WorldWideScience

Sample records for tissue mechanical behavior

  1. Characterization of the anisotropic mechanical behavior of human abdominal wall connective tissues.

    Science.gov (United States)

    Astruc, Laure; De Meulaere, Maurice; Witz, Jean-François; Nováček, Vit; Turquier, Frédéric; Hoc, Thierry; Brieu, Mathias

    2018-06-01

    Abdominal wall sheathing tissues are commonly involved in hernia formation. However, there is very limited work studying mechanics of all tissues from the same donor which prevents a complete understanding of the abdominal wall behavior and the differences in these tissues. The aim of this study was to investigate the differences between the mechanical properties of the linea alba and the anterior and posterior rectus sheaths from a macroscopic point of view. Eight full-thickness human anterior abdominal walls of both genders were collected and longitudinal and transverse samples were harvested from the three sheathing connective tissues. The total of 398 uniaxial tensile tests was conducted and the mechanical characteristics of the behavior (tangent rigidities for small and large deformations) were determined. Statistical comparisons highlighted heterogeneity and non-linearity in behavior of the three tissues under both small and large deformations. High anisotropy was observed under small and large deformations with higher stress in the transverse direction. Variabilities in the mechanical properties of the linea alba according to the gender and location were also identified. Finally, data dispersion correlated with microstructure revealed that macroscopic characterization is not sufficient to fully describe behavior. Microstructure consideration is needed. These results provide a better understanding of the mechanical behavior of the abdominal wall sheathing tissues as well as the directions for microstructure-based constitutive model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. High-resolution analysis of the mechanical behavior of tissue

    Science.gov (United States)

    Hudnut, Alexa W.; Armani, Andrea M.

    2017-06-01

    The mechanical behavior and properties of biomaterials, such as tissue, have been directly and indirectly connected to numerous malignant physiological states. For example, an increase in the Young's Modulus of tissue can be indicative of cancer. Due to the heterogeneity of biomaterials, it is extremely important to perform these measurements using whole or unprocessed tissue because the tissue matrix contains important information about the intercellular interactions and the structure. Thus, developing high-resolution approaches that can accurately measure the elasticity of unprocessed tissue samples is of great interest. Unfortunately, conventional elastography methods such as atomic force microscopy, compression testing, and ultrasound elastography either require sample processing or have poor resolution. In the present work, we demonstrate the characterization of unprocessed salmon muscle using an optical polarimetric elastography system. We compare the results of compression testing within different samples of salmon skeletal muscle with different numbers of collagen membranes to characterize differences in heterogeneity. Using the intrinsic collagen membranes as markers, we determine the resolution of the system when testing biomaterials. The device reproducibly measures the stiffness of the tissues at variable strains. By analyzing the amount of energy lost by the sample during compression, collagen membranes that are 500 μm in size are detected.

  3. Lung tissue mechanics as an emergent phenomenon.

    Science.gov (United States)

    Suki, Béla; Bates, Jason H T

    2011-04-01

    The mechanical properties of lung parenchymal tissue are both elastic and dissipative, as well as being highly nonlinear. These properties cannot be fully understood, however, in terms of the individual constituents of the tissue. Rather, the mechanical behavior of lung tissue emerges as a macroscopic phenomenon from the interactions of its microscopic components in a way that is neither intuitive nor easily understood. In this review, we first consider the quasi-static mechanical behavior of lung tissue and discuss computational models that show how smooth nonlinear stress-strain behavior can arise through a percolation-like process in which the sequential recruitment of collagen fibers with increasing strain causes them to progressively take over the load-bearing role from elastin. We also show how the concept of percolation can be used to link the pathologic progression of parenchymal disease at the micro scale to physiological symptoms at the macro scale. We then examine the dynamic mechanical behavior of lung tissue, which invokes the notion of tissue resistance. Although usually modeled phenomenologically in terms of collections of springs and dashpots, lung tissue viscoelasticity again can be seen to reflect various types of complex dynamic interactions at the molecular level. Finally, we discuss the inevitability of why lung tissue mechanics need to be complex.

  4. How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials?

    Science.gov (United States)

    Hedayati, R; Janbaz, S; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2017-01-01

    Although the initial mechanical properties of additively manufactured porous biomaterials are intensively studied during the last few years, almost no information is available regarding the evolution of the mechanical properties of implant-bone complex as the tissue regeneration progresses. In this paper, we studied the effects of tissue regeneration on the static and fatigue behavior of selective laser melted porous titanium structures with three different porosities (i.e. 77, 81, and 85%). The porous structures were filled with four different polymeric materials with mechanical properties in the range of those observed for de novo bone (0.7GPamanufactured and filled porous structures were then determined. The static mechanical properties and fatigue life (including endurance limit) of the porous structures were found to increase by factors 2-7, even when they were filled with polymeric materials with relatively low mechanical properties. The relative increase in the mechanical properties was much higher for the porous structures with lower porosities. Moreover, the increase in the fatigue life was more notable as compared to the increase in the static mechanical properties. Such large values of increase in the mechanical properties with the progress of bone tissue regeneration have implications in terms of mechanical stimulus for bone tissue regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues

    Directory of Open Access Journals (Sweden)

    Hye-Sun Yu

    2016-02-01

    Full Text Available Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations.

  6. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues

    Science.gov (United States)

    Yu, Hye-Sun; Kim, Jung-Ju; Kim, Hae-Won; Lewis, Mark P; Wall, Ivan

    2016-01-01

    Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations. PMID:26977284

  7. Mechanics of Biological Tissues and Biomaterials: Current Trends

    Directory of Open Access Journals (Sweden)

    Amir A. Zadpoor

    2015-07-01

    Full Text Available Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address various topics within the general theme of “mechanics of biomaterials”. This editorial aims to present the context within which the studies of this Special Issue could be better understood. I, therefore, try to identify some of the most important research trends in the study of the mechanical behavior of biological tissues and biomaterials.

  8. Mechanics of Biological Tissues and Biomaterials : Current Trends (editorial)

    NARCIS (Netherlands)

    Zadpoor, A.A.

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the

  9. Glial Tissue Mechanics and Mechanosensing by Glial Cells

    OpenAIRE

    Katarzyna Pogoda; Katarzyna Pogoda; Paul A. Janmey

    2018-01-01

    Understanding the mechanical behavior of human brain is critical to interpret the role of physical stimuli in both normal and pathological processes that occur in CNS tissue, such as development, inflammation, neurodegeneration, aging, and most common brain tumors. Despite clear evidence that mechanical cues influence both normal and transformed brain tissue activity as well as normal and transformed brain cell behavior, little is known about the links between mechanical signals and their bio...

  10. Statistical model for the mechanical behavior of the tissue engineering non-woven fibrous matrices under large deformation.

    Science.gov (United States)

    Rizvi, Mohd Suhail; Pal, Anupam

    2014-09-01

    The fibrous matrices are widely used as scaffolds for the regeneration of load-bearing tissues due to their structural and mechanical similarities with the fibrous components of the extracellular matrix. These scaffolds not only provide the appropriate microenvironment for the residing cells but also act as medium for the transmission of the mechanical stimuli, essential for the tissue regeneration, from macroscopic scale of the scaffolds to the microscopic scale of cells. The requirement of the mechanical loading for the tissue regeneration requires the fibrous scaffolds to be able to sustain the complex three-dimensional mechanical loading conditions. In order to gain insight into the mechanical behavior of the fibrous matrices under large amount of elongation as well as shear, a statistical model has been formulated to study the macroscopic mechanical behavior of the electrospun fibrous matrix and the transmission of the mechanical stimuli from scaffolds to the cells via the constituting fibers. The study establishes the load-deformation relationships for the fibrous matrices for different structural parameters. It also quantifies the changes in the fiber arrangement and tension generated in the fibers with the deformation of the matrix. The model reveals that the tension generated in the fibers on matrix deformation is not homogeneous and hence the cells located in different regions of the fibrous scaffold might experience different mechanical stimuli. The mechanical response of fibrous matrices was also found to be dependent on the aspect ratio of the matrix. Therefore, the model establishes a structure-mechanics interdependence of the fibrous matrices under large deformation, which can be utilized in identifying the appropriate structure and external mechanical loading conditions for the regeneration of load-bearing tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Mechanics of Biological Tissues and Biomaterials: Current Trends

    OpenAIRE

    Amir A. Zadpoor

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address variou...

  12. Thermal-mechanical deformation modelling of soft tissues for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Jazar, Reza; Subic, Aleksandar

    2014-01-01

    Modeling of thermal-induced mechanical behaviors of soft tissues is of great importance for thermal ablation. This paper presents a method by integrating the heating process with thermal-induced mechanical deformations of soft tissues for simulation and analysis of the thermal ablation process. This method combines bio-heat transfer theories, constitutive elastic material law under thermal loads as well as non-rigid motion dynamics to predict and analyze thermal-mechanical deformations of soft tissues. The 3D governing equations of thermal-mechanical soft tissue deformation are discretized by using the finite difference scheme and are subsequently solved by numerical algorithms. Experimental results show that the proposed method can effectively predict the thermal-induced mechanical behaviors of soft tissues, and can be used for the thermal ablation therapy to effectively control the delivered heat energy for cancer treatment.

  13. Mechanics of Biological Tissues and Biomaterials: Current Trends (editorial)

    OpenAIRE

    Zadpoor, A.A.

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address variou...

  14. Glial Tissue Mechanics and Mechanosensing by Glial Cells

    Directory of Open Access Journals (Sweden)

    Katarzyna Pogoda

    2018-02-01

    Full Text Available Understanding the mechanical behavior of human brain is critical to interpret the role of physical stimuli in both normal and pathological processes that occur in CNS tissue, such as development, inflammation, neurodegeneration, aging, and most common brain tumors. Despite clear evidence that mechanical cues influence both normal and transformed brain tissue activity as well as normal and transformed brain cell behavior, little is known about the links between mechanical signals and their biochemical and medical consequences. A multi-level approach from whole organ rheology to single cell mechanics is needed to understand the physical aspects of human brain function and its pathologies. This review summarizes the latest achievements in the field.

  15. A toolbox to explore the mechanics of living embryonic tissues

    Science.gov (United States)

    Campàs, Otger

    2016-01-01

    The sculpting of embryonic tissues and organs into their functional morphologies involves the spatial and temporal regulation of mechanics at cell and tissue scales. Decades of in vitro work, complemented by some in vivo studies, have shown the relevance of mechanical cues in the control of cell behaviors that are central to developmental processes, but the lack of methodologies enabling precise, quantitative measurements of mechanical cues in vivo have hindered our understanding of the role of mechanics in embryonic development. Several methodologies are starting to enable quantitative studies of mechanics in vivo and in situ, opening new avenues to explore how mechanics contributes to shaping embryonic tissues and how it affects cell behavior within developing embryos. Here we review the present methodologies to study the role of mechanics in living embryonic tissues, considering their strengths and drawbacks as well as the conditions in which they are most suitable. PMID:27061360

  16. Mechanisms of lamellar collagen formation in connective tissues.

    Science.gov (United States)

    Ghazanfari, Samaneh; Khademhosseini, Ali; Smit, Theodoor H

    2016-08-01

    The objective of tissue engineering is to regenerate functional tissues. Engineering functional tissues requires an understanding of the mechanisms that guide the formation and evolution of structure in the extracellular matrix (ECM). In particular, the three-dimensional (3D) collagen fiber arrangement is important as it is the key structural determinant that provides mechanical integrity and biological function. In this review, we survey the current knowledge on collagen organization mechanisms that can be applied to create well-structured functional lamellar tissues and in particular intervertebral disc and cornea. Thus far, the mechanisms behind the formation of cross-aligned collagen fibers in the lamellar structures is not fully understood. We start with cell-induced collagen alignment and strain-stabilization behavior mechanisms which can explain a single anisotropically aligned collagen fiber layer. These mechanisms may explain why there is anisotropy in a single layer in the first place. However, they cannot explain why a consecutive collagen layer is laid down with an alternating alignment. Therefore, we explored another mechanism, called liquid crystal phasing. While dense concentrations of collagen show such behavior, there is little evidence that the conditions for liquid crystal phasing are actually met in vivo. Instead, lysyl aldehyde-derived collagen cross-links have been found essential for correct lamellar matrix deposition. Furthermore, we suggest that supra-cellular (tissue-level) shear stress may be instrumental in the alignment of collagen fibers. Understanding the potential mechanisms behind the lamellar collagen structure in connective tissues will lead to further improvement of the regeneration strategies of functional complex lamellar tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Computational methods for describing the laser-induced mechanical response of tissue

    Energy Technology Data Exchange (ETDEWEB)

    Trucano, T.; McGlaun, J.M.; Farnsworth, A.

    1994-02-01

    Detailed computational modeling of laser surgery requires treatment of the photoablation of human tissue by high intensity pulses of laser light and the subsequent thermomechanical response of the tissue. Three distinct physical regimes must be considered to accomplish this: (1) the immediate absorption of the laser pulse by the tissue and following tissue ablation, which is dependent upon tissue light absorption characteristics; (2) the near field thermal and mechanical response of the tissue to this laser pulse, and (3) the potential far field (and longer time) mechanical response of witness tissue. Both (2) and (3) are dependent upon accurate constitutive descriptions of the tissue. We will briefly review tissue absorptivity and mechanical behavior, with an emphasis on dynamic loads characteristic of the photoablation process. In this paper our focus will center on the requirements of numerical modeling and the uncertainties of mechanical tissue behavior under photoablation. We will also discuss potential contributions that computational simulations can make in the design of surgical protocols which utilize lasers, for example, in assessing the potential for collateral mechanical damage by laser pulses.

  18. Biothermomechanical behavior of skin tissue

    Institute of Scientific and Technical Information of China (English)

    F.Xu; T.J.Lu; K.A.Seffen

    2008-01-01

    Advances in laser,microwave and similar tech nologies have led to recent developments of thermal treatments involving skin tissue.The effectiveness of these treatments is governed by the coupled thermal,mechanical,biological and neural responses of the affected tissue:a favorable interaction results in a procedure with relatively little pain and no lasting side effects.Currently,even though each behavioral facet is to a certain extent established and understood,none exists to date in the interdisciplinarv area.A highly interdisciplinary approach is required for studying the biothermomechanical behavior of skin,involving bioheat transfer.biomechanics and physiology.A comprehensive literature review penrtinent to the subject is presented in this paper,covering four subject areas:(a)skin structure,(b)skin bioheat transfer and thermal damage,(c)skin biomechanics,and(d)skin biothermomechanics.The major problems,issues,and topics for further studies are also outlined.This review finds that significant advances in each of these aspects have been achieved in recent years.Although focus is placed upon the biothermomechanical behavior of skin tissue,the fundamental concepts and methodologies reviewed in this paper may also be applicable for studying other soft tissues.

  19. Tissue-Level Mechanical Properties of Bone Contributing to Fracture Risk.

    Science.gov (United States)

    Nyman, Jeffry S; Granke, Mathilde; Singleton, Robert C; Pharr, George M

    2016-08-01

    Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown.

  20. The role of mechanical loading in ligament tissue engineering.

    Science.gov (United States)

    Benhardt, Hugh A; Cosgriff-Hernandez, Elizabeth M

    2009-12-01

    Tissue-engineered ligaments have received growing interest as a promising alternative for ligament reconstruction when traditional transplants are unavailable or fail. Mechanical stimulation was recently identified as a critical component in engineering load-bearing tissues. It is well established that living tissue responds to altered loads through endogenous changes in cellular behavior, tissue organization, and bulk mechanical properties. Without the appropriate biomechanical cues, new tissue formation lacks the necessary collagenous organization and alignment for sufficient load-bearing capacity. Therefore, tissue engineers utilize mechanical conditioning to guide tissue remodeling and improve the performance of ligament grafts. This review provides a comparative analysis of the response of ligament and tendon fibroblasts to mechanical loading in current bioreactor studies. The differential effect of mechanical stimulation on cellular processes such as protease production, matrix protein synthesis, and cell proliferation is examined in the context of tissue engineering design.

  1. Multiaxial mechanical response and constitutive modeling of esophageal tissues: Impact on esophageal tissue engineering.

    Science.gov (United States)

    Sommer, Gerhard; Schriefl, Andreas; Zeindlinger, Georg; Katzensteiner, Andreas; Ainödhofer, Herwig; Saxena, Amulya; Holzapfel, Gerhard A

    2013-12-01

    Congenital defects of the esophagus are relatively frequent, with 1 out of 2500 babies suffering from such a defect. A new method of treatment by implanting tissue engineered esophagi into newborns is currently being developed and tested using ovine esophagi. For the reconstruction of the biological function of native tissues with engineered esophagi, their cellular structure as well as their mechanical properties must be considered. Since very limited mechanical and structural data for the esophagus are available, the aim of this study was to investigate the multiaxial mechanical behavior of the ovine esophagus and the underlying microstructure. Therefore, uniaxial tensile, biaxial tensile and extension-inflation tests on esophagi were performed. The underlying microstructure was examined in stained histological sections through standard optical microscopy techniques. Moreover, the uniaxial ultimate tensile strength and residual deformations of the tissue were determined. Both the mucosa-submucosa and the muscle layers showed nonlinear and anisotropic mechanical behavior during uniaxial, biaxial and inflation testing. Cyclical inflation of the intact esophageal tube caused marked softening of the passive esophagi in the circumferential direction. The rupture strength of the mucosa-submucosa layer was much higher than that of the muscle layer. Overall, the ovine esophagus showed a heterogeneous and anisotropic behavior with different mechanical properties for the individual layers. The intact and layer-specific multiaxial properties were characterized using a well-known three-dimensional microstructurally based strain-energy function. This novel and complete set of data serves the basis for a better understanding of tissue remodeling in diseased esophagi and can be used to perform computer simulations of surgical interventions or medical-device applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  3. From cells to tissue: A continuum model of epithelial mechanics

    Science.gov (United States)

    Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru

    2017-08-01

    A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.

  4. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.

    Science.gov (United States)

    Kennedy, Kelsey M; Bhaw-Luximon, Archana; Jhurry, Dhanjay

    2017-03-01

    Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the mechanical environment in electrospun scaffolds toward constructs that may be successfully applied in tissue engineering and regenerative medicine. Tissue engineering requires design of scaffolds that interact with cells to promote tissue development. Electrospinning is a promising technique for fabricating fibrous, biomimetic scaffolds. Effects of electrospun matrix microstructure and biochemical properties on cell behavior have been extensively reviewed previously; here, we consider cell-matrix interaction from a mechanical perspective. Micromechanical properties as a driver of cell behavior has been well established in planar substrates, but more recently, many studies have provided new insights into mechanical interaction in fibrillar, electrospun environments. This review provides readers with an overview of how electrospun scaffold mechanics and

  5. Mechanical design criteria for intervertebral disc tissue engineering.

    Science.gov (United States)

    Nerurkar, Nandan L; Elliott, Dawn M; Mauck, Robert L

    2010-04-19

    Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviors, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive, and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying where functional equivalence was achieved, and where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Bioinspired coupled helical coils for soft tissue engineering of tubular structures - Improved mechanical behavior of tubular collagen type I templates.

    Science.gov (United States)

    Janke, H P; Bohlin, J; Lomme, R M L M; Mihaila, S M; Hilborn, J; Feitz, W F J; Oosterwijk, E

    2017-09-01

    The design of constructs for tubular tissue engineering is challenging. Most biomaterials need to be reinforced with supporting structures such as knittings, meshes or electrospun material to comply with the mechanical demands of native tissues. In this study, coupled helical coils (CHCs) were manufactured to mimic collagen fiber orientation as found in nature. Monofilaments of different commercially available biodegradable polymers were wound and subsequently fused, resulting in right-handed and left-handed polymer helices fused together in joints where the filaments cross. CHCs of different polymer composition were tested to determine the tensile strength, strain recovery, hysteresis, compressive strength and degradation of CHCs of different composition. Subsequently, seamless and stable hybrid constructs consisting of PDSII® USP 2-0 CHCs embedded in porous collagen type I were produced. Compared to collagen alone, this hybrid showed superior strain recovery (93.5±0.9% vs 71.1±12.6% in longitudinal direction; 87.1±6.6% vs 57.2±4.6% in circumferential direction) and hysteresis (18.9±2.7% vs 51.1±12.0% in longitudinal direction; 11.5±4.6% vs 46.3±6.3% in circumferential direction). Furthermore, this hybrid construct showed an improved Young's modulus in both longitudinal (0.5±0.1MPavs 0.2±0.1MPa; 2.5-fold) and circumferential (1.65±0.07MPavs (2.9±0.3)×10 -2 MPa; 57-fold) direction, respectively, compared to templates created from collagen alone. Moreover, hybrid template characteristics could be modified by changing the CHC composition and CHCs were produced showing a mechanical behavior similar to the native ureter. CHC-enforced templates, which are easily tunable to meet different demands may be promising for tubular tissue engineering. Most tubular constructs lack sufficient strength and tunability to comply with the mechanical demands of native tissues. Therefore, we embedded coupled helical coils (CHCs) produced from biodegradable polymers - to

  7. Nondestructive and noninvasive assessment of mechanical properties in heart valve tissue engineering

    NARCIS (Netherlands)

    Kortsmit, J.; Driessen, N.J.B.; Rutten, M.C.M.; Baaijens, F.P.T.

    2009-01-01

    Despite recent progress, mechanical behavior of tissue-engineered heart valves still needs improvement when native aortic valves are considered as a benchmark. Although it is known that cyclic straining enhances tissue formation, optimal loading protocols have not been defined yet. To obtain a

  8. A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering

    NARCIS (Netherlands)

    Spitters, Tim; Leijten, Jeroen Christianus Hermanus; Deus, F.D.; Costa, I.B.F.; van Apeldoorn, Aart A.; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes

    2013-01-01

    In cartilage tissue engineering bioreactors can create a controlled environment to study chondrocyte behavior under mechanical stimulation or produce chondrogenic grafts of clinically relevant size. Here we present a novel bioreactor, which combines mechanical stimulation with a two compartment

  9. Mechanical influence of tissue culture plates and extracellular matrix on mesenchymal stem cell behavior: A topical review.

    Science.gov (United States)

    Tatullo, Marco; Marrelli, Massimo; Falisi, Giovanni; Rastelli, Claudio; Palmieri, Francesca; Gargari, Marco; Zavan, Barbara; Paduano, Francesco; Benagiano, Vincenzo

    2016-03-01

    Tissue engineering applications need a continuous development of new biomaterials able to generate an ideal cell-extracellular matrix interaction. The stem cell fate is regulated by several factors, such as growth factors or transcription factors. The most recent literature has reported several publications able to demonstrate that environmental factors also contribute to the regulation of stem cell behavior, leading to the opinion that the environment plays the major role in the cell differentiation.The interaction between mesenchymal stem cells (MSCs) and extracellular environment has been widely described, and it has a crucial role in regulating the cell phenotype. In our laboratory (Tecnologica Research Institute, Crotone, Italy), we have recently studied how several physical factors influence the distribution and the morphology of MSCs isolated from dental pulp, and how they are able to regulate stem cell differentiation. Mechanical and geometrical factors are only a small part of the environmental factors able to influence stem cell behavior, however, this influence should be properly known: in fact, this assumption must be clearly considered during those studies involving MSCs; furthermore, these interactions should be considered as an important bias that involves an high number of studies on the MSCs, since in worldwide laboratories the scientists mostly use tissue culture plates for their experiments. © The Author(s) 2015.

  10. Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg-6 wt.% Zn Scaffolds for Bone Tissue Engineering

    Science.gov (United States)

    Yan, Yang; Kang, Yijun; Li, Ding; Yu, Kun; Xiao, Tao; Wang, Qiyuan; Deng, Youwen; Fang, Hongjie; Jiang, Dayue; Zhang, Yu

    2018-03-01

    Porous Mg-based scaffolds have been extensively researched as biodegradable implants due to their attractive biological and excellent mechanical properties. In this study, porous Mg-6 wt.% Zn scaffolds were prepared by powder metallurgy using ammonium bicarbonate particles as space-holder particles. The effects of space-holder particle content on the microstructure, mechanical properties and corrosion resistance of the Mg-6 wt.% Zn scaffolds were studied. The mean porosity and pore size of the open-cellular scaffolds were within the range 6.7-52.2% and 32.3-384.2 µm, respectively. Slight oxidation was observed at the grain boundaries and on the pore walls. The Mg-6 wt.% Zn scaffolds were shown to possess mechanical properties comparable with those of natural bone and had variable in vitro degradation rates. Increased content of space-holder particles negatively affected the mechanical behavior and corrosion resistance of the Mg-6 wt.% Zn scaffolds, especially when higher than 20%. These results suggest that porous Mg-6 wt.% Zn scaffolds are promising materials for application in bone tissue engineering.

  11. Multi-scale mechanical characterization of scaffolds for heart valve tissue engineering

    NARCIS (Netherlands)

    Argento, G.; Simonet, M.; Oomens, C.W.J.; Baaijens, F.P.T.

    2012-01-01

    Electrospinning is a promising technology to produce scaffolds for cardiovascular tissue engineering. Each electrospun scaffold is characterized by a complex micro-scale structure that is responsible for its macroscopic mechanical behavior. In this study, we focus on the development and the

  12. Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical Behavior: A Review.

    Science.gov (United States)

    Zhang, Xiang-Yu; Fang, Gang; Zhou, Jie

    2017-01-10

    Additive manufacturing (AM), nowadays commonly known as 3D printing, is a revolutionary materials processing technology, particularly suitable for the production of low-volume parts with high shape complexities and often with multiple functions. As such, it holds great promise for the fabrication of patient-specific implants. In recent years, remarkable progress has been made in implementing AM in the bio-fabrication field. This paper presents an overview on the state-of-the-art AM technology for bone tissue engineering (BTE) scaffolds, with a particular focus on the AM scaffolds made of metallic biomaterials. It starts with a brief description of architecture design strategies to meet the biological and mechanical property requirements of scaffolds. Then, it summarizes the working principles, advantages and limitations of each of AM methods suitable for creating porous structures and manufacturing scaffolds from powdered materials. It elaborates on the finite-element (FE) analysis applied to predict the mechanical behavior of AM scaffolds, as well as the effect of the architectural design of porous structure on its mechanical properties. The review ends up with the authors' view on the current challenges and further research directions.

  13. Role of differential physical properties in the collective mechanics and dynamics of tissues

    Science.gov (United States)

    Das, Moumita

    Living cells and tissues are highly mechanically sensitive and active. Mechanical stimuli influence the shape, motility, and functions of cells, modulate the behavior of tissues, and play a key role in several diseases. In this talk I will discuss how collective biophysical properties of tissues emerge from the interplay between differential mechanical properties and statistical physics of underlying components, focusing on two complementary tissue types whose properties are primarily determined by (1) the extracellular matrix (ECM), and (2) individual and collective cell properties. I will start with the structure-mechanics-function relationships in articular cartilage (AC), a soft tissue that has very few cells, and its mechanical response is primarily due to its ECM. AC is a remarkable tissue: it can support loads exceeding ten times our body weight and bear 60+ years of daily mechanical loading despite having minimal regenerative capacity. I will discuss the biophysical principles underlying this exceptional mechanical response using the framework of rigidity percolation theory, and compare our predictions with experiments done by our collaborators. Next I will discuss ongoing theoretical work on how the differences in cell mechanics, motility, adhesion, and proliferation in a co-culture of breast cancer cells and healthy breast epithelial cells may modulate experimentally observed differential migration and segregation. Our results may provide insights into the mechanobiology of tissues with cell populations with different physical properties present together such as during the formation of embryos or the initiation of tumors. This work was partially supported by a Cottrell College Science Award.

  14. Mechanisms of chemotherapy-induced behavioral toxicities

    Directory of Open Access Journals (Sweden)

    Elisabeth G Vichaya

    2015-04-01

    Full Text Available While chemotherapeutic agents have yielded relative success in the treatment of cancer, patients are often plagued with unwanted and even debilitating side-effects from the treatment which can lead to dose reduction or even cessation of treatment. Common side effects (symptoms of chemotherapy include (i cognitive deficiencies such as problems with attention, memory and executive functioning; (ii fatigue and motivational deficit; and (iii neuropathy. These symptoms often develop during treatment but can remain even after cessation of chemotherapy, severely impacting long-term quality of life. Little is known about the underlying mechanisms responsible for the development of these behavioral toxicities, however, neuroinflammation is widely considered to be one of the major mechanisms responsible for chemotherapy-induced symptoms. Here, we critically assess what is known in regards to the role of neuroinflammation in chemotherapy-induced symptoms. We also argue that, based on the available evidence neuroinflammation is unlikely the only mechanism involved in the pathogenesis of chemotherapy-induced behavioral toxicities. We evaluate two other putative candidate mechanisms. To this end we discuss the mediating role of damage-associated molecular patterns (DAMPs activated in response to chemotherapy-induced cellular damage. We also review the literature with respect to possible alternative mechanisms such as a chemotherapy-induced change in the bioenergetic status of the tissue involving changes in mitochondrial function in relation to chemotherapy-induced behavioral toxicities. Understanding the mechanisms that underlie the emergence of fatigue, neuropathy, and cognitive difficulties is vital to better treatment and long-term survival of cancer patients.

  15. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering.

    Science.gov (United States)

    Nerurkar, Nandan L; Elliott, Dawn M; Mauck, Robert L

    2007-08-01

    Engineering a functional replacement for the annulus fibrosus (AF) of the intervertebral disc is contingent upon recapitulation of AF structure, composition, and mechanical properties. In this study, we propose a new paradigm for AF tissue engineering that focuses on the reconstitution of anatomic fiber architecture and uses constitutive modeling to evaluate construct function. A modified electrospinning technique was utilized to generate aligned nanofibrous polymer scaffolds for engineering the basic functional unit of the AF, a single lamella. Scaffolds were tested in uniaxial tension at multiple fiber orientations, demonstrating a nonlinear dependence of modulus on fiber angle that mimicked the nonlinearity and anisotropy of native AF. A homogenization model previously applied to native AF successfully described scaffold mechanical response, and parametric studies demonstrated that nonfibrillar matrix, along with fiber connectivity, are key contributors to tensile mechanics for engineered AF. We demonstrated that AF cells orient themselves along the aligned scaffolds and deposit matrix that contributes to construct mechanics under loading conditions relevant to the in vivo environment. The homogenization model was applied to cell-seeded constructs and provided quantitative measures for the evolution of matrix and interfibrillar interactions. Finally, the model demonstrated that at fiber angles of the AF (28 degrees -44 degrees ), engineered material behaved much like native tissue, suggesting that engineered constructs replicate the physiologic behavior of the single AF lamella. Constitutive modeling provides a powerful tool for analysis of engineered AF neo-tissue and native AF tissue alike, highlighting key mechanical design criteria for functional AF tissue engineering.

  16. Mechanical homeostasis regulating adipose tissue volume

    Directory of Open Access Journals (Sweden)

    Svedman Paul

    2007-09-01

    Full Text Available Abstract Background The total body adipose tissue volume is regulated by hormonal, nutritional, paracrine, neuronal and genetic control signals, as well as components of cell-cell or cell-matrix interactions. There are no known locally acting homeostatic mechanisms by which growing adipose tissue might adapt its volume. Presentation of the hypothesis Mechanosensitivity has been demonstrated by mesenchymal cells in tissue culture. Adipocyte differentiation has been shown to be inhibited by stretching in vitro, and a pathway for the response has been elucidated. In humans, intermittent stretching of skin for reconstructional purposes leads to thinning of adipose tissue and thickening of epidermis – findings matching those observed in vitro in response to mechanical stimuli. Furthermore, protracted suspension of one leg increases the intermuscular adipose tissue volume of the limb. These findings may indicate a local homeostatic adipose tissue volume-regulating mechanism based on movement-induced reduction of adipocyte differentiation. This function might, during evolution, have been of importance in confined spaces, where overgrowth of adipose tissue could lead to functional disturbance, as for instance in the turtle. In humans, adipose tissue near muscle might in particular be affected, for instance intermuscularly, extraperitoneally and epicardially. Mechanical homeostasis might also contribute to protracted maintainment of soft tissue shape in the face and neck region. Testing of the hypothesis Assessment of messenger RNA-expression of human adipocytes following activity in adjacent muscle is planned, and study of biochemical and volumetric adipose tissue changes in man are proposed. Implications of the hypothesis The interpretation of metabolic disturbances by means of adipose tissue might be influenced. Possible applications in the head and neck were discussed.

  17. Characterization of the mechanical properties of resected porcine organ tissue using optical fiber photoelastic polarimetry.

    Science.gov (United States)

    Hudnut, Alexa W; Babaei, Behzad; Liu, Sonya; Larson, Brent K; Mumenthaler, Shannon M; Armani, Andrea M

    2017-10-01

    Characterizing the mechanical behavior of living tissue presents an interesting challenge because the elasticity varies by eight orders of magnitude, from 50Pa to 5GPa. In the present work, a non-destructive optical fiber photoelastic polarimetry system is used to analyze the mechanical properties of resected samples from porcine liver, kidney, and pancreas. Using a quasi-linear viscoelastic fit, the elastic modulus values of the different organ systems are determined. They are in agreement with previous work. In addition, a histological assessment of compressed and uncompressed tissues confirms that the tissue is not damaged during testing.

  18. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    Science.gov (United States)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  19. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.

    Science.gov (United States)

    Then, C; Stassen, B; Depta, K; Silber, G

    2017-07-01

    Mechanical characterization of human superficial facial tissue has important applications in biomedical science, computer assisted forensics, graphics, and consumer goods development. Specifically, the latter may include facial hair removal devices. Predictive accuracy of numerical models and their ability to elucidate biomechanically relevant questions depends on the acquisition of experimental data and mechanical tissue behavior representation. Anisotropic viscoelastic behavioral characterization of human facial tissue, deformed in vivo with finite strain, however, is sparse. Employing an experimental-numerical approach, a procedure is presented to evaluate multidirectional tensile properties of superficial tissue layers of the face in vivo. Specifically, in addition to stress relaxation, displacement-controlled multi-step ramp-and-hold protocols were performed to separate elastic from inelastic properties. For numerical representation, an anisotropic hyperelastic material model in conjunction with a time domain linear viscoelasticity formulation with Prony series was employed. Model parameters were inversely derived, employing finite element models, using multi-criteria optimization. The methodology provides insight into mechanical superficial facial tissue properties. Experimental data shows pronounced anisotropy, especially with large strain. The stress relaxation rate does not depend on the loading direction, but is strain-dependent. Preconditioning eliminates equilibrium hysteresis effects and leads to stress-strain repeatability. In the preconditioned state tissue stiffness and hysteresis insensitivity to strain rate in the applied range is evident. The employed material model fits the nonlinear anisotropic elastic results and the viscoelasticity model reasonably reproduces time-dependent results. Inversely deduced maximum anisotropic long-term shear modulus of linear elasticity is G ∞,max aniso =2.43kPa and instantaneous initial shear modulus at an

  20. A computational modeling approach for the characterization of mechanical properties of 3D alginate tissue scaffolds.

    Science.gov (United States)

    Nair, K; Yan, K C; Sun, W

    2008-01-01

    Scaffold guided tissue engineering is an innovative approach wherein cells are seeded onto biocompatible and biodegradable materials to form 3-dimensional (3D) constructs that, when implanted in the body facilitate the regeneration of tissue. Tissue scaffolds act as artificial extracellular matrix providing the environment conducive for tissue growth. Characterization of scaffold properties is necessary to understand better the underlying processes involved in controlling cell behavior and formation of functional tissue. We report a computational modeling approach to characterize mechanical properties of 3D gellike biomaterial, specifically, 3D alginate scaffold encapsulated with cells. Alginate inherent nonlinearity and variations arising from minute changes in its concentration and viscosity make experimental evaluation of its mechanical properties a challenging and time consuming task. We developed an in silico model to determine the stress-strain relationship of alginate based scaffolds from experimental data. In particular, we compared the Ogden hyperelastic model to other hyperelastic material models and determined that this model was the most suitable to characterize the nonlinear behavior of alginate. We further propose a mathematical model that represents the alginate material constants in Ogden model as a function of concentrations and viscosity. This study demonstrates the model capability to predict mechanical properties of 3D alginate scaffolds.

  1. The Influence of Bioreactor Geometry and the Mechanical Environment on Engineered Tissues

    KAUST Repository

    Osborne, J. M.; O’ Dea, R. D.; Whiteley, J. P.; Byrne, H. M.; Waters, S. L.

