken and further processed to calculate 6 hippo metric indexes. The sample group we analyzed consisted by a total of 70 individuals, out of there were 23 stallions and 47 mares. The results were then processed using the methods of general linear model (GLM and multiple comparisons.We managed to prove a statistically significant influence of the sex factor for the following body measurements: shin length of the front limbs, chest width, withers height measured by tape, shin circumference on both front and pelvic limbs and also for weight index. Also, we have found a statistically significant difference in the scapula length when considering the age factor.

  19. Optimizing gelling parameters of gellan gum for fibrocartilage tissue engineering.

    Science.gov (United States)

    Lee, Haeyeon; Fisher, Stephanie; Kallos, Michael S; Hunter, Christopher J

    2011-08-01

    Gellan gum is an attractive biomaterial for fibrocartilage tissue engineering applications because it is cell compatible, can be injected into a defect, and gels at body temperature. However, the gelling parameters of gellan gum have not yet been fully optimized. The aim of this study was to investigate the mechanics, degradation, gelling temperature, and viscosity of low acyl and low/high acyl gellan gum blends. Dynamic mechanical analysis showed that increased concentrations of low acyl gellan gum resulted in increased stiffness and the addition of high acyl gellan gum resulted in greatly decreased stiffness. Degradation studies showed that low acyl gellan gum was more stable than low/high acyl gellan gum blends. Gelling temperature studies showed that increased concentrations of low acyl gellan gum and CaCl₂ increased gelling temperature and low acyl gellan gum concentrations below 2% (w/v) would be most suitable for cell encapsulation. Gellan gum blends were generally found to have a higher gelling temperature than low acyl gellan gum. Viscosity studies showed that increased concentrations of low acyl gellan gum increased viscosity. Our results suggest that 2% (w/v) low acyl gellan gum would have the most appropriate mechanics, degradation, and gelling temperature for use in fibrocartilage tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.

  20. Bremsstrahlung parameters of praseodymium-142 in different human tissues. A dosimetric perspective for 142Pr radionuclide therapy

    International Nuclear Information System (INIS)

    Bakht, M.K.; Jabal-Ameli, H.; Ahmadi, S.J.; Sadeghi, M.; Sadjadi, S.; Tenreiro, Claudio

    2012-01-01

    Praseodymium-142 [T 1/2 =19.12 h, E β -=2.162 MeV (96.3%), E γ =1575 keV (3.7%)] is one of the 141 Pr radioisotopes. Many studies have been attempted to assess the significance of usage 142 Pr in radionuclide therapy. In many studies, the dosimetric parameters of 142 Pr sources were calculated by modeling 142 Pr sources in the water phantom and scoring the energy deposited around it. However, the medical dosimetry calculations in water phantom consider Bremsstrahlung production, raising the question: ''How important is to simulate human tissues instead of using water phantom?'' This study answers these questions by estimation of 142 Pr Bremsstrahlung parameters. The Bremsstrahlung parameters of 142 Pr as therapeutic beta nuclides in different human tissues (adipose, blood, brain, breast, cell nucleus, eye lens, gastrointestinal tract, heart, kidney, liver, lung deflated, lymph, muscle, ovary, pancreas, cartilage, red marrow, spongiosa, yellow marrow, skin, spleen, testis, thyroid and different skeleton bones) were calculated by extending the national council for radiation protection model. The specific Bremsstrahlung constant (Γ Br ), probability of energy loss by beta during Bremsstrahlung emission (P Br ) and Bremsstrahlung activity (A release ) Br were estimated. It should be mentioned that Monte Carlo simulation was used for estimation of 142 Pr Bremsstrahlung activity based on the element compositions of different human tissues and the calculated exposures from the anthropomorphic phantoms. Γ Br for yellow marrow was smallest amount (1.1962 x 10 -3 C/kg-cm 2 /MBq-h) compared to the other tissues and highest for cortical bone (2.4764 x 10 -3 C/kg-cm 2 /MBq-h), and, overall, Γ Br for skeletal tissues were greater than other tissues. In addition, Γ Br breast was 1.8261 x 10 -3 C/kg-cm 2 /MBq-h which was greater than sacrum and spongiosa bones. Moreover, according to (A release ) Br of 142 Pr, the patients receiving 142 Pr do not have to be hospitalized for

  1. Morphological parameters for implantation of the screwless spring loop dynamic posterior spinous process stabilizing system.

    Science.gov (United States)

    Song, Geun Soo; Lee, Yeon Soo

    2015-07-01

    This study aimed to quantify morphological characteristics of the posterior lumbar spinous process, which may affect stable implantation of screwless wire spring loops. Virtual implantations of a screwless wire spring loop onto pairs of lumbar spinous processes were performed for computed tomography (CT)-derived three-dimensional vertebral models of 40 Korean subjects. Morphological parameters of lumbar vertebrae 1 through 5 (L1-L5) were measured with regard to bone-implant interference. In males, the transspinous process fixation lengths decreased from 57.8±3.0mm to 48.8±3.2mm as the lumbar joints descend from L1-L2 to L4-L5, with those in females about 4.1±0.4mm shorter (pprocess and the greatest (8.1±2.2mm) for the L4 upper spinous process; this was 1.0±10.3mm less than that for males at corresponding levels (p>0.05). The ratio of the spinous process clenched thickness to the transspinous fixation length increased from 0.133±0.016 to 0.196±0.076 for the upper spinous processes as the lumbar joints descend. The ratio of the spinous process clenched thickness to the transspinous fixation length varies, depending on gender and whether the clenched level is the upper or lower spinous process. These parameters related to the clenching fixation stability should be considered in development and implantations of the screwless wire spring loop. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Morphology and parameters of crystallization the blend PE/Epoxy/PE-co-PEG; Morfologia e parametros de cristalizacao da blenda PE/epoxi/PE-co-PEG

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Daniela; Coelho, Luiz Antonio Ferreira; Nack, Fernanda; Silva, Bruna Louise, E-mail: dep2db@joinville.udesc.br [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Centro de Ciencias Tecnologicas

    2014-07-01

    This study aims to evaluate the morphology and crystallization parameters of high density polyethylene (HDPE) with different concentrations of epoxy (DGEBA / OTBG), and the compatibility of this system was used and the copolymer polyethylene-block-poly (ethylene glycol) (PEG-co-PE). The blends were obtained by mechanical mixing on a torque rheometer (Haake). Determined the crystallization parameters of the test matrix differential scanning calorimetry (DSC) and by X-ray diffraction (XRD). The morphology of the system was analyzed by transmission electron microscopy (TEM). It was observed by XRD analysis that the addition of compatibilizer and epoxy resins do not interfere with the crystal structure of HDPE, indicating that the increase in crystallinity associated with the crystallization kinetics. It was observed that the compatibilizing helped the adhesion, reducing the size of the dispersed phase becomes a more stable morphology and obtaining a distribution of the dispersed epoxy phase. (author)

  3. Deep tissue injury in development of pressure ulcers: a decrease of inflammasome activation and changes in human skin morphology in response to aging and mechanical load.

    Directory of Open Access Journals (Sweden)

    Olivera Stojadinovic

    Full Text Available Molecular mechanisms leading to pressure ulcer development are scarce in spite of high mortality of patients. Development of pressure ulcers that is initially observed as deep tissue injury is multifactorial. We postulate that biomechanical forces and inflammasome activation, together with ischemia and aging, may play a role in pressure ulcer development. To test this we used a newly-developed bio-mechanical model in which ischemic young and aged human skin was subjected to a constant physiological compressive stress (load of 300 kPa (determined by pressure plate analyses of a person in a reclining position for 0.5-4 hours. Collagen orientation was assessed using polarized light, whereas inflammasome proteins were quantified by immunoblotting. Loaded skin showed marked changes in morphology and NLRP3 inflammasome protein expression. Sub-epidermal separations and altered orientation of collagen fibers were observed in aged skin at earlier time points. Aged skin showed significant decreases in the levels of NLRP3 inflammasome proteins. Loading did not alter NLRP3 inflammasome proteins expression in aged skin, whereas it significantly increased their levels in young skin. We conclude that aging contributes to rapid morphological changes and decrease in inflammasome proteins in response to tissue damage, suggesting that a decline in the innate inflammatory response in elderly skin could contribute to pressure ulcer pathogenesis. Observed morphological changes suggest that tissue damage upon loading may not be entirely preventable. Furthermore, newly developed model described here may be very useful in understanding the mechanisms of deep tissue injury that may lead towards development of pressure ulcers.

  4. Menstruum induces changes in mesothelial cell morphology.

    Science.gov (United States)

    Koks, C A; Demir Weusten, A Y; Groothuis, P G; Dunselman, G A; de Goeij, A F; Evers, J L

    2000-01-01

    In previous studies, we have shown that menstrual endometrium preferentially adheres to the subepithelial lining of the peritoneum. It remains to be elucidated, however, whether this damage is preexisting or inflicted by the menstrual tissue itself. We hypothesized that the menstrual tissue itself damages the peritoneum. To investigate this, the viability of menstrual endometrial tissue in peritoneal fluid (PF) was evaluated and the morphologic changes in the mesothelial cells were studied by in vitro cocultures of menstruum with mesothelial cell monolayers. Menstruum was collected with a menstrual cup. Endometrial tissue was isolated from the menstruum, resuspended in culture medium or in the cell-free fraction of PF and cultured for 24, 48 or 72 h. A 3(4, 5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to obtain a relative measure of viable adhered endometrial cells. Mesothelial cells isolated from human omental tissue were cultured on Matrigel or uncoated plastic. At confluence, overnight cocultures were performed and scanning electron microscopy was used to evaluate the morphologic changes. The viability of endometrial fragments was 84% (n = 36, p Menstrual endometrial fragments or menstrual serum added to and cocultured with mesothelial cells induced severe morphologic alterations of the latter, including retraction, shrinking and gap formation. Similar morphologic changes were observed when mesothelial cells were cocultured with menstrual endometrial fragments in PF or in culture inserts. Incubation with conditioned medium from cultured menstrual endometrium induced similar but less pronounced changes in morphology. In conclusion, menstrual endometrial fragments remain viable in PF in vitro for at least 72 h. Antegradely shed menstruum induces changes in mesothelial cell morphology, including retraction and shrinking with exposure of the underlying surface. These findings suggest that menstruum is harmful to the peritoneal

  5. Morphological and chemical information in fresh and vitrified ovarian tissues revealed by X-ray Microscopy and Fluorescence: observational study

    Science.gov (United States)

    Pascolo, L.; Venturin, I.; Gianoncelli, A.; Salomé, M.; Altissimo, M.; Bedolla, D. E.; Giolo, E.; Martinelli, M.; Luppi, S.; Romano, F.; Zweyer, M.; Ricci, G.

    2018-06-01

    Many clinical circumstances impose the necessity of collection and prolonged storage of gametes and/or ovarian tissue in order to preserve the reproduction potential of subjects. This is particularly appropriate in the case of young women and pre-pubertal girls undergoing chemotherapeutic treatments. The success of later assisted fertilization will depend on the suitable cooling protocols minimizing cryo-damages and preserving their biological function. The freeze-thaw processes of cryopreservation may induce, in fact, morphological and structural damages of oocytes and tissue mainly due to the formation of intracellular ice and to the toxicity of cryoprotectant. The most used cryo-protocol is the slow freezing procedure, but recently many authors have proposed vitrification as an alternative, because of its simplicity. The damage extent and the quality of follicles after cryopreservation are usually evaluated morphologically by conventional histological procedures, light and electron microscopy. Our laboratory, to further improve the evaluation and to better investigate damages, is adopting a combination of Synchrotron soft X-ray Microscopy (at TwinMic – Elettra) and XRF at different incident energies (at TwinMic – Elettra and ID21 – ESRF). X-ray techniques were performed on histological sections at micro and sub-micron resolution. Phase contrast and absorption images revealed changes in the compactness of the tissues, as well as cellular abnormalities revealed at sub-micrometric resolution. The distributions of the elements detected at 7.3 and 1.5 keV were compared and particularly Cl resulted to be indicative of follicle integrity. The results demonstrate the utility and the potential of X-ray microscopy and fluorescence in this research field.

  6. Comparison of morphological and kinetic parameters in distinction of benign and malignant breast lesions in dynamic contrast enhanced magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Direnç Özlem Aksoy

    2013-12-01

    Full Text Available Objective: To evaluate the value of qualitative morphologicaland kinetic data and quantitative kinetic data indistinction of malignancy in dynamic contrast enhancedmagnetic resonance imaging (DCE-MRI of the breast.Methods: DCE-MRIs of 49 subjects were evaluated.Morphological and contrast enhancement parameters of95 lesions were recorded in these subjects. Post-contrastkinetic behavior of these lesions were also investigated.Among the quantitative parameters, relative enhancements(E1, E2, Epeak, time-to-peak (Tpeak, slope ofcurve (Slope, signal enhancement ratio (SER, and maximumintensity time ratio (MITR were calculated. Theseresults were compared with the pathological diagnosis.Results: Spiculated contour (100%, rim enhancement(97.87%, irregular shape (95.74%, and irregular margin(91.49% were the most specific morphological featuresof malignancy in mass lesions. In non-mass lesions, focalzone (91.49% was the most specific feature of malignancy.74.5% of the benign lesions showed type 1, 77.1%of the malignant lesions showed type 2 and 3 curves accordingto the kinetic curve evaluation. All quantitativeparameters except Epeak were found to be statisticallysignificant in distinction of malignancy.Conclusion: None of the morphological features of thebenign lesions were found to be significantly specific.More specific features can be described for malignantlesions. Early behavior of the kinetic curve is not usefulfor diagnosis of malignancy but the intermediate and latebehavior gives useful information. Quantitative data involvedin this study might be promising.Key words: Morphological, kinetic, breast lesions, magnetic resonance imaging, dynamic

  7. Effect of morphological and functional changes in the secundines on biometric parameters of newborns from dichorionic twin pregnancies.

    Science.gov (United States)

    Waszak, Małgorzata; Cieślik, Krystyna; Pietryga, Marek; Lewandowski, Jacek; Chuchracki, Marek; Nowak-Markwitz, Ewa; Bręborowicz, Grzegorz

    2016-01-01

    The aim of the study was to determine if, and to what extent, structural and functional changes of the secundines influence biometric parameters of neonates from dichorionic twin pregnancies. The study included neonates from dichorionic, diamniotic twin pregnancies, along with their secundines. Based on histopathological examination of the secundines, the mass and dimensions of the placenta, length and condition of the umbilical cord, chorionicity, focal lesions, and microscopic placental abnormalities were determined for 445 pairs of twins. Morphological development of examined twins was characterized on the basis of their six somatic traits, while birth status of the newborns was assessed based on their Apgar scores. Statistical analysis included Student t-tests, Snedecor's F-tests, post-hoc tests, non-parametric chi-squared Pearson's tests, and determination of Spearman coefficients of rank correlation. The lowest values of analyzed somatic traits were observed in twins who had placentas with velamentous or marginal cord insertion. Inflammatory lesions in the placenta and placental abruption turned out to have the greatest impact of all analyzed abnormalities of the secundines. Inflammatory lesions in the placenta were associated with lower values of biometric parameters and a greater likelihood of preterm birth. Neonates with a history of placental abruption were characterized by significantly lower birth weight and smaller chest circumference. Morphological changes in the secundines have a limited impact on biometric parameters of neonates from dichorionic twin pregnancies. In turn, functional changes exert a significant effect and more often contribute to impaired fetal development.

  8. Soft tissue freezing process. Identification of the dual-phase lag model parameters using the evolutionary algorithm

    Science.gov (United States)

    Mochnacki, Bohdan; Majchrzak, Ewa; Paruch, Marek

    2018-01-01

    In the paper the soft tissue freezing process is considered. The tissue sub-domain is subjected to the action of cylindrical cryoprobe. Thermal processes proceeding in the domain considered are described using the dual-phase lag equation (DPLE) supplemented by the appropriate boundary and initial conditions. DPLE results from the generalization of the Fourier law in which two lag times are introduced (relaxation and thermalization times). The aim of research is the identification of these parameters on the basis of measured cooling curves at the set of points selected from the tissue domain. To solve the problem the evolutionary algorithms are used. The paper contains the mathematical model of the tissue freezing process, the very short information concerning the numerical solution of the basic problem, the description of the inverse problem solution and the results of computations.

  9. Influence of lung parameter values for the Brazilian population on inhalation dose

    International Nuclear Information System (INIS)

    Reis, Arlene A.; Lopes, Ricardo T.

    2009-01-01

    The Human Respiratory Tract Model (HRTM) proposed by the ICRP Publication 66 accounts for the morphology and physiology of the respiratory tract. The ICRP 66 presents deposition fraction in the respiratory tract regions considering reference values from Caucasian man. However, in order to obtain a more accurate assessment of intake and dose the ICRP recommends the use of specific information when they are available. The main objective of this study is to evaluate the influence in dose calculation to each region of the respiratory tract when physiological parameters from samples of Brazilian population, in different levels of exercise, are applied in the deposition model.The dosimetric model of HRTM was implemented in the software EXCEL for Windows and committed equivalent dose was determined for each respiratory tract region. First it was calculated the total number of nuclear transformations considering the fractional deposition of activity in each source tissue obtained by application of physiological and morphological Brazilian parameters in the deposition model and then it was calculated the total energy absorbed per unit mass in the target tissue.The variation in the fractional deposition in the compartments of the respiratory tract in changing the physiological parameters from Caucasian to Brazilian adult man causes variation in the number of total transformations and also in the equivalent dose in each region of the respiratory tract. The variations are not the same for all regions of the respiratory tract and depend on levels of exercise. (author)

  10. Nuclear morphology, polyploidy, and chromatin elimination in tissue culture of Allium fistulosum L.

    Directory of Open Access Journals (Sweden)

    Andrzej Joachimiak

    2011-01-01

    Full Text Available The morphology of cell nuclei in callus obtained from root-tip meristems of Allium fistulosum L. (Monocotyledoneae, Alliaceae was analysed. The most interesting phenomena observed in long-term callus culture were the different mechanisms of cell polyploidization, enlargement of telomeric segments of heterochromatin, and extensive chromatin elimination, associated with instability of nuclei size and DNA content. Protruding heterochromatin "spikes" were observed on the surface of some di- and polyploid nuclei. The presence of these spikes was connected with the formation of small heterochromatic micronuclei frequently found in the cytoplasm. It is suggested that these micronuclei are produced by direct elimination of heterochromatin from the interphase nuclei. Polyploid cells accumulated with each successive cell collection. The ploidy level attained by highly polyploid cells was 15C-220C. The shape of the nuclei and heterochromatin distribution suggest that polyploid nuclei in A. fistulosum tissue culture are produced by endoreduplication and by restitution cycles.

  11. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    Energy Technology Data Exchange (ETDEWEB)

    Kabiri, Azadeh, E-mail: z_kabiri@resident.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esfandiari, Ebrahim, E-mail: esfandiari@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Hashemibeni, Batool, E-mail: hashemibeni@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Kazemi, Mohammad, E-mail: m_kazemi@med.mui.ac.i [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Mardani, Mohammad, E-mail: mardani@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esmaeili, Abolghasem, E-mail: abesmaeili@yahoo.com [Cell, Molecular and Developmental Biology Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  12. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    International Nuclear Information System (INIS)

    Kabiri, Azadeh; Esfandiari, Ebrahim; Hashemibeni, Batool; Kazemi, Mohammad; Mardani, Mohammad; Esmaeili, Abolghasem

    2012-01-01

    Highlights: ► We investigated effects of FGF-2 on hADSCs. ► We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. ► FGF-2 induces chondrogenesis in hADSCs, which •Increasing information will decrease quality if hospital costs are very different. ► The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  13. Low Immunogenic Endothelial Cells Maintain Morphological and Functional Properties Required for Vascular Tissue Engineering.

    Science.gov (United States)

    Lau, Skadi; Eicke, Dorothee; Carvalho Oliveira, Marco; Wiegmann, Bettina; Schrimpf, Claudia; Haverich, Axel; Blasczyk, Rainer; Wilhelmi, Mathias; Figueiredo, Constança; Böer, Ulrike

    2018-03-01

    The limited availability of native vessels suitable for the application as hemodialysis shunts or bypass material demands new strategies in cardiovascular surgery. Tissue-engineered vascular grafts containing autologous cells are considered ideal vessel replacements due to the low risk of rejection. However, endothelial cells (EC), which are central components of natural blood vessels, are difficult to obtain from elderly patients of poor health. Umbilical cord blood represents a promising alternative source for EC, but their allogeneic origin corresponds with the risk of rejection after allotransplantation. To reduce this risk, the human leukocyte antigen class I (HLA I) complex was stably silenced by lentiviral vector-mediated RNA interference (RNAi) in EC from peripheral blood and umbilical cord blood and vein. EC from all three sources were transduced by 93.1% ± 4.8% and effectively, HLA I-silenced by up to 67% compared to nontransduced (NT) cells or transduced with a nonspecific short hairpin RNA, respectively. Silenced EC remained capable to express characteristic endothelial surface markers such as CD31 and vascular endothelial cadherin important for constructing a tight barrier, as well as von Willebrand factor and endothelial nitric oxide synthase important for blood coagulation and vessel tone regulation. Moreover, HLA I-silenced EC were still able to align under unidirectional flow, to take up acetylated low-density lipoprotein, and to form capillary-like tube structures in three-dimensional fibrin gels similar to NT cells. In particular, addition of adipose tissue-derived mesenchymal stem cells significantly improved tube formation capability of HLA I-silenced EC toward long and widely branched vascular networks necessary for prevascularizing vascular grafts. Thus, silencing HLA I by RNAi represents a promising technique to reduce the immunogenic potential of EC from three different sources without interfering with EC-specific morphological and

  14. Morphological Characterisation of Unstained and Intact Tissue Micro-architecture by X-ray Computed Micro- and Nano-Tomography

    Science.gov (United States)

    Walton, Lucy A.; Bradley, Robert S.; Withers, Philip J.; Newton, Victoria L.; Watson, Rachel E. B.; Austin, Clare; Sherratt, Michael J.

    2015-05-01

    Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons.

  15. Morphological Parameters in Relation to the Electromagnetic Properties of Microcellular Thermoplastic Polyurethane Foam in X-Band Frequency Ranges

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Moeini

    2017-04-01

    Full Text Available Microcellular thermoplastic polyurethane foams are examined as absorbing materials in the X-band (8.2-12.4 GHz frequency range by means of experiment. In this work, we aim to establish relationships between foam morphology including cell size and air volume fraction and electromagnetic properties including absorption, transmission and reflection quality. Nanocomposites based on thermoplastic polyurethane containing carbon black were prepared by coagulation method. In this procedure 15 wt% carbon black-containing nanocomposite was converted to microcellular foams using batch foaming process and supercritical carbon dioxide as physical foaming agent. The morphology of the foams was evaluated by scanning electron microscopy. S-parameters of the samples were measured by a vector network analyzer (VNA and the effect of morphological parameters such as cell size and air volume fraction on the absorbing properties was investigated. We also established structure/properties relationships which were essential for further optimizations of the materials used in the construction of radar absorbing composites. Foaming reduced the percolation threshold of the nanocomposites due to the reduction in the average distance between nanoparticles. Foaming and dielectric constant reduction dropped the reflection percentage significantly. The increase in air volume fraction in the foam increased absorption per its weight, because of multiple scattering in composite media. The sensitivity of electromagnetic wave toward the variation of cell size is strongly weaker than that toward the variation of air volume fraction. Electromagnetic properties of the microcellular foams deviated a little from effective medium theories (EMTs. Air volume fraction of the cells was a function of cell size and smaller cells showed higher absorption.

  16. Cystic fibrosis transmembrane conductance regulator is correlated closely with sperm progressive motility and normal morphology in healthy and fertile men with normal sperm parameters.

    Science.gov (United States)

    Jiang, L-Y; Shan, J-J; Tong, X-M; Zhu, H-Y; Yang, L-Y; Zheng, Q; Luo, Y; Shi, Q-X; Zhang, S-Y

    2014-10-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) has been demonstrated to be expressed in mature spermatozoa and correlated with sperm quality. Sperm CFTR expression in fertile men is higher than that in infertile men suffering from teratospermia, asthenoteratospermia, asthenospermia and oligospermia, but it is unknown whether CFTR is correlated with sperm parameters when sperm parameters are normal. In this study, 282 healthy and fertile men with normal semen parameters were classified into three age groups, group (I): age group of 20-29 years (98 cases, 27.1 ± 6.2), group (II): age group of 30-39 years (142 cases, 33.7 ± 2.6) and group (III): age group of more than or equal to 40 years (42 cases, 44.1 ± 4.6). Sperm concentration, total count and progressive motility were analysed by computer-assisted sperm analysis. Sperm morphology was analysed by modified Papanicolaou staining. Sperm CFTR expression was conducted by indirect immunofluorescence staining. There was a significant positive correlation (P sperm progressive motility (r = 0.221) and normal morphology (r = 0.202), but there were no correlations between sperm CFTR expression and semen volume, sperm concentration, sperm total count as well as male age (P > 0.05). Our findings show that CFTR expression is associated with sperm progressive motility and normal morphology in healthy and fertile men with normal sperm parameters, but not associated with the number of spermatozoa and male age. © 2013 Blackwell Verlag GmbH.

  17. Postnatal administration of 2-oxoglutaric acid improves articular and growth plate cartilages and bone tissue morphology in pigs prenatally treated with dexamethasone.

    Science.gov (United States)

    Tomaszewska, E; Dobrowolski, P; Wydrych, J

    2012-10-01

    The potential effects of prenatal administration of dexamethasone (DEX) and postnatal treatment with 2-oxoglutaric acid (2-Ox) on postnatal development of connective tissue of farm animals were not examined experimentally. The aim of this study was to establish changes in morphological parameters of bone and articular and growth plate cartilages damaged by the prenatal action of DEX in piglets supplemented with 2-Ox. The 3 mg of DEX was administered by intramuscular route every second day from day 70 of pregnancy to parturition and then piglets were supplemented with 2-Ox during 35 days of postnatal life (0.4 g/kg body weight). The mechanical properties, BMD and BMC of bones, and histomorphometry of articular and growth plate cartilages were determined. Maternal treatment with DEX decreased the weight by 48%, BMD by 50% and BMC by 61% of the tibia in male piglets while such action of DEX in female piglets was not observed. DEX led to thinning of articular and growth plate cartilages and trabeculae thickness and reduced the serum GH concentration in male piglets. The administration of 2-Ox prevented the reduction of trabeculae thickness, the width of articular and growth plate cartilages in male piglets connected with higher growth hormone concentration compared with non-supplemented male piglets. The result showed that the presence of 2-Ox in the diet had a positive effect on the development of connective tissue in pigs during suckling and induced a complete recovery from bone and cartilage damage caused by prenatal DEX action.

  18. A new nonlinear parameter in the developed strain-to-applied strain of the soft tissues and its application in ultrasound elasticity imaging.

    Science.gov (United States)

    Xu, Jingping; Tripathy, Sakya; Rubin, Jonathan M; Stidham, Ryan W; Johnson, Laura A; Higgins, Peter D R; Kim, Kang

    2012-03-01

    Strain developed under quasi-static deformation has been mostly used in ultrasound elasticity imaging (UEI) to determine the stiffness change of tissues. However, the strain measure in UEI is often less sensitive to a subtle change of stiffness. This is particularly true for Crohn's disease where we have applied strain imaging to the differentiation of acutely inflamed bowel from chronically fibrotic bowel. In this study, a new nonlinear elastic parameter of the soft tissues is proposed to overcome this limit. The purpose of this study is to evaluate the newly proposed method and demonstrate its feasibility in the UEI. A nonlinear characteristic of soft tissues over a relatively large dynamic range of strain was investigated. A simplified tissue model based on a finite element (FE) analysis was integrated with a laboratory developed ultrasound radio-frequency (RF) signal synthesis program. Two-dimensional speckle tracking was applied to this model to simulate the nonlinear behavior of the strain developed in a target inclusion over the applied average strain to the surrounding tissues. A nonlinear empirical equation was formulated and optimized to best match the developed strain-to-applied strain relation obtained from the FE simulation. The proposed nonlinear equation was applied to in vivo measurements and nonlinear parameters were further empirically optimized. For an animal model, acute and chronic inflammatory bowel disease was induced in Lewis rats with trinitrobenzene sulfonic acid (TNBS)-ethanol treatments. After UEI, histopathology and direct mechanical measurements were performed on the excised tissues. The extracted nonlinear parameter from the developed strain-to-applied strain relation differentiated the three different tissue types with 1.96 ± 0.12 for normal, 1.50 ± 0.09 for the acutely inflamed and 1.03 ± 0.08 for the chronically fibrotic tissue. T-tests determined that the nonlinear parameters between normal, acutely inflamed and fibrotic tissue

  19. Tissue breathing and topology of rats thymocytes surface under acute total γ-irradiation.

    Science.gov (United States)

    Nikitina, I A; Gritsuk, A I

    2017-12-01

    Assessment of the effect of single total γ irradiation to the parameters of mitochondrial oxidation and the topology of the thymocyte surface. The study was performed in sexually mature white outbreeding male rats divided into three groups: two experimental and one control. The states of energy metabolism were determined by the rate of oxygen consumption by the thymus tissues on endogenous substrates at the presence of 2,4 dinitrophenol, uncoupler of a tissue breathing (TB) and oxidative phosphorylation (OP) after a single total γ irradiation at a dose of 1.0 Gy at 3, 10, 40 and 60 days. The topology of thymus cells was assessed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). On the 3rd and 10th days after total gamma irradiation at a dose of 1.0 Gy, a significant decrease in respira tory activity was determined in thymus tissues on endogenous substrates. Simultaneously, on the 3rd day, pro nounced changes in the morphological parameters of thymocytes (height, volume, area of contact with the sub strate) and the topology of their surface were also observed. On the 10th day after irradiation, most of the morpho logical parameters of thymocytes, except for their volume, were characterized by restoration to normal. In the long term (on the 30th and 60th days after exposure), a gradual but not complete recovery of the respiratory activity of thymocytes was observed, accompanied by an increase in the degree of dissociation of TD and OP. The obtained data reflect and refine mechanisms of post radiation repair of lymphopoiesis, showing the presence of conjugated changes in the parameters of aerobic energy metabolism of thymocytes, morphology and topology of their surface. The synchronism of changes in the parameters under study is a reflection of the state of the cytoskeleton, the functional activity of which largely depends on the level and efficiency of mitochondrial oxidation. І. A. Nikitina, A. I. Gritsuk.

  20. Correlation and path analysis of agronomic and morphological traits in maize

    Directory of Open Access Journals (Sweden)

    Tallyta Nayara Silva

    2016-06-01

    Full Text Available ABSTRACT The efficiency of selection can be broadened for certain traits using estimative of genetic parameters, which are fundamental for plant breeding. The estimative of genetic parameters allows identifying the nature of the action of genes involved in the control of quantitative traits and evaluates the efficiency of different breeding strategies to obtain genetic gains. Therefore, this study aimed to verify the variability and correlation between morphological and agronomic traits in synthetic maize populations, in order to practice indirect selection. Thirteen populations were evaluated in field experiments at Jaboticabal- SP and Campo Alegre de Goiás-GO, using randomized block design, for lodging (LOD, culm breakage (CB, plant height (PH, ear height (EH and grain yield (GY. The 13 populations were also sown in 1 kg-plastic bags under black shade cloth, using a randomized complete block design with nine replications, for evaluation of the morphological traits: main root length (MRL, root fresh matter (RFM, root dry matter (RDM, average root diameter (ARD, root surface area (RSA, root tissue density (RTD and shoots dry matter (SDM. The trait GY exhibited genetic variability enough to be effective if used for selection. The selection on the morphological traits is indicated on RDM, due to the ease in obtaining data and its accuracy, high correlation with all morphological traits and association with GY. The simultaneous selection based on RFM and RDM, for gains in GY, can be performed. The highest direct effect on GY was identified in LOD and CB, being indicated for indirect selection.

  1. Resonance sensor measurements of stiffness variations in prostate tissue in vitro--a weighted tissue proportion model.

    Science.gov (United States)

    Jalkanen, Ville; Andersson, Britt M; Bergh, Anders; Ljungberg, Börje; Lindahl, Olof A

    2006-12-01

    Prostate cancer is the most common type of cancer in men in Europe and the US. The methods to detect prostate cancer are still precarious and new techniques are needed. A piezoelectric transducer element in a feedback system is set to vibrate with its resonance frequency. When the sensor element contacts an object a change in the resonance frequency is observed, and this feature has been utilized in sensor systems to describe physical properties of different objects. For medical applications it has been used to measure stiffness variations due to various patho-physiological conditions. In this study the sensor's ability to measure the stiffness of prostate tissue, from two excised prostatectomy specimens in vitro, was analysed. The specimens were also subjected to morphometric measurements, and the sensor parameter was compared with the morphology of the tissue with linear regression. In the probe impression interval 0.5-1.7 mm, the maximum R(2) > or = 0.60 (p sensor was pressed, the greater, i.e., deeper, volume it sensed. Tissue sections deeper in the tissue were assigned a lower mathematical weighting than sections closer to the sensor probe. It is concluded that cancer increases the measured stiffness as compared with healthy glandular tissue, but areas with predominantly stroma or many stones could be more difficult to differ from cancer.

  2. Study of the agroindustrial alterations induced by the irradiated tissue culture in sugar cane, variety NA 56-79

    International Nuclear Information System (INIS)

    Figueiredo Junior, O.

    1991-01-01

    The use of plant tissue culture and the application of gamma radiation as mutation inducing agents, in the sugar cane plant, variety NA 5679, are studied. The variation in the contents of brix, pol, fiber, purity, extraction, phosphorus, nitrogen, reducing sugars as well as the morphological characteristics are analysed. The 'callus' obtained by the tissue culture were irradiated with 20, 40, and 60 Gy doses. The statistical analysis indicated that the method of tissue culture may, eventually, increase the contents of the technological parameters and the dosages of gamma radiation were not efficient for such purpose. (M.A.C.)

  3. Electrical biopsy of irradiated intestinal tissue with a simple electrical impedance spectroscopy system for radiation enteropathy in rats—a pilot study

    International Nuclear Information System (INIS)

    Huang, Yu-Jie; Lu, Yi-Yu; Chen, Cheng-Yu; Cheng, Kuo-Sheng; Huang, Eng-Yen

    2011-01-01

    Electrical impedance is one of the most often used parameters for characterizing material properties, especially in biomedical applications. Electrical impedance spectroscopy (EIS), used for revealing both resistive and capacitive characteristics, is good for use in tissue characterization. In this study, a portable and simple EIS system based on a commercially available chip was used to assess rat intestinal tissues following irradiation. The EIS results were fitted to a resistor and capacitor electrical circuit model to solve the electrical properties of the tissue. The variation in the tissue's electrical characteristics was compared to the morphological and histological findings. From the experimental results, it was clear that the electrical properties, based on receiver operation curve analysis, demonstrated good detection performance relative to the histological changes. The electrical parameters of the tissues could be used to distinguish the tissue's status for investigation, which introduced a concept of 'electrical biopsy', and this 'electrical biopsy' approach may be used to complement histological examinations

  4. Effect of ascorbic acid on morphological and biochemical parameters in tomato seedling exposure to salt stress

    Directory of Open Access Journals (Sweden)

    Krupa-Małkiewicz Marcelina

    2015-06-01

    Full Text Available The aim of this study is to determine the effect of both NaCl and KCl alone and in comparison to AsA on the morphological and some biochemical parameters of Oxheart and Vilma cultivars of tomato under laboratory and field conditions. A combination of salt applied in the laboratory experiment caused a significant effect on seed germination and root and shoot length and a significant reduction of Chl a, Chl b and Car contents in 14-day-old tomato seedlings. However, seedlings of cultivar Vilma were characterised by higher tolerance to applied salt stress.

  5. The response of MRI contrast parameters in in vitro tissues and tissue mimicking phantoms to fractionation by histotripsy

    Science.gov (United States)

    Allen, Steven P.; Vlaisavljevich, Eli; Shi, Jiaqi; Hernandez-Garcia, Luis; Cain, Charles A.; Xu, Zhen; Hall, Timothy L.

    2017-09-01

    Histotripsy is a non-invasive, focused ultrasound lesioning technique that can ablate precise volumes of soft tissue using a novel mechanical fractionation mechanism. Previous research suggests that magnetic resonance imaging (MRI) may be a sensitive image-based feedback mechanism for histotripsy. However, there are insufficient data to form some unified understanding of the response of the MR contrast mechanisms in tissues to histotripsy. In this paper, we investigate the response of the MR contrast parameters R1, R2, and the apparent diffusion coefficient (ADC) to various treatment levels of histotripsy in in vitro porcine liver, kidney, muscle, and blood clot as well in formulations of bovine red blood cells suspended in agar gel. We also make a histological analysis of histotripsy lesions in porcine liver. We find that R2 and the ADC are both sensitive to ablation in all materials tested here, and the degree of response varies with tissue type. Correspondingly, under histologic analysis, the porcine liver exhibited various levels of mechanical disruption and necrotic debris that are characteristic of histotripsy. While the area of intact red blood cells and nuclei found within these lesions both decreased with increasing amounts of treatment, the area of red blood cells decreased much more rapidly than the area of intact nuclei. Additionally, the decrease in area of intact red blood cells saturated at the same treatment levels at which the response of the R2 saturated while the area of intact nuclei appeared to vary linearly with the response of the ADC.

  6. Precise femtosecond laser ablation of dental hard tissue: preliminary investigation on adequate laser parameters

    International Nuclear Information System (INIS)

    Hikov, Todor; Pecheva, Emilia; Petrov, Todor; Montgomery, Paul; Antoni, Frederic; Leong-Hoi, Audrey

    2017-01-01

    This work aims at evaluating the possibility of introducing state-of-the-art commercial femtosecond laser system in restorative dentistry by maintaining well-known benefits of lasers for caries removal, but also in overcoming disadvantages such as thermal damage of irradiated substrate. Femtosecond ablation of dental hard tissue is investigated by changing the irradiation parameters (pulsed laser energy, scanning speed and pulse repetition rate), assessed for enamel and dentin. The femtosecond laser system used in this work may be suitable for cavity preparation in dentin and enamel, due to the expected effective ablation and low temperature increase when using ultra short laser pulses. If adequate laser parameters are selected, this system seems to be promising for promoting a laser-assisted, minimally invasive approach in restorative dentistry. (paper)

  7. A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions.

    Science.gov (United States)

    Ngadiman, Nor Hasrul Akhmal; Noordin, M Y; Idris, Ani; Kurniawan, Denni

    2017-07-01

    The potential of electrospinning process to fabricate ultrafine fibers as building blocks for tissue engineering scaffolds is well recognized. The scaffold construct produced by electrospinning process depends on the quality of the fibers. In electrospinning, material selection and parameter setting are among many factors that contribute to the quality of the ultrafine fibers, which eventually determine the performance of the tissue engineering scaffolds. The major challenge of conventional electrospun scaffolds is the nature of electrospinning process which can only produce two-dimensional electrospun mats, hence limiting their applications. Researchers have started to focus on overcoming this limitation by combining electrospinning with other techniques to fabricate three-dimensional scaffold constructs. This article reviews various polymeric materials and their composites/blends that have been successfully electrospun for tissue engineering scaffolds, their mechanical properties, and the various parameters settings that influence the fiber morphology. This review also highlights the secondary processes to electrospinning that have been used to develop three-dimensional tissue engineering scaffolds as well as the steps undertaken to overcome electrospinning limitations.

  8. Morphological parameters of the norway maple small undergrowthin forests of the Novgorod-Sivers’k Polissia

    Directory of Open Access Journals (Sweden)

    V. G. Skliar

    2012-02-01

    Full Text Available The size characteristics of the Norway maple small undergrowth in different association groups of the forests of Novgorod-Sivers’k Polissia are аnalyzed. As the trophicity of soil increases the values of static metric and dynamic morphoparameters of the undergrowth upsurge. And on the contrary, the values reduced with the growth of the forest overstory density and the projective cover of the herb-shrub layer. It is shown that in different plant communities the Norway maple undergrowth is characterised by specific morphological structure. The communal habitat of the group of Querceta convallariosa associations conforms with the parameters of ecocoenotical optimum, which conditions are most favourable for successful growth of the maple young generation.

  9. [Clinical-morphological and histometric characteristics of soft tissue wounds in maxilla-facial region of patients in different terms after trauma].

    Science.gov (United States)

    Fedorina, T A; Braĭlovskaia, T V

    2009-01-01

    504 patients with open traumas of face soft tissues which were given primary surgical wounds treatment with reconstructive operations in maxilla-facial surgical clinics of Samara State Medical University in 2005-2008 also received detailed description. The results of statistical analysis of patients' surgical treatment for the previous 5 year period were listed. It was noted that in the majority of cases (75,5%) patients turned to stomatological aid in first hours or first day and night after receiving the injury, more often there were isolated soft tissue injuries (73,3%), tear-contused and cut wounds put together 80,5%. Morphological and histometric studies of operational-biopsy material let determine the character of changes of leucocyte infiltration and of epithelium - stromal interrelation in different zones of wound edges in patients incoming in different terms after trauma. Objective criteria of tissue excision volumes were received in the process of surgical wound treatment. During last 3 years esthetic results of patient treatment with maxilla-facial traumas improved, the postoperative complications frequency was reduced by 8,1% if compared with the previous 5-year period.

  10. InGaN quantum well epilayers morphological evolution under a wide range of MOCVD growth parameter sets

    Energy Technology Data Exchange (ETDEWEB)

    Florescu, D.I.; Ting, S.M.; Merai, V.N.; Parekh, A.; Lee, D.S.; Armour, E.A.; Quinn, W.E. [Veeco TurboDisc Operations, 394 Elizabeth Avenue, Somerset, NJ 08873 (United States)

    2006-06-15

    This study exemplifies the use of TappingMode trademark atomic force microscopy (AFM) surface morphology imaging to investigate and optimise the metalorganic chemical vapour deposition (MOCVD) growth conditions and post-growth stability of thin (<40 Aa) InGaN layers with direct implications to the structural and optical properties of blue (460 nm) and green (520 nm) LEDs. InGaN epilayers less than 40 Aa thick of {proportional_to}20% solid phase indium were produced on thick (3-4 {mu}m) 2{sup ''} GaN templates grown on (0001) c-plane sapphire substrates. The morphological evolution of the InGaN material was studied utilising a DI3100 AFM tool. Surface morphology and its correlation with photoluminescence and X-ray diffraction results are discussed for every set of conditions employed. More specifically, the post-growth ambient exposure and thermal stability of the uncapped InGaN epilayers were investigated. In addition, the initial stage of subsequent GaN growth, which is an essential step towards the manufacture of LED active regions, was examined. Based on the above findings, a flexible MOCVD growth parameter space and improved LED constituent layer sequencing techniques have been established leading to more efficient and stable LED devices. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Morphological profiles of neutron and X-irradiated small intestine

    International Nuclear Information System (INIS)

    Carr, K.E.; O'Shea, O.; Hazzard, R.A.; McCullough, J.S.; Hume, S.P.; Nelson, A.C.

    1996-01-01

    This paper describes the response of mouse small intestine, at several time points after treatment with neutron or X-irradiation, using doses expected to give similar effects in terms of crypt/microcolony survival. Using resin histology, the effects of radiation on the numbers of duodenal cell types and measurements of tissue areas were assessed. The results for individual parameters and for an estimate of overall damage are given in a data display, which summarises the morphological profile of the organ after both types of radiation. Damage and recovery were seen for many of the parameters studied but there was no standard response pattern applicable for all parameters. In particular, the response of individual crypt cell types could not be predicted from knowledge of the change in crypt numbers. With regard to the holistic response of the gut, neutron irradiation appeared to have caused more damage and produced more early effects than the X-irradiation. More specifically, neutron treatment led to more damage to the neuromuscular components of the wall, while X-irradiation produced early vascular changes. (author)

  12. Study on effect of process parameters and mixing on morphology of ammonium diuranate

    International Nuclear Information System (INIS)

    Subhankar Manna; Chandrabhanu Basak; Thakkar, U.R.; Shital Thakur; Roy, S.B.; Joshi, J.B.; Institute of Chemical Technology, Matunga, Mumbai

    2016-01-01

    Ammonium diuranate (ADU) is an important intermediate for the production of uranium base fuel. Controlling morphology of crystalline ADU powders is very important as it is retained by its subsequent products. Because of the high level of supersaturation, the involved mechanisms of precipitation like primary nucleation, crystal growth, aggregation and breakage occur simultaneously and they control the morphology. Effects of concentration of uranyl nitrate solution, temperature and the mixing intensity have been investigated on the morphology, crystal structure and the other physical properties of ADU. Effect of temperature is found to be more dominant for controlling morphology. (author)

  13. Growth of different phases and morphological features of MnS thin films by chemical bath deposition: Effect of deposition parameters and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, Amira, E-mail: amira.hannachi88@gmail.com; Maghraoui-Meherzi, Hager

    2017-03-15

    Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferential orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like. - Graphical Abstract: We report the preparation of different phases of manganese sulfide thin films (γ, β and α-MnS) by chemical bath deposition method. The effects of deposition parameters such as deposition time and temperature, concentrations of precursors and multi-layer deposition on MnS thin films structure and morphology were investigated. The influence of thermal annealing under nitrogen atmosphere at different temperature on MnS properties was also studied. Different manganese precursors as well as different complexing agent were also used. - Highlights: • γ and β-MnS films were deposited on substrate using the chemical bath deposition. • The effect of deposition parameters on MnS film properties has been investigated. • Multi-layer deposition was also studied to increase film thickness. • The effect of annealing under N{sub 2} at different temperature was investigated.

  14. Localization of IAA transporting tissue by tissue printing and autoradiography

    International Nuclear Information System (INIS)

    Mee-Rye Cha; Evans, M.L.; Hangarter, R.P.

    1991-01-01

    Tissue printing on nitrocellulose membranes provides a useful technique for visualizing anatomical details of tissue morphology of cut ends of stem segments. Basal ends of Coleus stem and corn coleoptile segments that were transporting 14 C-IAA were gently blotted onto DEAE-nitrocellulose for several minutes to allow 14 C-IAA to efflux from the tissue. Because of the anion exchange properties of DEAE-nitrocellulose the 14 C-IAA remains on the membrane at the point it leaves the transporting tissue. Autoradiography of the DEAE membrane allowed indirect visualization of the tissues preferentially involved in auxin transport. The authors observed that polar transport through the stem segments occurred primarily through or in association with vascular tissues. However, in Coleus stems, substantial amounts of the label appeared to move through the tissue by diffusion as well as by active transport

  15. Improved resolution by mounting of tissue sections for laser microdissection.

    Science.gov (United States)

    van Dijk, M C R F; Rombout, P D M; Dijkman, H B P M; Ruiter, D J; Bernsen, M R

    2003-08-01

    Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. To develop a mounting method that greatly improves the morphological quality of tissue sections for laser microbeam microdissection purposes so that the identification of target cells can be facilitated. Fresh frozen tissue and formalin fixed, paraffin wax embedded tissue specimens were used to test the morphological quality of mounted and unmounted tissue. The mounting solution consisted of an adhesive gum and blue ink diluted in water. Interference of the mounting solution with DNA quality was analysed by the polymerase chain reaction using 10-2000 cells isolated by microdissection from mounted and unmounted tissue. The mounting solution greatly improved the morphology of tissue sections for laser microdissection purposes and had no detrimental effects on the isolation and efficiency of amplification of DNA. One disadvantage was that the mounting solution reduced the cutting efficiency of the ultraviolet laser. To minimise this effect, the mounting solution should be diluted as much as possible. Furthermore, the addition of blue ink to the mounting medium restores the cutting efficiency of the laser. The mounting solution is easy to prepare and apply and can be combined with various staining methods without compromising the quality of the DNA extracted.

  16. Optical absorption and scattering spectra of pathological stomach tissues

    Science.gov (United States)

    Giraev, K. M.; Ashurbekov, N. A.; Lakhina, M. A.

    2011-03-01

    Diffuse reflection spectra of biotissues in vivo and transmission and reflection coefficients for biotissues in vitro are measured over 300-800 nm. These data are used to determine the spectral absorption and scattering indices and the scattering anisotropy factor for stomach mucous membranes under normal and various pathological conditions (chronic atrophic and ulcerous defects, malignant neoplasms). The most importan tphysiological (hemodynamic and oxygenation levels) and structural-morphological (scatterer size and density) parameters are also determined. The results of a morphofunctional study correlate well with the optical properties and are consistent with data from a histomorphological analysis of the corresponding tissues.

  17. Parameters critical to the morphology of fluidization craters

    Science.gov (United States)

    Siegal, B. S.; Gold, D. P.

    1973-01-01

    In order to study further the role of fluidization on the moon, a laboratory investigation was undertaken on two particulate material size fractions to determine the effect of variables, such as, duration of gas streaming, gas pressure, and 'regolith' thickness on the morphology of fluidization craters. A 3.175-mm cylindrical vent was used to simulate a gas streaming conduit. Details of the fluidization chamber are discussed together with questions of experimental control, aspects of nomenclature, crater measurements, and the effect of variables.

  18. Investigation of the Relationship of Some Antihypertensive Drugs with Oxidant/Antioxidant Parameters and DNA Damage on Rat Uterus Tissue

    OpenAIRE

    Mustafa Talip Sener; Hamit Hakan Alp; Beyzagul Polat; Bunyamin Borekci; Yakup Kumtepe; Nesrin Gursan; Serkan Kumbasar; Suleyman Salman; Halis Suleyman

    2011-01-01

    Background In this study, we investigated the effects of treatment with chronic antihypertensive drugs (clonidine, methyldopa, amlodipine, ramipril and rilmenidine) on oxidant-antioxidant parameters and toxic effects on DNA in rat uterus tissue. In addition, uterus tissues were examined histopathologically. Materials and Methods A total of 36 albino Wistar rats were divided into the following six groups: 0.075 mg/kg clonidine group; 100 mg/kg methyldopa group; 2 mg/kg amlodipine group; 2.5 mg...

  19. A Study on the Effect of Electrodeposition Parameters on the Morphology of Porous Nickel Electrodeposits

    Science.gov (United States)

    Sengupta, Srijan; Patra, Arghya; Jena, Sambedan; Das, Karabi; Das, Siddhartha

    2018-03-01

    In this study, the electrodeposition of nickel foam by dynamic hydrogen bubble-template method is optimized, and the effects of key deposition parameters (applied voltage and deposition time) and bath composition (concentration of Ni2+, pH of the bath, and roles of Cl- and SO4 2- ions) on pore size, distribution, and morphology and crystal structure are studied. Nickel deposit from 0.1 M NiCl2 bath concentration is able to produce the honeycomb-like structure with regular-sized holes. Honeycomb-like structure with cauliflower morphology is deposited at higher applied voltages of 7, 8, and 9 V; and a critical time (>3 minutes) is required for the development of the foamy structure. Compressive residual stresses are developed in the porous electrodeposits after 30 seconds of deposition time (-189.0 MPa), and the nature of the residual stress remains compressive upto 10 minutes of deposition time (-1098.6 MPa). Effect of pH is more pronounced in a chloride bath compared with a sulfate bath. The increasing nature of pore size in nickel electrodeposits plated from a chloride bath (varying from 21 to 48 μm), and the constant pore size (in the range of 22 to 24 μm) in deposits plated from a sulfate bath, can be ascribed to the striking difference in the magnitude of the corresponding current-time profiles.

  20. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions

    Science.gov (United States)

    Schneider, Wilfried; Bortfeld, Thomas; Schlegel, Wolfgang

    2000-02-01

    We describe a new method to convert CT numbers into mass density and elemental weights of tissues required as input for dose calculations with Monte Carlo codes such as EGS4. As a first step, we calculate the CT numbers for 71 human tissues. To reduce the effort for the necessary fits of the CT numbers to mass density and elemental weights, we establish four sections on the CT number scale, each confined by selected tissues. Within each section, the mass density and elemental weights of the selected tissues are interpolated. For this purpose, functional relationships between the CT number and each of the tissue parameters, valid for media which are composed of only two components in varying proportions, are derived. Compared with conventional data fits, no loss of accuracy is accepted when using the interpolation functions. Assuming plausible values for the deviations of calculated and measured CT numbers, the mass density can be determined with an accuracy better than 0.04 g cm-3 . The weights of phosphorus and calcium can be determined with maximum uncertainties of 1 or 2.3 percentage points (pp) respectively. Similar values can be achieved for hydrogen (0.8 pp) and nitrogen (3 pp). For carbon and oxygen weights, errors up to 14 pp can occur. The influence of the elemental weights on the results of Monte Carlo dose calculations is investigated and discussed.

  1. Extravascular transport in normal and tumor tissues.

    Science.gov (United States)

    Jain, R K; Gerlowski, L E

    1986-01-01

    The transport characteristics of the normal and tumor tissue extravascular space provide the basis for the determination of the optimal dosage and schedule regimes of various pharmacological agents in detection and treatment of cancer. In order for the drug to reach the cellular space where most therapeutic action takes place, several transport steps must first occur: (1) tissue perfusion; (2) permeation across the capillary wall; (3) transport through interstitial space; and (4) transport across the cell membrane. Any of these steps including intracellular events such as metabolism can be the rate-limiting step to uptake of the drug, and these rate-limiting steps may be different in normal and tumor tissues. This review examines these transport limitations, first from an experimental point of view and then from a modeling point of view. Various types of experimental tumor models which have been used in animals to represent human tumors are discussed. Then, mathematical models of extravascular transport are discussed from the prespective of two approaches: compartmental and distributed. Compartmental models lump one or more sections of a tissue or body into a "compartment" to describe the time course of disposition of a substance. These models contain "effective" parameters which represent the entire compartment. Distributed models consider the structural and morphological aspects of the tissue to determine the transport properties of that tissue. These distributed models describe both the temporal and spatial distribution of a substance in tissues. Each of these modeling techniques is described in detail with applications for cancer detection and treatment in mind.

  2. Thorium-232 in human tissues: Metabolic parameters and radiation doses

    International Nuclear Information System (INIS)

    Stehney, A.F.

    1994-01-01

    Higher than environmental levels of 232 Th have been found in autopsy samples of lungs and other organs from four former employees of a Th refinery. Working periods of the subjects ranged from 3 to 24 years, and times from end of work to death ranged from 6 to 31 years. Concentrations of 232 Th in these samples and in tissues from two cases of non-occupational exposure were examined for compatibility with dosimetric models in Publication 30 of the International Commission on Radiological Protection (ICPP 1979a). The concentrations of 232 Th in the lungs of the Th workers relative to the concentrations in bone or liver were much higher than calculated from the model for class Y aerosols of Th and the exposure histories of the subjects, and concentrations in the pulmonary lymph nodes were much lower than calculated for three of the Th workers and both non-occupational cases. Least-squares fits to the measured concentrations showed that the biological half-times of Th in liver, spleen, and kidneys are similar to the half-time in bone instead of the factor of 10 less suggested in Publication 30, and the fractions translocated from body fluids were found to be about 0.03, 0.02, and 0.005, respectively, when the fraction to bone was held at the suggested value of 0.7. Fitted values of the respiratory parameters differed significantly between cases and the differences were ascribable to aerosol differences. Average inhalation rates calculated for individual Th workers ranged from 50 to 110 Bq 232 Th y -1 , and dose equivalents as high as 9.3 Sv to the lungs, 2.0 Sv to bone surfaces, and 1.1 Sv effective dose equivalent were calculated from the inhalation rates and fitted values of the metabolic parameters. The radiation doses were about the same when calculated from parameter values fitted with an assumed translocation fraction of 0.2 from body fluids to bone instead of 0.7

  3. Life-long Maternal Cafeteria Diet Promotes Tissue-Specific Morphological Changes in Male Offspring Adult Rats

    Directory of Open Access Journals (Sweden)

    CAROLYNE D.S. SANTOS

    Full Text Available ABSTRACT Here, we evaluated whether the exposure of rats to a cafeteria diet pre- and/or post-weaning, alters histological characteristics in the White Adipose Tissue (WAT, Brown Adipose Tissue (BAT, and liver of adult male offspring. Female Wistar rats were divided into Control (CTL; fed on standard rodent chow and Cafeteria (CAF; fed with the cafeteria diet throughout life, including pregnancy and lactation. After birth, only male offspring (F1 were maintained and received the CTL or CAF diets; originating four experimental groups: CTL-CTLF1; CTL-CAFF1; CAF-CTLF1; CAF-CAFF1. Data of biometrics, metabolic parameters, liver, BAT and WAT histology were assessed and integrated using the Principal Component Analysis (PCA. According to PCA analysis worse metabolic and biometric characteristics in adulthood are associated with the post-weaning CAF diet compared to pre and post weaning CAF diet. Thus, the CTL-CAFF1 group showed obesity, higher deposition of fat in the liver and BAT and high fasting plasma levels of glucose, triglycerides and cholesterol. Interestingly, the association between pre and post-weaning CAF diet attenuated the obesity and improved the plasma levels of glucose and triglycerides compared to CTL-CAFF1 without avoiding the higher lipid accumulation in BAT and in liver, suggesting that the impact of maternal CAF diet is tissue-specific.