    2010-01-01

    A three phase model for the growth of a tissue construct within a perfusion bioreactor is examined. The cell population (and attendant extracellular matrix), culture medium, and porous scaffold are treated as distinct phases. The bioreactor system is represented by a two-dimensional channel containing a cell-seeded rigid porous scaffold (tissue construct), which is perfused with a culture medium. Through the prescription of appropriate functional forms for cell proliferation and extracellular matrix deposition rates, the model is used to compare the influence of cell density-, pressure-, and culture medium shear stress-regulated growth on the composition of the engineered tissue. The governing equations are derived in O'Dea et al. "A Three Phase Model for Tissue Construct Growth in a Perfusion Bioreactor," Math. Med. Biol., in which the long-wavelength limit was exploited to aid analysis; here, finite element methods are used to construct two-dimensional solutions to the governing equations and to investigate thoroughly their behavior. Comparison of the total tissue yield and averaged pressures, velocities, and shear stress demonstrates that quantitative agreement between the two-dimensional and long-wavelength approximation solutions is obtained for channel aspect ratios of order 10 -2 and that much of the qualitative behavior of the model is captured in the long-wavelength limit, even for relatively large channel aspect ratios. However, we demonstrate that in order to capture accurately the effect of mechanotransduction mechanisms on tissue construct growth, spatial effects in at least two dimensions must be included due to the inherent spatial variation of mechanical stimuli relevant to perfusion bioreactors, most notably, fluid shear stress, a feature not captured in the long-wavelength limit. Copyright © 2010 by ASME.

  2. The Influence of Bioreactor Geometry and the Mechanical Environment on Engineered Tissues

    KAUST Repository

    Osborne, J. M.

    2010-01-01

    A three phase model for the growth of a tissue construct within a perfusion bioreactor is examined. The cell population (and attendant extracellular matrix), culture medium, and porous scaffold are treated as distinct phases. The bioreactor system is represented by a two-dimensional channel containing a cell-seeded rigid porous scaffold (tissue construct), which is perfused with a culture medium. Through the prescription of appropriate functional forms for cell proliferation and extracellular matrix deposition rates, the model is used to compare the influence of cell density-, pressure-, and culture medium shear stress-regulated growth on the composition of the engineered tissue. The governing equations are derived in O\\'Dea et al. "A Three Phase Model for Tissue Construct Growth in a Perfusion Bioreactor," Math. Med. Biol., in which the long-wavelength limit was exploited to aid analysis; here, finite element methods are used to construct two-dimensional solutions to the governing equations and to investigate thoroughly their behavior. Comparison of the total tissue yield and averaged pressures, velocities, and shear stress demonstrates that quantitative agreement between the two-dimensional and long-wavelength approximation solutions is obtained for channel aspect ratios of order 10 -2 and that much of the qualitative behavior of the model is captured in the long-wavelength limit, even for relatively large channel aspect ratios. However, we demonstrate that in order to capture accurately the effect of mechanotransduction mechanisms on tissue construct growth, spatial effects in at least two dimensions must be included due to the inherent spatial variation of mechanical stimuli relevant to perfusion bioreactors, most notably, fluid shear stress, a feature not captured in the long-wavelength limit. Copyright © 2010 by ASME.

  3. Determination of the axial and circumferential mechanical properties of the skin tissue using experimental testing and constitutive modeling.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi; Haghighatnama, Maedeh; Haghi, Afsaneh Motevalli

    2015-01-01

    The skin, being a multi-layered material, is responsible for protecting the human body from the mechanical, bacterial, and viral insults. The skin tissue may display different mechanical properties according to the anatomical locations of a body. However, these mechanical properties in different anatomical regions and at different loading directions (axial and circumferential) of the mice body to date have not been determined. In this study, the axial and circumferential loads were imposed on the mice skin samples. The elastic modulus and maximum stress of the skin tissues were measured before the failure occurred. The nonlinear mechanical behavior of the skin tissues was also computationally investigated through a suitable constitutive equation. Hyperelastic material model was calibrated using the experimental data. Regardless of the anatomic locations of the mice body, the results revealed significantly different mechanical properties in the axial and circumferential directions and, consequently, the mice skin tissue behaves like a pure anisotropic material. The highest elastic modulus was observed in the back skin under the circumferential direction (6.67 MPa), while the lowest one was seen in the abdomen skin under circumferential loading (0.80 MPa). The Ogden material model was narrowly captured the nonlinear mechanical response of the skin at different loading directions. The results help to understand the isotropic/anisotropic mechanical behavior of the skin tissue at different anatomical locations. They also have implications for a diversity of disciplines, i.e., dermatology, cosmetics industry, clinical decision making, and clinical intervention.

  4. Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence on Chemical Heterogeneity, Anisotropy, and Microstructure

    Science.gov (United States)

    Wahlquist, Joseph A.

    This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence of mechanical properties. Finally, we examined material anisotropy of both the calcified and uncalcified tissues of the osteochondral interface. This research provides insight into how articular cartilage serves to support physiologic loads and simultaneously sustain chondrocyte viability.

  5. Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: Experimental and numerical approaches.

    Science.gov (United States)

    Naghieh, Saman; Karamooz-Ravari, Mohammad Reza; Sarker, M D; Karki, Eva; Chen, Xiongbiao

    2018-04-01

    Tissue scaffolds fabricated by three-dimensional (3D) bioprinting are attracting considerable attention for tissue engineering applications. Because the mechanical properties of hydrogel scaffolds should match the damaged tissue, changing various parameters during 3D bioprinting has been studied to manipulate the mechanical behavior of the resulting scaffolds. Crosslinking scaffolds using a cation solution (such as CaCl 2 ) is also important for regulating the mechanical properties, but has not been well documented in the literature. Here, the effect of varied crosslinking agent volume and crosslinking time on the mechanical behavior of 3D bioplotted alginate scaffolds was evaluated using both experimental and numerical methods. Compression tests were used to measure the elastic modulus of each scaffold, then a finite element model was developed and a power model used to predict scaffold mechanical behavior. Results showed that crosslinking time and volume of crosslinker both play a decisive role in modulating the mechanical properties of 3D bioplotted scaffolds. Because mechanical properties of scaffolds can affect cell response, the findings of this study can be implemented to modulate the elastic modulus of scaffolds according to the intended application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Mechanotransduction mechanisms in growing spherically structured tissues

    Science.gov (United States)

    Littlejohns, Euan; Dunlop, Carina M.

    2018-04-01

    There is increasing experimental interest in mechanotransduction in multi-cellular tissues as opposed to single cells. This is driven by a growing awareness of the importance of physiologically relevant three-dimensional culture and of cell–cell and cell–gel interactions in directing growth and development. The paradigm biophysical technique for investigating tissue level mechanobiology in this context is to grow model tissues in artificial gels with well-defined mechanical properties. These studies often indicate that the stiffness of the encapsulating gel can significantly alter cellular behaviours. We demonstrate here potential mechanisms linking tissue growth with stiffness-mediated mechanotransduction. We show how tissue growth in gel systems generates points at which there is a significant qualitative change in the cellular stress and strain experienced. We show analytically how these potential switching points depend on the mechanical properties of the constraining gel and predict when they will occur. Significantly, we identify distinct mechanisms that act separately in each of the stress and strain fields at different times. These observations suggest growth as a potential physical mechanism coupling gel stiffness with cellular mechanotransduction in three-dimensional tissues. We additionally show that non-proliferating areas, in the case that the constraining gel is soft compared with the tissue, will expand and contract passively as a result of growth. Central compartment size is thus seen to not be a reliable indicator on its own for growth initiation or active behaviour.

  7. Factors affecting the mechanical behavior of collagen hydrogels for skin tissue engineering.

    Science.gov (United States)

    Pensalfini, Marco; Ehret, Alexander E; Stüdeli, Silvia; Marino, Daniela; Kaech, Andres; Reichmann, Ernst; Mazza, Edoardo

    2017-05-01

    The effect of the production factors yielding a functional dermal substitute was investigated by means of monotonic and cyclic uniaxial tensile tests, as well as electron microscopy visualizations. The role of (i) plastic compression, (ii) product incubation, and (iii) cell permanence in the collagenous matrix in order to achieve a skin-like behavior were characterized in terms of material and structural stiffness, in-plane kinematics, and cyclic response, as well as pore size and network density. The plastic compression resulted in a denser and stiffer material, while no corresponding change was observed in the behavior of the entire structure. This was related to the progressive reduction in product thickness and amount of excess water, rather than to formation of new crosslinks between fibers. Contrary, irrespective of the presence of human fibroblasts, the product incubation induced both material and structural stiffening, indicating the formation of a denser network. These results were confirmed by similar evolutions in the construct in-plane kinematics and cyclic stress reduction. Finally, comparison of constructs incubated in different culture media indicated a determinant contribution of the biochemical environment, rather than of the seeded cells, to the achieved mechanical properties. The observed features are relevant in terms of mechanical biocompatibility of the implant and might direct future optimizations of the production process in order to rapidly attain the desired mechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. On the dynamic behavior of mineralized tissues

    Science.gov (United States)

    Kulin, Robb Michael

    Mineralized tissues, such as bone and antler, are complex hierarchical materials that have adapted over millennia to optimize strength and fracture resistance for their in vivo applications. As a structural support, skeletal bone primarily acts as a rigid framework that is resistant to fracture, and able to repair damage and adapt to sustained loads during its lifetime. Antler is typically deciduous and subjected to large bending moments and violent impacts during its annual cycle. To date, extensive characterization of the quasi-static mechanical properties of these materials has been performed. However, very little has been done to characterize their dynamic properties, despite the fact that the majority of failures in these materials occur under impact loads. Here, an in depth analysis of the dynamic mechanical behavior of these two materials is presented, using equine bone obtained post-mortem from donors ranging in age from 6 months to 28 years, and antler from the North American Elk. Specimens were tested under compressive strain rates of 10-3, 100, and 103 sec-1 in order to investigate their strain rate dependent compressive response. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack propagation between dynamic (˜2x105 MPa˙m1/2/s) and quasi-static (˜0.25 MPa˙m1/2/s) loading rates. After testing, specimens were analyzed using a combination of optical, electron and confocal microscopy. Results indicated that the mechanical response of these materials is highly dependent on loading rate. Decreasing quasi-static fracture toughness is observed with age in bone specimens, while dynamic specimens show no age trends, yet universally decreased fracture toughness compared to those tested quasi-statically. For the first time, rising R-curve behavior in bone was also shown to exist under both quasi-static and dynamic

  9. Fluid mechanics as a driver of tissue-scale mechanical signaling in organogenesis.

    Science.gov (United States)

    Gilbert, Rachel M; Morgan, Joshua T; Marcin, Elizabeth S; Gleghorn, Jason P

    2016-12-01

    Organogenesis is the process during development by which cells self-assemble into complex, multi-scale tissues. Whereas significant focus and research effort has demonstrated the importance of solid mechanics in organogenesis, less attention has been given to the fluid forces that provide mechanical cues over tissue length scales. Fluid motion and pressure is capable of creating spatial gradients of forces acting on cells, thus eliciting distinct and localized signaling patterns essential for proper organ formation. Understanding the multi-scale nature of the mechanics is critically important to decipher how mechanical signals sculpt developing organs. This review outlines various mechanisms by which tissues generate, regulate, and sense fluid forces and highlights the impact of these forces and mechanisms in case studies of normal and pathological development.

  10. A Novel Pulsatile Bioreactor for Mechanical Stimulation of Tissue Engineered Cardiac Constructs

    Directory of Open Access Journals (Sweden)

    Günther Eissner

    2011-07-01

    Full Text Available After myocardial infarction, the implantation of stem cell seeded scaffolds on the ischemic zone represents a promising strategy for restoration of heart function. However, mechanical integrity and functionality of tissue engineered constructs need to be determined prior to implantation. Therefore, in this study a novel pulsatile bioreactor mimicking the myocardial contraction was developed to analyze the behavior of mesenchymal stem cells derived from umbilical cord tissue (UCMSC colonized on titanium-coated polytetrafluorethylene scaffolds to friction stress. The design of the bioreactor enables a simple handling and defined mechanical forces on three seeded scaffolds at physiological conditions. The compact system made of acrylic glass, Teflon®, silicone, and stainless steel allows the comparison of different media, cells and scaffolds. The bioreactor can be gas sterilized and actuated in a standard incubator. Macroscopic observations and pressure-measurements showed a uniformly sinusoidal pulsation, indicating that the bioreactor performed well. Preliminary experiments to determine the adherence rate and morphology of UCMSC after mechanical loadings showed an almost confluent cellular coating without damage on the cell surface. In summary, the bioreactor is an adequate tool for the mechanical stress of seeded scaffolds and offers dynamic stimuli for pre-conditioning of cardiac tissue engineered constructs in vitro.

  11. Coupling mechanical tension and GTPase signaling to generate cell and tissue dynamics

    Science.gov (United States)

    Zmurchok, Cole; Bhaskar, Dhananjay; Edelstein-Keshet, Leah

    2018-07-01

    Regulators of the actin cytoskeleton such Rho GTPases can modulate forces developed in cells by promoting actomyosin contraction. At the same time, through mechanosensing, tension is known to affect the activity of Rho GTPases. What happens when these effects act in concert? Using a minimal model (1 GTPase coupled to a Kelvin–Voigt element), we show that two-way feedback between signaling (‘RhoA’) and mechanical tension (stretching) leads to a spectrum of cell behaviors, including contracted or relaxed cells, and cells that oscillate between these extremes. When such ‘model cells’ are connected to one another in a row or in a 2D sheet (‘epithelium’), we observe waves of contraction/relaxation and GTPase activity sweeping through the tissue. The minimal model lends itself to full bifurcation analysis, and suggests a mechanism that explains behavior observed in the context of development and collective cell behavior.

  12. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

    Directory of Open Access Journals (Sweden)

    Ashkan Maccabi

    Full Text Available Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E, long term shear modulus (η, and time constant (τ in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.

  13. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

    Science.gov (United States)

    Maccabi, Ashkan; Shin, Andrew; Namiri, Nikan K; Bajwa, Neha; St John, Maie; Taylor, Zachary D; Grundfest, Warren; Saddik, George N

    2018-01-01

    Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.

  14. Exploring the mechanical behavior of degrading swine neural tissue at low strain rates via the fractional Zener constitutive model.

    Science.gov (United States)

    Bentil, Sarah A; Dupaix, Rebecca B

    2014-02-01

    The ability of the fractional Zener constitutive model to predict the behavior of postmortem swine brain tissue was examined in this work. Understanding tissue behavior attributed to degradation is invaluable in many fields such as the forensic sciences or cases where only cadaveric tissue is available. To understand how material properties change with postmortem age, the fractional Zener model was considered as it includes parameters to describe brain stiffness and also the parameter α, which quantifies the viscoelasticity of a material. The relationship between the viscoelasticity described by α and tissue degradation was examined by fitting the model to data collected in a previous study (Bentil, 2013). This previous study subjected swine neural tissue to in vitro unconfined compression tests using four postmortem age groups (week). All samples were compressed to a strain level of 10% using two compressive rates: 1mm/min and 5mm/min. Statistical analysis was used as a tool to study the influence of the fractional Zener constants on factors such as tissue degradation and compressive rate. Application of the fractional Zener constitutive model to the experimental data showed that swine neural tissue becomes less stiff with increased postmortem age. The fractional Zener model was also able to capture the nonlinear viscoelastic features of the brain tissue at low strain rates. The results showed that the parameter α was better correlated with compressive rate than with postmortem age. © 2013 Published by Elsevier Ltd.

  15. Mechanically driven interface propagation in biological tissues

    International Nuclear Information System (INIS)

    Ranft, Jonas; Joanny, Jean-François; Aliee, Maryam; Jülicher, Frank; Prost, Jacques

    2014-01-01

    Many biological tissues consist of more than one cell type. We study the dynamics of an interface between two different cell populations as it occurs during the growth of a tumor in a healthy host tissue. Recent work suggests that the rates of cell division and cell death are under mechanical control, characterized by a homeostatic pressure. The difference in the homeostatic pressures of two cell types drives the propagation of the interface, corresponding to the invasion of one cell type into the other. We derive a front propagation equation that takes into account the coupling between cell number balance and tissue mechanics. We show that in addition to pulled fronts, pushed-front solutions occur as a result of convection driven by mechanics. (paper)

  16. Mechanical properties of brain tissue by indentation : interregional variation

    NARCIS (Netherlands)

    Dommelen, van J.A.W.; Sande, van der T.P.J.; Hrapko, M.; Peters, G.W.M.

    2010-01-01

    Although many studies on the mechanical properties of brain tissue exist, some controversy concerning the possible differences in mechanical properties of white and gray matter tissue remains. Indentation experiments are conducted on white and gray matter tissue of various regions of the cerebrum

  17. Micromechanical modeling of rate-dependent behavior of Connective tissues.

    Science.gov (United States)

    Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M

    2017-03-07

    In this paper, a constitutive and micromechanical model for prediction of rate-dependent behavior of connective tissues (CTs) is presented. Connective tissues are considered as nonlinear viscoelastic material. The rate-dependent behavior of CTs is incorporated into model using the well-known quasi-linear viscoelasticity (QLV) theory. A planar wavy representative volume element (RVE) is considered based on the tissue microstructure histological evidences. The presented model parameters are identified based on the available experiments in the literature. The presented constitutive model introduced to ABAQUS by means of UMAT subroutine. Results show that, monotonic uniaxial test predictions of the presented model at different strain rates for rat tail tendon (RTT) and human patellar tendon (HPT) are in good agreement with experimental data. Results of incremental stress-relaxation test are also presented to investigate both instantaneous and viscoelastic behavior of connective tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Carbon nanotubes reinforced chitosan films: mechanical properties and cell response of a novel biomaterial for cardiovascular tissue engineering.

    Science.gov (United States)

    Kroustalli, A; Zisimopoulou, A E; Koch, S; Rongen, L; Deligianni, D; Diamantouros, S; Athanassiou, G; Kokozidou, M; Mavrilas, D; Jockenhoevel, S

    2013-12-01

    Carbon nanotubes have been proposed as fillers to reinforce polymeric biomaterials for the strengthening of their structural integrity to achieve better biomechanical properties. In this study, a new polymeric composite material was introduced by incorporating various low concentrations of multiwalled carbon nanotubes (MWCNTs) into chitosan (CS), aiming at achieving a novel composite biomaterial with superior mechanical and biological properties compared to neat CS, in order to be used in cardiovascular tissue engineering applications. Both mechanical and biological characteristics in contact with the two relevant cell types (endothelial cells and vascular myofibroblasts) were studied. Regarding the mechanical behavior of MWCNT reinforced CS (MWCNT/CS), 5 and 10 % concentrations of MWCNTs enhanced the mechanical behavior of CS, with that of 5 % exhibiting a superior mechanical strength compared to 10 % concentration and neat CS. Regarding biological properties, MWCNT/CS best supported proliferation of endothelial and myofibroblast cells, MWCNTs and MWCNT/CS caused no apoptosis and were not toxic of the examined cell types. Conclusively, the new material could be suitable for tissue engineering (TE) and particularly for cardiovascular TE applications.

  19. Mechanical cues in orofacial tissue engineering and regenerative medicine.

    Science.gov (United States)

    Brouwer, Katrien M; Lundvig, Ditte M S; Middelkoop, Esther; Wagener, Frank A D T G; Von den Hoff, Johannes W

    2015-01-01

    Cleft lip and palate patients suffer from functional, aesthetical, and psychosocial problems due to suboptimal regeneration of skin, mucosa, and skeletal muscle after restorative cleft surgery. The field of tissue engineering and regenerative medicine (TE/RM) aims to restore the normal physiology of tissues and organs in conditions such as birth defects or after injury. A crucial factor in cell differentiation, tissue formation, and tissue function is mechanical strain. Regardless of this, mechanical cues are not yet widely used in TE/RM. The effects of mechanical stimulation on cells are not straight-forward in vitro as cellular responses may differ with cell type and loading regime, complicating the translation to a therapeutic protocol. We here give an overview of the different types of mechanical strain that act on cells and tissues and discuss the effects on muscle, and skin and mucosa. We conclude that presently, sufficient knowledge is lacking to reproducibly implement external mechanical loading in TE/RM approaches. Mechanical cues can be applied in TE/RM by fine-tuning the stiffness and architecture of the constructs to guide the differentiation of the seeded cells or the invading surrounding cells. This may already improve the treatment of orofacial clefts and other disorders affecting soft tissues. © 2015 by the Wound Healing Society.

  20. Structure-function relationships in soft tissue mechanics: Examining how the micro-scale architecture of biochemical constituents effects health

    Science.gov (United States)

    Schultz, David Sheldon

    Countless debilitating pathologies exhibit symptoms that result from altered mechanical behavior of soft tissue. Therefore, it is of clinical and economic importance to mechanically evaluate soft tissues and attribute degenerative changes to alterations in structural constituents. The studies presented here focus on the annulus fibrosus and the sclera. Failure in these tissues is common and catastrophic. The annulus fibrosus may fail, resulting in herniation and nerve impingement, or the disc may degenerate over time, resulting in reduced mobility and pain. Similarly, the sclera may degenerate over time with intraocular pressure spurring creep behavior that distends the eye beyond its ideal shape. This causes myopic vision and puts patients at risk of macular degeneration and retinal detachment. These two tissues share a common structural role as the outer wall of a pressure vessel. Also, they are made of strikingly similar constituents, primarily consisting of water, type I collagen, glycosaminoglycans and elastin. The microstructure of these tissues, however, is very different. The annulus fibrosus is representative of an anisotropic tissue. Its well-organized fibril structure was analyzed via polarization modulated second harmonic microscopy in order to characterize fibril architecture. Structurally relevant biochemical constituents were quantified with biochemical assays. Morphologically healthy annulus tended to have a more highly organized microstructure and tended to absorb more strain energy when subject to a tensile load cycle. Given the strong correlation between fibril organization and select mechanical properties, predictive models will likely benefit from a characterization of fibril continuity and orientation coherence. The sclera is representative of an isotropic tissue. Its less-organized fibril structure has evolved to sustain biaxial plane stress. In the sclera, collagen content and associated crosslinks were primary determinants of stiffness

  1. Chemo-mechanical modeling of tumor growth in elastic epithelial tissue

    Energy Technology Data Exchange (ETDEWEB)

    Bratsun, Dmitry A., E-mail: bratsun@pspu.ru [Department of Applied Physics, Perm National Research Polytechnical University, Perm, 614990 (Russian Federation); Zakharov, Andrey P. [Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 32000 Israel (Israel); Theoretical Physics Department, Perm State Humanitarian Pedagogical University, Perm, 614990 (Russian Federation); Pismen, Len [Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 32000 Israel (Israel)

    2016-08-02

    We propose a multiscale chemo-mechanical model of the cancer tumor development in the epithelial tissue. The epithelium is represented by an elastic 2D array of polygonal cells with its own gene regulation dynamics. The model allows the simulation of the evolution of multiple cells interacting via the chemical signaling or mechanically induced strain. The algorithm includes the division and intercalation of cells as well as the transformation of normal cells into a cancerous state triggered by a local failure of the spatial synchronization of the cellular rhythms driven by transcription/translation processes. Both deterministic and stochastic descriptions of the system are given for chemical signaling. The transformation of cells means the modification of their respective parameters responsible for chemo-mechanical interactions. The simulations reproduce a distinct behavior of invasive and localized carcinoma. Generally, the model is designed in such a way that it can be readily modified to take account of any newly understood gene regulation processes and feedback mechanisms affecting chemo-mechanical properties of cells.

  2. Chemo-mechanical modeling of tumor growth in elastic epithelial tissue

    Science.gov (United States)

    Bratsun, Dmitry A.; Zakharov, Andrey P.; Pismen, Len

    2016-08-01

    We propose a multiscale chemo-mechanical model of the cancer tumor development in the epithelial tissue. The epithelium is represented by an elastic 2D array of polygonal cells with its own gene regulation dynamics. The model allows the simulation of the evolution of multiple cells interacting via the chemical signaling or mechanically induced strain. The algorithm includes the division and intercalation of cells as well as the transformation of normal cells into a cancerous state triggered by a local failure of the spatial synchronization of the cellular rhythms driven by transcription/translation processes. Both deterministic and stochastic descriptions of the system are given for chemical signaling. The transformation of cells means the modification of their respective parameters responsible for chemo-mechanical interactions. The simulations reproduce a distinct behavior of invasive and localized carcinoma. Generally, the model is designed in such a way that it can be readily modified to take account of any newly understood gene regulation processes and feedback mechanisms affecting chemo-mechanical properties of cells.

  3. Tissue oxygen demand in regulation of the behavior of the cells in the vasculature.

    Science.gov (United States)

    Barvitenko, Nadezhda N; Aslam, Muhammad; Filosa, Jessica; Matteucci, Elena; Nikinmaa, Mikko; Pantaleo, Antonella; Saldanha, Carlota; Baskurt, Oguz K

    2013-08-01

    The control of arteriolar diameters in microvasculature has been in the focus of studies on mechanisms matching oxygen demand and supply at the tissue level. Functionally, important vascular elements include EC, VSMC, and RBC. Integration of these different cell types into functional units aimed at matching tissue oxygen supply with tissue oxygen demand is only achieved when all these cells can respond to the signals of tissue oxygen demand. Many vasoactive agents that serve as signals of tissue oxygen demand have their receptors on all these types of cells (VSMC, EC, and RBC) implying that there can be a coordinated regulation of their behavior by the tissue oxygen demand. Such functions of RBC as oxygen carrying by Hb, rheology, and release of vasoactive agents are considered. Several common extra- and intracellular signaling pathways that link tissue oxygen demand with control of VSMC contractility, EC permeability, and RBC functioning are discussed. © 2013 John Wiley & Sons Ltd.

  4. Mechanisms of behavior modification in clinical behavioral medicine in China.

    Science.gov (United States)

    Yang, Zhiyin; Su, Zhonghua; Ji, Feng; Zhu, Min; Bai, Bo

    2014-08-01

    Behavior modification, as the core of clinical behavioral medicine, is often used in clinical settings. We seek to summarize behavior modification techniques that are commonly used in clinical practice of behavioral medicine in China and discuss possible biobehavioral mechanisms. We reviewed common behavior modification techniques in clinical settings in China, and we reviewed studies that explored possible biobehavioral mechanisms. Commonly used clinical approaches of behavior modification in China include behavior therapy, cognitive therapy, cognitive-behavioral therapy, health education, behavior management, behavioral relaxation training, stress management intervention, desensitization therapy, biofeedback therapy, and music therapy. These techniques have been applied in the clinical treatment of a variety of diseases, such as chronic diseases, psychosomatic diseases, and psychological disorders. The biobehavioral mechanisms of these techniques involve the autonomic nervous system, neuroendocrine system, neurobiochemistry, and neuroplasticity. Behavior modification techniques are commonly used in the treatment of a variety of somatic and psychological disorders in China. Multiple biobehavioral mechanisms are involved in successful behavior modification.

  5. A finite element evaluation of mechanical function for 3 distal extension partial dental prosthesis designs with a 3-dimensional nonlinear method for modeling soft tissue.

    Science.gov (United States)

    Nakamura, Yoshinori; Kanbara, Ryo; Ochiai, Kent T; Tanaka, Yoshinobu

    2014-10-01

    The mechanical evaluation of the function of partial removable dental prostheses with 3-dimensional finite element modeling requires the accurate assessment and incorporation of soft tissue behavior. The differential behaviors of the residual ridge mucosa and periodontal ligament tissues have been shown to exhibit nonlinear displacement. The mathematic incorporation of known values simulating nonlinear soft tissue behavior has not been investigated previously via 3-dimensional finite element modeling evaluation to demonstrate the effect of prosthesis design on the supporting tissues. The purpose of this comparative study was to evaluate the functional differences of 3 different partial removable dental prosthesis designs with 3-dimensional finite element analysis modeling and a simulated patient model incorporating known viscoelastic, nonlinear soft tissue properties. Three different designs of distal extension removable partial dental prostheses were analyzed. The stress distributions to the supporting abutments and soft tissue displacements of the designs tested were calculated and mechanically compared. Among the 3 dental designs evaluated, the RPI prosthesis demonstrated the lowest stress concentrations on the tissue supporting the tooth abutment and also provided wide mucosa-borne areas of support, thereby demonstrating a mechanical advantage and efficacy over the other designs evaluated. The data and results obtained from this study confirmed that the functional behavior of partial dental prostheses with supporting abutments and soft tissues are consistent with the conventional theories of design and clinical experience. The validity and usefulness of this testing method for future applications and testing protocols are shown. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Methodology based on genetic heuristics for in-vivo characterizing the patient-specific biomechanical behavior of the breast tissues.

    Science.gov (United States)

    Lago, M A; Rúperez, M J; Martínez-Martínez, F; Martínez-Sanchis, S; Bakic, P R; Monserrat, C

    2015-11-30

    This paper presents a novel methodology to in-vivo estimate the elastic constants of a constitutive model proposed to characterize the mechanical behavior of the breast tissues. An iterative search algorithm based on genetic heuristics was constructed to in-vivo estimate these parameters using only medical images, thus avoiding invasive measurements of the mechanical response of the breast tissues. For the first time, a combination of overlap and distance coefficients were used for the evaluation of the similarity between a deformed MRI of the breast and a simulation of that deformation. The methodology was validated using breast software phantoms for virtual clinical trials, compressed to mimic MRI-guided biopsies. The biomechanical model chosen to characterize the breast tissues was an anisotropic neo-Hookean hyperelastic model. Results from this analysis showed that the algorithm is able to find the elastic constants of the constitutive equations of the proposed model with a mean relative error of about 10%. Furthermore, the overlap between the reference deformation and the simulated deformation was of around 95% showing the good performance of the proposed methodology. This methodology can be easily extended to characterize the real biomechanical behavior of the breast tissues, which means a great novelty in the field of the simulation of the breast behavior for applications such as surgical planing, surgical guidance or cancer diagnosis. This reveals the impact and relevance of the presented work.

  7. Nondestructive mechanical characterization of developing biological tissues using inflation testing.

    Science.gov (United States)

    Oomen, P J A; van Kelle, M A J; Oomens, C W J; Bouten, C V C; Loerakker, S

    2017-10-01

    One of the hallmarks of biological soft tissues is their capacity to grow and remodel in response to changes in their environment. Although it is well-accepted that these processes occur at least partly to maintain a mechanical homeostasis, it remains unclear which mechanical constituent(s) determine(s) mechanical homeostasis. In the current study a nondestructive mechanical test and a two-step inverse analysis method were developed and validated to nondestructively estimate the mechanical properties of biological tissue during tissue culture. Nondestructive mechanical testing was achieved by performing an inflation test on tissues that were cultured inside a bioreactor, while the tissue displacement and thickness were nondestructively measured using ultrasound. The material parameters were estimated by an inverse finite element scheme, which was preceded by an analytical estimation step to rapidly obtain an initial estimate that already approximated the final solution. The efficiency and accuracy of the two-step inverse method was demonstrated on virtual experiments of several material types with known parameters. PDMS samples were used to demonstrate the method's feasibility, where it was shown that the proposed method yielded similar results to tensile testing. Finally, the method was applied to estimate the material properties of tissue-engineered constructs. Via this method, the evolution of mechanical properties during tissue growth and remodeling can now be monitored in a well-controlled system. The outcomes can be used to determine various mechanical constituents and to assess their contribution to mechanical homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix

    NARCIS (Netherlands)

    Gilbert, Thomas W.; Wognum, Silvia; Joyce, Erinn M.; Freytes, Donald O.; Sacks, Michael S.; Badylak, Stephen F.

    2008-01-01

    The collagen fiber alignment and biomechanical behavior of naturally occurring extracellular matrix (ECM) scaffolds are important considerations for the design of medical devices from these materials. Both should be considered in order to produce a device to meet tissue specific mechanical

  9. A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds.

    Science.gov (United States)

    Engelmayr, George C; Sacks, Michael S

    2006-08-01

    The development of methods to predict the strength and stiffness of biomaterials used in tissue engineering is critical for load-bearing applications in which the essential functional requirements are primarily mechanical. We previously quantified changes in the effective stiffness (E) of needled nonwoven polyglycolic acid (PGA) and poly-L-lactic acid (PLLA) scaffolds due to tissue formation and scaffold degradation under three-point bending. Toward predicting these changes, we present a structural model for E of a needled nonwoven scaffold in flexure. The model accounted for the number and orientation of fibers within a representative volume element of the scaffold demarcated by the needling process. The spring-like effective stiffness of the curved fibers was calculated using the sinusoidal fiber shapes. Structural and mechanical properties of PGA and PLLA fibers and PGA, PLLA, and 50:50 PGA/PLLA scaffolds were measured and compared with model predictions. To verify the general predictive capability, the predicted dependence of E on fiber diameter was compared with experimental measurements. Needled nonwoven scaffolds were found to exhibit distinct preferred (PD) and cross-preferred (XD) fiber directions, with an E ratio (PD/XD) of approximately 3:1. The good agreement between the predicted and experimental dependence of E on fiber diameter (R2 = 0.987) suggests that the structural model can be used to design scaffolds with E values more similar to native soft tissues. A comparison with previous results for cell-seeded scaffolds (Engelmayr, G. C., Jr., et al., 2005, Biomaterials, 26(2), pp. 175-187) suggests, for the first time, that the primary mechanical effect of collagen deposition is an increase in the number of fiber-fiber bond points yielding effectively stiffer scaffold fibers. This finding indicated that the effects of tissue deposition on needled nonwoven scaffold mechanics do not follow a rule-of-mixtures behavior. These important results underscore

  10. Effect of Decellularization Protocol on the Mechanical Behavior of Porcine Descending Aorta

    Directory of Open Access Journals (Sweden)

    John C. Fitzpatrick

    2010-01-01

    Full Text Available Enzymatic-detergent decellularization treatments may use a combination of chemical reagents to reduce vascular tissue to sterilized scaffolds, which may be seeded with endothelial cells and implanted with a low risk of rejection. However, these chemicals may alter the mechanical properties of the native tissue and contribute to graft compliance mismatch. Uniaxial tensile data obtained from native and decellularized longitudinal aortic tissue samples was analyzed in terms of engineering stress and fit to a modified form of the Yeoh rubber model. One decellularization protocol used SDS, while the other two used TritonX-100, RNase-A, and DNase-I in combination with EDTA or sodium-deoxycholate. Statistical significance of Yeoh model parameters was determined by paired t-test analysis. The TritonX-100/EDTA and 0.075% SDS treatments resulted in relatively variable mechanical changes and did not effectively lyse VSMCs in aortic tissue. The TritonX-100/sodium-deoxycholate treatment effectively lysed VSMCs and was characterized by less variability in mechanical behavior. The data suggests a TritonX-100/sodium-deoxycholate treatment is a more effective option than TritonX-100/EDTA and SDS treatments for the preparation of aortic xenografts and allografts because it effectively lyses VSMCs and is the least likely treatment, among those considered, to promote a decrease in mechanical compliance.

  11. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan

    2018-05-30

    Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.

  12. Mathematical Modeling of Uniaxial Mechanical Properties of Collagen Gel Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ramiro M. Irastorza

    2015-01-01

    Full Text Available Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.. When Akaike criterion is used, the best is the Mooney-Rivlin inspired model.

  13. Mathematical modeling of uniaxial mechanical properties of collagen gel scaffolds for vascular tissue engineering.

    Science.gov (United States)

    Irastorza, Ramiro M; Drouin, Bernard; Blangino, Eugenia; Mantovani, Diego

    2015-01-01

    Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.). When Akaike criterion is used, the best is the Mooney-Rivlin inspired model.

  14. In vitro mechanical fatigue behavior of poly-ɛ-caprolactone macroporous scaffolds for cartilage tissue engineering: Influence of pore filling by a poly(vinyl alcohol) gel.

    Science.gov (United States)

    Panadero, J A; Vikingsson, L; Gomez Ribelles, J L; Lanceros-Mendez, S; Sencadas, V

    2015-07-01

    Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and submitted to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long-term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behavior of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow's criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles. © 2014 Wiley Periodicals, Inc.