  4. Application of the physiological and morphological parameters of the brazilian population sample to the mathematical model of the human respiratory tract; Aplicacao dos parametros fisiologicos e morfologicos de uma amostra da populacao brasileira no modelo matematico do trato respiratorio humano

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Arlene Alves dos

    2005-07-01

    The Human Respiratory Tract Model proposed by the ICRP Publication 66 accounts for the morphology and physiology of the respiratory tract. The characteristics of air drawn into the lungs and exhaled are greatly influenced by the morphology of the respiratory tract, which causes numerous changes in pressure, flow rate, direction and humidity as air moves into and out of the lungs. Concerning the respiratory physiological parameters the breathing characteristics influence the volume, the inhalation rate of air and the portion that enters through the nose and the mouth. These characteristics are important to determine the fractional deposition. The model uses morphological and physiological parameters from the Caucasian man to establish deposition fractions in the respiratory tract regions. It is known that the morphology and physiology are influenced by environmental, occupational and economic conditions. The ICRP recommends, for a reliable evaluation of the regional deposition, the use of parameters from a local population when information is available. The main purpose of this study is to verify the influence in using the morphology and physiology parameters representative of a sample of the Brazilian population on the deposition model of the ICRP Publication 66. The morphological and physiological data were obtained from the literature. The software EXCEL for Windows (version 2000) was used in order to implement the deposition model and also to allow the changes in parameters of interest. Initially, the implemented model was checked using the parameters defined by the ICRP and the results of the fraction deposition in the respiratory tract compartments were compared. Finally, morphological and physiological parameters from Brazilian adult male were applied and the fractional deposition calculated. The results suggest a significant variation in fractional deposition when Brazilian parameters are applied in the model. (author)

  5. Morphological transitions and the genetic basis of the evolution of extraembryonic tissues in flies

    NARCIS (Netherlands)

    Rafiqi, A.M.

    2008-01-01

    Changes in the genotype influence changes in morphology during evolution, giving rise to the vast diversity of morphological features that we observe. The ability to describe how genetic change causes morphological transformation is key for a mechanistic understanding of evolutionary change. This

  6. Impact of dielectric parameters on the reflectivity of 3C–SiC wafers with a rough surface morphology in the reststrahlen region

    International Nuclear Information System (INIS)

    Engelbrecht, J.A.A.; Janzén, E.; Henry, A.; Rooyen, I.J. van

    2014-01-01

    A layer-on-substrate model is used to obtain the infrared reflectance for 3C–SiC with a rough surface morphology. The effect of varying dielectric parameters of the “damaged layer” on the observed reflectivity of the 3C–SiC in the reststrahlen region is assessed. Different simulated reflectance spectra are obtained to those if the dielectric parameters of the “substrate” were varied. Most notable changes in the shape of the simulated reststrahlen peak are observed for changes in the high frequency dielectric constant, the phonon damping constant, the phonon frequencies and “thickness” of damaged surface layer.

  7. Impact of dielectric parameters on the reflectivity of 3C–SiC wafers with a rough surface morphology in the reststrahlen region

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, J.A.A., E-mail: Japie.Engelbrecht@nmmu.ac.za [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Janzén, E.; Henry, A. [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Rooyen, I.J. van [Fuel Performance and Design Department, Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2014-04-15

    A layer-on-substrate model is used to obtain the infrared reflectance for 3C–SiC with a rough surface morphology. The effect of varying dielectric parameters of the “damaged layer” on the observed reflectivity of the 3C–SiC in the reststrahlen region is assessed. Different simulated reflectance spectra are obtained to those if the dielectric parameters of the “substrate” were varied. Most notable changes in the shape of the simulated reststrahlen peak are observed for changes in the high frequency dielectric constant, the phonon damping constant, the phonon frequencies and “thickness” of damaged surface layer.

  8. Morphological appearance manifolds for group-wise morphometric analysis.

    Science.gov (United States)

    Lian, Nai-Xiang; Davatzikos, Christos

    2011-12-01

    Computational anatomy quantifies anatomical shape based on diffeomorphic transformations of a template. However, different templates warping algorithms, regularization parameters, or templates, lead to different representations of the same exact anatomy, raising a uniqueness issue: variations of these parameters are confounding factors as they give rise to non-unique representations. Recently, it has been shown that learning the equivalence class derived from the multitude of representations of a given anatomy can lead to improved and more stable morphological descriptors. Herein, we follow that approach, by approximating this equivalence class of morphological descriptors by a (nonlinear) morphological appearance manifold fitting to the data via a locally linear model. Our approach parallels work in the computer vision field, in which variations lighting, pose and other parameters lead to image appearance manifolds representing the exact same figure in different ways. The proposed framework is then used for group-wise registration and statistical analysis of biomedical images, by employing a minimum variance criterion to perform manifold-constrained optimization, i.e. to traverse each individual's morphological appearance manifold until group variance is minimal. The hypothesis is that this process is likely to reduce aforementioned confounding effects and potentially lead to morphological representations reflecting purely biological variations, instead of variations introduced by modeling assumptions and parameter settings. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Lagrangian speckle model and tissue-motion estimation--theory.

    Science.gov (United States)

    Maurice, R L; Bertrand, M

    1999-07-01

    It is known that when a tissue is subjected to movements such as rotation, shearing, scaling, etc., changes in speckle patterns that result act as a noise source, often responsible for most of the displacement-estimate variance. From a modeling point of view, these changes can be thought of as resulting from two mechanisms: one is the motion of the speckles and the other, the alterations of their morphology. In this paper, we propose a new tissue-motion estimator to counteract these speckle decorrelation effects. The estimator is based on a Lagrangian description of the speckle motion. This description allows us to follow local characteristics of the speckle field as if they were a material property. This method leads to an analytical description of the decorrelation in a way which enables the derivation of an appropriate inverse filter for speckle restoration. The filter is appropriate for linear geometrical transformation of the scattering function (LT), i.e., a constant-strain region of interest (ROI). As the LT itself is a parameter of the filter, a tissue-motion estimator can be formulated as a nonlinear minimization problem, seeking the best match between the pre-tissue-motion image and a restored-speckle post-motion image. The method is tested, using simulated radio-frequency (RF) images of tissue undergoing axial shear.

  10. Anodization parameters influencing the morphology and electrical properties of TiO{sub 2} nanotubes for living cell interfacing and investigations

    Energy Technology Data Exchange (ETDEWEB)

    Khudhair, D. [Deakin University, Waurn Ponds Campus, Vic 3216 (Australia); Bhatti, A., E-mail: asim.bhatti@deakin.edu.au [Deakin University, Waurn Ponds Campus, Vic 3216 (Australia); Li, Y. [RMIT University, Bundoora, Victoria 3083 (Australia); Hamedani, H. Amani; Garmestani, H. [Georgia Institute of Technology, GA 30332 (United States); Hodgson, P.; Nahavandi, S. [Deakin University, Waurn Ponds Campus, Vic 3216 (Australia)

    2016-02-01

    Nanotube structures have attracted tremendous attention in recent years in many applications. Among such nanotube structures, titania nanotubes (TiO{sub 2}) have received paramount attention in the medical domain due to their unique properties, represented by high corrosion resistance, good mechanical properties, high specific surface area, as well as great cell proliferation, adhesion and mineralization. Although lot of research has been reported in developing optimized titanium nanotube structures for different medical applications, however there is a lack of unified literature source that could provide information about the key parameters and experimental conditions required to develop such optimized structure. This paper addresses this gap, by focussing on the fabrication of TiO{sub 2} nanotubes through anodization process on both pure titanium and titanium alloys substrates to exploit the biocompatibility and electrical conductivity aspects, critical factors for many medical applications from implants to in-vivo and in-vitro living cell studies. It is shown that the morphology of TiO{sub 2} directly impacts the biocompatibility aspects of the titanium in terms of cell proliferation, adhesion and mineralization. Similarly, TiO{sub 2} nanotube wall thickness of 30–40 nm has shown to exhibit improved electrical behaviour, a critical factor in brain mapping and behaviour investigations if such nanotubes are employed as micro–nano-electrodes. - Highlights: • We spotlight on the importance of TiO{sub 2} nanotubes in medical applications. • The influence of nanotubes morphology on the electrical conductivity and biocompatibility properties • Influence of key anodizing parameters on the nanotube morphology • Methods to improve the electrical conductivity of TiO{sub 2} nanotubes • Potential of employment of TiO{sub 2} nanotubes as micro–nano-electrodes.

  11. Morphological and immunohistochemical criteria of tissue response to radiotherapy in rectal cancer.

    Science.gov (United States)

    Ionescu, S; Brătucu, E; Zurac, S; Staniceanu, F; Pătraşcu, Tr; Burcoş, Tr; Herlea, V; Degeratu, D; Popa, I; Cristian, D

    2013-01-01

    Given the context that rectal tumours respond to a certain degree to radiotherapy, a necessity arises for estimating a tumour's capacity to react to radiation from the very moment of diagnostic biopsy. We have histologically and immunohistochemically analysed tissues coming from 52 patients with rectal adenocarcinomas. Of the studied parameters, the ones presenting significant variation under radiotherapy in terms of statistics(p 0.05) were: colloid type (p=0.001), EGFR in the tumour(p=0.00045), EGFR in the normal epithelium (p=0.0017),VEGF in the tumour (p=0.0132) and VEGF in the tumour stroma (p=0.030). Our study follows the same trends as the medical literature we have consulted regarding the variation of EGFR and VEGF with radiotherapy, and the distinct note of our study relies in the observation that normal stroma in case of rectal tumors also reacts to radiotherapy, sometimes more aggressively than the tumor itself, especially in which concerns the nerve and muscle fibers. Celsius.

  12. Response morphology and anatomy of tobacco (Nicotiana tabacum L.) plant on waterlogging

    Science.gov (United States)

    Nurhidayati, Tutik; Wardhani, Selfrina Puri; Purnobasuki, Hery; Hariyanto, Sucipto; Jadid, Nurul; Nurcahyani, Desy Dwi

    2017-11-01

    This study has conducted research on morphological and anatomical responses of some varieties of tobacco plants to waterlogging stress. Parameters measured were morphology, anatomy, and plants sensitivity index. Results were analyzed using two-way ANOVA followed by the Tukey test. The results show that waterlogging stress can reduce the growth of tobacco plants, including a decrease in plant height with the lowest value of 15.6 cm, root length reduction to the lowest value of 4.6 cm and plant dry weight reduction to the lowest value of 0.26 gr. But waterlogging stress can increase the number of adventitious roots with the highest value of 18.33. In addition, waterlogging stress can lead to the formation of aerenchyma tissue. The sensitivity index showed that plant varieties that are resistant to waterlogging stress are the varieties Kemloko 3 (index value of 0.03), varieties of Paiton 2 (index value of 0.18), and the varieties Kemloko 2 (index value of 0.42).

  13. Quantitative assessment of cancer cell morphology and motility using telecentric digital holographic microscopy and machine learning.

    Science.gov (United States)

    Lam, Van K; Nguyen, Thanh C; Chung, Byung M; Nehmetallah, George; Raub, Christopher B

    2018-03-01

    The noninvasive, fast acquisition of quantitative phase maps using digital holographic microscopy (DHM) allows tracking of rapid cellular motility on transparent substrates. On two-dimensional surfaces in vitro, MDA-MB-231 cancer cells assume several morphologies related to the mode of migration and substrate stiffness, relevant to mechanisms of cancer invasiveness in vivo. The quantitative phase information from DHM may accurately classify adhesive cancer cell subpopulations with clinical relevance. To test this, cells from the invasive breast cancer MDA-MB-231 cell line were cultured on glass, tissue-culture treated polystyrene, and collagen hydrogels, and imaged with DHM followed by epifluorescence microscopy after staining F-actin and nuclei. Trends in cell phase parameters were tracked on the different substrates, during cell division, and during matrix adhesion, relating them to F-actin features. Support vector machine learning algorithms were trained and tested using parameters from holographic phase reconstructions and cell geometric features from conventional phase images, and used to distinguish between elongated and rounded cell morphologies. DHM was able to distinguish between elongated and rounded morphologies of MDA-MB-231 cells with 94% accuracy, compared to 83% accuracy using cell geometric features from conventional brightfield microscopy. This finding indicates the potential of DHM to detect and monitor cancer cell morphologies relevant to cell cycle phase status, substrate adhesion, and motility. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  14. Effect of fabrication parameters on morphological and optical properties of highly doped p-porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Maryam, E-mail: mar.zare@gmail.com [Young Researchers Club, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr (Iran, Islamic Republic of); Shokrollahi, Abbas [Young Researchers Club, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr (Iran, Islamic Republic of); Seraji, Faramarz E. [Optical Communication Group, Iran Telecom Research Center, Tehran (Iran, Islamic Republic of)

    2011-09-01

    Porous silicon (PS) layers were fabricated by anodization of low resistive (highly doped) p-type silicon in HF/ethanol solution, by varying current density, etching time and HF concentration. Atomic force microscopy (AFM) and field emission scanning electron microscope (FESEM) analyses were used to investigate the physical properties and reflection spectrum was used to investigate the optical behavior of PS layers in different fabrication conditions. Vertically aligned mesoporous morphology is observed in fabricated films and with HF concentration higher than 20%. The dependence of porosity, layer thickness and rms roughness of the PS layer on current density, etching time and composition of electrolyte is also observed in obtained results. Correlation between reflectivity and fabrication parameters was also explored. Thermal oxidation was performed on some mesoporous layers that resulted in changes of surface roughness, mean height and reflectivity of the layers.

  15. A morphogram with the optimal selection of parameters used in morphological analysis for enhancing the ability in bearing fault diagnosis

    International Nuclear Information System (INIS)

    Wang, Dong; Tse, Peter W; Tse, Yiu L

    2012-01-01

    Morphological analysis is a signal processing method that extracts the local morphological features of a signal by intersecting it with a structuring element (SE). When a bearing suffers from a localized fault, an impulse-type cyclic signal is generated. The amplitude and the cyclic time interval of impacts could reflect the health status of the inspected bearing and the cause of defects, respectively. In this paper, an enhanced morphological analysis called ‘morphogram’ is presented for extracting the cyclic impacts caused by a certain bearing fault. Based on the theory of morphology, the morphogram is realized by simple mathematical operators, including Minkowski addition and subtraction. The morphogram is able to detect all possible fault intervals. The most likely fault-interval-based construction index (CI) is maximized to establish the optimal range of the flat SE for the extraction of bearing fault cyclic features so that the type and cause of bearing faults can be easily determined in a time domain. The morphogram has been validated by simulated bearing fault signals, real bearing faulty signals collected from a laboratorial rotary machine and an industrial bearing fault signal. The results show that the morphogram is able to detect all possible bearing fault intervals. Based on the most likely bearing fault interval shown on the morphogram, the CI is effective in determining the optimal parameters of the flat SE for the extraction of bearing fault cyclic features for bearing fault diagnosis. (paper)

  16. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    Directory of Open Access Journals (Sweden)

    Björn eNitzsche

    2015-06-01

    Full Text Available Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams were acquired on a 1.5T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight, age and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM and white (WM matter as well as cerebrospinal fluid (CSF classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM. Overall, a positive correlation of GM volume and body weight explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.

  17. A DTI-based model for TMS using the independent impedance method with frequency-dependent tissue parameters

    Science.gov (United States)

    De Geeter, N.; Crevecoeur, G.; Dupré, L.; Van Hecke, W.; Leemans, A.

    2012-04-01

    Accurate simulations on detailed realistic head models are necessary to gain a better understanding of the response to transcranial magnetic stimulation (TMS). Hitherto, head models with simplified geometries and constant isotropic material properties are often used, whereas some biological tissues have anisotropic characteristics which vary naturally with frequency. Moreover, most computational methods do not take the tissue permittivity into account. Therefore, we calculate the electromagnetic behaviour due to TMS in a head model with realistic geometry and where realistic dispersive anisotropic tissue properties are incorporated, based on T1-weighted and diffusion-weighted magnetic resonance images. This paper studies the impact of tissue anisotropy, permittivity and frequency dependence, using the anisotropic independent impedance method. The results show that anisotropy yields differences up to 32% and 19% of the maximum induced currents and electric field, respectively. Neglecting the permittivity values leads to a decrease of about 72% and 24% of the maximum currents and field, respectively. Implementing the dispersive effects of biological tissues results in a difference of 6% of the maximum currents. The cerebral voxels show limited sensitivity of the induced electric field to changes in conductivity and permittivity, whereas the field varies approximately linearly with frequency. These findings illustrate the importance of including each of the above parameters in the model and confirm the need for accuracy in the applied patient-specific method, which can be used in computer-assisted TMS.

  18. Process Parameters on the Crystallization and Morphology of Hydroxyapatite Powders Prepared by a Hydrolysis Method

    Science.gov (United States)

    Wang, Moo-Chin; Hon, Min-Hsiung; Chen, Hui-Ting; Yen, Feng-Lin; Hung, I.-Ming; Ko, Horng-Huey; Shih, Wei-Jen

    2013-07-01

    The effects of process parameters on the crystallization and morphology of hydroxyapatite (Ca10(PO4)6(OH)2, HA) powders synthesized from dicalcium phosphate dihydrate (CaHPO4·2H2O, DCPD) using a hydrolysis method have been investigated. X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were used to characterize the synthesized powders. When DCPD underwent hydrolysis in 2.5 NaOH solution (Na(aq)) at 303 K to 348 K (30 °C to 75 °C) for 1 hour, the XRD results revealed that HA was obtained for all the as-dried samples. The SEM morphology of the HA powders for DCPD hydrolysis produced at 348 K (75 °C) shows regular alignment and a short rod shape with a size of 200 nm in length and 50 nm in width. With DCPD hydrolysis in 2.5 M NaOH(aq) holding at 348 K (75 °C) for 1 to 24 hours, XRD results demonstrated that all samples were HA and no other phases could be detected. Moreover, the XRD results also show that all the as-dried powders still maintained the HA structure when DCPD underwent hydrolysis in 0.1 to 5 M NaOH(aq) at 348 K (75 °C) for 1 hour. Otherwise, the full transformation from HA to octa-calcium phosphate (OCP, Ca8H2(PO4)6·5H2O) occurred when hydrolysis happened in 10 M NaOH(aq). FT-IR spectra analysis revealed that some carbonated HA (Ca10(PO4)6(CO3), CHA) had formed. The SEM morphology results show that the 60 to 65 nm width of the uniformly long rods with regular alignment formed in the HA powder aggregates when DCPD underwent hydrolysis in 2.5 M NaOH(aq) at 348 K (75 °C) for 1 hour.

  19. Starvation and refeeding in rats: effect on some parameters of energy metabolism and electrolytes and changes of hepatic tissue

    Directory of Open Access Journals (Sweden)

    Fatemeh Namazi

    Full Text Available Abstract: Regarding the importance of starvation and refeeding and the occurrence of refeeding syndrome in various conditions, the present study was conducted to investigate the effects of refeeding on some parameters of energy metabolism and electrolytes and changes of hepatic tissue in male Wistar rats. Fifty-seven rats were divided into six groups, having 6 to 11 rats. Food was provided ad-libitum until three months and then the first group was considered without starvation (day 0. Other rats were fasted for two weeks. Group 2 was applied to a group immediately after starvation (day 14. Groups 3 to 6 were refed in days 16 till 22, respectively. At the end of each period, blood and tissue samples were taken and histopathological and serum analysis, including serum electrolytes (calcium, phosphorus, sodium, potassium, the energy parameters (glucose, insulin, cortisol and the liver enzymes (ALT, AST, ALP were determined. Insulin decreased by starvation and then showed an increasing trend compared to starvation period, which the highest amount of this parameter was observed eight days post-refeeding. Serum glucose level showed the opposite pattern of insulin. Histopathological examination of the tissue sections revealed clear vacuoles after starvation and refeeding, in which the severity of lesions gradually decreased during refeeding. The cortisol level decreased by starvation and then increased during refeeding. Also, potassium and phosphorus concentrations declined by refeeding and the serum sodium and potassium levels were changed in the relatively opposite manner. The calcium level decreased by starvation and then increased during refeeding. These results could help recognize and remedy the refeeding syndrome.

  20. The study of morphological changes of periodontal tissue by using different groups of endosealers in conditions of experiment

    Directory of Open Access Journals (Sweden)

    Makedonova Yu.A.

    2013-09-01

    Full Text Available Knowledge of the nature and duration of the violations of adaptive-compensatory reactions of the periodontium depending on the physico-chemical properties of endosealers is an important part of endodontic treatment. The aim is to reveal the conditions of the experiment peculiarities of morphological changes of periodontal tissue in direct contact with the main filling material for root canal. Material and methods. The traditional method of obturation by modern endosealers was used to seal the root canal of teeth of experimental animal. Results of the study demonstrated the bio-compatibility of new experimental material Real Seal. Conclusion. The data obtained justify a differentiated approach to the choice of the root filling material for teeth with a healthy periodontosis.

  1. Inlfuence of Different-Frequency Glucocorticoid Induction on Morphological Structures of Humeri, Soft Tissues and Immune System in Rats

    Institute of Scientific and Technical Information of China (English)

    LI Jian-min; LI Heng

    2016-01-01

    Objective: To explore the influence of different-frequency glucocorticoid (GC) induction on morphological structures of humeri and soft tissues as well as immune system in rats. Methods: A total of 32 speciifc pathogen-free (SPF) SD rats at the age of 3 months were selected and randomly divided into 4 groups, 8 cases in each group. The rats in control group were not given any treatment, while those in low-, moderate- and high-frequency groups were treated with intramuscular injection of dexamethasone 1 mg/kg per time for twice, 4 times and 6 times per week, respectively. All the rats were sacriifced on d30 to measure their body mass and qualities of soft tissues and immune organs, and bone histomorphometry was applied to analyze humeral bone mass and bone structural changes. Results: Compared with control group, there was no change in cancellous bone mass and bone structures of upper humeri in low-frequency group, but serious loss of bone mass, signiifcantly degenerated bone structure, markedly reduced trabecular thickness and number as well as notably increased trabecular separation was all observed in moderate- and high-frequency groups. The size of cortical bones, total size of bone structure, thickness of cortical bones and size percentage of cortical bones in middle humeri reduced apparently, while the size percentage of medullary cavity increased dramatically in high-frequency group. Growth plate thickness of upper humeri decreased in low-, moderate- and high-frequency groups, and the diameters of mastocytes diminished in moderate- and high-frequency groups. Compared with control group, body mass decreased obviously, qualities and indexes of spleen and thymus showed decreasing tendency along with the increase of drug administration frequency in low-, moderate- and high-frequency groups. Conclusion: Low-frequency GC cannot change humeral morphology. The higher the frequency of drug administration is, the more the loss of cancellous bone mass is. When the

  2. Determination of Microstructural Parameters of Nanocrystalline Hydroxyapatite Prepared by Mechanical Alloying Method

    Science.gov (United States)

    Joughehdoust, Sedigheh; Manafi, Sahebali

    2011-12-01

    Hydroxyapatite [HA, Ca10(PO4)6(OH)2] is chemically similar to the mineral component of bones and hard tissues. HA can support bone ingrowth and osseointegration when used in orthopaedic, dental and maxillofacial applications. In this research, HA nanostructure was synthesized by mechanical alloying method. Phase development, particle size and morphology of HA were investigated by X-ray diffraction (XRD) pattern, zetasizer instrument, scanning electron microscopy (SEM), respectively. XRD pattern has been used to determination of the microstructural parameters (crystallite size, lattice parameters and crystallinity percent) by Williamson-Hall equation, Nelson-Riley method and calculating the areas under the peaks, respectively. The crystallite size and particle size of HA powders were in nanometric scales. SEM images showed that some parts of HA particles have agglomerates. The ratio of lattice parameters of synthetic hydroxyapatite (c/a = 0.73) was determined in this study is the same as natural hydroxyapatite structure.

  3. Correlation between morphological and biological characteristics of ...

    African Journals Online (AJOL)

    Hepatocyte dysfunction with the possibility of eventual organ failure is created from most liver diseases. Images of cell morphology can be obtained nondestructively using a conventional inverted microscope. Therefore, this study attempted to investigate several morphological parameters of mesenchymal stem cells (MSCs) ...

  4. New descriptors of T-wave morphology are independent of heart rate

    DEFF Research Database (Denmark)

    Andersen, Mads Peter; Xue, Joel Q; Graff, Claus

    2008-01-01

    from daytime Holter recordings. Duration parameters (QT, ToTe, TpTe, and others), a number of basic T-wave morphology parameters (amplitude, area, and others) as well as advanced morphology descriptors (asymmetry, flatness, and others) were measured automatically. Heart rate dependence was examined...... by means of analysis of covariance. The results showed clear heart rate dependence for the QT interval (R(2) = 0.53-0.57) and a moderate degree of heart rate dependence for the basic morphology parameters (amplitude, area, and others) (R(2) = 0.17-0.42). Both the advanced T-wave descriptors (asymmetry......T-wave morphology descriptors are sensitive to drug-induced changes and may be a useful addition to the QT interval in cardiac safety trials. Intrasubject heart rate dependence of T-wave morphology was investigated in a sample of 39 healthy individuals. Ten-second electrocardiograms were obtained...

  5. Examining tissue composition, whole-bone morphology and mechanical behavior of GorabPrx1 mice tibiae: A mouse model of premature aging.

    Science.gov (United States)

    Yang, Haisheng; Albiol, Laia; Chan, Wing-Lee; Wulsten, Dag; Seliger, Anne; Thelen, Michael; Thiele, Tobias; Spevak, Lyudmila; Boskey, Adele; Kornak, Uwe; Checa, Sara; Willie, Bettina M

    2017-12-08

    Gerodermia osteodysplastica (GO) is a segmental progeroid disorder caused by loss-of-function mutations in the GORAB gene, associated with early onset osteoporosis and bone fragility. A conditional mouse model of GO (Gorab Prx1 ) was generated in which the Gorab gene was deleted in long bones. We examined the biomechanical/functional relevance of the Gorab Prx1 mutants as a premature aging model by characterizing bone composition, tissue-level strains, and whole-bone morphology and mechanical properties of the tibia. MicroCT imaging showed that Gorab Prx1 tibiae had an increased anterior convex curvature and decreased cortical cross-sectional area, cortical thickness and moments of inertia, compared to littermate control (LC) tibiae. Fourier transform infrared (FTIR) imaging indicated a 34% decrease in mineral/matrix ratio and a 27% increase in acid phosphate content in the posterior metaphyseal cortex of the Gorab Prx1 tibiae (p finite element analysis showed ∼two times higher tissue-level strains within the Gorab Prx1 tibiae relative to LC tibiae when subjected to axial compressive loads of the same magnitude. Three-point bending tests suggested that Gorab Prx1 tibiae were weaker and more brittle, as indicated by decreasing whole-bone strength (46%), stiffness (55%), work-to-fracture (61%) and post-yield displacement (47%). Many of these morphological and biomechanical characteristics of the Gorab Prx1 tibia recapitulated changes in other animal models of skeletal aging. Future studies are necessary to confirm how our observations might guide the way to a better understanding and treatment of GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Study on the Property Change of Rhizoma Coptidis and Its Ginger Juice Processed Products Based on 5-Ht Level and Brain Tissues Morphology of Rats

    Science.gov (United States)

    Zhong, Lingyun; Tong, Hengli; Lv, Mu; Deng, Yufen

    2017-09-01

    According to the theory of traditional Chinese Medicine (TCM), all Chinese materia medica need to be processed using Pao zhi which is a processing technology before being used in clinic. Ginger juice, made from dried or fresh ginger, is one of the main TCM processing accessories and always used to help change some Chinese materia medica’s properties for its warm or hot nature. The purpose of this paper is to discuss the influence of ginger juice on Rhizoma Coptidis (RC) by determining 5-hydroxytryptamine (5-HT) content and observing morphological changes in the harns tissue of rats. Raw Rhizoma Coptidis (RRC), fresh ginger juice processed Rhizoma Coptidis (FGJPRC), dried juice processed Rhizoma Coptidis (DGJPRC), dried ginger juice (DGJ) and fresh ginger juice (FGJ) were prepared using appropriate methods. Immunohistochemical staining was used to observe the distribution of 5-HT and fluorescence spectrophotometry was applied to determine 5-hydroxytryptamine content in the brain tissue of rats. 5 - HT in brain tissue of the rats of RRC group was distributed most densely, with the highest content. Compared to the blank group, RRC and different ginger processed RC groups could lead to increasing content of 5-HT in rat encephalon, and significant differences in RRC. Compared with the RRC, the 5-HT content in rat encephalon in DGJPRC, FGJPRC, FGJ and DGJ groups reduced, and DGJPRC, FGJPRC groups showed significant difference, FGJ and DGJ groups showed extreme significant differences. The research showed that processing with hot, warm accessories would moderate the cold nature of RC. The cold and hot nature of Traditional Chinese Materia Medica could be expressed by the difference of 5-HT contents and morphological changes of rats’ brain tissue. Simultaneously, the research showed the different excipient of ginger juice would have different effects on the processing of RC.

  7. The Effects of Agave fourcroydes Powder as a Dietary Supplement on Growth Performance, Gut Morphology, Concentration of IgG, and Hematology Parameters in Broiler Rabbits.

    Science.gov (United States)

    Iser, Maidelys; Martínez, Yordan; Ni, Hengjia; Jiang, Hongmei; Valdivié Navarro, Manuel; Wu, Xiaosong; Al-Dhabi, Naif Abdullah; Rosales, Manuel; Duraipandiyan, Veeramuthu; Fang, Jun

    2016-01-01

    This study was conducted to determine the effects of Agave fourcroydes powder as a dietary supplement on the growth performance, gut morphology, serum concentration of IgG, and the hematology parameters of broiler rabbits. A total of 32 rabbits [New Zealand × Californian] were weaned at 35 days. They were randomly selected for two dietary treatments (eight repetitions per treatment), which consisted of a basal diet and a basal diet supplemented with 1.5% dried-stem powder of A. fourcroydes . On day 60 from the initiation of treatment, gut histomorphology (duodenum and cecum), serum concentration of IgG, and hematology parameters were all measured. The results showed that A. fourcroydes powder supplementation improved ( P < 0.05) the ADFI, ADG, and final BW. Correspondingly, this treatment increased ( P < 0.05) the muscle and mucosa thickness and height and width of villi. However, duodenum crypts depth was lower ( P < 0.05) when rabbits were fed with this natural product, compared with the basal diet treatment. Results also indicated that the A. fourcroydes powder increased ( P < 0.05) the serum concentration of IgG but did not change the hematology parameters. This data indicates that A. fourcroydes powder, as a supplement, had beneficial effects on increasing the growth performance and serum concentration of IgG, as well as improving the gut morphology without affecting the hematology parameters in broiler rabbits.

  8. The Effects of Agave fourcroydes Powder as a Dietary Supplement on Growth Performance, Gut Morphology, Concentration of IgG, and Hematology Parameters in Broiler Rabbits

    Directory of Open Access Journals (Sweden)

    Maidelys Iser

    2016-01-01

    Full Text Available This study was conducted to determine the effects of Agave fourcroydes powder as a dietary supplement on the growth performance, gut morphology, serum concentration of IgG, and the hematology parameters of broiler rabbits. A total of 32 rabbits [New Zealand × Californian] were weaned at 35 days. They were randomly selected for two dietary treatments (eight repetitions per treatment, which consisted of a basal diet and a basal diet supplemented with 1.5% dried-stem powder of A. fourcroydes. On day 60 from the initiation of treatment, gut histomorphology (duodenum and cecum, serum concentration of IgG, and hematology parameters were all measured. The results showed that A. fourcroydes powder supplementation improved (P<0.05 the ADFI, ADG, and final BW. Correspondingly, this treatment increased (P<0.05 the muscle and mucosa thickness and height and width of villi. However, duodenum crypts depth was lower (P<0.05 when rabbits were fed with this natural product, compared with the basal diet treatment. Results also indicated that the A. fourcroydes powder increased (P<0.05 the serum concentration of IgG but did not change the hematology parameters. This data indicates that A. fourcroydes powder, as a supplement, had beneficial effects on increasing the growth performance and serum concentration of IgG, as well as improving the gut morphology without affecting the hematology parameters in broiler rabbits.

  9. A primer of statistical methods for correlating parameters and properties of electrospun poly(l -lactide) scaffolds for tissue engineering-PART 1: Design of experiments

    KAUST Repository

    Seyedmahmoud, Rasoul; Rainer, Alberto; Mozetic, Pamela; Maria Giannitelli, Sara; Trombetta, Marcella; Traversa, Enrico; Licoccia, Silvia; Rinaldi, Antonio

    2014-01-01

    parameters (the Xs), considering the single effect as well as interactions between Xs. For the first time, the major role of the MW emerges clearly in controlling all scaffold properties. The correlation between mechanical and morphological properties is also

  10. Semi-automatic identification of punching areas for tissue microarray building: the tubular breast cancer pilot study

    Directory of Open Access Journals (Sweden)

    Beltrame Francesco

    2010-11-01

    Full Text Available Abstract Background Tissue MicroArray technology aims to perform immunohistochemical staining on hundreds of different tissue samples simultaneously. It allows faster analysis, considerably reducing costs incurred in staining. A time consuming phase of the methodology is the selection of tissue areas within paraffin blocks: no utilities have been developed for the identification of areas to be punched from the donor block and assembled in the recipient block. Results The presented work supports, in the specific case of a primary subtype of breast cancer (tubular breast cancer, the semi-automatic discrimination and localization between normal and pathological regions within the tissues. The diagnosis is performed by analysing specific morphological features of the sample such as the absence of a double layer of cells around the lumen and the decay of a regular glands-and-lobules structure. These features are analysed using an algorithm which performs the extraction of morphological parameters from images and compares them to experimentally validated threshold values. Results are satisfactory since in most of the cases the automatic diagnosis matches the response of the pathologists. In particular, on a total of 1296 sub-images showing normal and pathological areas of breast specimens, algorithm accuracy, sensitivity and specificity are respectively 89%, 84% and 94%. Conclusions The proposed work is a first attempt to demonstrate that automation in the Tissue MicroArray field is feasible and it can represent an important tool for scientists to cope with this high-throughput technique.

  11. Carbendazim alters kidney morphology, kidney function tests, tissue ...

    African Journals Online (AJOL)

    of oxidative stress and serum micro-elements in rats fed protein-energy ... diet, protein-energy malnutrition did not exacerbate lesions which were contrary to tissue MDA which was elevated in LPC. ... metabolism in animals and this is proportional to the level of .... generally higher in the carbendazim-treated rats which ...

  12. Investigation of optical coherence tomography as an imaging modality in tissue engineering

    International Nuclear Information System (INIS)

    Yang Ying; Dubois, Arnaud; Qin Xiangpei; Li Jian; Haj, Alicia El; Wang, Ruikang K

    2006-01-01

    Monitoring cell profiles in 3D porous scaffolds presents a major challenge in tissue engineering. In this study, we investigate optical coherence tomography (OCT) as an imaging modality to monitor non-invasively both structures and cells in engineered tissue constructs. We employ time-domain OCT to visualize macro-structural morphology, and whole-field optical coherence microscopy to delineate the morphology of cells and constructs in a developing in vitro engineered bone tissue. The results show great potential for the use of OCT in non-invasive monitoring of cellular activities in 3D developing engineered tissues

  13. Tumor estrogen content and clinico-morphological and endocrine features of endometrial cancer.

    Science.gov (United States)

    Berstein, L M; Tchernobrovkina, A E; Gamajunova, V B; Kovalevskij, A J; Vasilyev, D A; Chepik, O F; Turkevitch, E A; Tsyrlina, E V; Maximov, S J; Ashrafian, L A; Thijssen, J H H

    2003-04-01

    To compare estrogen concentrations in endometrial cancer tissue with those in macroscopically normal endometrium and with certain morphological characteristics of the tumor and endocrine parameters in patients. The estradiol content was evaluated by radioimmunoassay after homogenization and extraction in 78 adenocarcinomas (61 from postmenopausal patients). Higher concentrations of estradiol in tumor tissue samples than in macroscopically normal endometrium were found in patients of both reproductive and postmenopausal age. This difference was the same in patients with either endometrial carcinoma type I or type II. No association between tumor steroid receptor levels, estradiol concentrations in blood serum, and timing of menopause with intratumoral estradiol contents was discovered. Estradiol concentrations in tumor tissues correlated positively with the clinical stage of disease and rate of tumor invasion (in patients with peripheric/lower type of fat topography), and negatively with tumor differentiation stage (in patients with central/upper type of fat topography) and the percentage of intact double-stranded DNA in normal endometrium. Tumor estrogen content in endometrial cancer has clinical significance that is modified in the presence of certain endocrine characteristics related to insulin resistance. The role of local estrogen production (aromatase activity) in this setting deserves special study.

  14. Surface morphology of laser tracks used for forming the non-smooth biomimetic unit of 3Cr2W8V steel under different processing parameters

    International Nuclear Information System (INIS)

    Zhang Zhihui; Zhou Hong; Ren Luquan; Tong Xin; Shan Hongyu; Li Xianzhou

    2008-01-01

    Aiming to form the high quality of non-smooth biomimetic unit, the influence of laser processing parameters (pulse energy, pulse duration, frequency and scanning speed in the present work) on the surface morphology of scanned tracks was studied based on the 3Cr2W8V die steel. The evolution of the surface morphology was explained according to the degree of melting and vaporization of surface material, and the trend of mean surface roughness and maximum peak-to-valley height. Cross-section morphology revealed the significant microstructural characteristic of the laser-treated zone used for forming the functional zone on the biomimetic surface. Results showed that the combination of pulse energy and pulse duration plays a major role in determining the local height difference on the irradiated surface and the occurrence of melting or vaporization. While frequency and scanning speed have a minor effect on the change of the surface morphology, acting mainly by the different overlapping amount and overlapping mode. The mechanisms behind these influences were discussed, and schematic drawings were introduced to describe the mechanisms

  15. Comparison of Selected Morphological, Rheological and Biochemical Parameters of Winter Swimmers' Blood at the End of One Winter Swimming Season and at the Beginning of Another.

    Science.gov (United States)

    Teległów, Aneta; Marchewka, Jakub; Tabarowski, Zbigniew; Rembiasz, Konrad; Głodzik, Jacek; Scisłowska-Czarnecka, Anna

    2015-01-01

    The aim of the study was to examine potential differences in the morphological, rheological and biochemical blood parameters of winter swimmers who remained physically active during the period between the end of one winter swimming season and the beginning of another. The study included a group of healthy winter swimmers (n = 17, all between 30 and 60 years of age). Six months following the end of winter season, the levels of mean corpuscular hemoglobin concentration and mean corpuscular hemoglobin turned out to be significantly higher, while erythrocyte count and hematocrit level significantly lower than at the baseline. Moreover, the break in winter swimming was reflected by a significant increase in median erythrocyte elongation index at all shear stress levels ≥ 1.13 Pa. The only significant changes in biochemical parameters of the blood pertained to an increase in the concentration of transferrin and to a decrease in the total protein, albumin and beta-1 globulin concentrations. Seasonal effort of winter swimmers between the end of one winter swimming season and the beginning of another has a positive influence on morphological, rheological and biochemical blood parameters.

  16. Effect of synthesis parameters on morphology of polyaniline (PANI) and field emission investigation of PANI nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Bankar, Prashant K.; More, Mahendra A., E-mail: mam@physics.unipune.ac.in [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune-411007 (India); Patil, Sandip S. [Department of Physics, Modern College of Arts, Science and Commerce, Shivajinagar, Pune-411005. India (India)

    2015-06-24

    Polyaniline (PANI) nanostructures have been synthesized by simple chemical oxidation route at different monomer concentration along with variation in synthesis temperature. The effect of variation of synthesis parameters has been revealed using different characterization techniques. The structural and morphological characterization of the synthesized PANI nanostructures was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), whereas Fourier Transform Infrared spectroscopy (FTIR) has been used to reveal the chemical properties. With the variation in the synthesis temperature and monomer concentration, various morphologies characterized by formation of PANI nanoparticles, nanofibres, nanotubes and nanospheres, are revealed from the SEM analysis. The FTIR analysis reveals the formation of conducting state of PANI under prevailing experimental conditions. The field emission investigation of the conducting PANI nanotubes was performed in all metal UHV system at base pressure of 1x10{sup −8} mbar. The turn on field required to draw emission of 1 nA current was observed to be ∼ 2.2 V/μm and threshold field (corresponding to emission current density of 1 µA/cm2) was found to be 3.2 V/μm. The emission current was observed to be stable for more than three hours at a preset value 1 µA. The simple synthesis route and good field emission characteristics indicate potential of PANI nanofibres as a promising emitter for field emission based micro/nano devices.

  17. Influence of orlistat therapy on serum insulin level and morphological and functional parameters of peripheral arterial circulation in obese patients

    Directory of Open Access Journals (Sweden)

    Hajduković Zoran

    2005-01-01

    Full Text Available Background/Aim. Insulin resistance is related to accelerated atherosclerosis, whereas weight loss is associated with the increasing insulin sensitivity, the improvement of functional and the morphological parameters of arterial circulation, and the reduction of cardiovascular morbidity and mortality. The aim of our study was to evaluate the influence of orlistat treatment on serum insulin level and functional and morphologic parameters of peripheral arterial circulation. Methods. We conducted a prospective, randomized, double − blind, placebo − controlled study. Thirty patients with body mass index over 30 kg/m2 normotensive, nonsmokers, without clinically manifested cardiovascular disease or diabetes were randomly assigned either orlistat (120 mg, 3 times daily; n = 20 or placebo (n = 10 in a double − blind manner. All of the patients were on individually calculated hypocaloric diet. The follow-up period was 24 weeks. Arterial pressure, fasting serum glucose and insulin level, triglycerides, total cholesterol and low density lipoprotein-cholesterol were determined at the beginning, following 3 and 6 months. Also, the intima − media thickness of right superficial femoral artery and the mean blood flow velocity were determined with ultrasonography. Results. Inside the period of 3 and 6 months, there were the greater reductions of body mass index, arterial pressure, fasting glucose and insulin level, total cholesterol, low density lipoproteins, as well as the greater reductions of mean velocity blood flow and peripheral pulse pressure in the orlistat group vs the placebo group (p < 0.01. Greater reductions in the waist circumference and intima − media thickness were registered following 6 months in the orlistat vs the placebo group (p < 0.01. Conclusion. In the group of obese patients orlistat therapy reduced risk factors, serum insulin level and improved early arterial functional changes as assessed with the reductions of the mean

  18. Three-Dimensional Microstructure of Biological Tissues during Freezing and Thawing

    Science.gov (United States)

    Ishiguro, Hiroshi; Horimizu, Takashi; Kataori, Akinobu; Kajigaya, Hiroshi

    Three-dimensional behavior of ice crystals and cells during the freezing and thawing of biological tissues was investigated microscopically in real time by using a confocal laser scanning microscope(CLSM) and a fluorescent dye, acridine orange (AO). Fresh tender meat (2nd pectoral muscles) of chicken was stained with the AO in physiological saline to distinguish ice crystals and cells by their different colors, and then frozen and thawed under two different thermal protocols: a) slow-cooling and rapid-warming and b) rapid-cooling and rapid-warming. The CLSM noninvasively produced optical tomograms of the tissues to clarify the pattern of freezing, morphology of ice crystals in the tissues, and the interaction between ice crystals and cells. Also, the tissues were morphologically investigated by pathological means after the freezing and thawing. Typical freezing pattern during the slow-cooling was extracellular-freezing, and those during the rapid-cooling were extracellular-freezing and intracellular freezing with a lot of fine ice crystals in the cells. Cracks caused by the extracellular and intracellular ice crystals remained in the muscle tissues after the thawing. The results obtained by using the CLSM/dye method were consistent with pathologically morphological changes in the tissues through freezing and thawing.

  19. A role for TLR10 in obesity and adipose tissue morphology

    NARCIS (Netherlands)

    Boutens, Lily; Mirea, Andreea Manuela; Munckhof, van den Inge; Doppenberg-Oosting, Marije; Jaeger, Martin; Hijmans, Anneke; Netea, Mihai G.; Joosten, Leo A.B.; Stienstra, Rinke

    2018-01-01

    Toll like receptors (TLRs) are expressed in adipose tissue and promote adipose tissue inflammation during obesity. Recently, anti-inflammatory properties have been attributed to TLR10 in myeloid cells, the only member of the TLR family with inhibitory activity. In order to assess whether

  20. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    Science.gov (United States)

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  1. Relationship between plasma and tissue parameters of leucine metabolism

    International Nuclear Information System (INIS)

    Vazquez, J.A.; Paul, H.S.; Adibi, S.A.

    1986-01-01

    Using a primed continuous infusion of [1- 14 C] leucine, the authors investigated parameters of leucine metabolism in plasma, expired air, and tissues of fed and 48-hour starved rats. The ratios of muscle/plasma specific activity of α-ketoisocaproate (KIC) in fed and starved rats, respectively were not significantly different from one (1.07 +/- 0.14 and 0.97 +/- 0.10, mean +/- SE, 7 rats). The ratio of muscle/plasma specific activity of leucine was also not significantly different from one (0.86 +/- 0.11) in fed rats, but was significantly lower than one (0.80 +/- 0.07) in starved rats. The rate of leucine oxidation was approximately 32% higher when calculated based on plasma KIC rather than leucine specific activity. However, starvation significantly increased the rate of leucine oxidation with either specific activity. The rate of leucine incorporation into whole body protein was unaffected by starvation (32.7 +/- 3.5 vs 36.1 +/- 2.5 μmol/100 g/h), but the incorporation into total protein of liver (1350 +/- 140 vs 780 +/- 33 nmol) and of skeletal muscle (1940 +/- 220 vs 820 +/- 60 nmol) was significantly decreased. The authors conclude that a) leucine or KIC specific activity in muscle is better predicted by plasma KIC than leucine specific activity, and b) the tracer infusion technique is valid for the study of leucine oxidation but not for leucine incorporation into whole body protein

  2. Changes in Cis-regulatory Elements during Morphological Evolution

    Directory of Open Access Journals (Sweden)

    Yu-Lee Paul

    2012-10-01

    Full Text Available How have animals evolved new body designs (morphological evolution? This requires explanations both for simple morphological changes, such as differences in pigmentation and hair patterns between different Drosophila populations and species, and also for more complex changes, such as differences in the forelimbs of mice and bats, and the necks of amphibians and reptiles. The genetic changes and pathways involved in these evolutionary steps require identification. Many, though not all, of these events occur by changes in cis-regulatory (enhancer elements within developmental genes. Enhancers are modular, each affecting expression in only one or a few tissues. Therefore it is possible to add, remove or alter an enhancer without producing changes in multiple tissues, and thereby avoid widespread (pleiotropic deleterious effects. Ideally, for a given step in morphological evolution it is necessary to identify (i the change in phenotype, (ii the changes in gene expression, (iii the DNA region, enhancer or otherwise, affected, (iv the mutation involved, (v the nature of the transcription or other factors that bind to this site. In practice these data are incomplete for most of the published studies upon morphological evolution. Here, the investigations are categorized according to how far these analyses have proceeded.

  3. A Comparison of the Dosimetric Parameters of Cs-137 Brachytherapy Source in Different Tissues with Water Using Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2012-03-01

    Full Text Available Introduction After the publication of Task Group number 43 dose calculation formalism by the American Association of Physicists in Medicine (AAPM, this method has been known as the most common dose calculation method in brachytherapy treatment planning. In this formalism, the water phantom is introduced as the reference dosimetry phantom, while the attenuation coefficient of the sources in the water phantom is different from that of different tissues. The purpose of this study is to investigate the effects of the phantom materials on the TG-43 dosimetery parameters of the Cs-137 brachytherapy source using MCNP4C Monte Carlo code. Materials and Methods In this research, the Cs-137 (Model Selectron brachytherapy source was simulated in different phantoms (bone, soft tissue, muscle, fat, and the inhomogeneous phantoms of water/bone of volume 27000 cm3 using MCNP4C Monte Carlo code. *F8 tally was used to obtain the dose in a fine cubical lattice. Then the TG-43 dosimetry parameters of the brachytherapy source were obtained in water phantom and compared with those of different phantoms. Results The percentage difference between the radial dose function g(r of bone and the g(r of water phantom, at a distance of 10 cm from the source center is 20%, while such differences are 1.7%, 1.6% and 1.1% for soft tissue, muscle, and fat, respectively. The largest difference of the dose rate constant of phantoms with those of water is 4.52% for the bone phantom, while the differences for soft tissue, muscle, and fat are 1.18%, 1.27%, and 0.18%, respectively. The 2D anisotropy function of the Cs-137 source for different tissues is identical to that of water. Conclusion The results of the simulations have shown that dose calculation in water phantom would introduce errors in the dose calculation around brachytherapy sources. Therefore, it is suggested that the correction factors of different tissues be applied after dose calculation in water phantoms, in order to

  4. MRI-based morphological modeling, synthesis and characterization of cardiac tissue-mimicking materials.

    Science.gov (United States)

    Kossivas, Fotis; Angeli, S; Kafouris, D; Patrickios, C S; Tzagarakis, V; Constantinides, C

    2012-06-01

    This study uses standard synthetic methodologies to produce tissue-mimicking materials that match the morphology and emulate the in vivo murine and human cardiac mechanical and imaging characteristics, with dynamic mechanical analysis, atomic force microscopy (AFM), scanning electron microscopy (SEM) and magnetic resonance imaging. In accordance with such aims, poly(glycerol sebacate) (PGS) elastomeric materials were synthesized (at two different glycerol (G)-sebacic (S) acid molar ratios; the first was synthesized using a G:S molar ratio of 2:2, while the second from a 2:5 G:S molar ratio, resulting in PGS2:2 and PGS2:5 elastomers, respectively). Unlike the synthesized PGS2:2 elastomers, the PGS2:5 materials were characterized by an overall mechanical instability in their loading behavior under the three successive loading conditions tested. An oscillatory response in the mechanical properties of the synthesized elastomers was observed throughout the loading cycles, with measured increased storage modulus values at the first loading cycle, stabilizing to lower values at subsequent cycles. These elastomers were characterized at 4 °C and were found to have storage modulus values of 850 and 1430 kPa at the third loading cycle, respectively, in agreement with previously reported values of the rat and human myocardium. SEM of surface topology indicated minor degradation of synthesized materials at 10 and 20 d post-immersion in the PBS buffer solution, with a noted cluster formation on the PGS2:5 elastomers. AFM nanoindentation experiments were also conducted for the measurement of the Young modulus of the sample surface (no bulk contribution). Correspondingly, the PGS2:2 elastomer indicated significantly decreased surface Young's modulus values 20 d post-PBS immersion, compared to dry conditions (Young's modulus = 1160 ± 290 kPa (dry) and 200 ± 120 kPa (20 d)). In addition to the two-dimensional (2D) elastomers, an integrative platform for accurate construction of

  5. MRI-based morphological modeling, synthesis and characterization of cardiac tissue-mimicking materials

    International Nuclear Information System (INIS)

    Kossivas, Fotis; Angeli, S; Constantinides, C; Kafouris, D; Patrickios, C S; Tzagarakis, V

    2012-01-01

    This study uses standard synthetic methodologies to produce tissue-mimicking materials that match the morphology and emulate the in vivo murine and human cardiac mechanical and imaging characteristics, with dynamic mechanical analysis, atomic force microscopy (AFM), scanning electron microscopy (SEM) and magnetic resonance imaging. In accordance with such aims, poly(glycerol sebacate) (PGS) elastomeric materials were synthesized (at two different glycerol (G)–sebacic (S) acid molar ratios; the first was synthesized using a G:S molar ratio of 2:2, while the second from a 2:5 G:S molar ratio, resulting in PGS2:2 and PGS2:5 elastomers, respectively). Unlike the synthesized PGS2:2 elastomers, the PGS2:5 materials were characterized by an overall mechanical instability in their loading behavior under the three successive loading conditions tested. An oscillatory response in the mechanical properties of the synthesized elastomers was observed throughout the loading cycles, with measured increased storage modulus values at the first loading cycle, stabilizing to lower values at subsequent cycles. These elastomers were characterized at 4 °C and were found to have storage modulus values of 850 and 1430 kPa at the third loading cycle, respectively, in agreement with previously reported values of the rat and human myocardium. SEM of surface topology indicated minor degradation of synthesized materials at 10 and 20 d post-immersion in the PBS buffer solution, with a noted cluster formation on the PGS2:5 elastomers. AFM nanoindentation experiments were also conducted for the measurement of the Young modulus of the sample surface (no bulk contribution). Correspondingly, the PGS2:2 elastomer indicated significantly decreased surface Young's modulus values 20 d post-PBS immersion, compared to dry conditions (Young's modulus = 1160 ± 290 kPa (dry) and 200 ± 120 kPa (20 d)). In addition to the two-dimensional (2D) elastomers, an integrative platform for accurate construction of

  6. Cell behavior on microparticles with different surface morphology

    International Nuclear Information System (INIS)

    Huang Sha; Fu Xiaobing

    2010-01-01

    Microparticles can serve as substrates for cell amplification and deliver the cell aggregation to the site of the defect for tissue regeneration. To develop favorable microparticles for cell delivery application, we fabricated and evaluated three types of microparticles that differ in surface properties. The microparticles with varied surface morphology (smooth, pitted and multicavity) were created from chemically crosslinked gelatin particles that underwent various drying treatments. Three types of microparticles were characterized and assessed in terms of the cell behavior of human keratinocytes and fibroblasts seeded on them. The cells could attach, spread and proliferate on all types of microparticles but spread and populated more slowly on the microparticles with smooth surfaces than on those with pitted or multicavity surfaces. Microparticles with a multicavity surface demonstrated the highest cell attachment and growth rate. Furthermore, cells tested on microparticles with a multicavity surface exhibited better morphology and induced the earlier formation of extracellular-based cell-microparticle aggregation than those on microparticles with other surface morphology (smooth and pitted). Thus, microparticles with a multicavity surface show promise for attachment and proliferation of cells in tissue engineering.

  7. Melt Electrospinning Writing of Three-dimensional Poly(ε-caprolactone) Scaffolds with Controllable Morphologies for Tissue Engineering Applications.

    Science.gov (United States)

    Wunner, Felix M; Bas, Onur; Saidy, Navid T; Dalton, Paul D; Pardo, Elena M De-Juan; Hutmacher, Dietmar W

    2017-12-23

    This tutorial reflects on the fundamental principles and guidelines for electrospinning writing with polymer melts, an additive manufacturing technology with great potential for biomedical applications. The technique facilitates the direct deposition of biocompatible polymer fibers to fabricate well-ordered scaffolds in the sub-micron to micro scale range. The establishment of a stable, viscoelastic, polymer jet between a spinneret and a collector is achieved using an applied voltage and can be direct-written. A significant benefit of a typical porous scaffold is a high surface-to-volume ratio which provides increased effective adhesion sites for cell attachment and growth. Controlling the printing process by fine-tuning the system parameters enables high reproducibility in the quality of the printed scaffolds. It also provides a flexible manufacturing platform for users to tailor the morphological structures of the scaffolds to their specific requirements. For this purpose, we present a protocol to obtain different fiber diameters using melt electrospinning writing (MEW) with a guided amendment of the parameters, including flow rate, voltage and collection speed. Furthermore, we demonstrate how to optimize the jet, discuss often experienced technical challenges, explain troubleshooting techniques and showcase a wide range of printable scaffold architectures.

  8. A primer of statistical methods for correlating parameters and properties of electrospun poly( l -lactide) scaffolds for tissue engineering-PART 2: Regression

    KAUST Repository

    Seyedmahmoud, Rasoul

    2014-04-07

    This two-articles series presents an in-depth discussion of electrospun poly-l-lactide scaffolds for tissue engineering by means of statistical methodologies that can be used, in general, to gain a quantitative and systematic insight about effects and interactions between a handful of key scaffold properties (Ys) and a set of process parameters (Xs) in electrospinning. While Part-1 dealt with the DOE methods to unveil the interactions between Xs in determining the morphomechanical properties (ref. Y1-4), this Part-2 article continues and refocuses the discussion on the interdependence of scaffold properties investigated by standard regression methods. The discussion first explores the connection between mechanical properties (Y4) and morphological descriptors of the scaffolds (Y1-3) in 32 types of scaffolds, finding that the mean fiber diameter (Y1) plays a predominant role which is nonetheless and crucially modulated by the molecular weight (MW) of PLLA. The second part examines the biological performance (Y5) (i.e. the cell proliferation of seeded bone marrow-derived mesenchymal stromal cells) on a random subset of eight scaffolds vs. the mechanomorphological properties (Y1-4). In this case, the featured regression analysis on such an incomplete set was not conclusive, though, indirectly suggesting in quantitative terms that cell proliferation could not fully be explained as a function of considered mechanomorphological properties (Y1-4), but in the early stage seeding, and that a randomization effects occurs over time such that the differences in initial cell proliferation performance (at day 1) is smeared over time. The findings may be the cornerstone of a novel route to accrue sufficient understanding and establish design rules for scaffold biofunctional vs. architecture, mechanical properties, and process parameters.

  9. High-intensity focused ultrasound for ex vivo kidney tissue ablation: influence of generator power and pulse duration.

    Science.gov (United States)

    Häcker, Axel; Köhrmann, Kai Uwe; Knoll, Thomas; Langbein, Sigrun; Steidler, Annette; Kraut, Oliver; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan

    2004-11-01

    The therapeutic application of noninvasive tissue ablation by high-intensity focused ultrasound (HIFU) requires precise physical definition of the focal size and determination of control parameters. The objective of this study was to measure the extent of ex-vivo porcine kidney tissue ablation at variable generator parameters and to identify parameters to control lesion size. The ultrasound waves generated by a cylindrical piezoceramic element (1.04 MHz) were focused at a depth of 100 mm using a parabolic reflector (diameter 100 mm). A needle hydrophone was used to measure the field distribution of the sound pressure. The morphology and extent of tissue necrosis were examined at generator powers of up to 400 W (P(el)) and single pulse durations of as long as 8 seconds. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (-6 dB). A sharp demarcation between coagulation necrosis and intact tissue was observed. Lesion size was controlled by both the variation of generator power and the pulse duration. At a constant pulse duration of 2 seconds, a generator power of 100 W remained below the threshold doses for inducing a reproducible lesion. An increase in power to as high as 400 W induced lesions with average dimensions of as much as 11.2 x 3 mm. At constant total energy (generator power x pulse duration), lesion size increased at higher generator power. This ultrasound generator can induce defined and reproducible necrosis in ex-vivo kidney tissue. Lesion size can be controlled by adjusting the generator power and pulse duration. Generator power, in particular, turned out to be a suitable control parameter for obtaining a lesion of a defined size.

  10. Baseline Haematology and Erythrocyte Morphological Changes of ...

    African Journals Online (AJOL)

    Summary: This study evaluates the haematological parameters and the observed erythrocytes morphological changes in dogs raised in Ibadan, Oyo State in the south western part of Nigeria. Blood samples were collected from sixty-four apparently healthy dogs. The haematological parameters of the blood samples ...

  11. An iterative hyperelastic parameters reconstruction for breast cancer assessment

    Science.gov (United States)

    Mehrabian, Hatef; Samani, Abbas

    2008-03-01

    In breast elastography, breast tissues usually undergo large compressions resulting in significant geometric and structural changes, and consequently nonlinear mechanical behavior. In this study, an elastography technique is presented where parameters characterizing tissue nonlinear behavior is reconstructed. Such parameters can be used for tumor tissue classification. To model the nonlinear behavior, tissues are treated as hyperelastic materials. The proposed technique uses a constrained iterative inversion method to reconstruct the tissue hyperelastic parameters. The reconstruction technique uses a nonlinear finite element (FE) model for solving the forward problem. In this research, we applied Yeoh and Polynomial models to model the tissue hyperelasticity. To mimic the breast geometry, we used a computational phantom, which comprises of a hemisphere connected to a cylinder. This phantom consists of two types of soft tissue to mimic adipose and fibroglandular tissues and a tumor. Simulation results show the feasibility of the proposed method in reconstructing the hyperelastic parameters of the tumor tissue.

  12. Thorium oxalate solubility and morphology

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.; Hall, R.

    1981-10-01

    Thorium was used as a stand-in for studying the solubility and precipitation of neptunium and plutonium oxalates. Thorium oxalate solubility was determined over a range of 0.001 to 10.0 in the concentration parameter [H 2 C 2 O 4 ]/[HNO 3 ] 2 . Morphology of thorium oxide made from the oxalate precipitates was characterized by scanning electron microscopy. The different morphologies found for oxalate-lean and oxalate-rich precipitations were in agreement with predictions based on precipitation theory

  13. [Morphological characteristics of kidneys connective tissue of mature fetuses and newborns from mothers, whose pregnancy was complicated by preeclampsia of varying degrees of severity].

    Science.gov (United States)

    Sorokina, Iryna V; Myroshnychenko, Mykhailo S; Kapustnyk, Nataliia V; Khramova, Tetyana O; Dehtiarova, Oksana V; Danylchenko, Svitlana I

    2018-01-01

    Introduction: The kidneys connective tissue condition in the antenatal period affects the formation of tissues and it changes with the development of various general pathological processes in this organ. The aim of the study was to identify the morphological features of kidneys connective tissue of fetuses and newborns from mothers whose pregnancy was complicated by preeclampsia of varying degrees of severity. Materials and methods: The material of the study was the tissue of kidneys of mature fetuses and newborns from mothers with physiological pregnancy (28 cases), as well as from mothers whose pregnancy was complicated by preeclampsia of varying degrees of severity (78 cases). Immunohistochemical study was performed by an indirect Coons method according to M. Brosman's technique using monoclonal antibodies to collagen type I, III and IV. Results: The kidneys connective tissue of fetuses and newborns developing under the maternal preeclampsia conditions is characterized by the qualitative and quantitative changes that indicate the development of sclerotic processes in this organ, the severity of which increase with the age and with the increase of the maternal preeclampsia severity. Qualitative changes are characterized by an increase of the fibrous component, thickening of the bundles of connective tissue fibers, and a decrease in the distance between them. Quantitative changes are characterized by a pronounced predominance of collagen fibers over elastic fibers, almost total absence in some field of view elastic fibers and the violation of the content of collagen type I, III and IV. Conclusion: Maternal preeclampsia underlies the development of qualitative and quantitative changes in kidneys connective tissue of fetuses and newborns, which as a result will lead to disruption of the functions of these organs in such children.

  14. Characterisation of intra-articular soft tissue tumours and tumour-like lesions

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Matthew E. [The Royal National Orthopaedic Hospital NHS Trust, The Department of Radiology, Middlesex (United Kingdom); Saifuddin, Asif [The Royal National Orthopaedic Hospital NHS Trust, The Department of Radiology, Middlesex (United Kingdom); The London Bone and Soft Tissue Tumour Service, London (United Kingdom); University College London, The Institute of Orthopaedics and Musculoskeletal Sciences, London (United Kingdom)

    2007-04-15

    The aim of this study was to describe a new magnetic resonance imaging (MRI) classification system for intra-articular soft tissue tumours based on the morphology of the lesion, with the aim to aid the differential diagnosis. We performed a retrospective review of 52 consecutive patients presenting to a specialist musculoskeletal oncology unit with a suspected intra-articular tumour. Lesions were categorised into one of four groups according to a simple classification system based on their morphological features on MRI. Distinct groupings of pathologies emerged corresponding to each of the morphological categories. Particularly when combined with radiographic features of calcification and bone erosion, certain patterns were found to be characteristic of specific diagnoses. For example multifocal, calcified lesions were found exclusively in synovial osteochondromatosis and diffuse synovitis with hypointense T2-weighted signal intensity was typical of pigmented villonodular synovitis. Certain combinations of imaging features such as diffuse solid lesions and focal lesions with bone erosion were commonly associated with malignant lesions. We suggest that by classifying intra-articular masses according to their morphological features on MRI, particularly when combined with simple radiographic features, an additional parameter may be generated to aid the radiologist in making a diagnosis. In addition, particular combinations of features provide 'red flags' to increase the index of suspicion for malignancy. (orig.)

  15. Characterisation of intra-articular soft tissue tumours and tumour-like lesions

    International Nuclear Information System (INIS)

    Adams, Matthew E.; Saifuddin, Asif

    2007-01-01

    The aim of this study was to describe a new magnetic resonance imaging (MRI) classification system for intra-articular soft tissue tumours based on the morphology of the lesion, with the aim to aid the differential diagnosis. We performed a retrospective review of 52 consecutive patients presenting to a specialist musculoskeletal oncology unit with a suspected intra-articular tumour. Lesions were categorised into one of four groups according to a simple classification system based on their morphological features on MRI. Distinct groupings of pathologies emerged corresponding to each of the morphological categories. Particularly when combined with radiographic features of calcification and bone erosion, certain patterns were found to be characteristic of specific diagnoses. For example multifocal, calcified lesions were found exclusively in synovial osteochondromatosis and diffuse synovitis with hypointense T2-weighted signal intensity was typical of pigmented villonodular synovitis. Certain combinations of imaging features such as diffuse solid lesions and focal lesions with bone erosion were commonly associated with malignant lesions. We suggest that by classifying intra-articular masses according to their morphological features on MRI, particularly when combined with simple radiographic features, an additional parameter may be generated to aid the radiologist in making a diagnosis. In addition, particular combinations of features provide 'red flags' to increase the index of suspicion for malignancy. (orig.)

  16. Respiratory tract dose calculation considering physiological parameters from samples of Brazilian population

    International Nuclear Information System (INIS)

    Reis, A.; Lopes, R.; Lourenco, M.; Cardoso, J.

    2006-01-01

    The Human Respiratory Tract Model proposed by the ICRP Publication 66 accounts for the morphology and physiology of the respiratory tract. The ICRP 66 presents deposition fraction in the respiratory tract regions considering reference values from Caucasian man. However, in order to obtain a more accurate assessment of intake and dose the ICRP recommends the use of specific information when they are available. The application of parameters from Brazilian population in the deposition and in the clearance model shows significant variations in the deposition fractions and in the fraction of inhaled activity transferred to blood. The main objective of this study is to evaluate the influence in dose calculation to each region of the respiratory tract when physiological parameters from Brazilian population are applied in the model. The purpose of the dosimetric model is to evaluate dose to each tissues of respiratory tract that are potentially risk from inhaled radioactive materials. The committed equivalent dose, H.T., is calculated by the product of the total number of transformations of the radionuclide in tissue source S over a period of fifty years after incorporation and of the energy absorbed per unit mass in the target tissue T, for each radiation emitted per transformation in tissue source S. The dosimetric model of Human Respirator y Tract was implemented in the software Excel for Windows (version 2000) and H.T. was determined in two stages. First it was calculated the number of total transformations, US, considering the fractional deposition of activity in each source tissue and then it was calculated the total energy absorbed per unit mass S.E.E., in the target tissue. It was assumed that the radionuclide emits an alpha particle with average energy of 5.15 MeV. The variation in the fractional deposition in the compartments of the respiratory tract in changing the physiological parameters from Caucasian to Brazilian adult man causes variation in the number of

  17. Vascular Endothelial Growth Factor Is Associated with the Morphologic and Functional Parameters in Patients with Hypertrophic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Radek Pudil

    2015-01-01

    Full Text Available Background. Hypertrophic cardiomyopathy (HCM is mostly autosomal dominant disease of the myocardium, which is characterized by myocardial hypertrophy. Vascular endothelial growth factor (VEGF is involved in myocyte function, growth, and survival. The aim of study was to analyze the clinical significance of VEGF in structural and functional changes in patient with HCM. Methods. In a group of 21 patients with nonobstructive HCM, we assessed serum VEGF and analyzed its association with morphological and functional parameters. Compared to healthy controls, serum VEGF was increased: 199 (IQR: 120.4–260.8 ng/L versus 20 (IQR: 14.8–37.7 ng/L, P<0.001. VEGF levels were associated with left atrium diameter (r=0.51, P=0.01, left ventricle ejection fraction (r=-0.56, P=0.01, fractional shortening (r=-0.54, P=0.02, left ventricular mass (r=0.61, P=0.03, LV mass index (r=0.46, P=0.04, vena cava inferior diameter (r=0.65, P=0.01, and peak gradient of tricuspid regurgitation (r=0.46, P=0.03. Conclusions. Increased VEGF level is associated with structural and functional parameters in patients with HCM and serves as a potential tool for diagnostic process of these patients.

  18. [Morphological substrate and pathogenetic mechanisms of pelvic pain syndrome in endometriosis. Part II. Peripheral nerve tissue remodeling in the foci of endometriosis].

    Science.gov (United States)

    Kogan, E A; Ovakimyan, A S; Paramonova, N B; Faizullina, N M; Kazachenko, I F; Adamyan, L V

    2016-01-01

    Endometriosis (EM) is morphologically characterized by the development of extrauterine endometrioid heterotopies, the major clinical symptoms of which is chronic pelvic pain, which is a serious problem not only in modern gynecology, but also in public health as a whole. to investigate neurogenic markers in the foci of EM of various sites and histological structure in women with and without pain syndrome. The investigation was performed using the operative material (resected segments of the intestine, bladder, rectovaginal septum, and small pelvic peritoneum) obtained from 52 women with an intraoperative and morphologically verified diagnosis of EM and (Group 1) and without (Group 2) pain syndrome. Immunohistochemical examination was made on paraffin-embedded tissue sections in accordance with the standard protocols, by using the antibodies: 1) anti-PGP 9.5 polyclonal rabbit antibodies; 2) mouse anti-human neurofilament (NF) protein monoclonal antibodies (Clone 2F1); 3) mouse anti-nerve growth factor (NGF) monoclonal antibodies; 4) monoclonal mouse anti-human NGF receptor p75 (NGFRp75) antibodies (Dako, Denmark). Our findings demonstrate differences in the expression of PGP 9.5, NFs, NGF, and NGFRp75 in the foci and adjacent tissue in painful and painless EM irrespective of the locations of heterotopies. The found molecular features are a manifestation of the remodeling of nerve fibers and nerve endings in the foci of EM and PGP9.5, NGF, and NGFRp75 give rise to nerve fiber neoformation and pain syndrome in EM. At the same time, the immunohistochemical phenotype of EM foci does not depend on their site and reflects the presence or absence of pain syndrome.

  19. Influence of the incidence angle on the morphology of enamel and dentin under Er:YAG laser irradiation

    International Nuclear Information System (INIS)

    Junqueira Junior, Duilio Naves

    2002-01-01

    The purpose of this study is to make an in vitro evaluation, using scanning electron microscopy, of the influence of the laser beam irradiation angle on the enamel and dentin morphology. These tissues were both irradiated by Er:YAG Laser, with the same energy parameter. Twenty-four incisive bovine teeth were used, separated in eight groups, four of enamel, and four of dentin, with three specimens in each group. Each specimen was submitted to three laser applications, varying the incidence angle, between the laser and the tooth surface, at 90, 50 and 20 degrees. The applied frequency was 2 Hz, with 20 pulses in each application. The KaVo Key Laser 3 was employed, wavelength at 2940 nm, adjustable energy from 40 to 600 mJ and repetition rate from 1 to 25 Hz. The groups were distributed according to the energy parameter as follows - enamel: 250 mJ; 300 mJ; 350 mJ and 400 mJ; dentin: 200 mJ; 250 mJ; 300 mJ and 350 mJ. The results evidenced the Laser incidence angle importance; it is an essential parameter in the protocol of utilization and it should not be disregarded. The observations of this study allow to conclude that the Laser incidence angle has direct influence on the morphological aspect of the alterations produced in enamel and dentin. (author)

  20. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters

    Science.gov (United States)

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124

  1. Fracture Surface Morphology Under Ductile Tearing of Metal Plates

    DEFF Research Database (Denmark)

    Kacar, Muhammet F.; Tekoglu, Cihan; Nielsen, Kim Lau

    2017-01-01

    The present work takes as offset the hypothesis that microstructural parameters, related to particle size and distribution, govern the transition between crack surface morphologies observed in experiments. The key question is; why does tearing of a given metal plate leave a specific morphology...

  2. Gelatin in situ zymography on fixed, paraffin-embedded tissue: zinc and ethanol fixation preserve enzyme activity.

    Science.gov (United States)

    Hadler-Olsen, Elin; Kanapathippillai, Premasany; Berg, Eli; Svineng, Gunbjørg; Winberg, Jan-Olof; Uhlin-Hansen, Lars

    2010-01-01

    In situ zymography is a method for the detection and localization of enzymatic activity in tissue sections. This method is used with frozen sections because routine fixation of tissue in neutral-buffered formalin inhibits enzyme activity. However, frozen sections present with poor tissue morphology, making precise localization of enzymatic activity difficult to determine. Ethanol- and zinc-buffered fixative (ZBF) are known to preserve both morphological and functional properties of the tissue well, but it has not previously been shown that these fixatives preserve enzyme activity. In the present study, we show that in situ zymography can be performed on ethanol- and ZBF-fixed paraffin-embedded tissue. Compared with snap-frozen tissue, ethanol- and ZBF-fixed tissue showed stronger signals and superior morphology, allowing for a much more precise detection of gelatinolytic activity. Gelatinolytic enzymes could also be extracted from both ethanol- and ZBF-fixed tissue. The yield, as analyzed by SDS-PAGE gelatin zymography and Western blotting, was influenced by the composition of the extraction buffer, but was generally lower than that obtained from unfixed tissue.

  3. Optical signature of nerve tissue-Exploratory ex vivo study comparing optical, histological, and molecular characteristics of different adipose and nerve tissues.

    Science.gov (United States)

    Balthasar, Andrea J R; Bydlon, Torre M; Ippel, Hans; van der Voort, Marjolein; Hendriks, Benno H W; Lucassen, Gerald W; van Geffen, Geert-Jan; van Kleef, Maarten; van Dijk, Paul; Lataster, Arno

    2018-05-14

    During several anesthesiological procedures, needles are inserted through the skin of a patient to target nerves. In most cases, the needle traverses several tissues-skin, subcutaneous adipose tissue, muscles, nerves, and blood vessels-to reach the target nerve. A clear identification of the target nerve can improve the success of the nerve block and reduce the rate of complications. This may be accomplished with diffuse reflectance spectroscopy (DRS) which can provide a quantitative measure of the tissue composition. The goal of the current study was to further explore the morphological, biological, chemical, and optical characteristics of the tissues encountered during needle insertion to improve future DRS classification algorithms. To compare characteristics of nerve tissue (sciatic nerve) and adipose tissues, the following techniques were used: histology, DRS, absorption spectrophotometry, high-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, and solution 2D 13 C- 1 H heteronuclear single-quantum coherence spectroscopy. Tissues from five human freshly frozen cadavers were examined. Histology clearly highlights a higher density of cellular nuclei, collagen, and cytoplasm in fascicular nerve tissue (IFAS). IFAS showed lower absorption of light around 1200 nm and 1750 nm, higher absorption around 1500 nm and 2000 nm, and a shift in the peak observed around 1000 nm. DRS measurements showed a higher water percentage and collagen concentration in IFAS and a lower fat percentage compared to all other tissues. The scattering parameter (b) was highest in IFAS. The HR-MAS NMR data showed three extra chemical peak shifts in IFAS tissue. Collagen, water, and cellular nuclei concentration are clearly different between nerve fascicular tissue and other adipose tissue and explain some of the differences observed in the optical absorption, DRS, and HR-NMR spectra of these tissues. Some differences observed between fascicular

  4. Biophysics Model of Heavy-Ion Degradation of Neuron Morphology in Mouse Hippocampal Granular Cell Layer Neurons.

    Science.gov (United States)

    Alp, Murat; Cucinotta, Francis A

    2018-03-01

    Exposure to heavy-ion radiation during cancer treatment or space travel may cause cognitive detriments that have been associated with changes in neuron morphology and plasticity. Observations in mice of reduced neuronal dendritic complexity have revealed a dependence on radiation quality and absorbed dose, suggesting that microscopic energy deposition plays an important role. In this work we used morphological data for mouse dentate granular cell layer (GCL) neurons and a stochastic model of particle track structure and microscopic energy deposition (ED) to develop a predictive model of high-charge and energy (HZE) particle-induced morphological changes to the complex structures of dendritic arbors. We represented dendrites as cylindrical segments of varying diameter with unit aspect ratios, and developed a fast sampling method to consider the stochastic distribution of ED by δ rays (secondary electrons) around the path of heavy ions, to reduce computational times. We introduce probabilistic models with a small number of parameters to describe the induction of precursor lesions that precede dendritic snipping, denoted as snip sites. Predictions for oxygen ( 16 O, 600 MeV/n) and titanium ( 48 Ti, 600 MeV/n) particles with LET of 16.3 and 129 keV/μm, respectively, are considered. Morphometric parameters to quantify changes in neuron morphology are described, including reduction in total dendritic length, number of branch points and branch numbers. Sholl analysis is applied for single neurons to elucidate dose-dependent reductions in dendritic complexity. We predict important differences in measurements from imaging of tissues from brain slices with single neuron cell observations due to the role of neuron death through both soma apoptosis and excessive dendritic length reduction. To further elucidate the role of track structure, random segment excision (snips) models are introduced and a sensitivity study of the effects of the modes of neuron death in predictions

  5. Plaque Tissue Morphology-Based Stroke Risk Stratification Using Carotid Ultrasound: A Polling-Based PCA Learning Paradigm.

    Science.gov (United States)

    Saba, Luca; Jain, Pankaj K; Suri, Harman S; Ikeda, Nobutaka; Araki, Tadashi; Singh, Bikesh K; Nicolaides, Andrew; Shafique, Shoaib; Gupta, Ajay; Laird, John R; Suri, Jasjit S

    2017-06-01

    Severe atherosclerosis disease in carotid arteries causes stenosis which in turn leads to stroke. Machine learning systems have been previously developed for plaque wall risk assessment using morphology-based characterization. The fundamental assumption in such systems is the extraction of the grayscale features of the plaque region. Even though these systems have the ability to perform risk stratification, they lack the ability to achieve higher performance due their inability to select and retain dominant features. This paper introduces a polling-based principal component analysis (PCA) strategy embedded in the machine learning framework to select and retain dominant features, resulting in superior performance. This leads to more stability and reliability. The automated system uses offline image data along with the ground truth labels to generate the parameters, which are then used to transform the online grayscale features to predict the risk of stroke. A set of sixteen grayscale plaque features is computed. Utilizing the cross-validation protocol (K = 10), and the PCA cutoff of 0.995, the machine learning system is able to achieve an accuracy of 98.55 and 98.83%corresponding to the carotidfar wall and near wall plaques, respectively. The corresponding reliability of the system was 94.56 and 95.63%, respectively. The automated system was validated against the manual risk assessment system and the precision of merit for same cross-validation settings and PCA cutoffs are 98.28 and 93.92%for the far and the near wall, respectively.PCA-embedded morphology-based plaque characterization shows a powerful strategy for risk assessment and can be adapted in clinical settings.

  6. Surface morphological changes on the human dental enamel and cement after the Er:YAG laser irradiation at different incidence angles; Avaliacao morfologica das superficies do esmalte e do cimento dental apos a irradiacao do laser de Er:YAG em diferentes angulacoes

    Energy Technology Data Exchange (ETDEWEB)

    Tannous, Jose Trancoso

    2001-07-01

    This is a morphological analysis study through SEM of the differences of the laser tissue interaction as a function of the laser beam irradiation angle, under different parameters of energy. Fourteen freshly extracted molars stored in a 0,9% sodium chloride solution were divided in seven pairs and were irradiated with 100, 200, 300, 400, 500, 600 and 700 mJ per pulse, respectively. Each sample received three enamel irradiations and three cement irradiations, either in the punctual or in the contact mode, one near to the other, with respectively 30, 45 and 90 inclinations degrees of dental surface-laser-beam incidence. Four Er:YAG pulses (2,94 {mu}m, 7-20 Hz, 0,1-1 J energy/pulse - Opus 20 - Opus Dent) with water cooling system (0,4 ml/s) were applied. After the laser irradiation the specimens were analysed through scanning electron microscope (SEM). The results were analysed by SEM micrographs showing a great difference on the laser tissue interaction characteristics as a function of the irradiation angle of the laser beam. All the observations led to conclude that, considering the laser parameters used, the incidence angle variation is a very important parameter regarding the desired morphological effects. This represents an extremely relevant detail on the technical description of the Er:YAG laser irradiation protocols on dental tissues. (author)

  7. Optical biopsy of lymph node morphology using optical coherence tomography.

    Science.gov (United States)

    Luo, Wei; Nguyen, Freddy T; Zysk, Adam M; Ralston, Tyler S; Brockenbrough, John; Marks, Daniel L; Oldenburg, Amy L; Boppart, Stephen A

    2005-10-01

    Optical diagnostic imaging techniques are increasingly being used in the clinical environment, allowing for improved screening and diagnosis while minimizing the number of invasive procedures. Diffuse optical tomography, for example, is capable of whole-breast imaging and is being developed as an alternative to traditional X-ray mammography. While this may eventually be a very effective screening method, other optical techniques are better suited for imaging on the cellular and molecular scale. Optical Coherence Tomography (OCT), for instance, is capable of high-resolution cross-sectional imaging of tissue morphology. In a manner analogous to ultrasound imaging except using optics, pulses of near-infrared light are sent into the tissue while coherence-gated reflections are measured interferometrically to form a cross-sectional image of tissue. In this paper we apply OCT techniques for the high-resolution three-dimensional visualization of lymph node morphology. We present the first reported OCT images showing detailed morphological structure and corresponding histological features of lymph nodes from a carcinogen-induced rat mammary tumor model, as well as from a human lymph node containing late stage metastatic disease. The results illustrate the potential for OCT to visualize detailed lymph node structures on the scale of micrometastases and the potential for the detection of metastatic nodal disease intraoperatively.

  8. Protective effect of Urtica dioica L against nicotine-induced damage on sperm parameters, testosterone and testis tissue in mice.

    Science.gov (United States)

    Jalili, Cyrus; Salahshoor, Mohammad Reza; Naseri, Ali

    2014-06-01

    Nicotine consumption can decrease fertility drive in males by inducing oxidative stress and DNA damage. Urtica dioica L (U.dioica) is a multipurpose herb in traditional medicine for which some anti-oxidative and anti-inflammatory properties have been identified. The main goal is to investigate whether the U.dioica could inhibit nicotine adverse effects on sperm cells viability, count, motility, and testis histology and testosterone hormone. In this study, hydro-alcoholic extract of U.dioica was prepared and various doses of U.dioica (0, 10, 20, and 50 mg/kg) and U.dioica plus nicotine (0, 10, 20, and 50 mg/kg) were administered intraperitoneally to 56 male mice for 28 consequent days. These mice were randomly assigned to 8 groups (n=7) and sperm parameters (sperm cells viability, count, motility, and morphology), testis and prostate weight, testis histology and testosterone hormone were analyzed and compared. The results indicated that nicotine administration (0.5 mg/kg) significantly decreased testosterone level, count and motility of sperm cells, and testis weight compared to control group (p=0.00). However, increasing the dose of U.dioica significantly boosted motility, count, normal morphology of sperm cells, seminiferous tubules diameter, and testosterone in all groups compared to control (p=0.00) and testis weight in 20 and 50 mg/kg doses in comparison with control group (p=0.00). It seems that U.dioica hydro-alcoholic extract administration could increase the quality of spermatozoa and inhibits nicotine-induced adverse effects on sperm parameters.

  9. Age-Specific And Sexual Variability Of Morphological And Biomechanical Parameters Of Anterior Cerebral Artery Of Adults

    Directory of Open Access Journals (Sweden)

    I.V. Kirillova

    2009-12-01

    Full Text Available In the experiment on monoaxonic longitudinal distension by tensile-testing machine Tira Test 28005 (Germany with loading unit - 100 N the general rigidity, breaking point and relative lengthening of anterior cerebral artery (АСА of adult people have been under study. Under the microscope on transverse sections the external diameter of the artery, its wall thickness have been measured and diameter of lumen have been calculated. In total 228 АСА (132 - from corpses of men, 92-from corpses of women have been investigated. They have been received in 16 hours after autopsy of adult people whose cause of death has not been connected with vascular cerebral pathology. It has been revealed that right АСА is longer and narrower than left one. ACA's wall length and thickness predominate in men in comparison with women in average of 5,4 - 13,0%. With years АСА lengthens, its external diameter increases. Biomechanical parameters of ACA's wall do not have any authentic sexual differences, they don't depend on the side of the arterial ring. With years the rigidity of АСА decreases, especially in middle age. In old age its general rigidity increases. It is connected with the increase of ACA's wall thickness. The ability of АСА to lengthening doesn't depend upon age. Experimental findings may be used as criteria of age standard of morphological and biomechanical parameters of АСА

  10. Evaluation of tissue morphology and gene expression as biomarkers of pollution in mussel Mytilus galloprovincialis caging experiment

    International Nuclear Information System (INIS)

    Rossi, Federica; Palombella, Silvia; Pirrone, Cristina; Mancini, Giuseppe; Bernardini, Giovanni; Gornati, Rosalba

    2016-01-01

    Highlights: • The paper describes how marine pollution modifies the biology of aquatic species. • Measurable parameters at different levels of biological organization are introduced. • The evaluation of mRNA is widely used as a biomarker to highlight side effects. • mRNA expression, even if transient, can anticipate morphological changes. • mRNA is a useful endpoint for an integrated evaluation of marine ecosystem pollution. - Abstract: The ecosystem is being anthropogenically disturbed, which has serious consequences for the environment and human health, having strong social and economic impacts on the community. One of the most common methods to evaluate the effects of toxic contaminants is based on biomonitoring, e.g., placing Mytilus galloprovincialis in the polluted areas investigated. In this study, we have combined two different methods, transcriptomic and morphological analysis, with the purpose of determining whether cell morphology and the ultrastructural organization of our animal model are related to gene expression in outdoor experiments. The most pronounced changes were observed in mussel gills and digestive gland for mRNA involved in protein machinery (18S, 28S and EF1), while HSP70, MT10, CYP4Y1, SOD1, and CAT mRNAs showed scattered modifications not related to the studied area. In agreement with 18S, 28S, and EF1 mRNA evaluation, optical and electron microscopy demonstrated an initial inflammatory response of the cells that can lead to apoptosis in the caged mussels in all the polluted areas. In conclusion, the application of a multi-disciplinary approach proved to be effective for assessing the biological effects of contaminations on the health of aquatic organisms, and thus suitable to be applied in eco-toxicological studies. Although affected by several uncontrolled environmental variables, the assessment of mRNA can represent a useful endpoint for an integrated estimation of the overall threats to the sea environment within a field

  11. Evaluation of tissue morphology and gene expression as biomarkers of pollution in mussel Mytilus galloprovincialis caging experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Federica; Palombella, Silvia; Pirrone, Cristina [Dipartimento di Biotecnologie e Scienze della Vita, Università dell’Insubria, Via Dunant 3, Varese (Italy); Mancini, Giuseppe [Dipartimento di Ingegneria Elettrica, Elettronica e Informatica Università di Catania, Viale Andrea Doria 6, Catania (Italy); Bernardini, Giovanni [Dipartimento di Biotecnologie e Scienze della Vita, Università dell’Insubria, Via Dunant 3, Varese (Italy); “The Protein Factory” Research Center, Politecnico di Milano, ICRM-CNR Milano and Università dell' Insubria, Via Mancinelli 7, Milano (Italy); Gornati, Rosalba, E-mail: rosalba.gornati@uninsubria.it [Dipartimento di Biotecnologie e Scienze della Vita, Università dell’Insubria, Via Dunant 3, Varese (Italy); “The Protein Factory” Research Center, Politecnico di Milano, ICRM-CNR Milano and Università dell' Insubria, Via Mancinelli 7, Milano (Italy)

    2016-12-15

    Highlights: • The paper describes how marine pollution modifies the biology of aquatic species. • Measurable parameters at different levels of biological organization are introduced. • The evaluation of mRNA is widely used as a biomarker to highlight side effects. • mRNA expression, even if transient, can anticipate morphological changes. • mRNA is a useful endpoint for an integrated evaluation of marine ecosystem pollution. - Abstract: The ecosystem is being anthropogenically disturbed, which has serious consequences for the environment and human health, having strong social and economic impacts on the community. One of the most common methods to evaluate the effects of toxic contaminants is based on biomonitoring, e.g., placing Mytilus galloprovincialis in the polluted areas investigated. In this study, we have combined two different methods, transcriptomic and morphological analysis, with the purpose of determining whether cell morphology and the ultrastructural organization of our animal model are related to gene expression in outdoor experiments. The most pronounced changes were observed in mussel gills and digestive gland for mRNA involved in protein machinery (18S, 28S and EF1), while HSP70, MT10, CYP4Y1, SOD1, and CAT mRNAs showed scattered modifications not related to the studied area. In agreement with 18S, 28S, and EF1 mRNA evaluation, optical and electron microscopy demonstrated an initial inflammatory response of the cells that can lead to apoptosis in the caged mussels in all the polluted areas. In conclusion, the application of a multi-disciplinary approach proved to be effective for assessing the biological effects of contaminations on the health of aquatic organisms, and thus suitable to be applied in eco-toxicological studies. Although affected by several uncontrolled environmental variables, the assessment of mRNA can represent a useful endpoint for an integrated estimation of the overall threats to the sea environment within a field

  12. Sensitivity of tissue differentiation and bone healing predictions to tissue properties

    NARCIS (Netherlands)

    Isaksson, H.E.; Donkelaar, van C.C.; Ito, K.

    2009-01-01

    Computational models are employed as tools to investigate possible mechano-regulation pathways for tissue differentiation and bone healing. However, current models do not account for the uncertainty in input parameters, and often include assumptions about parameter values that are not yet

  13. Linear viscoelastic and morphological description of multiphase systems affected by processing parameters

    Czech Academy of Sciences Publication Activity Database

    Kuthanová, V.; Hausnerová, B.; Kitano, T.; Lapčíková, Monika; Sáha, P.

    2011-01-01

    Roč. 119, č. 2 (2011), s. 989-999 ISSN 0021-8995 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer composites * injection molded compression * morphology Subject RIV: JI - Composite Materials Impact factor: 1.289, year: 2011

  14. A Multi-Year Study on Rice Morphological Parameter Estimation with X-Band Polsar Data

    Directory of Open Access Journals (Sweden)

    Onur Yuzugullu

    2017-06-01

    Full Text Available Rice fields have been monitored with spaceborne Synthetic Aperture Radar (SAR systems for decades. SAR is an essential source of data and allows for the estimation of plant properties such as canopy height, leaf area index, phenological phase, and yield. However, the information on detailed plant morphology in meter-scale resolution is necessary for the development of better management practices. This letter presents the results of the procedure that estimates the stalk height, leaf length and leaf width of rice fields from a copolar X-band TerraSAR-X time series data based on a priori phenological phase. The methodology includes a computationally efficient stochastic inversion algorithm of a metamodel that mimics a radiative transfer theory-driven electromagnetic scattering (EM model. The EM model and its metamodel are employed to simulate the backscattering intensities from flooded rice fields based on their simplified physical structures. The results of the inversion procedure are found to be accurate for cultivation seasons from 2013 to 2015 with root mean square errors less than 13.5 cm for stalk height, 7 cm for leaf length, and 4 mm for leaf width parameters. The results of this research provided new perspectives on the use of EM models and computationally efficient metamodels for agriculture management practices.

  15. A constrained reconstruction technique of hyperelasticity parameters for breast cancer assessment

    Science.gov (United States)

    Mehrabian, Hatef; Campbell, Gordon; Samani, Abbas

    2010-12-01

    In breast elastography, breast tissue usually undergoes large compression resulting in significant geometric and structural changes. This implies that breast elastography is associated with tissue nonlinear behavior. In this study, an elastography technique is presented and an inverse problem formulation is proposed to reconstruct parameters characterizing tissue hyperelasticity. Such parameters can potentially be used for tumor classification. This technique can also have other important clinical applications such as measuring normal tissue hyperelastic parameters in vivo. Such parameters are essential in planning and conducting computer-aided interventional procedures. The proposed parameter reconstruction technique uses a constrained iterative inversion; it can be viewed as an inverse problem. To solve this problem, we used a nonlinear finite element model corresponding to its forward problem. In this research, we applied Veronda-Westmann, Yeoh and polynomial models to model tissue hyperelasticity. To validate the proposed technique, we conducted studies involving numerical and tissue-mimicking phantoms. The numerical phantom consisted of a hemisphere connected to a cylinder, while we constructed the tissue-mimicking phantom from polyvinyl alcohol with freeze-thaw cycles that exhibits nonlinear mechanical behavior. Both phantoms consisted of three types of soft tissues which mimic adipose, fibroglandular tissue and a tumor. The results of the simulations and experiments show feasibility of accurate reconstruction of tumor tissue hyperelastic parameters using the proposed method. In the numerical phantom, all hyperelastic parameters corresponding to the three models were reconstructed with less than 2% error. With the tissue-mimicking phantom, we were able to reconstruct the ratio of the hyperelastic parameters reasonably accurately. Compared to the uniaxial test results, the average error of the ratios of the parameters reconstructed for inclusion to the middle

  16. A constrained reconstruction technique of hyperelasticity parameters for breast cancer assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabian, Hatef; Samani, Abbas [Department of Electrical and Computer Engineering, University of Western Ontario, London, ON (Canada); Campbell, Gordon, E-mail: asamani@uwo.c [Department of Medical Biophysics, University of Western Ontario, London, ON (Canada)

    2010-12-21

    In breast elastography, breast tissue usually undergoes large compression resulting in significant geometric and structural changes. This implies that breast elastography is associated with tissue nonlinear behavior. In this study, an elastography technique is presented and an inverse problem formulation is proposed to reconstruct parameters characterizing tissue hyperelasticity. Such parameters can potentially be used for tumor classification. This technique can also have other important clinical applications such as measuring normal tissue hyperelastic parameters in vivo. Such parameters are essential in planning and conducting computer-aided interventional procedures. The proposed parameter reconstruction technique uses a constrained iterative inversion; it can be viewed as an inverse problem. To solve this problem, we used a nonlinear finite element model corresponding to its forward problem. In this research, we applied Veronda-Westmann, Yeoh and polynomial models to model tissue hyperelasticity. To validate the proposed technique, we conducted studies involving numerical and tissue-mimicking phantoms. The numerical phantom consisted of a hemisphere connected to a cylinder, while we constructed the tissue-mimicking phantom from polyvinyl alcohol with freeze-thaw cycles that exhibits nonlinear mechanical behavior. Both phantoms consisted of three types of soft tissues which mimic adipose, fibroglandular tissue and a tumor. The results of the simulations and experiments show feasibility of accurate reconstruction of tumor tissue hyperelastic parameters using the proposed method. In the numerical phantom, all hyperelastic parameters corresponding to the three models were reconstructed with less than 2% error. With the tissue-mimicking phantom, we were able to reconstruct the ratio of the hyperelastic parameters reasonably accurately. Compared to the uniaxial test results, the average error of the ratios of the parameters reconstructed for inclusion to the middle

  17. Comparison of cryopreserved human sperm in vapor and liquid phases of liquid nitrogen: effect on motility parameters, morphology, and sperm function.

    Science.gov (United States)

    Punyatanasakchai, Piyaphan; Sophonsritsuk, Areephan; Weerakiet, Sawaek; Wansumrit, Surapee; Chompurat, Deonthip

    2008-11-01

    To compare the effects of cryopreserved sperm in vapor and liquid phases of liquid nitrogen on sperm motility, morphology, and sperm function. Experimental study. Andrology laboratory at Ramathibodi Hospital, Thailand. Thirty-eight semen samples with normal motility and sperm count were collected from 38 men who were either patients of an infertility clinic or had donated sperm for research. Each semen sample was divided into two aliquots. Samples were frozen with static-phase vapor cooling. One aliquot was plunged into liquid nitrogen (-196 degrees C), and the other was stored in vapor-phase nitrogen (-179 degrees C) for 3 days. Thawing was performed at room temperature. Motility was determined by using computer-assisted semen analysis, sperm morphology was determined by using eosin-methylene blue staining, and sperm function was determined by using a hemizona binding test. Most of the motility parameters of sperm stored in the vapor phase were not significantly different from those stored in the liquid phase of liquid nitrogen, except in amplitude of lateral head displacement. The percentages of normal sperm morphology in both vapor and liquid phases also were not significantly different. There was no significant difference in the number of bound sperm in hemizona between sperm cryopreserved in both vapor and liquid phases of liquid nitrogen. Cryopreservation of human sperm in a vapor phase of liquid nitrogen was comparable to cryopreservation in a liquid phase of liquid nitrogen.

  18. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities

    International Nuclear Information System (INIS)

    Sangkert, Supaporn; Meesane, Jirut; Kamonmattayakul, Suttatip; Chai, Wen Lin

    2016-01-01

    Cleft palate is a congenital malformation that generates a maxillofacial bone defect around the mouth area. The creation of performance scaffolds for bone tissue engineering in cleft palate is an issue that was proposed in this research. Because of its good biocompatibility, high stability, and non-toxicity, silk fibroin was selected as the scaffold of choice in this research. Silk fibroin scaffolds were prepared by freeze-drying before immerging in a solution of collagen, decellularized pulp, and collagen/decellularized pulp. Then, the immersed scaffolds were freeze-dried. Structural organization in solution was observed by Atomic Force Microscope (AFM). The molecular organization of the solutions and crystal structure of the scaffolds were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The weight increase of the modified scaffolds and the pore size were determined. The morphology was observed by a scanning electron microscope (SEM). Mechanical properties were tested. Biofunctionalities were considered by seeding osteoblasts in silk fibroin scaffolds before analysis of the cell proliferation, viability, total protein assay, and histological analysis. The results demonstrated that dendrite structure of the fibrils occurred in those solutions. Molecular organization of the components in solution arranged themselves into an irregular structure. The fibrils were deposited in the pores of the modified silk fibroin scaffolds. The modified scaffolds showed a beta-sheet structure. The morphological structure affected the mechanical properties of the silk fibroin scaffolds with and without modification. Following assessment of the biofunctionalities, the modified silk fibroin scaffolds could induce cell proliferation, viability, and total protein particularly in modified silk fibroin with collagen/decellularized pulp. Furthermore, the histological analysis indicated that the cells could adhere in modified silk fibroin

  19. Morpho-z: improving photometric redshifts with galaxy morphology

    Science.gov (United States)

    Soo, John Y. H.; Moraes, Bruno; Joachimi, Benjamin; Hartley, William; Lahav, Ofer; Charbonnier, Aldée; Makler, Martín; Pereira, Maria E. S.; Comparat, Johan; Erben, Thomas; Leauthaud, Alexie; Shan, Huanyuan; Van Waerbeke, Ludovic

    2018-04-01

    We conduct a comprehensive study of the effects of incorporating galaxy morphology information in photometric redshift estimation. Using machine learning methods, we assess the changes in the scatter and outlier fraction of photometric redshifts when galaxy size, ellipticity, Sérsic index, and surface brightness are included in training on galaxy samples from the SDSS and the CFHT Stripe-82 Survey (CS82). We show that by adding galaxy morphological parameters to full ugriz photometry, only mild improvements are obtained, while the gains are substantial in cases where fewer passbands are available. For instance, the combination of grz photometry and morphological parameters almost fully recovers the metrics of 5-band photometric redshifts. We demonstrate that with morphology it is possible to determine useful redshift distribution N(z) of galaxy samples without any colour information. We also find that the inclusion of quasar redshifts and associated object sizes in training improves the quality of photometric redshift catalogues, compensating for the lack of a good star-galaxy separator. We further show that morphological information can mitigate biases and scatter due to bad photometry. As an application, we derive both point estimates and posterior distributions of redshifts for the official CS82 catalogue, training on morphology and SDSS Stripe-82 ugriz bands when available. Our redshifts yield a 68th percentile error of 0.058(1 + z), and a outlier fraction of 5.2 per cent. We further include a deep extension trained on morphology and single i-band CS82 photometry.

  20. Morphometric Analysis of Connective Tissue Sheaths of Sural Nerve in Diabetic and Nondiabetic Patients

    Directory of Open Access Journals (Sweden)

    Braca Kundalić

    2014-01-01

    Full Text Available One of the most common complications of diabetes mellitus is diabetic neuropathy. It may be provoked by metabolic and/or vascular factors, and depending on duration of disease, various layers of nerve may be affected. Our aim was to investigate influence of diabetes on the epineurial, perineurial, and endoneurial connective tissue sheaths. The study included 15 samples of sural nerve divided into three groups: diabetic group, peripheral vascular disease group, and control group. After morphological analysis, morphometric parameters were determined for each case using ImageJ software. Compared to the control group, the diabetic cases had significantly higher perineurial index (P<0.05 and endoneurial connective tissue percentage (P<0.01. The diabetic group showed significantly higher epineurial area (P<0.01, as well as percentage of endoneurial connective tissue (P<0.01, in relation to the peripheral vascular disease group. It is obvious that hyperglycemia and ischemia present in diabetes lead to substantial changes in connective tissue sheaths of nerve, particularly in peri- and endoneurium. Perineurial thickening and significant endoneurial fibrosis may impair the balance of endoneurial homeostasis and regenerative ability of the nerve fibers. Future investigations should focus on studying the components of extracellular matrix of connective tissue sheaths in diabetic nerves.

  1. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica.

    Science.gov (United States)

    Jia, Shuxia; McLaughlin, Neil B; Gu, Jiacun; Li, Xingpeng; Wang, Zhengquan

    2013-06-01

    Tree roots are highly heterogeneous in form and function. Previous studies revealed that fine root respiration was related to root morphology, tissue nitrogen (N) concentration and temperature, and varied with both soil depth and season. The underlying mechanisms governing the relationship between root respiration and root morphology, chemistry and anatomy along the root branch order have not been addressed. Here, we examined these relationships of the first- to fifth-order roots for near surface roots (0-10 cm) of 22-year-old larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) plantations. Root respiration rate at 18 °C was measured by gas phase O2 electrodes across the first five branching order roots (the distal roots numbered as first order) at three times of the year. Root parameters of root diameter, specific root length (SRL), tissue N concentration, total non-structural carbohydrates (starch and soluble sugar) concentration (TNC), cortical thickness and stele diameter were also measured concurrently. With increasing root order, root diameter, TNC and the ratio of root TNC to tissue N concentration increased, while the SRL, tissue N concentration and cortical proportion decreased. Root respiration rate also monotonically decreased with increasing root order in both species. Cortical tissue (including exodermis, cortical parenchyma and endodermis) was present in the first three order roots, and cross sections of the cortex for the first-order root accounted for 68% (larch) and 86% (ash) of the total cross section of the root. Root respiration was closely related to root traits such as diameter, SRL, tissue N concentration, root TNC : tissue N ratio and stele-to-root diameter proportion among the first five orders, which explained up to 81-94% of variation in the rate of root respiration for larch and up to 83-93% for ash. These results suggest that the systematic variations of root respiration rate within tree fine root system are possibly due to the

  2. Differential diagnosis between benign and malignant soft tissue tumors utilizing ultrasound parameters.

    Science.gov (United States)

    Morii, Takeshi; Kishino, Tomonori; Shimamori, Naoko; Motohashi, Mitsue; Ohnishi, Hiroaki; Honya, Keita; Aoyagi, Takayuki; Tajima, Takashi; Ichimura, Shoichi

    2018-01-01

    Preoperative discrimination between benign and malignant soft tissue tumors is critical for the prevention of excess application of magnetic resonance imaging and biopsy as well as unplanned resection. Although ultrasound, including power Doppler imaging, is an easy, noninvasive, and cost-effective modality for screening soft tissue tumors, few studies have investigated reliable discrimination between benign and malignant soft tissue tumors. To establish a modality for discrimination between benign and malignant soft tissue tumors using ultrasound, we extracted the significant risk factors for malignancy based on ultrasound information from 40 malignant and 56 benign pathologically diagnosed soft tissue tumors and established a scoring system based on these risk factors. The maximum size, tumor margin, and vascularity evaluated using ultrasound were extracted as significant risk factors. Using the odds ratio from a multivariate regression model, a scoring system was established. Receiver operating characteristic analyses revealed a high area under the curve value (0.85), confirming the accuracy of the scoring system. Ultrasound is a useful modality for establishing the differential diagnosis between benign and malignant soft tissue tumors.

  3. The CuHBr laser in hard dental tissues

    International Nuclear Information System (INIS)

    Miyakawa, Walter

    2004-01-01

    In this work, it was verified the viability of characterization of laser-irradiated dental tissues in two extreme conditions: high and low absorption by the dental tissue. Comparison with light microscopy and scanning electronic microscopy revealed that these techniques are complementary each other: quantitative topographic information is directly extracted from the atomic force microscopy, while morphological aspects can be imaged by light microscopy or scanning electronic microscopy. A cavity generated by Cu-HyBrID laser in human dental enamel was also evaluated by atomic force microscopy. Structural and morphological differences between the fused and resolidified enamel from the cavity walls and the enamel from the natural tis sue were analyzed. A model, based on the Monte Carlo method described the propagation of CuHBr laser radiation and the absorbed energy distribution in dental tissues. Experimental measures with a CCD camera were used to semiquantitatively characterize the scattered light distribution in the tooth and they corroborated the model. It was observed that Rayleigh scattering and diffuse scattered radiation is predominant. The absorbed energy distribution map and the temperature variation along the beam propagation axis presented strong dependence with the absorption coefficient of the dental enamel and they cannot be deduced from the light distribution profile. The exposure time threshold for dental enamel melting and evaporation, irradiated by a specific condition of the green line of the Cu-HyBrID laser, was determined and a phenomenological model was discussed for the laser-matter interaction, based on pulse accumulation effect. Theoretical temperature calculations associated with experimental evidences strongly suggest that optical and thermal parameters should vary with temperature. The obtained exposure time threshold should correspond to the time necessary to the sample reach the critical temperature, at which the increase of absorption

  4. Effect of Fabrication Process Parameters on the Size of Gelatin/Nanohydroxyapatite Microspheres

    Directory of Open Access Journals (Sweden)

    S. Bagheri-Khoulenjani

    2009-12-01

    Full Text Available Nano-hydroxyapatite/gelatin (nHA/Ge microspheres are currently used in bone tissue engineering as bone filler. In this  study, the effect of fabrication process parameters on the particle size of nano-hydroxyapatite/gelatinmicrospheres was investigated. The nHA/Ge microspheres were fabricated using water in oil emulsion. In order to design an experimental design, a surface response model with 2 factors including the rate of shaking and water to oil volume ratio in 3 levels was applied. Particle size was evaluated by using an optical microscope. The morphology of microspheres and distribution of nano-particles within the microspheres were studied by using scanning electron microscope and Ca elemental map obtained from energy dispersive X-ray analysis (EDX, respectively. Statistical analysis of the results obtained from particle size measurements revealed that the rate of shaking has stronger influence on the particle size of microspheres. Morphological studies showed that the fabricated microspheres were spherical with smooth surface. Ca elemental map of the microspheres showed that nano-hydroxyapatite particles distributed uniformly within the microspheres.

  5. Effects of Neutralization and Crosslinking Agents on the Morphology of Chitosan Electrospun Scaffolds

    Directory of Open Access Journals (Sweden)

    Maryam Mashayekhi

    2017-01-01

    Full Text Available Chitosan, a natural polymer derived from chitin by deacetylation process of chitin, has gained an enormous interest in tissue engineering due to its unique features such as antibacterial activity and wound healing properties. Electrospinning of acidified chitosan solution is one of the most widely-used approaches in fabrication of 3D scaffolds. Although there are some reports addressing morphology tailoring of the chitosan nanofibers through solution electrospinning, there is no comparative report concerning the neutralization and stabilization conditions of chitosan electrospun fibers. Therefore, this article compares the effects of different neutralizing agents such as aqueous solutions of sodium carbonate (Na2CO3 and potassium carbonate (K2CO3, and crosslinking reagents including glutaraldehyde (GA and genipin on morphology of electrospun chitosan fibers. After neutralization and stabilization processes, Fourier transform infrared spectroscopy (FTIR was employed to investigate the morphology of fibers. Furthermore, the influence of the aforementioned parameters on stability of fibers was probed using scanning electron microscopy. SEM images illustrated that the scaffold resulting from electrospinning of 4 wt% chitosan solution in a mixture of trifluoroacetic acid (TFA and dichloromethane (DCM possessed a well-formed nanofibrous structure. Afterwards, different methods for neutralization and stabilization of the electrospun chitosan nanofiber mats were performed. In this respect, aqueous solutions of both Na2CO3 and K2CO3 salts (1M were employed as neutralization agents and GA and genipin were used as two different crosslinking agents. Based on SEM analysis, the chitosan fibers, crosslinked with genipin, showed better morphology than a scaffold which was crosslinked with glutaraldehyde

  6. LIBS analysis of artificial calcified tissues matrices.

    Science.gov (United States)

    Kasem, M A; Gonzalez, J J; Russo, R E; Harith, M A

    2013-04-15

    In most laser-based analytical methods, the reproducibility of quantitative measurements strongly depends on maintaining uniform and stable experimental conditions. For LIBS analysis this means that for accurate estimation of elemental concentration, using the calibration curves obtained from reference samples, the plasma parameters have to be kept as constant as possible. In addition, calcified tissues such as bone are normally less "tough" in their texture than many samples, especially metals. Thus, the ablation process could change the sample morphological features rapidly, and result in poor reproducibility statistics. In the present work, three artificial reference sample sets have been fabricated. These samples represent three different calcium based matrices, CaCO3 matrix, bone ash matrix and Ca hydroxyapatite matrix. A comparative study of UV (266 nm) and IR (1064 nm) LIBS for these three sets of samples has been performed under similar experimental conditions for the two systems (laser energy, spot size, repetition rate, irradiance, etc.) to examine the wavelength effect. The analytical results demonstrated that UV-LIBS has improved reproducibility, precision, stable plasma conditions, better linear fitting, and the reduction of matrix effects. Bone ash could be used as a suitable standard reference material for calcified tissue calibration using LIBS with a 266 nm excitation wavelength. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Catalogue of HI PArameters (CHIPA)

    Science.gov (United States)

    Saponara, J.; Benaglia, P.; Koribalski, B.; Andruchow, I.

    2015-08-01

    The catalogue of HI parameters of galaxies HI (CHIPA) is the natural continuation of the compilation by M.C. Martin in 1998. CHIPA provides the most important parameters of nearby galaxies derived from observations of the neutral Hydrogen line. The catalogue contains information of 1400 galaxies across the sky and different morphological types. Parameters like the optical diameter of the galaxy, the blue magnitude, the distance, morphological type, HI extension are listed among others. Maps of the HI distribution, velocity and velocity dispersion can also be display for some cases. The main objective of this catalogue is to facilitate the bibliographic queries, through searching in a database accessible from the internet that will be available in 2015 (the website is under construction). The database was built using the open source `` mysql (SQL, Structured Query Language, management system relational database) '', while the website was built with ''HTML (Hypertext Markup Language)'' and ''PHP (Hypertext Preprocessor)''.

  8. STUDIES ON THE RELATIONSHIP BETWEEN SOME MORPHOLOGICAL CHARACTERS AND JUMPING PARAMETERS OVER A VERTICAL FENCE IN SPORT HORSES

    Directory of Open Access Journals (Sweden)

    FLAVIA BOCHIŞ

    2009-10-01

    Full Text Available Looking for the form-function principle, the present study proposed to analyze the morphological traits of the equine athletes and the jumping over obstacles parameters. The intension was to focuses some guide lines in selecting the future potential champion. Indeed, this is only a basic item, not a guarantee, in a future career, where a lot of aspects take part. Even that, if a horse had a good rider and an excellent trainer, if it is not described by some basic biometrical and biomechanical reports (Duel, 1987, Lewczuk, 2002, it is impossible to reach very good results. In most of cases, when horses refused some exercising elements, we think about temperament, but in the same time, the aspect could be generated by a pain, or effectively by them incapacity due to an equilibrium fault (Lagarde, 2005.

  9. Morphological studies in the diagnosis of primary and secondary bone tumors

    Directory of Open Access Journals (Sweden)

    Matveeva O.V.

    2016-12-01

    Full Text Available The aim: to show the possibility of morphological studies in the diagnosis of primary and secondary tumors of bones. Material and Methods. 105 (72% patients with primary bone tumors aged from 15 to 66 years and 42 (28% patients with metastatic bone lesions aged from 42 to 70 years were examined and treated for the period from 2008 till 2015. Material for morphological studies was prepared using an open biopsy tissue slices and a scraping resected tumor during surgery. Soft-tissue component is subjected to cytology. The material for histological study included changes in bone and soft tissue. Results. Giant cell tumor was verified in 45% of cases by histological examination. Multiple myeloma was diagnosed in 15% of patients. Osteogenic sarcoma was diagnosed in 14% of cases. Ewing's sarcoma was diagnosed in 3%, 2% of cases were matched by diagnosed chordoma. According to the data received, cancer metastasis of kidney and lung is mostly diagnosed in men from the group of patients with secondary bone defeat. Metastasis of cancer of the breast in women was predominated. Conclusion. The morphological (histological, cytological study plays an important role in the diagnosis of bone tumors. The coincidence of the cytological and histological diagnoses was 97%.

  10. Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance.