  15. Bioprinting of hybrid tissue constructs with tailorable mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Schuurman, W; Khristov, V; Pot, M W; Dhert, W J A; Malda, J [Department of Orthopaedics, University Medical Center Utrecht (Netherlands); Van Weeren, P R, E-mail: j.malda@umcutrecht.nl [Faculty of Veterinary Sciences, Department of Equine Sciences, Utrecht University (Netherlands)

    2011-06-15

    Tissue/organ printing aims to recapitulate the intrinsic complexity of native tissues. For a number of tissues, in particular those of musculoskeletal origin, adequate mechanical characteristics are an important prerequisite for their initial handling and stability, as well as long-lasting functioning. Hence, organized implants, possessing mechanical characteristics similar to the native tissue, may result in improved clinical outcomes of regenerative approaches. Using a bioprinter, grafts were constructed by alternate deposition of thermoplastic fibers and (cell-laden) hydrogels. Constructs of different shapes and sizes were manufactured and mechanical properties, as well as cell viability, were assessed. This approach yields novel organized viable hybrid constructs, which possess favorable mechanical characteristics, within the same range as those of native tissues. Moreover, the approach allows the use of multiple hydrogels and can thus produce constructs containing multiple cell types or bioactive factors. Furthermore, since the hydrogel is supported by the thermoplastic material, a broader range of hydrogel types can be used compared to bioprinting of hydrogels alone. In conclusion, we present an innovative and versatile approach for bioprinting, yielding constructs of which the mechanical stiffness provided by thermoplastic polymers can potentially be tailored, and combined specific cell placement patterns of multiple cell types embedded in a wide range of hydrogels. (communication)

  16. Bioprinting of hybrid tissue constructs with tailorable mechanical properties

    International Nuclear Information System (INIS)

    Schuurman, W; Khristov, V; Pot, M W; Dhert, W J A; Malda, J; Van Weeren, P R

    2011-01-01

    Tissue/organ printing aims to recapitulate the intrinsic complexity of native tissues. For a number of tissues, in particular those of musculoskeletal origin, adequate mechanical characteristics are an important prerequisite for their initial handling and stability, as well as long-lasting functioning. Hence, organized implants, possessing mechanical characteristics similar to the native tissue, may result in improved clinical outcomes of regenerative approaches. Using a bioprinter, grafts were constructed by alternate deposition of thermoplastic fibers and (cell-laden) hydrogels. Constructs of different shapes and sizes were manufactured and mechanical properties, as well as cell viability, were assessed. This approach yields novel organized viable hybrid constructs, which possess favorable mechanical characteristics, within the same range as those of native tissues. Moreover, the approach allows the use of multiple hydrogels and can thus produce constructs containing multiple cell types or bioactive factors. Furthermore, since the hydrogel is supported by the thermoplastic material, a broader range of hydrogel types can be used compared to bioprinting of hydrogels alone. In conclusion, we present an innovative and versatile approach for bioprinting, yielding constructs of which the mechanical stiffness provided by thermoplastic polymers can potentially be tailored, and combined specific cell placement patterns of multiple cell types embedded in a wide range of hydrogels. (communication)

  17. Characterization of Mechanical Properties of Tissue Scaffolds by Phase Contrast Imaging and Finite Element Modeling.

    Science.gov (United States)

    Bawolin, Nahshon K; Dolovich, Allan T; Chen, Daniel X B; Zhang, Chris W J

    2015-08-01

    In tissue engineering, the cell and scaffold approach has shown promise as a treatment to regenerate diseased and/or damaged tissue. In this treatment, an artificial construct (scaffold) is seeded with cells, which organize and proliferate into new tissue. The scaffold itself biodegrades with time, leaving behind only newly formed tissue. The degradation qualities of the scaffold are critical during the treatment period, since the change in the mechanical properties of the scaffold with time can influence cell behavior. To observe in time the scaffold's mechanical properties, a straightforward method is to deform the scaffold and then characterize scaffold deflection accordingly. However, experimentally observing the scaffold deflection is challenging. This paper presents a novel study on characterization of mechanical properties of scaffolds by phase contrast imaging and finite element modeling, which specifically includes scaffold fabrication, scaffold imaging, image analysis, and finite elements (FEs) modeling of the scaffold mechanical properties. The innovation of the work rests on the use of in-line phase contrast X-ray imaging at 20 KeV to characterize tissue scaffold deformation caused by ultrasound radiation forces and the use of the Fourier transform to identify movement. Once deformation has been determined experimentally, it is then compared with the predictions given by the forward solution of a finite element model. A consideration of the number of separate loading conditions necessary to uniquely identify the material properties of transversely isotropic and fully orthotropic scaffolds is also presented, along with the use of an FE as a form of regularization.

  18. Manipulation of mechanical compliance of elastomeric PGS by incorporation of halloysite nanotubes for soft tissue engineering applications.

    Science.gov (United States)

    Chen, Qi-Zhi; Liang, Shu-Ling; Wang, Jiang; Simon, George P

    2011-11-01

    Poly (glycerol sebacate) (PGS) is a promising elastomer for use in soft tissue engineering. However, it is difficult to achieve with PGS a satisfactory balance of mechanical compliance and degradation rate that meet the requirements of soft tissue engineering. In this work, we have synthesised a new PGS nanocomposite system filled with halloysite nanotubes, and mechanical properties, as well as related chemical characters, of the nanocomposites were investigated. It was found that the addition of nanotubular halloysite did not compromise the extensibility of material, compared with the pure PGS counterpart; instead the elongation at rupture was increased from 110 (in the pure PGS) to 225% (in the 20 wt% composite). Second, Young's modulus and resilience of 3-5 wt% composites were ∼0.8 MPa and >94% respectively, remaining close to the level of pure PGS which is desired for applications in soft tissue engineering. Third, an important feature of the 1-5 wt% composites was their stable mechanical properties over an extended period, which could allow the provision of reliable mechanical support to damaged tissues during the lag phase of the healing process. Finally, the in vitro study indicated that the addition of halloysite slowed down the degradation rate of the composites. In conclusion, the good compliance, enhanced stretchability, stable mechanical behavior over an extended period, and reduced degradation rates make the 3-5 wt% composites promising candidates for application in soft tissue engineering. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    Science.gov (United States)

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  20. Mechanically Reinforced Catechol-Containing Hydrogels with Improved Tissue Gluing Performance

    Directory of Open Access Journals (Sweden)

    Jun Feng

    2017-11-01

    Full Text Available In situ forming hydrogels with catechol groups as tissue reactive functionalities are interesting bioinspired materials for tissue adhesion. Poly(ethylene glycol (PEG–catechol tissue glues have been intensively investigated for this purpose. Different cross-linking mechanisms (oxidative or metal complexation and cross-linking conditions (pH, oxidant concentration, etc. have been studied in order to optimize the curing kinetics and final cross-linking degree of the system. However, reported systems still show limited mechanical stability, as expected from a PEG network, and this fact limits their potential application to load bearing tissues. Here, we describe mechanically reinforced PEG–catechol adhesives showing excellent and tunable cohesive properties and adhesive performance to tissue in the presence of blood. We used collagen/PEG mixtures, eventually filled with hydroxyapatite nanoparticles. The composite hydrogels show far better mechanical performance than the individual components. It is noteworthy that the adhesion strength measured on skin covered with blood was >40 kPa, largely surpassing (>6 fold the performance of cyanoacrylate, fibrin, and PEG–catechol systems. Moreover, the mechanical and interfacial properties could be easily tuned by slight changes in the composition of the glue to adapt them to the particular properties of the tissue. The reported adhesive compositions can tune and improve cohesive and adhesive properties of PEG–catechol-based tissue glues for load-bearing surgery applications.

  1. Combination of biochemical and mechanical cues for tendon tissue engineering.

    Science.gov (United States)

    Testa, Stefano; Costantini, Marco; Fornetti, Ersilia; Bernardini, Sergio; Trombetta, Marcella; Seliktar, Dror; Cannata, Stefano; Rainer, Alberto; Gargioli, Cesare

    2017-11-01

    Tendinopathies negatively affect the life quality of millions of people in occupational and athletic settings, as well as the general population. Tendon healing is a slow process, often with insufficient results to restore complete endurance and functionality of the tissue. Tissue engineering, using tendon progenitors, artificial matrices and bioreactors for mechanical stimulation, could be an important approach for treating rips, fraying and tissue rupture. In our work, C3H10T1/2 murine fibroblast cell line was exposed to a combination of stimuli: a biochemical stimulus provided by Transforming Growth Factor Beta (TGF-β) and Ascorbic Acid (AA); a three-dimensional environment represented by PEGylated-Fibrinogen (PEG-Fibrinogen) biomimetic matrix; and a mechanical induction exploiting a custom bioreactor applying uniaxial stretching. In vitro analyses by immunofluorescence and mechanical testing revealed that the proposed combined approach favours the organization of a three-dimensional tissue-like structure promoting a remarkable arrangement of the cells and the neo-extracellular matrix, reflecting into enhanced mechanical strength. The proposed method represents a novel approach for tendon tissue engineering, demonstrating how the combined effect of biochemical and mechanical stimuli ameliorates biological and mechanical properties of the artificial tissue compared to those obtained with single inducement. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. Mechanical characterization of bioprinted in vitro soft tissue models

    International Nuclear Information System (INIS)

    Zhang, Ting; Ouyang, Liliang; Sun, Wei; Yan, Karen Chang

    2013-01-01

    Recent development in bioprinting technology enables the fabrication of complex, precisely controlled cell-encapsulated tissue constructs. Bioprinted tissue constructs have potential in both therapeutic applications and nontherapeutic applications such as drug discovery and screening, disease modelling and basic biological studies such as in vitro tissue modelling. The mechanical properties of bioprinted in vitro tissue models play an important role in mimicking in vivo the mechanochemical microenvironment. In this study, we have constructed three-dimensional in vitro soft tissue models with varying structure and porosity based on the 3D cell-assembly technique. Gelatin/alginate hybrid materials were used as the matrix material and cells were embedded. The mechanical properties of these models were assessed via compression tests at various culture times, and applicability of three material constitutive models was examined for fitting the experimental data. An assessment of cell bioactivity in these models was also carried out. The results show that the mechanical properties can be improved through structure design, and the compression modulus and strength decrease with respect to time during the first week of culture. In addition, the experimental data fit well with the Ogden model and experiential function. These results provide a foundation to further study the mechanical properties, structural and combined effects in the design and the fabrication of in vitro soft tissue models. (paper)

  3. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.

    Science.gov (United States)

    Lin, Dan; Yang, Kai; Tang, Wei; Liu, Yutong; Yuan, Yuan; Liu, Changsheng

    2015-07-01

    Various requirements in the field of tissue engineering have motivated the development of three-dimensional scaffold with adjustable physicochemical properties and biological functions. A series of multiparameter-adjustable mesoporous bioactive glass (MBG) scaffolds with uncrosslinked poly(glycerol sebacate) (PGS) coating was prepared in this article. MBG scaffold was prepared by a modified F127/PU co-templating process and then PGS was coated by a simple adsorption and lyophilization process. Through controlling macropore parameters and PGS coating amount, the mechanical strength, degradation rate, controlled-release and cell behavior of the composite scaffold could be modulated in a wide range. PGS coating successfully endowed MBG scaffold with improved toughness and adjustable mechanical strength covering the bearing range of trabecular bone (2-12MPa). Multilevel degradation rate of the scaffold and controlled-release rate of protein from mesopore could be achieved, with little impact on the protein activity owing to an "ultralow-solvent" coating and "nano-cavity entrapment" immobilization method. In vitro studies indicated that PGS coating promoted cell attachment and proliferation in a dose-dependent manner, without affecting the osteogenic induction capacity of MBG substrate. These results first provide strong evidence that uncrosslinked PGS might also yield extraordinary achievements in traditional MBG scaffold. With the multiparameter adjustability, the composite MBG/PGS scaffolds would have a hopeful prospect in bone tissue engineering. The design considerations and coating method of this study can also be extended to other ceramic-based artificial scaffolds and are expected to provide new thoughts on development of future tissue engineering materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A classification of the mechanisms producing pathological tissue changes.

    Science.gov (United States)

    Grippo, John O; Oh, Daniel S

    2013-05-01

    The objectives are to present a classification of mechanisms which can produce pathological changes in body tissues and fluids, as well as to clarify and define the term biocorrosion, which has had a singular use in engineering. Considering the emerging field of biomedical engineering, it is essential to use precise definitions in the lexicons of engineering, bioengineering and related sciences such as medicine, dentistry and veterinary medicine. The mechanisms of stress, friction and biocorrosion and their pathological effects on tissues are described. Biocorrosion refers to the chemical, biochemical and electrochemical changes by degradation or induced growth of living body tissues and fluids. Various agents which can affect living tissues causing biocorrosion are enumerated which support the necessity and justify the use of this encompassing and more precise definition of biocorrosion. A distinction is made between the mechanisms of corrosion and biocorrosion.

  5. Multi-axial mechanical stimulation of tissue engineered cartilage: Review

    Directory of Open Access Journals (Sweden)

    S D Waldman

    2007-04-01

    Full Text Available The development of tissue engineered cartilage is a promising new approach for the repair of damaged or diseased tissue. Since it has proven difficult to generate cartilaginous tissue with properties similar to that of native articular cartilage, several studies have used mechanical stimuli as a means to improve the quantity and quality of the developed tissue. In this study, we have investigated the effect of multi-axial loading applied during in vitro tissue formation to better reflect the physiological forces that chondrocytes are subjected to in vivo. Dynamic combined compression-shear stimulation (5% compression and 5% shear strain amplitudes increased both collagen and proteoglycan synthesis (76 ± 8% and 73 ± 5%, respectively over the static (unstimulated controls. When this multi-axial loading condition was applied to the chondrocyte cultures over a four week period, there were significant improvements in both extracellular matrix (ECM accumulation and the mechanical properties of the in vitro-formed tissue (3-fold increase in compressive modulus and 1.75-fold increase in shear modulus. Stimulated tissues were also significantly thinner than the static controls (19% reduction suggesting that there was a degree of ECM consolidation as a result of long-term multi-axial loading. This study demonstrated that stimulation by multi-axial forces can improve the quality of the in vitro-formed tissue, but additional studies are required to further optimize the conditions to favour improved biochemical and mechanical properties of the developed tissue.

  6. Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for preoperative simulations in plastic and reconstructive surgery.

    Science.gov (United States)

    Sommer, Gerhard; Eder, Maximilian; Kovacs, Laszlo; Pathak, Heramb; Bonitz, Lars; Mueller, Christoph; Regitnig, Peter; Holzapfel, Gerhard A

    2013-11-01

    A preoperative simulation of soft tissue deformations during plastic and reconstructive surgery is desirable to support the surgeon's planning and to improve surgical outcomes. The current development of constitutive adipose tissue models, for the implementation in multilayer computational frameworks for the simulation of human soft tissue deformations, has proved difficult because knowledge of the required mechanical parameters of fat tissue is limited. Therefore, for the first time, human abdominal adipose tissues were mechanically investigated by biaxial tensile and triaxial shear tests. The results of this study suggest that human abdominal adipose tissues under quasi-static and dynamic multiaxial loadings can be characterized as a nonlinear, anisotropic and viscoelastic soft biological material. The nonlinear and anisotropic features are consequences of the material's collagenous microstructure. The aligned collagenous septa observed in histological investigations causes the anisotropy of the tissue. A hyperelastic model used in this study was appropriate to represent the quasi-static multiaxial mechanical behavior of fat tissue. The constitutive parameters are intended to serve as a basis for soft tissue simulations using the finite element method, which is an apparent method for obtaining promising results in the field of plastic and reconstructive surgery. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Active Tension Network model reveals an exotic mechanical state realized in epithelial tissues

    Science.gov (United States)

    Noll, Nicholas; Mani, Madhav; Heemskerk, Idse; Streicha, Sebastian; Shraiman, Boris

    Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that mechanical balance of cells is dominated by cortical tension and introduces tension dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties: i) ATN behaves as a fluid at short times, but at long times it supports external tension, like a solid; ii) its mechanical equilibrium state has extensive degeneracy associated with a discrete conformal - ''isogonal'' - deformation of cells. ATN model predicts a constraint on equilibrium cell geometry, which we demonstrate to hold in certain epithelial tissues. We further show that isogonal modes are observed in a fruit fly embryo, accounting for the striking variability of apical area of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, understanding which helps understand biological phenomena.

  8. Colloquium: Mechanical formalisms for tissue dynamics.

    Science.gov (United States)

    Tlili, Sham; Gay, Cyprien; Graner, François; Marcq, Philippe; Molino, François; Saramito, Pierre

    2015-05-01

    The understanding of morphogenesis in living organisms has been renewed by tremendous progress in experimental techniques that provide access to cell scale, quantitative information both on the shapes of cells within tissues and on the genes being expressed. This information suggests that our understanding of the respective contributions of gene expression and mechanics, and of their crucial entanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assist the design and interpretation of experiments, point out the main ingredients and assumptions, and ultimately lead to predictions. The newly accessible local information thus calls for a reflection on how to select suitable classes of mechanical models. We review both mechanical ingredients suggested by the current knowledge of tissue behaviour, and modelling methods that can help generate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell") and tissue scale ("inter-cell") contributions. We recall the mathematical framework developed for continuum materials and explain how to transform a constitutive equation into a set of partial differential equations amenable to numerical resolution. We show that when plastic behaviour is relevant, the dissipation function formalism appears appropriate to generate constitutive equations; its variational nature facilitates numerical implementation, and we discuss adaptations needed in the case of large deformations. The present article gathers theoretical methods that can readily enhance the significance of the data to be extracted from recent or future high throughput biomechanical experiments.

  9. Characterization of Tensile Mechanical Behavior of MSCs/PLCL Hybrid Layered Sheet

    Directory of Open Access Journals (Sweden)

    Azizah Intan Pangesty

    2016-06-01

    Full Text Available A layered construct was developed by combining a porous polymer sheet and a cell sheet as a tissue engineered vascular patch. The primary objective of this study is to investigate the influence of mesenchymal stem cells (MSCs sheet on the tensile mechanical properties of porous poly-(l-lactide-co-ε-caprolactone (PLCL sheet. The porous PLCL sheet was fabricated by the solid-liquid phase separation method and the following freeze-drying method. The MSCs sheet, prepared by the temperature-responsive dish, was then layered on the top of the PLCL sheet and cultured for 2 weeks. During the in vitro study, cellular properties such as cell infiltration, spreading and proliferation were evaluated. Tensile test of the layered construct was performed periodically to characterize the tensile mechanical behavior. The tensile properties were then correlated with the cellular properties to understand the effect of MSCs sheet on the variation of the mechanical behavior during the in vitro study. It was found that MSCs from the cell sheet were able to migrate into the PLCL sheet and actively proliferated into the porous structure then formed a new layer of MSCs on the opposite surface of the PLCL sheet. Mechanical evaluation revealed that the PLCL sheet with MSCs showed enhancement of tensile strength and strain energy density at the first week of culture which is characterized as the effect of MSCs proliferation and its infiltration into the porous structure of the PLCL sheet. New technique was presented to develop tissue engineered patch by combining MSCs sheet and porous PLCL sheet, and it is expected that the layered patch may prolong biomechanical stability when implanted in vivo.

  10. Viscoelastic Properties of Human Tracheal Tissues.

    Science.gov (United States)

    Safshekan, Farzaneh; Tafazzoli-Shadpour, Mohammad; Abdouss, Majid; Shadmehr, Mohammad B

    2017-01-01

    The physiological performance of trachea is highly dependent on its mechanical behavior, and therefore, the mechanical properties of its components. Mechanical characterization of trachea is key to succeed in new treatments such as tissue engineering, which requires the utilization of scaffolds which are mechanically compatible with the native human trachea. In this study, after isolating human trachea samples from brain-dead cases and proper storage, we assessed the viscoelastic properties of tracheal cartilage, smooth muscle, and connective tissue based on stress relaxation tests (at 5% and 10% strains for cartilage and 20%, 30%, and 40% for smooth muscle and connective tissue). After investigation of viscoelastic linearity, constitutive models including Prony series for linear viscoelasticity and quasi-linear viscoelastic, modified superposition, and Schapery models for nonlinear viscoelasticity were fitted to the experimental data to find the best model for each tissue. We also investigated the effect of age on the viscoelastic behavior of tracheal tissues. Based on the results, all three tissues exhibited a (nonsignificant) decrease in relaxation rate with increasing the strain, indicating viscoelastic nonlinearity which was most evident for cartilage and with the least effect for connective tissue. The three-term Prony model was selected for describing the linear viscoelasticity. Among different models, the modified superposition model was best able to capture the relaxation behavior of the three tracheal components. We observed a general (but not significant) stiffening of tracheal cartilage and connective tissue with aging. No change in the stress relaxation percentage with aging was observed. The results of this study may be useful in the design and fabrication of tracheal tissue engineering scaffolds.

  11. Tissue Acoustoelectric Effect Modeling From Solid Mechanics Theory.

    Science.gov (United States)

    Song, Xizi; Qin, Yexian; Xu, Yanbin; Ingram, Pier; Witte, Russell S; Dong, Feng

    2017-10-01

    The acoustoelectric (AE) effect is a basic physical phenomenon, which underlies the changes made in the conductivity of a medium by the application of focused ultrasound. Recently, based on the AE effect, several biomedical imaging techniques have been widely studied, such as ultrasound-modulated electrical impedance tomography and ultrasound current source density imaging. To further investigate the mechanism of the AE effect in tissue and to provide guidance for such techniques, we have modeled the tissue AE effect using the theory of solid mechanics. Both bulk compression and thermal expansion of tissue are considered and discussed. Computation simulation shows that the muscle AE effect result, conductivity change rate, is 3.26×10 -3 with 4.3-MPa peak pressure, satisfying the theoretical value. Bulk compression plays the main role for muscle AE effect, while thermal expansion makes almost no contribution to it. In addition, the AE signals of porcine muscle are measured at different focal positions. With the same magnitude order and the same change trend, the experiment result confirms that the simulation result is effective. Both simulation and experimental results validate that tissue AE effect modeling using solid mechanics theory is feasible, which is of significance for the further development of related biomedical imaging techniques.

  12. High-resolution optical polarimetric elastography for measuring the mechanical properties of tissue

    Science.gov (United States)

    Hudnut, Alexa W.; Armani, Andrea M.

    2018-02-01

    Traditionally, chemical and molecular markers have been the predominate method in diagnostics. Recently, alternate methods of determining tissue and disease characteristics have been proposed based on testing the mechanical behavior of biomaterials. Existing methods for performing elastography measurements, such as atomic force microscopy, compression testing, and ultrasound elastography, require either extensive sample processing or have poor resolution. In the present work, we demonstrate an optical polarimetric elastography device to characterize the mechanical properties of salmon skeletal muscle. A fiber-coupled 1550nm laser paired with an optical polarizer is used to create a fiber optic sensing region. By measuring the change in polarization from the initial state to the final state within the fiber sensing region with a polarimeter, the loading-unloading curves can be determined for the biomaterial. The device is used to characterize the difference between samples with a range of collagen membranes. The loading-unloading curves are used to determine the change in polarization phase and energy loss of the samples at 10%, 20% and 30% strain. As expected, the energy loss is a better metric for measuring the mechanical properties of the tissues because it incorporates the entire loading-unloading curve rather than a single point. Using this metric, it is demonstrated the device can repeatedly differentiate between the different membrane configurations.

  13. Mechanical enhancement and in vitro biocompatibility of nanofibrous collagen-chitosan scaffolds for tissue engineering.

    Science.gov (United States)

    Zou, Fengjuan; Li, Runrun; Jiang, Jianjun; Mo, Xiumei; Gu, Guofeng; Guo, Zhongwu; Chen, Zonggang

    2017-12-01

    The collagen-chitosan complex with a three-dimensional nanofiber structure was fabricated to mimic native ECM for tissue repair and biomedical applications. Though the three-dimensional hierarchical fibrous structures of collagen-chitosan composites could provide more adequate stimulus to facilitate cell adhesion, migrate and proliferation, and thus have the potential as tissue engineering scaffolding, there are still limitations in their applications due to the insufficient mechanical properties of natural materials. Because poly (vinyl alcohol) (PVA) and thermoplastic polyurethane (TPU) as biocompatible synthetic polymers can offer excellent mechanical properties, they were introduced into the collagen-chitosan composites to fabricate the mixed collagen/chitosan/PVA fibers and a sandwich structure (collagen/chitosan-TPU-collagen/chitosan) of nanofiber in order to enhance the mechanical properties of the nanofibrous collagen-chitosan scaffold. The results showed that the tensile behavior of materials was enhanced to different degrees with the difference of collagen content in the fibers. Besides the Young's modulus had no obvious changes, both the break strength and the break elongation of materials were heightened after reinforced by PVA. For the collagen-chitosan nanofiber reinforced by TPU, both the break strength and the Young's modulus of materials were heightened in different degrees with the variety of collagen content in the fibers despite the decrease of the break elongation of materials to some extent. In vitro cell test demonstrated that the materials could provide adequate environment for cell adhesion and proliferation. All these indicated that the reinforced collagen-chitosan nanofiber could be as potential scaffold for tissue engineering according to the different mechanical requirements in clinic.

  14. Mechanics of fresh, frozen-thawed and heated porcine liver tissue.

    Science.gov (United States)

    Wex, Cora; Stoll, Anke; Fröhlich, Marlen; Arndt, Susann; Lippert, Hans

    2014-06-01

    For a better understanding of the effects of thermally altered soft tissue, the biothermomechanics of these tissues need to be studied. Without the knowledge of the underlying physical processes and the parameters that can be controlled clinically, thermal treatment of cancerous hepatic tissue or the preservation of liver grafts are based primarily on trial and error. Thus, this study is concerned with the investigation of the influence of temperature on the rheological properties and the histological properties of porcine liver. Heating previously cooled porcine liver tissue above 40 °C leads to significant, irreversible stiffness changes observed in the amplitude sweep. The increase of the complex shear module of healthy porcine liver from room temperature to 70 °C is approximately 9-fold. Comparing the temperatures -20 °C and 20 °C, no significant difference of the mechanical properties was observed. Furthermore, there is a strong relation between the mechanical and histological properties of the porcine liver. Temperatures above 40 °C destroy the collagen matrix within the liver tissue. This results in the alteration of the biomechanical properties. The time-temperature superposition principle is applied to generate temperature-dependent shift factors that can be described by a two-part exponential function model with an inflection temperature of 45 °C. Tumor ablation techniques such as heating or freezing have a significant influence on the histology of liver tissue. However, only for temperatures above body temperature an influence on the mechanical properties of hepatic tissues was noticeable. Freezing up to -20 °C did not affect the liver mechanics.

  15. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    Science.gov (United States)

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A method for quantifying mechanical properties of tissue following viral infection.

    Directory of Open Access Journals (Sweden)

    Vy Lam

    Full Text Available Viral infection and replication involves the reorganization of the actin network within the host cell. Actin plays a central role in the mechanical properties of cells. We have demonstrated a method to quantify changes in mechanical properties of fabricated model three-dimensional (3D connective tissue following viral infection. Using this method, we have characterized the impact of infection by the human herpesvirus, cytomegalovirus (HCMV. HCMV is a member of the herpesvirus family and infects a variety of cell types including fibroblasts. In the body, fibroblasts are necessary for maintaining connective tissue and function by creating mechanical force. Using this 3D connective tissue model, we observed that infection disrupted the cell's ability to generate force and reduced the cumulative contractile force of the tissue. The addition of HCMV viral particles in the absence of both viral gene expression and DNA replication was sufficient to disrupt tissue function. We observed that alterations of the mechanical properties are, in part, due to a disruption of the underlying complex actin microfilament network established by the embedded fibroblasts. Finally, we were able to prevent HCMV-mediated disruption of tissue function by the addition of human immune globulin against HCMV. This study demonstrates a method to quantify the impact of viral infection on mechanical properties which are not evident using conventional cell culture systems.

  17. Let's push things forward: disruptive technologies and the mechanics of tissue assembly.

    Science.gov (United States)

    Varner, Victor D; Nelson, Celeste M

    2013-09-01

    Although many of the molecular mechanisms that regulate tissue assembly in the embryo have been delineated, the physical forces that couple these mechanisms to actual changes in tissue form remain unclear. Qualitative studies suggest that mechanical loads play a regulatory role in development, but clear quantitative evidence has been lacking. This is partly owing to the complex nature of these problems - embryonic tissues typically undergo large deformations and exhibit evolving, highly viscoelastic material properties. Still, despite these challenges, new disruptive technologies are enabling study of the mechanics of tissue assembly in unprecedented detail. Here, we present novel experimental techniques that enable the study of each component of these physical problems: kinematics, forces, and constitutive properties. Specifically, we detail advances in light sheet microscopy, optical coherence tomography, traction force microscopy, fluorescence force spectroscopy, microrheology and micropatterning. Taken together, these technologies are helping elucidate a more quantitative understanding of the mechanics of tissue assembly.

  18. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells

    Science.gov (United States)

    Sampathkumar, Arun; Krupinski, Pawel; Wightman, Raymond; Milani, Pascale; Berquand, Alexandre; Boudaoud, Arezki; Hamant, Olivier; Jönsson, Henrik; Meyerowitz, Elliot M

    2014-01-01

    Although it is a central question in biology, how cell shape controls intracellular dynamics largely remains an open question. Here, we show that the shape of Arabidopsis pavement cells creates a stress pattern that controls microtubule orientation, which then guides cell wall reinforcement. Live-imaging, combined with modeling of cell mechanics, shows that microtubules align along the maximal tensile stress direction within the cells, and atomic force microscopy demonstrates that this leads to reinforcement of the cell wall parallel to the microtubules. This feedback loop is regulated: cell-shape derived stresses could be overridden by imposed tissue level stresses, showing how competition between subcellular and supracellular cues control microtubule behavior. Furthermore, at the microtubule level, we identified an amplification mechanism in which mechanical stress promotes the microtubule response to stress by increasing severing activity. These multiscale feedbacks likely contribute to the robustness of microtubule behavior in plant epidermis. DOI: http://dx.doi.org/10.7554/eLife.01967.001 PMID:24740969

  19. Mechanical tension as a driver of connective tissue growth in vitro.

    Science.gov (United States)

    Wilson, Cameron J; Pearcy, Mark J; Epari, Devakara R

    2014-07-01

    We propose the progressive mechanical expansion of cell-derived tissue analogues as a novel, growth-based approach to in vitro tissue engineering. The prevailing approach to producing tissue in vitro is to culture cells in an exogenous "scaffold" that provides a basic structure and mechanical support. This necessarily pre-defines the final size of the implantable material, and specific signals must be provided to stimulate appropriate cell growth, differentiation and matrix formation. In contrast, surgical skin expansion, driven by increments of stretch, produces increasing quantities of tissue without trauma or inflammation. This suggests that connective tissue cells have the innate ability to produce growth in response to elevated tension. We posit that this capacity is maintained in vitro, and that order-of-magnitude growth may be similarly attained in self-assembling cultures of cells and their own extracellular matrix. The hypothesis that growth of connective tissue analogues can be induced by mechanical expansion in vitro may be divided into three components: (1) tension stimulates cell proliferation and extracellular matrix synthesis; (2) the corresponding volume increase will relax the tension imparted by a fixed displacement; (3) the repeated application of static stretch will produce sustained growth and a tissue structure adapted to the tensile loading. Connective tissues exist in a state of residual tension, which is actively maintained by resident cells such as fibroblasts. Studies in vitro and in vivo have demonstrated that cellular survival, reproduction, and matrix synthesis and degradation are regulated by the mechanical environment. Order-of-magnitude increases in both bone and skin volume have been achieved clinically through staged expansion protocols, demonstrating that tension-driven growth can be sustained over prolonged periods. Furthermore, cell-derived tissue analogues have demonstrated mechanically advantageous structural adaptation in

  20. Mechanical properties of human atherosclerotic intima tissue.

    Science.gov (United States)

    Akyildiz, Ali C; Speelman, Lambert; Gijsen, Frank J H

    2014-03-03

    Progression and rupture of atherosclerotic plaques in coronary and carotid arteries are the key processes underlying myocardial infarctions and strokes. Biomechanical stress analyses to compute mechanical stresses in a plaque can potentially be used to assess plaque vulnerability. The stress analyses strongly rely on accurate representation of the mechanical properties of the plaque components. In this review, the composition of intima tissue and how this changes during plaque development is discussed from a mechanical perspective. The plaque classification scheme of the American Heart Association is reviewed and plaques originating from different vascular territories are compared. Thereafter, an overview of the experimental studies on tensile and compressive plaque intima properties are presented and the results are linked to the pathology of atherosclerotic plaques. This overview revealed a considerable variation within studies, and an enormous dispersion between studies. Finally, the implications of the dispersion in experimental data on the clinical applications of biomechanical plaque modeling are presented. Suggestions are made on mechanical testing protocol for plaque tissue and on using a standardized plaque classification scheme. This review identifies the current status of knowledge on plaque mechanical properties and the future steps required for a better understanding of the plaque type specific material properties. With this understanding, biomechanical plaque modeling may eventually provide essential support for clinical plaque risk stratification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Behavioral effects of social challenges and genomic mechanisms of social priming: What's testosterone got to do with it?

    Science.gov (United States)

    Rosvall, Kimberly A; Peterson, Mark P

    2014-12-01

    Social challenges from rival conspecifics are common in the lives of animals, and changes in an animal's social environment can influence physiology and behavior in ways that appear to be adaptive in the face of continued social instability (i.e. social priming). Recently, it has become clear that testosterone, long thought to be the primary mediator of these effects, may not always change in response to social challenges, an observation that highlights gaps in our understanding of the proximate mechanisms by which animals respond to their social environment. Here, our goal is to address the degree to which testosterone mediates organismal responses to social cues. To this end, we review the behavioral and physiological consequences of social challenges, as well as their underlying hormonal and gene regulatory mechanisms. We also present a new case study from a wild songbird, the dark-eyed junco ( Junco hyemalis ), in which we find largely divergent genome-wide transcriptional changes induced by social challenges and testosterone, respectively, in muscle and liver tissue. Our review underscores the diversity of mechanisms that link the dynamic social environment with an organisms' genomic, hormonal, and behavioral state. This diversity among species, and even among tissues within an organism, reveals new insights into the pattern and process by which evolution may alter proximate mechanisms of social priming.

  2. The coupled bio-chemo-electro-mechanical behavior of glucose exposed arterial elastin

    International Nuclear Information System (INIS)

    Zhang, Yanhang; Li, Jiangyu; Boutis, Gregory S

    2017-01-01

    Elastin, the principle protein component of the elastic fiber, is a critical extracellular matrix (ECM) component of the arterial wall providing structural resilience and biological signaling essential in vascular morphogenesis and maintenance of mechanical homeostasis. Pathogenesis of many cardiovascular diseases have been associated with alterations of elastin. As a long-lived ECM protein that is deposited and organized before adulthood, elastic fibers can suffer from cumulative effects of biochemical exposure encountered during aging and/or disease, which greatly compromise their mechanical function. This review article covers findings from recent studies of the mechanical and structural contribution of elastin to vascular function, and the effects of biochemical degradation. Results from diverse experimental methods including tissue-level mechanical characterization, fiber-level nonlinear optical imaging, piezoelectric force microscopy, and nuclear magnetic resonance are reviewed. The intriguing coupled bio-chemo-electro-mechanical behavior of elastin calls for a multi-scale and multi-physical understanding of ECM mechanics and mechanobiology in vascular remodeling. (topical review)

  3. The coupled bio-chemo-electro-mechanical behavior of glucose exposed arterial elastin

    Science.gov (United States)

    Zhang, Yanhang; Li, Jiangyu; Boutis, Gregory S.

    2017-04-01

    Elastin, the principle protein component of the elastic fiber, is a critical extracellular matrix (ECM) component of the arterial wall providing structural resilience and biological signaling essential in vascular morphogenesis and maintenance of mechanical homeostasis. Pathogenesis of many cardiovascular diseases have been associated with alterations of elastin. As a long-lived ECM protein that is deposited and organized before adulthood, elastic fibers can suffer from cumulative effects of biochemical exposure encountered during aging and/or disease, which greatly compromise their mechanical function. This review article covers findings from recent studies of the mechanical and structural contribution of elastin to vascular function, and the effects of biochemical degradation. Results from diverse experimental methods including tissue-level mechanical characterization, fiber-level nonlinear optical imaging, piezoelectric force microscopy, and nuclear magnetic resonance are reviewed. The intriguing coupled bio-chemo-electro-mechanical behavior of elastin calls for a multi-scale and multi-physical understanding of ECM mechanics and mechanobiology in vascular remodeling.

  4. Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds.

    Science.gov (United States)

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L

    2013-07-01

    Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to stem cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to "map the mechanome", defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. On the influence of surface patterning on tissue self-assembly and mechanics.

    Science.gov (United States)

    Coppola, Valerio; Ventre, Maurizio; Natale, Carlo F; Rescigno, Francesca; Netti, Paolo A

    2018-04-28

    Extracellular matrix assembly and composition influence the biological and mechanical functions of tissues. Developing strategies to control the spatial arrangement of cells and matrix is of central importance for tissue engineering-related approaches relying on self-assembling and scaffoldless processes. Literature reports demonstrated that signals patterned on material surfaces are able to control cell positioning and matrix orientation. However, the mechanisms underlying the interactions between material signals and the structure of the de novo synthesized matrix are far from being thoroughly understood. In this work, we investigated the ordering effect provided by nanoscale topographic patterns on the assembly of tissue sheets grown in vitro. We stimulated MC3T3-E1 preosteoblasts to produce and assemble a collagen-rich matrix on substrates displaying patterns with long- or short-range order. Then, we investigated microstructural features and mechanical properties of the tissue in uniaxial tension. Our results demonstrate that patterned material surfaces are able to control the initial organization of cells in close contact to the surface; then cell-generated contractile forces profoundly remodel tissue structure towards mechanically stable spatial patterns. Such a remodelling effect acts both locally, as it affects cell and nuclear shape and globally, by affecting the gross mechanical response of the tissue. Such an aspect of dynamic interplay between cells and the surrounding matrix must be taken into account when designing material platform for the in vitro generation of tissue with specific microstructural assemblies. Copyright © 2018 John Wiley & Sons, Ltd.