    Science.gov (United States)

    Mannerås-Holm, Louise; Leonhardt, Henrik; Kullberg, Joel; Jennische, Eva; Odén, Anders; Holm, Göran; Hellström, Mikael; Lönn, Lars; Olivecrona, Gunilla; Stener-Victorin, Elisabet; Lönn, Malin

    2011-02-01

    Comprehensive characterization of the adipose tissue in women with polycystic ovary syndrome (PCOS), over a wide range of body mass indices (BMIs), is lacking. Mechanisms behind insulin resistance in PCOS are unclear. To characterize the adipose tissue of women with PCOS and controls matched pair-wise for age and BMI, and to identify factors, among adipose tissue characteristics and serum sex steroids, that are associated with insulin sensitivity in PCOS. Seventy-four PCOS women and 31 controls were included. BMI was 18-47 (PCOS) and 19-41 kg/m(2) (controls). Anthropometric variables, volumes of subcutaneous/visceral adipose tissue (magnetic resonance imaging; MRI), and insulin sensitivity (clamp) were investigated. Adipose tissue biopsies were obtained to determine adipocyte size, lipoprotein lipase (LPL) activity, and macrophage density. Circulating testosterone, free testosterone, free 17β-estradiol, SHBG, glycerol, adiponectin, and serum amyloid A were measured/calculated. Comparison of 31 pairs revealed lower insulin sensitivity, hyperandrogenemia, and higher free 17β-estradiol in PCOS. Abdominal adipose tissue volumes/distribution did not differ in the groups, but PCOS women had higher waist-to-hip ratio, enlarged adipocytes, reduced adiponectin, and lower LPL activity. In regression analysis, adipocyte size, adiponectin, and waist circumference were the factors most strongly associated with insulin sensitivity in PCOS (R(2)=0.681, P < 0.001). In PCOS, adipose tissue has aberrant morphology/function. Increased waist-to-hip ratio indicates abdominal/visceral fat accumulation, but this is not supported by MRI. Enlarged adipocytes and reduced serum adiponectin, together with a large waistline, rather than androgen excess, may be central factors in the pathogenesis/maintenance of insulin resistance in PCOS.

  11. Morphology and epidermal thickness of normal skin imaged by optical coherence tomography

    DEFF Research Database (Denmark)

    Mogensen, Mette; Morsy, Hanan A.; Thrane, Lars

    2008-01-01

    colour. Methods: OCT imaging is based on infrared light reflection/backscatter from tissue. PS-OCT detects birefringence of tissue. Imaging was performed in 12 skin regions. ET was calculated from the OCT images. Results: Normal skin has a layered structure. Layering is less pronounced in adults......Background: Optical coherence tomography (OCT) is an optical imaging technology with a potential in the non-invasive diagnosis of skin cancer. To identify skin pathologies using OCT, it is of prime importance to establish baseline morphological features of normal skin. Aims: The aim of this study...... is to describe normal skin morphology using OCT and polarization-sensitive OCT (PS-OCT), which is a way of representing birefringent tissue such as collagen in OCT images. Anatomical locations in 20 healthy volunteers were imaged, and epidermal thickness (ET) was measured and compared to age, gender and skin...

  12. Deep-sea pennatulaceans (sea pens) - recent discoveries, morphological adaptations, and responses to benthic oceanographic parameters

    Science.gov (United States)

    Williams, G. C.

    2015-12-01

    Pennatulaceans are sessile, benthic marine organisms that are bathymetrically wide-ranging, from the intertidal to approximately 6300 m in depth, and are conspicuous constituents of deep-sea environments. The vast majority of species are adapted for anchoring in soft sediments by the cylindrical peduncle - a muscular hydrostatic skeleton. However, in the past decade a few species ("Rockpens") have been discovered and described that can attach to hard substratum such as exposed rocky outcrops at depths between 669 and 1969 m, by a plunger-like adaptation of the base of the peduncle. Of the thirty-six known genera, eleven (or 30%) have been recorded from depths greater than 1000 m. The pennatulacean depth record holders are an unidentified species of Umbellula from 6260 m in the Peru-Chile Trench and a recently-discovered and described genus and species, Porcupinella profunda, from 5300 m the Porcupine Abyssal Plain of the northeastern Atlantic. A morphologically-differentiated type of polyp (acrozooid) have recently been discovered and described in two genera of shallow-water coral reef sea pens. Acrozooids apparently represent asexual buds and presumably can detach from the adult to start clonal colonies through asexual budding. Acrozooids are to be expected in deep-sea pennatulaceans, but so far have not been observed below 24 m in depth. Morphological responses at depths greater than 1000 m in deep-sea pennatulaceas include: fewer polyps, larger polyps, elongated stalks, and clustering of polyps along the rachis. Responses to deep-ocean physical parameters and anthropogenic changes that could affect the abundance and distribution of deep-sea pennatulaceans include changes in bottom current flow and food availability, changes in seawater temperature and pH, habitat destruction by fish trawling, and sunken refuse pollution. No evidence of the effects of ocean acidification or other effects of anthropogenic climate change in sea pens of the deep-sea has been

  13. Mature adipocytes may be a source of stem cells for tissue engineering

    International Nuclear Information System (INIS)

    Fernyhough, M.E.; Hausman, G.J.; Guan, L.L.; Okine, E.; Moore, S.S.; Dodson, M.V.

    2008-01-01

    Adipose tissue contains a large portion of stem cells. These cells appear morphologically like fibroblasts and are primarily derived from the stromal cell fraction. Mature (lipid-filled) adipocytes possess the ability to become proliferative cells and have been shown to produce progeny cells that possess the same morphological (fibroblast-like) appearance as the stem cells from the stromal fraction. A closer examination of mature adipocyte-derived progeny cells may prove to be an emerging area of growth/metabolic physiology that may modify present thinking about adipose tissue renewal capabilities. Knowledge of these cells may also prove beneficial in cell-based therapies for tissue repair, regeneration, or engineering

  14. Improved resolution by mounting of tissue sections for laser microdissection.

    NARCIS (Netherlands)

    Dijk, M.C.R.F. van; Rombout, P.D.M.; Dijkman, H.B.P.M.; Ruiter, D.J.; Bernsen, M.R.

    2003-01-01

    BACKGROUND: Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. AIMS: To develop a mounting method that greatly

  15. The effect of inflation on the morphology-derived rheological parameters of lava flows and its implications for interpreting remote sensing data - A case study on the 2014/2015 eruption at Holuhraun, Iceland

    Science.gov (United States)

    Kolzenburg, S.; Jaenicke, J.; Münzer, U.; Dingwell, D. B.

    2018-05-01

    Morphology-derived lava flow rheology is a frequently used tool in volcanology and planetary science to determine rheological parameters and deduce the composition of lavas on terrestrial planets and their moons. These calculations are usually based on physical equations incorporating 1) lava flow driving forces: gravity, slope and flow-rate and 2) morphological data such as lava flow geometry: flow-width, -height or shape of the flow outline. All available methods assume that no geometrical changes occur after emplacement and that the measured flow geometry reflects the lava's apparent viscosity and/or yield strength during emplacement. It is however well-established from terrestrial examples that lava flows may inflate significantly after the cessation of flow advance. This inflation affects, in turn, the width-to-height ratio upon which the rheological estimates are based and thus must result in uncertainties in the determination of flow rheology, as the flow height is one of the key parameters in the morphology-based deduction of flow properties. Previous studies have recognized this issue but, to date, no assessment of the magnitude of this error has been presented. This is likely due to a lack of digital elevation models (DEMs) at sufficiently high spatial and temporal resolution. The 2014/15 Holuhraun eruption in central Iceland represents one of the best monitored large volume (1.5 km3) lava flow fields (85 km2) to date. An abundance of scientific field and remote sensing data were collected during its emplacement. Moreover, inflation plays a key role in the emplacement dynamics of the late stage of the lava field. Here, we use a time series of high resolution DEMs acquired by the TanDEM-X satellite mission prior, during and after the eruption to evaluate the error associated with the most common methods of deriving lava flow rheology from morphological parameters used in planetary science. We can distinguish two dominant processes as sources of error in

  16. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds

    International Nuclear Information System (INIS)

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eissner, Guenther; Eblenkamp, Markus; Wintermantel, Erich

    2010-01-01

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (registered) (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  17. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eissner, Guenther [Department of Cardiac Surgery, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany); Eblenkamp, Markus; Wintermantel, Erich, E-mail: Guenther.Eissner@med.uni-muenchen.d [Chair of Medical Engineering, Technische Universitaet Muenchen, Boltzmannstrasse 15, 85748 Garching (Germany)

    2010-12-15

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (registered) (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  18. GEOMETRICAL PARAMETERS OF EGGS IN BIRD SYSTEMATICS

    Directory of Open Access Journals (Sweden)

    I. S. Mityay

    2014-12-01

    Full Text Available Our ideas are based on the following assumptions. Egg as a standalone system is formed within another system, which is the body of the female. Both systems are implemented on the basis of a common genetic code. In this regard, for example, the dendrogram constructed by morphological criteria eggs should be approximately equal to those constructed by other molecular or morphological criteria adult birds. It should be noted that the dendrogram show only the degree of genetic similarity of taxa, therefore, the identity of materials depends on the number of analyzed criteria and their quality, ie, they should be the backbone. The greater the number of system-features will be included in the analysis and in one other case, the like are dendrogram. In other cases, we will have a fragmentary similarity, which is also very important when dealing with controversial issues. The main message of our research was to figure out the eligibility of usage the morphological characteristics of eggs as additional information in taxonomy and phylogeny of birds. Our studies show that the shape parameters of bird eggs show a stable attachment to certain types of birds and complex traits are species-specific. Dendrogram and diagrams built by the quantitative value of these signs, exhibit significant similarity with the dendrogram constructed by morphological, comparative anatomy, paleontology and molecular criteria for adult birds. This suggests the possibility of using morphological parameters eggs as additional information in dealing with taxonomy and phylogeny of birds. Keywords: oology, geometrical parameters of eggs, bird systematics

  19. Electrospun nanofiber scaffolds: engineering soft tissues

    International Nuclear Information System (INIS)

    Kumbar, S G; Nukavarapu, S P; Laurencin, C T; James, R

    2008-01-01

    Electrospinning has emerged to be a simple, elegant and scalable technique to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetics have been successfully electrospun into nanofiber matrices. Physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters to meet the requirements of a specific application. Such efforts include the fabrication of fiber matrices containing nanofibers, microfibers, combination of nano-microfibers and also different fiber orientation/alignments. Polymeric nanofiber matrices have been extensively investigated for diversified uses such as filtration, barrier fabrics, wipes, personal care, biomedical and pharmaceutical applications. Recently electrospun nanofiber matrices have gained a lot of attention, and are being explored as scaffolds in tissue engineering due to their properties that can modulate cellular behavior. Electrospun nanofiber matrices show morphological similarities to the natural extra-cellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratio, high porosity and variable pore-size distribution. Efforts have been made to modify nanofiber surfaces with several bioactive molecules to provide cells with the necessary chemical cues and a more in vivo like environment. The current paper provides an overlook on such efforts in designing nanofiber matrices as scaffolds in the regeneration of various soft tissues including skin, blood vessel, tendon/ligament, cardiac patch, nerve and skeletal muscle

  20. Electrospun nanofiber scaffolds: engineering soft tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kumbar, S G; Nukavarapu, S P; Laurencin, C T [Department of Orthopaedic Surgery, University of Virginia, VA 22908 (United States); James, R [Department of Biomedical Engineering, University of Virginia, VA 22908 (United States)], E-mail: laurencin@virginia.edu

    2008-09-01

    Electrospinning has emerged to be a simple, elegant and scalable technique to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetics have been successfully electrospun into nanofiber matrices. Physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters to meet the requirements of a specific application. Such efforts include the fabrication of fiber matrices containing nanofibers, microfibers, combination of nano-microfibers and also different fiber orientation/alignments. Polymeric nanofiber matrices have been extensively investigated for diversified uses such as filtration, barrier fabrics, wipes, personal care, biomedical and pharmaceutical applications. Recently electrospun nanofiber matrices have gained a lot of attention, and are being explored as scaffolds in tissue engineering due to their properties that can modulate cellular behavior. Electrospun nanofiber matrices show morphological similarities to the natural extra-cellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratio, high porosity and variable pore-size distribution. Efforts have been made to modify nanofiber surfaces with several bioactive molecules to provide cells with the necessary chemical cues and a more in vivo like environment. The current paper provides an overlook on such efforts in designing nanofiber matrices as scaffolds in the regeneration of various soft tissues including skin, blood vessel, tendon/ligament, cardiac patch, nerve and skeletal muscle.

  1. Effects of rye inclusion in grower diets on immune competence-related parameters and performance in broilers.

    Science.gov (United States)

    van Krimpen, M M; Torki, M; Schokker, D

    2017-09-01

    An experiment was conducted to investigate the effects of dietary inclusion of rye, a model ingredient to increase gut viscosity, between 14 and 28 d of age on immune competence-related parameters and performance of broilers. A total of 960 day-old male Ross 308 chicks were weighed and randomly allocated to 24 pens (40 birds per pen), and the birds in every 8 replicate pens were assigned to 1 of 3 experimental diets including graded levels, 0%, 5%, and 10% of rye. Tested immune competence-related parameters were composition of the intestinal microbiota, genes expression in gut tissue, and gut morphology. The inclusion of 5% or 10% rye in the diet (d 14 to 28) resulted in decreased performance and litter quality, but in increased villus height and crypt depth in the small intestine (jejunum) of the broilers. Relative bursa and spleen weights were not affected by dietary inclusion of rye. In the jejunum, no effects on number and size of goblet cells, and only trends on microbiota composition in the digesta were observed. Dietary inclusion of rye affected expression of genes involved in cell cycle processes of the jejunal enterocyte cells, thereby influencing cell growth, cell differentiation and cell survival, which in turn were consistent with the observed differences in the morphology of the gut wall. In addition, providing rye-rich diets to broilers affected the complement and coagulation pathways, which among others are parts of the innate immune system. These pathways are involved in eradicating invasive pathogens. Overall, it can be concluded that inclusion of 5% or 10% rye to the grower diet of broilers had limited effects on performance. Ileal gut morphology, microbiota composition of jejunal digesta, and gene expression profiles of jejunal tissue, however, were affected by dietary rye inclusion level, indicating that rye supplementation to broiler diets might affect immune competence of the birds. © 2017 Poultry Science Association Inc.

  2. Monitoring sinew contraction during formation of tissue-engineered fibrin-based ligament constructs.

    Science.gov (United States)

    Paxton, Jennifer Z; Wudebwe, Uchena N G; Wang, Anqi; Woods, Daniel; Grover, Liam M

    2012-08-01

    The ability to study the gross morphological changes occurring during tissue formation is vital to producing tissue-engineered structures of clinically relevant dimensions in vitro. Here, we have used nondestructive methods of digital imaging and optical coherence tomography to monitor the early-stage formation and subsequent maturation of fibrin-based tissue-engineered ligament constructs. In addition, the effect of supplementation with essential promoters of collagen synthesis, ascorbic acid (AA) and proline (P), has been assessed. Contraction of the cell-seeded fibrin gel occurs unevenly within the first 5 days of culture around two fixed anchor points before forming a longitudinal ligament-like construct. AA+P supplementation accelerates gel contraction in the maturation phase of development, producing ligament-like constructs with a higher collagen content and distinct morphology to that of unsupplemented constructs. These studies highlight the importance of being able to control the methods of tissue formation and maturation in vitro to enable the production of tissue-engineered constructs with suitable replacement tissue characteristics for repair of clinical soft-tissue injuries.

  3. Observations on morphologic changes in the aging and degenerating human disc: Secondary collagen alterations

    Directory of Open Access Journals (Sweden)

    Hanley Edward N

    2002-03-01

    Full Text Available Abstract Background In the annulus, collagen fibers that make up the lamellae have a wavy, planar crimped pattern. This crimping plays a role in disc biomechanical function by allowing collagen fibers to stretch during compression. The relationship between morphologic changes in the aging/degenerating disc and collagen crimping have not been explored. Methods Ultrastructural studies were performed on annulus tissue from 29 control (normal donors (aged newborn to 79 years and surgical specimens from 49 patients (aged 16 to 77 years. Light microscopy and specialized image analysis to visualize crimping was performed on additional control and surgical specimens. Human intervertebral disc tissue from the annulus was obtained in a prospective morphologic study of the annulus. Studies were approved by the authors' Human Subjects Institutional Review Board. Results Three types of morphologic changes were found to alter the crimping morphology of collagen: 1 encircling layers of unusual matrix disrupted the lamellar collagen architecture; 2 collagen fibers were reduced in amount, and 3 collagen was absent in regions with focal matrix loss. Conclusions Although proteoglycan loss is well recognized as playing a role in the decreased shock absorber function of the aging/degenerating disc, collagen changes have received little attention. This study suggests that important stretch responses of collagen made possible by collagen crimping may be markedly altered by morphologic changes during aging/degeneration and may contribute to the early tissue changes involved in annular tears.

  4. Metabolic implications of menstrual cycle length in non-hyperandrogenic women with polycystic ovarian morphology.

    Science.gov (United States)

    Alebić, Miro Šimun; Stojanović, Nataša; Baldani, Dinka Pavičić; Duvnjak, Lea Smirčić

    2016-12-01

    This cross-sectional study aimed to investigate the association between menstrual cycle lenght and metabolic parameters in non-hyperandrogenic women with polycystic ovarian morphology, n = 250. Metabolic profiles of all participants were evaluated using anthropometric parameters (body mass index, waist circumference), parameters of dyslipidemia (total cholesterol, HDL-cholesterol, triglycerides) and markers of insulin resistance (fasting insulin, homeostasis model assessment for insulin resistance index). The associations between menstrual cycle lenght and cardiometabolic risk factors such as insulin resistance, dyslipidemia, and obesity were investigated. In non-hyperandrogenic women with polycystic ovarian morphology, menstrual cycle lenght was associated with hypertriglyceridemia and insulin resistance independently of body mass index. Moreover, menstrual cycle lenght added value to body mass index in predicting hypertriglyceridemia. The optimal menstrual cycle lenght cut-off value for identifying of non-hyperandrogenic women with polycystic ovarian morphology at metabolic risk was found to be 45 days. Metabolic profile of non-hyperandrogenic women with polycystic ovarian morphology (n = 75) with menstrual cycle lenght >45 days was similar to that of hyperandrogenic women with polycystic ovarian morphology (n = 138) while metabolic profile of non-hyperandrogenic women with polycystic ovarian morphology with menstrual cycle lenght ≤45 days (n = 112) was similar to that of controls (n = 167). Non-hyperandrogenic women with polycystic ovarian morphology with menstrual cycle lenght >45 days had higher prevalence of cardiometabolic risk factors compared to those with menstrual cycle lenght ≤45 days. Non-hyperandrogenic women with polycystic ovarian morphology are not metabolically homogeneous. Menstrual cycle lenght is an easy-to-obtain clinical parameter positively associated with the probability of unfavorable metabolic status in non

  5. Porosity, Mineralization, Tissue Type and Morphology Interactions at the Human Tibial Cortex

    Science.gov (United States)

    Hampson, Naomi A.

    Prior research has shown a relationship between tibia robustness (ratio of cross-sectional area to bone length) and stress fracture risk, with less robust bones having a higher risk, which may indicate a compensatory increase in elastic modulus to increase bending strength. Previous studies of human tibiae have shown higher ash content in slender bones. In this study, the relationships between variations in volumetric porosity, ash content, tissue mineral density, secondary bone tissue, and cross sectional geometry, were investigated in order to better understand the tissue level adaptations that may occur in the establishment of cross-sectional properties. In this research, significant differences were found between porosity, ash content, and tissue type around the cortex between robust and slender bones, suggesting that there was a level of co-adaption occurring. Variation in porosity correlated with robustness, and explained large parts of the variation in tissue mineral density. The nonlinear relationship between porosity and ash content may support that slender bones compensate for poor geometry by increasing ash content through reduced remodeling, while robust individuals increase porosity to decrease mass, but only to a point. These results suggest that tissue level organization plays a compensatory role in the establishment of adult bone mass, and may contribute to differences in bone aging between different bone phenotypes. The results suggest that slender individuals have significantly less remodeled bone, however the proportion of remodeled bone was not uniform around the tibia. In the complex results of the study of 38% vs. 66% sites the distal site was subject to higher strains than the 66% site, indicating both local and global regulators may be affecting overall remodeling rates and need to be teased apart in future studies. This research has broad clinical implications on the diagnosis and treatment of fragility fractures. The relationships that

  6. Effect of Brown Algae Cystoseira trinodis Methanolic Extract on Renal Tissue

    Directory of Open Access Journals (Sweden)

    Rouhollah Gazor, Ardalan Pasdaran Lashgari, Shabnam Almasi, Saeed Ghasemi

    2016-03-01

    Full Text Available Background: C.trinodisis brown algae of Oman Sea coast is used traditionally as a diuretic in Chabahar, Sistan and Baluchestan province of Iran. But no researches have been conducted on the distractive effects of this alga on the renal tissues until now. Methods: Forty-two adult male mice were divided into 6 groups. Control group received normal saline (E0, group (E1 treated with 5mg/kg methanolic extract (ME and group (E2 to (E5 received 10, 15, 25 and 50 mg/kg of ME of alga respectively. All animals in 6 groups were treated for 2 weeks (once every other day. Finally, histopathological evaluations were made especially by morphology and photometric method. Results: ME of C.trinodis induced histological damage in kidney. Administration of ME in all experimental groups induced severe glomerular congestion, hyaline cast and severe interstitial inflammatory centers in treated groups. All distractive parameter in test groups increased with increasing dose of extract (p<0.05. Conclusion: Results showed that ME of the C.trinodis has a nephrotoxic effect on the renal tissues.

  7. Automated segmentation of reference tissue for prostate cancer localization in dynamic contrast enhanced MRI

    Science.gov (United States)

    Vos, Pieter C.; Hambrock, Thomas; Barentsz, Jelle O.; Huisman, Henkjan J.

    2010-03-01

    For pharmacokinetic (PK) analysis of Dynamic Contrast Enhanced (DCE) MRI the arterial input function needs to be estimated. Previously, we demonstrated that PK parameters have a significant better discriminative performance when per patient reference tissue was used, but required manual annotation of reference tissue. In this study we propose a fully automated reference tissue segmentation method that tackles this limitation. The method was tested with our Computer Aided Diagnosis (CADx) system to study the effect on the discriminating performance for differentiating prostate cancer from benign areas in the peripheral zone (PZ). The proposed method automatically segments normal PZ tissue from DCE derived data. First, the bladder is segmented in the start-to-enhance map using the Otsu histogram threshold selection method. Second, the prostate is detected by applying a multi-scale Hessian filter to the relative enhancement map. Third, normal PZ tissue was segmented by threshold and morphological operators. The resulting segmentation was used as reference tissue to estimate the PK parameters. In 39 consecutive patients carcinoma, benign and normal tissue were annotated on MR images by a radiologist and a researcher using whole mount step-section histopathology as reference. PK parameters were computed for each ROI. Features were extracted from the set of ROIs using percentiles to train a support vector machine that was used as classifier. Prospective performance was estimated by means of leave-one-patient-out cross validation. A bootstrap resampling approach with 10,000 iterations was used for estimating the bootstrap mean AUCs and 95% confidence intervals. In total 42 malignant, 29 benign and 37 normal regions were annotated. For all patients, normal PZ was successfully segmented. The diagnostic accuracy obtained for differentiating malignant from benign lesions using a conventional general patient plasma profile showed an accuracy of 0.64 (0.53-0.74). Using the

  8. Protective effect of ethyl pyruvate on mice sperm parameters in phenylhydrazine induced hemolytic anemia.

    Science.gov (United States)

    Mozafari, Ali Akbar; Shahrooz, Rasoul; Ahmadi, Abbas; Malekinjad, Hassan; Mardani, Karim

    2016-01-01

    The aim of the present study was to assess the protective effect of ethyl pyruvate (EP) on sperm quality parameters, testosterone level and malondialdehyde (MDA) in phenylhydrazine (PHZ) treated mice. For this purpose, 32 NMRI mice with the age range of 8 to 10 weeks, weight average 26.0 ± 2.0 g, were randomly divided into four equal groups. The control group (1) received normal saline (0. 1 mL per day) by intraperitoneal injection (IP). Group 2 (PHZ group) was treated with initial dose of PHZ (8 mg 100 g(-1), IP) followed by 6 mg 100 g(-1) , IP every 48 hr. Group 3, (Group PHZ+EP) received PHZ (according to the previous prescription) with EP (40 mg kg(-1), daily, IP). Ethyl pyruvate group (4) received only EP (40 mg kg(-1), daily, IP). Treatment period was 35 days. After euthanasia, sperms from caudal region of epididymis were collected and the total mean sperm count, sperm viability, motility and morphology were determined. Testis tissue MDA and serum testosterone levels of all experimental groups were also evaluated. A considerable reduction in mean percentage of number, natural morphology of sperm, sperm motility and viability and serum testosterone concentration besides DNA injury increment among mice treating with PHZ in comparison with control group were observed. However, in PHZ+EP group the above mentioned parameters were improved. This study showed that PHZ caused induction of toxicity on sperm parameters and reduction of testosterone as well as the increment of MDA level and EP as an antioxidant could reduce destructive effects of PHZ on sperm parameters, testosterone level and lipid peroxidation.

  9. Electrospun polyurethane membranes for Tissue Engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Laís P., E-mail: lagabriel@gmail.com [National Institute of Biofabrication, Campinas (Brazil); Department of Chemical Engineering, University of Campinas, Campinas (Brazil); Rodrigues, Ana Amélia [National Institute of Biofabrication, Campinas (Brazil); Department of Medical Sciences, University of Campinas, Campinas (Brazil); Macedo, Milton; Jardini, André L.; Maciel Filho, Rubens [National Institute of Biofabrication, Campinas (Brazil); Department of Chemical Engineering, University of Campinas, Campinas (Brazil)

    2017-03-01

    Tissue Engineering proposes, among other things, tissue regeneration using scaffolds integrated with biological molecules, growth factors or cells for such regeneration. In this research, polyurethane membranes were prepared using the electrospinning technique in order to obtain membranes to be applied in Tissue Engineering, such as epithelial, drug delivery or cardiac applications. The influence of fibers on the structure and morphology of the membranes was studied using scanning electron microscopy (SEM), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), and the thermal stability was analyzed by thermogravimetry analysis (TGA). In vitro cells attachment and proliferation was investigated by SEM, and in vitro cell viability was studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays and Live/Dead® assays. It was found that the membranes present an homogeneous morphology, high porosity, high surface area/volume ratio, it was also observed a random fiber network. The thermal analysis showed that the membrane degradation started at 254 °C. In vitro evaluation of fibroblasts cells showed that fibroblasts spread over the membrane surface after 24, 48 and 72 h of culture. This study supports the investigation of electrospun polyurethane membranes as biocompatible scaffolds for Tissue Engineering applications and provides some guidelines for improved biomaterials with desired properties.

  10. A Quantitative Golgi Study of Dendritic Morphology in the Mice Striatal Medium Spiny Neurons

    Directory of Open Access Journals (Sweden)

    Ana Hladnik

    2017-04-01

    Full Text Available In this study we have provided a detailed quantitative morphological analysis of medium spiny neurons (MSNs in the mice dorsal striatum and determined the consistency of values among three groups of animals obtained in different set of experiments. Dendritic trees of 162 Golgi Cox (FD Rapid GolgiStain Kit impregnated MSNs from 15 adult C57BL/6 mice were 3-dimensionally reconstructed using Neurolucida software, and parameters of dendritic morphology have been compared among experimental groups. The parameters of length and branching pattern did not show statistically significant difference and were highly consistent among groups. The average neuronal soma surface was between 160 μm2 and 180 μm2, and the cells had 5–6 primary dendrites with close to 40 segments per neuron. Sholl analysis confirmed regular pattern of dendritic branching. The total length of dendrites was around 2100 μm with the average length of individual branching (intermediate segment around 22 μm and for the terminal segment around 100 μm. Even though each experimental group underwent the same strictly defined protocol in tissue preparation and Golgi staining, we found inconsistency in dendritic volume and soma surface. These changes could be methodologically influenced during the Golgi procedure, although without affecting the dendritic length and tree complexity. Since the neuronal activity affects the dendritic thickness, it could not be excluded that observed volume inconsistency was related with functional states of neurons prior to animal sacrifice. Comprehensive analyses of tree complexity and dendritic length provided here could serve as an additional tool for understanding morphological variability in the most numerous neuronal population of the striatum. As reference values they could provide basic ground for comparisons with the results obtained in studies that use various models of genetically modified mice in explaining different pathological conditions that

  11. Nonlinear optical microscopy for histology of fresh normal and cancerous pancreatic tissues.

    Directory of Open Access Journals (Sweden)

    Wenyan Hu

    Full Text Available BACKGROUND: Pancreatic cancer is a lethal disease with a 5-year survival rate of only 1-5%. The acceleration of intraoperative histological examination would be beneficial for better management of pancreatic cancer, suggesting an improved survival. Nonlinear optical methods based on two-photon excited fluorescence (TPEF and second harmonic generation (SHG of intrinsic optical biomarkers show the ability to visualize the morphology of fresh tissues associated with histology, which is promising for real-time intraoperative evaluation of pancreatic cancer. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate whether the nonlinear optical imaging methods have the ability to characterize pancreatic histology at cellular resolution, we studied different types of pancreatic tissues by using label-free TPEF and SHG. Compared with other routine methods for the preparation of specimens, fresh tissues without processing were found to be most suitable for nonlinear optical imaging of pancreatic tissues. The detailed morphology of the normal rat pancreas was observed and related with the standard histological images. Comparatively speaking, the preliminary images of a small number of chemical-induced pancreatic cancer tissues showed visible neoplastic differences in the morphology of cells and extracellular matrix. The subcutaneous pancreatic tumor xenografts were further observed using the nonlinear optical microscopy, showing that most cells are leucocytes at 5 days after implantation, the tumor cells begin to proliferate at 10 days after implantation, and the extracellular collagen fibers become disordered as the xenografts grow. CONCLUSIONS/SIGNIFICANCE: In this study, nonlinear optical imaging was used to characterize the morphological details of fresh pancreatic tissues for the first time. We demonstrate that it is possible to provide real-time histological evaluation of pancreatic cancer by the nonlinear optical methods, which present an

  12. Heat transfer modelling of pulsed laser-tissue interaction

    Science.gov (United States)

    Urzova, J.; Jelinek, M.

    2018-03-01

    Due to their attributes, the application of medical lasers is on the rise in numerous medical fields. From a biomedical point of view, the most interesting applications are the thermal interactions and the photoablative interactions, which effectively remove tissue without excessive heat damage to the remaining tissue. The objective of this work is to create a theoretical model for heat transfer in the tissue following its interaction with the laser beam to predict heat transfer during medical laser surgery procedures. The dimensions of the ablated crater (shape and ablation depth) were determined by computed tomography imaging. COMSOL Multiphysics software was used for temperature modelling. The parameters of tissue and blood, such as density, specific heat capacity, thermal conductivity and diffusivity, were calculated from the chemical ratio. The parameters of laser-tissue interaction, such as absorption and reflection coefficients, were experimentally determined. The parameters of the laser beam were power density, repetition frequency, pulse length and spot dimensions. Heat spreading after laser interaction with tissue was captured using a Fluke thermal camera. The model was verified for adipose tissue, skeletal muscle tissue and heart muscle tissue.

  13. Comparative Visual Analysis of Structure-Performance Relations in Complex Bulk-Heterojunction Morphologies

    KAUST Repository

    Aboulhassan, A.

    2017-07-04

    The structure of Bulk-Heterojunction (BHJ) materials, the main component of organic photovoltaic solar cells, is very complex, and the relationship between structure and performance is still largely an open question. Overall, there is a wide spectrum of fabrication configurations resulting in different BHJ morphologies and correspondingly different performances. Current state-of-the-art methods for assessing the performance of BHJ morphologies are either based on global quantification of morphological features or simply on visual inspection of the morphology based on experimental imaging. This makes finding optimal BHJ structures very challenging. Moreover, finding the optimal fabrication parameters to get an optimal structure is still an open question. In this paper, we propose a visual analysis framework to help answer these questions through comparative visualization and parameter space exploration for local morphology features. With our approach, we enable scientists to explore multivariate correlations between local features and performance indicators of BHJ morphologies. Our framework is built on shape-based clustering of local cubical regions of the morphology that we call patches. This enables correlating the features of clusters with intuition-based performance indicators computed from geometrical and topological features of charge paths.

  14. Comparative Visual Analysis of Structure-Performance Relations in Complex Bulk-Heterojunction Morphologies

    KAUST Repository

    Aboulhassan, A.; Sicat, R.; Baum, D.; Wodo, O.; Hadwiger, Markus

    2017-01-01

    The structure of Bulk-Heterojunction (BHJ) materials, the main component of organic photovoltaic solar cells, is very complex, and the relationship between structure and performance is still largely an open question. Overall, there is a wide spectrum of fabrication configurations resulting in different BHJ morphologies and correspondingly different performances. Current state-of-the-art methods for assessing the performance of BHJ morphologies are either based on global quantification of morphological features or simply on visual inspection of the morphology based on experimental imaging. This makes finding optimal BHJ structures very challenging. Moreover, finding the optimal fabrication parameters to get an optimal structure is still an open question. In this paper, we propose a visual analysis framework to help answer these questions through comparative visualization and parameter space exploration for local morphology features. With our approach, we enable scientists to explore multivariate correlations between local features and performance indicators of BHJ morphologies. Our framework is built on shape-based clustering of local cubical regions of the morphology that we call patches. This enables correlating the features of clusters with intuition-based performance indicators computed from geometrical and topological features of charge paths.

  15. Land use and urban morphology parameters for Vienna required for initialisation of the urban canopy model TEB derived via the concept of "local climate zones"

    Science.gov (United States)

    Trimmel, Heidelinde; Weihs, Philipp; Oswald, Sandro M.; Masson, Valéry; Schoetter, Robert

    2017-04-01

    Urban settlements are generally known for their high fractions of impermeable surfaces, large heat capacity and low humidity compared to rural areas which results in the well known phenomena of urban heat islands. The urbanized areas are growing which can amplify the intensity and frequency of situations with heat stress. The distribution of the urban heat island is not uniform though, because the urban environment is highly diverse regarding its morphology as building heights, building contiguity and configuration of open spaces and trees vary, which cause changes in the aerodynamic resistance for heat transfers and drag coefficients for momentum. Furthermore cities are characterized by highly variable physical surface properties as albedo, emissivity, heat capacity and thermal conductivity. The distribution of the urban heat island is influenced by these morphological and physical parameters as well as the distribution of unsealed soil and vegetation. These aspects influence the urban climate on micro- and mesoscale. For larger Vienna high resolution vector and raster geodatasets were processed to derive land use surface fractions and building morphology parameters on block scale following the methodology of Cordeau (2016). A dataset of building age and typology was cross checked and extended using satellite visual and thermal bands and linked to a database joining building age and typology with typical physical building parameters obtained from different studies (Berger et al. 2012 and Amtmann M and Altmann-Mavaddat N (2014)) and the OIB (Österreichisches Institut für Bautechnik). Using dominant parameters obtained using this high resolution mainly ground based data sets (building height, built area fraction, unsealed fraction, sky view factor) a local climate zone classification was produced using an algorithm. The threshold values were chosen according to Stewart and Oke (2012). This approach is compared to results obtained with the methodology of Bechtel et

  16. Morphological aspects of radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Congdon, C C; Fliedner, T M

    1971-04-01

    The injury to haemopoietic and lymphatic tissues produced by ionizing irradiation in various species of mammals including man is one of the major features of the biological effects of radiation (Bond et al. 1965,' Cottier, 1961). At the moment of injury and for a short time thereafter relatively little morphological evidence of cell damage in bone marrow other than cessation of cell division and DNA synthesis is seen. Within a few hours, however, depending on the level of exposure, major destruction of red bone marrow tissue can occur. In this chapter the histologic changes in bone marrow are summarized for correlation with the functional aspects of the change in the target tissue, particularly its cell renewal features and where possible the remarkable flux or migration of cells through bone marrow and lymphatic tissues. This latter topic of cellular traffic represents the outcome of extensive physiological studies on haemopoiesis and lymphopoiesis by mammalian radiobiologists. The initial injury, the structural changes and the physiological consequences are the first half of the radiation injury sequence. Regeneration also has morphological features of major importance to the understanding of radiation haematology. It is common to discuss radiation effects on biological materials from the point of view of external or internal sources of exposure. In addition exposure rate, whole body or partial body, type and quality of the ionizing source are features that must be taken into account. While these features are extremely important, the simplest approach to understanding histologic effects on the bone marrow is to assume acute penetrating whole-body exposure in the lethal range. With this background the differences related to variations in the conditions of exposure can usually be understood. The individual human or animal organism receiving the exposure must also be considered in the final outcome of the experience because age, sex, nutritional status and presence

  17. Immediate and long-term effects in the hematopoietic system and the morphology of the respiratory system in experimental animals under chronic combined action of external gamma exposure and inhalation exposure.

    Science.gov (United States)

    Tatarkin, Sergey; Moukhamedieva, Lana; Aleksandr, Shafirkin; Barantseva, Maria; Ivanova, Svetlana

    The need to solve hygiene problems valuation of environmental factors in the implementation of the projected manned interplanetary missions, determined the relevance of studying the effect of external gamma-irradiation with inhalation of mixtures of chemicals on the parameters of major critical body systems: hematopoiesis and respiratory (morphological and morphometric parameters) in the short and long periods. The study conducted on 504 male mice F1 (CBA × C57BL6) under chronic fractional gamma-irradiation (within 10 weeks at a total dose 350sGr) and then under inhalation by mixtures of chemicals in low concentrations. Duration of the experiment (124 days) and 90 -day recovery period. Displaying adaptive reorganization in hematopoietic system, which was characterized by a tension of regulatory systems of animals and by a proliferation of bone marrow cells and by dynamic changes in amount of lymphoid cells in peripheral blood, elevated levels of the antioxidant activity of red blood cells, and morphological manifestations of "incomplete recovery " of the spleen, which are retained in the recovery period. Morphological changes in the respiratory organs of animals testified about immunogenesis activation and development of structural changes as a chronic inflammatory process. Increase of fibrous connective tissue in the walls of the trachea, bronchus and lung, against reduction of loose fibrous connective tissue (more pronounced in respiratory parts of the respiratory system) in experimental animals, which may indicate a reduction of the functional reserves of the body and increase the risk of adverse long-term effects.

  18. Effect of spirulina food supplement on blood morphological parameters, biochemical composition and on the immune function of sportsmen

    Directory of Open Access Journals (Sweden)

    K Milasius

    2009-07-01

    Full Text Available Of highest biological value are natural concentrates of optimally combined substances produced by nature. One of food supplements of this kind is dietary Spirulina produced by the Tianshi firm (China. It is a most rationally balanced food supplement of a high biological value; it satisfies the needs of the whole body, including its immune system. The aim of the current work was to assess the effect of the multicomponent natural food supplement Spirulina on the physical development, blood morphological, biochemical picture and immune function of sportsmen. Materials and Methods: The study cohort comprised 12 high performance sportsmen (age 20-22 years. They were using tablets of Spirulina, a dietary product for 14 days. Physical development was determined with the aid of standard methods. The general blood picture was analyzed with the aid of a Micros-60 hematological analyzer (company ABX DIAGNOSTICS, France. Lymphocytes and their subsets were analysed by flow cytometery (FACSCalibur, Becton Dickinson Immunocytometry Systems (BDIS, USA and the absolute and percentage values were calculated. To evaluate immune function lymphocyte blasttransformation response to mitogens was studied. Results: Investigations carried out on endurance-training sportsmen showed that a 14-d administration of Spirulina exerted a positive effect on blood morphological composition indices and its biochemical changes. The results of our study confirm the positive effect of Spirulina food supplement on the quantitative parameters of immune system. Part of the study cohort after weeks showed a tendency of normalizing CD3 , CD3 CD4 lympocite count: positive changes were still present two weeks following the interruption of Spirulina intake

  19. Dietary Biotin Supplementation Modifies Hepatic Morphology without Changes in Liver Toxicity Markers

    Directory of Open Access Journals (Sweden)

    Leticia Riverón-Negrete

    2016-01-01

    Full Text Available Pharmacological concentrations of biotin have pleiotropic effects. Several reports have documented that biotin supplementation decreases hyperglycemia. We have shown that a biotin-supplemented diet increased insulin secretion and the mRNA abundance of proteins regulating insulin transcription and secretion. We also found enlarged pancreatic islets and modified islet morphology. Other studies have shown that pharmacological concentrations of biotin modify tissue structure. Although biotin administration is considered safe, little attention has been given to its effect on tissue structure. In this study, we investigated the effect of biotin supplementation on hepatic morphology and liver toxicity markers. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet for 8 weeks. Versus the control mice, biotin-supplemented mice had an altered portal triad with dilated sinusoids, increased vascularity, and bile conducts. Furthermore, we observed an increased proportion of nucleomegaly and binucleated hepatocytes. In spite of the liver morphological changes, no differences were observed in the serum liver damage indicators, oxidative stress markers, or antioxidant enzymes. Our data demonstrate for the first time that biotin supplementation affects liver morphology in normal mice, and that these modifications are not paralleled with damage markers.

  20. Dietary Biotin Supplementation Modifies Hepatic Morphology without Changes in Liver Toxicity Markers.

    Science.gov (United States)

    Riverón-Negrete, Leticia; Sicilia-Argumedo, Gloria; Álvarez-Delgado, Carolina; Coballase-Urrutia, Elvia; Alcántar-Fernández, Jonathan; Fernandez-Mejia, Cristina

    2016-01-01

    Pharmacological concentrations of biotin have pleiotropic effects. Several reports have documented that biotin supplementation decreases hyperglycemia. We have shown that a biotin-supplemented diet increased insulin secretion and the mRNA abundance of proteins regulating insulin transcription and secretion. We also found enlarged pancreatic islets and modified islet morphology. Other studies have shown that pharmacological concentrations of biotin modify tissue structure. Although biotin administration is considered safe, little attention has been given to its effect on tissue structure. In this study, we investigated the effect of biotin supplementation on hepatic morphology and liver toxicity markers. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet for 8 weeks. Versus the control mice, biotin-supplemented mice had an altered portal triad with dilated sinusoids, increased vascularity, and bile conducts. Furthermore, we observed an increased proportion of nucleomegaly and binucleated hepatocytes. In spite of the liver morphological changes, no differences were observed in the serum liver damage indicators, oxidative stress markers, or antioxidant enzymes. Our data demonstrate for the first time that biotin supplementation affects liver morphology in normal mice, and that these modifications are not paralleled with damage markers.

  1. Measurement of the Acoustic Nonlinearity Parameter for Biological Media.

    Science.gov (United States)

    Cobb, Wesley Nelson

    In vitro measurements of the acoustic nonlinearity parameter are presented for several biological media. With these measurements it is possible to predict the distortion of a finite amplitude wave in biological tissues of current diagnostic and research interest. The measurement method is based on the finite amplitude distortion of a sine wave that is emmitted by a piston source. The growth of the second harmonic component of this wave is measured by a piston receiver which is coaxial with and has the same size as the source. The experimental measurements and theory are compared in order to determine the nonlinearity parameter. The density, sound speed, and attenuation for the medium are determined in order to make this comparison. The theory developed for this study accounts for the influence of both diffraction and attenuation on the experimental measurements. The effects of dispersion, tissue inhomogeneity and gas bubbles within the excised tissues are studied. To test the measurement method, experimental results are compared with established values for the nonlinearity parameter of distilled water, ethylene glycol and glycerol. The agreement between these values suggests that the measurement uncertainty is (+OR-) 5% for liquids and (+OR-) 10% for solid tissues. Measurements are presented for dog blood and bovine serum albumen as a function of concentration. The nonlinearity parameters for liver, kidney and spleen are reported for both human and canine tissues. The values for the fresh tissues displayed little variation (6.8 to 7.8). Measurements for fixed, normal and cirrhotic tissues indicated that the nonlinearity parameter does not depend strongly on pathology. However, the values for fixed tissues were somewhat higher than those of the fresh tissues.

  2. Antiulcerogenic Effect of Gallic Acid in Rats and its Effect on Oxidant and Antioxidant Parameters in Stomach Tissue

    Science.gov (United States)

    Sen, S.; Asokkumar, K.; Umamaheswari, M.; Sivashanmugam, A. T.; Subhadradevi, V.

    2013-01-01

    In the present study, we investigate the antiulcerogenic effect of gallic acid against aspirin plus pyrolus ligation-induced gastric ulcer in rats. Rats were treated with gallic acid (100 and 200 mg/kg) and famotidine (20 mg/kg) for 1 week, followed by induction of gastric ulcer using the aspirin plus pyrolus ligation model. At the end of 4 h after ligation, the rats were sacrificed and ulcer index, gastric juice volume, pH and other biochemical parameter of gastric juice were evaluated. Stomachs of rats were evaluated biochemically to determine oxidant and antioxidant parameters. Pretreatment with gallic acid significantly decreased ulcer index, gastric juice volume, free and total acidity, total protein, DNA content and increased pH and carbohydrates concentration. Gallic acid at a dose of 100 and 200 mg/kg exerted 69.7 and 78.9% ulcer inhibition, respectively. The levels of superoxide dismutase, catalase, reduced glutathione, glutathione reductase, glutathione peroxidise, glucose-6-phosphate dehydrogenase were increased while reduction in myeloperoxidase and lipid peroxidation were observed in the stomach tissues of the drug treated rats. The histopathological studies further confirmed the antiulcer activity of gallic acid. We conclude that the gallic acid possesses antiulcer effect and that these occur by a mechanism that involves attenuation of offensive factors, improvement of mucosal defensive with activation of antioxidant parameters and inhibition of some toxic oxidant parameters. PMID:24019562

  3. Influence of Growth Parameters on the Formation of Hydroxyapatite (HAp Nanostructures and Their Cell Viability Studies

    Directory of Open Access Journals (Sweden)

    Murugesan Manoj

    2015-02-01

    Full Text Available Morphology controlled hydroxyapatite (HAp nanostructures play a vital role in biomedical engineering, tissue regenerative medicine, biosensors, chemotherapeutic applications, environmental remediation, etc. The present work investigates the influence of temperature, pH and time on the growth of HAp nanostructures using a simple, cost effective and surfactant free chemical approach. The obtained HAp nanostructures were systematically investigated by analytical techniques such as XRD, FESEM, EDX, FTIR and Raman spectroscopy. The XRD analysis showed that the hexagonal structure of the hydroxyapatite and average crystallite size was estimated from this analysis. The electron microscopic analysis confirmed the different morphologies obtained by varying the synthesis parameters such as temperature, pH and time. The elemental composition was determined through EDS analysis. FTIR and Raman spectroscopic analysis confirmed the presence of functional groups and the purity and crystallinity of the samples. The biocompatibility and adhesion nature of samples was examined with mouse preosteoblast cells. The obtained results demonstrated good biocompatibility and excellent focal adhesion.

  4. Variations in cell morphology in the canine cruciate ligament complex.

    Science.gov (United States)

    Smith, K D; Vaughan-Thomas, A; Spiller, D G; Clegg, P D; Innes, J F; Comerford, E J

    2012-08-01

    Cell morphology may reflect the mechanical environment of tissues and influence tissue physiology and response to injury. Normal cruciate ligaments (CLs) from disease-free stifle joints were harvested from dog breeds with a high (Labrador retriever) and low (Greyhound) risk of cranial cruciate ligament (CCL) rupture. Antibodies against the cytoskeletal components vimentin and alpha tubulin were used to analyse cell morphology; nuclei were stained with 4',6-diamidino-2-phenylindole, and images were collected using conventional and confocal microscopy. Both cranial and caudal CLs contained cells of heterogenous morphologies. Cells were arranged between collagen bundles and frequently had cytoplasmic processes. Some of these processes were long (type A cells), others were shorter, thicker and more branched (type B cells), and some had no processes (type C cells). Processes were frequently shown to contact other cells, extending longitudinally and transversely through the CLs. Cells with longer processes had fusiform nuclei, and those with no processes had rounded nuclei and were more frequent in the mid-substance of both CLs. Cells with long processes were more commonly noted in the CLs of the Greyhound. As contact between cells may facilitate direct communication, variances in cell morphology between breeds at a differing risk of CCL rupture may reflect differences in CL physiology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Automated Morphological and Morphometric Analysis of Mass Spectrometry Imaging Data: Application to Biomarker Discovery

    Science.gov (United States)

    Picard de Muller, Gaël; Ait-Belkacem, Rima; Bonnel, David; Longuespée, Rémi; Stauber, Jonathan

    2017-12-01

    Mass spectrometry imaging datasets are mostly analyzed in terms of average intensity in regions of interest. However, biological tissues have different morphologies with several sizes, shapes, and structures. The important biological information, contained in this highly heterogeneous cellular organization, could be hidden by analyzing the average intensities. Finding an analytical process of morphology would help to find such information, describe tissue model, and support identification of biomarkers. This study describes an informatics approach for the extraction and identification of mass spectrometry image features and its application to sample analysis and modeling. For the proof of concept, two different tissue types (healthy kidney and CT-26 xenograft tumor tissues) were imaged and analyzed. A mouse kidney model and tumor model were generated using morphometric - number of objects and total surface - information. The morphometric information was used to identify m/z that have a heterogeneous distribution. It seems to be a worthwhile pursuit as clonal heterogeneity in a tumor is of clinical relevance. This study provides a new approach to find biomarker or support tissue classification with more information. [Figure not available: see fulltext.

  6. Effect of luminescence transport through adipose tissue on measurement of tissue temperature by using ZnCdS nanothermometers

    Science.gov (United States)

    Volkova, Elena K.; Yanina, Irina Yu.; Sagaydachnaya, Elena; Konyukhova, Julia G.; Kochubey, Vyacheslav I.; Tuchin, Valery V.

    2018-02-01

    The spectra of luminescence of ZnCdS nanoparticles (ZnCdS NPs) were measured and analyzed in a wide temperature range: from room to human body and further to a hyperthermic temperature resulting in tissue morphology change. The results show that the signal of luminescence of ZnCdS NPs placed within the tissue is reasonably good sensitive to temperature change and accompanied by phase transitions of lipid structures of adipose tissue. It is shown that the presence of a phase transition in adipose tissue upon its heating (polymorphic transformations of lipids) leads to a nonmonotonic temperature dependence of the intensity of luminescence for the nanoparticles introduced into adipose tissue. This is due to a change in the light scattering by the tissue. The light scattering of adipose tissue greatly distorts the results of temperature measurements. The application of these nanoparticles is possible for temperature measurements in very thin or weakly scattering samples.

  7. Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer

    Directory of Open Access Journals (Sweden)

    Katsinis Constantine

    2006-10-01

    Full Text Available Abstract Background Tumor classification is inexact and largely dependent on the qualitative pathological examination of the images of the tumor tissue slides. In this study, our aim was to develop an automated computational method to classify Hematoxylin and Eosin (H&E stained tissue sections based on cancer tissue texture features. Methods Image processing of histology slide images was used to detect and identify adipose tissue, extracellular matrix, morphologically distinct cell nuclei types, and the tubular architecture. The texture parameters derived from image analysis were then applied to classify images in a supervised classification scheme using histologic grade of a testing set as guidance. Results The histologic grade assigned by pathologists to invasive breast carcinoma images strongly correlated with both the presence and extent of cell nuclei with dispersed chromatin and the architecture, specifically the extent of presence of tubular cross sections. The two parameters that differentiated tumor grade found in this study were (1 the number density of cell nuclei with dispersed chromatin and (2 the number density of tubular cross sections identified through image processing as white blobs that were surrounded by a continuous string of cell nuclei. Classification based on subdivisions of a whole slide image containing a high concentration of cancer cell nuclei consistently agreed with the grade classification of the entire slide. Conclusion The automated image analysis and classification presented in this study demonstrate the feasibility of developing clinically relevant classification of histology images based on micro- texture. This method provides pathologists an invaluable quantitative tool for evaluation of the components of the Nottingham system for breast tumor grading and avoid intra-observer variability thus increasing the consistency of the decision-making process.

  8. Influence of Crack Morphology on Leak Before Break Margins

    International Nuclear Information System (INIS)

    Weilin Zang

    2007-11-01

    The purpose of the project is to evaluate the deterministic LBB-margins for different pipe systems in a Swedish PWR-plant and using different crack morphology parameters. Results: - The influence of crack morphology on Leak Before Break (LBB) margins is studied. The subject of the report is a number of LBB-submittals to SKI where deterministic LBB-margins are reported. These submittals typically uses a surface roughness of 0.0762 mm (300 microinch) and number of turns equal to zero and an in-house code for the leak rate evaluations. The present report has shown that these conditions give the largest LBB-margins both in terms of the quotient between the critical crack length and the leakage crack size and for the leak rate margin. - Crack morphology parameters have a strong influence on the leak rate evaluations. Using the SQUIRT code and more recent recommendations for crack morphology parameters, it is shown that in many cases the evaluated margins, using 1 gpm as the reference leak rate detection limit, are below the safety factor of 2 on crack size and 10 on leak rate, which is generally required for LBB approval. - The effect of including weld residual stresses on the LBB margins is also investigated. It is shown that for the two examples studied, weld residual stresses were important for the small diameter thin wall pipe whereas it was negligible for the large diameter thick wall pipe which had a self-balanced weld residual stress distribution

  9. Biological aspects of tissue-engineered cartilage.

    Science.gov (United States)

    Hoshi, Kazuto; Fujihara, Yuko; Yamawaki, Takanori; Harai, Motohiro; Asawa, Yukiyo; Hikita, Atsuhiko

    2018-04-01

    Cartilage regenerative medicine has been progressed well, and it reaches the stage of clinical application. Among various techniques, tissue engineering, which incorporates elements of materials science, is investigated earnestly, driven by high clinical needs. The cartilage tissue engineering using a poly lactide scaffold has been exploratorily used in the treatment of cleft lip-nose patients, disclosing good clinical results during 3-year observation. However, to increase the reliability of this treatment, not only accumulation of clinical evidence on safety and usefulness of the tissue-engineered products, but also establishment of scientific background on biological mechanisms, are regarded essential. In this paper, we reviewed recent trends of cartilage tissue engineering in clinical practice, summarized experimental findings on cellular and matrix changes during the cartilage regeneration, and discussed the importance of further studies on biological aspects of tissue-engineered cartilage, especially by the histological and the morphological methods.

  10. Effect of lunar materials on plant tissue culture.

    Science.gov (United States)

    Walkinshaw, C. H.; Venketeswaran, S.; Baur, P. S.; Croley, T. E.; Scholes, V. E.; Weete, J. D.; Halliwell, R. S.; Hall, R. H.

    1973-01-01

    Lunar material collected during the Apollo 11, 12, 14, and 15 missions has been used to treat 12 species of higher plant tissue cultures. Biochemical and morphological studies have been conducted on several of these species. Tobacco tissue cultures treated with 0.22 g of lunar material exhibited increased greening more complex chloroplasts, less cytoplasmic vacuolation and greater vesiculation. Pine tissue cultures reacted to treatment by an increased deposition of tannin-like materials. The percentage of dry weight and soluble protein was increased in cultures treated with either lunar or terrestrial rock materials.

  11. Microdissection of gonadal tissues for gene expression analyses

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Dalgaard, Marlene Danner; Sonne, Si Brask

    2011-01-01

    Laser microdissection permits isolation of specific cell types from tissue sections or cell cultures. This may be beneficial when investigating the role of specific cells in a complex tissue or organ. In tissues with easily distinguishable morphology, a simple hematoxylin staining is sufficient...... phosphatase enzyme, such as fetal germ cells, testicular carcinoma in situ cells, and putatively also other early stem cell populations. We have applied these protocols for microdissection of rat Leydig cells, fetal human and zebrafish germ cells, and human testicular germ cell tumors, but the staining...

  12. Morphology and Ultrastructure of Brain Tissue and Fat Body from the Flesh Fly, Sarcophaga bullata Parker (Diptera: Sarcophagidae, Envenomated by the Ectoparasitic Wasp Nasonia vitripennis (Walker (Hymenoptera: Pteromalidae

    Directory of Open Access Journals (Sweden)

    David B. Rivers

    2011-01-01

    Full Text Available This study tested the hypothesis that venom from the ectoparasitic wasp Nasonia vitripennis targets brain tissue and fat body from its flesh fly host, Sarcophaga bullata. By 1 h postenvenomation, some brain neurons began to show irregularities in nuclear shape, and though they were predominately euchromatic, there was evidence of heterochromatin formation. Irregularity in the nuclear envelope became more prominent by 3 h after envenomation, as did the condensation of heterochromatin. The severity of ultrastructural changes continued to increase until at least 24 h after parasitoid attack. At this point, cellular swelling and extensive heterochromatic inclusions were evident, multivesicular bodies occurred in the cytoplasm of some cells, and the rough endoplasmic reticulum was dilated in many of the cells. Immunohistochemical staining revealed significant apoptosis in neurons located in brain tissues. By contrast, there was no evidence of any morphological or ultrastructural disturbances in fat body tissues up to 24 h after envenomation, nor did any of the cells display signs of cell death.

  13. Influence of Thermal Parameters, Microstructure, and Morphology of Si on Machinability of an Al–7.0 wt.% Si Alloy Directionally Solidified

    Directory of Open Access Journals (Sweden)

    Cássio A. P. Silva

    2018-01-01

    Full Text Available This study aims to correlate the influence of thermal and microstructural parameters such as growth rate and cooling rate (VL and TR and secondary dendrite spacing (λ2, respectively, in the machining cutting temperature and tool wear on the necking process of the Al–7 wt.% Si alloy solidified in a horizontal directional device using a high-speed steel with a tungsten tool. The dependence of λ2 on VL and TR and dependence of the maximum cutting temperature and maximum flank wear on λ2 were determined by power experimental laws given by λ2 = constant (VL and TRn and TMAX, VBMAX = constant (λ2n, respectively. The maximum cutting temperature increased with increasing of λ2. The opposite occurred with the maximum flank wear. The role of Si alloying element on the aforementioned results has also been analyzed. A morphological change of Si along the solidified ingot length has been observed, that is, the morphology of Si in the eutectic matrix has indicated a transition from particles to fibers along the casting together with an increase of the particle diameters with the position from the metal/mold interface.

  14. Comparative morphology of changeable skin papillae in octopus and cuttlefish.

    Science.gov (United States)

    Allen, Justine J; Bell, George R R; Kuzirian, Alan M; Velankar, Sachin S; Hanlon, Roger T

    2014-04-01

    A major component of cephalopod adaptive camouflage behavior has rarely been studied: their ability to change the three-dimensionality of their skin by morphing their malleable dermal papillae. Recent work has established that simple, conical papillae in cuttlefish (Sepia officinalis) function as muscular hydrostats; that is, the muscles that extend a papilla also provide its structural support. We used brightfield and scanning electron microscopy to investigate and compare the functional morphology of nine types of papillae of different shapes, sizes and complexity in six species: S. officinalis small dorsal papillae, Octopus vulgaris small dorsal and ventral eye papillae, Macrotritopus defilippi dorsal eye papillae, Abdopus aculeatus major mantle papillae, O. bimaculoides arm, minor mantle, and dorsal eye papillae, and S. apama face ridge papillae. Most papillae have two sets of muscles responsible for extension: circular dermal erector muscles arranged in a concentric pattern to lift the papilla away from the body surface and horizontal dermal erector muscles to pull the papilla's perimeter toward its core and determine shape. A third set of muscles, retractors, appears to be responsible for pulling a papilla's apex down toward the body surface while stretching out its base. Connective tissue infiltrated with mucopolysaccharides assists with structural support. S. apama face ridge papillae are different: the contraction of erector muscles perpendicular to the ridge causes overlying tissues to buckle. In this case, mucopolysaccharide-rich connective tissue provides structural support. These six species possess changeable papillae that are diverse in size and shape, yet with one exception they share somewhat similar functional morphologies. Future research on papilla morphology, biomechanics and neural control in the many unexamined species of octopus and cuttlefish may uncover new principles of actuation in soft, flexible tissue.

  15. Age-Specific and Sexual Variability of Morphological and Biomechanical Parameters of the Basilar Artery of Adult People

    Directory of Open Access Journals (Sweden)

    V.N. Nicolenko

    2009-06-01

    Full Text Available For the purpose of studying of morphological and biomechanical parameters of the basilar artery in an experiment on monoaxonic distension by tensile-testing machine Tira Test 28005 (Germany with a loading cell — 100 N we determined general solidity, breaking point, maximum and relative deformation of the artery. Preliminary under a microscope on cross-section cuts we measured the external diameter of the artery, its wall thickness and calculated the diameter of the lumen. In total, 114 basilar arteries (66 — from corpses of men, 48 — from corpses of women have been investigated. They were received not later than 16 hours after autopsy of adult people, whose cause of death has not been connected with a sharp vascular cerebral pathology. The statistically authentic prevalence of the size of wall thickness and general solidity of the men’s artery wall was revealed. In age aspect the external diameter, the lumen diameter and the wall thickness of the basilar artery increase. At the same time the solidity of the wall decreases and its ability to prolongation increases.

  16. Cadmium, lead and mercury concentrations and their influence on morphological parameters in blood donors from different age groups from southern Poland.

    Science.gov (United States)

    Janicka, Monika; Binkowski, Łukasz J; Błaszczyk, Martyna; Paluch, Joanna; Wojtaś, Włodzimierz; Massanyi, Peter; Stawarz, Robert

    2015-01-01

    Due to industrial development, environmental contamination with metals increases which leads to higher human exposure via air, water and food. In order to evaluate the level of the present exposition, the concentrations of metals can be measured in such biological materials as human blood. In this study, we assessed the concentrations of cadmium (Cd), mercury (Hg) and lead (Pb) in blood samples from male blood donors from southern Poland (Europe) born in 1994 (n=30) and between 1947 and 1955 (n=30). Higher levels of Pb were seen in the group of older men (4.48 vs 2.48μg/L), whereas the Hg levels were lower (1.78 vs 4.28μg/L). Cd concentrations did not differ between age groups (0.56μg/L). The levels of Cd and Pb in older donors were significantly correlated (Spearman R 0.5135). We also observed a positive correlation between the number of red blood cells (RBC) and Hg concentrations in the older group (Spearman R 0.4271). Additionally, we noted numerous correlations among morphological parameters. Based on our results, we can state that metals influence the blood morphology and their concentrations in blood vary among age groups. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Diversity in cochlear morphology and its influence on cochlear implant electrode position

    NARCIS (Netherlands)

    Marel, K.S. van der; Briaire, J.J.; Wolterbeek, R..; Snel-Bongers, J.; Verbist, B.M.; Frijns, J.H.

    2014-01-01

    To define a minimal set of descriptive parameters for cochlear morphology and study its influence on the cochlear implant electrode position in relation to surgical insertion distance.Cochlear morphology and electrode position were analyzed using multiplanar reconstructions of the pre- and

  18. Histochemical characterization of human osteochondral tissue: comparison between healthy cartilage, arthrotic tissues, and cartilage defect treated with MACI technique

    Directory of Open Access Journals (Sweden)

    F. Tessarolo

    2011-01-01

    Full Text Available Matrix-induced sutologous chondrocytes implantation (MACI is a promising technique for the treatment of articular cartilage lesions, but long time outcome have to be established. We developed and optimized specific techniques of histochemical staining to characterize healthy and pathologic osteochondral tissue. Seven different staining protocols were applied to assess tissue architecture, cells morphology, proteoglycan content, and collagen fibers distribution. Potentialities of histochemical staining and histomorphology of biopsies from second look arthroscopy will be presented.

  19. Nodal colloid goiter: clinical and morphological criteria of thyroid autonomy and progressive growth

    Directory of Open Access Journals (Sweden)

    S S Antonova

    2006-03-01

    Full Text Available Goal. To work up clinical and morphological criteria of thyroid authonomy and progressive growth in nodal colloid goiter (NCG. Methods. A group of patients with nodal euthyroid goiter (NEG (40 patients and a group of patients with nodular toxic goiter (NTG (40 patients were formed to compare clinical and morphological criteria of NCG growth to/with development of functional autonomy (FA. All patients were conducted research including physical examination, thyroid palpation, ultrasound, blood level of TSH and T4, scintigraphy, aspiration (needle biopsy, immunocytological and immunohistological reactions and statistics. In the study the method of indirect immunoperoxidase reaction with monoclonal rat/mouse antigens to Ki-67, TSH, galectin-3, Apo-test (“Dako Corporation”, “Novocastra Laboratories Ltd.” was used. Results. 1. In NEG expression of cell proliferation marker Ki-67 for certain rises pro rata to increase of proliferation degree, and in NTG grows according to FA development. 2. Apoptosis expression in NEG decreases according to degree of thyrocytes in a nodule, but in NTG falls pro rata to accumulation of thyroid FA. 3. Positive reaction for TSH in NEG tissue was found in 100%, whereas negative reaction for this receptor in NTG tissue was observed in 81% of all cases. 4. Galectin-3 was expressed in focuses of severe dysplasia of thyroid nodes tissue comparable to galectin-3 expression in the tissue of high-grade differentiated adenocarcinomas. Summary/conclusion. 1. Severe and moderate expression of Ki-67 and mild or negative immunomorphological reaction for Apo-test allows to refer such kinds of nodules to fast-growing/rapid-growing ones. 2. Reliable negative expression TSH receptor in the tissue of NCG is evidence of FA development and is an indication for a treatment of radioactive iodine or for an operation. 3. Galectin-3 probably is an early marker of malignant transformation in thyroid tissue. 4. Having conducted complex

  20. Morphologies of ABC triblock terpolymer melts containing poly(Cyclohexadiene): Effects of conformational asymmetry

    KAUST Repository

    Kumar, Rajeev Senthil

    2013-02-12

    We have synthesized linear ABC triblock terpolymers containing poly(1,3-cyclohexadiene), PCHD, as an end block and characterized their morphologies in the melt. Specifically, we have studied terpolymers containing polystyrene (PS), polybutadiene (PB), and polyisoprene (PI) as the other blocks. Systematically varying the ratio of 1,2- /1,4-microstructures of poly(1,3-cyclohexadiene), we have studied the effects of conformational asymmetry among the three blocks on the morphologies using transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and self-consistent field theory (SCFT) performed with PolySwift++. Our work reveals that the triblock terpolymer melts containing a high percentage of 1,2-microstructures in the PCHD block are disordered at 110 C for all the samples, independent of sequence and volume fraction of the blocks. In contrast, the triblock terpolymer melts containing a high percentage of 1,4-microstructure form regular morphologies known from the literature. The accuracy of the SCFT calculations depends on calculating the χ parameters that quantify the repulsive interactions between different monomers. Simulations using χ values obtained from solubility parameters and group contribution methods are unable to reproduce the morphologies as seen in the experiments. However, SCFT calculations accounting for the enhancement of the χ parameter with an increase in the conformational asymmetry lead to an excellent agreement between theory and experiments. These results highlight the importance of conformational asymmetry in tuning the χ parameter and, in turn, morphologies in block copolymers. © 2012 American Chemical Society.

  1. Effect of dietary organic zinc sources on growth performance, incidence of diarrhoea, serum and tissue zinc concentrations, and intestinal morphology in growing rabbits

    Directory of Open Access Journals (Sweden)

    J.Y. Yan

    2017-03-01

    Full Text Available This study was conducted to evaluate the effect of dietary organic zinc (Zn sources on growth performance, the incidence of diarrhoea, serum and tissue Zn concentration, and intestinal morphology in growing rabbits. A total of 120 New Zealand White rabbits aged 35 d and with an initial body weight of 755±15 g, were randomly divided into 4 treatment groups for a 49 d feeding trial. Dietary treatments were designed with different Zn supplements as follows: (1 Control group: 80 mg/kg Zn as ZnSO4; (2 ZnLA group: 80 mg/kg Zn as Zn lactate; (3 ZnMet group: 80 mg/kg Zn as Zn methionine; (4 ZnGly group: 80 mg/kg Zn as Zn glycine. The results showed that, when compared with rabbits fed ZnSO4, supplementation with ZnLA improved (P4. Supplementing with ZnLA increased duodenum villi height (681.63 vs. 587.14 μm, P4, except that feeding ZnMet led to higher (P4. The results indicated that supplementation with 80 mg/kg Zn as ZnLA could improve growth performance, increase liver Zn concentration and enhance duodenum morphology, while reducing the incidence of diarrhoea in growing rabbits.

  2. Classifying Physical Morphology of Cocoa Beans Digital Images using Multiclass Ensemble Least-Squares Support Vector Machine

    Science.gov (United States)

    Lawi, Armin; Adhitya, Yudhi

    2018-03-01

    The objective of this research is to determine the quality of cocoa beans through morphology of their digital images. Samples of cocoa beans were scattered on a bright white paper under a controlled lighting condition. A compact digital camera was used to capture the images. The images were then processed to extract their morphological parameters. Classification process begins with an analysis of cocoa beans image based on morphological feature extraction. Parameters for extraction of morphological or physical feature parameters, i.e., Area, Perimeter, Major Axis Length, Minor Axis Length, Aspect Ratio, Circularity, Roundness, Ferret Diameter. The cocoa beans are classified into 4 groups, i.e.: Normal Beans, Broken Beans, Fractured Beans, and Skin Damaged Beans. The model of classification used in this paper is the Multiclass Ensemble Least-Squares Support Vector Machine (MELS-SVM), a proposed improvement model of SVM using ensemble method in which the separate hyperplanes are obtained by least square approach and the multiclass procedure uses One-Against- All method. The result of our proposed model showed that the classification with morphological feature input parameters were accurately as 99.705% for the four classes, respectively.

  3. Sperm motility and morphology as changing parameters linked to sperm count variations.

    OpenAIRE

    Dua A; Vaidya S

    1996-01-01

    Variations in semen analyses of 177 males over a 1 year period were assessed. The average means of total counts, motility, morphology, total motile count and non-motile % were determined for 5 classes of patients ranging from azoospermic to normospermic. Positive relationships between a falling sperm count, a decrease in motility and total motile counts were seen. Also, increasingly, abnormal forms were found with lower sperm counts.

  4. Morphological and surface compositional changes in poly(lactide-co-glycolide) tissue engineering scaffolds upon radio frequency glow discharge plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Djordjevic, Ivan [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia); Britcher, Leanne G. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia)], E-mail: Leanne.Britcher@unisa.edu.au; Kumar, Sunil [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia)

    2008-01-30

    Chemical functionalisation of polymeric scaffolds with functional groups such as amine could provide optimal conditions for loading of signalling biomolecules over the entire volume of the porous scaffolds. Three-dimensional (both surface and bulk) functionlisation of large volume scaffolds is highly desirable, but preferably without any change to the basic morphological, structural and bulk chemical properties of the scaffolds. In this work, we have carried out and compared treatments of poly(lactide-co-glycolide) tissue engineering scaffolds by two methods, that is, a wet chemical method using ethylenediamine and a glow discharge plasma method using heptylamine as a precursor. The samples thus prepared were analysed by scanning electron microscopy and X-ray photoelectron spectroscopy. The plasma treatment generated amide and protonated amine (NH{sup +}) groups which were present in the bulk and on the surface of the scaffold. Amination also occurred for the wet chemical treatments but the structural and chemical integrity were adversely affected.

  5. Morphological and surface compositional changes in poly(lactide-co-glycolide) tissue engineering scaffolds upon radio frequency glow discharge plasma treatment

    International Nuclear Information System (INIS)

    Djordjevic, Ivan; Britcher, Leanne G.; Kumar, Sunil

    2008-01-01

    Chemical functionalisation of polymeric scaffolds with functional groups such as amine could provide optimal conditions for loading of signalling biomolecules over the entire volume of the porous scaffolds. Three-dimensional (both surface and bulk) functionlisation of large volume scaffolds is highly desirable, but preferably without any change to the basic morphological, structural and bulk chemical properties of the scaffolds. In this work, we have carried out and compared treatments of poly(lactide-co-glycolide) tissue engineering scaffolds by two methods, that is, a wet chemical method using ethylenediamine and a glow discharge plasma method using heptylamine as a precursor. The samples thus prepared were analysed by scanning electron microscopy and X-ray photoelectron spectroscopy. The plasma treatment generated amide and protonated amine (NH + ) groups which were present in the bulk and on the surface of the scaffold. Amination also occurred for the wet chemical treatments but the structural and chemical integrity were adversely affected

  6. Angiofibroma of soft tissue: clinicopathologic study of 2 cases of a recently characterized benign soft tissue tumor.

    Science.gov (United States)

    Zhao, Ming; Sun, Ke; Li, Changshui; Zheng, Jiangjiang; Yu, Jingjing; Jin, Jie; Xia, Wenping

    2013-01-01

    Angiofibroma of soft tissue is a very recently characterized, histologically distinctive benign mesenchymal neoplasm of unknown cellular origin composed of 2 principal components, the spindle cell component and very prominent stromal vasculatures. It usually occurs in middle-aged adults, with a female predominance. Herein, we describe the clinical and pathologic details of 2 other examples of this benign tumor. Both patients were middle-aged male and presented with a slow-growing, painless mass located in the deep-seated soft tissue of thigh and left posterior neck region, respectively. Grossly, both tumors were well-demarcated, partial encapsulated of a grayish-white color with firm consistence. Histologically, one case showed morphology otherwise identical to those have been described before, whereas the other case showed in areas being more cellular than most examples of this subtype tumor had, with the lesional cells frequently exhibiting short fascicular, vaguely storiform and occasionally swirling arrangements, which posed a challenging differential diagnosis. Immunostains performed on both tumors did not confirm any specific cell differentiation with lesional cells only reactive for vimentin and focally desmin and negative for all the other markers tested. This report serves to broaden the morphologic spectrum of angiofibroma of soft tumor. Awareness of this tumor is important to prevent misdiagnosis as other more aggressive soft tissue tumor.

  7. [Influence of deuterium depleted water on freeze-dried tissue isotopic composition and morphofunctional body performance in rats of different generations].

    Science.gov (United States)

    Dzhimak, S S; Baryshev, M G; Basov, A A; Timakov, A A

    2014-01-01

    The influence of deuterium depleted water on the body of different rats generations was investigated in physiological conditions. As a result of this study it was established that the most significant and rapid reduction in D/H equilibrium was observed in plasma (by 36.2%), and lyophilized kidney tissues (by 15.8%). Less pronounced deuterium decrease was characteristic of liver tissue (9.3%) and heart (8.5%). Stabilization of the isotopic exchange reaction rate was fixed in the blood and tissues of rats, starting from the second generation. At the same time when deuterium depleted water (40 ppm) was used in dietary intake, the change in morphological and functional parameters in laboratory animals associated with the processes of adaptation to the effects of substress isotopic D/H gradient was also noted. The study shows that modification of:only drinking water intake regime can't significantly change the deuterium content in tissues of metabolically active organs, because of the concurrent deuterium receipt in food substances of plant and animal origin.

  8. Investigations of some elements distribution in dental tissues by INAA as a function of ecological and some other parameters

    International Nuclear Information System (INIS)

    Draskovic, R.J.; Jacimovic, Lj.; Stojicevic, M.; Pajic, P.; Filipovic, V.

    1982-01-01

    Distribution of some elements (Hg, Zn, Sb, Co and Sc) in dental tissues (enamel, dentine, pulp) has been investiaated by instrumental neutron activation analysis (INAA). Teeth samples were taken from patients living in different regions (mine and mineralized areas, plain), taking into account the following parameters: ecological conditions, age of patients, stomatological operations and use of local cosmetic preparations containig mercury. Samples of vegetation (beech, moss, pine) from two locations belonging to regions of mineralized areas also were analyzed. Results of our investigations are presented and discussed. (author)

  9. Secretin-stimulated MRI characterization of pancreatic morphology and function in patients with chronic pancreatitis.

    Science.gov (United States)

    Madzak, Adnan; Olesen, Søren Schou; Haldorsen, Ingfrid Salvesen; Drewes, Asbjørn Mohr; Frøkjær, Jens Brøndum

    Chronic pancreatitis (CP) is characterized by abnormal pancreatic morphology and impaired endocrine and exocrine function. However, little is known about the relationship between pancreatic morphology and function, and also the association with the etiology and clinical manifestations of CP. The aim was to explore pancreatic morphology and function with advanced MRI in patients with CP and healthy controls (HC) METHODS: Eighty-two patients with CP and 22 HC were enrolled in the study. Morphological imaging parameters included pancreatic main duct diameter, gland volume, fat signal fraction and apparent diffusion coefficient (ADC) values. Functional secretin-stimulated MRI (s-MRI) parameters included pancreatic secretion (bowel fluid volume) and changes in pancreatic ADC value before and after secretin stimulation. Patients were classified according to the modified Cambridge and M-ANNHEIM classification system and fecal elastase was collected. All imaging parameters differentiated CP patients from HC; however, correlations between morphological and functional parameters in CP were weak. Patients with alcoholic and non-alcoholic etiology had comparable s-MRI findings. Fecal elastase was positively correlated to pancreatic gland volume (r = 0.68, P = 0.0016) and negatively correlated to Cambridge classification (r = -0.35, P pancreatic gland volume was significantly decreased in the severe stages of CP (P = 0.001). S-MRI provides detailed information about pancreatic morphology and function and represents a promising non-invasive imaging method to characterize pancreatic pathophysiology and may enable monitoring of disease progression in patients with CP. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  10. The clinical and morphological aspects of aetiology and pathogenesis of sacrococcygeal pilonidal cysts

    Directory of Open Access Journals (Sweden)

    Ye. V. Tsema

    2013-12-01

    Full Text Available Introduction. The occurrence of pilonidal cysts in Ukrainian population is up to 50 cases per 100.000. Nevertheless, the cause and the pathogenesis of pilonidal cyst to date remain unclear. There are two opposite views on the etiology of the pilonidal disease stating it has congenital or acquired origin. Authors suggest the definite answer should be based primarily on the results of the morphologic evaluation of pilonidal cyst tissue. Aim: To explore the morphological features of sacrococcygeal pilonidal cysts by means of histological evaluation of cyst tissue after the wide local excision of the cyst. Methods: We performed complex morphological evaluation of cyst tissue obtained after the wide local excision of pilonidal cyst to find out particulars of sacrococcygeal pilonidal cyst histological structure. In total, we evaluated 42 surgical specimens obtained after the wide local excision of pilonidal cyst complicated by the secondary sinus tract formation. The microscopy was performed with the light microscope Leica DM LS2 (ocular lens: х10, objective lens х10 or х20, camera’s optical zoom х4. Histological samples were stained with hematoxylin and eosin using the standard method. Discussion. The absence of own epithelial elements in the pilonidal cysts and the secondary sinus tracts have been demonstrated. Hypertrophic growth of skin or hair follicle epithelium was evident in some specimens. Such changes seen in the deep layers of skin on the border with adipose tissue were similar to epidermal polyps. Results. There are some morphological features suggesting the acquired origin of the pilonidal disease as follows: - Hair found in the pilonidal cyst’s tissue is not associated with hair follicles, and occurs as loose shafts with atrophied hair bulb, and their exogenous transdermal penetration is evident. - Pilonidal cyst doesn’t have own epithelium, and the epithelial fragments that occur are the fragments of disorganized hair

  11. Aerodynamic Parameters of a UK City Derived from Morphological Data

    Science.gov (United States)

    Millward-Hopkins, J. T.; Tomlin, A. S.; Ma, L.; Ingham, D. B.; Pourkashanian, M.

    2013-03-01

    Detailed three-dimensional building data and a morphometric model are used to estimate the aerodynamic roughness length z 0 and displacement height d over a major UK city (Leeds). Firstly, using an adaptive grid, the city is divided into neighbourhood regions that are each of a relatively consistent geometry throughout. Secondly, for each neighbourhood, a number of geometric parameters are calculated. Finally, these are used as input into a morphometric model that considers the influence of height variability to predict aerodynamic roughness length and displacement height. Predictions are compared with estimations made using standard tables of aerodynamic parameters. The comparison suggests that the accuracy of plan-area-density based tables is likely to be limited, and that height-based tables of aerodynamic parameters may be more accurate for UK cities. The displacement heights in the standard tables are shown to be lower than the current predictions. The importance of geometric details in determining z 0 and d is then explored. Height variability is observed to greatly increase the predicted values. However, building footprint shape only has a significant influence upon the predictions when height variability is not considered. Finally, we develop simple relations to quantify the influence of height variation upon predicted z 0 and d via the standard deviation of building heights. The difference in these predictions compared to the more complex approach highlights the importance of considering the specific shape of the building-height distributions. Collectively, these results suggest that to accurately predict aerodynamic parameters of real urban areas, height variability must be considered in detail, but it may be acceptable to make simple assumptions about building layout and footprint shape.

  12. Synchrotron microCT imaging of soft tissue in juvenile zebrafish reveals retinotectal projections

    Science.gov (United States)

    Xin, Xuying; Clark, Darin; Ang, Khai Chung; van Rossum, Damian B.; Copper, Jean; Xiao, Xianghui; La Riviere, Patrick J.; Cheng, Keith C.

    2017-02-01

    Biomedical research and clinical diagnosis would benefit greatly from full volume determinations of anatomical phenotype. Comprehensive tools for morphological phenotyping are central for the emerging field of phenomics, which requires high-throughput, systematic, accurate, and reproducible data collection from organisms affected by genetic, disease, or environmental variables. Theoretically, complete anatomical phenotyping requires the assessment of every cell type in the whole organism, but this ideal is presently untenable due to the lack of an unbiased 3D imaging method that allows histopathological assessment of any cell type despite optical opacity. Histopathology, the current clinical standard for diagnostic phenotyping, involves the microscopic study of tissue sections to assess qualitative aspects of tissue architecture, disease mechanisms, and physiological state. However, quantitative features of tissue architecture such as cellular composition and cell counting in tissue volumes can only be approximated due to characteristics of tissue sectioning, including incomplete sampling and the constraints of 2D imaging of 5 micron thick tissue slabs. We have used a small, vertebrate organism, the zebrafish, to test the potential of microCT for systematic macroscopic and microscopic morphological phenotyping. While cell resolution is routinely achieved using methods such as light sheet fluorescence microscopy and optical tomography, these methods do not provide the pancellular perspective characteristic of histology, and are constrained by the limited penetration of visible light through pigmented and opaque specimens, as characterizes zebrafish juveniles. Here, we provide an example of neuroanatomy that can be studied by microCT of stained soft tissue at 1.43 micron isotropic voxel resolution. We conclude that synchrotron microCT is a form of 3D imaging that may potentially be adopted towards more reproducible, large-scale, morphological phenotyping of optically

  13. Sperm motility and morphology as changing parameters linked to sperm count variations.

    Directory of Open Access Journals (Sweden)

    Dua A

    1996-10-01

    Full Text Available Variations in semen analyses of 177 males over a 1 year period were assessed. The average means of total counts, motility, morphology, total motile count and non-motile % were determined for 5 classes of patients ranging from azoospermic to normospermic. Positive relationships between a falling sperm count, a decrease in motility and total motile counts were seen. Also, increasingly, abnormal forms were found with lower sperm counts.

  14. Antiulcer activity of fluvoxamine in rats and its effect on oxidant and antioxidant parameters in stomach tissue

    Science.gov (United States)

    2009-01-01

    tissues of the rats when compared to indomethacin group. Conclusion We conclude that fluvoxamine has antiulcer effects, and that these occur by a mechanism that involves activation of antioxidant parameters and inhibition of some toxic oxidant parameters. PMID:19457229

  15. Morphological estimators on Sunyaev-Zel'dovich maps of MUSIC clusters of galaxies

    Science.gov (United States)

    Cialone, Giammarco; De Petris, Marco; Sembolini, Federico; Yepes, Gustavo; Baldi, Anna Silvia; Rasia, Elena

    2018-06-01

    The determination of the morphology of galaxy clusters has important repercussions for cosmological and astrophysical studies of them. In this paper, we address the morphological characterization of synthetic maps of the Sunyaev-Zel'dovich (SZ) effect for a sample of 258 massive clusters (Mvir > 5 × 1014 h-1 M⊙ at z = 0), extracted from the MUSIC hydrodynamical simulations. Specifically, we use five known morphological parameters (which are already used in X-ray) and two newly introduced ones, and we combine them in a single parameter. We analyse two sets of simulations obtained with different prescriptions of the gas physics (non-radiative and with cooling, star formation and stellar feedback) at four red shifts between 0.43 and 0.82. For each parameter, we test its stability and efficiency in discriminating the true cluster dynamical state, measured by theoretical indicators. The combined parameter is more efficient at discriminating between relaxed and disturbed clusters. This parameter had a mild correlation with the hydrostatic mass (˜0.3) and a strong correlation (˜0.8) with the offset between the SZ centroid and the cluster centre of mass. The latter quantity is, thus, the most accessible and efficient indicator of the dynamical state for SZ studies.

  16. Human Mesenchymal Stem Cell Morphology and Migration on Micro-Textured Titanium

    Directory of Open Access Journals (Sweden)

    Brittany eBanik

    2016-05-01

    Full Text Available The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that micro-textured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 hours, rate and directionality of migration 6 to 18 hours post seeding, differentiation markers at 10 days, and the long term morphology of MSCs at 7 days, on micro-textured, acid-etched titanium (Endoskeleton, smooth titanium, and smooth PEEK surfaces. The results demonstrate in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts.

  17. Effect of the microstructural morphology on UO{sub 2} powders

    Energy Technology Data Exchange (ETDEWEB)

    Ziouane, Y.; Lalleman, S.; Leturcq, G. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Processes Department, SERA, LED, F-30207 Bagnols sur Ceze (France); Arab-Chapelet, B. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Processes Department, SERA, LCAR, F-30207 Bagnols sur Ceze (France)

    2016-07-01

    Several UO{sub 2} powders with different morphologies were synthesized and characterized. Three different morphologies were synthesized thanks to sol-gel process (big heap of about 200 μm wide consisting of sintered crystallites) on the one hand, and to oxalic precipitations (one square platelet morphology and one hexagonal stick morphology) on the other hand. Significant differences in dissolution kinetics were observed. Therefore, the morphology of the powders was found to be a key parameter that has to be considered in the studies of UO{sub 2} dissolution kinetics. The second part of the study consists in dissolving in nitric acid in in the same operating conditions three UO{sub 2} powders having different crystallites sizes. It was shown that dissolution kinetics is dependent on the morphology at the micrometer scale but also on the powder oxygen stoichiometry. (authors)

  18. Morphological aspects of poly-organic impact of radio frequency electromagnetic radiation in experiment

    OpenAIRE

    TASHPULATOVA GUZAL ALIEVNA; MAVLYAN-HODZHAEV RAVSHAN SHUKHRATOVICH

    2015-01-01

    The impact of radio frequency electromagnetic radiation (RFEMR) on morphological responses of some organs of experimental animals has been studied. The RFEMR effect was shown to manifest itself by pathological changes in the structure of the majority of organs and tissues with the critical impact of the micro-vascular bed impairment on not only morphological, metabolic but also many other homeostasis shifts that occurred.

  19. Histopathologic aspects of radiation effects on lymphatic tissues and malignancies

    International Nuclear Information System (INIS)

    Lushbaugh, C.C.; Swartzendruber, D.C.

    1976-01-01

    Morphologic study with the light microscope remains our most facile and rapid means of tissue identification, diagnosis and staging of diseases, and demonstration of radiation-induced and other toxic effects. The inadequacy of its use alone, however, for the solution of biologic problems is nowhere better illustrated than in such studies on lymphatic tissues as are reported in this symposium. Nearly every classical concept concerning lymphocyte biology and disease derived by morphologic methods has been challenged or disproved in recent years by applications of nonmorphologic technologies. Studies with light and electron microscopy in combination with cell-labeling techniques, histochemical methodology, virology, immunology, and radiation biology have corrected many of our misconceptions and provided unifying concepts of lymphatic-tissue structure and function which explain anew our observations of the past. For example, nearly everyone now accepts the biologic role of viruses in what once were considered radiation-caused neoplasms in rodents, although whether the role of radiation and other physical and chemical insults in human carcinogenesis is direct or indirect is still to be elucidated. Also, the exact relations that obtain between radiation and cancer induction via viruses even in well-studied rodent systems remain to be determined; and here morphologic studies continue to play an important integrating role for the multidisciplinary studies that are required

  20. Morphological and histological characters of penile organization in eleven species of molossid bats.

    Science.gov (United States)

    Comelis, Manuela T; Bueno, Larissa M; Góes, Rejane M; Taboga, S R; Morielle-Versute, Eliana

    2018-04-01

    The penis is the reproductive organ that ensures efficient copulation and success of internal fertilization in all species of mammals, with special challenges for bats, where copulation can occur during flight. Comparative anatomical analyses of different species of bats can contribute to a better understanding of morphological diversity of this organ, concerning organization and function. In this study, we describe the external morphology and histomorphology of the penis and baculum in eleven species of molossid bats. The present study showed that penile organization in these species displayed the basic vascular mammalian pattern and had a similar pattern concerning the presence of the tissues constituting the penis, exhibiting three types of erectile tissue (the corpus cavernosum, accessory cavernous tissue, and corpus spongiosum) around the urethra. However, certain features varied among the species, demonstrating that most species are distinguishable by glans and baculum morphology and glans histological organization. Major variations in glans morphology were genus-specific, and the greatest similarities were shared by Eumops species and N. laticaudatus. The greatest interspecific similarities occurred between M. molossus and M. rufus and between Eumops species. Save for M. molossus and M. rufus, morphology of the baculum was species-specific; and in E. perotis, it did not occur in all specimens, indicating that it is probably under selection. In the histological organization, the most evident differences were number of septa and localization of the corpora cavernosa. In species with a baculum (Molossus, Eumops and Nyctinomops species), the corpora cavernosa predominantly occupied the dorsal region of the penile glans and is associated with the proximal (basal) portion of the baculum. In species that do not have a baculum (Cynomops, Molossops and Neoplatymops species), the corpora cavernosa predominantly occupied the ventro-lateral region of the glans

  1. A rapid method combining Golgi and Nissl staining to study neuronal morphology and cytoarchitecture.

    Science.gov (United States)

    Pilati, Nadia; Barker, Matthew; Panteleimonitis, Sofoklis; Donga, Revers; Hamann, Martine

    2008-06-01

    The Golgi silver impregnation technique gives detailed information on neuronal morphology of the few neurons it labels, whereas the majority remain unstained. In contrast, the Nissl staining technique allows for consistent labeling of the whole neuronal population but gives very limited information on neuronal morphology. Most studies characterizing neuronal cell types in the context of their distribution within the tissue slice tend to use the Golgi silver impregnation technique for neuronal morphology followed by deimpregnation as a prerequisite for showing that neuron's histological location by subsequent Nissl staining. Here, we describe a rapid method combining Golgi silver impregnation with cresyl violet staining that provides a useful and simple approach to combining cellular morphology with cytoarchitecture without the need for deimpregnating the tissue. Our method allowed us to identify neurons of the facial nucleus and the supratrigeminal nucleus, as well as assessing cellular distribution within layers of the dorsal cochlear nucleus. With this method, we also have been able to directly compare morphological characteristics of neuronal somata at the dorsal cochlear nucleus when labeled with cresyl violet with those obtained with the Golgi method, and we found that cresyl violet-labeled cell bodies appear smaller at high cellular densities. Our observation suggests that cresyl violet staining is inadequate to quantify differences in soma sizes.

  2. Cytogenetic and morphological assessment of bone marrow in therapeutic irradiation

    International Nuclear Information System (INIS)

    Sharma, U.; Das, B.P.; Singhal, R.M.; Radhakrishnaiah, Y.; Rath, G.K.; Padmaraju, I.; Bhargava, V.L.

    1978-01-01

    Morphological and cytogenetic study from the irradiated bone marrow, in 59 cases of radically irradiated carcinoma cervix was done. Regeneration of a marrow adjudged on cellular morphology was after 12 months whereas cytogenetic studies revealed it at the end of three months. It is concluded that cytogenetic study is a more sensitive parameter in assessing the recovery of bone marrow. (author)

  3. Quantitative assessment of optical properties in healthy cartilage and repair tissue by optical coherence tomography and histology (Conference Presentation)

    Science.gov (United States)

    Jansen, Sanne M. A.; Cernohorsky, Paul; de Bruin, Daniel M.; van der Pol, Edwin; Savci-Heijink, Cemile D.; Strackee, Simon D.; Faber, Dirk J.; van Leeuwen, Ton G.

    2016-02-01

    Quantification of the OCT signal is an important step toward clinical implementation of a diagnostic tool in cartilage imaging. Discrimination of structural cartilage differences in patients with osteoarthritis is critical, yet challenging. This study assesses the variation in the optical attenuation coefficient (μOCT) between healthy cartilage, repair tissue, bone and layers within repair tissue in a controlled setting. OCT and histology was used to assess goat talus articular surfaces in which central osteochondral defects were created. Exact matches of OCT and histology were selected for research. μOCT measurements were taken from healthy cartilage, repair tissue and bone. Measured μOCT in healthy cartilage was higher compared to both repair tissue and bone tissue. Two possible mechanisms for the difference in attenuation were investigated. We studied morphological parameters in terms of nucleus count, nucleus size and inter-nucleus distance. Collagen content in healthy cartilage and repair tissue was assessed using polarization microscopy. Quantitative analysis of the nuclei did not demonstrate a difference in nucleus size and count between healthy cartilage and repair tissue. In healthy cartilage, cells were spaced farther apart and had a lower variation in local nuclear density compared to repair tissue. Polarization microscopy suggested higher collagen content in healthy cartilage compared to repair tissue. μOCT measurements can distinguish between healthy cartilage, repair tissue and bone. Results suggest that cartilage OCT attenuation measurements could be of great impact in clinical diagnostics of osteoarthritis.

  4. The impact of module morphologies on modular robots

    DEFF Research Database (Denmark)

    Liu, Ceyue; Liu, Jiangong; Moreno Garcia, Rodrigo

    2017-01-01

    RGE, and defined the number of connection faces and their relative positions as morphological parameters. Afterwards, we evolved the morphology and control of robots composed of EMeRGE modules in a robotic simulation platform. Simulation results indicate that robots containing modules with only two available......Many different types of modular robots have been designed in the last two decades. However, limited research has been done on analyzing which module morphology is able to create better robots for a given task. To address this issue, this paper investigates how the number and position of available...... connection faces in a module influence the evolvability of the modular robot. In contrast to previous research on modular robots, an analysis of the morphology of the module is done in order to improve and simplify its mechanical design. To this end, we designed a homogeneous module called EMe...

  5. New and Improved T-wave Morphology Parameters to Differentiate Healthy Individuals from those with Cardiomyopathy and Coronary Artery Disease

    Science.gov (United States)

    Greco, E. C.; Schlegel, T. T.; Arenare, B.; DePalma, J. L.; Starc, V.; Rahman, M. A.; Delgado, R.

    2007-01-01

    We investigated the ability of several known as well as new ECG repolarization parameters to differentiate healthy individuals from patients with obstructive coronary artery disease (CAD) and cardiomyopathy (CM). Advanced high-fidelity 12-lead ECG tests (approx. 5-min supine) were first performed on a "training set" of 99 individuals: 33 with ischemic or dilated CM and low ejection fraction (EF less than 40%); 33 with catheterization-proven obstructive CAD but normal EF; and 33 age-/gender-matched healthy controls. The following multiple parameters of T-wave morphology (TWM) were derived via signal averaging and singular value decomposition (SVD, which yields 8 eigenvalues, rho(sub 1) greater than rho(sub 2)...greater than rho(sub 8) and studied for their retrospective accuracy in detecting underlying disease: 1) Principal component analysis ratio of the T wave (T-PCA) = 100*rho(sub 2)/rho(sub 1); 2) Relative T-wave residuum (rTWR) = 100* SIGMA (rho(sub 4)(sup 2) +...+ rho(sub 8)(sup 2)); 3) Modified complexity ratio of the T wave (T-mCR) = 100*SIGMA(rho(sub 3)(sup 2) +...+rho(sb 8) (sup 2)); and 4) Normalized 3-dimensional volume of the T wave (nTV) = 100*(rho(sub 2)*rho(sub 3)/rho(sub 1)(sup 2). All TWM parameters significantly differentiated CAD from controls (p less than 0.0001), and also CM from controls (p less than 0.0001). Retrospective areas under the ROC curve were 0.77, 0.81, 0.82, and 0.83 (CAD vs. controls) and 0.93, 0.89, 0.95 and 0.96 (CM vs. controls) for T-PCA, rTWR, T-mCR and nTV respectively. The newer TWM parameters (T-mCR and nTV) thus outperformed the more established parameters (T-PCA and rTWR), presumably by putting a greater emphasis on the third T-wave eigenvalue, which in most healthy subjects has little energy compared to the first two eigenvalues. Subsequent prospective analyses have also yielded similar results, such that we conclude that diagnostic differentiation of pathology from non-pathology may be especially aided by detecting

  6. Oxygen delivery in irradiated normal tissue

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, M.F.; Ansari, R. [Univ. of Tennessee Health Science Center, Memphis, TN (United States). School of Biomedical Engineering; Gaber, M.W. [St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2003-03-01

    Ionizing radiation exposure significantly alters the structure and function of microvascular networks, which regulate delivery of oxygen to tissue. In this study we use a hamster cremaster muscle model to study changes in microvascular network parameters and use a mathematical model to study the effects of these observed structural and microhemodynamic changes in microvascular networks on oxygen delivery to the tissue. Our experimental observations indicate that in microvascular networks while some parameters are significantly affected by irradiation (e.g. red blood cell (RBC) transit time), others remain at the control level (e.g. RBC path length) up to 180 days post-irradiation. The results from our mathematical model indicate that tissue oxygenation patterns are significantly different in irradiated normal tissue as compared to age-matched controls and the differences are apparent as early as 3 days post irradiation. However, oxygen delivery to irradiated tissue was not found to be significantly different from age matched controls at any time between 7 days to 6 months post-irradiation. These findings indicate that microvascular late effects in irradiated normal tissue may be due to factors other than compromised tissue oxygenation. (author)

  7. The effects of tissue-non-specific alkaline phosphatase gene therapy on craniosynostosis and craniofacial morphology in the FGFR2C342Y/+ mouse model of Crouzon craniosynostosis.

    Science.gov (United States)

    Wang, E; Nam, H K; Liu, J; Hatch, N E

    2015-04-01

    Craniosynostosis, the premature fusion of cranial bones, has traditionally been described as a disease of increased bone mineralization. However, multiple mouse models of craniosynostosis display craniosynostosis simultaneously with diminished cranial bone volume and/or density. We propose an alternative hypothesis that craniosynostosis results from abnormal tissue mineralization through the downregulation of tissue-non-specific alkaline phosphatase (TNAP) enzyme downstream of activating mutations in FGFRs. Neonatal Crouzon (FGFRC342Y/+) and wild-type (FGFR+/+) mice were injected with lentivirus to deliver a recombinant form of TNAP. Mice were sacrificed at 4 weeks postnatal. Serum was collected to test for alkaline phosphatase (AP), phosphorus, and calcium levels. Craniofacial bone fusion and morphology were assessed by micro-computed tomography. Injection with the TNAP lentivirus significantly increased serum AP levels (increased serum AP levels are indicative of efficient transduction and production of the recombinant protein), but results were variable and dependent upon viral lot and the litter of mice injected. Morphological analysis revealed craniofacial form differences for inferior surface (p=0.023) and cranial height (p=0.014) regions between TNAP lentivirus-injected and vehicle-injected Crouzon mice. With each unit increase in AP level, the odds of lambdoid suture fusion decreased by 84.2% and these results came close to statistical significance (p=0.068). These results suggest that TNAP deficiency may mediate FGFR2-associated craniosynostosis. Future studies should incorporate injection of recombinant TNAP protein, to avoid potential side effects and variable efficacy of lentiviral gene delivery. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Thermal damage control of dye-assisted laser tissue welding: effect of dye concentration

    Science.gov (United States)

    Xie, Hua; Buckley, Lisa A.; Prahl, Scott A.; Shaffer, Brian S.; Gregory, Kenton W.

    2001-05-01

    Successful laser-assisted tissue welding was implemented to provide proper weld strength with minimized tissue thermal injury. We investigated and compared the weld strengths and morphologic changes in porcine small intestinal submucose (SIS) and porcine ureteral tissues with various concentration of indocyanine green (ICG) and with a solid albumin sheet. The study showed that the tissues were welded at lower ICG concentration (0.05 mM) with minimized tissue thermal damage using an 800-nm wavelength diode laser.

  9. Individual Case Analysis of Postmortem Interval Time on Brain Tissue Preservation.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Blair

    Full Text Available At autopsy, the time that has elapsed since the time of death is routinely documented and noted as the postmortem interval (PMI. The PMI of human tissue samples is a parameter often reported in research studies and comparable PMI is preferred when comparing different populations, i.e., disease versus control patients. In theory, a short PMI may alleviate non-experimental protein denaturation, enzyme activity, and other chemical changes such as the pH, which could affect protein and nucleic acid integrity. Previous studies have compared PMI en masse by looking at many different individual cases each with one unique PMI, which may be affected by individual variance. To overcome this obstacle, in this study human hippocampal segments from the same individuals were sampled at different time points after autopsy creating a series of PMIs for each case. Frozen and fixed tissue was then examined by Western blot, RT-PCR, and immunohistochemistry to evaluate the effect of extended PMI on proteins, nucleic acids, and tissue morphology. In our results, immunostaining profiles for most proteins remained unchanged even after PMI of over 50 h, yet by Western blot distinctive degradation patterns were observed in different protein species. Finally, RNA integrity was lower after extended PMI; however, RNA preservation was variable among cases suggesting antemortem factors may play a larger role than PMI in protein and nucleic acid integrity.

  10. Soft tissue modelling with conical springs.

    Science.gov (United States)

    Omar, Nadzeri; Zhong, Yongmin; Jazar, Reza N; Subic, Aleksandar; Smith, Julian; Shirinzadeh, Bijan

    2015-01-01

    This paper presents a new method for real-time modelling soft tissue deformation. It improves the traditional mass-spring model with conical springs to deal with nonlinear mechanical behaviours of soft tissues. A conical spring model is developed to predict soft tissue deformation with reference to deformation patterns. The model parameters are formulated according to tissue deformation patterns and the nonlinear behaviours of soft tissues are modelled with the stiffness variation of conical spring. Experimental results show that the proposed method can describe different tissue deformation patterns using one single equation and also exhibit the typical mechanical behaviours of soft tissues.

  11. Morphological evaluation during in vitro chondrogenesis of dental pulp stromal cells

    Directory of Open Access Journals (Sweden)

    Choo-Ryung Chung

    2012-02-01

    Full Text Available Objectives The aim was to confirm the stem cell-like properties of the dental pulp stromal cells and to evaluate the morphologic changes during in vitro chondrogenesis. Materials and Methods Stromal cells were outgrown from the dental pulp tissue of the premolars. Surface markers were investigated and cell proliferation rate was compared to other mesenchymal stem cells. Multipotency of the pulp cells was confirmed by inducing osteogenesis, adipogenesis and chondrogenesis. The morphologic changes in the chondrogenic pellet during the 21 day of induction were evaluated under light microscope and transmission electron microscope. TUNEL assay was used to evaluate apoptosis within the chondrogenic pellets. Results Pulp cells were CD90, 105 positive and CD31, 34 negative. They showed similar proliferation rate to other stem cells. Pulp cells differentiated to osteogenic, adipogenic and chondrogenic tissues. During chondrogenesis, 3-dimensional pellet was created with multi-layers, hypertrophic chondrocyte-like cells and cartilage-like extracellular matrix. However, cell morphology became irregular and apoptotic cells were increased after 7 day of chondrogenic induction. Conclusions Pulp cells indicated mesenchymal stem cell-like characteristics. During the in vitro chondrogenesis, cellular activity was superior during the earlier phase (within 7 day of differentiation.

  12. Morphological properties of fresh and preserved paca peritoneum (Cuniculus paca, L. 1766

    Directory of Open Access Journals (Sweden)

    Angela Daniele de Camargo

    2012-11-01

    Full Text Available The objective of this study was to describe the morphological characteristics of peritoneum samples from four adult pacas, which were fresh and preserved in 98% glycerin for 30, 60 and 90 days. Samples were analyzed using light and scanning electron microscopy. A clear arrangement between the dense, modeled connective tissue and the dense, unmodeled connective tissue, and an insignificant change in the membrane tissue integrity, were observed in the material preserved in the glycerin. The results suggest that paca peritoneum can be used as a biological material.

  13. Novel blood protein based scaffolds for cardiovascular tissue engineering

    Directory of Open Access Journals (Sweden)

    Kuhn Antonia I.

    2016-09-01

    Full Text Available A major challenge in cardiovascular tissue engineering is the fabrication of scaffolds, which provide appropriate morphological and mechanical properties while avoiding undesirable immune reactions. In this study electrospinning was used to fabricate scaffolds out of blood proteins for cardiovascular tissue engineering. Lyophilised porcine plasma was dissolved in deionised water at a final concentration of 7.5% m/v and blended with 3.7% m/v PEO. Electrospinning resulted in homogeneous fibre morphologies with a mean fibre diameter of 151 nm, which could be adapted to create macroscopic shapes (mats, tubes. Cross-linking with glutaraldehyde vapour improved the long-term stability of protein based scaffolds in comparison to untreated scaffolds, resulting in a mass loss of 41% and 96% after 28 days of incubation in aqueous solution, respectively.

  14. Linear-fitting-based similarity coefficient map for tissue dissimilarity analysis in -w magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yu Shao-De; Wu Shi-Bin; Xie Yao-Qin; Wang Hao-Yu; Wei Xin-Hua; Chen Xin; Pan Wan-Long; Hu Jiani

    2015-01-01

    Similarity coefficient mapping (SCM) aims to improve the morphological evaluation of weighted magnetic resonance imaging However, how to interpret the generated SCM map is still pending. Moreover, is it probable to extract tissue dissimilarity messages based on the theory behind SCM? The primary purpose of this paper is to address these two questions. First, the theory of SCM was interpreted from the perspective of linear fitting. Then, a term was embedded for tissue dissimilarity information. Finally, our method was validated with sixteen human brain image series from multi-echo . Generated maps were investigated from signal-to-noise ratio (SNR) and perceived visual quality, and then interpreted from intra- and inter-tissue intensity. Experimental results show that both perceptibility of anatomical structures and tissue contrast are improved. More importantly, tissue similarity or dissimilarity can be quantified and cross-validated from pixel intensity analysis. This method benefits image enhancement, tissue classification, malformation detection and morphological evaluation. (paper)

  15. A Method for Preparing Spaceflight RNAlater-Fixed Arabidopsis thaliana (Brassicaceae Tissue for Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Eric R. Schultz

    2013-07-01

    Full Text Available Premise of the study: In spaceflight experiments, tissues for morphologic study are fixed in 3% glutaraldehyde, while tissues for molecular study are fixed in RNAlater; thus, an experiment containing both study components requires multiple fixation strategies. The possibility of using RNAlater-fixed materials for standard SEM-based morphometric investigation was explored to expand the library of tissues available for analysis and maximize usage of samples returned from spaceflight, but these technologies have wide application to any situation where recovery of biological resources is limited. Methods and Results: RNAlater-fixed samples were desalinated in distilled water, dehydrated through graded methanol, plunged into liquid ethane, and transferred to cryovials for freeze-substitution. Sample tissues were critical point dried, mounted, sputter-coated, and imaged. Conclusions: The protocol resulted in acceptable SEM images from RNAlater-fixed Arabidopsis thaliana tissue. The majority of the tissues remained intact, including general morphology and finer details such as root hairs and trichomes.

  16. GEOMETRICAL PARAMETERS OF EGGS IN BIRD SYSTEMATICS

    Directory of Open Access Journals (Sweden)

    Mityay I.S.

    2014-12-01

    Full Text Available Our ideas are based on the following assumptions. Egg as a standalone system is formed within another system, which is the body of the female. Both systems are implemented on the basis of a common genetic code. In this regard, for example, the dendrogram constructed by morphological criteria eggs should be approximately equal to those constructed by other molecular or morphological criteria adult birds. It should be noted that the dendrogram show only the degree of genetic similarity of taxa, therefore, the identity of materials depends on the number of analyzed criteria and their quality, ie, they should be the backbone. The greater the number of system-features will be included in the analysis and in one other case, the like are dendrogram. In other cases, we will have a fragmentary similarity, which is also very important when dealing with controversial issues. The main message of our research was to figure out the eligibility of usage the morphological characteristics of eggs as additional information in taxonomy and phylogeny of birds. Our studies show that the shape parameters of bird eggs show a stable attachment to certain types of birds and complex traits are species-specific. Dendrogram and diagrams built by the quantitative value of these signs, exhibit significant similarity with the dendrogram constructed by morphological, comparative anatomy, paleontology and molecular criteria for adult birds. This suggests the possibility of using morphological parameters eggs as additional information in dealing with taxonomy and phylogeny of birds.

  17. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone.

    Science.gov (United States)

    Liu, X Sherry; Sajda, Paul; Saha, Punam K; Wehrli, Felix W; Bevill, Grant; Keaveny, Tony M; Guo, X Edward

    2008-02-01

    Trabecular plates and rods are important microarchitectural features in determining mechanical properties of trabecular bone. A complete volumetric decomposition of individual trabecular plates and rods was used to assess the orientation and morphology of 71 human trabecular bone samples. The ITS-based morphological analyses better characterize microarchitecture and help predict anisotropic mechanical properties of trabecular bone. Standard morphological analyses of trabecular architecture lack explicit segmentations of individual trabecular plates and rods. In this study, a complete volumetric decomposition technique was developed to segment trabecular bone microstructure into individual plates and rods. Contributions of trabecular type-associated morphological parameters to the anisotropic elastic moduli of trabecular bone were studied. Seventy-one human trabecular bone samples from the femoral neck (FN), tibia, and vertebral body (VB) were imaged using muCT or serial milling. Complete volumetric decomposition was applied to segment trabecular bone microstructure into individual plates and rods. The orientation of each individual trabecula was determined, and the axial bone volume fractions (aBV/TV), axially aligned bone volume fraction along each orthotropic axis, were correlated with the elastic moduli. The microstructural type-associated morphological parameters were derived and compared with standard morphological parameters. Their contributions to the anisotropic elastic moduli, calculated by finite element analysis (FEA), were evaluated and compared. The distribution of trabecular orientation suggested that longitudinal plates and transverse rods dominate at all three anatomic sites. aBV/TV along each axis, in general, showed a better correlation with the axial elastic modulus (r(2) = 0.95 approximately 0.99) compared with BV/TV (r(2) = 0.93 approximately 0.94). The plate-associated morphological parameters generally showed higher correlations with the

  18. Correction of Gradient Nonlinearity Bias in Quantitative Diffusion Parameters of Renal Tissue with Intra Voxel Incoherent Motion.

    Science.gov (United States)

    Malyarenko, Dariya I; Pang, Yuxi; Senegas, Julien; Ivancevic, Marko K; Ross, Brian D; Chenevert, Thomas L

    2015-12-01

    Spatially non-uniform diffusion weighting bias due to gradient nonlinearity (GNL) causes substantial errors in apparent diffusion coefficient (ADC) maps for anatomical regions imaged distant from magnet isocenter. Our previously-described approach allowed effective removal of spatial ADC bias from three orthogonal DWI measurements for mono-exponential media of arbitrary anisotropy. The present work evaluates correction feasibility and performance for quantitative diffusion parameters of the two-component IVIM model for well-perfused and nearly isotropic renal tissue. Sagittal kidney DWI scans of a volunteer were performed on a clinical 3T MRI scanner near isocenter and offset superiorly. Spatially non-uniform diffusion weighting due to GNL resulted both in shift and broadening of perfusion-suppressed ADC histograms for off-center DWI relative to unbiased measurements close to isocenter. Direction-average DW-bias correctors were computed based on the known gradient design provided by vendor. The computed bias maps were empirically confirmed by coronal DWI measurements for an isotropic gel-flood phantom. Both phantom and renal tissue ADC bias for off-center measurements was effectively removed by applying pre-computed 3D correction maps. Comparable ADC accuracy was achieved for corrections of both b -maps and DWI intensities in presence of IVIM perfusion. No significant bias impact was observed for IVIM perfusion fraction.

  19. Determination of Morphological Parameters of Supported Gold Nanoparticles: Comparison of AFM Combined with Optical Spectroscopy and Theoretical Modeling versus TEM

    Directory of Open Access Journals (Sweden)

    Frank Hubenthal

    2012-07-01

    Full Text Available The morphology of small gold particles prepared by Volmer–Weber growth on sapphire substrates have been investigated by two different characterization techniques. First, by non-extensive atomic force microscopy (AFM in combination with optical spectroscopy and modeling of the optical properties using a theoretical model, recently developed in our group. Second, by extensive transmission electron microscopy (TEM. Comparing the results obtained with both techniques demonstrate that for small gold nanoparticles within the quasistatic limit, the morphological properties can be precisely determined by an appropriate theoretical modeling of the optical properties in combination with simple AFM measurements. The apparent mean axial ratio of the nanoparticles, i.e., the axial ratio that corresponds to the center frequency of the ensemble plasmon resonance, is obtained easily from the extinction spectrum. The mean size is determined by the nanoparticle number density and the amount of deposited material, measured by AFM and a quartz micro balance, respectively. To extract the most probable axial ratio of the nanoparticle ensemble, i.e., the axial ratio that corresponds to the most probable nanoparticle size in the ensemble, we apply the new theoretical model, which allows to extract the functional dependence of the nanoparticle shape on its size. The morphological parameters obtained with this procedure will be afterwards compared to extensive TEM measurements. The results obtained with both techniques yield excellent agreement. For example, the lateral dimensions of the nanoparticles after deposition of 15.2 × 1015 atoms/cm2 of gold has been compared. While a mean lateral diameter of (13 ± 2 nm has been extracted from AFM, optical spectroscopy and modeling, a value of (12 ± 2 nm is derived from TEM. The consistency of the results demonstrate the precision of our new model. Moreover, since our theoretical model allows to extract the functional

  20. Oxidative Stress in Horseradish (Armoracia lapathifolia Gilib. Tissues Grown in vitro

    Directory of Open Access Journals (Sweden)

    Petra Peharec

    2011-01-01

    Full Text Available In a previous study it was reported that transformed tissue of horseradish (Armoracia lapathifolia Gilib., obtained by infection of leaf explants with A. tumefaciens, developed two tumour lines with different morphology. One line grew as a completely unorganized tissue (TN – tumour tissue, while the other line grew as a partially organized teratogenous tumour with malformed hyperhydric shoots (TM – teratoma tissue, but did not regenerate the whole plant of normal morphology. The factor responsible for this problem could be the increased production of reactive oxygen species (ROS. Therefore, in this study a possible involvement of activated oxygen metabolism in dedifferentiation and hyperhydricity in TM and TN tissues is investigated. Elevated values of malondialdehyde and protein carbonyl contents found in TM and TN, in comparison with plantlet leaf, confirm the presence of oxidative stress. However, lower H2O2 content was measured in TM and TN. Lipoxygenase (LOX activity was more pronounced in TM and especially in TN compared to leaf, which suggests that the LOX-dependent peroxidation of fatty acids might be one of the causes of oxidative damage. Moreover, significantly higher peroxidase (PRX and ascorbate peroxidase (APX activity as well as the increased number of their isoforms was found in transformed TM and TN in comparison with leaf. On the other hand, significantly lower superoxide dismutase (SOD activity was found in TM and TN, which correlates with lower H2O2 content. High catalase (CAT activity measured in leaf and partially organized TM is consistent with the role of CAT in growth and differentiation. In conclusion, in horseradish transformed tissues that underwent dedifferentiation and hyperhydricity, prominent oxidative damage was found. This result suggests that oxidative stress could be associated with the inability of partially organized teratogenous TM to regenerate plantlets with normal morphology.