  6. A Novel bioreactor with mechanical stimulation for skeletal tissue engineering

    Directory of Open Access Journals (Sweden)

    M. Petrović

    2009-01-01

    Full Text Available The provision of mechanical stimulation is believed to be necessary for the functional assembly of skeletal tissues, which are normally exposed to a variety of biomechanical signals in vivo. In this paper, we present a development and validation of a novel bioreactor aimed for skeletal tissue engineering that provides dynamic compression and perfusion of cultivated tissues. Dynamic compression can be applied at frequencies up to 67.5 Hz and displacements down to 5 m thus suitable for the simulation of physiological conditions in a native cartilage tissue (0.1-1 Hz, 5-10 % strain. The bioreactor also includes a load sensor that was calibrated so to measure average loads imposed on tissue samples. Regimes of the mechanical stimulation and acquisition of load sensor outputs are directed by an automatic control system using applications developed within the LabView platform. In addition, perfusion of tissue samples at physiological velocities (10–100 m/s provides efficient mass transfer, as well as the possibilities to expose the cells to hydrodynamic shear and simulate the conditions in a native bone tissue. Thus, the novel bioreactor is suited for studies of the effects of different biomechanical signals on in vitro regeneration of skeletal tissues, as well as for the studies of newly formulated biomaterials and cell biomaterial interactions under in vivo-like settings.

  7. Indentation and Observation of Anisotropic Soft Tissues Using an Indenter Device

    Directory of Open Access Journals (Sweden)

    Parinaz ASHRAFI

    2015-01-01

    Full Text Available Soft tissues of human body have complex structures and different mechanical behaviors than those of traditional engineering materials. There is a great urge to understand tissue behavior of human body. Experimental data is needed for improvement of soft tissue modeling and advancement in implants and prosthesis, as well as diagnosis of diseases. Mechanical behavior and responses change when tissue loses its liveliness and viability. One of the techniques for soft tissue testing is indentation, which is applied on live tissue in its physiological environment. Indentation affords several advantages over other types of tests such as uniaxial tension, biaxial tension, and simple shear and suction, thus it is of interest to develop new indentation techniques from which more valid data can be extracted. In this study a new indenter device was designed and constructed. Displacement and force rate cyclic loading, and relaxation experiments were conducted on human arm. The in-vivo force rate controlled cyclic loading test method which is novel is compared with the traditional displacement controlled cyclic loading tests. Anisotropic behavior of tissue cannot be determined by axisymmetric tips, therefore ellipsoid tips were used for examining anisotropy and inplane material direction of bulk soft tissues

  8. A high throughput mechanical screening device for cartilage tissue engineering.

    Science.gov (United States)

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. © 2013 Published by Elsevier Ltd.

  9. Mapping of Mechanical Strains and Stresses around Quiescent Engineered Three-Dimensional Epithelial Tissues

    Science.gov (United States)

    Gjorevski, Nikolce; Nelson, Celeste M.

    2012-01-01

    Understanding how physical signals guide biological processes requires qualitative and quantitative knowledge of the mechanical forces generated and sensed by cells in a physiologically realistic three-dimensional (3D) context. Here, we used computational modeling and engineered epithelial tissues of precise geometry to define the experimental parameters that are required to measure directly the mechanical stress profile of 3D tissues embedded within native type I collagen. We found that to calculate the stresses accurately in these settings, we had to account for mechanical heterogeneities within the matrix, which we visualized and quantified using confocal reflectance and atomic force microscopy. Using this technique, we were able to obtain traction forces at the epithelium-matrix interface, and to resolve and quantify patterns of mechanical stress throughout the surrounding matrix. We discovered that whereas single cells generate tension by contracting and pulling on the matrix, the contraction of multicellular tissues can also push against the matrix, causing emergent compression. Furthermore, tissue geometry defines the spatial distribution of mechanical stress across the epithelium, which communicates mechanically over distances spanning hundreds of micrometers. Spatially resolved mechanical maps can provide insight into the types and magnitudes of physical parameters that are sensed and interpreted by multicellular tissues during normal and pathological processes. PMID:22828342

  10. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review

    Directory of Open Access Journals (Sweden)

    Devon E. Anderson

    2017-12-01

    Full Text Available Articular cartilage functions to transmit and translate loads. In a classical structure–function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ, dynamic mechanical loading has been hypothesized to induce the structure–function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells

  11. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.

    Science.gov (United States)

    Anderson, Devon E; Johnstone, Brian

    2017-01-01

    Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ , dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different

  12. Changes in diffusion properties of biological tissues associated with mechanical strain

    International Nuclear Information System (INIS)

    Tanaka, Kenichiro; Imae, T.; Mima, Kazuo; Sekino, Masaki; Ohsaki, Hiroyuki; Ueno, Shogo

    2007-01-01

    Mechanical strain in biological tissues causes a change in the diffusion properties of water molecules. This paper proposes a method of estimating mechanical strain in biological tissues using diffusion magnetic resonance imaging (MRI). Measurements were carried out on uncompressed and compressed chicken skeletal muscles. A theoretical model of the diffusion of water molecules in muscle fibers was derived based on Tanner's equation. Diameter of the muscle fibers was estimated by fitting the model equation to the measured signals. Changes in the mean diffusivity (MD), the fractional anisotropy (FA), and diameter of the muscle fiber did not have any statistical significance. The intracellular diffusion coefficient (D int ) was changed by mechanical strain (p<.05). This method has potential applications in the quantitative evaluation of strain in biological tissues, a though it poses several technical challenges. (author)

  13. Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue.

    Science.gov (United States)

    Hara, Yusuke

    2017-06-01

    The cell-cell boundaries of epithelial cells form cellular frameworks at the apical side of tissues. Deformations in these boundaries, for example, boundary contraction and elongation, and the associated forces form the mechanical basis of epithelial tissue morphogenesis. In this review, using data from recent Drosophila studies on cell boundary contraction and elongation, I provide an overview of the mechanism underlying the bi-directional deformations in the epithelial cell boundary, that are sustained by biased accumulations of junctional and apico-medial non-muscle myosin II. Moreover, how the junctional tensions exist on cell boundaries in different boundary dynamics and morphologies are discussed. Finally, some future perspectives on how recent knowledge about single cell boundary-level mechanics will contribute to our understanding of epithelial tissue morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  14. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Vedadghavami, Armin; Minooei, Farnaz; Mohammadi, Mohammad Hossein; Khetani, Sultan; Rezaei Kolahchi, Ahmad; Mashayekhan, Shohreh; Sanati-Nezhad, Amir

    2017-10-15

    Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most common approaches used for tuning mechanical properties of hydrogels including but are not limited to, interpenetrating polymer networks, nanocomposites, self-assembly techniques, and co-polymerization are discussed. The performance of different techniques used for tuning biomechanical properties of hydrogels is further compared. Such techniques involve lithography techniques for replication of tissues with complex mechanical profiles; microfluidic techniques applicable for generating gradients of mechanical properties in hydrogel biomaterials for engineering complex human tissues like intervertebral discs, osteochondral tissues, blood vessels and skin layers; and electrospinning techniques for synthesis of hybrid hydrogels and highly ordered fibers with tunable mechanical and biological properties. We finally discuss future perspectives and challenges for controlling biomimetic hydrogel materials possessing proper biomechanical properties. Hydrogels biomaterials are essential constituting components of engineered tissues with the applications in regenerative medicine and drug delivery. The mechanical properties of hydrogels play crucial roles in regulating the interactions between cells and extracellular matrix and directing the cells phenotype and genotype. Despite

  15. Spiral wave classification using normalized compression distance: Towards atrial tissue spatiotemporal electrophysiological behavior characterization.

    Science.gov (United States)

    Alagoz, Celal; Guez, Allon; Cohen, Andrew; Bullinga, John R

    2015-08-01

    Analysis of electrical activation patterns such as re-entries during atrial fibrillation (Afib) is crucial in understanding arrhythmic mechanisms and assessment of diagnostic measures. Spiral waves are a phenomena that provide intuitive basis for re-entries occurring in cardiac tissue. Distinct spiral wave behaviors such as stable spiral waves, meandering spiral waves, and spiral wave break-up may have distinct electrogram manifestations on a mapping catheter. Hence, it is desirable to have an automated classification of spiral wave behavior based on catheter recordings for a qualitative characterization of spatiotemporal electrophysiological activity on atrial tissue. In this study, we propose a method for classification of spatiotemporal characteristics of simulated atrial activation patterns in terms of distinct spiral wave behaviors during Afib using two different techniques: normalized compressed distance (NCD) and normalized FFT (NFFTD). We use a phenomenological model for cardiac electrical propagation to produce various simulated spiral wave behaviors on a 2D grid and labeled them as stable, meandering, or breakup. By mimicking commonly used catheter types, a star shaped and a circular shaped both of which do the local readings from atrial wall, monopolar and bipolar intracardiac electrograms are simulated. Virtual catheters are positioned at different locations on the grid. The classification performance for different catheter locations, types and for monopolar or bipolar readings were also compared. We observed that the performance for each case differed slightly. However, we found that NCD performance is superior to NFFTD. Through the simulation study, we showed the theoretical validation of the proposed method. Our findings suggest that a qualitative wavefront activation pattern can be assessed during Afib without the need for highly invasive mapping techniques such as multisite simultaneous electrogram recordings.

  16. Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels.

    Science.gov (United States)

    Liu, Yurong; Geever, Luke M; Kennedy, James E; Higginbotham, Clement L; Cahill, Paul A; McGuinness, Garrett B

    2010-02-01

    Poly (vinyl alcohol)/Gelatin hydrogels are under active investigation as potential vascular cell culture biomaterials, tissue models and vascular implants. The PVA/Gelatin hydrogels are physically crosslinked by the freeze-thaw technique, which is followed by a coagulation bath treatment. In this study, the thermal behavior of the gels was examined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Rheological measurement and uniaxial tensile tests revealed key mechanical properties. The role of polymer fraction in relation to these mechanical properties is explored. Gelatin has no significant effect on the thermal behavior of PVA, which indicates that no substantial change occurs in the PVA crystallite due to the presence of gelatin. The glass transition temperature, melting temperature, degree of crystallinity, polymer fraction, storage modulus (G') and ultimate strength of one freeze-thaw cycle (1FT) hydrogels are inferior to those of 3FT hydrogels. With coagulation, both 1FT and 3FT hydrogels shifted to a lower value of T(g), melting temperature and polymer fraction are further increased and the degree of crystallinity is depressed. The mechanical properties of 1FT, but not 3FT, were strengthened with coagulation treatment. This study gives a detailed investigation of the microstructure formation of PVA/Gelatin hydrogel in each stage of physical treatments which helps us to explain the role of physical treatments in tuning their physical properties for biomechanical applications. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Can plantar soft tissue mechanics enhance prognosis of diabetic foot ulcer?

    Science.gov (United States)

    Naemi, R; Chatzistergos, P; Suresh, S; Sundar, L; Chockalingam, N; Ramachandran, A

    2017-04-01

    To investigate if the assessment of the mechanical properties of plantar soft tissue can increase the accuracy of predicting Diabetic Foot Ulceration (DFU). 40 patients with diabetic neuropathy and no DFU were recruited. Commonly assessed clinical parameters along with plantar soft tissue stiffness and thickness were measured at baseline using ultrasound elastography technique. 7 patients developed foot ulceration during a 12months follow-up. Logistic regression was used to identify parameters that contribute to predicting the DFU incidence. The effect of using parameters related to the mechanical behaviour of plantar soft tissue on the specificity, sensitivity, prediction strength and accuracy of the predicting models for DFU was assessed. Patients with higher plantar soft tissue thickness and lower stiffness at the 1st Metatarsal head area showed an increased risk of DFU. Adding plantar soft tissue stiffness and thickness to the model improved its specificity (by 3%), sensitivity (by 14%), prediction accuracy (by 5%) and prognosis strength (by 1%). The model containing all predictors was able to effectively (χ 2 (8, N=40)=17.55, P<0.05) distinguish between the patients with and without DFU incidence. The mechanical properties of plantar soft tissue can be used to improve the predictability of DFU in moderate/high risk patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A novel bioreactor to simulate urinary bladder mechanical properties and compliance for bladder functional tissue engineering.

    Science.gov (United States)

    Wei, Xin; Li, Dao-bing; Xu, Feng; Wang, Yan; Zhu, Yu-chun; Li, Hong; Wang, Kun-jie

    2011-02-01

    Bioreactors are pivotal tools for generating mechanical stimulation in functional tissue engineering study. This study aimed to create a bioreactor that can simulate urinary bladder mechanical properties, and to investigate the effects of a mechanically stimulated culture on urothelial cells and bladder smooth muscle cells. We designed a bioreactor to simulate the mechanical properties of bladder. A pressure-record system was used to evaluate the mechanical properties of the bioreactor by measuring the pressure in culture chambers. To test the biocompatibility of the bioreactor, viabilities of urothelial cells and smooth muscle cells cultured in the bioreactor under static and mechanically changed conditions were measured after 7-day culture. To evaluate the effect of mechanical stimulations on the vital cells, urethral cells and smooth muscle cells were cultured in the simulated mechanical conditions. After that, the viability and the distribution pattern of the cells were observed and compared with cells cultured in non-mechanical stimulated condition. The bioreactor system successfully generated waveforms similar to the intended programmed model while maintaining a cell-seeded elastic membrane between the chambers. There were no differences between viabilities of urothelial cells ((91.90 ± 1.22)% vs. (93.14 ± 1.78)%, P > 0.05) and bladder smooth muscle cells ((93.41 ± 1.49)% vs. (92.61 ± 1.34)%, P > 0.05). The viability of cells and tissue structure observation after cultured in simulated condition showed that mechanical stimulation was the only factor affected cells in the bioreactor and improved the arrangement of cells on silastic membrane. This bioreactor can effectively simulate the physiological and mechanical properties of the bladder. Mechanical stimulation is the only factor that affected the viability of cells cultured in the bioreactor. The bioreactor can change the growth behavior of urothelial cells and bladder smooth muscle cells, resulting in

  19. Mechanized syringe homogenization of human and animal tissues.

    Science.gov (United States)

    Kurien, Biji T; Porter, Andrew C; Patel, Nisha C; Kurono, Sadamu; Matsumoto, Hiroyuki; Scofield, R Hal

    2004-06-01

    Tissue homogenization is a prerequisite to any fractionation schedule. A plethora of hands-on methods are available to homogenize tissues. Here we report a mechanized method for homogenizing animal and human tissues rapidly and easily. The Bio-Mixer 1200 (manufactured by Innovative Products, Inc., Oklahoma City, OK) utilizes the back-and-forth movement of two motor-driven disposable syringes, connected to each other through a three-way stopcock, to homogenize animal or human tissue. Using this method, we were able to homogenize human or mouse tissues (brain, liver, heart, and salivary glands) in 5 min. From sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and a matrix-assisted laser desorption/ionization time-of-flight mass spectrometric enzyme assay for prolidase, we have found that the homogenates obtained were as good or even better than that obtained used a manual glass-on-Teflon (DuPont, Wilmington, DE) homogenization protocol (all-glass tube and Teflon pestle). Use of the Bio-Mixer 1200 to homogenize animal or human tissue precludes the need to stay in the cold room as is the case with the other hands-on homogenization methods available, in addition to freeing up time for other experiments.

  20. Resilin-like polypeptide-poly(ethylene gylcol) hybrid hydrogels for mechanically-demanding tissue engineering applications

    Science.gov (United States)

    McGann, Christopher Leland

    Technological progress in the life sciences and engineering has combined with important insights in the fields of biology and material science to make possible the development of biological substitutes which aim to restore function to damaged tissue. Numerous biomimetic hydrogels have been developed with the purpose of harnessing the regenerative capacity of cells and tissue through the rational deployment of biological signals. Aided by recombinant DNA technology and protein engineering methods, a new class of hydrogel precursor, the biosynthetic protein polymer, has demonstrated great promise towards the development of highly functional tissue engineering materials. In particular, protein polymers based upon resilin, a natural protein elastomer, have demonstrated outstanding mechanical properties that would have great value in soft tissue applications. This dissertation introduces hybrid hydrogels composed of recombinant resilin-like polypeptides (RLPs) cross-linked with multi-arm PEG macromers. Two different chemical strategies were employed to form RLP-PEG hydrogels: one utilized a Michael-type addition reaction between the thiols of cysteine residues present within the RLP and vinyl sulfone moieties functionalized on a multi-arm PEG macromer; the second system cross-links a norbornene-functionalized RLP with a thiol-functionalized multi-arm PEG macromer via a photoinitiated thiol-ene step polymerization. Oscillatory rheology and tensile testing confirmed the formation of elastic, resilient hydrogels in the RLP-PEG system cross-linked via Michael-type addition. These hydrogels supported the encapsulation and culture of both human aortic adventitial fibroblasts and human mesenchymal stem cells. Additionally, these RLP-PEG hydrogels exhibited phase separation behavior during cross-linking that led to the formation of a heterogeneous microstructure. Degradation could be triggered through incubation with matrix metalloproteinase. Photocross-linking was conferred to

  1. Experimental approach and micro-mechanical modeling of the mechanical behavior of irradiated zirconium alloys

    International Nuclear Information System (INIS)

    Onimus, F.

    2003-12-01

    Zirconium alloys cladding tubes containing nuclear fuel of the Pressurized Water Reactors constitute the first safety barrier against the dissemination of radioactive elements. Thus, it is essential to predict the mechanical behavior of the material in-reactor conditions. This study aims, on the one hand, to identify and characterize the mechanisms of the plastic deformation of irradiated zirconium alloys and, on the other hand, to propose a micro-mechanical modeling based on these mechanisms. The experimental analysis shows that, for the irradiated material, the plastic deformation occurs by dislocation channeling. For transverse tensile test and internal pressure test this channeling occurs in the basal planes. However, for axial tensile test, the study revealed that the plastic deformation also occurs by channeling but in the prismatic and pyramidal planes. In addition, the study of the macroscopic mechanical behavior, compared to the deformation mechanisms observed by TEM, suggested that the internal stress is higher in the case of irradiated material than in the case of non-irradiated material, because of the very heterogeneous character of the plastic deformation. This analysis led to a coherent interpretation of the mechanical behavior of irradiated materials, in terms of deformation mechanisms. The mechanical behavior of irradiated materials was finally modeled by applying homogenization methods for heterogeneous materials. This model is able to reproduce adequately the mechanical behavior of the irradiated material, in agreement with the TEM observations. (author)

  2. Risk-adjusted survival after tissue versus mechanical aortic valve replacement: a 23-year assessment.

    Science.gov (United States)

    Gaca, Jeffrey G; Clare, Robert M; Rankin, J Scott; Daneshmand, Mani A; Milano, Carmelo A; Hughes, G Chad; Wolfe, Walter G; Glower, Donald D; Smith, Peter K

    2013-11-01

    Detailed analyses of risk-adjusted outcomes after mitral valve surgery have documented significant survival decrements with tissue valves at any age. Several recent studies of prosthetic aortic valve replacement (AVR) also have suggested a poorer performance of tissue valves, although analyses have been limited to small matched series. The study aim was to test the hypothesis that AVR with tissue valves is associated with a lower risk-adjusted survival, as compared to mechanical valves. Between 1986 and 2009, primary isolated AVR, with or without coronary artery bypass grafting (CABG), was performed with currently available valve types in 2148 patients (1108 tissue valves, 1040 mechanical). Patients were selected for tissue valves to be used primarily in the elderly. Baseline and operative characteristics were documented prospectively with a consistent variable set over the entire 23-year period. Follow up was obtained with mailed questionnaires, supplemented by National Death Index searches. The average time to death or follow up was seven years, and follow up for survival was 96.2% complete. Risk-adjusted survival characteristics for the two groups were evaluated using a Cox proportional hazards model with stepwise selection of candidate variables. Differences in baseline characteristics between groups were (tissue versus mechanical): median age 73 versus 61 years; non-elective surgery 32% versus 28%; CABG 45% versus 35%; median ejection fraction 55% versus 55%; renal failure 6% versus 1%; diabetes 18% versus 7% (pvalves; however, after risk adjustment for the adverse profiles of tissue valve patients, no significant difference was observed in survival after tissue or mechanical AVR. Thus, the hypothesis did not hold, and risk-adjusted survival was equivalent, of course qualified by the fact that selection bias was evident. With selection criteria that employed tissue AVR more frequently in elderly patients, tissue and mechanical valves achieved similar survival

  3. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents.

    Science.gov (United States)

    Tian, Yuxing; Yu, Zhentao; Ong, Chun Yee Aaron; Kent, Damon; Wang, Gui

    2015-05-01

    Cold-deformability and mechanical compatibility of the biomedical β-type titanium alloy are the foremost considerations for their application in stents, because the lower ductility restricts the cold-forming of thin-tube and unsatisfactory mechanical performance causes a failed tissue repair. In this paper, β-type titanium alloy (Ti-25Nb-3Zr-3Mo-2Sn, wt%) thin-tube fabricated by routine cold rolling is reported for the first time, and its elastic behavior and mechanical properties are discussed for the various microstructures. The as cold-rolled tube exhibits nonlinear elastic behavior with large recoverable strain of 2.3%. After annealing and aging, a nonlinear elasticity, considered as the intermediate stage between "double yielding" and normal linear elasticity, is attributable to a moderate precipitation of α phase. Quantitive relationships are established between volume fraction of α phase (Vα) and elastic modulus, strength as well as maximal recoverable strain (εmax-R), where the εmax-R of above 2.0% corresponds to the Vα range of 3-10%. It is considered that the "mechanical" stabilization of the (α+β) microstructure is a possible elastic mechanism for explaining the nonlinear elastic behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    Science.gov (United States)

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.

  5. Micro-mechanical model for the tension-stabilized enzymatic degradation of collagen tissues

    Science.gov (United States)

    Nguyen, Thao; Ruberti, Jeffery

    We present a study of how the collagen fiber structure influences the enzymatic degradation of collagen tissues. Experiments of collagen fibrils and tissues show that mechanical tension can slow and halt enzymatic degradation. Tissue-level experiments also show that degradation rate is minimum at a stretch level coincident with the onset of strain-stiffening in the stress response. To understand these phenomena, we developed a micro-mechanical model of a fibrous collagen tissue undergoing enzymatic degradation. Collagen fibers are described as sinusoidal elastica beams, and the tissue is described as a distribution of fibers. We assumed that the degradation reaction is inhibited by the axial strain energy of the crimped collagen fibers. The degradation rate law was calibrated to experiments on isolated single fibrils from bovine sclera. The fiber crimp and properties were fit to uniaxial tension tests of tissue strips. The fibril-level kinetic and tissue-level structural parameters were used to predict tissue-level degradation-induced creep rate under a constant applied force. We showed that we could accurately predict the degradation-induce creep rate of the pericardium and cornea once we accounted for differences in the fiber crimp structure and properties.

  6. Mechanical verification of soft-tissue attachment on bioactive glasses and titanium implants.

    Science.gov (United States)

    Zhao, Desheng; Moritz, Niko; Vedel, Erik; Hupa, Leena; Aro, Hannu T

    2008-07-01

    Soft-tissue attachment is a desired feature of many clinical biomaterials. The aim of the current study was to design a suitable experimental method for tensile testing of implant incorporation with soft-tissues. Conical implants were made of three compositions of bioactive glass (SiO(2)-P(2)O(5)-B(2)O(3)-Na(2)O-K(2)O-CaO-MgO) or titanium fiber mesh (porosity 84.7%). The implants were surgically inserted into the dorsal subcutaneous soft-tissue or back muscles in the rat. Soft-tissue attachment was evaluated by pull-out testing using a custom-made jig 8 weeks after implantation. Titanium fiber mesh implants had developed a relatively high pull-out force in subcutaneous tissue (12.33+/-5.29 N, mean+/-SD) and also measurable attachment with muscle tissue (2.46+/-1.33 N). The bioactive glass implants failed to show mechanically relevant soft-tissue bonding. The experimental set-up of mechanical testing seems to be feasible for verification studies of soft-tissue attachment. The inexpensive small animal model is beneficial for large-scale in vivo screening of new biomaterials.

  7. Capabilities and Limitations of Tissue Size Control through Passive Mechanical Forces.

    Directory of Open Access Journals (Sweden)

    Jochen Kursawe

    2015-12-01

    Full Text Available Embryogenesis is an extraordinarily robust process, exhibiting the ability to control tissue size and repair patterning defects in the face of environmental and genetic perturbations. The size and shape of a developing tissue is a function of the number and size of its constituent cells as well as their geometric packing. How these cellular properties are coordinated at the tissue level to ensure developmental robustness remains a mystery; understanding this process requires studying multiple concurrent processes that make up morphogenesis, including the spatial patterning of cell fates and apoptosis, as well as cell intercalations. In this work, we develop a computational model that aims to understand aspects of the robust pattern repair mechanisms of the Drosophila embryonic epidermal tissues. Size control in this system has previously been shown to rely on the regulation of apoptosis rather than proliferation; however, to date little work has been done to understand the role of cellular mechanics in this process. We employ a vertex model of an embryonic segment to test hypotheses about the emergence of this size control. Comparing the model to previously published data across wild type and genetic perturbations, we show that passive mechanical forces suffice to explain the observed size control in the posterior (P compartment of a segment. However, observed asymmetries in cell death frequencies across the segment are demonstrated to require patterning of cellular properties in the model. Finally, we show that distinct forms of mechanical regulation in the model may be distinguished by differences in cell shapes in the P compartment, as quantified through experimentally accessible summary statistics, as well as by the tissue recoil after laser ablation experiments.

  8. Development of a 3D bellows tracheal graft: mechanical behavior analysis, fabrication and an in vivo feasibility study

    International Nuclear Information System (INIS)

    Park, Jeong Hun; Jung, Jin Woo; Lee, Jung-Seob; Cho, Dong-Woo; Kang, Hyun-Wook; Joo, Young Hoon

    2012-01-01

    Artificial tracheal grafts should have not only enough compressive strength to maintain an open tracheal lumen, but also sufficient flexibility for stable mechanical behavior, similar to the native trachea at the implant site. In this study, we developed a new 3D artificial tracheal graft using a bellows design for considering its mechanical behavior. To investigate the mechanical behavior of the bellows structure, finite element method (FEM) analysis in terms of longitudinal tension/compression, bending and radial compression was conducted. The bellows structure was then compared with the cylinder structure generally used for artificial tracheal grafts. The FEM analysis showed that the bellows had outstanding flexibility in longitudinal tension/compression and bending. Moreover, the bellows kept the lumen open without severe luminal deformation in comparison with the cylinder structure. A three-dimensional artificial tracheal graft with a bellows design was fabricated using indirect solid freeform fabrication technology, and the actual mechanical test was conducted to investigate the actual mechanical behavior of the bellows graft. The fabricated bellows graft was then applied to segmental tracheal reconstruction in a rabbit model to assess its applicability. The bellows graft was completely incorporated into newly regenerated connective tissue and no obstruction at the implanted site was observed for up to 8 weeks after implantation. The data suggested that the developed bellows tracheal graft could be a promising alternative for tracheal reconstruction. (paper)

  9. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering.

    Science.gov (United States)

    Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A

    2016-02-06

    This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.

  10. Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration.

    Science.gov (United States)

    Mauck, Robert L; Baker, Brendon M; Nerurkar, Nandan L; Burdick, Jason A; Li, Wan-Ju; Tuan, Rocky S; Elliott, Dawn M

    2009-06-01

    Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation.

  11. Engineering on the Straight and Narrow: The Mechanics of Nanofibrous Assemblies for Fiber-Reinforced Tissue Regeneration

    Science.gov (United States)

    Baker, Brendon M.; Nerurkar, Nandan L.; Burdick, Jason A.; Li, Wan-Ju; Tuan, Rocky S.; Elliott, Dawn M.

    2009-01-01

    Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation. PMID:19207040

  12. Neuroimaging mechanisms of change in psychotherapy for addictive behaviors: emerging translational approaches that bridge biology and behavior.

    Science.gov (United States)

    Feldstein Ewing, Sarah W; Chung, Tammy

    2013-06-01

    Research on mechanisms of behavior change provides an innovative method to improve treatment for addictive behaviors. An important extension of mechanisms of change research involves the use of translational approaches, which examine how basic biological (i.e., brain-based mechanisms) and behavioral factors interact in initiating and sustaining positive behavior change as a result of psychotherapy. Articles in this special issue include integrative conceptual reviews and innovative empirical research on brain-based mechanisms that may underlie risk for addictive behaviors and response to psychotherapy from adolescence through adulthood. Review articles discuss hypothesized mechanisms of change for cognitive and behavioral therapies, mindfulness-based interventions, and neuroeconomic approaches. Empirical articles cover a range of addictive behaviors, including use of alcohol, cigarettes, marijuana, cocaine, and pathological gambling and represent a variety of imaging approaches including fMRI, magneto-encephalography, real-time fMRI, and diffusion tensor imaging. Additionally, a few empirical studies directly examine brain-based mechanisms of change, whereas others examine brain-based indicators as predictors of treatment outcome. Finally, two commentaries discuss craving as a core feature of addiction, and the importance of a developmental approach to examining mechanisms of change. Ultimately, translational research on mechanisms of behavior change holds promise for increasing understanding of how psychotherapy may modify brain structure and functioning and facilitate the initiation and maintenance of positive treatment outcomes for addictive behaviors. 2013 APA, all rights reserved

  13. A prototype of behavior selection mechanism based on emotion

    Science.gov (United States)

    Zhang, Guofeng; Li, Zushu

    2007-12-01

    In bionic methodology rather than in design methodology more familiar with, summarizing the psychological researches of emotion, we propose the biologic mechanism of emotion, emotion selection role in creature evolution and a anima framework including emotion similar to the classical control structure; and consulting Prospect Theory, build an Emotion Characteristic Functions(ECF) that computer emotion; two more emotion theories are added to them that higher emotion is preferred and middle emotion makes brain run more efficiently, emotional behavior mechanism comes into being. A simulation of proposed mechanism are designed and carried out on Alife Swarm software platform. In this simulation, a virtual grassland ecosystem is achieved where there are two kinds of artificial animals: herbivore and preyer. These artificial animals execute four types of behavior: wandering, escaping, finding food, finding sex partner in their lives. According the theories of animal ethnology, escaping from preyer is prior to other behaviors for its existence, finding food is secondly important behavior, rating is third one and wandering is last behavior. In keeping this behavior order, based on our behavior characteristic function theory, the specific functions of emotion computing are built of artificial autonomous animals. The result of simulation confirms the behavior selection mechanism.

  14. A Guide for Using Mechanical Stimulation to Enhance Tissue-Engineered Articular Cartilage Properties.

    Science.gov (United States)

    Salinas, Evelia Y; Hu, Jerry C; Athanasiou, Kyriacos

    2018-04-26

    The use of tissue-engineered articular cartilage (TEAC) constructs has the potential to become a powerful treatment option for cartilage lesions resulting from trauma or early stages of pathology. Although fundamental tissue-engineering strategies based on the use of scaffolds, cells, and signals have been developed, techniques that lead to biomimetic AC constructs that can be translated to in vivo use are yet to be fully confirmed. Mechanical stimulation during tissue culture can be an effective strategy to enhance the mechanical, structural, and cellular properties of tissue-engineered constructs toward mimicking those of native AC. This review focuses on the use of mechanical stimulation to attain and enhance the properties of AC constructs needed to translate these implants to the clinic. In vivo, mechanical loading at maximal and supramaximal physiological levels has been shown to be detrimental to AC through the development of degenerative changes. In contrast, multiple studies have revealed that during culture, mechanical stimulation within narrow ranges of magnitude and duration can produce anisotropic, mechanically robust AC constructs with high cellular viability. Significant progress has been made in evaluating a variety of mechanical stimulation techniques on TEAC, either alone or in combination with other stimuli. These advancements include determining and optimizing efficacious loading parameters (e.g., duration and frequency) to yield improvements in construct design criteria, such as collagen II content, compressive stiffness, cell viability, and fiber organization. With the advancement of mechanical stimulation as a potent strategy in AC tissue engineering, a compendium detailing the results achievable by various stimulus regimens would be of great use for researchers in academia and industry. The objective is to list the qualitative and quantitative effects that can be attained when direct compression, hydrostatic pressure, shear, and tensile

  15. Inference of Cell Mechanics in Heterogeneous Epithelial Tissue Based on Multivariate Clone Shape Quantification

    Science.gov (United States)

    Tsuboi, Alice; Umetsu, Daiki; Kuranaga, Erina; Fujimoto, Koichi

    2017-01-01

    Cell populations in multicellular organisms show genetic and non-genetic heterogeneity, even in undifferentiated tissues of multipotent cells during development and tumorigenesis. The heterogeneity causes difference of mechanical properties, such as, cell bond tension or adhesion, at the cell–cell interface, which determine the shape of clonal population boundaries via cell sorting or mixing. The boundary shape could alter the degree of cell–cell contacts and thus influence the physiological consequences of sorting or mixing at the boundary (e.g., tumor suppression or progression), suggesting that the cell mechanics could help clarify the physiology of heterogeneous tissues. While precise inference of mechanical tension loaded at each cell–cell contacts has been extensively developed, there has been little progress on how to distinguish the population-boundary geometry and identify the cause of geometry in heterogeneous tissues. We developed a pipeline by combining multivariate analysis of clone shape with tissue mechanical simulations. We examined clones with four different genotypes within Drosophila wing imaginal discs: wild-type, tartan (trn) overexpression, hibris (hbs) overexpression, and Eph RNAi. Although the clones were previously known to exhibit smoothed or convoluted morphologies, their mechanical properties were unknown. By applying a multivariate analysis to multiple criteria used to quantify the clone shapes based on individual cell shapes, we found the optimal criteria to distinguish not only among the four genotypes, but also non-genetic heterogeneity from genetic one. The efficient segregation of clone shape enabled us to quantitatively compare experimental data with tissue mechanical simulations. As a result, we identified the mechanical basis contributed to clone shape of distinct genotypes. The present pipeline will promote the understanding of the functions of mechanical interactions in heterogeneous tissue in a non-invasive manner. PMID

  16. Review on patents for mechanical stimulation of articular cartilage tissue engineering

    NARCIS (Netherlands)

    Donkelaar, van C.C.; Schulz, R.M.

    2008-01-01

    To repair articular cartilage defects in osteoarthritic patients with three-dimensional tissue engineered chondrocyte grafts, requires the formation of new cartilage with sufficient mechanical properties. The premise is that mechanical stimulation during the culturing process is necessary to reach

  17. Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumor tissues.

    Science.gov (United States)

    Panzetta, Valeria; Musella, Ida; Rapa, Ida; Volante, Marco; Netti, Paolo A; Fusco, Sabato

    2017-07-15

    The mechanical cross-talk between cells and the extra-cellular matrix (ECM) regulates the properties, functions and healthiness of the tissues. When this is disturbed it changes the mechanical state of the tissue components, singularly or together, and cancer, along with other diseases, may start and progress. However, the bi-univocal mechanical interplay between cells and the ECM is still not properly understood. In this study we show how a microrheology technique gives us the opportunity to evaluate the mechanics of cells and the ECM at the same time. The mechanical phenotyping was performed on the surgically removed tissues of 10 patients affected by adenocarcinoma of the lung. A correlation between the mechanics and the grade and stage of the tumor was reported and compared to the mechanical characteristics of the healthy tissue. Our findings suggest a sort of asymmetric modification of the mechanical properties of the cells and the extra-cellular matrix in the tumor, being the more compliant cell even though it resides in a stiffer matrix. Overall, the simultaneous mechanical characterization of the tissues constituents (cells and ECM) provided new support for diagnosis and offered alternative points of analysis for cancer mechanobiology. When the integrity of the mechanical cross-talk between cells and the extra-cellular matrix is disturbed cancer, along with other diseases, may initiate and progress. Here, we show how a new technique gives the opportunity to evaluate the mechanics of cells and the ECM at the same time. It was applied on surgically removed tissues of 10 patients affected by adenocarcinoma of the lung and a correlation between the mechanics and the grade and stage of the tumor was reported and compared to the mechanical characteristics of the healthy tissue. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Mechanisms of lymphatic regeneration after tissue transfer.

    Directory of Open Access Journals (Sweden)

    Alan Yan

    2011-02-01

    Full Text Available Lymphedema is the chronic swelling of an extremity that occurs commonly after lymph node resection for cancer treatment. Recent studies have demonstrated that transfer of healthy tissues can be used as a means of bypassing damaged lymphatics and ameliorating lymphedema. The purpose of these studies was to investigate the mechanisms that regulate lymphatic regeneration after tissue transfer.Nude mice (recipients underwent 2-mm tail skin excisions that were either left open or repaired with full-thickness skin grafts harvested from donor transgenic mice that expressed green fluorescent protein in all tissues or from LYVE-1 knockout mice. Lymphatic regeneration, expression of VEGF-C, macrophage infiltration, and potential for skin grafting to bypass damaged lymphatics were assessed.Skin grafts healed rapidly and restored lymphatic flow. Lymphatic regeneration occurred beginning at the peripheral edges of the graft, primarily from ingrowth of new lymphatic vessels originating from the recipient mouse. In addition, donor lymphatic vessels appeared to spontaneously re-anastomose with recipient vessels. Patterns of VEGF-C expression and macrophage infiltration were temporally and spatially associated with lymphatic regeneration. When compared to mice treated with excision only, there was a 4-fold decrease in tail volumes, 2.5-fold increase in lymphatic transport by lymphoscintigraphy, 40% decrease in dermal thickness, and 54% decrease in scar index in skin-grafted animals, indicating that tissue transfer could bypass damaged lymphatics and promote rapid lymphatic regeneration.Our studies suggest that lymphatic regeneration after tissue transfer occurs by ingrowth of lymphatic vessels and spontaneous re-connection of existing lymphatics. This process is temporally and spatially associated with VEGF-C expression and macrophage infiltration. Finally, tissue transfer can be used to bypass damaged lymphatics and promote rapid lymphatic regeneration.