  1. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation

    Directory of Open Access Journals (Sweden)

    Domenico F Galati

    2016-09-01

    Full Text Available Abstract Brain-derived neurotrophic factor (BDNF regulates both action potential (AP generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF’s effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF’s function.

  2. Parametric imaging of tumor perfusion and neovascular morphology using ultrasound

    Science.gov (United States)

    Hoyt, Kenneth

    2015-03-01

    A new image processing strategy is detailed for the simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. A technique for locally mapping tumor perfusion parameters using skeletonized neovascular data is also introduced. Simulated images were used to test the neovascular skeletonization technique and variance (error) of relevant parametric estimates. Preliminary DCE-US image datasets were collected in 6 female patients diagnosed with invasive breast cancer and using a Philips iU22 ultrasound system equipped with a L9-3 MHz transducer and Definity contrast agent. Simulation data demonstrates that neovascular morphology parametric estimation is reproducible albeit measurement error can occur at a lower signal-to-noise ratio (SNR). Experimental results indicate the feasibility of our approach to performing both tumor perfusion and neovascular morphology measurements from DCE-US images. Future work will expand on our initial clinical findings and also extent our image processing strategy to 3-dimensional space to allow whole tumor characterization.

  3. Effects of polyacrylic acid additive on barium sulfate particle morphology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie; Liu, Dandan; Jiang, Hongkun; Wang, Jun; Jing, Xiaoyan; Chen, Rongrong [Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Zhu, Wenting [Department of Gastroenterology, Harbin Medical University Cancer Hospital, Harbin 150081 (China); Han, Shihui [Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Li, Wanyou [College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001 (China); Wei, Hao, E-mail: weihao7512@126.com [Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001 (China)

    2016-06-01

    In this paper, polyacrylic acid (PAA) was used as a growth modifier to control micron-sized barium sulfate particles via a simple precipitation reaction between sodium sulfate and barium chloride at ambient temperature. The barium sulfate particles were exhibited various morphologies, such as monodisperse spheres, ellipsoids, rose-like aggregates, etc. To better understand the formation mechanisms of the various morphologies of these particles, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA) were employed. It was found that the PAA concentration, pH, and Ba{sup 2+} and SO{sub 4}{sup 2−} ions concentrations were the most important parameters controlling the morphology of the BaSO{sub 4} particles. These parameters affected the BaSO{sub 4} morphology by influencing the interactions between the PAA carboxyl groups and inorganic ions and the conformation change of the PAA molecular chains. Moreover, this work attempts to provide a preliminary understanding of the formation of the spherical BaSO{sub 4} particles with the randomly coiled conformation of the polymer. - Highlights: • Polyacrylic acid (PAA) was used as a growth modifier to control micron-sized BaSO{sub 4} particles. • The PAA/BaSO{sub 4} particles were exhibited various morphologies. • Provide a preliminary understanding of the formation mechanism of BaSO{sub 4} particles.

  4. Morphological and photometric studies of galaxies by electronography

    International Nuclear Information System (INIS)

    Youll, D.P.

    1978-10-01

    Astronomical sources of low surface brightness, or sources with high luminosity gradients can be difficult to observe with photographic techniques. However, developments in electronographic techniques over recent years have made them suitable for precise observations of such objects. The use of these techniques for morphological and photometric studies of galaxies is discussed. Where appropriate, improvements in the methods for recovering information from electronographs, and analysing the data with computers are suggested. These techniques were used to study eight galaxy systems which have compact parts where the luminosity gradients are relatively high. Morphological studies of these systems are presented, together with measurements of some of their photometric parameters. The galaxy NGC 4881 was also studied so that the photometric calibration could be checked against previous studies, and so that the parameters of compact galaxies could be compared against this elliptical galaxy. (author)

  5. Detection of Chlamydia in postmortal formalin-fixed tissue

    DEFF Research Database (Denmark)

    Lundemose, A G; Banner, Jytte; Birkelund, Svend

    1989-01-01

    examined and the effect of autolysis and tetracycline treatment was evaluated. Furthermore, lung tissue from two patients who died of ornithosis was examined. Inclusions detected in lung sections showed a bright apple-green fluorescence, and had a characteristic and easily recognizable morphology...

  6. Morphology and Anatomy Characteristic of Pisang Awak (Musa paradisiaca cv. Awak in West Kalimantan

    Directory of Open Access Journals (Sweden)

    Ari Sunandar

    2017-12-01

    Full Text Available Indonesia is the origin and center of diversity of banana. One of an edible banana in Indonesia is Pisang Awak (Musa paradisiaca cv. Awak . In West Kalimantan, the ripe Pisang Awak has been processed into sale (dried banana. The aims of this research were to describe the morphological and anatomical character of Pisang Awak in West Kalimantan, Indonesia. In this study, Pisang Awak were collected from Padang Tikar I village, Batu Ampar Sub-district, Kubu Raya district, West Kalimantan. Morphological characterizations were conducted by following the instruction on Descriptors for Banana (Musa spp. from IPGRI. The root, leaf blade, and petiole were fixed in FAA solution. Root, leaf, and petiole anatomy preparats were made by paraffin method. The lamina of Pisang Awak consisted of adaxial epidermis, two hypodermis layers, two palisade layers, spongy layer, bundle sheath cell, abaxial epidermis, laticifer. The petiole of Pisang Awak composed of three tissue systems, i.e., epidermis layer, parenchyma tissue and vascular tissue. The root of Pisang Awak consists of two epidermis layers, parenchyma and vascular cylinder. In the future, morphological and anatomical character in Pisang Awak could be applied as the basis of information for breeding programs of banana cultivars and classification.

  7. Intravenous Exposure of Pregnant Mice to Silver Nanoparticles: Silver Tissue Distribution and Effects in Maternal and Extra-Embryonic Tissues and Embryos

    Science.gov (United States)

    Austin, Carlye Anne

    This research explores the tissue distribution of silver, as well as adverse effects in pregnant mice and embryos, following prenatal silver nanoparticle (AgNP) exposure. Chapter one of this dissertation is a survey of the published literature on the reproductive and/or developmental toxicity of AgNPs. The available data indicate that AgNPs adversely affect sperm count, viability, and/or motility both in vivo and in vitro, and cause apoptosis and necrosis in spermatogonial stem cells and testicular cells. Additionally, AgNP exposure results in mortality and morphological deformities in fish embryos, but produces no adverse effects in chicken embryos. The current published research on in vivo AgNP exposure to mammals during gestation consists of only three studies, one of which is described in chapter two of this dissertation. These studies report results that may suggest a potential for adverse effects on fetal development (e.g. , decreased viability and fetal and placental weights, increased incidence of developmentally young embryos), but additional research is needed. Chapter two of this dissertation investigates the distribution of silver in tissues of pregnant mice and gestation day (GD) 10 embryos following intravenous maternal exposure to 50 nm AgNPs during early organogenesis (GDs 7-9). Examinations of embryo morphology and histology were also performed. Results demonstrated the presence of silver in all organs and tissues examined. Silver concentrations were highest in liver, spleen, and visceral yolk sac, and lowest in embryos. Groups of mice were also treated with soluble silver nitrate, and the pattern of silver tissue distribution following silver nitrate exposure was similar to that which followed AgNP treatment. Transmission electron microscopy-energy dispersive x-ray spectroscopy (TEM-EDS) confirmed the presence of vesicle-bound nanoparticulate silver in visceral yolk sac endoderm, but not mesoderm. This finding, along with the high silver

  8. Morphological characteristics of waste polyethylene/polypropylene plastics during pyrolysis and representative morphological signal characterizing pyrolysis stages.

    Science.gov (United States)

    Wang, H; Chen, D; Yuan, G; Ma, X; Dai, X

    2013-02-01

    In this work, the morphological characteristics of waste polyethylene (PE)/polypropylene (PP) plastics during their pyrolysis process were investigated, and based on their basic image changing patterns representative morphological signals describing the pyrolysis stages were obtained. PE and PP granules and films were used as typical plastics for testing, and influence of impurities was also investigated. During pyrolysis experiments, photographs of the testing samples were taken sequentially with a high-speed infrared camera, and the quantitative parameters that describe the morphological characteristics of these photographs were explored using the "Image Pro Plus (v6.3)" digital image processing software. The experimental results showed that plastics pyrolysis involved four stages: melting, two stages of decomposition which are characterized with bubble formation caused by volatile evaporating, and ash deposition; and each stage was characterized with its own phase changing behaviors and morphological features. Two stages of decomposition are the key step of pyrolysis since they took up half or more of the reaction time; melting step consumed another half of reaction time in experiments when raw materials were heated up from ambient temperatures; and coke-like deposition appeared as a result of decomposition completion. Two morphological signals defined from digital image processing, namely, pixel area of the interested reaction region and bubble ratio (BR) caused by volatile evaporating were found to change regularly with pyrolysis stages. In particular, for all experimental scenarios with plastics films and granules, the BR curves always exhibited a slowly drop as melting started and then a sharp increase followed by a deep decrease corresponding to the first stage of intense decomposition, afterwards a second increase - drop section corresponding to the second stage of decomposition appeared. As ash deposition happened, the BR dropped to zero or very low

  9. Controls on Lava Flow Morphology and Propagation: Using Laboratory Analogue Experiments

    Science.gov (United States)

    Peters, S.; Clarke, A. B.

    2017-12-01

    The morphology of lava flows is controlled by eruption rate, composition, cooling rate, and topography [Fink and Griffiths, 1990; Gregg and Fink, 2000, 2006]. Lava flows are used to understand how volcanoes, volcanic fields, and igneous provinces formed and evolved [Gregg and Fink., 1996; Sheth, 2006]. This is particularly important for other planets where compositional data is limited and historical context is nonexistent. Numerical modeling of lava flows remains challenging, but has been aided by laboratory analog experiments [Gregg and Keszrthelyi, 2004; Soule and Cashman, 2004]. Experiments using polyethylene glycol (PEG) 600 wax have been performed to understand lava flow emplacement [Fink and Griffiths, 1990, 1992; Gregg and Fink, 2000]. These experiments established psi (hereafter denoted by Ψ), a dimensionless parameter that relates crust formation and advection timescales of a viscous gravity current. Four primary flow morphologies corresponding to discreet Ψ ranges were observed. Gregg and Fink [2000] also investigated flows on slopes and found that steeper slopes increase the effective effusion rate producing predicted morphologies at lower Ψ values. Additional work is needed to constrain the Ψ parameter space, evaluate the predictive capability of Ψ, and determine if the preserved flow morphology can be used to indicate the initial flow conditions. We performed 514 experiments to address the following controls on lava flow morphology: slope (n = 282), unsteadiness/pulsations (n = 58), slope & unsteadiness/pulsations (n = 174), distal processes, and emplacement vs. post-emplacement morphologies. Our slope experiments reveal a similar trend to Gregg and Fink [2000] with the caveat that very high and very low local & source eruption rates can reduce the apparent predictive capability of Ψ. Predicted Ψ morphologies were often produced halfway through the eruption. Our pulse experiments are expected to produce morphologies unique to each eruption rate

  10. CLINICO-MORPHOLOGICAL RESEARCH OF BIO-OSS ® DURING BONE-PLASTIC OPERATIONS

    Directory of Open Access Journals (Sweden)

    Pavel SIDELNIKOV

    2016-03-01

    Full Text Available Aim: To study the clinical and morphological characteristics of Bio-Oss ® and Bio-Gate ® materials during bone-plastic operations, especially bone regeneration after surgical interventiond. Materials and method: The pathomorphological study was performed with the intravital biopsy material of bone tissue from augmentation areas, obtained during implants placement. Clinical studies included subjective and objective methods, in particular X-ray analysis and photo documenting. Bio-Oss ®, Bio-Gide ®, Bio-Gide ® Perio membranes, Resor-Pin pins, U-impl implant systems were investigated and 231 operations were performed with Bio-Oss ® and Bio-Gate ®, of which 38 cases of sinus lifting, 145 of bone plasty with simultaneous implantation and 48 cases of periodontal surgery. Results: Usage of bone-plastic Bio-OSS ® and Bio-Gate ® materials during various bone-plastic and periodontal operations assures a high clinical effect (from 93 to 99%. Morphologically, it has been observed that, after usage of bone Bio-OSS ® and Bio-Gate ® materials, a new osteoid tissue was formed, similar to the bone tissue of the alveolar process, with high mineralization levels, especially in the first 2 years, due to the simultaneous resorption of the material. The newly-formed tissue has a classical design and can fully perform the functions of jaw bones, especially for carrying loads transmitted with either teeth or implants.

  11. Label-Free Imaging of Umbilical Cord Tissue Morphology and Explant-Derived Cells

    Directory of Open Access Journals (Sweden)

    Raf Donders

    2016-01-01

    Full Text Available In situ detection of MSCs remains difficult and warrants additional methods to aid with their characterization in vivo. Two-photon confocal laser scanning microscopy (TPM and second harmonic generation (SHG could fill this gap. Both techniques enable the detection of cells and extracellular structures, based on intrinsic properties of the specific tissue and intracellular molecules under optical irradiation. TPM imaging and SHG imaging have been used for label-free monitoring of stem cells differentiation, assessment of their behavior in biocompatible scaffolds, and even cell tracking in vivo. In this study, we show that TPM and SHG can accurately depict the umbilical cord architecture and visualize individual cells both in situ and during culture initiation, without the use of exogenously applied labels. In combination with nuclear DNA staining, we observed a variance in fluorescent intensity in the vessel walls. In addition, antibody staining showed differences in Oct4, αSMA, vimentin, and ALDH1A1 expression in situ, indicating functional differences among the umbilical cord cell populations. In future research, marker-free imaging can be of great added value to the current antigen-based staining methods for describing tissue structures and for the identification of progenitor cells in their tissue of origin.

  12. Sci-Thur AM: YIS – 07: Optimizing dual-energy x-ray parameters using a single filter for both high and low-energy images to enhance soft-tissue imaging

    International Nuclear Information System (INIS)

    Bowman, Wesley; Sattarivand, Mike

    2016-01-01

    Objective: To optimize dual-energy parameters of ExacTrac stereoscopic x-ray imaging system for lung SBRT patients Methods: Simulated spectra and a lung phantom were used to optimize filter material, thickness, kVps, and weighting factors to obtain bone subtracted dual-energy images. Spektr simulations were used to identify material in the atomic number (Z) range [3–83] based on a metric defined to separate spectrums of high and low energies. Both energies used the same filter due to time constraints of image acquisition in lung SBRT imaging. A lung phantom containing bone, soft tissue, and a tumor mimicking material was imaged with filter thicknesses range [0–1] mm and kVp range [60–140]. A cost function based on contrast-to-noise-ratio of bone, soft tissue, and tumor, as well as image noise content, was defined to optimize filter thickness and kVp. Using the optimized parameters, dual-energy images of anthropomorphic Rando phantom were acquired and evaluated for bone subtraction. Imaging dose was measured with dual-energy technique using tin filtering. Results: Tin was the material of choice providing the best energy separation, non-toxicity, and non-reactiveness. The best soft-tissue-only image in the lung phantom was obtained using 0.3 mm tin and [140, 80] kVp pair. Dual-energy images of the Rando phantom had noticeable bone elimination when compared to no filtration. Dose was lower with tin filtering compared to no filtration. Conclusions: Dual-energy soft-tissue imaging is feasible using ExacTrac stereoscopic imaging system utilizing a single tin filter for both high and low energies and optimized acquisition parameters.

  13. Sci-Thur AM: YIS – 07: Optimizing dual-energy x-ray parameters using a single filter for both high and low-energy images to enhance soft-tissue imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Wesley; Sattarivand, Mike [Department of Radiation Oncology, Dalhousie University at Nova Scotia Health Authority, Department of Radiation Oncology, Dalhousie University at Nova Scotia Health Authority (Canada)

    2016-08-15

    Objective: To optimize dual-energy parameters of ExacTrac stereoscopic x-ray imaging system for lung SBRT patients Methods: Simulated spectra and a lung phantom were used to optimize filter material, thickness, kVps, and weighting factors to obtain bone subtracted dual-energy images. Spektr simulations were used to identify material in the atomic number (Z) range [3–83] based on a metric defined to separate spectrums of high and low energies. Both energies used the same filter due to time constraints of image acquisition in lung SBRT imaging. A lung phantom containing bone, soft tissue, and a tumor mimicking material was imaged with filter thicknesses range [0–1] mm and kVp range [60–140]. A cost function based on contrast-to-noise-ratio of bone, soft tissue, and tumor, as well as image noise content, was defined to optimize filter thickness and kVp. Using the optimized parameters, dual-energy images of anthropomorphic Rando phantom were acquired and evaluated for bone subtraction. Imaging dose was measured with dual-energy technique using tin filtering. Results: Tin was the material of choice providing the best energy separation, non-toxicity, and non-reactiveness. The best soft-tissue-only image in the lung phantom was obtained using 0.3 mm tin and [140, 80] kVp pair. Dual-energy images of the Rando phantom had noticeable bone elimination when compared to no filtration. Dose was lower with tin filtering compared to no filtration. Conclusions: Dual-energy soft-tissue imaging is feasible using ExacTrac stereoscopic imaging system utilizing a single tin filter for both high and low energies and optimized acquisition parameters.

  14. Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines

    Science.gov (United States)

    Kurç, Tahsin M.; Taveira, Luís F. R.; Melo, Alba C. M. A.; Gao, Yi; Kong, Jun; Saltz, Joel H.

    2017-01-01

    Abstract Motivation: Sensitivity analysis and parameter tuning are important processes in large-scale image analysis. They are very costly because the image analysis workflows are required to be executed several times to systematically correlate output variations with parameter changes or to tune parameters. An integrated solution with minimum user interaction that uses effective methodologies and high performance computing is required to scale these studies to large imaging datasets and expensive analysis workflows. Results: The experiments with two segmentation workflows show that the proposed approach can (i) quickly identify and prune parameters that are non-influential; (ii) search a small fraction (about 100 points) of the parameter search space with billions to trillions of points and improve the quality of segmentation results (Dice and Jaccard metrics) by as much as 1.42× compared to the results from the default parameters; (iii) attain good scalability on a high performance cluster with several effective optimizations. Conclusions: Our work demonstrates the feasibility of performing sensitivity analyses, parameter studies and auto-tuning with large datasets. The proposed framework can enable the quantification of error estimations and output variations in image segmentation pipelines. Availability and Implementation: Source code: https://github.com/SBU-BMI/region-templates/. Contact: teodoro@unb.br Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28062445

  15. HORIZONTAL BRANCH MORPHOLOGY OF GLOBULAR CLUSTERS: A MULTIVARIATE STATISTICAL ANALYSIS

    International Nuclear Information System (INIS)

    Jogesh Babu, G.; Chattopadhyay, Tanuka; Chattopadhyay, Asis Kumar; Mondal, Saptarshi

    2009-01-01

    The proper interpretation of horizontal branch (HB) morphology is crucial to the understanding of the formation history of stellar populations. In the present study a multivariate analysis is used (principal component analysis) for the selection of appropriate HB morphology parameter, which, in our case, is the logarithm of effective temperature extent of the HB (log T effHB ). Then this parameter is expressed in terms of the most significant observed independent parameters of Galactic globular clusters (GGCs) separately for coherent groups, obtained in a previous work, through a stepwise multiple regression technique. It is found that, metallicity ([Fe/H]), central surface brightness (μ v ), and core radius (r c ) are the significant parameters to explain most of the variations in HB morphology (multiple R 2 ∼ 0.86) for GGC elonging to the bulge/disk while metallicity ([Fe/H]) and absolute magnitude (M v ) are responsible for GGC belonging to the inner halo (multiple R 2 ∼ 0.52). The robustness is tested by taking 1000 bootstrap samples. A cluster analysis is performed for the red giant branch (RGB) stars of the GGC belonging to Galactic inner halo (Cluster 2). A multi-episodic star formation is preferred for RGB stars of GGC belonging to this group. It supports the asymptotic giant branch (AGB) model in three episodes instead of two as suggested by Carretta et al. for halo GGC while AGB model is suggested to be revisited for bulge/disk GGC.

  16. Morphologic and hemodynamic analysis of dental pulp in dogs after molar intrusion with the skeletal anchorage system.

    Science.gov (United States)

    Konno, Yuichi; Daimaruya, Takayoshi; Iikubo, Masahiro; Kanzaki, Reiko; Takahashi, Ichiro; Sugawara, Junji; Sasano, Takashi

    2007-08-01

    We have successfully treated skeletal open bite by intruding posterior teeth with the skeletal anchorage system. Our aim in this study was to morphologically and hemodynamically evaluate the changes in pulp tissues when molars are radically intruded. The mandibular fourth premolars of 9 adult beagle dogs were divided into 3 groups: a sham operated group (n = 6, 3 dogs), 4-month intrusion group (n = 6, 3 dogs), and a further 4-month retention group (n = 6, 3 dogs). We evaluated the morphological changes of the pulp and dentin-the amount of vacuolar degeneration in the odontoblast layer, the predentin width and nervous continuity in the pulp tissue, and the pulpal blood-flow response evoked by electrical stimulation in the dental pulp. Extreme molar intrusion with the skeletal anchorage system caused slight degenerative changes in the pulp tissue, followed by recovery after the orthodontic force was released. Circulatory system and nervous functions were basically maintained during the intrusion, although a certain level of downregulation was observed. These morphologic and functional regressive changes in the pulp tissue after molar intrusion improved during the retention period. Histologic changes and changes in pulpal blood flow and function are reversible, even during radical intrusion of molars.

  17. [Local impact of antiseptic medical textile on tissues of organism].

    Science.gov (United States)

    Nazarchuk, O A; Vernyhorods'kyĭ, S V; Paliĭ, V H; Nazarchuk, H H; Paliĭ, D V; Honchar, O O; Zadereĭ, N V

    2013-07-01

    Morphological investigation for studying of a local impact on the tissues, localized in the antiseptic textile implantation zone, was conducted. The textile was impregnated by composition of decametoxine with modified polysaccharides. Basing on the investigation result there was established the absence of a toxic impact of antiseptic medical textile on the macroorganism tissues, the regenerative processes course, the wounds epithelization, antioedematous and anti-inflammatory effects.

  18. An Assessment of Myotube Morphology, Matrix Deformation, and Myogenic mRNA Expression in Custom-Built and Commercially Available Engineered Muscle Chamber Configurations

    Directory of Open Access Journals (Sweden)

    Julia M. Jones

    2018-05-01

    Full Text Available There are several three-dimensional (3D skeletal muscle (SkM tissue engineered models reported in the literature. 3D SkM tissue engineering (TE aims to recapitulate the structure and function of native (in vivo tissue, within an in vitro environment. This requires the differentiation of myoblasts into aligned multinucleated myotubes surrounded by a biologically representative extracellular matrix (ECM. In the present work, a new commercially available 3D SkM TE culture chamber manufactured from polyether ether ketone (PEEK that facilitates suitable development of these myotubes is presented. To assess the outcomes of the myotubes within these constructs, morphological, gene expression, and ECM remodeling parameters were compared against a previously published custom-built model. No significant differences were observed in the morphological and gene expression measures between the newly introduced and the established construct configuration, suggesting biological reproducibility irrespective of manufacturing process. However, TE SkM fabricated using the commercially available PEEK chambers displayed reduced variability in both construct attachment and matrix deformation, likely due to increased reproducibility within the manufacturing process. The mechanical differences between systems may also have contributed to such differences, however, investigation of these variables was beyond the scope of the investigation. Though more expensive than the custom-built models, these PEEK chambers are also suitable for multiple use after autoclaving. As such this would support its use over the previously published handmade culture chamber system, particularly when seeking to develop higher-throughput systems or when experimental cost is not a factor.

  19. [Oral rehabilitation with metalloceramic restorations in patients with non-differentiated systemic connective tissue dysplasia].

    Science.gov (United States)

    Stafeev, А А

    2015-01-01

    False formation of connective tissues have a great influence on structure and function of organs and tissues of the human body. In prosthodontics, the changes in connective tissues greatly occur during clinical stages of preparing metal ceramic dentures. The algorithm of treatment patients with connective tissue dysplasia during metal ceramic dentures was developed and introduced into practical dentistry based on studying the morphology and functionality of dentition and clinical experience.

  20. Attachment, Proliferation, and Morphological Properties of Human Dermal Fibroblasts on Ovine Tendon Collagen Scaffolds: A Comparative Study.

    Science.gov (United States)

    Busra, Fauzi Mh; Lokanathan, Yogeswaran; Nadzir, Masrina Mohd; Saim, Aminuddin; Idrus, Ruszymah Bt Hj; Chowdhury, Shiplu Roy

    2017-03-01

    Collagen type I is widely used as a biomaterial for tissue-engineered substitutes. This study aimed to fabricate different three-dimensional (3D) scaffolds using ovine tendon collagen type I (OTC-I), and compare the attachment, proliferation and morphological features of human dermal fibroblasts (HDF) on the scaffolds. This study was conducted between the years 2014 to 2016 at the Tissue Engineering Centre, UKM Medical Centre. OTC-I was extracted from ovine tendon, and fabricated into 3D scaffolds in the form of sponge, hydrogel and film. A polystyrene surface coated with OTC-I was used as the 2D culture condition. Genipin was used to crosslink the OTC-I. A non-coated polystyrene surface was used as a control. The mechanical strength of OTC-I scaffolds was evaluated. Attachment, proliferation and morphological features of HDF were assessed and compared between conditions. The mechanical strength of OTC-I sponge was significantly higher than that of the other scaffolds. OTC-I scaffolds and the coated surface significantly enhanced HDF attachment and proliferation compared to the control, but no differences were observed between the scaffolds and coated surface. In contrast, the morphological features of HDF including spreading, filopodia, lamellipodia and actin cytoskeletal formation differed between conditions. OTC-I can be moulded into various scaffolds that are biocompatible and thus could be suitable as scaffolds for developing tissue substitutes for clinical applications and in vitro tissue models. However, further study is required to determine the effect of morphological properties on the functional and molecular properties of HDF.

  1. Quantitative image analysis reveals distinct structural transitions during aging in Caenorhabditis elegans tissues.

    Directory of Open Access Journals (Sweden)

    Josiah Johnston

    2008-07-01

    Full Text Available Aging is associated with functional and structural declines in many body systems, even in the absence of underlying disease. In particular, skeletal muscles experience severe declines during aging, a phenomenon termed sarcopenia. Despite the high incidence and severity of sarcopenia, little is known about contributing factors and development. Many studies focus on functional aspects of aging-related tissue decline, while structural details remain understudied. Traditional approaches for quantifying structural changes have assessed individual markers at discrete intervals. Such approaches are inadequate for the complex changes associated with aging. An alternative is to consider changes in overall morphology rather than in specific markers. We have used this approach to quantitatively track tissue architecture during adulthood and aging in the C. elegans pharynx, the neuromuscular feeding organ. Using pattern recognition to analyze aged-grouped pharynx images, we identified discrete step-wise transitions between distinct morphologies. The morphology state transitions were maintained in mutants with pharynx neurotransmission defects, although the pace of the transitions was altered. Longitudinal measurements of pharynx function identified a predictive relationship between mid-life pharynx morphology and function at later ages. These studies demonstrate for the first time that adult tissues undergo distinct structural transitions reflecting postdevelopmental events. The processes that underlie these architectural changes may contribute to increased disease risk during aging, and may be targets for factors that alter the aging rate. This work further demonstrates that pattern analysis of an image series offers a novel and generally accessible approach for quantifying morphological changes and identifying structural biomarkers.

  2. Quantitative image analysis reveals distinct structural transitions during aging in Caenorhabditis elegans tissues.

    Science.gov (United States)

    Johnston, Josiah; Iser, Wendy B; Chow, David K; Goldberg, Ilya G; Wolkow, Catherine A

    2008-07-30

    Aging is associated with functional and structural declines in many body systems, even in the absence of underlying disease. In particular, skeletal muscles experience severe declines during aging, a phenomenon termed sarcopenia. Despite the high incidence and severity of sarcopenia, little is known about contributing factors and development. Many studies focus on functional aspects of aging-related tissue decline, while structural details remain understudied. Traditional approaches for quantifying structural changes have assessed individual markers at discrete intervals. Such approaches are inadequate for the complex changes associated with aging. An alternative is to consider changes in overall morphology rather than in specific markers. We have used this approach to quantitatively track tissue architecture during adulthood and aging in the C. elegans pharynx, the neuromuscular feeding organ. Using pattern recognition to analyze aged-grouped pharynx images, we identified discrete step-wise transitions between distinct morphologies. The morphology state transitions were maintained in mutants with pharynx neurotransmission defects, although the pace of the transitions was altered. Longitudinal measurements of pharynx function identified a predictive relationship between mid-life pharynx morphology and function at later ages. These studies demonstrate for the first time that adult tissues undergo distinct structural transitions reflecting postdevelopmental events. The processes that underlie these architectural changes may contribute to increased disease risk during aging, and may be targets for factors that alter the aging rate. This work further demonstrates that pattern analysis of an image series offers a novel and generally accessible approach for quantifying morphological changes and identifying structural biomarkers.

  3. Imaging the hard/soft tissue interface.

    Science.gov (United States)

    Bannerman, Alistair; Paxton, Jennifer Z; Grover, Liam M

    2014-03-01

    Interfaces between different tissues play an essential role in the biomechanics of native tissues and their recapitulation is now recognized as critical to function. As a consequence, imaging the hard/soft tissue interface has become increasingly important in the area of tissue engineering. Particularly as several biotechnology based products have made it onto the market or are close to human trials and an understanding of their function and development is essential. A range of imaging modalities have been developed that allow a wealth of information on the morphological and physical properties of samples to be obtained non-destructively in vivo or via destructive means. This review summarizes the use of a selection of imaging modalities on interfaces to date considering the strengths and weaknesses of each. We will also consider techniques which have not yet been utilized to their full potential or are likely to play a role in future work in the area.

  4. Morphological Evaluation of Soft Tissue Augmentation Using Porous Poly-DL-Lactic Acid With Straight Holes.

    Science.gov (United States)

    Ken, Yukawa; Noriko, Tachikawa; Furuichi, Akiko; Shohei, Kasugai

    2016-12-01

    This study investigated the biological reaction to porous poly-DL-lactic acid (PDLLA) scaffolds with holes for soft tissue augmentation. The control group was porous PDLLA with a diameter of 5.0 mm and a height of 2.0 mm. For the 2 test groups, 7 holes were drilled from the upper to the lower base of the scaffolds; the holes had diameters of 0.5 and 1.0 mm. A scaffold was placed in the periosteum of the cranium. The height and molecular weight (Mw) of the scaffolds were measured at 4 and 8 weeks. Hematoxylin and eosin staining was used to measure the connective tissue and blood vessel areas. All groups had similar scaffold heights, but the Mw decreased significantly over time. There were significant differences in the connective tissue and blood vessel areas among the control, 0.5-mm, and 1.0-mm groups at the same time point. The soft tissue was increased by drilling holes in the scaffolds. Porous poly-DL-lactic acid (PDLLA) contributed favorable prognosis for soft tissue. A wider hole was associated with increased connective tissue and blood vessel areas. The scaffold height and Mw were not impacted by size of the holes.

  5. Anterior eye tissue morphology: Scleral and conjunctival thickness in children and young adults

    OpenAIRE

    Scott A. Read; David Alonso-Caneiro; Stephen J. Vincent; Alexander Bremner; Annabel Fothergill; Brittney Ismail; Rebecca McGraw; Charlotte J. Quirk; Elspeth Wrigley

    2016-01-01

    The sclera and conjunctiva form part of the eye?s tough, protective outer coat, and play important roles in the eye?s mechanical protection and immune defence, as well as in determining the size and shape of the eye globe. Advances in ocular imaging technology now allow these tissues in the anterior eye to be imaged non-invasively and with high resolution, however there is a paucity of data examining the dimensions of these tissues in paediatric populations. In this study, we have used optica...

  6. Incorporating model parameter uncertainty into inverse treatment planning

    International Nuclear Information System (INIS)

    Lian Jun; Xing Lei

    2004-01-01

    Radiobiological treatment planning depends not only on the accuracy of the models describing the dose-response relation of different tumors and normal tissues but also on the accuracy of tissue specific radiobiological parameters in these models. Whereas the general formalism remains the same, different sets of model parameters lead to different solutions and thus critically determine the final plan. Here we describe an inverse planning formalism with inclusion of model parameter uncertainties. This is made possible by using a statistical analysis-based frameset developed by our group. In this formalism, the uncertainties of model parameters, such as the parameter a that describes tissue-specific effect in the equivalent uniform dose (EUD) model, are expressed by probability density function and are included in the dose optimization process. We found that the final solution strongly depends on distribution functions of the model parameters. Considering that currently available models for computing biological effects of radiation are simplistic, and the clinical data used to derive the models are sparse and of questionable quality, the proposed technique provides us with an effective tool to minimize the effect caused by the uncertainties in a statistical sense. With the incorporation of the uncertainties, the technique has potential for us to maximally utilize the available radiobiology knowledge for better IMRT treatment

  7. Particle size modeling and morphology study of chitosan/gelatin/nanohydroxyapatite nanocomposite microspheres for bone tissue engineering.

    Science.gov (United States)

    Bagheri-Khoulenjani, Shadab; Mirzadeh, Hamid; Etrati-Khosroshahi, Mohammad; Shokrgozar, Mohammad Ali

    2013-06-01

    In this study, nanocomposite microspheres based on chitosan/gelatin/nanohydroxyapatite were fabricated, and effects of the nanohydroxyapatite/biopolymer (chitosan/gelatin) weight ratio (nHA/P), stirring rate, chitosan concentration and biopolymer concentration on the particle size, and morphology of nanocomposite microspheres were investigated. Particle size of microspheres was modeled by design of experiments using the surface response method. Particle size, morphology of microspheres, and distribution of nanoparticles within the composite microspheres were evaluated using an optical microscope, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. X-ray diffraction and Fourier transform infrared spectroscopy were applied to study the physical and chemical characteristics of microspheres. Results showed that by modulating the nHA/P ratio, chitosan concentration, polymer concentration, and stirring rate, it is possible to fabricate microspheres in wide rages of particle size (5-150 μm). Analysis of variance confirmed that the modified quadratic model can be used to predict the particle size of nanocomposite microspheres within the design space. SEM studies showed that microspheres with different compositions had totally different morphologies from dense morphologies to porous ones. TEM images demonstrated that nanoparticles were distributed uniformly within the polymeric matrix. MTT assay and cell culture studies showed that microspheres with different compositions possessed good biocompatibility. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013. Copyright © 2012 Wiley Periodicals, Inc.

  8. Illicit drug detection with laser 1: investigation of optimal parameters in stomach tissue

    Science.gov (United States)

    Özer, Ayşen Gürkan; Tabakoğlu, Haşim Özgür; Cengiz, Salih

    2014-05-01

    The main purpose of this study is to establish radiation-safe scanning of passersby at high security areas, such as airports and customs. The stomach was selected as the organ to be analyzed. In order to determine whether a substance found inside a human body as wrapped in a plastic bag is filled narcotics or not, many substances in white powder form including morphine-HCL were inspected. Inspection was carried out with on-ionizing radiation by irradiating stomach tissue with laser light. Optical transmittance of lamb stomach tissue was analyzed at different wavelengths. We showed that detection by 650-nm diode laser irradiation would be suitable for such a radiation-safe scan. Different materials were also investigated for absorptive properties, and closed system Raman studies were performed. The spectrum of a molecule found inside white powder placed behind the lamb stomach tissue was detected as a fingerprint. This allowed the detection of target substances without any physical contact or damage to the biological tissue.

  9. Evaluation of Morphological and Functional Nerve Recovery of Rat Sciatic Nerve with a Hyaff11-Based Nerve Guide

    Directory of Open Access Journals (Sweden)

    K. Jansen

    2006-01-01

    Full Text Available Application of a Hyaff11-based nerve guide was studied in rats. Functional tests were performed to study motor nerve recovery. A withdrawal reflex test was performed to test sensory recovery. Morphology was studied by means of histology on explanted tissue samples. Motor nerve recovery was established within 7 weeks. Hereafter, some behavioral parameters like alternating steps showed an increase in occurence, while others remained stable. Sensory function was observed within the 7 weeks time frame. Nerve tissue had bridged the 10-mm gap within 7 weeks. The average nerve fiber surface area increased significantly in time. In situ degradation of the nerve conduit was fully going on at week 7 and tubes had collapsed by then. At weeks 15 and 21, the knitted tube wall structure was completely surrounded by macrophages and giant cells, and matrix was penetrating the tube wall. We conclude that a Hyaff11-based nerve guide can be used to bridge short peripheral nerve defects in rat. However, adaptations need to be made.

  10. Decoupled diversification dynamics of feeding morphology following a major functional innovation in marine butterflyfishes.

    Science.gov (United States)

    Konow, Nicolai; Price, Samantha; Abom, Richard; Bellwood, David; Wainwright, Peter

    2017-08-16

    The diversity of fishes on coral reefs is influenced by the evolution of feeding innovations. For instance, the evolution of an intramandibular jaw joint has aided shifts to corallivory in Chaetodon butterflyfishes following their Miocene colonization of coral reefs. Today, over half of all Chaetodon species consume coral, easily the largest concentration of corallivores in any reef fish family. In contrast with Chaetodon , other chaetodontids, including the long-jawed bannerfishes, remain less intimately associated with coral and mainly consume other invertebrate prey. Here, we test (i) if intramandibular joint (IMJ) evolution in Chaetodon has accelerated feeding morphological diversification, and (ii) if cranial and post-cranial traits were affected similarly. We measured 19 cranial functional morphological traits, gut length and body elongation for 33 Indo-Pacific species. Comparisons of Brownian motion rate parameters revealed that cranial diversification was about four times slower in Chaetodon butterflyfishes with the IMJ than in other chaetodontids. However, the rate of gut length evolution was significantly faster in Chaetodon , with no group-differences for body elongation. The contrasting patterns of cranial and post-cranial morphological evolution stress the importance of comprehensive datasets in ecomorphology. The IMJ appears to enhance coral feeding ability in Chaetodon and represents a design breakthrough that facilitates this trophic strategy. Meanwhile, variation in gut anatomy probably reflects diversity in how coral tissues are procured and assimilated. Bannerfishes, by contrast, retain a relatively unspecialized gut for processing invertebrate prey, but have evolved some of the most extreme cranial mechanical innovations among bony fishes for procuring elusive prey. © 2017 The Author(s).

  11. QUANTITATIVE TRANSFORMATION CHANGES OF MORPHOLOGIC FEATURES AND MOTOR ABILITIES IN ADDITIONAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Muhedin Hodžić

    2010-03-01

    Full Text Available Main goal of this experimental transformational project is in accordance with subject and with problems of this same as previous ones researches and it contents efforts to confirm transformations of morphological characteristics and morphological abilities of students by method of parallel analysis of results from experimental group’s examples and controlled group’s examples. At the same time aim is to confirm which one of available executive models brings more efficient transformational results in morphological and motor space. Quantitative changes were developing in five general directions. First and most important direction describes complete motor space. At the same time this valuable information directs us to the fact that systematic and organized work leads us to the optimization of managing complex movement in whole. The rest of quantitative changes described with four promax factors are morphological and here we notice that morphological mechanisms work in four directions; reduction of fat tissue, longitudinalism of skeleton, total body mass and body volume. Evidently it came to the optimization of the energy resources and incorporation of the resources into bio-morphological complex.

  12. Some Physical, Chemical, and Biological Parameters of Samples of Scleractinium Coral Aquaculture Skeleton Used for Reconstruction/Engineering of the Bone Tissue.

    Science.gov (United States)

    Popov, A A; Sergeeva, N S; Britaev, T A; Komlev, V S; Sviridova, I K; Kirsanova, V A; Akhmedova, S A; Dgebuadze, P Yu; Teterina, A Yu; Kuvshinova, E A; Schanskii, Ya D

    2015-08-01

    Physical and chemical (phase and chemical composition, dynamics of resorption, and strength properties), and biological (cytological compatibility and scaffold properties of the surface) properties of samples of scleractinium coral skeletons from aquacultures of three types and corresponding samples of natural coral skeletons (Pocillopora verrucosa, Acropora formosa, and Acropora nobilis) were studied. Samples of scleractinium coral aquaculture skeleton of A. nobilis, A. formosa, and P. verrucosa met the requirements (all study parameters) to materials for osteoplasty and 3D-scaffolds for engineering of bone tissue.

  13. Effects of urbanization on river morphology of the Talar River, Mazandarn Province, Iran

    NARCIS (Netherlands)

    Yousefi, Saleh; Moradi, Hamid Reza; Keesstra, Saskia; Pourghasemi, Hamid Reza; Navratil, Oldrich; Hooke, Janet

    2017-01-01

    In the present study, we investigate the effects of urbanization growth on river morphology in the downstream part of Talar River, east of Mazandaran Province, Iran. Morphological and morphometric parameters in 10 equal sub-reaches were defined along a 11.5 km reach of the Talar River after land

  14. Tissue polarimetry: concepts, challenges, applications, and outlook.

    Science.gov (United States)

    Ghosh, Nirmalya; Vitkin, I Alex

    2011-11-01

    Polarimetry has a long and successful history in various forms of clear media. Driven by their biomedical potential, the use of the polarimetric approaches for biological tissue assessment has also recently received considerable attention. Specifically, polarization can be used as an effective tool to discriminate against multiply scattered light (acting as a gating mechanism) in order to enhance contrast and to improve tissue imaging resolution. Moreover, the intrinsic tissue polarimetry characteristics contain a wealth of morphological and functional information of potential biomedical importance. However, in a complex random medium-like tissue, numerous complexities due to multiple scattering and simultaneous occurrences of many scattering and polarization events present formidable challenges both in terms of accurate measurements and in terms of analysis of the tissue polarimetry signal. In order to realize the potential of the polarimetric approaches for tissue imaging and characterization/diagnosis, a number of researchers are thus pursuing innovative solutions to these challenges. In this review paper, we summarize these and other issues pertinent to the polarized light methodologies in tissues. Specifically, we discuss polarized light basics, Stokes-Muller formalism, methods of polarization measurements, polarized light modeling in turbid media, applications to tissue imaging, inverse analysis for polarimetric results quantification, applications to quantitative tissue assessment, etc.

  15. Phase field modelling of precipitate morphologies in systems with tetragonal interfacial free energy anisotropy

    OpenAIRE

    Roy, Arijit; Gururajan, M P

    2017-01-01

    A wide variety of morphologies arise due to the tetragonal anisotropy in interfacial free energy. In this paper, we report on a family of Extended Cahn-Hilliard (ECH) models for incorporating tetragonal anisotropy in interfacial free energy. We list the non-zero and independent parameters that are introduced in our model and list the constraints on them. For appropriate choice of these parameters, our model can produce a many of the morphologies seen in tetragonal systems such as di-pyramids,...

  16. The local expression of adult chicken heart myosins during development. II. Ventricular conducting tissue

    NARCIS (Netherlands)

    Sanders, E.; de Groot, I. J.; Geerts, W. J.; de Jong, F.; van Horssen, A. A.; Los, J. A.; Moorman, A. F.

    1986-01-01

    The development of the ventricular conducting tissue of the embryonic chicken heart has been studied using a previous finding that morphologically recognizable atrial conducting tissue coexpresses the atrial and the ventricular myosin isoforms. It is found that, by these criteria, at 9 days part of

  17. Three-dimensional morphologic description and visualization of brain anatomy from MR images

    International Nuclear Information System (INIS)

    Kraske, W.; George, F.W.; Zee, C.S.; Colletti, P.M.; Halls, J.M.; Boswell, W.O.

    1989-01-01

    The USC VOXAR-MRI system incorporates MR tissue classification algorithms to provide dynamic three- dimensional volumetric visualization and discrimination of brain anatomy and pathology for precision diagnosis, staging, and treatment planning. The VOXAR-MRI approach to tissue classification employs the three-dimensional reconstruction of various intracranial features from gray-scale morphologic erosion and dilation (GMED)-derived skeleton representation of the MR acquisition. Case presentations include an array of VOXAR-MRI-demonstrated tumors, abscesses, hematomas, and other lesions

  18. The effects of ultraviolet radiation on the growth and gross morphology of Zea mays, Linn. seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Ann Kristine Joy T.; Mendiola, Carlo Paulo T

    2000-03-01

    The study was conducted with a descriptive experimental design in order to determine the effects of broad spectrum ultraviolet radiation on growth factors, seedling height, root length, chlorophyll content, organic weights, and percentage survival, as well as gross morphological factors, leaf, stem, and root appearance, of native sweet corn seedlings. The study was limited to the seedling stage of the plant and observations were taken after 20 days of treatment. The results gathered show that there was a visible manifestation of the detrimental effects of UV on the irradiated seedlings. There were observed decreases in the growth parameters while the gross morphological parameters exhibited signs of wilting and stress. It was therefore concluded that based on the observed results, UV had a detrimental effect on the studied growth and gross morphological parameters. (Author)

  19. Association between distal ulnar morphology and extensor carpi ulnaris tendon pathology

    International Nuclear Information System (INIS)

    Chang, Connie Y.; Huang, Ambrose J.; Bredella, Miriam A.; Kattapuram, Susan V.; Torriani, Martin

    2014-01-01

    The purpose of this study was to evaluate the association between distal ulnar morphology and extensor carpi ulnaris (ECU) tendon pathology. We retrospectively reviewed 71 adult wrist MRI studies with ECU tendon pathology (tenosynovitis, tendinopathy, or tear), and/or ECU subluxation. Subjects did not have a history of trauma, surgery, infection, or inflammatory arthritis. MRI studies from 46 subjects without ECU tendon pathology or subluxation were used as controls. The following morphological parameters of the distal ulna were measured independently by two readers: ulnar variance relative to radius, ulnar styloid process length, ECU groove depth and length. Subjects and controls were compared using Student's t test. Inter-observer agreement (ICC) was calculated. There was a significant correlation between negative ulnar variance and ECU tendon pathology (reader 1 [R1], P = 0.01; reader 2 [R2], P 0.64 for all parameters. Distal ulnar morphology may be associated with ECU tendon abnormalities. (orig.)

  20. Photothermal effects of laser tissue soldering

    International Nuclear Information System (INIS)

    McNally, K.M.; Sorg, B.S.; Welch, A.J.; Dawes, J.M.; Owen, E.R.

    1999-01-01

    Low-strength anastomoses and thermal damage of tissue are major concerns in laser tissue welding techniques where laser energy is used to induce thermal changes in the molecular structure of the tissues being joined, hence allowing them to bond together. Laser tissue soldering, on the other hand, is a bonding technique in which a protein solder is applied to the tissue surfaces to be joined, and laser energy is used to bond the solder to the tissue surfaces. The addition of protein solders to augment tissue repair procedures significantly reduces the problems of low strength and thermal damage associated with laser tissue welding techniques. Investigations were conducted to determine optimal solder and laser parameters for tissue repair in terms of tensile strength, temperature rise and damage and the microscopic nature of the bonds formed. An in vitro study was performed using an 808 nm diode laser in conjunction with indocyanine green (ICG)-doped albumin protein solders to repair bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The efficacy of temperature feedback control in enhancing the soldering process was also investigated. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the repairs. A reduction in dye concentration from 2.5mgml -1 to 0.25mgml -1 was also found to result in an increase in tensile strength. Increasing the laser irradiance and thus surface temperature resulted in an increased severity of histological injury. Thermal denaturation of tissue collagen and necrosis of the intimal layer smooth muscle cells increased laterally and in depth with higher temperatures. The strongest repairs were produced with an irradiance of 6.4Wcm -2 using a solid protein solder composed of 60% BSA and 0.25mgml -1 ICG. Using this combination of laser and solder parameters, surface temperatures were observed to reach 85±5 deg. C with a

  1. Study on the applicability of structural and morphological parameters of selected uranium compounds for nuclear forensic purposes

    Energy Technology Data Exchange (ETDEWEB)

    Ho Mer Lin, Doris

    2015-03-13

    Nuclear forensic science or nuclear forensics, is a relatively young discipline which evolved due to the need of analysing interdicted nuclear or radioactive material, necessary for determining its origin. Fundamentally, nuclear forensic science makes use of measurable material properties, referred to as ''signatures'', which provide hints on the history of the material. As part of the advancement in this multi-faceted field, new signatures are constantly sought after and as well as analytical techniques to efficiently and accurately determine the signatures. The work carried out in this study is part of this fulfilment to investigate new structural and morphological parameters as possible new nuclear forensic signatures for selected uranium compounds. The scientific goals have been oriented into three parts for investigations in this study. Firstly, five different compositions of uranium ore concentrates (UOCs) were prepared in the laboratory under well-defined conditions. These materials were subsequently characterized by several techniques such as X-ray diffraction, thermogravimetry/differential thermal analysis, Infrared and Raman spectroscopy, mass spectrometry, scanning electron microscopy etc. Such materials were pivotal for comparison with the industrial samples. Secondly, several uranium compounds, mainly UOCs were measured using Raman spectroscopy. At least three different Raman spectrometers were used and a comparison made in their performance and suitability for nuclear forensics. Raman spectra of industrial uranium materials were interpreted with regard to compound identification and to determination of (anionic) impurities. Anionic impurities that were present were identified and they could provide clues to the processing history of the samples. Statistical techniques such as principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were applied to several Raman spectra. The analysis showed that

  2. Study on the applicability of structural and morphological parameters of selected uranium compounds for nuclear forensic purposes

    International Nuclear Information System (INIS)

    Ho Mer Lin, Doris

    2015-01-01

    Nuclear forensic science or nuclear forensics, is a relatively young discipline which evolved due to the need of analysing interdicted nuclear or radioactive material, necessary for determining its origin. Fundamentally, nuclear forensic science makes use of measurable material properties, referred to as ''signatures'', which provide hints on the history of the material. As part of the advancement in this multi-faceted field, new signatures are constantly sought after and as well as analytical techniques to efficiently and accurately determine the signatures. The work carried out in this study is part of this fulfilment to investigate new structural and morphological parameters as possible new nuclear forensic signatures for selected uranium compounds. The scientific goals have been oriented into three parts for investigations in this study. Firstly, five different compositions of uranium ore concentrates (UOCs) were prepared in the laboratory under well-defined conditions. These materials were subsequently characterized by several techniques such as X-ray diffraction, thermogravimetry/differential thermal analysis, Infrared and Raman spectroscopy, mass spectrometry, scanning electron microscopy etc. Such materials were pivotal for comparison with the industrial samples. Secondly, several uranium compounds, mainly UOCs were measured using Raman spectroscopy. At least three different Raman spectrometers were used and a comparison made in their performance and suitability for nuclear forensics. Raman spectra of industrial uranium materials were interpreted with regard to compound identification and to determination of (anionic) impurities. Anionic impurities that were present were identified and they could provide clues to the processing history of the samples. Statistical techniques such as principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were applied to several Raman spectra. The analysis showed that

  3. Morphological development of petals in Ranunculaceae

    Directory of Open Access Journals (Sweden)

    Yi Ren

    2016-04-01

    Full Text Available The petals, or the honey-leaves, are of great divergence in morphology in Ranunculaceae, i. e., tubular, bilabial, cup-shaped, flat, concaved or scaled at the base, with or without spur or succate. The previous observations showed that although the petals differ in mature morphology, they showed great similarity in the early development stage. The petal primordia are all hemispherical, rounded and much smaller than the sepal primordia, a relatively long plastochron exists between the last sepal and the first petal and differentiate into a blade and a short stalk. Thus, we assumed that the different morphology of the mature petals might be due to the morphological repatterning of petals in the development. To prove the hypothesis, the morphological development of the petals from 22 species from 20 genera, recovering all ten petalous clades and the major morphological types, in Ranunculaceae was observed by scanning electron microscope (SEM. The young petal undergoes the following developmental stages to the mature petal after it differentiates into blade and stalk. In the first stage, a depression appears at the base of the blade and the nectary tissue will appear in the depression in the later development. In the second stage, two bulges appear at the base of the depression that makes the petal bilabial and the bulges will be the upper lip of the petal and thus the blade will be the lower lip. In the third stage, two bulges become larger and fuse with one another at first and then fuse with the margins of the blade in each side, or each of the bulges fuses with the margin of the blade at first and then fuses with one another, or the bulges stop further growth and the depression deepened to form the succate or the spur. In the fourth stage, the lips, the two fused sides and the stalk growth in different speed. The divergence of development of different petals happens mainly in the third and the fourth stages and less divergence in the second and

  4. Indirect Low-Intensity Ultrasonic Stimulation for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hyoungshin Park

    2010-01-01

    Full Text Available Low-intensity ultrasound (LIUS treatment has been shown to increase mass transport, which could benefit tissue grafts during the immediate postimplant period, when blood supply to the implanted tissue is suboptimal. In this in vitro study, we investigated effects of LIUS stimulation on dye diffusion, proliferation, metabolism, and tropomyosin expression of muscle cells (C2C12 and on tissue viability and gene expression of human adipose tissue organoids. We found that LIUS increased dye diffusion within adjacent tissue culture wells and caused anisotropic diffusion patterns. This effect was confirmed by a hydrophone measurement resulting in acoustic pressure 150–341 Pa in wells. Cellular studies showed that LIUS significantly increased proliferation, metabolic activity, and expression of tropomyosin. Adipose tissue treated with LIUS showed significantly increased metabolic activity and the cells had similar morphology to normal unilocular adipocytes. Gene analysis showed that tumor necrosis factor-alpha expression (a marker for tissue damage was significantly lower for stimulated organoids than for control groups. Our data suggests that LIUS could be a useful modality for improving graft survival in vivo.

  5. CANONICAL CORRELATION OF MORPHOLOGIC CHARACTERISTIC AND MOTORIC ABILITIES OF YOUNG JUDO ATHLETES

    Directory of Open Access Journals (Sweden)

    Lulzim Ibri

    2013-07-01

    Full Text Available In sample from 80 young judo athletes aged from 16-17 year, was applied the system a total of 18 variables, of which 10 are morphologic characteristic and 8 motoric abilities variables, with a purpose to determinate mutual report between each other, while the information were analyzed by using canonical correlation analysis. With case of authentication statistically important relation was achieve one pair of canonical correlations statistically important. In morphologic variables field the canonical factor is interpreted in first canonical structure is the consists of variables: adipose tissue under skin of stomach (ATST, adipose tissue under skin of triceps (ATTR, adipose tissue under skin of biceps (ATBI, adipose tissue under skin of sub scapulars (ATSS, adipose tissue under skin of sub iliac a (ATSI and adipose tissue under skin of list (ATSL, so that is interpreted as a canonical factor of adipose tissue: And second structure of canonical factors of anthropometric characteristics is the consists of variables: body length: body length (LEBO, length of the leg (LELE and length of the arm (LEAR, so that is interpreted as a canonical factor of longitudinal dimensionality. The first structure of canonical factors in motoric variables is can not be interpreted because of low values of motor variables, while second structure of canonical factors of motoric abilities is the consists of variables: squeeze palm (SQPA, so that is interpreted as a canonical factor of strong factor in palm. Based on structure analysis of matrix results of canonical factors results were shown that to young judo athletes of this age exist statistically valid correlations between canonical factor of anthropometric variables and canonical factor of variables to motoric abilities which is (Rc=77 that is statistically valid in level (P=00.

  6. Use of synchrotron-based diffraction-enhanced imaging for visualization of soft tissues in invertebrates

    International Nuclear Information System (INIS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Zhong, Zhong; Akatsuka, Takao; Yuasa, Tetsuya; Takeda, Tohoru; Gigante, Giovanni E.

    2010-01-01

    Images of terrestrial and marine invertebrates (snails and bivalves) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging. Synchrotron X-rays of 20, 30 and 40 keV were used, which penetrate deep enough into animal soft tissues. The phase of X-ray photons shifts slightly as they traverse an object, such as animal soft tissue, and interact with its atoms. Biological features, such as shell morphology and animal physiology, have been visualized. The contrast of the images obtained at 40 keV is the best. This optimum energy provided a clear view of the internal structural organization of the soft tissue with better contrast. The contrast is higher at edges of internal soft-tissue structures. The image improvements achieved with the diffraction-enhanced imaging technique are due to extinction, i.e., elimination of ultra-small-angle scattering. They enabled us to identify a few embedded internal shell features, such as the origin of the apex, which is the firmly attached region of the soft tissue connecting the umbilicus to the external morphology. Diffraction-enhanced imaging can provide high-quality images of soft tissues valuable for biology.

  7. Use of synchrotron-based diffraction-enhanced imaging for visualization of soft tissues in invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Donepudi V., E-mail: donepudi_venkateswararao@rediffmail.co [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Swapna, Medasani, E-mail: medasanisw@gmail.co [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Cesareo, Roberto; Brunetti, Antonio [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Zhong, Zhong [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973 (United States); Akatsuka, Takao; Yuasa, Tetsuya [Department of Bio-System Engineering, Faculty of Engineering, Yamagata University, Yonezawa-shi, Yamagata-992-8510 (Japan); Takeda, Tohoru [Allied Health Science, Kitasato University 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Gigante, Giovanni E. [Dipartimento di Fisica, Universita di Roma, La Sapienza, 00185 Roma (Italy)

    2010-09-15

    Images of terrestrial and marine invertebrates (snails and bivalves) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging. Synchrotron X-rays of 20, 30 and 40 keV were used, which penetrate deep enough into animal soft tissues. The phase of X-ray photons shifts slightly as they traverse an object, such as animal soft tissue, and interact with its atoms. Biological features, such as shell morphology and animal physiology, have been visualized. The contrast of the images obtained at 40 keV is the best. This optimum energy provided a clear view of the internal structural organization of the soft tissue with better contrast. The contrast is higher at edges of internal soft-tissue structures. The image improvements achieved with the diffraction-enhanced imaging technique are due to extinction, i.e., elimination of ultra-small-angle scattering. They enabled us to identify a few embedded internal shell features, such as the origin of the apex, which is the firmly attached region of the soft tissue connecting the umbilicus to the external morphology. Diffraction-enhanced imaging can provide high-quality images of soft tissues valuable for biology.

  8. Cardiac Morphology and Function, and Blood Gas Transport in Aquaporin-1 Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Samer eAl-Samir

    2016-05-01

    Full Text Available We have studied cardiac and respiratory functions of aquaporin- 1-deficient mice by the Pressure-Volume-loop technique and by blood gas analysis. In addition, the morphological properties of the animals’ hearts were analysed. In anesthesia under maximal dobutamine stimulation, the mice exhibit a moderately elevated heart rate of < 600 min-1 and an O2 consumption of ~0.6 ml/min/g, which is about twice the basal rate. In this state, which is similar to the resting state of the conscious animal, all cardiac functions including stroke volume and cardiac output exhibited resting values and were identical between deficient and wildtype animals. Likewise, pulmonary and peripheral exchange of O2 and CO2 were normal. In contrast, several morphological parameters of the heart tissue of deficient mice were altered: 1 left ventricular wall thickness was reduced by 12%, 2 left ventricular mass, normalized to tibia length, was reduced by 10-20%, 3 cardiac muscle fiber cross sectional area was decreased by 17%, and 4 capillary density was diminished by 10%. As the P-V-loop technique yielded normal end-diastolic and end-systolic left ventricular volumes, the deficient hearts are characterized by thin ventricular walls in combination with normal intraventricular volumes. The aquaporin-1-deficient heart thus seems to be at a disadvantage compared to the wildtype heart by a reduced left-ventricular wall thickness and an increased diffusion distance between blood capillaries and muscle mitochondria. While under the present quasi-resting conditions these morphological alterations have no consequences for cardiac function, we expect that the deficient hearts will show a reduced maximal cardiac output.

  9. Morphological respiratory diffusion capacity of the lungs of ball pythons (Python regius).

    Science.gov (United States)

    Starck, J Matthias; Aupperle, Heike; Kiefer, Ingmar; Weimer, Isabel; Krautwald-Junghanns, Maria-Elisabeth; Pees, Michael

    2012-08-01

    This study aims at a functional and morphological characterization of the lung of a boid snake. In particular, we were interested to see if the python's lungs are designed with excess capacity as compared to resting and working oxygen demands. Therefore, the morphological respiratory diffusion capacity of ball pythons (Python regius) was examined following a stereological, hierarchically nested approach. The volume of the respiratory exchange tissue was determined using computed tomography. Tissue compartments were quantified using stereological methods on light microscopic images. The tissue diffusion barrier for oxygen transport was characterized and measured using transmission electron micrographs. We found a significant negative correlation between body mass and the volume of respiratory tissue; the lungs of larger snakes had relatively less respiratory tissue. Therefore, mass-specific respiratory tissue was calculated to exclude effects of body mass. The volume of the lung that contains parenchyma was 11.9±5.0mm(3)g(-1). The volume fraction, i.e., the actual pulmonary exchange tissue per lung parenchyma, was 63.22±7.3%; the total respiratory surface was, on average, 0.214±0.129m(2); it was significantly negatively correlated to body mass, with larger snakes having proportionally smaller respiratory surfaces. For the air-blood barrier, a harmonic mean of 0.78±0.05μm was found, with the epithelial layer representing the thickest part of the barrier. Based on these findings, a median diffusion capacity of the tissue barrier ( [Formula: see text] ) of 0.69±0.38ml O(2)min(-1)mmHg(-1) was calculated. Based on published values for blood oxygen concentration, a total oxygen uptake capacity of 61.16mlO(2)min(-1)kg(-1) can be assumed. This value exceeds the maximum demand for oxygen in ball pythons by a factor of 12. We conclude that healthy individuals of P. regius possess a considerable spare capacity for tissue oxygen exchange. Copyright © 2012 Elsevier Gmb

  10. Nanoscale Morphology Evolution Under Ion Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Michael J. [President & Fellows of Harvard College, Cambridge, MA (United States)

    2014-11-10

    We showed that the half-century-old paradigm of morphological instability under irradiation due to the curvature-dependence of the sputter yield, can account neither for the phase diagram nor the amplification or decay rates that we measure in the simplest possible experimental system -- an elemental semiconductor with an amorphous surface under noble-gas ion irradiation; We showed that a model of pattern formation based on the impact-induced redistribution of atoms that do not get sputtered away explains our experimental observations; We developed a first-principles, parameter-free approach for predicting morphology evolution, starting with molecular dynamics simulations of single ion impacts, lasting picoseconds, and upscaling through a rigorous crater-function formalism to develop a partial differential equation that predicts morphology evolution on time scales more than twelve orders of magnitude longer than can be covered by the molecular dynamics; We performed the first quantitative comparison of the contributions to morphological instability from sputter removal and from impact-induced redistribution of atoms that are removed, and showed that the former is negligible compared to the latter; We established a new paradigm for impact-induced morphology evolution based on crater functions that incorporate both redistribution and sputter effects; and We developed a model of nanopore closure by irradiation-induced stress and irradiationenhanced fluidity, for the near-surface irradiation regime in which nuclear stopping predominates, and showed that it explains many aspects of pore closure kinetics that we measure experimentally.

  11. The importance of metadata to assess information content in digital reconstructions of neuronal morphology.

    Science.gov (United States)

    Parekh, Ruchi; Armañanzas, Rubén; Ascoli, Giorgio A

    2015-04-01

    Digital reconstructions of axonal and dendritic arbors provide a powerful representation of neuronal morphology in formats amenable to quantitative analysis, computational modeling, and data mining. Reconstructed files, however, require adequate metadata to identify the appropriate animal species, developmental stage, brain region, and neuron type. Moreover, experimental details about tissue processing, neurite visualization and microscopic imaging are essential to assess the information content of digital morphologies. Typical morphological reconstructions only partially capture the underlying biological reality. Tracings are often limited to certain domains (e.g., dendrites and not axons), may be incomplete due to tissue sectioning, imperfect staining, and limited imaging resolution, or can disregard aspects irrelevant to their specific scientific focus (such as branch thickness or depth). Gauging these factors is critical in subsequent data reuse and comparison. NeuroMorpho.Org is a central repository of reconstructions from many laboratories and experimental conditions. Here, we introduce substantial additions to the existing metadata annotation aimed to describe the completeness of the reconstructed neurons in NeuroMorpho.Org. These expanded metadata form a suitable basis for effective description of neuromorphological data.

  12. Bladder tissue engineering through nanotechnology.

    Science.gov (United States)

    Harrington, Daniel A; Sharma, Arun K; Erickson, Bradley A; Cheng, Earl Y

    2008-08-01

    The field of tissue engineering has developed in phases: initially researchers searched for "inert" biomaterials to act solely as replacement structures in the body. Then, they explored biodegradable scaffolds--both naturally derived and synthetic--for the temporary support of growing tissues. Now, a third phase of tissue engineering has developed, through the subcategory of "regenerative medicine." This renewed focus toward control over tissue morphology and cell phenotype requires proportional advances in scaffold design. Discoveries in nanotechnology have driven both our understanding of cell-substrate interactions, and our ability to influence them. By operating at the size regime of proteins themselves, nanotechnology gives us the opportunity to directly speak the language of cells, through reliable, repeatable creation of nanoscale features. Understanding the synthesis of nanoscale materials, via "top-down" and "bottom-up" strategies, allows researchers to assess the capabilities and limits inherent in both techniques. Urology research as a whole, and bladder regeneration in particular, are well-positioned to benefit from such advances, since our present technology has yet to reach the end goal of functional bladder restoration. In this article, we discuss the current applications of nanoscale materials to bladder tissue engineering, and encourage researchers to explore these interdisciplinary technologies now, or risk playing catch-up in the future.

  13. Vitrification of human ovarian tissue: effect of different solutions and procedures.

    Science.gov (United States)

    Amorim, Christiani Andrade; David, Anu; Van Langendonckt, Anne; Dolmans, Marie-Madeleine; Donnez, Jacques

    2011-03-01

    To test the effect of different vitrification solutions and procedures on the morphology of human preantral follicles. Pilot study. Gynecology research unit in a university hospital. Ovarian biopsies were obtained from nine women aged 22-35 years. Ovarian tissue fragments were subjected to [1] different vitrification solutions to test their toxicity or [2] different vitrification methods using plastic straws, medium droplets, or solid-surface vitrification before in vitro culture. Number of morphologically normal follicles after toxicity testing or vitrification with the different treatments determined by histologic analysis. In the toxicity tests, only VS3 showed similar results to fresh tissue before and after in vitro culture (fresh controls 1 and 2). In addition, this was the only solution able to completely vitrify. In all vitrification procedures, the percentage of normal follicles was lower than in controls. However, of the three protocols, the droplet method yielded a significantly higher proportion of normal follicles. Our experiments showed VS3 to have no deleterious effect on follicular morphology and to be able to completely vitrify, although vitrification procedures were found to affect human follicles. Nevertheless, the droplet method resulted in a higher percentage of morphologically normal follicles. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Cell type dependent morphological adaptation in polyelectrolyte hydrogels governs chondrogenic fate.

    Science.gov (United States)

    Raghothaman, Deepak; Leong, Meng Fatt; Lim, Tze Chiun; Wan, Andrew C A; Ser, Zheng; Lee, Eng Hin; Yang, Zheng

    2016-04-04

    Repair of critical-size articular cartilage defects typically involves delivery of cells in biodegradable, 3D matrices. Differences in the developmental status of mesenchymal stem cells (MSCs) and terminally differentiated mature chondrocytes might be a critical factor in engineering appropriate 3D matrices for articular cartilage tissue engineering. This study examined the relationship between material-driven early cell morphological adaptations and chondrogenic outcomes, by studying the influence of aligned collagen type I (Col I) presentation on chondrocytes and MSC in interfacial polyelectrolyte complexation (IPC)-based hydrogels. In the absence of Col I, both chondrocytes and MSCs adopted rounded cell morphology and formed clusters, with chondrocyte clusters favoring the maintenance of hyaline phenotype, while MSC clusters differentiated to fibro-superficial zone-like chondrocytes. Encapsulated chondrocytes in IPC-Col I hydrogel adopted a fibroblastic morphology forming fibro-superficial zone-like phenotype, which could be reversed by inhibiting actin polymerization using cytochalasin D (CytD). In contrast, adoption of fibroblastic morphology by encapsulated MSCs in IPC-Col I facilitated superior chondrogenesis, generating a mature, hyaline neocartilage tissue. CytD treatment abrogated the elongation of MSCs and brought about a single cell-like state, resulting in insignificant chondrogenic differentiation, underscoring the essential requirement of providing matrix environments that are amenable to cell-cell interactions for robust MSC chondrogenic differentiation. Our study demonstrates that MSCs and culture-expanded chondrocytes favour differential microenvironmental niches and emphasizes the importance of designing biomaterials that meet cell type-specific requirements, in adopting chondrocyte or MSC-based approaches for regenerating hyaline, articular cartilage.

  15. Human Lymphatic Mesenteric Vessels: Morphology and Possible Function of Aminergic and NPY-ergic Nerve Fibers.

    Science.gov (United States)

    D'Andrea, Vito; Panarese, Alessandra; Taurone, Samanta; Coppola, Luigi; Cavallotti, Carlo; Artico, Marco

    2015-09-01

    The lymphatic vessels have been studied in different organs from a morphological to a clinical point of view. Nevertheless, the knowledge of the catecholaminergic control of the lymphatic circulation is still incomplete. The aim of this work is to study the presence and distribution of the catecholaminergic and NPY-ergic nerve fibers in the whole wall of the human mesenteric lymphatic vessels in order to obtain knowledge about their morphology and functional significance. The following experimental procedures were performed: 1) drawing of tissue containing lymphatic vessels; 2) cutting of tissue; 3) staining of tissue; 4) staining of nerve fibers; 5) histofluorescence microscopy for the staining of catecholaminergic nerve fibers; 6) staining of neuropeptide Y like-immune reactivity; 7) biochemical assay of proteins; 8) measurement of noradrenaline; 9) quantitative analysis of images; 10) statistical analysis of data. Numerous nerve fibers run in the wall of lymphatic vessels. Many of them are catecholaminergic in nature. Some nerve fibers are NPY-positive. The biochemical results on noradrenaline amounts are in agreement with morphological results on catecholaminergic nerve fibers. Moreover, the morphometric results, obtained by the quantitative analysis of images and the subsequent statistical analysis of data, confirm all our morphological and biochemical data. The knowledge of the physiological or pathological mechanism regulating the functions of the lymphatic system is incomplete. Nevertheless the catecholaminergic nerve fibers of the human mesenteric lymphatic vessels come from the adrenergic periarterial plexuses of the mesenterial arterial bed. NPY-ergic nerve fibers may modulate the microcirculatory mesenterial bed in different pathological conditions.

  16. Process parameter and surface morphology of pineapple leaf electrospun nanofibers (PALF)

    Science.gov (United States)

    Surip, S. N.; Aziz, F. M. A.; Bonnia, N. N.; Sekak, K. A.; Zakaria, M. N.

    2017-09-01

    In recent times, nanofibers have attracted the attention of researchers due to their pronounced micro and nano structural characteristics that enable the development of advanced materials that have sophisticated applications. The production of nanofibers by the electrospinning process is influenced both by the electrostatic forces and the viscoelastic behavior of the polymer. Process parameters, like solution feed rate, applied voltage, nozzle-collector distance, and spinning environment, and material properties, like solution concentration, viscosity, surface tension, conductivity, and solvent vapor pressure, influence the structure and properties of electrospun nanofibers. Significant work has been done to characterize the properties of PALF nanofibers as a function of process and material parameters.

  17. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone

    NARCIS (Netherlands)

    Kabel, J.; Rietbergen, van B.; Dalstra, M.; Odgaard, A.; Huiskes, H.W.J.

    1999-01-01

    Conceptually, the elastic characteristics of cancellous bone could be predicted directly from the trabecular morphology-or architecture-and by the elastic properties of the tissue itself. Although hardly any experimental evidence exists, it is often implicitly assumed that tissue anisotropy has a

  18. MORPHOLOGY AND CELL BIOMASS OF SPONGE Aaptos aaptos AND

    Directory of Open Access Journals (Sweden)

    Meutia Samira Ismet

    2011-12-01

    Full Text Available Aaptos aaptos and Petrosia sp. sponges are known for their ability to produce potential marine bioactive compound. As a metazoan animal with simple body structure, the morphology and it association with symbiont-bacteria could influence their bioactive compound both type and activity, as much as their habitat adaptation. In order to determine morphology and its cell biomass of Aaptos aaptos dan Petrosia sp., samples were taken from the West Pari Island, at 7 m depth. Preserved samples (in 4% formaldehyde were examined using a histological mounting and centrifugation method to separate the cells fraction of sponge’s tissues. A. aaptos sponge has a soft body structure with 55.9% skeleton-forming fraction, 14.2% sponge cell fraction and 29.9% bacteria fraction. Meanwhile, Petrosia sp. sponge has a rigid body with dominant skeleton-forming fraction (68.6%, and lesser sponge cell and bacteria associated (19.7% and 11.7%, respectively.Keywords: A. aaptos, Petrosia sp, morphology, cell biomass

  19. Identification of tumor cells infiltrating into connective tissue in esophageal cancer by multiphoton microscopy

    Science.gov (United States)

    Xu, Jian; Jiang, Liwei; Kang, Deyong; Wu, Xuejing; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Lin, Jiangbo; Chen, Jianxin

    2016-10-01

    Esophageal cancer is one of the most common malignancies of the gastrointestinal cancers and carries poorer prognosis than other gastrointestinal cancers. In general practice, the depth of tumor infiltration in esophageal wall is crucial to establishing appropriate treatment plan which is established by detecting the tumor infiltration depth. Connective tissue is one of the main structures that form the esophageal wall. So, identification of tumor cells infiltrating into connective tissue is helping for detecting the tumor infiltration depth. Our aim is to evaluate whether multiphoton microscopy (MPM) can be used to detect tumor cells infiltrating into connective tissue in the esophageal cancer. MPM is well-suited for real-time detecting morphologic and cellular changes in fresh tissues since many endogenous fluorophores of fresh tissues are excited through two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). In this work, microstructure of tumor cells and connective tissue are first studied. Then, morphological changes of collagen fibers after the infiltration of tumor cells are shown. These results show that MPM has the ability to detect tumor cells infiltrating into connective tissue in the esophageal cancer. In the future, MPM may be a promising imaging technique for detecting tumor cells in esophageal cancer.

  20. Kinetics of radiation-induced apoptosis in neonatal urogenital tissues with and without protein synthesis inhibition

    International Nuclear Information System (INIS)

    Gobe, G.C.; Harmon, B.; Schoch, E.; Allan, D.J.

    1996-01-01

    The difference in incidence of radiation-induced apoptosis between two neonatal urogenital tissues, kidney and testis, was analysed over a 24h period. Concurrent administration of cycloheximide (10mg/kg body weight), a protein synthesis inhibitor, with radiation treatment was used to determine whether new protein synthesis had a role in induction of apoptosis in this in vivo model. Many chemotherapeutic drugs act via protein synthesis inhibition, and we believe that the results of this latter analysis may provide information for the planning of concurrent radio and chemotherapy. Apoptosis was quantified using morphological parameters, and verified by DNA gel electrophoresis for the typical banding pattern, and by electron microscopy. The proliferative index in tissues was studied, using [6- 3 H]-thymidine uptake ( 1h prior to euthanasia and collection of tissues) and autoradiography as indicators of cell proliferation (S-phase). Tissue was collected 2, 4, 6, 8, and 24h after radiation treatment. Expression of one of the apoptosis-associated genes, Bcl-2 (an apoptosis inhibitor/cell survival gene), was studied using immunohistochemistry. Apoptosis peaked at 4h in the testis and 6h in the kidney, emphasising the necessity of knowing tissue differences in radiation response if comparing changes at a particular time. A higher proportion (almost five fold) of the apoptotic cells died in S-phase in the kidney than the testis, over the 24h. Protein synthesis inhibition completely negated induction of apoptosis in both tissues. Necrosis was not identified at any time. Cycloheximide treatment greatly diminished Bcl-2 expression. The differences in response of the two tissues to irradiation relates to their innate cell (genetic) controls, which may be determined by their state of differentiation at time of treatment, or the tissue type. This in vivo study also suggests the model may be useful for analysis of other cancer therapies for example polychemotherapies or chemo

  1. Experimental impact crater morphology

    Science.gov (United States)

    Dufresne, A.; Poelchau, M. H.; Hoerth, T.; Schaefer, F.; Thoma, K.; Deutsch, A.; Kenkmann, T.

    2012-04-01

    The research group MEMIN (Multidisciplinary Experimental and Impact Modelling Research Network) is conducting impact experiments into porous sandstones, examining, among other parameters, the influence of target pore-space saturation with water, and projectile velocity, density and mass, on the cratering process. The high-velocity (2.5-7.8 km/s) impact experiments were carried out at the two-stage light-gas gun facilities of the Fraunhofer Institute EMI (Germany) using steel, iron meteorite (Campo del Cielo IAB), and aluminium projectiles with Seeberg Sandstone as targets. The primary objectives of this study within MEMIN are to provide detailed morphometric data of the experimental craters, and to identify trends and characteristics specific to a given impact parameter. Generally, all craters, regardless of impact conditions, have an inner depression within a highly fragile, white-coloured centre, an outer spallation (i.e. tensile failure) zone, and areas of arrested spallation (i.e. spall fragments that were not completely dislodged from the target) at the crater rim. Within this general morphological framework, distinct trends and differences in crater dimensions and morphological characteristics are identified. With increasing impact velocity, the volume of craters in dry targets increases by a factor of ~4 when doubling velocity. At identical impact conditions (steel projectiles, ~5km/s), craters in dry and wet sandstone targets differ significantly in that "wet" craters are up to 76% larger in volume, have depth-diameter ratios generally below 0.19 (whereas dry craters are almost consistently above this value) at significantly larger diameters, and their spallation zone morphologies show very different characteristics. In dry craters, the spall zone surfaces dip evenly at 10-20° towards the crater centre. In wet craters, on the other hand, they consist of slightly convex slopes of 10-35° adjacent to the inner depression, and of sub-horizontal tensile

  2. Roentgeno- morphological characteristics of microcalcinates in benign tumors and cancer of mammary gland

    International Nuclear Information System (INIS)

    Zolotarevskij, V.B.; Zal'tsman, I.N.; Kulakova, A.M.

    1989-01-01

    Mammographic and morphologic examination was carried out in 136 females bearing microcalcinates in mammary gland tissue. Morphological examination identified benign tumors (mostly fibrous cysts) in 72.1 % and cancer (mostly ductal and lobular carcinoma in situ or initial signs of invasion) in 27.9 % of cases. Calcinates occured mainly in the epithelium and incipient cancer complexes. The analysis of the data showed shape, structure and distinctness of contours of calcinates to be instrumental in differentiating between malignant and benign lesions

  3. Morphological Deformities as Biomarkers in Fish from Contaminated Rivers in Taiwan

    Directory of Open Access Journals (Sweden)

    Nancy J. Brown-Peterson

    2009-08-01

    Full Text Available Tilapia (Oreochromis spp. were collected seasonally from four contaminated rivers in southwestern Taiwan for studies of morphological deformities that could be used as biomarkers of contamination. Morphological deformities found in tilapia were separated into 15 categories. Overall, the prevalence of deformities such as split fins, lower lip extension and gill deformities were significantly related to various water quality parameters, including low DO and high ammonium, lead and zinc concentrations. The persistence of tilapia in polluted waters and the development of a suite of morphological deformities suggest that tilapia can be used as sentinels of non-point source pollution in rivers.

  4. Proboscis Morphology and Its Relationship to Feeding Habits in Noctuid Moths

    Science.gov (United States)

    Zenker, Maurício Moraes; Penz, Carla; de Paris, Michele; Specht, Alexandre

    2011-01-01

    This study describes proboscis morphology and identifies morphometric differences among five species of noctuid moths with different feeding habits (fruit versus nectar-feeding). Morphological and morphometric parameters were analyzed using scanning electron microscopy and light microscopy. Measurements included: galea height in ten sites from base to tip, total proboscis length, and length of the distal region that contains large sensilla styloconica and / or tearing hooks and erectible barbs. Both morphometric and morphological differences were identified among species within and between feeding guilds, and these results are discussed in light of the feeding habits of each species. PMID:21539419

  5. Morphological Deformities as Biomarkers in Fish from Contaminated Rivers in Taiwan

    Science.gov (United States)

    Sun, Peter Lin; Hawkins, William E.; Overstreet, Robin M.; Brown-Peterson, Nancy J.

    2009-01-01

    Tilapia (Oreochromis spp.) were collected seasonally from four contaminated rivers in southwestern Taiwan for studies of morphological deformities that could be used as biomarkers of contamination. Morphological deformities found in tilapia were separated into 15 categories. Overall, the prevalence of deformities such as split fins, lower lip extension and gill deformities were significantly related to various water quality parameters, including low DO and high ammonium, lead and zinc concentrations. The persistence of tilapia in polluted waters and the development of a suite of morphological deformities suggest that tilapia can be used as sentinels of non-point source pollution in rivers. PMID:19742162

  6. The Influence of Tissue Procurement Procedures on RNA Integrity, Gene Expression, and Morphology in Porcine and Human Liver Tissue

    Czech Academy of Sciences Publication Activity Database

    Kap, M.; Sieuwerts, A.M.; Kubista, Mikael; Oomen, M.; Arshad, S.; Riegman, P.

    2015-01-01

    Roč. 13, č. 3 (2015), s. 200-206 ISSN 1947-5535 Institutional support: RVO:86652036 Keywords : WARM ISCHEMIA * SPECIMENS * FROZEN TISSUE * PURPOSE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.804, year: 2015

  7. Is the propagation speed of ultrasound in human organs a diagnostic parameter for tissue characterization? Evaluation using the liver parenchyma in children and adolescents as an example

    International Nuclear Information System (INIS)

    Born, M.; Franke, I.

    2011-01-01

    New sonographic machines permit the measurement of the propagation speed of ultrasound (PSU) in humans. The liver seems to be an appropriate organ for examining whether the PSU may be used as a diagnostic parameter for tissue characterization since the liver is easily accessible to sonography and its variable content of fat impacts the PSU. Purpose: To determine whether there is a measurable correlation between obesity and PSU in the liver. Methods: In 69 children and adolescents, the PSU in the liver was measured sonographically and correlated to BMI, age, size and weight of the children. Results: A strong correlation was found between the PSU in the liver and the BMI. The PSU was significantly lower in obese children (1507 m/s) than in children with normal body weight (1564 m/s). Conclusion: PSU seems to be promising as an additional diagnostic parameter for characterizing liver tissue. Further evaluation is necessary. (orig.)

  8. Diagnostic performance of conventional MRI parameters and apparent diffusion coefficient values in differentiating between benign and malignant soft-tissue tumours.

    Science.gov (United States)

    Song, Y; Yoon, Y C; Chong, Y; Seo, S W; Choi, Y-L; Sohn, I; Kim, M-J

    2017-08-01

    To compare the abilities of conventional magnetic resonance imaging (MRI) and apparent diffusion coefficient (ADC) in differentiating between benign and malignant soft-tissue tumours (STT). A total of 123 patients with STT who underwent 3 T MRI, including diffusion-weighted imaging (DWI), were retrospectively analysed using variate conventional MRI parameters, ADC mean and ADC min . For the all-STT group, the correlation between the malignant STT conventional MRI parameters, except deep compartment involvement, compared to those of benign STT were statistically significant with univariate analysis. Maximum diameter of the tumour (p=0.001; odds ratio [OR], 8.97) and ADC mean (p=0.020; OR, 4.30) were independent factors with multivariate analysis. For the non-myxoid non-haemosiderin STT group, signal heterogeneity on axial T1-weighted imaging (T1WI; p=0.017), ADC mean , and ADC min (p=0.001, p=0.001), showed significant differences with univariate analysis between malignancy and benignity. Signal heterogeneity in axial T1WI (p=0.025; OR, 12.64) and ADC mean (p=0.004; OR, 33.15) were independent factors with multivariate analysis. ADC values as well as conventional MRI parameters were useful in differentiating between benign and malignant STT. The ADC mean was the most powerful diagnostic parameter in non-myxoid non-haemosiderin STT. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  9. The association between brain natriuretic peptide and tissue Doppler parameters in children with hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Taliha Öner

    2016-01-01

    Full Text Available In this study, we investigated the association between brain natriuretic peptide (BNP levels and tissue Doppler imaging measurements and also screening for deadly mutations in patients with hypertrophic cardiomyopathy (HCM. We enrolled 20 patients diagnosed with HCM (age:10.7±5 years (1-17, 85% male, weight:42.25±23.10 kg, height:141.80±32.45 cm and 20 age, gender and body weight-matched control subjects. We performed electrocardiography, transthoracic echocardiography, and tissue Doppler echocardiography in each group, as well as genetic tests (for Arg403Gln, Arg453Cys, Arg719Trp and Arg719Gln mutations in MYH7 Exons 13, 14, 19 and BNP in the patients. The patients were divided into two groups according to the presence (Group 1 or absence (Group 2 of left ventricular (LV outflow tract obstruction. QTc dispersion and the LV ejection fraction and left atrial (LA volume index were increased in Group 1. The LA volume index and the mitral and septal E/Ea ratio and septum Z-score were increased while the mitral lateral annulus and septal annulus Ea wave velocities and the mitral and tricuspid E/A ratio were decreased in patients with high levels of BNP compared to those with normal BNP levels. There were no mutations that are associated with increased risk of sudden death found in patients included in this study. In the light of our data, we conclude that such parameters BNP levels above the 98 pg/mL, septal thickness Z-score ˃6, and higher mitral and septal E/Ea ratios can be used for management of patients with HCM according to life-threatening conditions.

  10. Photothermal lesions in soft tissue induced by optical fiber microheaters.

    Science.gov (United States)

    Pimentel-Domínguez, Reinher; Moreno-Álvarez, Paola; Hautefeuille, Mathieu; Chavarría, Anahí; Hernández-Cordero, Juan

    2016-04-01

    Photothermal therapy has shown to be a promising technique for local treatment of tumors. However, the main challenge for this technique is the availability of localized heat sources to minimize thermal damage in the surrounding healthy tissue. In this work, we demonstrate the use of optical fiber microheaters for inducing thermal lesions in soft tissue. The proposed devices incorporate carbon nanotubes or gold nanolayers on the tips of optical fibers for enhanced photothermal effects and heating of ex vivo biological tissues. We report preliminary results of small size photothermal lesions induced on mice liver tissues. The morphology of the resulting lesions shows that optical fiber microheaters may render useful for delivering highly localized heat for photothermal therapy.

  11. Soft-tissue segmentation and three-dimensional display with MR imaging

    International Nuclear Information System (INIS)

    Koenig, H.A.; Laub, G.

    1987-01-01

    The purpose of this study is to design a method capable of segmenting different soft-tissue types. The investigated cases were measured using fast three-dimensional (3D) sequences (FISP of fast low-angle shot) with isotropic voxel resolution of nearly 1 mm. The segmentation is based on the assumption that different tissue types are discernible by their morphologic and/or physical features. Surface reconstructions are then used to display specific tissue types from different viewing directions. This automatic procedure is applied to different head cases to represent specific tissues in 3D format. With 3D techniques, rotation of classified objects in cine format is performed for better topologic correlation and therapeutic planning

  12. Fibrocartilage tissue engineering: the role of the stress environment on cell morphology and matrix expression.

    Science.gov (United States)

    Thomopoulos, Stavros; Das, Rosalina; Birman, Victor; Smith, Lester; Ku, Katherine; Elson, Elliott L; Pryse, Kenneth M; Marquez, Juan Pablo; Genin, Guy M

    2011-04-01

    Although much is known about the effects of uniaxial mechanical loading on fibrocartilage development, the stress fields to which fibrocartilaginous regions are subjected to during development are mutiaxial. That fibrocartilage develops at tendon-to-bone attachments and in compressive regions of tendons is well established. However, the three-dimensional (3D) nature of the stresses needed for the development of fibrocartilage is not known. Here, we developed and applied an in vitro system to determine whether fibrocartilage can develop under a state of periodic hydrostatic tension in which only a single principal component of stress is compressive. This question is vital to efforts to mechanically guide morphogenesis and matrix expression in engineered tissue replacements. Mesenchymal stromal cells in a 3D culture were exposed to compressive and tensile stresses as a result of an external tensile hydrostatic stress field. The stress field was characterized through mechanical modeling. Tensile cyclic stresses promoted spindle-shaped cells, upregulation of scleraxis and type one collagen, and cell alignment with the direction of tension. Cells experiencing a single compressive stress component exhibited rounded cell morphology and random cell orientation. No difference in mRNA expression of the genes Sox9 and aggrecan was observed when comparing tensile and compressive regions unless the medium was supplemented with the chondrogenic factor transforming growth factor beta3. In that case, Sox9 was upregulated under static loading conditions and aggrecan was upregulated under cyclic loading conditions. In conclusion, the fibrous component of fibrocartilage could be generated using only mechanical cues, but generation of the cartilaginous component of fibrocartilage required biologic factors in addition to mechanical cues. These studies support the hypothesis that the 3D stress environment influences cell activity and gene expression in fibrocartilage development.

  13. Morphological analysis and modelling of sintering and of sintered materials

    International Nuclear Information System (INIS)

    Jernot, Jean-Paul

    1982-01-01

    This research thesis addresses the study of solid phase sintering of metallic powders, and aims at describing as precisely as possible the different involved matter transport mechanisms, first by using a thermodynamic approach to sintering. Sintering diagrams are also used to determine prevailing mechanisms. The microstructure of sintered materials has been studied by using image quantitative analysis, thus by using a morphological approach to sintering. Morphological parameters allow, on the one hand, the evolution of powders during sintering to be followed, and, on the other hand, sintered products to be correctly characterised. Moreover, the author reports the study of the evolution of some physical properties of sintered materials with respect to their microstructure parameters. This leads to the development of a modelling of the behaviour of these materials [fr

  14. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Science.gov (United States)

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  15. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Directory of Open Access Journals (Sweden)

    Anja Marciniak

    Full Text Available Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  16. The effect of salt on the morphologies of compositionally asymmetric block copolymer electrolytes

    Science.gov (United States)

    Loo, Whitney; Maslyn, Jacqueline; Oh, Hee Jeung; Balsara, Nitash

    Block copolymer electrolytes are promising for applications in lithium metal solid-state batteries. Due to their ability to microphase separate into distinct morphologies, their ion transport and mechanical properties can be decoupled. The addition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt to poly(styrene)-block-poly(ethylene oxide) (SEO) has been shown to increase microphase separation in symmetric block copolymer systems due to an increase in the effective interaction parameter (χeff) ; however the effect of block copolymer compositional asymmetry is not well-understood. The effect of compositional asymmetry on polymer morphology was investigated through small and wide angle X-ray scattering (SAXS/WAXS). The effective Flory-Huggins interaction parameter was extracted from the scattering profiles in order to construct a phase diagram to demonstrate the effect of salt and compositional asymmetry on block copolymer morphology.

  17. A STUDY ON PLACENTAL MORPHOLOGY IN GESTATIONAL DIABETES

    Directory of Open Access Journals (Sweden)

    Katadi Venkata Sudha Madhuri

    2017-01-01

    Full Text Available BACKGROUND Gestational Diabetes Mellitus (GDM refers to any degree of glucose intolerance with onset or first recognition during pregnancy. Maternal diabetes constitutes an unfavourable environment for embryonic and foetoplacental development. The histomorphological changes in the placenta are associated with increased perinatal morbidity, increased risk of diabetes in the offspring and the mother in the ensuing years of life. Present study aims to study the morphological changes in the placenta along with maternal and foetal outcomes in pregnancies complicated by GDM. MATERIALS AND METHODS A descriptive observational case-controlled study was conducted from January 2013 to November 2016 in King George Hospital, Visakhapatnam. Hundred and sixty four women diagnosed with GDM and hundred women with normal gestation were enrolled in the study. Foetal surveillance was done by Doppler ultrasound and kick count technique during the gestation. Foetal and maternal outcome was evaluated and compared to the outcome of normal gestation. Placental specimens from term gestations (38-42 weeks diagnosed with GDM and normal full-term gestations were studied to assess the morphological parameters. Statistical analysis was done using descriptive statistical measures. RESULTS In the present study, 62.19% of the GDM cases terminated as normal gestations. Recurrent UTI was the most common complication (14.02% during the antenatal period. 17.68% of the foetuses from GDM mothers presented with macrosomia, however, there were no cases of congenital anomalies or shoulder dystocia. Placental tissue from the GDM cases was larger, heavier and more cotyledonous as compared to placenta from normal subjects. The umbilical cord showed eccentric and central attachment in all the controls and most of the cases and 5.48% of the cases showed marginal attachment of the umbilical cord. CONCLUSION The study describes the various maternal, foetal and placental outcomes in pregnancies

  18. Use of lecithin to control fiber morphology in electrospun poly (ɛ-caprolactone) scaffolds for improved tissue engineering applications.

    Science.gov (United States)

    Coverdale, Benjamin D M; Gough, Julie E; Sampson, William W; Hoyland, Judith A

    2017-10-01

    We elucidate the effects of incorporating surfactants into electrospun poly (ɛ-caprolactone) (PCL) scaffolds on network homogeneity, cellular adherence and osteogenic differentiation. Lecithin was added with a range of concentrations to PCL solutions, which were electrospun to yield functionalized scaffolds. Addition of lecithin yielded a dose-dependent reduction in scaffold hydrophobicity, whilst reducing fiber width and hence increasing specific surface area. These changes in scaffold morphology were associated with increased cellular attachment of Saos-2 osteoblasts 3-h postseeding. Furthermore, cells on scaffolds showed comparable proliferation over 14 days of incubation to TCP controls. Through model-based interpretation of image analysis combined with gravimetric estimates of porosity, lecithin is shown to reduce scaffold porosity and mean pore size. Additionally, lecithin incorporation is found to reduce fiber curvature, resulting in increased scaffold specific elastic modulus. Low concentrations of lecithin were found to induce upregulation of several genes associated with osteogenesis in primary mesenchymal stem cells. The results demonstrate that functionalization of electrospun PCL scaffolds with lecithin can increase the biocompatibility and regenerative potential of these networks for bone tissue engineering applications. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2865-2874, 2017. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  19. Changes in blood morphology and chosen biochemical parameters in ultra-marathon runners during a 100-km run in relation to the age and speed of runners

    Directory of Open Access Journals (Sweden)

    Zbigniew Jastrzębski

    2016-10-01

    Full Text Available Objectives: The objective of the study was to reveal morphology, electrolyte and chosen biochemical parameters in terms of health risk in runners in reference to their age and running speed in the case of running a distance of 100 km, which occur after 12 h or 24 h of recovery. Material and Methods: Fourteen experienced, male, amateur, ultra-marathon runners, divided into two age and two speed groups took part in the 100-km run. Blood samples for analyses indexes were collected from the ulnar vein just before the run, after 25 km, 50 km, 75 km and 100 km, as well as 12 h and 24 h after termination of the run. Results: The sustained ultramarathon run along with the distance covered (p < 0.05 caused an increase in myoglobin (max 90-fold, bilirubin (max 2.8-fold and total antioxidant status (max 1.15-fold, which also continued during the recovery. Significant changes in the number of white blood cells were observed with each sequential course and could be associated with muscle damage. The electrolyte showed changes towards slight hyperkalemia, but no changes in natrium and calcium concentrations. There were no significant differences between the age and speed groups for all the parameters after completing the 100-km run as well as after 12 h and 24 h of recovery. Conclusions: Considering changes in blood morphology and chosen biochemical parameters in ultra-marathon runners during a 100-km run it can be stated that such an exhausting effort may be dangerous for human health due to metabolic changes and large damage to the organs. Negative metabolic changes are independent of age of an ultramarathon runner and occur both in younger (32±5.33 years and older participants (50.56±9.7 years. It can be concluded that organ damage and negative metabolic changes during a 100-km run occur similarly in participants less experienced as well as in well trained runners. Int J Occup Med Environ Health 2016;29(5:801–814

  20. Effect of Physical Property and Surface Morphology of Copper Foil at Electrodeposition Parameter

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Gyu; Park, Il Song; Lee, Man Hyung; Seol, Kyeong Won [Chonbuk National University, Jeonju (Korea, Republic of)

    2014-06-15

    The effect of additives, current density and plated temperature on the surface morphology and physical property, during copper electrodeposition on polyimide (PI) film was investigated. Two kinds of additives, Cl and leveler (additive B), were used in this study. Electrochemical experiments were performed in conjunction with SEM, XRD and four-point probe to characterize the morphology and mechanical characteristics of copper electrodeposited in the presence of the additives. The surface roughness, crystal growth orientation and resistivity was controlled by the concentration of additive B. High resistivity and lower peel strength were observed on the surface of the copper layer electroplated in the electrolyte without additive B. However, a uniform surface, lower resistivity and high flexibility were obtained with a combination of 20 ppm Cl and 100 ppm additive B. Large particles were observed on the surface of the copper layer electroplated using a current density of 25 mA/cm{sup 2}, but a uniform surface and lower resistivity were obtained using a current density of 10 mA/cm{sup 2}. One of the required important properties of FCCL is flexibility of the copper foil. High flexibility of FCCL was obtained at a low current density, rather than a high current density. Moreover, a reasonable current density is 20 mA/cm{sup 2}, considering the productivity and mechanical properties of copper foil.

  1. Evaluation of several FDG PET parameters for prediction of soft tissue tumour grade at primary diagnosis and recurrence

    Energy Technology Data Exchange (ETDEWEB)

    Fendler, Wolfgang P. [Ludwig-Maximilians-University of Munich, Department of Nuclear Medicine, Munich (Germany); Department of Nuclear Medicine, Munich (Germany); Chalkidis, Rebecca P.; Ilhan, Harun [Ludwig-Maximilians-University of Munich, Department of Nuclear Medicine, Munich (Germany); Knoesel, Thomas [Ludwig-Maximilians-University of Munich, Institute of Pathology, Munich (Germany); Herrmann, Ken [Julius-Maximilians-University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Issels, Rolf D.; Lindner, Lars H. [Ludwig-Maximilians-University of Munich, Department of Internal Medicine III, Munich (Germany); Ludwig-Maximilians-University of Munich, Comprehensive Cancer Center, Munich (Germany); Bartenstein, Peter [Ludwig-Maximilians-University of Munich, Department of Nuclear Medicine, Munich (Germany); Ludwig-Maximilians-University of Munich, Comprehensive Cancer Center, Munich (Germany); Cyran, Clemens C. [Ludwig-Maximilians-University of Munich, Department of Clinical Radiology, Munich (Germany); Hacker, Marcus [Vienna General Hospital, Department of Nuclear Medicine, Vienna (Austria)

    2015-08-15

    This study evaluates the diagnostic accuracy of SUV-based parameters derived from [{sup 18} F]-2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in order to optimize non-invasive prediction of soft tissue tumour (STT) grade. One hundred and twenty-nine lesions from 123 patients who underwent FDG-PET for primary staging (n = 79) or assessment of recurrence (n = 44) of STT were analyzed retrospectively. Histopathology was the reference standard for tumour grading. Absolute values and tumour-to-liver ratios of several standardized uptake value (SUV) parameters were correlated with tumour grading. At primary diagnosis SUV{sub max}, SUV{sub peak}, SUV{sub max}/SUV{sub liver} and SUV{sub peak}/SUV{sub liver} showed good correlation with tumour grade. SUV{sub peak} (area under the receiver-operating-characteristic, AUC-ROC: 0.82) and SUV{sub peak}/SUV{sub liver} (AUC-ROC: 0.82) separated best between low grade (WHO intermediate, grade 1 sarcoma, and low risk gastrointestinal stromal tumours, GISTs) and high grade (grade 2/3 sarcoma and intermediate/high risk GISTs) lesions: optimal threshold for SUV{sub peak}/SUV{sub liver} was 2.4, which resulted in a sensitivity of 79 % and a specificity of 81 %. At disease recurrence, the AUC-ROC was <0.75 for each parameter. A tumour SUV{sub peak} of at least 2.4 fold mean liver uptake predicts high grade histopathology with good diagnostic accuracy at primary staging. At disease recurrence, FDG-PET does not reliably separate high and low grade lesions. (orig.)

  2. Computational morphology of the lung and its virtual imaging

    International Nuclear Information System (INIS)

    Kitaoka, Hiroko

    2002-01-01

    The author proposes an entirely new approach called 'virtual imaging' of an organ based on 'computational morphology'. Computational morphology describes mathematically design as principles of an organ structure to generate the organ model via computer, which can be called virtual organ. Virtual imaging simulates image data using the virtual organ. The virtual organ is divided into cubic voxels, and the CT value or other intensity value for each voxel is calculated according to the tissue properties within the voxel. The validity of the model is examined by comparing virtual images with clinical images. Computational image analysis methods can be developed based on validated models. In this paper, computational anatomy of the lung and its virtual X-ray imaging are introduced

  3. Effect of tissue heterogeneity on quantification in positron emission tomography

    International Nuclear Information System (INIS)

    Blomqvist, G.; Lammertsma, A.A.; Mazoyer, B.; Wienhard, K.

    1995-01-01

    As a result of the limited spatial resolution of positron emission tomographic scanners, the measurements of physiological parameters are compromised by tissue heterogeneity. The effect of tissue heterogeneity on a number of parameters was studied by simulation and an analytical method. Five common tracer models were assessed. The input and tissue response functions were assumed to be free from noise and systematic errors. The kinetic model was assumed to be perfect. Two components with different kinetics were mixed in different proportions and contrast with respect to the model parameters. Different experimental protocols were investigated. Of three methods investigated for the measurement of cerebral blood flow (CBF) (steady state, dynamic, integral), the second one was least sensitive to errors caused by tissue heterogeneity and the main effect was an underestimation of the distribution volume. With the steady state method, errors in oxygen extraction fraction caused by tissue heterogeneity were always found to be less than the corresponding errors in CBF. For myocardial blood flow the steady state method was found to perform better than the bolus method. The net accumulation of substrate (i.e. rCMR glc in the case of glucose analogs) was found to be comparatively insensitive to tissue heterogeneity. Individual rate constans such as k 2 and k 3 for efflux and metabolism of the substrate in the pool of unmetabolized substrate in the tissue, respectively, were found to be more sensitive. In studies of radioligand binding, using only tracer doses, the effect of tissue heterogeneity on the parameter k on .B max could be considerable. In studies of radioligand binding using a protocol with two experiments, one with high and one with low specific activity, B max was found to be insensitive while K d was very sensitive to tissue heterogeneity. (orig.)

  4. Effect of tissue heterogeneity on quantification in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, G [Dept. of Clinical Neuroscience, Experimental Alcohol and Drug Addiction Research Section, Karolinska Hospital, Stockholm (Sweden); Lammertsma, A A [PET Methodology Group, Cyclotron Unit, MRC Clinical Sciences Centre, Royal Postgraduate Medical School, Hammersmith Hospital, London (United Kingdom); Mazoyer, B [Service Hospitalier Frederic Joliot CEA/Dept. de Biologie, Hopital d` Orsay and Antenne d` Informatique Medicale, Hopital Robert Debre, Paris (France); Wienhard, K [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany)

    1995-07-01

    As a result of the limited spatial resolution of positron emission tomographic scanners, the measurements of physiological parameters are compromised by tissue heterogeneity. The effect of tissue heterogeneity on a number of parameters was studied by simulation and an analytical method. Five common tracer models were assessed. The input and tissue response functions were assumed to be free from noise and systematic errors. The kinetic model was assumed to be perfect. Two components with different kinetics were mixed in different proportions and contrast with respect to the model parameters. Different experimental protocols were investigated. Of three methods investigated for the measurement of cerebral blood flow (CBF) (steady state, dynamic, integral), the second one was least sensitive to errors caused by tissue heterogeneity and the main effect was an underestimation of the distribution volume. With the steady state method, errors in oxygen extraction fraction caused by tissue heterogeneity were always found to be less than the corresponding errors in CBF. For myocardial blood flow the steady state method was found to perform better than the bolus method. The net accumulation of substrate (i.e. rCMR{sub glc} in the case of glucose analogs) was found to be comparatively insensitive to tissue heterogeneity. Individual rate constans such as k{sub 2} and k{sub 3} for efflux and metabolism of the substrate in the pool of unmetabolized substrate in the tissue, respectively, were found to be more sensitive. In studies of radioligand binding, using only tracer doses, the effect of tissue heterogeneity on the parameter k{sub on}.B{sub max} could be considerable. In studies of radioligand binding using a protocol with two experiments, one with high and one with low specific activity, B{sub max} was found to be insensitive while K{sub d} was very sensitive to tissue heterogeneity. (orig.)

  5. Controlled Morphology and Mechanical Characterisation of Electrospun Cellulose Acetate Fibre Webs

    Directory of Open Access Journals (Sweden)

    B. Ghorani

    2013-01-01

    Full Text Available The purpose was to interpret the varying morphology of electrospun cellulose acetate (CA fibres produced from single and binary solvent systems based on solubility parameters to identify processing conditions for the production of defect-free CA fibrous webs by electrospinning. The Hildebrand solubility parameter ( and the radius of the sphere in the Hansen space ( of acetone, acetic acid, water, N,N-dimethylacetamide (DMAc, methanol, and chloroform were examined and discussed for the electrospinning of CA. The Hildebrand solubility parameter ( of acetone and DMAc were found to be within an appropriate range for the dissolution of CA. The suitability of the binary solvent system of acetone: DMAc (2 : 1 for the continuous electrospinning of defect-free CA fibres was confirmed. Electrospun webs exhibited improved tensile strength and modulus after heat and alkali treatment (deacetylation of the as-spun material, and no major fibre morphological degradation occurred during the deacetylation process.

  6. The versatile subepithelial connective tissue graft: a literature update.

    Science.gov (United States)

    Karthikeyan, B V; Khanna, Divya; Chowdhary, Kamedh Yashawant; Prabhuji, M Lv

    2016-01-01

    Harmony between hard and soft tissue morphologies is essential for form, function, and a good esthetic outlook. Replacement grafts for correction of soft tissue defects around the teeth have become important to periodontal plastic and implant surgical procedures. Among a multitude of surgical techniques and graft materials reported in literature, the subepithelial connective tissue graft (SCTG) has gained wide popularity and acceptance. The purpose of this article is to acquaint clinicians with the current understanding of the versatile SCTG. Key factors associated with graft harvesting as well as applications, limitations, and complications of SCTGs are discussed. This connective tissue has shown excellent short- and long-term stability, is easily available, and is economical to use. The SCTG should be considered as an alternative in all periodontal reconstruction surgeries.

  7. [The molecular mechanisms and morphological manifestations of leiomyoma reduction induced by selective progesterone receptor modulators].

    Science.gov (United States)

    Demura, T A; Revazova, Z V; Kogan, E A; Adamyan, L V

    to investigate the molecular mechanisms and morphological substrate of reduced uterine leiomyoma in patients receiving the selective progesterone receptor modulator (SPRM) ulipristal acetate for 3 months, by estimating the immunohistochemical expression of the markers steroid receptor coactivator 1 (SRC-1), nuclear receptor corepressor 1 (NCoR-1), ER, PgR, Ki-67, p16, TGF-β, and VEGF in tumor tissue. The investigation enrolled 75 women with uterine leiomyoma, menorrhagias, and anemia. Group 1 included 40 patients who were treated with ulipristal for 3 months, followed by laparoscopic myomectomy. Group 2 consisted of 35 patients who underwent surgery without previous preparation. The intra- and postoperative parameters and molecular and morphological changes in the myomatous nodules were comparatively analyzed in both groups. After 3 months of therapy initiation, menorrhagia completely ceased, myomatous nodules decreased in size (pleiomyoma reduction was leiomyocyte apoptosis and dystrophy, tumor stroma sclerosis and hyalinosis with diminished Ki-67 expression and elevated p16 in the smooth muscle cells, trophic nodular tissue disorders exhibited by vascular wall sclerosis and lower VEGF and TGF-β expression, and leiomyocyte hormonal reception dysregulation that made itself evident through the reduced expression of SRC-1 with the unchanged expression of PR and ER and the maintained level of NCoR-1. The molecular mechanisms of tumor reduction involved the reduced Ki-67 expression and elevated p16, lower VEGF and TGF-β, diminished SRC-1 expression with the maintained level of PR, ER, and NCoR-1. Overall, this is suggestive of enhanced apoptosis and reduced leiomyoma proliferation and angiogenesis induced by SPRM and indicative of the expediency of using ulipristal acetate as a preoperative agent for organ-sparing surgery in reproductive-aged patients with uterine myoma, menorrhagias, and anemia.

  8. Morphology and rheology in filamentous cultivations.

    Science.gov (United States)

    Wucherpfennig, T; Kiep, K A; Driouch, H; Wittmann, C; Krull, R

    2010-01-01

    Because of their metabolic diversity, high production capacity, secretion efficiency, and capability of carrying out posttranslational modifications, filamentous fungi are widely exploited as efficient cell factories in the production of metabolites, bioactive substances, and native or heterologous proteins, respectively. There is, however, a complex relationship between the morphology of these microorganisms, transport phenomena, the viscosity of the cultivation broth, and related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass, every growth form having a distinct influence on broth rheology. Hence, the advantages and disadvantages for mycelial or pellet cultivation have to be balanced out carefully. Because of the still inadequate understanding of the morphogenesis of filamentous microorganisms, fungal morphology is often a bottleneck of productivity in industrial production. To obtain an optimized production process, it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the relevant approaches in biochemical engineering. In this chapter, morphology and growth of filamentous fungi are described, with special attention given to specific problems as they arise from fungal growth forms; growth and mass transfer in fungal biopellets are discussed as an example. To emphasize the importance of the flow behavior of filamentous cultivation broths, an introduction to rheology is also given, reviewing important rheological models and recent studies concerning rheological parameters. Furthermore, current knowledge on morphology and productivity in relation to the environom is outlined in the last section of this review. Copyright 2010 Elsevier Inc. All rights reserved.

  9. [MORPHOLOGICAL CHANGES OF THE LIVER IN OBTURATION JAUNDICE, CAUSED BY CHOLEDOCHOLITHIASIS, DEPENDING ON ITS DURATION].

    Science.gov (United States)

    Sipliviy, V A; Yevtushenko, D V; Naumova, O V; Andreyeshchev, S A; Yevtushenko, A V

    2016-02-01

    Abstract The results of surgical treatment of 184 patients for obturation jaundice, caused by choledocholithiasis, were analyzed. Morphological changes of the liver were studied in 20 patients. There were three groups of patients delineated, depending on the obturation jaundice duration: up to 7 days, from 8 to 14 days, more than 15 days, and also a group of patients after the bile outflow restoration. The obturation jaundice occurrence in choledocholithiasis is accompanied by significant morphological changes in the liver, severity of which is enhancing while the obturation jaundice persistence increasing. While persistence of obturation jaundice through 8 days and more the connective tissue volume is enhancing, a relative volume of hepatocytes is reducing and a stromal-parenchymatous index is increasing. The bile outflow restoration secures significant reduction of intensity of alterative and inflammatory changes in hepatic parenchyma, as well as activation of reparative processes in the tissue. In cholangitis, caused by P. aeruginosa and E. coli, according to morphological investigations data, in the liver a diffuse purulent cholangitis on background of chronic changes in accordance to duration of the obturation jaundice persists.

  10. TissueCypher™: A systems biology approach to anatomic pathology

    Directory of Open Access Journals (Sweden)

    Jeffrey W Prichard

    2015-01-01

    Full Text Available Background: Current histologic methods for diagnosis are limited by intra- and inter-observer variability. Immunohistochemistry (IHC methods are frequently used to assess biomarkers to aid diagnoses, however, IHC staining is variable and nonlinear and the manual interpretation is subjective. Furthermore, the biomarkers assessed clinically are typically biomarkers of epithelial cell processes. Tumors and premalignant tissues are not composed only of epithelial cells but are interacting systems of multiple cell types, including various stromal cell types that are involved in cancer development. The complex network of the tissue system highlights the need for a systems biology approach to anatomic pathology, in which quantification of system processes is combined with informatics tools to produce actionable scores to aid clinical decision-making. Aims: Here, we describe a quantitative, multiplexed biomarker imaging approach termed TissueCypher™ that applies systems biology to anatomic pathology. Applications of TissueCypher™ in understanding the tissue system of Barrett's esophagus (BE and the potential use as an adjunctive tool in the diagnosis of BE are described. Patients and Methods: The TissueCypher™ Image Analysis Platform was used to assess 14 epithelial and stromal biomarkers with known diagnostic significance in BE in a set of BE biopsies with nondysplastic BE with reactive atypia (RA, n = 22 and Barrett's with high-grade dysplasia (HGD, n = 17. Biomarker and morphology features were extracted and evaluated in the confirmed BE HGD cases versus the nondysplastic BE cases with RA. Results: Multiple image analysis features derived from epithelial and stromal biomarkers, including immune biomarkers and morphology, showed significant differences between HGD and RA. Conclusions: The assessment of epithelial cell abnormalities combined with an assessment of cellular changes in the lamina propria may serve as an adjunct to conventional

  11. Analysis of light scattering from human breast tissue using a custom dual-optical scanning near-field optical microscope.