  19. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering.

    Science.gov (United States)

    Choi, Jane Ru; Yong, Kar Wey; Choi, Jean Yu

    2018-03-01

    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair. © 2017 Wiley Periodicals, Inc.

  20. Evaluation of Tissue Interactions with Mechanical Elements of a Transscleral Drug Delivery Device

    Directory of Open Access Journals (Sweden)

    Jeffrey T. Borenstein

    2012-03-01

    Full Text Available The goal of this work was to evaluate tissue-device interactions due to implantation of a mechanically operated drug delivery system onto the posterior sclera. Two test devices were designed and fabricated to model elements of the drug delivery device—one containing a free-spinning ball bearing and the other encasing two articulating gears. Openings in the base of test devices modeled ports for drug passage from device to sclera. Porous poly(tetrafluoroethylene (PTFE membranes were attached to half of the gear devices to minimize tissue ingrowth through these ports. Test devices were sutured onto rabbit eyes for 10 weeks. Tissue-device interactions were evaluated histologically and mechanically after removal to determine effects on device function and changes in surrounding tissue. Test devices were generally well-tolerated during residence in the animal. All devices encouraged fibrous tissue formation between the sclera and the device, fibrous tissue encapsulation and invasion around the device, and inflammation of the conjunctiva. Gear devices encouraged significantly greater inflammation in all cases and a larger rate of tissue ingrowth. PTFE membranes prevented tissue invasion through the covered drug ports, though tissue migrated in through other smaller openings. The torque required to turn the mechanical elements increased over 1000 times for gear devices, but only on the order of 100 times for membrane-covered gear devices and less than 100 times for ball bearing devices. Maintaining a lower device profile, minimizing microscale motion on the eye surface and covering drug ports with a porous membrane may minimize inflammation, decreasing the risk of damage to surrounding tissues and minimizing disruption of device operation.

  1. Hyaluronan supplementation as a mechanical regulator of cartilage tissue development under joint-kinematic-mimicking loading.

    Science.gov (United States)

    Wu, Yabin; Stoddart, Martin J; Wuertz-Kozak, Karin; Grad, Sibylle; Alini, Mauro; Ferguson, Stephen J

    2017-08-01

    Articular cartilage plays an essential role in joint lubrication and impact absorption. Through this, the mechanical signals are coupled to the tissue's physiological response. Healthy synovial fluid has been shown to reduce and homogenize the shear stress acting on the cartilage surfaces due to its unique shear-thinning viscosity. As cartilage tissues are sensitive to mechanical changes in articulation, it was hypothesized that replacing the traditional culture medium with a healthy non-Newtonian lubricant could enhance tissue development in a cartilage engineering model, where joint-kinematic-mimicking mechanical loading is applied. Different amounts of hyaluronic acid were added to the culture medium to replicate the viscosities of synovial fluid at different health states. Hyaluronic acid supplementation, especially at a physiologically healthy concentration (2.0 mg ml -1 ), promoted a better preservation of chondrocyte phenotype. The ratio of collagen II to collagen I mRNA was 4.5 times that of the control group, implying better tissue development (however, with no significant difference of measured collagen II content), with a good retention of collagen II and proteoglycan in the mechanically active region. Simulating synovial fluid properties by hyaluronic acid supplementation created a favourable mechanical environment for mechanically loaded constructs. These findings may help in understanding the influence of joint articulation on tissue homeostasis, and moreover, improve methods for functional cartilage tissue engineering. © 2017 The Author(s).

  2. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.

    Science.gov (United States)

    Vikingsson, L; Claessens, B; Gómez-Tejedor, J A; Gallego Ferrer, G; Gómez Ribelles, J L

    2015-08-01

    In tissue engineering the design and optimization of biodegradable polymeric scaffolds with a 3D-structure is an important field. The porous scaffold provide the cells with an adequate biomechanical environment that allows mechanotransduction signals for cell differentiation and the scaffolds also protect the cells from initial compressive loading. The scaffold have interconnected macro-pores that host the cells and newly formed tissue, while the pore walls should be micro-porous to transport nutrients and waste products. Polycaprolactone (PCL) scaffolds with a double micro- and macro-pore architecture have been proposed for cartilage regeneration. This work explores the influence of the micro-porosity of the pore walls on water permeability and scaffold compliance. A Poly(Vinyl Alcohol) with tailored mechanical properties has been used to simulate the growing cartilage tissue inside the scaffold pores. Unconfined and confined compression tests were performed to characterize both the water permeability and the mechanical response of scaffolds with varying size of micro-porosity while volume fraction of the macro-pores remains constant. The stress relaxation tests show that the stress response of the scaffold/hydrogel construct is a synergic effect determined by the performance of the both components. This is interesting since it suggests that the in vivo outcome of the scaffold is not only dependent upon the material architecture but also the growing tissue inside the scaffold׳s pores. On the other hand, confined compression results show that compliance of the scaffold is mainly controlled by the micro-porosity of the scaffold and less by hydrogel density in the scaffold pores. These conclusions bring together valuable information for customizing the optimal scaffold and to predict the in vivo mechanical behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Chronic alcohol abuse in men alters bone mechanical properties by affecting both tissue mechanical properties and microarchitectural parameters.

    Science.gov (United States)

    Cruel, M; Granke, M; Bosser, C; Audran, M; Hoc, T

    2017-06-01

    Alcohol-induced secondary osteoporosis in men has been characterized by higher fracture prevalence and a modification of bone microarchitecture. Chronic alcohol consumption impairs bone cell activity and results in an increased fragility. A few studies highlighted effects of heavy alcohol consumption on some microarchitectural parameters of trabecular bone. But to date and to our knowledge, micro- and macro-mechanical properties of bone of alcoholic subjects have not been investigated. In the present study, mechanical properties and microarchitecture of trabecular bone samples from the iliac crest of alcoholic male patients (n=15) were analyzed and compared to a control group (n=8). Nanoindentation tests were performed to determine the tissue's micromechanical properties, micro-computed tomography was used to measure microarchitectural parameters, and numerical simulations provided the apparent mechanical properties of the samples. Compared to controls, bone tissue from alcoholic patients exhibited an increase of micromechanical properties at tissue scale, a significant decrease of apparent mechanical properties at sample scale, and significant changes in several microarchitectural parameters. In particular, a crucial role of structure model index (SMI) on mechanical properties was identified. 3D microarchitectural parameters are at least as important as bone volume fraction to predict bone fracture risk in the case of alcoholic patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Effects of Matrix Alignment and Mechanical Constraints on Cellular Behavior in 3D Engineered Microtissues

    Science.gov (United States)

    Bose, Prasenjit; Eyckmans, Jeroen; Chen, Christopher; Reich, Daniel

    The adhesion of cells to the extracellular matrix (ECM) plays a crucial role in a variety of cellular functions. The main building blocks of the ECM are 3D networks of fibrous proteins whose structure and alignments varies with tissue type. However, the impact of ECM alignment on cellular behaviors such as cell adhesion, spreading, extension and mechanics remains poorly understood. We present results on the development of a microtissue-based system that enables control of the structure, orientation, and degree of fibrillar alignment in 3D fibroblast-populated collagen gels. The tissues self-assemble from cell-laden collagen gels placed in micro-fabricated wells containing sets of elastic pillars. The contractile action of the cells leads to controlled alignment of the fibrous collagen, depending on the number and location of the pillars in each well. The pillars are elastic, and are utilized to measure the contractile forces of the microtissues, and by incorporating magnetic material in selected pillars, time-varying forces can be applied to the tissues for dynamic stimulation and measurement of mechanical properties. Results on the effects of varying pillar shape, spacing, location, and stiffness on microtissue organization and contractility will be presented. This work is supported by NSF CMMI-1463011.

  5. A constitutive model for the mechanical characterization of the plantar fascia.

    Science.gov (United States)

    Natali, Arturo N; Pavan, Piero G; Stecco, Carla

    2010-10-01

    A constitutive model is proposed to describe the mechanical behavior of the plantar fascia. The mechanical characterization of the plantar fascia regards the role in the foot biomechanics and it is involved in many alterations of its functional behavior, both of mechanical and nonmechanical origin. The structural conformation of the plantar fascia in its middle part is characterized by the presence of collagen fibers reinforcing the tissue along a preferential orientation, which is that supporting the major loading. According to this anatomical evidence, the tissue is described by developing an isotropic fiber-reinforced constitutive model and since the elastic response of the fascia is here considered, the constitutive model is based on the theory of hyperelasticity. The model is consistent with a kinematical description of large strains mechanical behavior, which is typical of soft tissues. A fitting procedure of the constitutive model is implemented making use of experimental curves taken from the literature and referring to specimens of human plantar fascia. A satisfactory fitting of the tensile behavior of the plantar fascia has been performed, showing that the model correctly interprets the mechanical behavior of the tissue in the light of comparison to experimental data at disposal. A critical analysis of the model with respect to the problem of the identification of the constitutive parameters is proposed as the basis for planning a future experimental investigation of mechanical behavior of the plantar fascia.

  6. Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering.

    Science.gov (United States)

    Chen, Shangwu; Zhang, Qin; Nakamoto, Tomoko; Kawazoe, Naoki; Chen, Guoping

    2016-03-01

    Engineering of cartilage tissue in vitro using porous scaffolds and chondrocytes provides a promising approach for cartilage repair. However, nonuniform cell distribution and heterogeneous tissue formation together with weak mechanical property of in vitro engineered cartilage limit their clinical application. In this study, gelatin porous scaffolds with homogeneous and open pores were prepared using ice particulates and freeze-drying. The scaffolds were used to culture bovine articular chondrocytes to engineer cartilage tissue in vitro. The pore structure and mechanical property of gelatin scaffolds could be well controlled by using different ratios of ice particulates to gelatin solution and different concentrations of gelatin. Gelatin scaffolds prepared from ≥70% ice particulates enabled homogeneous seeding of bovine articular chondrocytes throughout the scaffolds and formation of homogeneous cartilage extracellular matrix. While soft scaffolds underwent cellular contraction, stiff scaffolds resisted cellular contraction and had significantly higher cell proliferation and synthesis of sulfated glycosaminoglycan. Compared with the gelatin scaffolds prepared without ice particulates, the gelatin scaffolds prepared with ice particulates facilitated formation of homogeneous cartilage tissue with significantly higher compressive modulus. The gelatin scaffolds with highly open pore structure and good mechanical property can be used to improve in vitro tissue-engineered cartilage.

  7. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications

    International Nuclear Information System (INIS)

    Xu Tao; Binder, Kyle W; Albanna, Mohammad Z; Dice, Dennis; Zhao Weixin; Yoo, James J; Atala, Anthony

    2013-01-01

    Bioprinting is an emerging technique used to fabricate viable, 3D tissue constructs through the precise deposition of cells and hydrogels in a layer-by-layer fashion. Despite the ability to mimic the native properties of tissue, printed 3D constructs that are composed of naturally-derived biomaterials still lack structural integrity and adequate mechanical properties for use in vivo, thus limiting their development for use in load-bearing tissue engineering applications, such as cartilage. Fabrication of viable constructs using a novel multi-head deposition system provides the ability to combine synthetic polymers, which have higher mechanical strength than natural materials, with the favorable environment for cell growth provided by traditional naturally-derived hydrogels. However, the complexity and high cost associated with constructing the required robotic system hamper the widespread application of this approach. Moreover, the scaffolds fabricated by these robotic systems often lack flexibility, which further restrict their applications. To address these limitations, advanced fabrication techniques are necessary to generate complex constructs with controlled architectures and adequate mechanical properties. In this study, we describe the construction of a hybrid inkjet printing/electrospinning system that can be used to fabricate viable tissues for cartilage tissue engineering applications. Electrospinning of polycaprolactone fibers was alternated with inkjet printing of rabbit elastic chondrocytes suspended in a fibrin–collagen hydrogel in order to fabricate a five-layer tissue construct of 1 mm thickness. The chondrocytes survived within the printed hybrid construct with more than 80% viability one week after printing. In addition, the cells proliferated and maintained their basic biological properties within the printed layered constructs. Furthermore, the fabricated constructs formed cartilage-like tissues both in vitro and in vivo as evidenced by the

  8. Adolescent Suicidal Behavior and Substance Use: Developmental Mechanisms

    Directory of Open Access Journals (Sweden)

    Donald M. Dougherty

    2008-01-01

    Full Text Available Adolescent suicidal behaviors and substance use are disturbingly common. Research suggests overlap of some of the etiological mechanisms for both adolescent suicidal behavior and substance use, yet clear understanding of the complex relations between these behaviors and their causal underpinnings is lacking. A growing body of evidence and a diathesis model (Mann et al. 1999; Mann, 2003 highlight the importance of impulse control as a proximal risk factor for adolescent suicidal and substance use behaviors. This literature review extends current theory on the relationships between adolescent suicidal behavior and substance use by: (1 examining how, when, and to what extent adolescent development is affected by poor impulse control, stressful life events, substance use behavior, and biological factors; (2 presenting proposed causal mechanisms by which these risk factors interact to increase risk for suicidal behaviors and substance use; and (3 proposing specific new hypotheses to extend the diathesis model to adolescents at risk for suicide and substance use. More specifically, new hypotheses are presented that predict bidirectional relationships between stressful life events and genetic markers of 5-HT dysregulation; substance use behavior and impulsivity; and substance use behavior and suicide attempts. The importance of distinguishing between different developmental trajectories of suicidal and substance use behaviors, and the effects of specific risk and protective mechanisms are discussed. Use of new statistical approaches that provide for the comparison of latent growth curves and latent class models is recommended to identify differences in developmental trajectories of suicidal behavior and substance use. Knowledge gained from these prospective longitudinal methods should lead to greater understanding on the timing, duration, and extent to which specific risk and protective factors influence the outcomes of suicidal behavior and substance

  9. Experimental study and constitutive modeling of the viscoelastic mechanical properties of the human prolapsed vaginal tissue.

    Science.gov (United States)

    Peña, Estefania; Calvo, B; Martínez, M A; Martins, P; Mascarenhas, T; Jorge, R M N; Ferreira, A; Doblaré, M

    2010-02-01

    In this paper, the viscoelastic mechanical properties of vaginal tissue are investigated. Using previous results of the authors on the mechanical properties of biological soft tissues and newly experimental data from uniaxial tension tests, a new model for the viscoelastic mechanical properties of the human vaginal tissue is proposed. The structural model seems to be sufficiently accurate to guarantee its application to prediction of reliable stress distributions, and is suitable for finite element computations. The obtained results may be helpful in the design of surgical procedures with autologous tissue or prostheses.

  10. Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers.

    Science.gov (United States)

    Koosha, Mojtaba; Mirzadeh, Hamid

    2015-09-01

    Electrospinning process has been widely used to produce nanofibers from polymer blends. Poly(vinyl alcohol) (PVA) and chitosan (CS) have numerous biomedical applications such as wound healing and tissue engineering. Nanofibers of CS/PVA have been prepared by many works, however, a complete physicochemical and mechanical characterization as well as cell behavior has not been reported. In this study, PVA and CS/PVA blend solutions in acetic acid 70% with different volume ratios (30/70, 50/50, and 70/30) were electrospun in constant electrospinning process parameters. The structure and morphology of nanofibrous mats were characterized by SEM, FTIR, and XRD methods. The best nanofibrous mat was achieved from the CS/PVA 30/70 blend solution regarding the electrospinning throughput. The dynamic mechanical thermal analysis (DMTA) of PVA and CS/PVA 30/70 nanofibrous mats were measured which were not considered in the previous studies. DMTA results in accordance to the DSC analysis approved the partial compatibility between the two polymers, while a single glass transition temperature was not observed for the blend. The tensile strength of PVA and CS/PVA nanofibers were also reported. Results of cell behavior study indicated that the heat stabilized nanofibrous mat CS/PVA 30/70 was able to support the attachment and proliferation of the fibroblast cells. © 2015 Wiley Periodicals, Inc.

  11. A novel laparoscopic grasper with two parallel jaws capable of extracting the mechanical behaviour of soft tissues.

    Science.gov (United States)

    Nazarynasab, Dariush; Farahmand, Farzam; Mirbagheri, Alireza; Afshari, Elnaz

    2017-07-01

    Data related to force-deformation behaviour of soft tissue plays an important role in medical/surgical applications such as realistically modelling mechanical behaviour of soft tissue as well as minimally invasive surgery (MIS) and medical diagnosis. While the mechanical behaviour of soft tissue is very complex due to its different constitutive components, some issues increase its complexity like behavioural changes between the live and dead tissues. Indeed, an adequate quantitative description of mechanical behaviour of soft tissues requires high quality in vivo experimental data to be obtained and analysed. This paper describes a novel laparoscopic grasper with two parallel jaws capable of obtaining compressive force-deformation data related to mechanical behaviour of soft tissues. This new laparoscopic grasper includes four sections as mechanical hardware, sensory part, electrical/electronical part and data storage part. By considering a unique design for mechanical hardware, data recording conditions will be close to unconfined-compression-test conditions; so obtained data can be properly used in extracting the mechanical behaviour of soft tissues. Also, the other distinguishing feature of this new system is its applicability during different laparoscopic surgeries and subsequently obtaining in vivo data. However, more preclinical examinations are needed to evaluate the practicality of the novel laparoscopic grasper with two parallel jaws.

  12. Skin mechanical properties and modeling: A review.

    Science.gov (United States)

    Joodaki, Hamed; Panzer, Matthew B

    2018-04-01

    The mechanical properties of the skin are important for various applications. Numerous tests have been conducted to characterize the mechanical behavior of this tissue, and this article presents a review on different experimental methods used. A discussion on the general mechanical behavior of the skin, including nonlinearity, viscoelasticity, anisotropy, loading history dependency, failure properties, and aging effects, is presented. Finally, commonly used constitutive models for simulating the mechanical response of skin are discussed in the context of representing the empirically observed behavior.

  13. A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality

    Science.gov (United States)

    Noël, Emily S.; Verhoeven, Manon; Lagendijk, Anne Karine; Tessadori, Federico; Smith, Kelly; Choorapoikayil, Suma; den Hertog, Jeroen; Bakkers, Jeroen

    2013-11-01

    Breaking left-right symmetry in bilateria is a major event during embryo development that is required for asymmetric organ position, directional organ looping and lateralized organ function in the adult. Asymmetric expression of Nodal-related genes is hypothesized to be the driving force behind regulation of organ laterality. Here we identify a Nodal-independent mechanism that drives asymmetric heart looping in zebrafish embryos. In a unique mutant defective for the Nodal-related southpaw gene, preferential dextral looping in the heart is maintained, whereas gut and brain asymmetries are randomized. As genetic and pharmacological inhibition of Nodal signalling does not abolish heart asymmetry, a yet undiscovered mechanism controls heart chirality. This mechanism is tissue intrinsic, as explanted hearts maintain ex vivo retain chiral looping behaviour and require actin polymerization and myosin II activity. We find that Nodal signalling regulates actin gene expression, supporting a model in which Nodal signalling amplifies this tissue-intrinsic mechanism of heart looping.

  14. Mechanical Characterization of Tissue-Engineered Cartilage Using Microscopic Magnetic Resonance Elastography

    Science.gov (United States)

    Yin, Ziying; Schmid, Thomas M.; Yasar, Temel K.; Liu, Yifei; Royston, Thomas J.

    2014-01-01

    Knowledge of mechanical properties of tissue-engineered cartilage is essential for the optimization of cartilage tissue engineering strategies. Microscopic magnetic resonance elastography (μMRE) is a recently developed MR-based technique that can nondestructively visualize shear wave motion. From the observed wave pattern in MR phase images the tissue mechanical properties (e.g., shear modulus or stiffness) can be extracted. For quantification of the dynamic shear properties of small and stiff tissue-engineered cartilage, μMRE needs to be performed at frequencies in the kilohertz range. However, at frequencies greater than 1 kHz shear waves are rapidly attenuated in soft tissues. In this study μMRE, with geometric focusing, was used to overcome the rapid wave attenuation at high frequencies, enabling the measurement of the shear modulus of tissue-engineered cartilage. This methodology was first tested at a frequency of 5 kHz using a model system composed of alginate beads embedded in agarose, and then applied to evaluate extracellular matrix development in a chondrocyte pellet over a 3-week culture period. The shear stiffness in the pellet was found to increase over time (from 6.4 to 16.4 kPa), and the increase was correlated with both the proteoglycan content and the collagen content of the chondrocyte pellets (R2=0.776 and 0.724, respectively). Our study demonstrates that μMRE when performed with geometric focusing can be used to calculate and map the shear properties within tissue-engineered cartilage during its development. PMID:24266395

  15. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.

    Science.gov (United States)

    Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S

    2013-10-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.

  16. Contribution of elastic tissues to the mechanics and energetics of muscle function during movement.

    Science.gov (United States)

    Roberts, Thomas J

    2016-01-01

    Muscle force production occurs within an environment of tissues that exhibit spring-like behavior, and this elasticity is a critical determinant of muscle performance during locomotion. Muscle force and power output both depend on the speed of contraction, as described by the isotonic force-velocity curve. By influencing the speed of contractile elements, elastic structures can have a profound effect on muscle force, power and work. In very rapid movements, elastic mechanisms can amplify muscle power by storing the work of muscle contraction slowly and releasing it rapidly. When energy must be dissipated rapidly, such as in landing from a jump, energy stored rapidly in elastic elements can be released more slowly to stretch muscle contractile elements, reducing the power input to muscle and possibly protecting it from damage. Elastic mechanisms identified so far rely primarily on in-series tendons, but many structures within muscles exhibit spring-like properties. Actomyosin cross-bridges, actin and myosin filaments, titin, and the connective tissue scaffolding of the extracellular matrix all have the potential to store and recover elastic energy during muscle contraction. The potential contribution of these elements can be assessed from their stiffness and estimates of the strain they undergo during muscle function. Such calculations provide boundaries for the possible roles these springs might play in locomotion, and may help to direct future studies of the uses of elastic elements in muscle. © 2016. Published by The Company of Biologists Ltd.

  17. Cellular Force Microscopy for in Vivo Measurements of Plant Tissue Mechanics1[W][OA

    Science.gov (United States)

    Routier-Kierzkowska, Anne-Lise; Weber, Alain; Kochova, Petra; Felekis, Dimitris; Nelson, Bradley J.; Kuhlemeier, Cris; Smith, Richard S.

    2012-01-01

    Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we have developed cellular force microscopy (CFM), which combines the versatility of classical microindentation techniques with the high automation and resolution approaching that of atomic force microscopy. CFM’s large range of forces provides the possibility to map the apparent stiffness of both plasmolyzed and turgid tissue as well as to perform micropuncture of cells using very high stresses. CFM experiments reveal that, within a tissue, local stiffness measurements can vary with the level of turgor pressure in an unexpected way. Altogether, our results highlight the importance of detailed physically based simulations for the interpretation of microindentation results. CFM’s ability to be used both to assess and manipulate tissue mechanics makes it a method of choice to unravel the feedbacks between mechanics, genetics, and morphogenesis. PMID:22353572

  18. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.

    Science.gov (United States)

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo

    2014-09-01

    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Mechanisms of Behavioral and Affective Treatment Outcomes in a Cognitive Behavioral Intervention for Boys.

    Science.gov (United States)

    Burke, Jeffrey D; Loeber, Rolf

    2016-01-01

    Evidence for effective treatment for behavioral problems continues to grow, yet evidence about the effective mechanisms underlying those interventions has lagged behind. The Stop Now and Plan (SNAP) program is a multicomponent intervention for boys between 6 and 11. This study tested putative treatment mechanisms using data from 252 boys in a randomized controlled trial of SNAP versus treatment as usual. SNAP includes a 3 month group treatment period followed by individualized intervention, which persisted through the 15 month study period. Measures were administered in four waves: at baseline and at 3, 9 and 15 months after baseline. A hierarchical linear modeling strategy was used. SNAP was associated with improved problem-solving skills, prosocial behavior, emotion regulation skills, and reduced parental stress. Prosocial behavior, emotion regulation skills and reduced parental stress partially mediated improvements in child aggression. Improved emotion regulation skills partially mediated treatment-related child anxious-depressed outcomes. Improvements in parenting behaviors did not differ between treatment conditions. The results suggest that independent processes may drive affective and behavioral outcomes, with some specificity regarding the mechanisms related to differing treatment outcomes.

  20. Analyzing the effects of mechanical and osmotic loading on glycosaminoglycan synthesis rate in cartilaginous tissues.

    Science.gov (United States)

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2015-02-26

    The glycosaminoglycan (GAG) plays an important role in cartilaginous tissues to support and transmit mechanical loads. Many extracellular biophysical stimuli could affect GAG synthesis by cells. It has been hypothesized that the change of cell volume is a primary mechanism for cells to perceive the stimuli. Experimental studies have shown that the maximum synthesis rate of GAG is achieved at an optimal cell volume, larger or smaller than this level the GAG synthesis rate decreases. Based on the hypothesis and experimental findings in the literature, we proposed a mathematical model to quantitatively describe the cell volume dependent GAG synthesis rate in the cartilaginous tissues. Using this model, we investigated the effects of osmotic loading and mechanical loading on GAG synthesis rate. It is found our proposed mathematical model is able to well describe the change of GAG synthesis rate in isolated cells or in cartilage with variations of the osmotic loading or mechanical loading. This model is important for evaluating the GAG synthesis activity within cartilaginous tissues as well as understanding the role of mechanical loading in tissue growth or degeneration. It is also important for designing a bioreactor system with proper extracellular environment or mechanical loading for growing tissue at the maximum synthesis rate of the extracellular matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Active Vertex Model for cell-resolution description of epithelial tissue mechanics.

    Science.gov (United States)

    Barton, Daniel L; Henkes, Silke; Weijer, Cornelis J; Sknepnek, Rastko

    2017-06-01

    We introduce an Active Vertex Model (AVM) for cell-resolution studies of the mechanics of confluent epithelial tissues consisting of tens of thousands of cells, with a level of detail inaccessible to similar methods. The AVM combines the Vertex Model for confluent epithelial tissues with active matter dynamics. This introduces a natural description of the cell motion and accounts for motion patterns observed on multiple scales. Furthermore, cell contacts are generated dynamically from positions of cell centres. This not only enables efficient numerical implementation, but provides a natural description of the T1 transition events responsible for local tissue rearrangements. The AVM also includes cell alignment, cell-specific mechanical properties, cell growth, division and apoptosis. In addition, the AVM introduces a flexible, dynamically changing boundary of the epithelial sheet allowing for studies of phenomena such as the fingering instability or wound healing. We illustrate these capabilities with a number of case studies.

  2. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue

    Science.gov (United States)

    Yang, Seung Yun; O'Cearbhaill, Eoin D.; Sisk, Geoffroy C.; Park, Kyeng Min; Cho, Woo Kyung; Villiger, Martin; Bouma, Brett E.; Pomahac, Bohdan; Karp, Jeffrey M.

    2013-04-01

    Achieving significant adhesion to soft tissues while minimizing tissue damage poses a considerable clinical challenge. Chemical-based adhesives require tissue-specific reactive chemistry, typically inducing a significant inflammatory response. Staples are fraught with limitations including high-localized tissue stress and increased risk of infection, and nerve and blood vessel damage. Here inspired by the endoparasite Pomphorhynchus laevis, which swells its proboscis to attach to its host’s intestinal wall, we have developed a biphasic microneedle array that mechanically interlocks with tissue through swellable microneedle tips, achieving ~3.5-fold increase in adhesion strength compared with staples in skin graft fixation, and removal force of ~4.5 N cm-2 from intestinal mucosal tissue. Comprising a poly(styrene)-block-poly(acrylic acid) swellable tip and non-swellable polystyrene core, conical microneedles penetrate tissue with minimal insertion force and depth, yet high adhesion strength in their swollen state. Uniquely, this design provides universal soft tissue adhesion with minimal damage, less traumatic removal, reduced risk of infection and delivery of bioactive therapeutics.

  3. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  4. Probing multi-scale mechanical damage in connective tissues using X-ray diffraction.

    Science.gov (United States)

    Bianchi, Fabio; Hofmann, Felix; Smith, Andrew J; Thompson, Mark S

    2016-11-01

    The accumulation of microstructural collagen damage following repetitive loading is linked to painful and debilitating tendon injuries. As a hierarchical, semi-crystalline material, collagen mechanics can be studied using X-ray diffraction. The aim of the study was to describe multi-structural changes in tendon collagen following controlled plastic damage (5% permanent strain). We used small angle X-ray scattering (SAXS) to interrogate the spacing of collagen molecules within a fibril, and wide angle X-ray scattering (WAXS) to measure molecular strains under macroscopic loading. Simultaneous recordings of SAXS and WAXS patterns, together with whole-tissue strain in physiologically hydrated rat-tail tendons were made during increments of in situ tensile loading. Results showed that while tissue level modulus was unchanged, fibril modulus decreased significantly, and molecular modulus significantly increased. Further, analysis of higher order SAXS peaks suggested structural changes in the gap and overlap regions, possibly localising the damage to molecular cross-links. Our results provide new insight into the fundamental damage processes at work in collagenous tissues and point to new directions for their mitigation and repair. This article reports the first in situ loading synchrotron studies on mechanical damage in collagenous tissues. We provide new insight into the nano- and micro-structural mechanisms of damage processes. Pre-damaged tendons showed differential alteration of moduli at macro, micro and nano-scales as measured using X-ray scattering techniques. Detailed analysis of higher order diffraction peaks suggested damage is localised to molecular cross-links. The results are consistent with previous X-ray scattering studies of tendons and also with recent thermal stability studies on damaged material. Detailed understanding of damage mechanisms is essential in the development of new therapies promoting tissue repair. Copyright © 2016 Acta Materialia Inc

  5. Hyper-elastic modeling and mechanical behavior investigation of porous poly-D-L-lactide/nano-hydroxyapatite scaffold material.

    Science.gov (United States)

    Han, Quan Feng; Wang, Ze Wu; Tang, Chak Yin; Chen, Ling; Tsui, Chi Pong; Law, Wing Cheung

    2017-07-01

    Poly-D-L-lactide/nano-hydroxyapatite (PDLLA/nano-HA) can be used as the biological scaffold material in bone tissue engineering as it can be readily made into a porous composite material with excellent performance. However, constitutive modeling for the mechanical response of porous PDLLA/nano-HA under various stress conditions has been very limited so far. In this work, four types of fundamental compressible hyper-elastic constitutive models were introduced for constitutive modeling and investigation of mechanical behaviors of porous PDLLA/nano-HA. Moreover, the unitary expressions of Cauchy stress tensor have been derived for the PDLLA/nano-HA under uniaxial compression (or stretch), biaxial compression (or stretch), pure shear and simple shear load by using the theory of continuum mechanics. The theoretical results determined from the approach based on the Ogden compressible hyper-elastic constitutive model were in good agreement with the experimental data from the uniaxial compression tests. Furthermore, this approach can also be used to predict the mechanical behaviors of the porous PDLLA/nano-HA material under the biaxial compression (or stretch), pure shear and simple shear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Investigating the effects of ABC transporter-based acquired drug resistance mechanisms at the cellular and tissue scale.

    Science.gov (United States)

    Liu, Cong; Krishnan, J; Xu, Xiao Yun

    2013-03-01

    In this paper we systematically investigate the effects of acquired drug resistance at the cellular and tissue scale, with a specific focus on ATP-binding cassette (ABC) transporter-based mechanisms and contrast this with other representative intracellular resistance mechanisms. This is done by developing in silico models wherein the drug resistance mechanism is overlaid on a coarse-grained description of apoptosis; these cellular models are coupled with interstitial drug transport, allowing for a transparent examination of the effect of acquired drug resistances at the tissue level. While ABC transporter-mediated resistance mechanisms counteract drug effect at the cellular level, its tissue-level effect is more complicated, revealing unexpected trends in tissue response as drug stimuli are systematically varied. Qualitatively different behaviour is observed in other drug resistance mechanisms. Overall the paper (i) provides insight into the tissue level functioning of a particular resistance mechanism, (ii) shows that this is very different from other resistance mechanisms of an apparently similar type, and (iii) demonstrates a concrete instance of how the functioning of a negative feedback based cellular adaptive mechanism can have unexpected higher scale effects.

  7. Characterizing the lung tissue mechanical properties using a micromechanical model of alveolar sac

    Science.gov (United States)

    Karami, Elham; Seify, Behzad; Moghadas, Hadi; Sabsalinejad, Masoomeh; Lee, Ting-Yim; Samani, Abbas

    2017-03-01

    According to statistics, lung disease is among the leading causes of death worldwide. As such, many research groups are developing powerful tools for understanding, diagnosis and treatment of various lung diseases. Recently, biomechanical modeling has emerged as an effective tool for better understanding of human physiology, disease diagnosis and computer assisted medical intervention. Mechanical properties of lung tissue are important requirements for methods developed for lung disease diagnosis and medical intervention. As such, the main objective of this study is to develop an effective tool for estimating the mechanical properties of normal and pathological lung parenchyma tissue based on its microstructure. For this purpose, a micromechanical model of the lung tissue was developed using finite element (FE) method, and the model was demonstrated to have application in estimating the mechanical properties of lung alveolar wall. The proposed model was developed by assembling truncated octahedron tissue units resembling the alveoli. A compression test was simulated using finite element method on the created geometry and the hyper-elastic parameters of the alveoli wall were calculated using reported alveolar wall stress-strain data and an inverse optimization framework. Preliminary results indicate that the proposed model can be potentially used to reconstruct microstructural images of lung tissue using macro-scale tissue response for normal and different pathological conditions. Such images can be used for effective diagnosis of lung diseases such as Chronic Obstructive Pulmonary Disease (COPD).

  8. Dynamics of anisotropic tissue growth

    Energy Technology Data Exchange (ETDEWEB)

    Bittig, Thomas; Juelicher, Frank [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany); Wartlick, Ortrud; Kicheva, Anna; Gonzalez-Gaitan, Marcos [Department of Biochemistry and Department of Molecular Biology, Geneva University, Sciences II, Quai Ernest-Ansermet 30, 1211 Geneva 4 (Switzerland)], E-mail: Marcos.Gonzalez@biochem.unige.ch, E-mail: julicher@pks.mpg.de

    2008-06-15

    We study the mechanics of tissue growth via cell division and cell death (apoptosis). The rearrangements of cells can on large scales and times be captured by a continuum theory which describes the tissue as an effective viscous material with active stresses generated by cell division. We study the effects of anisotropies of cell division on cell rearrangements and show that average cellular trajectories exhibit anisotropic scaling behaviors. If cell division and apoptosis balance, there is no net growth, but for anisotropic cell division the tissue undergoes spontaneous shear deformations. Our description is relevant for the study of developing tissues such as the imaginal disks of the fruit fly Drosophila melanogaster, which grow anisotropically.

  9. The mechanical behavior of nanoscale metallic multilayers: A survey

    Science.gov (United States)

    Zhou, Q.; Xie, J. Y.; Wang, F.; Huang, P.; Xu, K. W.; Lu, T. J.

    2015-06-01

    The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of microlaminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size-dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plastic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engineers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qualities the interfaces in NMMs display at atomic scale.

  10. Biology and Mechanics of Blood Flows Part I: Biology

    CERN Document Server

    Thiriet, Marc

    2008-01-01

    Biology and Mechanics of Blood Flows presents the basic knowledge and state-of-the-art techniques necessary to carry out investigations of the cardiovascular system using modeling and simulation. Part I of this two-volume sequence, Biology, addresses the nanoscopic and microscopic scales. The nanoscale corresponds to the scale of biochemical reaction cascades involved in cell adaptation to mechanical stresses among other stimuli. The microscale is the scale of stress-induced tissue remodeling associated with acute or chronic loadings. The cardiovascular system, like any physiological system, has a complicated three-dimensional structure and composition. Its time dependent behavior is regulated, and this complex system has many components. In this authoritative work, the author provides a survey of relevant cell components and processes, with detailed coverage of the electrical and mechanical behaviors of vascular cells, tissues, and organs. Because the behaviors of vascular cells and tissues are tightly coupl...

  11. Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography.