    Science.gov (United States)

    Kyle, Jennifer Reiber; Kyle, Michael D; Raghavan, Ravi; Budak, Gurer; Ozkan, Cengiz S; Ozkan, Mihrimah

    2011-03-01

    In this paper we introduce a custom scanning near-field optical microscope (SNOM) that simultaneously collects reflection and transmission near-field images along with topography. This dual-optical SNOM uses a bent probe, which allows for axial reflection imaging, accurate surface scanning, and easy identification of topographic artifacts. Using this novel dual-optical SNOM, we image desiccated and non-desiccated human breast epithelial tissue. By comparing the simultaneous SNOM images, we isolate the effects of tissue morphology and variations in refractive indices on the forward- and back-scattering of light from the tissue. We find that the reduction in back-scattering from tissue, relative to the glass slide, is caused by dense packing of the scattering sites in the cytoplasm (morphology) in the desiccated tissue and a thin-film of water adhering to the glass slide (refractive index) in the non-desiccated tissue sample. Our work demonstrates the potential of our customized dual-optical SNOM system for label-free tissue diagnostics. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation

    International Nuclear Information System (INIS)

    Sultana, Naznin; Wang Min

    2012-01-01

    Tissue engineering combines living cells with biodegradable materials and/or bioactive components. Composite scaffolds containing biodegradable polymers and nanosized osteoconductive bioceramic with suitable properties are promising for bone tissue regeneration. In this paper, based on blending two biodegradable and biocompatible polymers, namely poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(l-lactic acid) (PLLA) with incorporated nano hydroxyapatite (HA), three-dimensional composite scaffolds with controlled microstructures and an interconnected porous structure, together with high porosity, were fabricated using an emulsion freezing/freeze-drying technique. The influence of various parameters involved in the emulsion freezing/freeze-drying technique was studied for the fabrication of good-quality polymer scaffolds based on PHBV polymers. The morphology, mechanical properties and crystallinity of PHBV/PLLA and HA in PHBV/PLLA composite scaffolds and PHBV polymer scaffolds were studied. The scaffolds were coated with collagen in order to improve wettability. During in vitro biological evaluation study, it was observed that SaOS-2 cells had high attachment on collagen-coated scaffolds. Significant improvement in cell proliferation and alkaline phosphatase activity for HA-incorporated composite scaffolds was observed due to the incorporation of HA. After 3 and 7 days of culture on all scaffolds, SaOS-2 cells also had normal morphology and growth. These results indicated that PHBV/PLLA-based scaffolds fabricated via an emulsion freezing/freeze-drying technique were favorable sites for osteoblastic cells and are promising for the applications of bone tissue engineering.

  13. Pulmonary Morphological Changes in the Simulation and Treatment of Lower Limb Ischemic and Perfusion Lesions

    Directory of Open Access Journals (Sweden)

    V. I. Sergiyenko

    2006-01-01

    Full Text Available Objective: to investigate pulmonary morphological changes in animals with limb ischemic and reperfusion lesions, which were treated with hemocarboperfusion on sodium hypochlorite-modified sorbents.Materials and methods. The investigation was conducted on 94 mature mongrel male dogs with 4-hour limb ischemia and subsequent reperfusion. Limb ischemia was induced by applying a tourniquet to the isolated vascular fascicle of an experimental limb proximal to the origin of the deep artery of the thigh. Following 4 hours, reperfusion was made, by removing the tourniquet. Three hours of the initiation of reperfusion, one-hour hemocarboperfusion was performed thrice for 72 hours. Lung biopsy samples were used for morphological studies. Morphological changes were evaluated, by employing the hematoxylin- and eosin-stained semifine sections. The visceral histological pattern was assessed by a light trinocular microscope (OLYMPUS, Japan (microscope objective 10.Results. The development of 4-hour limb ischemia is accompanied by significant microcirculatory disorders in the lungs that exhibit dyscirculatory and dystrophic processes concurrent with the signs of tissue dyscomplexation without the signs of an inflammatory reaction. In the reperfusion period, there was a significant progression of lung tissue morphological changes corresponding to the pattern of phase 2 respiratory distress syndrome. Sodium hypochlorite-modified CKN-1K sorbent hemocarboperfusion resulted in a virtually complete restoration of the lung architectonics in the presence of insignificant microcirculato-ry and ventilatory disorders. After standard hemocarboperfusion, the lung tissue may be defined as a slightly reduced pattern of acute pulmonary lesion.Conclusion. Sodium hypochlorite-modified CKN-1K sorbent hemocarboperfusion is an effective technique in abolishing ischemic and reperfusion lesions. 

  14. Self-Organization and the Self-Assembling Process in Tissue Engineering

    Science.gov (United States)

    Eswaramoorthy, Rajalakshmanan; Hadidi, Pasha; Hu, Jerry C.

    2015-01-01

    In recent years, the tissue engineering paradigm has shifted to include a new and growing subfield of scaffoldless techniques which generate self-organizing and self-assembling tissues. This review aims to provide a cogent description of this relatively new research area, with special emphasis on applications toward clinical use and research models. Particular emphasis is placed on providing clear definitions of self-organization and the self-assembling process, as delineated from other scaffoldless techniques in tissue engineering and regenerative medicine. Significantly, during formation, self-organizing and self-assembling tissues display biological processes similar to those that occur in vivo. These help lead to the recapitulation of native tissue morphological structure and organization. Notably, functional properties of these tissues also approach native tissue values; some of these engineered tissues are already in clinical trials. This review aims to provide a cohesive summary of work in this field, and to highlight the potential of self-organization and the self-assembling process to provide cogent solutions to current intractable problems in tissue engineering. PMID:23701238

  15. RMB identification based on polarization parameters inversion imaging

    Science.gov (United States)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang

    2016-10-01

    Social order is threatened by counterfeit money. Conventional anti-counterfeit technology is much too old to identify its authenticity or not. The intrinsic difference between genuine notes and counterfeit notes is its paper tissue. In this paper a new technology of detecting RMB is introduced, the polarization parameter indirect microscopic imaging technique. A conventional reflection microscopic system is used as the basic optical system, and inserting into it with polarization-modulation mechanics. The near-field structural characteristics can be delivered by optical wave and material coupling. According to coupling and conduction physics, calculate the changes of optical wave parameters, then get the curves of the intensity of the image. By analyzing near-field polarization parameters in nanoscale, finally calculate indirect polarization parameter imaging of the fiber of the paper tissue in order to identify its authenticity.

  16. Vitrification and xenografting of human ovarian tissue.

    Science.gov (United States)

    Amorim, Christiani Andrade; Dolmans, Marie-Madeleine; David, Anu; Jaeger, Jonathan; Vanacker, Julie; Camboni, Alessandra; Donnez, Jacques; Van Langendonckt, Anne

    2012-11-01

    To assess the efficiency of two vitrification protocols to cryopreserve human preantral follicles with the use of a xenografting model. Pilot study. Gynecology research unit in a university hospital. Ovarian biopsies were obtained from seven women aged 30-41 years. Ovarian tissue fragments were subjected to one of three cryopreservation protocols (slow freezing, vitrification protocol 1, and vitrification protocol 2) and xenografted for 1 week to nude mice. The number of morphologically normal follicles after cryopreservation and grafting and fibrotic surface area were determined by histologic analysis. Apoptosis was assessed by the TUNEL method. Morphometric analysis of TUNEL-positive surface area also was performed. Follicle proliferation was evaluated by immunohistochemistry. After xenografting, a difference was observed between the cryopreservation procedures applied. According to TUNEL analysis, both vitrification protocols showed better preservation of preantral follicles than the conventional freezing method. Moreover, histologic evaluation showed a significantly higher proportion of primordial follicles in vitrified (protocol 2)-warmed ovarian tissue than in frozen-thawed tissue. The proportion of growing follicles and fibrotic surface area was similar in all groups. Vitrification procedures appeared to preserve not only the morphology and survival of preantral follicles after 1 week of xenografting, but also their ability to resume folliculogenesis. In addition, vitrification protocol 2 had a positive impact on the quiescent state of primordial follicles after xenografting. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Histomorphology of the Olfactory Mucosa and Spinal Tissue Sparing Following Transplantation in the Partial Spinal Cord Injury in Rats

    Directory of Open Access Journals (Sweden)

    H Delaviz

    2011-01-01

    Full Text Available Introduction & Objective: Nowadays, cellular and tissues transplant has become the focus of attention for spinal cord injury. It has been shown olfactory nerve cells or olfactory mucosa whi have more efficient on nervous tissue repair and they have been more studied in experimental study. Furthermore, they were used in a few clinical centers for spinal defect. But mucosa tissue and spinal tissue have different structure and there is doubt about the integration of mucosa tissue in nervous tissue. Thus, in this research the morphology and the effect of the fetal olfactory mucosa (FOM on spinal tissue sparing were studied after transplanted into the spinal cord hemisection in rats. Materials & Methods: This experimental study was conducted at Iran University of Medical Sciences in 2008. Of thirty eight female Sprague-Dawley (200-250g rats twenty- eight were spinally hemisected at the L1 spinal level and were randomized into two groups of 14 animals. Treatment group received FOM graft and the control group received fetal respiratory mucosa graft (FRM. The other animals received surgical procedure without spinal cord injury as a sham group. The morphology of the transplant region and spinal tissue sparing was examined histological eight weeks after transplantation. The collected data was analyzed by the SPSS software using ANOVA and the morphology of the transplant region were studied by light microscope. Results: Histological study showed that the both mucosa tissues could not integrate with the parenchyma of the spinal tissue. Although the FOM were fused more than the FRM with the host tissue but clear boundary was seen at the graft–host interface. The mean spinal tissue sparing of the treatment group increased a little compare to the control but a significant difference was not apparent whereas, the spinal tissue sparing in treatment and control groups compare to the sham group decreased significantly (P < 0.05. Conclusion: Transplantation of

  18. Isolated abnormal strict morphology is not a contraindication for intrauterine insemination.

    Science.gov (United States)

    Lockwood, G M; Deveneau, N E; Shridharani, A N; Strawn, E Y; Sandlow, J I

    2015-11-01

    This study sought to investigate whether isolated abnormal strict morphology (<5% normal forms) and very low strict morphology (0-1% normal forms) affects pregnancy rates in intrauterine insemination (IUI). This was a retrospective study performed at an Academic Medical Center/Reproductive Medicine Center. Four hundred and eight couples were included for 856 IUI cycles. 70 IUI cycles were performed in couples with abnormal strict morphology and otherwise normal semen parameters. Outcomes were measured as clinical pregnancy rate per IUI cycle as documented by fetal heart activity on maternal ultrasound. Clinical pregnancy rate did not significantly differ between the group with abnormal strict morphology [11/70 (15.7%)] and the normal morphology group [39/281 (13.9%)]. Additionally, there was no significant difference between the pregnancy rate in the abnormal morphology group compared to that of our overall institutional IUI pregnancy rate [145/856 (16.9%)]. Furthermore, there was no significant difference between pregnancy rate in the very low morphology group [3/14 (21.4%)] compared to those with normal morphology or the overall IUI pregnancy rate. Patients with isolated abnormal strict morphology have clinical pregnancy rates similar to those with normal morphology for IUI. Even in those with very low normal forms, consideration of IUI for assisted reproduction should not be excluded. © 2015 American Society of Andrology and European Academy of Andrology.

  19. Alginate based scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valente, J.F.A.; Valente, T.A.M. [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal); Alves, P.; Ferreira, P. [CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra (Portugal); Silva, A. [Centro de Ciencia e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilha (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2012-12-01

    The design and production of scaffolds for bone tissue regeneration is yet unable to completely reproduce the native bone properties. In the present study new alginate microparticle and microfiber aggregated scaffolds were produced to be applied in this area of regenerative medicine. The scaffolds' mechanical properties were characterized by thermo mechanical assays. Their morphological characteristics were evaluated by isothermal nitrogen adsorption and scanning electron microscopy. The density of both types of scaffolds was determined by helium pycnometry and mercury intrusion porosimetry. Furthermore, scaffolds' cytotoxic profiles were evaluated in vitro by seeding human osteoblast cells in their presence. The results obtained showed that scaffolds have good mechanical and morphological properties compatible with their application as bone substitutes. Moreover, scaffold's biocompatibility was confirmed by the observation of cell adhesion and proliferation after 5 days of being seeded in their presence and by non-radioactive assays. - Highlights: Black-Right-Pointing-Pointer Design and production of scaffolds for bone tissue regeneration. Black-Right-Pointing-Pointer Microparticle and microfiber alginate scaffolds were produced through a particle aggregation technique; Black-Right-Pointing-Pointer Scaffolds' mechanically and biologically properties were characterized through in vitro studies;.

  20. Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas

    International Nuclear Information System (INIS)

    Grosenick, Dirk; Wabnitz, Heidrun; Moesta, K Thomas; Mucke, Joerg; Schlag, Peter M; Rinneberg, Herbert

    2005-01-01

    Within a clinical trial on scanning time-domain optical mammography reported on in a companion publication (part I), craniocaudal and mediolateral projection optical mammograms were recorded from 154 patients, suspected of having breast cancer. Here we report on in vivo optical properties of the subset of 87 histologically validated carcinomas which were visible in optical mammograms recorded at two or three near-infrared wavelengths. Tumour absorption and reduced scattering coefficients were derived from distributions of times of flight of photons recorded at the tumour site employing the model of diffraction of photon density waves by a spherical inhomogeneity, located in an otherwise homogeneous tissue slab. Effective tumour radii, taken from pathology, and tumour location along the compression direction, deduced from off-axis optical scans of the tumour region, were included in the analysis as prior knowledge, if available. On average, tumour absorption coefficients exceeded those of surrounding healthy breast tissue by a factor of about 2.5 (670 nm), whereas tumour reduced scattering coefficients were larger by about 20% (670 nm). From absorption coefficients at 670 nm and 785 nm total haemoglobin concentration and blood oxygen saturation were deduced for tumours and surrounding healthy breast tissue. Apart from a few outliers total haemoglobin concentration was observed to be systematically larger in tumours compared to healthy breast tissue. In contrast, blood oxygen saturation was found to be a poor discriminator for tumours and healthy breast tissue; both median values of blood oxygen saturation are the same within their statistical uncertainties. However, the ratio of total haemoglobin concentration over blood oxygen saturation further improves discrimination between tumours and healthy breast tissue. For 29 tumours detected in optical mammograms recorded at three wavelengths (670 nm, 785 nm, 843 nm or 884 nm), scatter power was derived from transport

  1. Ultrasound of soft tissue masses of the hand

    Directory of Open Access Journals (Sweden)

    James Teh

    2012-12-01

    Full Text Available Most soft tissue mass lesions of the hand are benign. Ganglia are the commonest lesions encountered, followed by giant cell tumors of the tendon sheath. Malignant tumors are rare. Often a specific diagnosis can be achieved on imaging by considering the location and anatomical relations of the lesion within the hand or wrist, and assessing its morphology. Magnetic resonance imaging is an excellent modality for evaluating soft tissue tumors with its multiplanar capability and ability to characterize tissue. Ultrasound plays a complementary role to MRI. It is often the initial modality used for assessing masses as it is cheap and available, and allows reliable differentiation of cystic from solid lesions, along with a real time assessment of vascularity. This review describes the US appearances of the most frequently encountered soft tissue masses of the wrist and hand, correlating the findings with MRI where appropriate.

  2. Can cell survival parameters be deduced from non-clonogenic assays of radiation damage to normal tissue

    International Nuclear Information System (INIS)

    Michalowski, A.; Wheldon, T.E.; Kirk, J.

    1984-01-01

    The relationship between dose-response curves for large scale radiation injury to tissues and survival curves for clonogenic cells is not necessarily simple. Sterilization of clonogenic cells occurs near-instantaneously compared with the protracted lag period for gross injury to tissues. Moreover, with some types of macroscopic damage, the shapes of the dose-response curves may depend on time of assay. Changes in the area or volume of irradiated tissue may also influence the shapes of these curves. The temporal pattern of expression of large scale injury also varies between tissues, and two distinct groups can be recognized. In rapidly proliferating tissues, lag period is almost independent of dose, whilst in slowly proliferating tissues, it is inversely proportional to dose. This might be explained by invoking differences in corresponding proliferative structures of the tissues. (Three compartmental Type H versus one compartmental Type F proliferative organization). For the second group of tissues particularly, mathematical modelling suggests a systematic dissociation of the dose-response curves for clonogenic cell survival and large scale injury. In particular, it may be difficult to disentangle the contributions made to inter-fraction sparing by cellular repair processes and by proliferation-related factors. (U.K.)

  3. Dependence of the surface roughness of MAPLE-deposited films on the solvent parameters

    Science.gov (United States)

    Caricato, A. P.; Leggieri, G.; Martino, M.; Vantaggiato, A.; Valerini, D.; Cretì, A.; Lomascolo, M.; Manera, M. G.; Rella, R.; Anni, M.

    2010-12-01

    Matrix-assisted pulsed laser evaporation (MAPLE) was used to deposit layers of poly(9,9-dioctylfluorene) (PFO) to study the relation between the solvent properties (laser light absorption, boiling temperature and solubility parameters) and the morphology of the deposited films. To this end, the polymer was diluted (0.5 wt%) in tetrahydrofuran—THF, toluene and toluene/hexane mixtures. The thickness of the films was equal to 70±20 nm. The morphology and uniformity of the films was investigated by Atomic Force Microscopy and by the photoluminescence emission properties of the polymer films, respectively. It is shown that, although the solubility parameters of the solvents are important in controlling the film roughness and morphology, the optical absorption properties and boiling temperature play a very important role, too. In fact, for matrices characterized by the same total solubility parameter, lower roughness values are obtained for films prepared using solvents with lower penetration depth of the laser radiation and higher boiling temperatures.

  4. Topographic modelling of haptic properties of tissue products

    International Nuclear Information System (INIS)

    Rosen, B-G; Fall, A; Farbrot, A; Bergström, P; Rosen, S

    2014-01-01

    The way a product or material feels when touched, haptics, has been shown to be a property that plays an important role when consumers determine the quality of products For tissue products in constant touch with the skin, ''softness'' becomes a primary quality parameter. In the present work, the relationship between topography and the feeling of the surface has been investigated for commercial tissues with varying degree of texture from the low textured crepe tissue to the highly textured embossed- and air-dried tissue products. A trained sensory panel at was used to grade perceived haptic ''roughness''. The technique used to characterize the topography was Digital light projection (DLP) technique, By the use of multivariate statistics, strong correlations between perceived roughness and topography were found with predictability of above 90 percent even though highly textured products were included. Characterization was made using areal ISO 25178-2 topography parameters in combination with non-contacting topography measurement. The best prediction ability was obtained when combining haptic properties with the topography parameters auto-correlation length (Sal), peak material volume (Vmp), core roughness depth (Sk) and the maximum height of the surface (Sz)

  5. Correlation between enamel morphological and dental pulp physiological outcomes as a function of lasing parameters

    Science.gov (United States)

    Arcoria, Charles J.; Wagner, Martin J.; Vitasek, Bunny A.

    1992-06-01

    Previous oral medicine research has insufficiently quantified and correlated laser effects on calcified/soft-tissue combinations. The purpose of this study was to explain lasing effects on outcome variables (pulp response and enamel condition). Vital animal molars were irradiated using several mediums, with predetermined energy densities serving as independent variables. Predetermined safe-tissue thresholds, including pulp/enamel conditions, can be demonstrated to display linear relationships using several laser systems.

  6. Laser ablation of hard tissue: correlation between the laser beam parameters and the post-ablative tissue characteristics

    Science.gov (United States)

    Serafetinides, Alexandros A.; Makropoulou, Mersini I.; Khabbaz, Maruan

    2003-11-01

    Hard dental tissue laser applications, such as preventive treatment, laser diagnosis of caries, laser etching of enamel, laser decay removal and cavity preparation, and more recently use of the laser light to enlarge the root canal during the endodontic therapy, have been investigated for in vitro and in vivo applications. Post-ablative surface characteristics, e.g. degree of charring, cracks and other surface deformation, can be evaluated using scanning electron microscopy. The experimental data are discussed in relevance with the laser beam characteristics, e.g. pulse duration, beam profile, and the beam delivery systems employed. Techniques based on the laser illumination of the dental tissues and the subsequent evaluation of the scattered fluorescent light will be a valuable tool in early diagnosis of tooth diseases, as carious dentin or enamel. The laser induced autofluorescence signal of healthy dentin is much stronger than that of the carious dentin. However, a better understanding of the transmission patterns of laser light in teeth, for both diagnosis and therapy is needed, before the laser procedures can be used in a clinical environment.

  7. In situ ultrahigh-resolution optical coherence tomography characterization of eye bank corneal tissue processed for lamellar keratoplasty.

    Science.gov (United States)

    Brown, Jamin S; Wang, Danling; Li, Xiaoli; Baluyot, Florence; Iliakis, Bernie; Lindquist, Thomas D; Shirakawa, Rika; Shen, Tueng T; Li, Xingde

    2008-08-01

    To use optical coherence tomography (OCT) as a noninvasive tool to perform in situ characterization of eye bank corneal tissue processed for lamellar keratoplasty. A custom-built ultrahigh-resolution OCT (UHR-OCT) was used to characterize donor corneal tissue that had been processed for lamellar keratoplasty. Twenty-seven donor corneas were analyzed. Four donor corneas were used as controls, whereas the rest were processed into donor corneal buttons for lamellar transplantation by using hand dissection, a microkeratome, or a femtosecond laser. UHR-OCT was also used to noninvasively characterize and monitor the viable corneal tissue immersed in storage medium over 3 weeks. The UHR-OCT captured high-resolution images of the donor corneal tissue in situ. This noninvasive technique showed the changes in donor corneal tissue morphology with time while in storage medium. The characteristics of the lamellar corneal tissue with each processing modality were clearly visible by UHR-OCT. The in situ characterization of the femtosecond laser-cut corneal tissue was noted to have more interface debris than shown by routine histology. The effects of the femtosecond laser microcavitation bubbles on the corneal tissue were well visualized at the edges of the lamellar flap while in storage medium. The results of our feasibility study show that UHR-OCT can provide superb, in situ microstructural characterization of eye bank corneal tissue noninvasively. The UHR-OCT interface findings and corneal endothelial disc thickness uniformity analysis are valuable information that may be used to optimize the modalities and parameters for lamellar tissue processing. The UHR-OCT is a powerful approach that will allow us to further evaluate the tissue response to different processing techniques for posterior lamellar keratoplasty. It may also provide information that can be used to correlate with postoperative clinical outcomes. UHR-OCT has the potential to become a routine part of tissue

  8. Sexual dimorphism in visceral adiposity measures, parameters and ...

    African Journals Online (AJOL)

    Visceral adipose tissue is considered the most important anatomic site of adipose tissue aggregation and is considered the hall mark of metabolic syndrome (MetS) phenotype. The aim of the study was to determine sexual dimorphism in visceral adiposity measures, parameters and biomarkers of metabolic syndrome ...

  9. Real time assessment of RF cardiac tissue ablation with optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Demos, S G; Sharareh, S

    2008-03-20

    An optical spectroscopy approach is demonstrated allowing for critical parameters during RF ablation of cardiac tissue to be evaluated in real time. The method is based on incorporating in a typical ablation catheter transmitting and receiving fibers that terminate at the tip of the catheter. By analyzing the spectral characteristics of the NIR diffusely reflected light, information is obtained on such parameters as, catheter-tissue proximity, lesion formation, depth of penetration of the lesion, formation of char during the ablation, formation of coagulum around the ablation site, differentiation of ablated from healthy tissue, and recognition of micro-bubble formation in the tissue.

  10. Iso-effect tables for tolerance of irradiated normal human tissues

    International Nuclear Information System (INIS)

    Cohen, L.; Creditor, M.

    1983-01-01

    Available literature on a radiation injury to human tissues (lung, brain, kidney and intestine) was surveyed. A parameter search program (RAD3) was used to derive best-fitting cell kinetic parameters, on the assumption that radiation injury arises from depletion of parenchymal cells in the irradiated organs. From these parameters iso-effect tables were constructed for a wide range of treatment schedules, including daily treatment as well as fractionation at longer intervals, for each tissue. The tables provide a set of limiting doses, above which the risk of radiation injury becomes substantial. Tolerance limits and dose-time-factors were substantially different in the four tissues. It is concluded that computed iso-effect tables provide a more reliable guide to treatment than conventional time-dose equations

  11. Comparison of biohumoral and morphological parameters in acute pancreatitis

    Directory of Open Access Journals (Sweden)

    Tasić Tomislav

    2014-01-01

    Full Text Available Introduction. Acute pancreatitis occurs as a result of autodigestive activation of pancreatic proenzymes, within the parenchyma of the glands. Objective. The goal of the work was to establish possible connection of etiology and severity of the acute pancreatitis and biohumoral parameters, ultrasound and CT. Methods. The study included 273 patients with pancreatitis, classified by Ranson’s score, according to degree of severity and etiology, whose biohumoral parameters were correlated with each other, and with the ultrasound and CT findings. Results. The values of amylase and ALT were significantly higher in the severe form of pancreatitis and biliary etiology compared to etilic (p<0.05. The ratio of AST/ALT was significantly higher in the group of etilic compared to biliary etiology (p<0.05. LDH was significantly higher in the severe form group compared to moderate form of pancreatitis (p<0.01. Cholesterol was significantly higher in the group of biliary compared to the group of etilic pancreatitis (p<0.05. There was a negative low correlation between the value of calcium ions in the plasma and CT analysis (p=0.05. Low degree negative correlation between the value of calcium ions and ultrasound analysis was established (p=0.0001. Conclusion. There was a negative correlation between the level of ionized calcium in the blood and the degree of the acute pancreatitis by the Balthazar score. Mean value of alpha amylase, total value of cholesterol and ALT were significantly higher in the group of biliary compared to the group of etilic acute pancreatitis. The average values of the alpha amylase, LDH and ALT were significantly higher in the group of severe form of the acute pancreatitis compared to the group of moderate form. The ratio AST/ALT was significantly higher in the group of etilic than in the group of biliary pancreatitis.

  12. Tissue equivalence in neutron dosimetry

    International Nuclear Information System (INIS)

    Nutton, D.H.; Harris, S.J.

    1980-01-01

    A brief review is presented of the essential features of neutron tissue equivalence for radiotherapy and gives the results of a computation of relative absorbed dose for 14 MeV neutrons, using various tissue models. It is concluded that for the Bragg-Gray equation for ionometric dosimetry it is not sufficient to define the value of W to high accuracy and that it is essential that, for dosimetric measurements to be applicable to real body tissue to an accuracy of better than several per cent, a correction to the total absorbed dose must be made according to the test and tissue atomic composition, although variations in patient anatomy and other radiotherapy parameters will often limit the benefits of such detailed dosimetry. (U.K.)

  13. [Limitations and controversies in determining the predictive value of oocyte and embryo morphology criteria].

    Science.gov (United States)

    Figueira, Rita de Cássia Savio; Aoki, Tsutomu; Borges Junior, Edson

    2015-11-01

    In order to increase the success rate of in vitro fertilization cycles, several studies have focused on the identification of the embryo with higher implantation potential. Despite recent advances in the reproductive medicine, based on the OMICs technology, routinely applicable methodologies are still needed. Thus, in most fertilization centers embryo selection for transfer is still based on morphological parameters evaluated under light microscopy. Several morphological parameters may be evaluated, ranging from the pronuclear to blastocyst stage. In general, despite the day of transfer, some criteria are suggested to present a predictive value for embryo viability when analyzed independently or combined. However, the subjectivity of morphological evaluation, as well as the wide diversity of embryo classification systems used by different fertilization centers shows contrasting results, making the implementation of a consensus regarding different morphological criteria and their predictive value a difficult task. The optimization of embryo selection represents a large potential to increase treatment success rates, allowing the transfer of a reduced number of embryos and minimizing the risks of multiple pregnancy.

  14. The Effect of Rotating Collector Design on Tensile Properties and Morphology of Electrospun Polycaprolactone Fibres

    Directory of Open Access Journals (Sweden)

    Anindyajati Adhi

    2015-01-01

    Full Text Available Electrospinning is a technique that can produce fibres in the nanoscale range. This process is useful for many applications, including fabrication of fibrous scaffolds for fibrocartilage tissue engineering. For this application, cell attachment and tissue development is influenced by fibre morphology and mechanical properties. This electrospinning study investigated the influence of rotating collector design on morphology and mechanical properties of electrospun polycaprolactone fibre. The experiment employed 4 mandrel designs: 1 full surface of aluminium; 2 with gap feature; 3 with gap feature and teflon support; 4 with gap feature and tape support. The highest elastic modulus was obtained from mandrel with gap and tape support, which was 24.6 MPa and significantly higher compared to fibres acquired from other collector designs. Fibre diameter attained was identical across the different collectors, ranging from 0.5 - 2 μm. Gap introduction showed enhanced alignment in the resultant fibre. It can be concluded that fibre alignment and tensile properties can be improved by simply modifying the collector design. This improved fibre mat can be developed as a biomaterial for fibrocartilage tissue engineering scaffolds.

  15. Reliability of various skeletal indicators in assessing vertical facial soft tissue pattern

    International Nuclear Information System (INIS)

    Ahmed, M.; Shaikh, A.; Fida, M.

    2016-01-01

    Background: Angle paradigm has ruled the orthodontic diagnosis and treatment planning for past several decades, but the recent introduction of the soft tissue paradigm has significantly changed the dynamics of orthodontic practice. This study was designed to identify skeletal analyses that best correlates with the parameters use to assess facial soft tissue profile that may lead to an accurate diagnosis and efficient treatment plan. Methods: A total of 192 subjects (96 males and 96 females; mean age 22.95±4.75 years) were included in the study. The total sample was distributed into three equal groups (i.e., long, normal and short face) on the basis of soft tissue vertical pattern. Pre-treatment lateral cephalograms were used to assess various vertical linear and angular parameters. Various skeletal analyses and soft tissue parameters were correlated using the Pearson correlation in different vertical groups, separately for males and females. Results: In males, a weak positive correlation (r=0.485) was found between skeletal anterior facial height ratio (Sk. LAFH/TAFH) and soft tissue anterior facial height ratio (LAFH/TAFH), whereas in females maxillary-mandibular plane angle (MMA) showed a weak positive correlation (r=0.300). In the long face group, a positive but a weak correlation (r=0.349) was present between cranial base angle (SN-GoGn) and LAFH/TAFH. Conclusions: Skeletal analyses (MMA, Sk. LAFH/TAFH) significantly correlated to soft tissue parameters. Males and long faced individuals showed a higher correlation between skeletal and soft tissue parameters as compared to that of the females. (author)

  16. Hip morphologic measurements in an Egyptian population.

    Science.gov (United States)

    Aly, Tarek A

    2011-04-11

    The study of acetabular morphology has shown that there are geographic differences in the morphology and prevalence of acetabular dysplasia among different ethnic groups. However, few data exist on the shape of the acetabulum in various populations around the world. In this study, we examined samples of pelvic radiographs from Egyptian adults. Acetabular dysplasia in adults is characterized by a shallow and relatively vertical acetabulum.The aim of this study was to examine acetabular morphology to determine the prevalence of hip dysplasia in adult Egyptians. This included 244 adults, 134 men and 110 women between 18 and 60 years, who were used to measure center edge angle, acetabular Sharp angle, acetabular head index on anteroposterior radiographic views of the hip joints, and vertical center anterior margin angle on false profile views. The radiographs were taken of patients with no hip complaints at Tanta University Hospital.The results were statistically studied according to the age, height, and weight of patients. The prevalence of acetabular dysplasia was 2.25% for Egyptian men and 3.6% for women with respect to center edge angles, vertical center anterior margin angle, and acetabular head index.We concluded that gender variations in the morphology of the acetabulum and sex influences geometrical measurements of the acetabulum. Egyptian women were more dysplastic than men using the 4 parameters of hip measurements. There are also racial variations in hip morphology. Copyright 2011, SLACK Incorporated.

  17. Effect of high shear mixing parameters and degassing temperature on the morphology of epoxy-clay nanocomposites

    KAUST Repository

    Al-Qadhi, Muneer; Merah, N.; Mezghani, Khaled S.; Khan, Zafarullah; Gasem, Zuhair Mattoug Asad; Sougrat, Rachid

    2013-01-01

    Epoxy-clay nanocomposites were prepared by high shear mixing method using Nanomer I.30E nanoclay as nano-reinforcement in diglycidyl ether of bisphenol A (DGEBA). The effect of mixing speed and time on the nature and degree of clay dispersion were investigated by varying the mixing speed in the range of 500-8000 RPM and mixing time in the range of 15-90 minutes. The effect of degassing temperature on the morphology of the resultant nanocomposites was also studied. Scanning and transmission microscopy (SEM and TEM) along with x-ray diffraction (XRD) have been used to characterize the effect of shear mixing speed, mixing time and degassing temperature on the structure of the resultant nanocomposites. The SEM, TEM and XRD examinations demonstrated that the degree of clay dispersion was improved with increasing the high shear mixing speed and mixing time. The results showed that the optimum high shear mixing speed and mixing time were 6000 rpm and 60 min, respectively. It was observed that the structure of the nanocomposites that have been degassed at 65°C was dominated by ordered intercalated morphology while disordered intercalated with some exfoliated morphology was found for the sample degassed at 100°C for the first 2 hours of the degassing process. © (2013) Trans Tech Publications, Switzerland.

  18. Brain Volume Estimation Enhancement by Morphological Image Processing Tools

    Directory of Open Access Journals (Sweden)

    Zeinali R.

    2017-12-01

    Full Text Available Background: Volume estimation of brain is important for many neurological applications. It is necessary in measuring brain growth and changes in brain in normal/ abnormal patients. Thus, accurate brain volume measurement is very important. Magnetic resonance imaging (MRI is the method of choice for volume quantification due to excellent levels of image resolution and between-tissue contrast. Stereology method is a good method for estimating volume but it requires to segment enough MRI slices and have a good resolution. In this study, it is desired to enhance stereology method for volume estimation of brain using less MRI slices with less resolution. Methods: In this study, a program for calculating volume using stereology method has been introduced. After morphologic method, dilation was applied and the stereology method enhanced. For the evaluation of this method, we used T1-wighted MR images from digital phantom in BrainWeb which had ground truth. Results: The volume of 20 normal brain extracted from BrainWeb, was calculated. The volumes of white matter, gray matter and cerebrospinal fluid with given dimension were estimated correctly. Volume calculation from Stereology method in different cases was made. In three cases, Root Mean Square Error (RMSE was measured. Case I with T=5, d=5, Case II with T=10, D=10 and Case III with T=20, d=20 (T=slice thickness, d=resolution as stereology parameters. By comparing these results of two methods, it is obvious that RMSE values for our proposed method are smaller than Stereology method. Conclusion: Using morphological operation, dilation allows to enhance the estimation volume method, Stereology. In the case with less MRI slices and less test points, this method works much better compared to Stereology method.

  19. Deciphering cellular morphology and biocompatibility using polymer microarrays

    International Nuclear Information System (INIS)

    Pernagallo, Salvatore; Unciti-Broceta, Asier; DIaz-Mochon, Juan Jose; Bradley, Mark

    2008-01-01

    A quantitative and qualitative analysis of cellular adhesion, morphology and viability is essential in understanding and designing biomaterials such as those involved in implant surfaces or as tissue-engineering scaffolds. As a means to simultaneously perform these studies in a high-throughput (HT) manner, we report a normalized protocol which allows the rapid analysis of a large number of potential cell binding substrates using polymer microarrays and high-content fluorescence microscopy. The method was successfully applied to the discovery of optimal polymer substrates from a 214-member polyurethane library with mouse fibroblast cells (L929), as well as simultaneous evaluation of cell viability and cellular morphology. Analysis demonstrated high biocompatibility of the binding polymers and permitted the identification of several different cellular morphologies, showing that specific polymer interactions may provoke changes in cell shape. In addition, SAR studies showed a clear correspondence between cellular adhesion and polymer structure. The approach can be utilized to perform multiple experiments (up to 1024 single experiments per slide) in a highly reproducible manner, leading to the generation of vast amounts of data in a short time period (48-72 h) while reducing dramatically the quantities of polymers, reagents and cells used

  20. Osteogenesis and Morphology of the Peri-Implant Bone Facing Dental Implants

    Directory of Open Access Journals (Sweden)

    Marco Franchi

    2004-01-01

    Full Text Available This study investigated the influence of different implant surfaces on peri-implant osteogenesis and implant face morphology of peri-implant tissues during the early (2 weeks and complete healing period (3 months. Thirty endosseous titanium implants (conic screws with differently treated surfaces (smooth titanium = SS, titanium plasma sprayed = TPS, sand-blasted zirconium oxide = Zr-SLA were implanted in femur and tibiae diaphyses of two mongrel sheep. Histological sections of the implants and surrounding tissues obtained by sawing and grinding techniques were observed under light microscopy (LM. The peri-implant tissues of other samples were mechanically detached from the corresponding implants to be processed for SEM observation. Two weeks after implantation, we observed osteogenesis (new bone trabeculae around all implant surfaces only where a gap was present at the host bone-metal interface. No evident bone deposition was detectable where threads of the screws were in direct contact with the compact host bone. Distance osteogenesis predominated in SS implants, while around rough surfaces (TPS and Zr-SLA, both distance and contact osteogenesis were present. At SEM analysis 2 weeks after implantation, the implant face of SS peri-implant tissue showed few, thin, newly formed, bone trabeculae immersed in large, loose, marrow tissue with blood vessels. Around the TPS screws, the implant face of the peri-implant tissue was rather irregular because of the rougher metal surface. Zr-SLA screws showed more numerous, newly formed bone trabeculae crossing marrow spaces and also needle-like crystals in bone nodules indicating an active mineralising process. After 3 months, all the screws appeared osseointegrated, being almost completely covered by a compact, mature, newly formed bone. However, some marrow spaces rich in blood vessels and undifferentiated cells were in contact with the metal surface. By SEM analysis, the implant face of the peri

  1. Skin mechanics and morphology of two species of Pachydactylus ...

    African Journals Online (AJOL)

    The southern African species Pachydactylus namaquensis is one of only a few mainland species of geckos that exhibits the escape strategy of regional integumentary loss. The skin morphology and mechanics of this species were compared to the same parameters in lhe sympatric congener P. bibronii. The tensile strength ...

  2. TISSUE BANKING – A NEW HOPE FOR RENERATIVE MEDICINE

    Directory of Open Access Journals (Sweden)

    Mihail George Man

    2013-12-01

    Full Text Available Cells, tissues and organs banks are specialised facilities in hospitals or medical institutions performing processing, preservation, banking and distribution activities of human morphological components. The authorisation criterias of such facilities are established according to the legislation regarding the human cells, tissues and organs transplantation (the law no. 48/2008 of the Romanian Parliament. Those „cells and tissues banks” are obliged to respect the instructions reguardind the donation, testing, processing, storage, distribution, encoding and trasability of the tissues and cells of human origin, used for therapeutical purposes, as well as the notification of the severe accidents and side effects during the transplantation process. The prelevation, embeding, labeling and transportation of human cells and tissues are performed according to the technical specifications in order to minimise the risk of biological contamination and only after obtaining the informed consent of the living donor and strictely respecting the legal aspects on the decesed donor.

  3. A tissue-specific approach to the analysis of metabolic changes in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jürgen Hench

    Full Text Available The majority of metabolic principles are evolutionarily conserved from nematodes to humans. Caenorhabditis elegans has widely accelerated the discovery of new genes important to maintain organismic metabolic homeostasis. Various methods exist to assess the metabolic state in worms, yet they often require large animal numbers and tend to be performed as bulk analyses of whole worm homogenates, thereby largely precluding a detailed studies of metabolic changes in specific worm tissues. Here, we have adapted well-established histochemical methods for the use on C. elegans fresh frozen sections and demonstrate their validity for analyses of morphological and metabolic changes on tissue level in wild type and various mutant strains. We show how the worm presents on hematoxylin and eosin (H&E stained sections and demonstrate their usefulness in monitoring and the identification of morphological abnormalities. In addition, we demonstrate how Oil-Red-O staining on frozen worm cross-sections permits quantification of lipid storage, avoiding the artifact-prone fixation and permeabilization procedures of traditional whole-mount protocols. We also adjusted standard enzymatic stains for respiratory chain subunits (NADH, SDH, and COX to monitor metabolic states of various C. elegans tissues. In summary, the protocols presented here provide technical guidance to obtain robust, reproducible and quantifiable tissue-specific data on worm morphology as well as carbohydrate, lipid and mitochondrial energy metabolism that cannot be obtained through traditional biochemical bulk analyses of worm homogenates. Furthermore, analysis of worm cross-sections overcomes the common problem with quantification in three-dimensional whole-mount specimens.

  4. POLARIZATION IMAGING AND SCATTERING MODEL OF CANCEROUS LIVER TISSUES

    Directory of Open Access Journals (Sweden)

    DONGZHI LI

    2013-07-01

    Full Text Available We apply different polarization imaging techniques for cancerous liver tissues, and compare the relative contrasts for difference polarization imaging (DPI, degree of polarization imaging (DOPI and rotating linear polarization imaging (RLPI. Experimental results show that a number of polarization imaging parameters are capable of differentiating cancerous cells in isotropic liver tissues. To analyze the contrast mechanism of the cancer-sensitive polarization imaging parameters, we propose a scattering model containing two types of spherical scatterers and carry on Monte Carlo simulations based on this bi-component model. Both the experimental and Monte Carlo simulated results show that the RLPI technique can provide a good imaging contrast of cancerous tissues. The bi-component scattering model provides a useful tool to analyze the contrast mechanism of polarization imaging of cancerous tissues.

  5. Morphology of the porous silicon obtained by electrochemical anodization method

    Science.gov (United States)

    Bertel H, S. D.; Dussán C, A.; Diaz P, J. M.

    2018-04-01

    In this report, the dependence of porous silicon with the synthesis parameters and their correlation with the optical and morphological properties is studied. The P-type silicon-crystalline samples and orientation were prepared by electrochemical anodization and were characterized using SEM in order to know the evolution of the pore morphology. It was observed that the porosity and thickness of the samples increased with the increase of the concentration in the solution and a high pore density (70%) with a pore size between 40nm and 1.5μm.

  6. Anogenital distance and reproductive parameters in young men

    DEFF Research Database (Denmark)

    Parra, M D; Mendiola, J; Jørgensen, N

    2016-01-01

    ) and to the cephalad insertion of the penis (AGDAP )] were assessed in 215 university students. Semen parameters (semen volume, sperm concentration, total sperm counts, motility and morphology) and serum reproductive hormones (follicle stimulating hormone, luteinising hormone, inhibin B, testosterone, calculated free...

  7. Process depending morphology and resulting physical properties of TPU

    Energy Technology Data Exchange (ETDEWEB)

    Frick, Achim, E-mail: achim.frick@hs-aalen.de; Spadaro, Marcel, E-mail: marcel.spadaro@hs-aalen.de [Institute of Polymer Science and Processing (iPSP), Aalen University (Germany)

    2015-12-17

    Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix or of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.

  8. Clinical diagnostic value of viable Schistosoma japonicum eggs detected in host tissues.

    Science.gov (United States)

    Gu, Kongzhen; Li, Yuesheng; Driguez, Patrick; Zeng, Qingren; Yu, Xinlin; Sun, Hui; Cai, Liting; He, Yongkang; Wang, Wenyang; McManus, Donald P

    2017-04-04

    Schistosomiasis, one of the neglected tropical diseases, is endemic in more than 70 countries. However, the clinical diagnosis of patients with a low degree of infection is an unsolved technical problem. In areas endemic for schistosomiasis japonica, proctoscopy detection of eggs has been one method used for clinical diagnosis. However, it is often a challenge to find typical live eggs and it is difficult to distinguish live eggs from large numbers of partially degraded and/or completely degraded eggs within colon biopsy tissue. To address this problem, we tested six different morphological and biochemical/molecular markers (ALP; morphological characteristics of egg; CalS (calcified substance); AOS (antioxidase); SDHG (succinic dehydrogenase) and SjR2 mRNA (retrotransposons 2 of S.japonicum genome mRNA)), including four new markers (CalS; AOS; SDHG and SjR2 mRNA.), to determine the viability of S. japonicum eggs deposited in human and mouse colon tissues. Our ultimate aim is to obtain a new method that is more sensitive, practical and accurate to clinically diagnose schistosomiasis. Tissue samples were collected from mice at six different time points during S. japonicum infection with or without treatment with praziquantel (PZQ). Four new biochemical or molecular markers were used for the detection of egg viability from mouse liver and intestinal samples: CalS; AOS; SDHG and SjR2 mRNA. Subsequently, all markers were employed for the detection and analysis of eggs deposited in biopsy materials from patients with suspected schistosomiasis japonica for clinical evaluation. Microscopic examination of the egg morphology, worm burden in vivo and ALP (alkaline phosphatase) levels were used as a reference standard to evaluate the sensitivity and reliability of four new markers detecting egg viability. The results of the study showed that the morphology of S. japonicum eggs deposited in tissues of hosts with schistosomiasis, especially cases with chronic schistosomiasis, is

  9. Monitoring soft tissue coagulation by optical spectroscopy

    Science.gov (United States)

    Lihachev, A.; Lihacova, I.; Heinrichs, H.; Spigulis, J.; Trebst, T.; Wehner, M.

    2017-12-01

    Laser tissue welding (LTW) or laser tissue soldering (LTS) is investigated since many years for treatment of incisions, wound closure and anastomosis of vessels [1, 2]. Depending on the process, a certain temperature in the range between 65 °C to 85 °C must be reached and held for a few seconds. Care has to be taken not to overheat the tissue, otherwise necrosis or tissue carbonization may occur and will impair wound healing. Usually the temperature is monitored during the process to control the laser power [3]. This requires either bulky equipment or expensive and fragile infrared fibers to feed the temperature signal to an infrared detector. Alternatively, changes in tissue morphology can be directly observed by analysis of spectral reflectance. We investigate spectral changes in the range between 400 nm to 900 nm wavelength. Characteristic spectral changes occur when the temperature of tissue samples increase above 70 °C which is a typical setpoint value for temperature control of coagulation. We conclude that simple spectroscopy in the visible range can provide valuable information during LTS and LTW and probably replace the delicate measurement of temperature. A major advantage is that optical measurements can be performed using standard optical fibers and can be easily integrated into a surgical tool.

  10. Intrinsic, Transitional, and Extrinsic Morphological Factors Associated With Rupture of Intracranial Aneurysms.

    Science.gov (United States)

    Ho, Allen L; Lin, Ning; Frerichs, Kai U; Du, Rose

    2015-09-01

    As diagnosis and treatment of unruptured intracranial aneurysms continues to increase, management principles remain largely based on size. This is despite mounting evidence that aneurysm location and other morphologic variables could play a role in predicting overall risk of rupture. Morphological parameters can be divided into 3 main groups, those that are intrinsic to the aneurysm, those that are extrinsic to the aneurysm, and those that involve both the aneurysm and surrounding vasculature (transitional). We present an evaluation of intrinsic, transitional, and extrinsic factors and their association with ruptured aneurysms. Using preoperative computed tomographic angiography, we generated 3-dimensional models of aneurysms and their surrounding vasculature with Slicer software. Using univariate and multivariate analyses, we examined the association of intrinsic, transitional, and extrinsic aspects of aneurysm morphology with rupture. Between 2005 and 2013, 227 cerebral aneurysms in 4 locations were evaluated/treated at a single institution, and computed tomographic angiographies of 218 patients (97 unruptured and 130 ruptured) were analyzed. Ruptured aneurysms analyzed were associated with clinical factors of absence of multiple aneurysms and history of no prior rupture, and morphologic factors of greater aspect ratio. On multivariate analysis, aneurysm rupture remained associated with history of no prior rupture, greater flow angle, greater daughter-daughter vessel angle, and smaller parent-daughter vessel angle. By studying the morphology of aneurysms and their surrounding vasculature, we identified several parameters associated with ruptured aneurysms that include intrinsic, transitional, and extrinsic factors of cerebral aneurysms and their surrounding vasculature.

  11. Marine-derived collagen biomaterials from echinoderm connective tissues

    KAUST Repository

    Ferrario, Cinzia; Leggio, Livio; Leone, Roberta; Di Benedetto, Cristiano; Guidetti, Luca; Coccè , Valentina; Ascagni, Miriam; Bonasoro, Francesco; La Porta, Caterina A.M.; Candia Carnevali, M. Daniela; Sugni, Michela

    2016-01-01

    The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs). Commercial membranes for GTR or soluble/reassembled (fibrillar) bovine collagen substrates were used as controls. The three EDCMs were similar among each other in terms of structure and mechanical performances and were much thinner and mechanically more resistant than the commercial membranes. Number of fibroblasts seeded on sea-urchin membranes were comparable to the bovine collagen substrates. Cell morphology on all EDCMs was similar to that of structurally comparable (reassembled) bovine collagen substrates. Overall, echinoderms, and sea urchins particularly, are alternative collagen sources to produce efficient GTR membranes. Sea urchins display a further advantage in terms of eco-sustainability by recycling tissues from food wastes.

  12. Marine-derived collagen biomaterials from echinoderm connective tissues

    KAUST Repository

    Ferrario, Cinzia

    2016-03-31

    The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs). Commercial membranes for GTR or soluble/reassembled (fibrillar) bovine collagen substrates were used as controls. The three EDCMs were similar among each other in terms of structure and mechanical performances and were much thinner and mechanically more resistant than the commercial membranes. Number of fibroblasts seeded on sea-urchin membranes were comparable to the bovine collagen substrates. Cell morphology on all EDCMs was similar to that of structurally comparable (reassembled) bovine collagen substrates. Overall, echinoderms, and sea urchins particularly, are alternative collagen sources to produce efficient GTR membranes. Sea urchins display a further advantage in terms of eco-sustainability by recycling tissues from food wastes.

  13. Advantages and Limitations of Current Imaging Techniques for Characterizing Liposome Morphology

    Directory of Open Access Journals (Sweden)

    Annie-Louise Robson

    2018-02-01

    Full Text Available There are currently a number of imaging techniques available for evaluating the morphology of liposomes and other nanoparticles, with each having its own advantages and disadvantages that should be considered when interpreting data. Controlling and validating the morphology of nanoparticles is of key importance for the effective clinical translation of liposomal formulations. There are a number of physical characteristics of liposomes that determine their in vivo behavior, including size, surface characteristics, lamellarity, and homogeneity. Despite the great importance of the morphology of nanoparticles, it is generally not well-characterized and is difficult to control. Appropriate imaging techniques provide important details regarding the morphological characteristics of nanoparticles, and should be used in conjunction with other methods to assess physicochemical parameters. In this review, we will discuss the advantages and limitations of available imaging techniques used to evaluate liposomal formulations.

  14. Biophysical subsets of embryonic stem cells display distinct phenotypic and morphological signatures.

    Directory of Open Access Journals (Sweden)

    Tom Bongiorno

    Full Text Available The highly proliferative and pluripotent characteristics of embryonic stem cells engender great promise for tissue engineering and regenerative medicine, but the rapid identification and isolation of target cell phenotypes remains challenging. Therefore, the objectives of this study were to characterize cell mechanics as a function of differentiation and to employ differences in cell stiffness to select population subsets with distinct mechanical, morphological, and biological properties. Biomechanical analysis with atomic force microscopy revealed that embryonic stem cells stiffened within one day of differentiation induced by leukemia inhibitory factor removal, with a lagging but pronounced change from spherical to spindle-shaped cell morphology. A microfluidic device was then employed to sort a differentially labeled mixture of pluripotent and differentiating cells based on stiffness, resulting in pluripotent cell enrichment in the soft device outlet. Furthermore, sorting an unlabeled population of partially differentiated cells produced a subset of "soft" cells that was enriched for the pluripotent phenotype, as assessed by post-sort characterization of cell mechanics, morphology, and gene expression. The results of this study indicate that intrinsic cell mechanical properties might serve as a basis for efficient, high-throughput, and label-free isolation of pluripotent stem cells, which will facilitate a greater biological understanding of pluripotency and advance the potential of pluripotent stem cell differentiated progeny as cell sources for tissue engineering and regenerative medicine.

  15. A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology

    Directory of Open Access Journals (Sweden)

    Feifei Yan

    2014-03-01

    Full Text Available The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.

  16. Association between condylar morphology and inflammation in experimental temporomandibular joint TMJ arthritis

    DEFF Research Database (Denmark)

    Kristensen, Kasper Dahl; Stoustrup, Peter bangsgaard; Küseler, Annelise

    not previously been investigated. Aim: We studied the effects of antigen-induced arthritis on the bony structures in rabbit mandibular condylar development, in particular the morphological changes and the bone micro-architecture. Materials and Methods: Included were juvenile rabbits with ovalbumin-induced TMJ...... arthritis treated with intraarticular saline, intra-articular etanercept (an anti-TNF-α drug) or subcutaneous etanercept. One TMJ from each animal was scanned using micro-computed tomography and structural parameters were calculated. Three-dimensional reconstructions of the mandibular condyle were scored...... blindly by two independent observers as normal or abnormal. TMJs were stratified for condylar morphology and evaluated against data on inflammation, trabecular structural parameters, and overall mandibular growth. Mineral apposition rate was measured using fluorochrome labelling. Results and discussion...

  17. Is the propagation speed of ultrasound in human organs a diagnostic parameter for tissue characterization? Evaluation using the liver parenchyma in children and adolescents as an example; Die Schallleitgeschwindigkeit im menschlichen Gewebe. Ein diagnostisch verwertbarer Parameter? Evaluation am Beispiel der Leber bei Kindern und Jugendlichen

    Energy Technology Data Exchange (ETDEWEB)

    Born, M. [Bonn Univ. (Germany). Radiologische Klinik - Kinderradiologie; Franke, I. [Bonn Univ. (Germany). Kinderklinik

    2011-09-15

    New sonographic machines permit the measurement of the propagation speed of ultrasound (PSU) in humans. The liver seems to be an appropriate organ for examining whether the PSU may be used as a diagnostic parameter for tissue characterization since the liver is easily accessible to sonography and its variable content of fat impacts the PSU. Purpose: To determine whether there is a measurable correlation between obesity and PSU in the liver. Methods: In 69 children and adolescents, the PSU in the liver was measured sonographically and correlated to BMI, age, size and weight of the children. Results: A strong correlation was found between the PSU in the liver and the BMI. The PSU was significantly lower in obese children (1507 m/s) than in children with normal body weight (1564 m/s). Conclusion: PSU seems to be promising as an additional diagnostic parameter for characterizing liver tissue. Further evaluation is necessary. (orig.)

  18. Cell–scaffold interaction within engineered tissue

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiping; Liu, Yuanyuan, E-mail: Yuanyuan_liu@shu.edu.cn; Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.

  19. Seed biometric parameters in oil palm accessions from a Brazilian germplasm bank

    Directory of Open Access Journals (Sweden)

    Julcéia Camillo

    2014-08-01

    Full Text Available The objective of this work was to evaluate the morphological diversity of oil palm seeds and to cluster the accessions according to their morphological characteristics. Forty-one accessions from the oil palm germplasm bank of Embrapa Amazônia Ocidental were evaluated - 18 of Elaeis oleifera and 23 of E. guineensis. The groups were formed based on morphological characteristics, by principal component analysis. In E. oleifera, four groups were formed, tied to their region of origin, but with significant morphological differences between accessions from the same population. For tenera-type E. guineensis seeds, three widely divergent groups were formed, especially as to external parameters, which differentiated them from the other ones. The parameter endocarp thickness stood out in intra- and inter-population differentiation. For dura-type E. guineensis, three groups were formed, with larger seeds and thicker endocarps, which differed from all the other ones. The variability observed for seed characteristics in the analyzed accessions allows the establishment of different groups, to define strategies for genetic improvement.

  20. Quantitative ultrasound and photoacoustic imaging for the assessment of vascular parameters

    CERN Document Server

    Meiburger, Kristen M

    2017-01-01

    This book describes the development of quantitative techniques for ultrasound and photoacoustic imaging in the assessment of architectural and vascular parameters. It presents morphological vascular research based on the development of quantitative imaging techniques for the use of clinical B-mode ultrasound images, and preclinical architectural vascular investigations on quantitative imaging techniques for ultrasounds and photoacoustics. The book is divided into two main parts, the first of which focuses on the development and validation of quantitative techniques for the assessment of vascular morphological parameters that can be extracted from B-mode ultrasound longitudinal images of the common carotid artery. In turn, the second part highlights quantitative imaging techniques for assessing the architectural parameters of vasculature that can be extracted from 3D volumes, using both contrast-enhanced ultrasound (CEUS) imaging and photoacoustic imaging without the addition of any contrast agent. Sharing and...