    Science.gov (United States)

    Guertler, Charlotte A; Okamoto, Ruth J; Schmidt, John L; Badachhape, Andrew A; Johnson, Curtis L; Bayly, Philip V

    2018-03-01

    The mechanical properties of brain tissue in vivo determine the response of the brain to rapid skull acceleration. These properties are thus of great interest to the developers of mathematical models of traumatic brain injury (TBI) or neurosurgical simulations. Animal models provide valuable insight that can improve TBI modeling. In this study we compare estimates of mechanical properties of the Yucatan mini-pig brain in vivo and ex vivo using magnetic resonance elastography (MRE) at multiple frequencies. MRE allows estimations of properties in soft tissue, either in vivo or ex vivo, by imaging harmonic shear wave propagation. Most direct measurements of brain mechanical properties have been performed using samples of brain tissue ex vivo. It has been observed that direct estimates of brain mechanical properties depend on the frequency and amplitude of loading, as well as the time post-mortem and condition of the sample. Using MRE in the same animals at overlapping frequencies, we observe that porcine brain tissue in vivo appears stiffer than porcine brain tissue samples ex vivo at frequencies of 100 Hz and 125 Hz, but measurements show closer agreement at lower frequencies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Ho; Jenrow, Kenneth A.; Brown, Stephen L. [Dept.of Radiation Oncology, Henry Ford Health System, Detroit (United States)

    2014-09-15

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.

  13. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    International Nuclear Information System (INIS)

    Kim, Jae Ho; Jenrow, Kenneth A.; Brown, Stephen L.

    2014-01-01

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.

  14. On the theory of behavioral mechanics.

    Science.gov (United States)

    Dzendolet, E

    1999-12-01

    The Theory of Behavioral Mechanics is the behavioral analogue of Newton's laws of motion, with the rate of responding in operant conditioning corresponding to physical velocity. In an earlier work, the basic relation between rate of responding and sessions under two FI schedules and over a range of commonly used session values had been shown to be a power function. Using that basic relation, functions for behavioral acceleration, mass, and momentum are derived here. Data from other laboratories also support the applicability of a power function to VI schedules. A particular numerical value is introduced here to be the standard reference value for the behavioral force under the VI-60-s schedule. This reference allows numerical values to be calculated for the behavioral mass and momentum of individual animals. A comparison of the numerical values of the momenta of two animals can be used to evaluate their relative resistances to change, e.g., to extinction, which is itself viewed as a continuously changing behavioral force being imposed on the animal. This overall numerical approach allows behavioral force-values to be assigned to various experimental conditions such as the evaluation of the behavioral force of a medication dosage.

  15. How preconditioning affects the measurement of poro-viscoelastic mechanical properties in biological tissues

    NARCIS (Netherlands)

    Hosseini, S.M.; Wilson, W.; Ito, K.; Donkelaar, van C.C.

    2014-01-01

    It is known that initial loading curves of soft biological tissues are substantially different from subsequent loadings. The later loading curves are generally used for assessing the mechanical properties of a tissue, and the first loading cycles, referred to as preconditioning, are omitted.

  16. Thermo-hydro-mechanical behavior of fractured rock mass

    International Nuclear Information System (INIS)

    Coste, F.

    1997-12-01

    The purpose of this research is to model Thermo-Hydro-Mechanical behavior of fractured rock mass regarding a nuclear waste re-depository. For this, a methodology of modeling was proposed and was applied to a real underground site (EDF site at Nouvelle Romanche). This methodology consists, in a first step, to determine hydraulic and mechanical REV. Beyond the greatest of these REV, development of a finite element code allows to model all the fractures in an explicit manner. The homogenized mechanical properties are determined in drained and undrained boundary conditions by simulating triaxial tests that represent rock mass subject to loading. These simulations allow to study the evolution of hydraulic and mechanical properties as a function of stress state. Drained and undrained boundary conditions enable to discuss the validity of assimilation of a fractured rock mass to a porous medium. The simulations lead to a better understanding of the behavior of the fractured rock masses and allow to show the dominant role of the shear behavior of the fractures on the hydraulic and mechanical homogenized properties. From a thermal point of view, as long as conduction is dominant, thermal properties of the rock mass are almost the same as those the intact rock. (author)

  17. Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations.

    Science.gov (United States)

    Wang, Bo; Wang, Guangjun; To, Filip; Butler, J Ryan; Claude, Andrew; McLaughlin, Ronald M; Williams, Lakiesha N; de Jongh Curry, Amy L; Liao, Jun

    2013-09-03

    Recently, we developed an optimal decellularization protocol to generate 3D porcine myocardial scaffolds, which preserve the natural extracellular matrix structure, mechanical anisotropy, and vasculature templates and also show good cell recellularization and differentiation potential. In this study, a multistimulation bioreactor was built to provide coordinated mechanical and electrical stimulation for facilitating stem cell differentiation and cardiac construct development. The acellular myocardial scaffolds were seeded with mesenchymal stem cells (10(6) cells/mL) by needle injection and subjected to 5-azacytidine treatment (3 μmol/L, 24 h) and various bioreactor conditioning protocols. We found that after 2 days of culturing with mechanical (20% strain) and electrical stimulation (5 V, 1 Hz), high cell density and good cell viability were observed in the reseeded scaffold. Immunofluorescence staining demonstrated that the differentiated cells showed a cardiomyocyte-like phenotype by expressing sarcomeric α-actinin, myosin heavy chain, cardiac troponin T, connexin-43, and N-cadherin. Biaxial mechanical testing demonstrated that positive tissue remodeling took place after 2 days of bioreactor conditioning (20% strain + 5 V, 1 Hz); passive mechanical properties of the 2 day and 4 day tissue constructs were comparable to those of the tissue constructs produced by stirring reseeding followed by 2 weeks of static culturing, implying the effectiveness and efficiency of the coordinated simulations in promoting tissue remodeling. In short, the synergistic stimulations might be beneficial not only for the quality of cardiac construct development but also for patients by reducing the waiting time in future clinical scenarios.

  18. Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, Farnaz, E-mail: Farnaz_ghorbani.1991@yahoo.com [Department of Biomedical Engineering, Tehran Science and Research Branch, Islamic Azad University, P. O. Box: 4515/775, Tehran (Iran, Islamic Republic of); Nojehdehian, Hanieh, E-mail: hanieh.nojehdehyan@gmail.com [Department of Dental Materials, School of Dentistry, Shahid Beheshti University of Medical Sciences, P.O. Box: 1983963113, Tehran (Iran, Islamic Republic of); Zamanian, Ali, E-mail: a-zamanian@merc.ac.ir [Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box: 14155-4777, Tehran (Iran, Islamic Republic of)

    2016-12-01

    Hydroxyapatite (HA)-gelatin scaffolds incorporated with dexamethasone-loaded polylactic-co-glycolic acid (PLGA) microspheres were synthesized by freeze casting technique. Scanning electron microscopy (SEM) micrographs demonstrated a unidirectional microstructure and a decrease in the pore size as a function of temperature gradient. Higher amounts of HA resulted in a decrease in the pore size. According to the results, at lower cooling rates, the formation of a lamellar structure decreased the mechanical strength, but at the same time, enhanced the swelling ratio, biodegradation rate and drug release level. On the other hand, higher weight ratios of HA increased the compressive strength, and reduced the swelling ratio, biodegradation rate and drug release level. The results obtained by furrier transform infrared spectroscopy (FTIR) and bioactivity analysis illustrated that the interactions of the materials support the apatite formation in the simulated body fluid (SBF) solution. Based on the obtained results, the synthesized composite scaffolds have the necessary mechanical and physicochemical features to support the regeneration of defects and to maintain their stability during the neo-tissue formation. - Highlights: • Freeze casting technique created unidirectional lamellar type microstructure. • Unidirectional microstructure of samples improved mechanical behavior, absorption, biodegradation rate and release behavior. • Hydroxyapatite-gelatin scaffolds demonstrated bioactive behavior and support new apatite layer formation. • Controlled release rate provided by dexamethasone loaded PLGA microspheres.

  19. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  20. A mechanical design principle for tissue structure and function in the airway tree.

    Science.gov (United States)

    LaPrad, Adam S; Lutchen, Kenneth R; Suki, Béla

    2013-01-01

    With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma.

  1. A mechanical design principle for tissue structure and function in the airway tree.

    Directory of Open Access Journals (Sweden)

    Adam S LaPrad

    Full Text Available With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma.

  2. Probing the Differential Tissue Distribution and Bioaccumulation Behavior of Per- and Polyfluoroalkyl Substances of Varying Chain-Lengths, Isomeric Structures and Functional Groups in Crucian Carp.

    Science.gov (United States)

    Shi, Yali; Vestergren, Robin; Nost, Therese Haugdahl; Zhou, Zhen; Cai, Yaqi

    2018-04-17

    Understanding the bioaccumulation mechanisms of per- and polyfluoroalkyl substances (PFASs) across different chain-lengths, isomers and functional groups represents a monumental scientific challenge with implications for chemical regulation. Here, we investigate how the differential tissue distribution and bioaccumulation behavior of 25 PFASs in crucian carp from two field sites impacted by point sources can provide information about the processes governing uptake, distribution and elimination of PFASs. Median tissue/blood ratios (TBRs) were consistently 90% of the amount of PFASs in the organism. Principal component analyses of TBRs and RBBs showed that the functional group was a relatively more important predictor of internal distribution than chain-length for PFASs. Whole body bioaccumulation factors (BAFs) for short-chain PFASs deviated from the positive relationship with hydrophobicity observed for longer-chain homologues. Overall, our results suggest that TBR, RBB, and BAF patterns were most consistent with protein binding mechanisms although partitioning to phospholipids may contribute to the accumulation of long-chain PFASs in specific tissues.

  3. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    Science.gov (United States)

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  4. Increased variability of bone tissue mineral density resulting from estrogen deficiency influences creep behavior in a rat vertebral body.

    Science.gov (United States)

    Kim, Do-Gyoon; Navalgund, Anand R; Tee, Boon Ching; Noble, Garrett J; Hart, Richard T; Lee, Hye Ri

    2012-11-01

    Progressive vertebral deformation increases the fracture risk of a vertebral body in the postmenopausal patient. Many studies have observed that bone can demonstrate creep behavior, defined as continued time-dependent deformation even when mechanical loading is held constant. Creep is a characteristic of viscoelastic behavior, which is common in biological materials. We hypothesized that estrogen deficiency-dependent alteration of the mineral distribution of bone at the tissue level could influence the progressive postmenopausal vertebral deformity that is observed as the creep response at the organ level. The objective of this study was thus to examine whether the creep behavior of vertebral bone is changed by estrogen deficiency, and to determine which bone property parameters are responsible for the creep response of vertebral bone at physiological loading levels using an ovariectomized (OVX) rat model. Correlations of creep parameters with bone mineral density (BMD), tissue mineral density (TMD) and architectural parameters of both OVX and sham surgery vertebral bone were tested. As the vertebral creep was not fully recovered during the post-creep unloading period, there was substantial residual displacement for both the sham and OVX groups. A strong positive correlation between loading creep and residual displacement was found (r=0.868, pcreep behavior of the OVX group (pcreep caused progressive, permanent reduction in vertebral height for both the sham and OVX groups. In addition, estrogen deficiency-induced active bone remodeling increased variability of trabecular TMD in the OVX group. Taken together, these results suggest that increased variability of trabecular TMD resulting from high bone turnover influences creep behavior of the OVX vertebrae. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering.

    Science.gov (United States)

    Li, Ke; Zhang, Chunqiu; Qiu, Lulu; Gao, Lilan; Zhang, Xizheng

    2017-08-01

    Articular cartilage (AC) is the weight-bearing tissue in diarthroses. It lacks the capacity for self-healing once there are injuries or diseases due to its avascularity. With the development of tissue engineering, repairing cartilage defects through transplantation of engineered cartilage that closely matches properties of native cartilage has become a new option for curing cartilage diseases. The main hurdle for clinical application of engineered cartilage is how to develop functional cartilage constructs for mass production in a credible way. Recently, impressive hyaline cartilage that may have the potential to provide capabilities for treating large cartilage lesions in the future has been produced in laboratories. The key to functional cartilage construction in vitro is to identify appropriate mechanical stimuli. First, they should ensure the function of metabolism because mechanical stimuli play the role of blood vessels in the metabolism of AC, for example, acquiring nutrition and removing wastes. Second, they should mimic the movement of synovial joints and produce phenotypically correct tissues to achieve the adaptive development between the micro- and macrostructure and function. In this article, we divide mechanical stimuli into three types according to forces transmitted by different media in bioreactors, namely forces transmitted through the liquid medium, solid medium, or other media, then we review and summarize the research status of bioreactors for cartilage tissue engineering (CTE), mainly focusing on the effects of diverse mechanical stimuli on engineered cartilage. Based on current researches, there are several motion patterns in knee joints; but compression, tension, shear, fluid shear, or hydrostatic pressure each only partially reflects the mechanical condition in vivo. In this study, we propose that rolling-sliding-compression load consists of various stimuli that will represent better mechanical environment in CTE. In addition, engineers

  6. Neural Circuit Mechanisms of Social Behavior.

    Science.gov (United States)

    Chen, Patrick; Hong, Weizhe

    2018-04-04

    We live in a world that is largely socially constructed, and we are constantly involved in and fundamentally influenced by a broad array of complex social interactions. Social behaviors among conspecifics, either conflictive or cooperative, are exhibited by all sexually reproducing animal species and are essential for the health, survival, and reproduction of animals. Conversely, impairment in social function is a prominent feature of several neuropsychiatric disorders, such as autism spectrum disorders and schizophrenia. Despite the importance of social behaviors, many fundamental questions remain unanswered. How is social sensory information processed and integrated in the nervous system? How are different social behavioral decisions selected and modulated in brain circuits? Here we discuss conceptual issues and recent advances in our understanding of brain regions and neural circuit mechanisms underlying the regulation of social behaviors. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Behavioral and neural Darwinism: selectionist function and mechanism in adaptive behavior dynamics.

    Science.gov (United States)

    McDowell, J J

    2010-05-01

    An evolutionary theory of behavior dynamics and a theory of neuronal group selection share a common selectionist framework. The theory of behavior dynamics instantiates abstractly the idea that behavior is selected by its consequences. It implements Darwinian principles of selection, reproduction, and mutation to generate adaptive behavior in virtual organisms. The behavior generated by the theory has been shown to be quantitatively indistinguishable from that of live organisms. The theory of neuronal group selection suggests a mechanism whereby the abstract principles of the evolutionary theory may be implemented in the nervous systems of biological organisms. According to this theory, groups of neurons subserving behavior may be selected by synaptic modifications that occur when the consequences of behavior activate value systems in the brain. Together, these theories constitute a framework for a comprehensive account of adaptive behavior that extends from brain function to the behavior of whole organisms in quantitative detail. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  8. Mechanical Behavior of Additively Manufactured Uranium-6 wt. pct. Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Wu, A. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wraith, M. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Burke, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hamza, A. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, D. W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clausen, B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hsiung, L. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McKeown, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lindvall, R. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sedillo, E. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Teslich, N. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Torres, S. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Urabe, D. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Freeman, D. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alexander, P. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Iniguez, M. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ryerson, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ancheta, D. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lotscher, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Young, E. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Evans, C. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Florando, J. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gallegos, G. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Margraff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hrousis, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Campbell, G. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-15

    This report describes an effort to process uranium-6 weight% niobium using laser powder bed fusion. The chemistry, crystallography, microstructure and mechanical response resulting from this process are discussed with particular emphasis on the effect of the laser powder bed fusion process on impurities. In an effort to achieve homogenization and uniform mechanical behavior from different builds, as well as to induce a more conventional loading response, we explore post-processing heat treatments on this complex alloy. Elevated temperature heat treatment for recrystallization is evaluated and the effect of recrystallization on mechanical behavior in laser powder bed fusion processed U-6Nb is discussed. Wrought-like mechanical behavior and grain sizes are achieved through post-processing and are reported herein.

  9. Matrix production and organization by endothelial colony forming cells in mechanically strained engineered tissue constructs.

    Directory of Open Access Journals (Sweden)

    Nicky de Jonge

    Full Text Available AIMS: Tissue engineering is an innovative method to restore cardiovascular tissue function by implanting either an in vitro cultured tissue or a degradable, mechanically functional scaffold that gradually transforms into a living neo-tissue by recruiting tissue forming cells at the site of implantation. Circulating endothelial colony forming cells (ECFCs are capable of differentiating into endothelial cells as well as a mesenchymal ECM-producing phenotype, undergoing Endothelial-to-Mesenchymal-transition (EndoMT. We investigated the potential of ECFCs to produce and organize ECM under the influence of static and cyclic mechanical strain, as well as stimulation with transforming growth factor β1 (TGFβ1. METHODS AND RESULTS: A fibrin-based 3D tissue model was used to simulate neo-tissue formation. Extracellular matrix organization was monitored using confocal laser-scanning microscopy. ECFCs produced collagen and also elastin, but did not form an organized matrix, except when cultured with TGFβ1 under static strain. Here, collagen was aligned more parallel to the strain direction, similar to Human Vena Saphena Cell-seeded controls. Priming ECFC with TGFβ1 before exposing them to strain led to more homogenous matrix production. CONCLUSIONS: Biochemical and mechanical cues can induce extracellular matrix formation by ECFCs in tissue models that mimic early tissue formation. Our findings suggest that priming with bioactives may be required to optimize neo-tissue development with ECFCs and has important consequences for the timing of stimuli applied to scaffold designs for both in vitro and in situ cardiovascular tissue engineering. The results obtained with ECFCs differ from those obtained with other cell sources, such as vena saphena-derived myofibroblasts, underlining the need for experimental models like ours to test novel cell sources for cardiovascular tissue engineering.

  10. Economic transactions, opportunistic behavior and protective mechanisms

    DEFF Research Database (Denmark)

    Koch, Carsten Allan

    Whenever actors participate in transactions they expose themselves to risks of various kinds. Some of these risks are attributable to events outside the control of the participants and are unavoidable. Others originate in, or are aggrevated by, opportunistic actions undertaken by contract partners...... and other co-operators. This paper is concerned with the latter type of risk and the protection against it. Six protective mechanisms, which may serve as safeguards against opportunistic behavior, are presented and discussed. Special attention is paid to reputation effects. It is noted that such effects may...... account for the lack of opportunistic behavior with which networks are often credited. No protective mechanism is, however, effective under all circumstances....

  11. Micromechanics and constitutive modeling of connective soft tissues.

    Science.gov (United States)

    Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M

    2016-07-01

    In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical homogenization method with the help of ABAQUS software. The periodic boundary conditions and the proposed constitutive models are implemented into ABAQUS using the DISP and the UMAT subroutines, respectively. The existence of the solution and stable material behavior of proposed constitutive model for collagen fibers are investigated based on the poly-convexity condition. Results of the presented micromechanics model for connective tissues are compared and validated with available experimental data. Effects of geometrical and material parameters variation at microscale on macroscopic mechanical behavior of tissues are investigated. The results show that decrease in collagen content of the connective tissues like the tendon due to diseases leads 20% more stretch than healthy tissue under the same load which can results in connective tissue malfunction and hypermobility in joints. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering.

    Science.gov (United States)

    Qi, Dianjun; Wu, Shaohua; Kuss, Mitchell A; Shi, Wen; Chung, Soonkyu; Deegan, Paul T; Kamenskiy, Alexey; He, Yini; Duan, Bin

    2018-05-26

    Bioengineered adipose tissues have gained increased interest as a promising alternative to autologous tissue flaps and synthetic adipose fillers for soft tissue augmentation and defect reconstruction in clinic. Although many scaffolding materials and biofabrication methods have been investigated for adipose tissue engineering in the last decades, there are still challenges to recapitulate the appropriate adipose tissue microenvironment, maintain volume stability, and induce vascularization to achieve long-term function and integration. In the present research, we fabricated cryogels consisting of methacrylated gelatin, methacrylated hyaluronic acid, and 4arm poly(ethylene glycol) acrylate (PEG-4A) by using cryopolymerization. The cryogels were repeatedly injectable and stretchable, and the addition of PEG-4A improved the robustness and mechanical properties. The cryogels supported human adipose progenitor cell (HWA) and adipose derived mesenchymal stromal cell adhesion, proliferation, and adipogenic differentiation and maturation, regardless of the addition of PEG-4A. The HWA laden cryogels facilitated the co-culture of human umbilical vein endothelial cells (HUVEC) and capillary-like network formation, which in return also promoted adipogenesis. We further combined cryogels with 3D bioprinting to generate handleable adipose constructs with clinically relevant size. 3D bioprinting enabled the deposition of multiple bioinks onto the cryogels. The bioprinted flap-like constructs had an integrated structure without delamination and supported vascularization. Adipose tissue engineering is promising for reconstruction of soft tissue defects, and also challenging for restoring and maintaining soft tissue volume and shape, and achieving vascularization and integration. In this study, we fabricated cryogels with mechanical robustness, injectability, and stretchability by using cryopolymerization. The cryogels promoted cell adhesion, proliferation, and adipogenic

  13. Mechanics of needle-tissue interaction

    NARCIS (Netherlands)

    Roesthuis, Roy; van Veen, Youri; Jahya, Alex; Misra, Sarthak

    2011-01-01

    When a needle is inserted into soft tissue, interac- tion forces are developed at the needle tip and along the needle shaft. The needle tip force is due to cutting of the tissue, and the force along the needle shaft is due to friction between needle and tissue. In this study, the friction force is

  14. Poly (Ethylene Glycol)-Based Hydrogels as Self-Inflating Tissue Expanders with Tunable Mechanical and Swelling Properties.

    Science.gov (United States)

    Jamadi, Mahsa; Shokrollahi, Parvin; Houshmand, Behzad; Joupari, Mortaza Daliri; Mashhadiabbas, Fatemeh; Khademhosseini, Ali; Annabi, Nasim

    2017-08-01

    Tissue expansion is used by plastic/reconstructive surgeons to grow additional skin/tissue for replacing or repairing lost or damaged soft tissues. Recently, hydrogels have been widely used for tissue expansion applications. Herein, a self-inflating tissue expander blend composition from three different molecular weights (2, 6, and 10 kDa) of poly (ethylene glycol) diacrylate (PEGDA) hydrogel with tunable mechanical and swelling properties is presented. The in vitro results demonstrate that, of the eight studied compositions, P6 (PEGDA 6 kDa:10 kDa (50:50)) and P8 (PEGDA 6 kDa:10 kDa (35:65)) formulations provide a balance of mechanical property and swelling capability suitable for tissue expansion. Furthermore, these expanders can be compressed up to 60% of their original height and can be loaded and unloaded cyclically at least ten times with no permanent deformation. The in vivo results indicate that these two engineered blend compositions are capable to generate a swelling pressure sufficient to dilate the surrounding tissue while retaining their original shape. The histological analyses reveal the formation of fibrous capsule at the interface between the implant and the subcutaneous tissue with no signs of inflammation. Ultimately, controlling the PEGDA chain length shows potential for the development of self-inflating tissue expanders with tunable mechanical and swelling properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrospun microcrimped fibers with nonlinear mechanical properties enhance ligament fibroblast phenotype

    International Nuclear Information System (INIS)

    Grace Chao, Pen-hsiu; Hsu, Hsiang-Yi; Tseng, Hsiao-Yun

    2014-01-01

    Fiber structure and order greatly impact the mechanical behavior of fibrous materials. In biological tissues, the nonlinear mechanics of fibrous scaffolds contribute to the functionality of the material. The nonlinear mechanical properties of the wavy structure (crimp) in collagen allow tissue flexibility while preventing over-extension. A number of approaches have tried to recreate this complex mechanical functionality. We generated microcrimped fibers by briefly heating electrospun parallel fibers over the glass transition temperature or by ethanol treatment. The crimp structure is similar to those of collagen fibers found in native aorta, intestines, or ligaments. Using poly-L-lactic acid fibers, we demonstrated that the bulk materials exhibit changed stress–strain behaviors with a significant increase in the toe region in correlation to the degree of crimp, similar to those observed in collagenous tissues. In addition to mimicking the stress–strain behavior of biological tissues, the microcrimped fibers are instructive in cell morphology and promote ligament phenotypic gene expression. This effect can be further enhanced by dynamic tensile loading, a physiological perturbation in vivo. This rapid and economical approach for microcrimped fiber production provides an accessible platform to study structure–function relationships and a novel functional scaffold for tissue engineering and cell mechanobiology studies. (papers)

  16. Electrospun microcrimped fibers with nonlinear mechanical properties enhance ligament fibroblast phenotype.

    Science.gov (United States)

    Grace Chao, Pen-hsiu; Hsu, Hsiang-Yi; Tseng, Hsiao-Yun

    2014-09-01

    Fiber structure and order greatly impact the mechanical behavior of fibrous materials. In biological tissues, the nonlinear mechanics of fibrous scaffolds contribute to the functionality of the material. The nonlinear mechanical properties of the wavy structure (crimp) in collagen allow tissue flexibility while preventing over-extension. A number of approaches have tried to recreate this complex mechanical functionality. We generated microcrimped fibers by briefly heating electrospun parallel fibers over the glass transition temperature or by ethanol treatment. The crimp structure is similar to those of collagen fibers found in native aorta, intestines, or ligaments. Using poly-L-lactic acid fibers, we demonstrated that the bulk materials exhibit changed stress-strain behaviors with a significant increase in the toe region in correlation to the degree of crimp, similar to those observed in collagenous tissues. In addition to mimicking the stress-strain behavior of biological tissues, the microcrimped fibers are instructive in cell morphology and promote ligament phenotypic gene expression. This effect can be further enhanced by dynamic tensile loading, a physiological perturbation in vivo. This rapid and economical approach for microcrimped fiber production provides an accessible platform to study structure-function relationships and a novel functional scaffold for tissue engineering and cell mechanobiology studies.

  17. The mechanical behavior of microcellular foams

    Energy Technology Data Exchange (ETDEWEB)

    Ozkul, M.H.; Mark, J.E. (Cincinnati Univ., OH (USA)); Aubert, J.H. (Sandia National Labs., Albuquerque, NM (USA))

    1990-01-01

    The mechanical behavior of microcellular open-cell foams prepared by a thermally induced phase separation process are investigated. The foams studied were prepared from isotactic polystyrene, polyacrylonitrile, and poly(4-methyl-1-pentene) (rigid foams), and polyurethane and Lycra (elastomeric foams). Their densities were in the range 0.04--0.27 g/cm3. Conventional polystyrene foams were used for comparison. The moduli and collapse stresses of these foams were measured in compression and compared with the current constitutive laws which relate mechanical properties to densities. A reinforcement technique based on the in-situ precipitation of silica was used to improve the mechanical properties. 13 refs., 4 figs., 3 tabs.

  18. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    Directory of Open Access Journals (Sweden)

    Wan Nurlina Wan Yahya

    2014-07-01

    Full Text Available Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration.

  19. The effects of matrix inhomogeneities on the cellular mechanical environment in tissue-engineered cartilage: an in silico investigation

    NARCIS (Netherlands)

    Khoshgoftar, M.; Wilson, W.; Ito, K.; Donkelaar, C.C. van

    2014-01-01

    Mechanical stimulation during cartilage tissue-engineering enhances extracellular matrix (ECM) synthesis and thereby improves the mechanical properties of tissue engineered (TE) cartilage. Generally, these mechanical stimuli are of a fixed magnitude. However, as a result of ECM synthesis and spatial

  20. Active tension network model suggests an exotic mechanical state realized in epithelial tissues

    Science.gov (United States)

    Noll, Nicholas; Mani, Madhav; Heemskerk, Idse; Streichan, Sebastian J.; Shraiman, Boris I.

    2017-12-01

    Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behaviour remains an open problem. Here we formulate and analyse the active tension network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodelling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal--`isogonal'--deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit fly embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena.

  1. Early stiffening and softening of collagen : interplay of deformation mechanisms in biopolymer networks

    NARCIS (Netherlands)

    Kurniawan, N.A.; Wong, Long Hui; Rajagopalan, Raj

    2012-01-01

    Collagen networks, the main structural/mechanical elements in biological tissues, increasingly serve as biomimetic scaffolds for cell behavioral studies, assays, and tissue engineering, and yet their full spectrum of nonlinear behavior remains unclear. Here, with self-assembled type-I collagen as

  2. Experimental study on tissue phantoms to understand the effect of injury and suturing on human skin mechanical properties.

    Science.gov (United States)

    Chanda, Arnab; Unnikrishnan, Vinu; Flynn, Zachary; Lackey, Kim

    2017-01-01

    Skin injuries are the most common type of injuries occurring in day-to-day life. A skin injury usually manifests itself in the form of a wound or a cut. While a shallow wound may heal by itself within a short time, deep wounds require surgical interventions such as suturing for timely healing. To date, suturing practices are based on a surgeon's experience and may vary widely from one situation to another. Understanding the mechanics of wound closure and suturing of the skin is crucial to improve clinical suturing practices and also to plan automated robotic surgeries. In the literature, phenomenological two-dimensional computational skin models have been developed to study the mechanics of wound closure. Additionally, the effect of skin pre-stress (due to the natural tension of the skin) on wound closure mechanics has been studied. However, in most of these analyses, idealistic two-dimensional skin geometries, materials and loads have been assumed, which are far from reality, and would clearly generate inaccurate quantitative results. In this work, for the first time, a biofidelic human skin tissue phantom was developed using a two-part silicone material. A wound was created on the phantom material and sutures were placed to close the wound. Uniaxial mechanical tests were carried out on the phantom specimens to study the effect of varying wound size, quantity, suture and pre-stress on the mechanical behavior of human skin. Also, the average mechanical behavior of the human skin surrogate was characterized using hyperelastic material models, in the presence of a wound and sutures. To date, such a robust experimental study on the effect of injury and sutures on human skin mechanics has not been attempted. The results of this novel investigation will provide important guidelines for surgical planning and validation of results from computational models in the future.

  3. Characterization of mechanical behavior of a porcine pulmonary artery strip using a randomized uniaxial stretch and stretch-rate protocol

    Directory of Open Access Journals (Sweden)

    Criscione John C

    2008-01-01

    Full Text Available Abstract Background Much of the experimental work in soft tissue mechanics has been focused on fitting approximate relations for specific tissue types from aggregate data on multiple samples of the tissue. Such relations are needed for modeling applications and have reasonable predictability – especially given the natural variance in specimens. There is, however, much theoretical and experimental work to be done in determining constitutive behaviors for particular specimens and tissues. In so doing, it may be possible to exploit the natural variation in tissue ultrastructure – so to relate ultrastructure composition to tissue behavior. Thus, this study focuses on an experimental method for determining constitutive behaviors and illustrates the method with analysis of a porcine pulmonary artery strip. The method characterizes the elastic part of the response (implicitly in terms of stretch and the inelastic part in terms of short term stretch history (i.e., stretch-rate Ht2, longer term stretch history Ht1, and time since the start of testing T. Methods A uniaxial testing protocol with a random stretch and random stretch-rate was developed. The average stress at a particular stretch was chosen as the hyperelastic stress response, and deviation from the mean at this particular stretch is chosen as the inelastic deviation. Multivariable Linear Regression Analysis (MLRA was utilized to verify if Ht2, Ht1, and T are important factors for characterizing the inelastic deviation. For acquiring Ht2 and Ht1, an integral function type of stretch history was employed with time constants chosen from the relaxation spectrum of an identical size strip from the same tissue with the same orientation. Finally, statistical models that characterize the inelasticity were developed at various, nominal values of stretch, and their predictive capability was examined. Results Inelastic deviation from hyperelasticity was high (31% for low stretch and declined

  4. Mechanics of Fluid-Filled Interstitial Gaps. I. Modeling Gaps in a Compact Tissue.

    Science.gov (United States)

    Parent, Serge E; Barua, Debanjan; Winklbauer, Rudolf

    2017-08-22

    Fluid-filled interstitial gaps are a common feature of compact tissues held together by cell-cell adhesion. Although such gaps can in principle be the result of weak, incomplete cell attachment, adhesion is usually too strong for this to occur. Using a mechanical model of tissue cohesion, we show that, instead, a combination of local prevention of cell adhesion at three-cell junctions by fluidlike extracellular material and a reduction of cortical tension at the gap surface are sufficient to generate stable gaps. The size and shape of these interstitial gaps depends on the mechanical tensions between cells and at gap surfaces, and on the difference between intracellular and interstitial pressures that is related to the volume of the interstitial fluid. As a consequence of the dependence on tension/tension ratios, the presence of gaps does not depend on the absolute strength of cell adhesion, and similar gaps are predicted to occur in tissues of widely differing cohesion. Tissue mechanical parameters can also vary within and between cells of a given tissue, generating asymmetrical gaps. Within limits, these can be approximated by symmetrical gaps. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. An evolutionary framework for studying mechanisms of social behavior.

    Science.gov (United States)

    Hofmann, Hans A; Beery, Annaliese K; Blumstein, Daniel T; Couzin, Iain D; Earley, Ryan L; Hayes, Loren D; Hurd, Peter L; Lacey, Eileen A; Phelps, Steven M; Solomon, Nancy G; Taborsky, Michael; Young, Larry J; Rubenstein, Dustin R

    2014-10-01

    Social interactions are central to most animals and have a fundamental impact upon the phenotype of an individual. Social behavior (social interactions among conspecifics) represents a central challenge to the integration of the functional and mechanistic bases of complex behavior. Traditionally, studies of proximate and ultimate elements of social behavior have been conducted by distinct groups of researchers, with little communication across perceived disciplinary boundaries. However, recent technological advances, coupled with increased recognition of the substantial variation in mechanisms underlying social interactions, should compel investigators from divergent disciplines to pursue more integrative analyses of social behavior. We propose an integrative conceptual framework intended to guide researchers towards a comprehensive understanding of the evolution and maintenance of mechanisms governing variation in sociality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Mechanistic aspects of failure of mineralized tissue

    Science.gov (United States)

    Nalla, Ravi Kiran

    Over the past few decades, there has been increased interest in the structure and properties of mineralized biological tissues like bone and dentin (a structurally simpler analogue of bone that makes up the bulk of the human tooth). In particular, there has been considerable research into the mechanical properties of such tissues and into how they fracture. An understanding of these properties is of great importance from the perspective of developing a realistic framework for life prediction, particularly in light of the effect of microstructural modifications from aging, disease, remodeling, etc. Central to these issues is the resistance to fracture of these materials, and the microstructural mechanisms that are the source of such resistance. Understanding such properties in the context of the inherent hierarchical complexity of the microstructure of these tissues is of obvious importance. However, surprisingly, such questions have largely remained unanswered and to a large extent, even uninvestigated. The present study initially seeks to focus on the fracture and fatigue behavior of dentin and to extend the observations to cortical bone. Accordingly, fracture mechanics based experiments were conducted to evaluate the fracture toughness of dentin in the context of the anisotropy with respect to the underlying microstructure, and discussed in terms of the salient toughening mechanisms active in this material. In light of the presence of such mechanisms, the fracture toughness properties were then evaluated in terms of resistance-curve (R-curve) behavior, i.e., fracture resistance increasing with crack extension. Furthermore, dentin is known to be susceptible to failure under cyclic loading. The "stress-life" and fatigue-crack propagation data obtained through a systematic investigation of the effects of prolonged cyclical loading are discussed. It is concluded that the presence of small incipient flaws in human teeth of the order of 250 mum in size will not

  7. Electro-mechanical dynamics of spiral waves in a discrete 2D model of human atrial tissue.

    Directory of Open Access Journals (Sweden)

    Paul Brocklehurst

    Full Text Available We investigate the effect of mechano-electrical feedback and atrial fibrillation induced electrical remodelling (AFER of cellular ion channel properties on the dynamics of spiral waves in a discrete 2D model of human atrial tissue. The tissue electro-mechanics are modelled using the discrete element method (DEM. Millions of bonded DEM particles form a network of coupled atrial cells representing 2D cardiac tissue, allowing simulations of the dynamic behaviour of electrical excitation waves and mechanical contraction in the tissue. In the tissue model, each cell is modelled by nine particles, accounting for the features of individual cellular geometry; and discrete inter-cellular spatial arrangement of cells is also considered. The electro-mechanical model of a human atrial single-cell was constructed by strongly coupling the electrophysiological model of Colman et al. to the mechanical myofilament model of Rice et al., with parameters modified based on experimental data. A stretch-activated channel was incorporated into the model to simulate the mechano-electrical feedback. In order to investigate the effect of mechano-electrical feedback on the dynamics of spiral waves, simulations of spiral waves were conducted in both the electromechanical model and the electrical-only model in normal and AFER conditions, to allow direct comparison of the results between the models. Dynamics of spiral waves were characterized by tracing their tip trajectories, stability, excitation frequencies and meandering range of tip trajectories. It was shown that the developed DEM method provides a stable and efficient model of human atrial tissue with considerations of the intrinsically discrete and anisotropic properties of the atrial tissue, which are challenges to handle in traditional continuum mechanics models. This study provides mechanistic insights into the complex behaviours of spiral waves and the genesis of atrial fibrillation by showing an important role of

  8. Electro-mechanical dynamics of spiral waves in a discrete 2D model of human atrial tissue.

    Science.gov (United States)

    Brocklehurst, Paul; Ni, Haibo; Zhang, Henggui; Ye, Jianqiao

    2017-01-01

    We investigate the effect of mechano-electrical feedback and atrial fibrillation induced electrical remodelling (AFER) of cellular ion channel properties on the dynamics of spiral waves in a discrete 2D model of human atrial tissue. The tissue electro-mechanics are modelled using the discrete element method (DEM). Millions of bonded DEM particles form a network of coupled atrial cells representing 2D cardiac tissue, allowing simulations of the dynamic behaviour of electrical excitation waves and mechanical contraction in the tissue. In the tissue model, each cell is modelled by nine particles, accounting for the features of individual cellular geometry; and discrete inter-cellular spatial arrangement of cells is also considered. The electro-mechanical model of a human atrial single-cell was constructed by strongly coupling the electrophysiological model of Colman et al. to the mechanical myofilament model of Rice et al., with parameters modified based on experimental data. A stretch-activated channel was incorporated into the model to simulate the mechano-electrical feedback. In order to investigate the effect of mechano-electrical feedback on the dynamics of spiral waves, simulations of spiral waves were conducted in both the electromechanical model and the electrical-only model in normal and AFER conditions, to allow direct comparison of the results between the models. Dynamics of spiral waves were characterized by tracing their tip trajectories, stability, excitation frequencies and meandering range of tip trajectories. It was shown that the developed DEM method provides a stable and efficient model of human atrial tissue with considerations of the intrinsically discrete and anisotropic properties of the atrial tissue, which are challenges to handle in traditional continuum mechanics models. This study provides mechanistic insights into the complex behaviours of spiral waves and the genesis of atrial fibrillation by showing an important role of the mechano

  9. Mechanical behavior of recycled polyethylene/piassava fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Elzubair, Amal, E-mail: amal@metalmat.ufrj.br [Universidade Federal de Rio de Janeiro, Departamento de Engenharia Metalurgica e de Materiais, Ilha do Fundao, Bloco F, 21941-972 Rio de Janeiro, RJ (Brazil); Praca General Tiburcio, 80, Urca, 22290-270 Rio de Janeiro, RJ (Brazil); Miguez Suarez, Joao Carlos, E-mail: jmiguez@ime.eb.br [Instituto Militar de Engenharia, Secao de Engenharia Mecanica e de Materiais, Praca General Tiburcio, 80, Urca, 22290-270, Rio de Janeiro, RJ (Brazil); Praca General Tiburcio, 80, Urca, 22290-270 Rio de Janeiro, RJ (Brazil)

    2012-11-15

    The use of natural fibers for reinforcement of thermoplastics (which are found in domestic waste) is desirable since it is based on abundant and renewable resources and can be ecologically correct. Leopoldinia piassaba Wallace (commonly known as piassava), a palm tree native of Amazon-Brazil, is cheap, easily found in Brazilian markets and the main component of home appliances and decorative goods. The subject of the present work is a study of mechanical properties of composites of recycled high density polyethylene (HDPE-r) reinforced with untreated, and treated (silane and NaOH) piassava fibers, in proportions varying from 0% to 20% and injection molded under fixed processing conditions. The influence of increasing amounts of piassava fibers and of surface treatment on the mechanical behavior of the composites was investigated by thermogravimetric analysis (TGA), mechanical testing (tensile and flexure) and scanning electron microscopy (SEM). The topography of the fractured surfaces of tested tensile specimens of unfilled and filled recycled HDPE was also observed by SEM and correlated with the mechanical behavior. As the fiber content increases, the composites show a gradual change in the mechanical properties and in the fracture mechanisms. Composites with 15% and 20% of piassava fibers were found to exhibit the best mechanical performance.

  10. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Wright, L D; Young, R T; Andric, T; Freeman, J W

    2010-01-01

    Electrospinning is a polymer processing technique that produces fibrous structures comparable to the extracellular matrix of many tissues. Electrospinning, however, has been severely limited in its tissue engineering capabilities because this technique has produced few three-dimensional structures. Sintering of electrospun materials provides a method to fabricate unique architectures and allow much larger structures to be made. Electrospun mats were sintered into strips and cylinders, and their tensile and compressive mechanical properties were measured. In addition, electrospun materials with salt pores (salt embedded within the material and then leached out) were fabricated to improve porosity of the electrospun materials for tissue engineering scaffolds. Sintered electrospun poly(d,l-lactide) and poly(l-lactide) (PDLA/PLLA) materials have higher tensile mechanical properties (modulus: 72.3 MPa, yield: 960 kPa) compared to unsintered PLLA (modulus: 40.36 MPa, yield: 675.5 kPa). Electrospun PDLA/PLLA cylinders with and without salt-leached pores had compressive moduli of 6.69 and 26.86 MPa, respectively, and compressive yields of 1.36 and 0.56 MPa, respectively. Sintering of electrospun materials is a novel technique that improves electrospinning application in tissue engineering by increasing the size and types of electrospun structures that can be fabricated.

  11. Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces

    International Nuclear Information System (INIS)

    Katz, J. Lawrence; Misra, Anil; Spencer, Paulette; Wang, Yong; Bumrerraj, Sauwanan; Nomura, Tsutomu; Eppell, Steven J.; Tabib-Azar, Massood

    2007-01-01

    This paper presents a review plus new data that describes the role hierarchical nanostructural properties play in developing an understanding of the effect of scale on the material properties (chemical, elastic and electrical) of calcified tissues as well as the interfaces that form between such tissues and biomaterials. Both nanostructural and microstructural properties will be considered starting with the size and shape of the apatitic mineralites in both young and mature bovine bone. Microstructural properties for human dentin and cortical and trabecular bone will be considered. These separate sets of data will be combined mathematically to advance the effects of scale on the modeling of these tissues and the tissue/biomaterial interfaces as hierarchical material/structural composites. Interfacial structure and properties to be considered in greatest detail will be that of the dentin/adhesive (d/a) interface, which presents a clear example of examining all three material properties, (chemical, elastic and electrical). In this case, finite element modeling (FEA) was based on the actual measured values of the structure and elastic properties of the materials comprising the d/a interface; this combination provides insight into factors and mechanisms that contribute to premature failure of dental composite fillings. At present, there are more elastic property data obtained by microstructural measurements, especially high frequency ultrasonic wave propagation (UWP) and scanning acoustic microscopy (SAM) techniques. However, atomic force microscopy (AFM) and nanoindentation (NI) of cortical and trabecular bone and the dentin-enamel junction (DEJ) among others have become available allowing correlation of the nanostructural level measurements with those made on the microstructural level

  12. Development of Chitosan Scaffolds with Enhanced Mechanical Properties for Intestinal Tissue Engineering Applications.

    Science.gov (United States)

    Zakhem, Elie; Bitar, Khalil N

    2015-10-13

    Massive resections of segments of the gastrointestinal (GI) tract lead to intestinal discontinuity. Functional tubular replacements are needed. Different scaffolds were designed for intestinal tissue engineering application. However, none of the studies have evaluated the mechanical properties of the scaffolds. We have previously shown the biocompatibility of chitosan as a natural material in intestinal tissue engineering. Our scaffolds demonstrated weak mechanical properties. In this study, we enhanced the mechanical strength of the scaffolds with the use of chitosan fibers. Chitosan fibers were circumferentially-aligned around the tubular chitosan scaffolds either from the luminal side or from the outer side or both. Tensile strength, tensile strain, and Young's modulus were significantly increased in the scaffolds with fibers when compared with scaffolds without fibers. Burst pressure was also increased. The biocompatibility of the scaffolds was maintained as demonstrated by the adhesion of smooth muscle cells around the different kinds of scaffolds. The chitosan scaffolds with fibers provided a better candidate for intestinal tissue engineering. The novelty of this study was in the design of the fibers in a specific alignment and their incorporation within the scaffolds.

  13. Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields

    International Nuclear Information System (INIS)

    Miranda, P C; Correia, L; Salvador, R; Basser, P J

    2007-01-01

    We investigate the heterogeneity of electrical conductivity as a new mechanism to stimulate excitable tissues via applied electric fields. In particular, we show that stimulation of axons crossing internal boundaries can occur at boundaries where the electric conductivity of the volume conductor changes abruptly. The effectiveness of this and other stimulation mechanisms was compared by means of models and computer simulations in the context of transcranial magnetic stimulation. While, for a given stimulation intensity, the largest membrane depolarization occurred where an axon terminates or bends sharply in a high electric field region, a slightly smaller membrane depolarization, still sufficient to generate action potentials, also occurred at an internal boundary where the conductivity jumped from 0.143 S m -1 to 0.333 S m -1 , simulating a white-matter-grey-matter interface. Tissue heterogeneity can also give rise to local electric field gradients that are considerably stronger and more focal than those impressed by the stimulation coil and that can affect the membrane potential, albeit to a lesser extent than the two mechanisms mentioned above. Tissue heterogeneity may play an important role in electric and magnetic 'far-field' stimulation

  14. Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, P C [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Correia, L [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Salvador, R [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Basser, P J [Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, MD 20892-1428 (United States)

    2007-09-21

    We investigate the heterogeneity of electrical conductivity as a new mechanism to stimulate excitable tissues via applied electric fields. In particular, we show that stimulation of axons crossing internal boundaries can occur at boundaries where the electric conductivity of the volume conductor changes abruptly. The effectiveness of this and other stimulation mechanisms was compared by means of models and computer simulations in the context of transcranial magnetic stimulation. While, for a given stimulation intensity, the largest membrane depolarization occurred where an axon terminates or bends sharply in a high electric field region, a slightly smaller membrane depolarization, still sufficient to generate action potentials, also occurred at an internal boundary where the conductivity jumped from 0.143 S m{sup -1} to 0.333 S m{sup -1}, simulating a white-matter-grey-matter interface. Tissue heterogeneity can also give rise to local electric field gradients that are considerably stronger and more focal than those impressed by the stimulation coil and that can affect the membrane potential, albeit to a lesser extent than the two mechanisms mentioned above. Tissue heterogeneity may play an important role in electric and magnetic 'far-field' stimulation.

  15. "Tangible as tissue": Arnold Gesell, infant behavior, and film analysis.

    Science.gov (United States)

    Curtis, Scott

    2011-09-01

    From 1924 to 1948, developmental psychologist Arnold Gesell regularly used photographic and motion picture technologies to collect data on infant behavior. The film camera, he said, records behavior "in such coherent, authentic and measurable detail that ... the reaction patterns of infant and child become almost as tangible as tissue." This essay places his faith in the fidelity and tangibility of film, as well as his use of film as evidence, in the context of developmental psychology's professed need for legitimately scientific observational techniques. It also examines his use of these same films as educational material to promote his brand of scientific child rearing. But his analytic techniques - his methods of extracting data from the film frames - are the key to understanding the complex relationship between his theories of development and his chosen research technology.

  16. Pivotal role of tissue plasminogen activator in the mechanism of action of electroconvulsive therapy.

    Science.gov (United States)

    Hoirisch-Clapauch, Silvia; Mezzasalma, Marco A U; Nardi, Antonio E

    2014-02-01

    Electroconvulsive therapy is an important treatment option for major depressive disorders, acute mania, mood disorders with psychotic features, and catatonia. Several hypotheses have been proposed as electroconvulsive therapy's mechanism of action. Our hypothesis involves many converging pathways facilitated by increased synthesis and release of tissue-plasminogen activator. Human and animal experiments have shown that tissue-plasminogen activator participates in many mechanisms of action of electroconvulsive therapy or its animal variant, electroconvulsive stimulus, including improved N-methyl-D-aspartate receptor-mediated signaling, activation of both brain-derived neurotrophic factor and vascular endothelial growth factor, increased bioavailability of zinc, purinergic release, and increased mobility of dendritic spines. As a result, tissue-plasminogen activator helps promote neurogenesis in limbic structures, modulates synaptic transmission and plasticity, improves cognitive function, and mediates antidepressant effects. Notably, electroconvulsive therapy seems to influence tissue-plasminogen activator metabolism. For example, electroconvulsive stimulus increases the expression of glutamate decarboxylase 65 isoform in γ-aminobutyric acid-releasing neurons, which enhances the release of tissue-plasminogen activator, and the expression of p11, a protein involved in plasminogen and tissue-plasminogen activator assembling. This paper reviews how electroconvulsive therapy correlates with tissue-plasminogen activator. We suggest that interventions aiming at increasing tissue-plasminogen activator levels or its bioavailability - such as daily aerobic exercises together with a carbohydrate-restricted diet, or normalization of homocysteine levels - be evaluated in controlled studies assessing response and remission duration in patients who undergo electroconvulsive therapy.

  17. Characterization, mechanical behavior and in vitro evaluation of a melt-drawn scaffold for esophageal tissue engineering.

    Science.gov (United States)

    Tan, Yu Jun; Yeong, Wai Yee; Tan, Xipeng; An, Jia; Chian, Kerm Sin; Leong, Kah Fai

    2016-04-01

    Tubular esophageal scaffolds with fiber diameter ranging from 13.9±1.7μm to 65.7±6.2μm were fabricated from the highly elastic poly(l-lactide-co-ε-caprolactone) (PLC) via a melt-drawing method. The morphology, crystallinity, thermal and mechanical properties of the PLC fibers were investigated. They were highly aligned and have a uniform diameter. PLC is found to be semicrystalline consisting of α- and β- lactide (LA) crystals. The crystallinity increases up to 16.8% with increasing melt-drawing speeds due to strain-induced crystallization. Modulus and strength increases while ductility decreases with an increase in crystallinity of the PLC samples. Moisture will not degrade the overall tensile properties but affect its tangent modulus at the low strain. L929 cells are able to attach and proliferate on the scaffolds very well. The cells seeded on the scaffolds show normal morphology with >90% cell viability after 6 days of culture. These results demonstrate that the PLC fibrous scaffold has good potential for use in esophageal tissue engineering application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Modeling the Coupled Chemo-Thermo-Mechanical Behavior of Amorphous Polymer Networks.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jonathan A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nguyen, Thao D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Xiao, Rui [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-02-01

    Amorphous polymers exhibit a rich landscape of time-dependent behavior including viscoelasticity, structural relaxation, and viscoplasticity. These time-dependent mechanisms can be exploited to achieve shape-memory behavior, which allows the material to store a programmed deformed shape indefinitely and to recover entirely the undeformed shape in response to specific environmental stimulus. The shape-memory performance of amorphous polymers depends on the coordination of multiple physical mechanisms, and considerable opportunities exist to tailor the polymer structure and shape-memory programming procedure to achieve the desired performance. The goal of this project was to use a combination of theoretical, numerical and experimental methods to investigate the effect of shape memory programming, thermo-mechanical properties, and physical and environmental aging on the shape memory performance. Physical and environmental aging occurs during storage and through exposure to solvents, such as water, and can significantly alter the viscoelastic behavior and shape memory behavior of amorphous polymers. This project – executed primarily by Professor Thao Nguyen and Graduate Student Rui Xiao at Johns Hopkins University in support of a DOE/NNSA Presidential Early Career Award in Science and Engineering (PECASE) – developed a theoretical framework for chemothermo- mechanical behavior of amorphous polymers to model the effects of physical aging and solvent-induced environmental factors on their thermoviscoelastic behavior.

  19. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system

    International Nuclear Information System (INIS)

    Shim, Jin-Hyung; Lee, Jung-Seob; Cho, Dong-Woo; Kim, Jong Young

    2012-01-01

    The aim of this study was to build a mechanically enhanced three-dimensional (3D) bioprinted construct containing two different cell types for osteochondral tissue regeneration. Recently, the production of 3D cell-laden structures using various scaffold-free cell printing technologies has opened up new possibilities. However, ideal 3D complex tissues or organs have not yet been printed because gel-state hydrogels have been used as the principal material and are unable to maintain the desired 3D structure due to their poor mechanical strength. In this study, thermoplastic biomaterial polycaprolactone (PCL), which shows relatively high mechanical properties as compared with hydrogel, was used as a framework for enhancing the mechanical stability of the bioprinted construct. Two different alginate solutions were then infused into the previously prepared framework consisting of PCL to create the 3D construct for osteochondral printing. For this work, a multi-head tissue/organ building system (MtoBS), which was particularly designed to dispense thermoplastic biomaterial and hydrogel having completely different rheology properties, was newly developed and used to bioprint osteochondral tissue. It was confirmed that the line width, position and volume control of PCL and alginate solutions were adjustable in the MtoBS. Most importantly, dual cell-laden 3D constructs consisting of osteoblasts and chondrocytes were successfully fabricated. Further, the separately dispensed osteoblasts and chondrocytes not only retained their initial position and viability, but also proliferated up to 7 days after being dispensed. (paper)

  20. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system

    Science.gov (United States)

    Shim, Jin-Hyung; Lee, Jung-Seob; Kim, Jong Young; Cho, Dong-Woo

    2012-08-01

    The aim of this study was to build a mechanically enhanced three-dimensional (3D) bioprinted construct containing two different cell types for osteochondral tissue regeneration. Recently, the production of 3D cell-laden structures using various scaffold-free cell printing technologies has opened up new possibilities. However, ideal 3D complex tissues or organs have not yet been printed because gel-state hydrogels have been used as the principal material and are unable to maintain the desired 3D structure due to their poor mechanical strength. In this study, thermoplastic biomaterial polycaprolactone (PCL), which shows relatively high mechanical properties as compared with hydrogel, was used as a framework for enhancing the mechanical stability of the bioprinted construct. Two different alginate solutions were then infused into the previously prepared framework consisting of PCL to create the 3D construct for osteochondral printing. For this work, a multi-head tissue/organ building system (MtoBS), which was particularly designed to dispense thermoplastic biomaterial and hydrogel having completely different rheology properties, was newly developed and used to bioprint osteochondral tissue. It was confirmed that the line width, position and volume control of PCL and alginate solutions were adjustable in the MtoBS. Most importantly, dual cell-laden 3D constructs consisting of osteoblasts and chondrocytes were successfully fabricated. Further, the separately dispensed osteoblasts and chondrocytes not only retained their initial position and viability, but also proliferated up to 7 days after being dispensed.

  1. Structural and mechanical design of tissue interfaces in the giant reed Arundo donax.

    Science.gov (United States)

    Rüggeberg, Markus; Burgert, Ingo; Speck, Thomas

    2010-03-06

    The culms of the giant reed Arundo donax represent slender tube-like structures. Several nodes along the culm, a ring of sclerenchymatous fibres in the periphery of the culm wall and numerous isolated vascular bundles enclosed by fibre rings in the culm wall function as stiffening elements. The bundles are embedded in lignified parenchyma. Micromechanical analysis indicated differences in stiffness between the individual tissues of more than one order of magnitude. In case of abrupt transitions in stiffness at the interfaces, stress discontinuities arise under dynamic loads. This eventually leads to critical shear stresses at cell ends, and culm failure may be initiated at these points. Pronounced mechanical differences between individual tissues can be compromised by gradual transitions at their interfaces. Ultrastructural and spectroscopic investigations with high spatial resolution revealed a gradual transition of cell parameters (cell wall area fraction and cell length). However, cell wall parameters (cellulose microfibril angle and lignin content) showed abrupt transitions or remained almost constant across the interfaces between various tissues. The design principles found at the interfaces between tissues in the culm walls of A. donax are discussed as an adaptation strategy to mechanical loads at different levels of hierarchy.

  2. Relationship between tissue stiffness and degree of mineralization of developing trabecular bone

    NARCIS (Netherlands)

    Mulder, L.; Koolstra, J.H.; den Toonder, J.M.J.; van Eijden, T.M.G.J.

    2008-01-01

    It is unknown how the degree of mineralization of bone in individual trabecular elements is related to the corresponding mechanical properties at the bone tissue level. Understanding this relationship is important for the comprehension of the mechanical behavior of bone at both the apparent and

  3. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms

    Directory of Open Access Journals (Sweden)

    Katherine A. Sharp

    2016-03-01

    Full Text Available Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing and the posterior abdomen (P-abd. We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.

  4. Numerical simulation of mechanical behavior of composite materials

    CERN Document Server

    Oller, Sergio

    2014-01-01

    An original mechanical formulation to treat nonlinear orthotropic behavior of composite materials is presented in this book. It also examines different formulations that allow us to evaluate the behavior of composite materials through the composition of its components, obtaining a new composite material. Also two multiple scale homogenization methods are given, one based on the analytical study of the cells (Ad-hoc homogenization), and other one, more general based on the finite element procedure applied on the macro scale (upper-scale) and in the micro scale (sub-scale). A very general formulation to simulate the mechanical behavior for traditional composite structures (plywood, reinforced concrete, masonry, etc.), as well as the new composite materials reinforced with long and short fibers, nanotubes, etc., are also shown in this work. Typical phenomena occurring in composite materials are also described in this work, including fiber-matrix debounding, local buckling of fibers and its coupling with the over...

  5. Image-based quantification of fiber alignment within electrospun tissue engineering scaffolds is related to mechanical anisotropy.

    Science.gov (United States)

    Fee, Timothy; Downs, Crawford; Eberhardt, Alan; Zhou, Yong; Berry, Joel

    2016-07-01

    It is well documented that electrospun tissue engineering scaffolds can be fabricated with variable degrees of fiber alignment to produce scaffolds with anisotropic mechanical properties. Several attempts have been made to quantify the degree of fiber alignment within an electrospun scaffold using image-based methods. However, these methods are limited by the inability to produce a quantitative measure of alignment that can be used to make comparisons across publications. Therefore, we have developed a new approach to quantifying the alignment present within a scaffold from scanning electron microscopic (SEM) images. The alignment is determined by using the Sobel approximation of the image gradient to determine the distribution of gradient angles with an image. This data was fit to a Von Mises distribution to find the dispersion parameter κ, which was used as a quantitative measure of fiber alignment. We fabricated four groups of electrospun polycaprolactone (PCL) + Gelatin scaffolds with alignments ranging from κ = 1.9 (aligned) to κ = 0.25 (random) and tested our alignment quantification method on these scaffolds. It was found that our alignment quantification method could distinguish between scaffolds of different alignments more accurately than two other published methods. Additionally, the alignment parameter κ was found to be a good predictor the mechanical anisotropy of our electrospun scaffolds. The ability to quantify fiber alignment within and make direct comparisons of scaffold fiber alignment across publications can reduce ambiguity between published results where cells are cultured on "highly aligned" fibrous scaffolds. This could have important implications for characterizing mechanics and cellular behavior on aligned tissue engineering scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1680-1686, 2016. © 2016 Wiley Periodicals, Inc.

  6. Mechanical Stretching Promotes Skin Tissue Regeneration via Enhancing Mesenchymal Stem Cell Homing and Transdifferentiation.

    Science.gov (United States)

    Liang, Xiao; Huang, Xiaolu; Zhou, Yiwen; Jin, Rui; Li, Qingfeng

    2016-07-01

    Skin tissue expansion is a clinical procedure for skin regeneration to reconstruct cutaneous defects that can be accompanied by severe complications. The transplantation of mesenchymal stem cells (MSCs) has been proven effective in promoting skin expansion and helping to ameliorate complications; however, systematic understanding of its mechanism remains unclear. MSCs from luciferase-Tg Lewis rats were intravenously transplanted into a rat tissue expansion model to identify homing and transdifferentiation. To clarify underlying mechanisms, a systematic approach was used to identify the differentially expressed genes between mechanically stretched human MSCs and controls. The biological significance of these changes was analyzed through bioinformatic methods. We further investigated genes and pathways of interest to disclose their potential role in mechanical stretching-induced skin regeneration. Cross sections of skin samples from the expanded group showed significantly more luciferase(+) and stromal cell-derived factor 1α (SDF-1α)(+), luciferase(+)keratin 14(+), and luciferase(+)CD31(+) cells than the control group, indicating MSC transdifferentiation into epidermal basal cells and endothelial cells after SDF-1α-mediated homing. Microarray analysis suggested upregulation of genes related to hypoxia, vascularization, and cell proliferation in the stretched human MSCs. Further investigation showed that the homing of MSCs was blocked by short interfering RNA targeted against matrix metalloproteinase 2, and that mechanical stretching-induced vascular endothelial growth factor A upregulation was related to the Janus kinase/signal transducer and activator of transcription (Jak-STAT) and Wnt signaling pathways. This study determines that mechanical stretching might promote skin regeneration by upregulating MSC expression of genes related to hypoxia, vascularization, and cell proliferation; enhancing transplanted MSC homing to the expanded skin; and

  7. CELLULAR CONTROL OF CONNECTIVE TISSUE MATRIX TENSION†

    Science.gov (United States)

    Langevin, Helene M.; Nedergaard, Maiken; Howe, Alan

    2013-01-01

    The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function and cancer. PMID:23444198

  8. Cellular control of connective tissue matrix tension.

    Science.gov (United States)

    Langevin, Helene M; Nedergaard, Maiken; Howe, Alan K

    2013-08-01

    The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function, and cancer. Copyright © 2013 Wiley Periodicals, Inc.

  9. Comparison of osmotic swelling influences on meniscal fibrocartilage and articular cartilage tissue mechanics in compression and shear.

    Science.gov (United States)

    Nguyen, An M; Levenston, Marc E

    2012-01-01

    Although the contribution of the circumferential collagen bundles to the anisotropic tensile stiffness of meniscal tissue has been well described, the implications of interactions between tissue components for other mechanical properties have not been as widely examined. This study compared the effects of the proteoglycan-associated osmotic swelling stress on meniscal fibrocartilage and articular cartilage (AC) mechanics by manipulating the osmotic environment and tissue compressive offset. Cylindrical samples were obtained from the menisci and AC of bovine stifles, equilibrated in phosphate-buffered saline solutions ranging from 0.1× to 10×, and tested in oscillatory torsional shear and unconfined compression. Biochemical analysis indicated that treatments and testing did not substantially alter tissue composition. Mechanical testing revealed tissue-specific responses to both increasing compressive offset and decreasing bath salinity. Most notably, reduced salinity dramatically increased the shear modulus of both axially and circumferentially oriented meniscal tissue explants to a much greater extent than for cartilage samples. Combined with previous studies, these findings suggest that meniscal proteoglycans have a distinct structural role, stabilizing, and stiffening the matrix surrounding the primary circumferential collagen bundles. Copyright © 2011 Orthopaedic Research Society.

  10. Fracture mechanics of collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, Rene B; Mulder, Hindrik; Kovanen, Vuokko

    2013-01-01

    Tendons are important load-bearing structures, which are frequently injured in both sports and work. Type I collagen fibrils are the primary components of tendons and carry most of the mechanical loads experienced by the tissue, however, knowledge of how load is transmitted between and within...... fibrils is limited. The presence of covalent enzymatic cross-links between collagen molecules is an important factor that has been shown to influence mechanical behavior of the tendons. To improve our understanding of how molecular bonds translate into tendon mechanics, we used an atomic force microscopy...... technique to measure the mechanical behavior of individual collagen fibrils loaded to failure. Fibrils from human patellar tendons, rat-tail tendons (RTTs), NaBH₄ reduced RTTs, and tail tendons of Zucker diabetic fat rats were tested. We found a characteristic three-phase stress-strain behavior in the human...

  11. A Novel High Mechanical Property PLGA Composite Matrix Loaded with Nanodiamond-Phospholipid Compound for Bone Tissue Engineering.

    Science.gov (United States)

    Zhang, Fan; Song, Qingxin; Huang, Xuan; Li, Fengning; Wang, Kun; Tang, Yixing; Hou, Canglong; Shen, Hongxing

    2016-01-20

    A potential bone tissue engineering material was produced from a biodegradable polymer, poly(lactic-co-glycolic acid) (PLGA), loaded with nanodiamond phospholipid compound (NDPC) via physical mixing. On the basis of hydrophobic effects and physical absorption, we modified the original hydrophilic surface of the nanodiamond (NDs) with phospholipids to be amphipathic, forming a typical core-shell structure. The ND-phospholipid weight ratio was optimized to generate sample NDPC50 (i.e., ND-phospholipid weight ratio of 100:50), and NDPC50 was able to be dispersed in a PLGA matrix at up to 20 wt %. Compared to a pure PLGA matrix, the introduction of 10 wt % of NDPC (i.e., sample NDPC50-PF10) resulted in a significant improvement in the material's mechanical and surface properties, including a decrease in the water contact angle from 80 to 55°, an approximately 100% increase in the Young's modulus, and an approximate 550% increase in hardness, thus closely resembling that of human cortical bone. As a novel matrix supporting human osteoblast (hFOB1.19) growth, NDPC50-PFs with different amounts of NDPC50 demonstrated no negative effects on cell proliferation and osteogenic differentiation. Furthermore, we focused on the behaviors of NDPC-PFs implanted into mice for 8 weeks and found that NDPC-PFs induced acceptable immune response and can reduce the rapid biodegradation of PLGA matrix. Our results represent the first in vivo research on ND (or NDPC) as nanofillers in a polymer matrix for bone tissue engineering. The high mechanical properties, good in vitro and in vivo biocompatibility, and increased mineralization capability suggest that biodegradable PLGA composite matrices loaded with NDPC may potentially be useful for a variety of biomedical applications, especially bone tissue engineering.

  12. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.

    Science.gov (United States)

    Backman, Daniel E; LeSavage, Bauer L; Shah, Shivem B; Wong, Joyce Y

    2017-06-01

    In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fundamental Electronic Structure Characteristics and Mechanical Behavior of Aerospace Materials

    National Research Council Canada - National Science Library

    Freeman, Arthur J; Kontsevoi, Oleg Y; Gornostyrev, Yuri N; Medvedeva, Nadezhda I

    2008-01-01

    To fulfill the great potential of intermetallic alloys for high temperature structural applications, it is essential to understand the mechanisms controlling their mechanical behavior on the microscopic level...

  14. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T

    2013-04-01

    The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Evaluation of ionizing radiation effects in bone tissue by FTIR spectroscopy and dynamic mechanical analysis

    International Nuclear Information System (INIS)

    Veloso, Marcelo N.; Santin, Stefany P.; Benetti, Carolina; Pereira, Thiago M.; Mattor, Monica B.; Politano, Rodolfo; Zezell, Denise M.

    2013-01-01

    In many medical practices the bone tissue exposure to ionizing radiation is necessary. However, this radiation can interact with bone tissue in a molecular level, causing chemical and mechanical changes related with the dose used. The aim of this study was verify the changes promoted by different doses of ionizing radiation in bone tissue using spectroscopy technique of Attenuate Total Reflectance - Fourier Transforms Infrared (ATR-FTIR) and dynamic mechanical analysis. Samples of bovine bone were irradiated using irradiator of Cobalt-60 with five different doses between 0.01 kGy, 0.1 kGy,1 kGy, 15 kGy and 75 kGy. To study the effects of ionizing irradiation on bone chemical structure the sub-bands of amide I and the crystallinity index were studied. The mechanical changes were evaluated using the elastic modulus and the damping value. To verify if the chemical changes and the bone mechanic characteristics were related, it was made one study about the correlation between the crystallinity index and the elastic modulus, between the sub-bands ratio and the damping value and between the sub-bands ratio and the elastic modulus. It was possible to evaluate the effects of different dose of ionizing radiation in bone tissue. With ATR-FTIR spectroscopy analysis, it was possible observe changes in the organic components and in the hydroxyapatite crystals organization. Changes were also observed in the mechanical properties. A good correlation between the techniques was found, however, it was not possible to establish a linear or exponential dependence between dose and effect. (author)

  16. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jahnavi, S [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Saravanan, U [Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Arthi, N [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Bhuvaneshwar, G S [Department of Engineering Design, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Kumary, T V [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Rajan, S [Madras Medical Mission, Institute of Cardio-Vascular Diseases, Mogappair, Chennai, Tamil Nadu 600037 (India); Verma, R S, E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India)

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44{sup +}, αSMA{sup +}, Vimentin{sup +} and CD105{sup −} human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. - Highlights: • We report detailed biological and mechanical investigations of a Bio-Hybrid scaffold. • Optimized polymer thickness yielded desired biological and mechanical properties. • Bio-Hybrid scaffold revealed hVIC proliferation with dense ECM deposition. • Biaxial testing indicated that Bio-Hybrid scaffolds are mechanically stronger than native valves. • Bio-Hybrid scaffold is a promising material for autologous valve tissue engineering.

  17. Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue

    Science.gov (United States)

    Liu, Yanxin; Thomopoulos, Stavros; Chen, Changqing; Birman, Victor; Buehler, Markus J.; Genin, Guy M.

    2014-01-01

    Progressive stiffening of collagen tissue by bioapatite mineral is important physiologically, but the details of this stiffening are uncertain. Unresolved questions about the details of the accommodation of bioapatite within and upon collagen's hierarchical structure have posed a central hurdle, but recent microscopy data resolve several major questions. These data suggest how collagen accommodates bioapatite at the lowest relevant hierarchical level (collagen fibrils), and suggest several possibilities for the progressive accommodation of bioapatite at higher hierarchical length scales (fibres and tissue). We developed approximations for the stiffening of collagen across spatial hierarchies based upon these data, and connected models across hierarchies levels to estimate mineralization-dependent tissue-level mechanics. In the five possible sequences of mineralization studied, percolation of the bioapatite phase proved to be an important determinant of the degree of stiffening by bioapatite. The models were applied to study one important instance of partially mineralized tissue, which occurs at the attachment of tendon to bone. All sequences of mineralization considered reproduced experimental observations of a region of tissue between tendon and bone that is more compliant than either tendon or bone, but the size and nature of this region depended strongly upon the sequence of mineralization. These models and observations have implications for engineered tissue scaffolds at the attachment of tendon to bone, bone development and graded biomimetic attachment of dissimilar hierarchical materials in general. PMID:24352669

  18. Mechanical characterization and non-linear elastic modeling of poly(glycerol sebacate) for soft tissue engineering.

    Science.gov (United States)

    Mitsak, Anna G; Dunn, Andrew M; Hollister, Scott J

    2012-07-01

    Scaffold tissue engineering strategies for repairing and replacing soft tissue aim to improve reconstructive and corrective surgical techniques whose limitations include suboptimal mechanical properties, fibrous capsule formation and volume loss due to graft resorption. An effective tissue engineering strategy requires a scaffolding material with low elastic modulus that behaves similarly to soft tissue, which has been characterized as a nonlinear elastic material. The material must also have the ability to be manufactured into specifically designed architectures. Poly(glycerol sebacate) (PGS) is a thermoset elastomer that meets these criteria. We hypothesize that the mechanical properties of PGS can be modulated through curing condition and architecture to produce materials with a range of stiffnesses. To evaluate this hypothesis, we manufactured PGS constructs cured under various conditions and having one of two architectures (solid or porous). Specimens were then tensile tested according to ASTM standards and the data were modeled using a nonlinear elastic Neo-Hookean model. Architecture and testing conditions, including elongation rate and wet versus dry conditions, affected the mechanical properties. Increasing curing time and temperature led to increased tangent modulus and decreased maximum strain for solid constructs. Porous constructs had lower nonlinear elastic properties, as did constructs of both architectures tested under simulated physiological conditions (wetted at 37 °C). Both solid and porous PGS specimens could be modeled well with the Neo-Hookean model. Future studies include comparing PGS properties to other biological tissue types and designing and characterizing PGS scaffolds for regenerating these tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The Effect of Nanoparticles Percentage on Mechanical Behavior of Silica-Epoxy Nanocomposites

    International Nuclear Information System (INIS)

    Islam, M.S.; Masoodi, R.; Rostami, H.

    2013-01-01

    Silica-epoxy nanocomposites are very common among nanocomposites, which makes them very important. Several researchers have studied the effect of nanoparticle’s size, shape, and loading on mechanical behavior of silica-epoxy nanocomposites. This paper reviews the most important research done on the effect of nanoparticle loading on mechanical properties of silica-epoxy nanocomposites. While the main focus is the tensile behavior of nanocomposite, the compressive behavior and flexural behavior were also reviewed. Finally, some of the published experimental data were combined in the graphs, using dimensionless parameters. Later, the best fitted curves were used to derive some empirical formulas for mechanical properties of silica-epoxy nanocomposites as functions of weight or volume fraction of nanoparticles.

  20. Genipin crosslinker releasing sutures for improving the mechanical/repair strength of damaged connective tissue.

    Science.gov (United States)

    Sundararaj, Sharath; Slusarewicz, Paul; Brown, Matt; Hedman, Thomas

    2017-11-01

    The most common mode of surgical repair of ruptured tendons and ligaments involves the use of sutures for reattachment. However, there is a high incidence of rerupture and repair failure due to pulling out of the suture material from the damaged connective tissue. The main goal of this research was to achieve a localized delivery of crosslinking agent genipin (GP) from rapid-release biodegradable coatings on sutures, for strengthening the repair of ruptured connective tissue. Our hypothesis is that GP released from the suture coating will lead to exogenous crosslinking of native connective tissue resulting in beneficial effects on clinically relevant mechanical parameters such as tear resistance, tissue strength, and energy required to rupture the tissue (toughness). Sutures were successfully coated with a biodegradable polymer layer loaded with the crosslinking agent genipin, without compromising the mechanical properties of the suture. The rapid-release of genipin was achieved under both in vitro and ex vivo conditions. Exogenous crosslinking using these genipin releasing sutures was demonstrated using equine tendons. The tendons treated with genipin releasing sutures showed significant improvement in failure load, energy required for pull-out failure, and stiffness. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2199-2205, 2017. © 2016 Wiley Periodicals, Inc.

  1. Epigenetic mechanisms in experience-driven memory formation and behavior

    Science.gov (United States)

    Puckett, Rosemary E; Lubin, Farah D

    2011-01-01

    Epigenetic mechanisms have long been associated with the regulation of gene-expression changes accompanying normal neuronal development and cellular differentiation; however, until recently these mechanisms were believed to be statically quiet in the adult brain. Behavioral neuroscientists have now begun to investigate these epigenetic mechanisms as potential regulators of gene-transcription changes in the CNS subserving synaptic plasticity and long-term memory (LTM) formation. Experimental evidence from learning and memory animal models has demonstrated that active chromatin remodeling occurs in terminally differentiated postmitotic neurons, suggesting that these molecular processes are indeed intimately involved in several stages of LTM formation, including consolidation, reconsolidation and extinction. Such chromatin modifications include the phosphorylation, acetylation and methylation of histone proteins and the methylation of associated DNA to subsequently affect transcriptional gene readout triggered by learning. The present article examines how such learning-induced epigenetic changes contribute to LTM formation and influence behavior. In particular, this article is a survey of the specific epigenetic mechanisms that have been demonstrated to regulate gene expression for both transcription factors and growth factors in the CNS, which are critical for LTM formation and storage, as well as how aberrant epigenetic processing can contribute to psychological states such as schizophrenia and drug addiction. Together, the findings highlighted in this article support a novel role for epigenetic mechanisms in the adult CNS serving as potential key molecular regulators of gene-transcription changes necessary for LTM formation and adult behavior. PMID:22126252

  2. A continuum mechanics constitutive framework for transverse isotropic soft tissues

    Science.gov (United States)

    Garcia-Gonzalez, D.; Jérusalem, A.; Garzon-Hernandez, S.; Zaera, R.; Arias, A.

    2018-03-01

    In this work, a continuum constitutive framework for the mechanical modelling of soft tissues that incorporates strain rate and temperature dependencies as well as the transverse isotropy arising from fibres embedded into a soft matrix is developed. The constitutive formulation is based on a Helmholtz free energy function decoupled into the contribution of a viscous-hyperelastic matrix and the contribution of fibres introducing dispersion dependent transverse isotropy. The proposed framework considers finite deformation kinematics, is thermodynamically consistent and allows for the particularisation of the energy potentials and flow equations of each constitutive branch. In this regard, the approach developed herein provides the basis on which specific constitutive models can be potentially formulated for a wide variety of soft tissues. To illustrate this versatility, the constitutive framework is particularised here for animal and human white matter and skin, for which constitutive models are provided. In both cases, different energy functions are considered: Neo-Hookean, Gent and Ogden. Finally, the ability of the approach at capturing the experimental behaviour of the two soft tissues is confirmed.

  3. Thermo-hydro-mechanical behavior of argillite

    International Nuclear Information System (INIS)

    Tran, Duy Thuong; Dormieux, Luc; Lemarchand, Eric; Skoczylas, Frederic

    2012-01-01

    Document available in extended abstract form only. Argillite is a very low permeability geo-material widely encountered: that is the reason why it is an excellent candidate for the storage of long-term nuclear waste depositories. This study focuses on argillites from Meuse-Haute-Marne (East of France) which forms a geological layer located approximately 400 m and 500 m depth. We know that this material is made up of a mixture of shale, quartz and calcite phases. The multi-scale definition of this material suggests the derivation of micro-mechanics reasonings in order to better account for the mechanisms occurring at the local (nano and micro-) scale and controlling the macroscopic mechanical behavior. In this work, up-scaling techniques are used in the context of thermo-hydro-mechanical couplings. The first step consists in clarifying the morphology of the microstructure at the relevant scales (particles arrangement, pore size distribution) and identifying the mechanisms that take place at those scales. These local informations provide the input data of micro-mechanics based models. Schematic picture of the microstructure where the argillite material behaves as a dual-porosity, with liquid in both micro-pores and interlayer space in between clay solid platelets, seems a reasonable starting point for this micro-mechanical modelling of clay. This allows us to link the physical phenomena (swelling clays) and the mechanical properties (elastic moduli, Poisson's ratio). At the pressure applied by the fluid on the solid platelets appears as the sum of the uniform pressure in the micro-pores and of a swelling overpressure depending on the distance between platelets and on the ion concentration in the micro-pores. The latter is proved to be responsible for a local elastic modulus of physical origin. This additional elastic component may strongly be influenced by both relative humidity and temperature. A first contribution of this study is to analysing this local elastic

  4. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering.

    Science.gov (United States)

    Fahy, Niamh; Alini, Mauro; Stoddart, Martin J

    2018-01-01

    Articular cartilage is a load-bearing tissue playing a crucial mechanical role in diarthrodial joints, facilitating joint articulation, and minimizing wear. The significance of biomechanical stimuli in the development of cartilage and maintenance of chondrocyte phenotype in adult tissues has been well documented. Furthermore, dysregulated loading is associated with cartilage pathology highlighting the importance of mechanical cues in cartilage homeostasis. The repair of damaged articular cartilage resulting from trauma or degenerative joint disease poses a major challenge due to a low intrinsic capacity of cartilage for self-renewal, attributable to its avascular nature. Bone marrow-derived mesenchymal stem cells (MSCs) are considered a promising cell type for cartilage replacement strategies due to their chondrogenic differentiation potential. Chondrogenesis of MSCs is influenced not only by biological factors but also by the environment itself, and various efforts to date have focused on harnessing biomechanics to enhance chondrogenic differentiation of MSCs. Furthermore, recapitulating mechanical cues associated with cartilage development and homeostasis in vivo, may facilitate the development of a cellular phenotype resembling native articular cartilage. The goal of this review is to summarize current literature examining the effect of mechanical cues on cartilage homeostasis, disease, and MSC chondrogenesis. The role of biological factors produced by MSCs in response to mechanical loading will also be examined. An in-depth understanding of the impact of mechanical stimulation on the chondrogenic differentiation of MSCs in terms of endogenous bioactive factor production and signaling pathways involved, may identify therapeutic targets and facilitate the development of more robust strategies for cartilage replacement using MSCs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:52-63, 2018. © 2017 Orthopaedic Research

  5. Fracture mechanics model of stone comminution in ESWL and implications for tissue damage

    Science.gov (United States)

    Lokhandwalla, Murtuza; Sturtevant, Bradford

    2000-07-01

    Focused shock waves administered during extracorporeal shock-wave lithotripsy (ESWL) cause stone fragmentation. The process of stone fragmentation is described in terms of a dynamic fracture process. As is characteristic of all brittle materials, fragmentation requires nucleation, growth and coalescence of flaws, caused by a tensile or shear stress. The mechanisms, operative in the stone, inducing these stresses have been identified as spall and compression-induced tensile microcracks, nucleating at pre-existing flaws. These mechanisms are driven by the lithotripter-generated shock wave and possibly also by cavitation effects in the surrounding fluid. In this paper, the spall mechanism has been analysed, using a cohesive-zone model for the material. The influence of shock wave parameters, and physical properties of stone, on stone comminution is described. The analysis suggests a potential means to exploit the difference between the stone and tissue physical properties, so as to make stone comminution more effective, without increasing tissue damage.

  6. Chitosan/bentonite bionanocomposites: morphology and mechanical behavior

    International Nuclear Information System (INIS)

    Braga, C.R.C.; Melo, F.M.A. de; Vitorino, I.F.; Fook, M.V.L.; Silva, S.M.L.

    2010-01-01

    This study chitosan/bentonite bionanocomposite films were prepared by solution intercalation process, seeking to investigate the effect of the chitosan/bentonite ratio (5/1 e 10/1) on the morphology and mechanical behavior of the bionanocomposites. It was used as nanophase, Argel sodium bentonite (AN), was provided by Bentonit Uniao Nordeste-BUN (Campina Grande, Brazil) and as biopolymer matrix the chitosan of low molecular weight and degree of deacetylation of 86,7% was supplied by Polymar (Fortaleza, Brazil). The bionanocomposites was investigated by X-ray diffraction and tensile properties. According to the results, the morphology and the mechanical behavior of the bionanocomposite was affected by the ratio of chitosan/bentonite. The chitosan/bentonite ratio (5/1 and 10/1) indicated the formation of an intercalated nanostructure and of the predominantly exfoliated nanostructure, respectively. And the considerable increases in the resistance to the traction were observed mainly for the bionanocomposite with predominantly exfoliated morphology. (author)

  7. The mechanics of soft biological composites.

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thao D. (Sandia National Laboratories, Livermore, CA); Grazier, John Mark; Boyce, Brad Lee; Jones, Reese E. (Sandia National Laboratories, Livermore, CA)

    2007-10-01

    Biological tissues are uniquely structured materials with technologically appealing properties. Soft tissues such as skin, are constructed from a composite of strong fibrils and fluid-like matrix components. This was the first coordinated experimental/modeling project at Sandia or in the open literature to consider the mechanics of micromechanically-based anisotropy and viscoelasticity of soft biological tissues. We have exploited and applied Sandia's expertise in experimentation and mechanics modeling to better elucidate the behavior of collagen fibril-reinforced soft tissues. The purpose of this project was to provide a detailed understanding of the deformation of ocular tissues, specifically the highly structured skin-like tissue in the cornea. This discovery improved our knowledge of soft/complex materials testing and modeling. It also provided insight into the way that cornea tissue is bio-engineered such that under physiologically-relevant conditions it has a unique set of properties which enhance functionality. These results also provide insight into how non-physiologic loading conditions, such as corrective surgeries, may push the cornea outside of its natural design window, resulting in unexpected non-linear responses. Furthermore, this project created a clearer understanding of the mechanics of soft tissues that could lead to bio-inspired materials, such as highly supple and impact resistant body armor, and improve our design of human-machine interfaces, such as micro-electrical-mechanical (MEMS) based prosthetics.

  8. 2012 THIN FILM AND SMALL SCALE MECHANICAL BEHAVIOR GRS/GRC, JULY 21-27, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Balk, Thomas

    2012-07-27

    The mechanical behavior of materials with small dimension(s) is of both fundamental scientific interest and technological relevance. The size effects and novel properties that arise from changes in deformation mechanism have important implications for modern technologies such as thin films for microelectronics and MEMS devices, thermal and tribological coatings, materials for energy production and advanced batteries, etc. The overarching goal of the 2012 Gordon Research Conference on "Thin Film and Small Scale Mechanical Behavior" is to discuss recent studies and future opportunities regarding elastic, plastic and time-dependent deformation, as well as degradation and failure mechanisms such as fatigue, fracture and wear. Specific topics of interest include, but are not limited to: fundamental studies of physical mechanisms governing small-scale mechanical behavior; advances in test techniques for materials at small length scales, such as nanotribology and high-temperature nanoindentation; in-situ mechanical testing and characterization; nanomechanics of battery materials, such as swelling-induced phenomena and chemomechanical behavior; flexible electronics; mechanical properties of graphene and carbon-based materials; mechanical behavior of small-scale biological structures and biomimetic materials. Both experimental and computational work will be included in the oral and poster presentations at this Conference.

  9. Fatigue and quasi‐static mechanical behavior of bio‐degradable porous biomaterials based on magnesium alloys

    Science.gov (United States)

    Ahmadi, S. M.; Lietaert, K.; Tümer, N.; Li, Y.; Amin Yavari, S.; Zadpoor, A. A.

    2018-01-01

    Abstract Magnesium and its alloys have the intrinsic capability of degrading over time in vivo without leaving toxic degradation products. They are therefore suitable for use as biodegradable scaffolds that are replaced by the regenerated tissues. One of the main concerns for such applications, particularly in load‐bearing areas, is the sufficient mechanical integrity of the scaffold before sufficient volumes of de novo tissue is generated. In the majority of the previous studies on the effects of biodegradation on the mechanical properties of porous biomaterials, the change in the elastic modulus has been studied. In this study, variations in the static and fatigue mechanical behavior of porous structures made of two different Mg alloys (AZ63 and M2) over different dissolution times ( 6, 12, and 24 h) have been investigated. The results showed an increase in the mechanical properties obtained from stress–strain curve (elastic modulus, yield stress, plateau stress, and energy absorption) after 6–12 h and a sharp decrease after 24 h. The initial increase in the mechanical properties may be attributed to the accumulation of corrosion products in the pores of the porous structure before degradation has considerably proceeded. The effects of mineral deposition was more pronounced for the elastic modulus as compared to other mechanical properties. That may be due to insufficient integration of the deposited particles in the structure of the magnesium alloys. While the bonding of the parts being combined in a composite‐like material is of great importance in determining its yield stress, the effects of bonding strength of both parts is much lower in determining the elastic modulus. The results of the current study also showed that the dissolution rates of the studied Mg alloys were too high for direct use in human body. © 2018 Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1798

  10. Fatigue and quasi-static mechanical behavior of bio-degradable porous biomaterials based on magnesium alloys.

    Science.gov (United States)

    Hedayati, R; Ahmadi, S M; Lietaert, K; Tümer, N; Li, Y; Amin Yavari, S; Zadpoor, A A

    2018-07-01

    Magnesium and its alloys have the intrinsic capability of degrading over time in vivo without leaving toxic degradation products. They are therefore suitable for use as biodegradable scaffolds that are replaced by the regenerated tissues. One of the main concerns for such applications, particularly in load-bearing areas, is the sufficient mechanical integrity of the scaffold before sufficient volumes of de novo tissue is generated. In the majority of the previous studies on the effects of biodegradation on the mechanical properties of porous biomaterials, the change in the elastic modulus has been studied. In this study, variations in the static and fatigue mechanical behavior of porous structures made of two different Mg alloys (AZ63 and M2) over different dissolution times ( 6, 12, and 24 h) have been investigated. The results showed an increase in the mechanical properties obtained from stress-strain curve (elastic modulus, yield stress, plateau stress, and energy absorption) after 6-12 h and a sharp decrease after 24 h. The initial increase in the mechanical properties may be attributed to the accumulation of corrosion products in the pores of the porous structure before degradation has considerably proceeded. The effects of mineral deposition was more pronounced for the elastic modulus as compared to other mechanical properties. That may be due to insufficient integration of the deposited particles in the structure of the magnesium alloys. While the bonding of the parts being combined in a composite-like material is of great importance in determining its yield stress, the effects of bonding strength of both parts is much lower in determining the elastic modulus. The results of the current study also showed that the dissolution rates of the studied Mg alloys were too high for direct use in human body. © 2018 Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1798-1811, 2018. © 2018

  11. Mechanical behavior of cells within a cell-based model of wheat leaf growth

    Directory of Open Access Journals (Sweden)

    Ulyana Zubairova

    2016-12-01

    Full Text Available Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account. The model allows for fitting of the visible cell length using the experimental cell length distribution along the longitudinal axis of a wheat leaf epidermis. Additionally, it describes changes in turgor and osmotic pressures for each cell in the growing tissue. Our numerical experiments show that the pressures in the cell change over the cell cycle, and in symplastically growing tissue, they vary from cell to cell and strongly depend on the leaf growing zone to which the cells belong. Therefore, we believe that the mechanical signals generated by pressures are important to consider in simulations of tissue growth as possible targets for molecular genetic regulators of individual cell growth.

  12. Application of an object-oriented programming paradigm in three-dimensional computer modeling of mechanically active gastrointestinal tissues.

    Science.gov (United States)

    Rashev, P Z; Mintchev, M P; Bowes, K L

    2000-09-01

    The aim of this study was to develop a novel three-dimensional (3-D) object-oriented modeling approach incorporating knowledge of the anatomy, electrophysiology, and mechanics of externally stimulated excitable gastrointestinal (GI) tissues and emphasizing the "stimulus-response" principle of extracting the modeling parameters. The modeling method used clusters of class hierarchies representing GI tissues from three perspectives: 1) anatomical; 2) electrophysiological; and 3) mechanical. We elaborated on the first four phases of the object-oriented system development life-cycle: 1) analysis; 2) design; 3) implementation; and 4) testing. Generalized cylinders were used for the implementation of 3-D tissue objects modeling the cecum, the descending colon, and the colonic circular smooth muscle tissue. The model was tested using external neural electrical tissue excitation of the descending colon with virtual implanted electrodes and the stimulating current density distributions over the modeled surfaces were calculated. Finally, the tissue deformations invoked by electrical stimulation were estimated and represented by a mesh-surface visualization technique.

  13. Applying the Health Belief Model and an Integrated Behavioral Model to Promote Breast Tissue Donation Among Asian Americans.

    Science.gov (United States)

    Shafer, Autumn; Kaufhold, Kelly; Luo, Yunjuan

    2018-07-01

    An important part in the effort to prevent, treat, and cure breast cancer is research done with healthy breast tissue. The Susan G. Komen for the Cure Tissue Bank at Indiana University Simon Cancer Center (KTB) encourages women to donate a small amount of healthy breast tissue and then provides that tissue to researchers studying breast cancer. Although KTB has a large donor base, the volume of tissue samples from Asian women is low despite prior marketing efforts to encourage donation among this population. This study builds on prior work promoting breast cancer screenings among Asian women by applying constructs from the Health Belief Model (HBM) and the Integrated Behavioral Model (IBM) to investigate why Asian-American women are less inclined to donate their healthy breast tissue than non-Asian women and how this population may be motivated to donate in the future. A national online survey (N = 1,317) found Asian women had significantly lower perceived severity, some lower perceived benefits, and higher perceived barriers to tissue donation than non-Asian women under HBM and significantly lower injunctive norms supporting breast tissue donation, lower perceived behavioral control, and lower intentions to donate under IBM. This study also compares and discusses similarities and differences among East, Southeast, and South Asian women on these same constructs.

  14. Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern

    KAUST Repository

    Kachalo, Sëma

    2015-05-14

    Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software is publicly

  15. Tracking mechanical and morphological dynamics of regenerating Hydra tissue fragments using a two fingered micro-robotic hand

    Science.gov (United States)

    Veschgini, M.; Gebert, F.; Khangai, N.; Ito, H.; Suzuki, R.; Holstein, T. W.; Mae, Y.; Arai, T.; Tanaka, M.

    2016-03-01

    Regeneration of a tissue fragment of freshwater polyp Hydra is accompanied by significant morphological fluctuations, suggesting the generation of active forces. In this study, we utilized a two fingered micro-robotic hand to gain insights into the mechanics of regenerating tissues. Taking advantage of a high force sensitivity (˜1 nN) of our micro-hand, we non-invasively acquired the bulk elastic modulus of tissues by keeping the strain levels low (ɛ < 0.15). Moreover, by keeping the strain at a constant level, we monitored the stress relaxation of the Hydra tissue and determined both viscous modulus and elastic modulus simultaneously, following a simple Maxwell model. We further investigated the correlation between the frequency of force fluctuation and that of morphological fluctuation by monitoring one "tweezed" tissue and the other "intact" tissue at the same time. The obtained results clearly indicated that the magnitude and periodicity of the changes in force and shape are directly correlated, confirming that our two fingered micro-hand can precisely quantify the mechanics of soft, dynamic tissue during the regeneration and development in a non-invasive manner.

  16. The influence of electric charge transferred during electro-mechanical reshaping on mechanical behavior of cartilage

    Science.gov (United States)

    Protsenko, Dimitry E.; Lim, Amanda; Wu, Edward C.; Manuel, Cyrus; Wong, Brian J. F.

    2011-03-01

    Electromechanical reshaping (EMR) of cartilage has been suggested as an alternative to the classical surgical techniques of modifying the shape of facial cartilages. The method is based on exposure of mechanically deformed cartilaginous tissue to a low level electric field. Electro-chemical reactions within the tissue lead to reduction of internal stress, and establishment of a new equilibrium shape. The same reactions offset the electric charge balance between collagen and proteoglycan matrix and interstitial fluid responsible for maintenance of cartilage mechanical properties. The objective of this study was to investigate correlation between the electric charge transferred during EMR and equilibrium elastic modulus. We used a finite element model based on the triphasic theory of cartilage mechanical properties to study how electric charges transferred in the electro-chemical reactions in cartilage can change its mechanical responses to step displacements in unconfined compression. The concentrations of the ions, the strain field and the fluid and ion velocities within the specimen subject to an applied mechanical deformation were estimated and apparent elastic modulus (the ratio of the equilibrium axial stress to the axial strain) was calculated as a function of transferred charge. The results from numerical calculations showed that the apparent elastic modulus decreases with increase in electric charge transfer. To compare numerical model with experimental observation we measured elastic modulus of cartilage as a function of electric charge transferred in electric circuit during EMR. Good correlation between experimental and theoretical data suggests that electric charge disbalance is responsible for alteration of cartilage mechanical properties.

  17. Autolysis: mechanisms of action in the removal of devitalised tissue.

    Science.gov (United States)

    Atkin, Leanne; Rippon, Mark

    2016-11-10

    Chronic wounds affect millions of people worldwide. In the UK alone, the cost of their treatment is estimated to be between £4.5bn and £5.1bn. The implementation of wound-bed preparation strategies remove the barriers to healing and wound debridement is a key component in preparing the wound bed for wound progression. This article aims to review one of the several debridement methods available to clinicians: autolytic debridement. Autolysis (i.e. autolytic debridement) uses the body's own enzymatic mechanisms to remove devitalised tissue in order to remove the barriers to healing. This review aims to provide clinicians working in wound care with a better understanding of the mechanisms and implications of autolytic debridement.

  18. An optical coherence tomography (OCT)-based air jet indentation system for measuring the mechanical properties of soft tissues

    International Nuclear Information System (INIS)

    Huang, Yan-Ping; Zheng, Yong-Ping; Wang, Shu-Zhe; Huang, Qing-Hua; Chen, Zhong-Ping; He, Yong-Hong

    2009-01-01

    A novel noncontact indentation system with the combination of an air jet and optical coherence tomography (OCT) was presented in this paper for the quantitative measurement of the mechanical properties of soft tissues. The key idea of this method is to use a pressure-controlled air jet as an indenter to compress the soft tissue in a noncontact way and utilize the OCT signals to extract the deformation induced. This indentation system provides measurement and mapping of tissue elasticity for small specimens with high scanning speed. Experiments were performed on 27 silicone tissue-mimicking phantoms with different Young's moduli, which were also measured by uniaxial compression tests. The regression coefficient of the indentation force to the indentation depth (N mm −1 ) was used as an indicator of the stiffness of tissue under air jet indentation. Results showed that the stiffness coefficients measured by the current system correlated well with the corresponding Young's moduli obtained by conventional mechanical testing (r = 0.89, p < 0.001). Preliminary in vivo tests also showed that the change of soft tissue stiffness with and without the contraction of the underlying muscles in the hand could be differentiated by the current measurement. This system may have broad applications in tissue assessment and characterization where alterations of mechanical properties are involved, in particular with the potential of noncontact micro-indentation for tissues

  19. A structure-based extracellular matrix expansion mechanism of fibrous tissue growth.

    Science.gov (United States)

    Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E

    2015-05-20

    Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis.

  20. Numerical and Experimental Investigations on Mechanical Behavior of Composite Corrugated Core

    Science.gov (United States)

    Dayyani, Iman; Ziaei-Rad, Saeed; Salehi, Hamid

    2012-06-01

    Tensile and flexural characteristics of corrugated laminate panels were studied using numerical and analytical methods and compared with experimental data. Prepreg laminates of glass fiber plain woven cloth were hand-laid by use of a heat gun to ease the creation of the panel. The corrugated panels were then manufactured by using a trapezoidal machined aluminium mould. First, a series of simple tension tests were performed on standard samples to evaluate the material characteristics. Next, the corrugated panels were subjected to tensile and three-point bending tests. The force-displacement graphs were recorded. Numerical and analytical solutions were proposed to simulate the mechanical behavior of the panels. In order to model the energy dissipation due to delamination phenomenon observed in tensile tests in all members of corrugated core, plastic behavior was assigned to the whole geometry, not only to the corner regions. Contrary to the literature, it is shown that the three-stage mechanical behavior of composite corrugated core is not confined to aramid reinforced corrugated laminates and can be observed in other types such as fiber glass. The results reveal that the mechanical behavior of the core in tension is sensitive to the variation of core height. In addition, for the first time, the behavior of composite corrugated core was studied and verified in bending. Finally, the analytical and numerical results were validated by comparing them with experimental data. A good degree of correlation was observed which showed the suitability of the finite element model for predicting the mechanical behavior of corrugated laminate panels.

  1. A visco-hyperelastic constitutive model and its application in bovine tongue tissue.

    Science.gov (United States)

    Yousefi, Ali-Akbar Karkhaneh; Nazari, Mohammad Ali; Perrier, Pascal; Panahi, Masoud Shariat; Payan, Yohan

    2018-04-11

    Material properties of the human tongue tissue have a significant role in understanding its function in speech, respiration, suckling, and swallowing. Tongue as a combination of various muscles is surrounded by the mucous membrane and is a complicated architecture to study. As a first step before the quantitative mechanical characterization of human tongue tissues, the passive biomechanical properties in the superior longitudinal muscle (SLM) and the mucous tissues of a bovine tongue have been measured. Since the rate of loading has a sizeable contribution to the resultant stress of soft tissues, the rate dependent behavior of tongue tissues has been investigated via uniaxial tension tests (UTTs). A method to determine the mechanical properties of transversely isotropic tissues using UTTs and inverse finite element (FE) method has been proposed. Assuming the strain energy as a general nonlinear relationship with respect to the stretch and the rate of stretch, two visco-hyperelastic constitutive laws (CLs) have been proposed for isotropic and transversely isotropic soft tissues to model their stress-stretch behavior. Both of them have been implemented in ABAQUS explicit through coding a user-defined material subroutine called VUMAT and the experimental stress-stretch points have been well tracked by the results of FE analyses. It has been demonstrated that the proposed laws make a good description of the viscous nature of tongue tissues. Reliability of the proposed models has been compared with similar nonlinear visco-hyperelastic CLs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Chondroprotective supplementation promotes the mechanical properties of injectable scaffold for human nucleus pulposus tissue engineering.

    Science.gov (United States)

    Foss, Berit L; Maxwell, Thomas W; Deng, Ying

    2014-01-01

    A result of intervertebral disc (IVD) degeneration, the nucleus pulposus (NP) is no longer able to withstand applied load leading to pain and disability. The objective of this study is to fabricate a tissue-engineered injectable scaffold with chondroprotective supplementation in vitro to improve the mechanical properties of a degenerative NP. Tissue-engineered scaffolds were fabricated using different concentrations of alginate and calcium chloride and mechanically evaluated. Fabrication conditions were based on structural and mechanical resemblance to the native NP. Chondroprotective supplementation, glucosamine (GCSN) and chondroitin sulfate (CS), were added to scaffolds at concentrations of 0:0µg/mL (0:0-S), 125:100µg/mL (125:100-S), 250:200µg/mL (250:200-S), and 500:400µg/mL (500:400-S), GCSN and CS, respectively. Scaffolds were used to fabricate tissue-engineered constructs through encapsulation of human nucleus pulposus cells (HNPCs). The tissue-engineered constructs were collected at days 1, 14, and 28 for biochemical and biomechanical evaluations. Confocal microscopy showed HNPC viability and rounded morphology over the 28 day period. MTT analysis resulted in significant increases in cell proliferation for each group. Collagen type II ELISA quantification and compressive aggregate moduli (HA) showed increasing trends for both 250:200-S and the 500:400-S groups on Day 28 with significantly greater HA compared to 0:0-S group. Glycosaminoglycan and water content decreased for all groups. Results indicate the increased mechanical properties of the 250:200-S and the 500:400-S was due to production of a functional matrix. This study demonstrated potential for a chondroprotective supplemented injectable scaffold to restore biomechanical function of a degenerative disc through the production of a mechanically functional matrix. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-07-01

    There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.

  4. Investigating the Mechanical Behavior and Deformation Mechanisms of Ultrafinegrained Metal Films Using Ex-situ and In-situ TEM Techniques

    Science.gov (United States)

    Izadi, Ehsan

    Nanocrystalline (NC) and Ultrafine-grained (UFG) metal films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. These properties, such as very high strength, primarily arise from the change in the underlying deformation mechanisms. Experimental and simulation studies have shown that because of the small grain size, conventional dislocation plasticity is curtailed in these materials and grain boundary mediated mechanisms become more important. Although the deformation behavior and the underlying mechanisms in these materials have been investigated in depth, relatively little attention has been focused on the inhomogeneous nature of their microstructure (particularly originating from the texture of the film) and its influence on their macroscopic response. Furthermore, the rate dependency of mechanical response in NC/UFG metal films with different textures has not been systematically investigated. The objectives of this dissertation are two-fold. The first objective is to carry out a systematic investigation of the mechanical behavior of NC/UFG thin films with different textures under different loading rates. This includes a novel approach to study the effect of texture-induced plastic anisotropy on mechanical behavior of the films. Efforts are made to correlate the behavior of UFG metal films and the underlying deformation mechanisms. The second objective is to understand the deformation mechanisms of UFG aluminum films using in-situ transmission electron microscopy (TEM) experiments with Automated Crystal Orientation Mapping. This technique enables us to investigate grain rotations in UFG Al films and to monitor the microstructural changes in these films during deformation, thereby revealing detailed information about the deformation mechanisms prevalent in UFG metal films.

  5. Transient thermal-mechanical coupling behavior analysis of mechanical seals during start-up operation

    Science.gov (United States)

    Gao, B. C.; Meng, X. K.; Shen, M. X.; Peng, X. D.

    2016-05-01

    A transient thermal-mechanical coupling model for a contacting mechanical seal during start-up has been developed. It takes into consideration the coupling relationship among thermal-mechanical deformation, film thickness, temperature and heat generation. The finite element method and multi-iteration technology are applied to solve the temperature distribution and thermal-mechanical deformation as well as their evolution behavior. Results show that the seal gap transforms from negative coning to positive coning and the contact area of the mechanical seal gradually decreases during start-up. The location of the maximum temperature and maximum contact pressure move from the outer diameter to inside diameter. The heat generation and the friction torque increase sharply at first and then decrease. Meanwhile, the contact force decreases and the fluid film force and leakage rate increase.

  6. Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration.

    Science.gov (United States)

    Alothman, Othman Y; Almajhdi, Fahad N; Fouad, H

    2013-09-24

    The replacement of hard tissues demands biocompatible and sometimes bioactive materials with properties similar to those of bone. Nano-composites made of biocompatible polymers and bioactive inorganic nano particles such as HDPE/HA have attracted attention as permanent bone substitutes due to their excellent mechanical properties and biocompatibility. The HDPE/HA nano-composite is prepared using melt blending at different HA loading ratios. For evaluation of the degradation by radiation, gamma rays of 35 kGy, and 70 kGy were used to irradiate the samples at room temperature in vacuum. The effects of accelerated ageing after gamma irradiation on morphological, mechanical and thermal properties of HDPE/HA nano-composites were measured. In Vitro test results showed that the HDPE and all HDPE/HA nano-composites do not exhibit any cytotoxicity to WISH cell line. The results also indicated that the tensile properties of HDPE/HA nano-composite increased with increasing the HA content except fracture strain decreased. The dynamic mechanical analysis (DMA) results showed that the storage and loss moduli increased with increasing the HA ratio and the testing frequency. Finally, it is remarked that all properties of HDPE/HA is dependent on the irradiation dose and accelerated aging. Based on the experimental results, it is found that the addition of 10%, 20% and 30% HA increases the HDPE stiffness by 23%, 44 and 59% respectively. At the same time, the G' increased from 2.25E11 MPa for neat HDPE to 4.7E11 MPa when 30% HA was added to the polymer matrix. Also, significant improvements in these properties have been observed due to irradiation. Finally, the overall properties of HDPE and its nano-composite properties significantly decreased due to aging and should be taken into consideration in the design of bone substitutes. It is attributed that the developed HDPE/HA nano-composites could be a good alternative material for bone tissue regeneration due to their acceptable

  7. Gustatory tissue injury in man: radiation dose response relationships and mechanisms of taste loss

    International Nuclear Information System (INIS)

    Mossman, K.L.

    1986-01-01

    In this report dose response data for gustatory tissue damage in patients given total radiation doses ranging from 3000 to 6000 cGy are presented. In order to evaluate direct radiation injury to gustatory tissues as a mechanism of taste loss, measurements of damage to specific taste structures in bovine and murine systems following radiation exposure in the clinical range are correlated to taste impairment observed in radiotherapy patients. (author)

  8. Microstructure and Mechanical Behavior of High-Entropy Alloys

    Science.gov (United States)

    Licavoli, Joseph J.; Gao, Michael C.; Sears, John S.; Jablonski, Paul D.; Hawk, Jeffrey A.

    2015-10-01

    High-entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion, usually of equal atomic percent, they have high configurational entropy, and thus, they hold the promise of interesting and useful properties such as enhanced strength and alloy stability. The present study investigates the mechanical behavior, fracture characteristics, and microstructure of two single-phase FCC HEAs CoCrFeNi and CoCrFeNiMn with some detailed attention given to melting, homogenization, and thermo-mechanical processing. Ingots approaching 8 kg in mass were made by vacuum induction melting to avoid the extrinsic factors inherent to small-scale laboratory button samples. A computationally based homogenization heat treatment was given to both alloys in order to eliminate any solidification segregation. The alloys were then fabricated in the usual way (forging, followed by hot rolling) with typical thermo-mechanical processing parameters employed. Transmission electron microscopy was subsequently used to assess the single-phase nature of the alloys prior to mechanical testing. Tensile specimens (ASTM E8) were prepared with tensile mechanical properties obtained from room temperature through 800 °C. Material from the gage section of selected tensile specimens was extracted to document room and elevated temperature deformation within the HEAs. Fracture surfaces were also examined to note fracture failure modes. The tensile behavior and selected tensile properties were compared with results in the literature for similar alloys.

  9. Investigation of the mechanism of soft tissue conduction explains several perplexing auditory phenomena.

    Science.gov (United States)

    Adelman, Cahtia; Chordekar, Shai; Perez, Ronen; Sohmer, Haim

    2014-09-01

    Soft tissue conduction (STC) is a recently expounded mode of auditory stimulation in which the clinical bone vibrator delivers auditory frequency vibratory stimuli to skin sites on the head, neck, and thorax. Investigation of the mechanism of STC stimulation has served as a platform for the elucidation of the mechanics of cochlear activation, in general, and to a better understanding of several perplexing auditory phenomena. This review demonstrates that it is likely that the cochlear hair cells can be directly activated at low sound intensities by the fluid pressures initiated in the cochlea; that the fetus in utero, completely enveloped in amniotic fluid, hears by STC; that a speaker hears his/her own voice by air conduction and by STC; and that pulsatile tinnitus is likely due to pulsatile turbulent blood flow producing fluid pressures that reach the cochlea through the soft tissues.

  10. A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time.

    Science.gov (United States)

    Martínez-Martínez, F; Rupérez-Moreno, M J; Martínez-Sober, M; Solves-Llorens, J A; Lorente, D; Serrano-López, A J; Martínez-Sanchis, S; Monserrat, C; Martín-Guerrero, J D

    2017-11-01

    This work presents a data-driven method to simulate, in real-time, the biomechanical behavior of the breast tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed up multimodal registration algorithms. Ten real breasts were used for this work. Their deformation due to the displacement of two compression plates was simulated off-line using the finite element (FE) method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict in real-time the deformation of the breast tissues during the compression. The models were a decision tree and two tree-based ensemble methods (extremely randomized trees and random forest). Two different experimental setups were designed to validate and study the performance of these models under different conditions. The mean 3D Euclidean distance between nodes predicted by the models and those extracted from the FE simulations was calculated to assess the performance of the models in the validation set. The experiments proved that extremely randomized trees performed better than the other two models. The mean error committed by the three models in the prediction of the nodal displacements was under 2 mm, a threshold usually set for clinical applications. The time needed for breast compression prediction is sufficiently short to allow its use in real-time (<0.2 s). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering

    NARCIS (Netherlands)

    Sengers, B.G.; Oomens, C.W.J.; Baaijens, F.P.T.

    2004-01-01

    A finite-element approach was formulated, aimed at enabling an integrated study of mechanical and biochemical factors that control the functional development of tissue engineered constructs. A nonlinear biphasic displacement-velocity-pressure description was combined with adjective and diffusive

  12. Characterization of tissue biomechanics and mechanical signaling in uterine leiomyoma☆

    Science.gov (United States)

    Norian, John M.; Owen, Carter M.; Taboas, Juan; Korecki, Casey; Tuan, Rocky; Malik, Minnie; Catherino, William H.; Segars, James H.

    2012-01-01

    Leiomyoma are common tumors arising within the uterus that feature excessive deposition of a stiff, disordered extracellular matrix (ECM). Mechanical stress is a critical determinant of excessive ECM deposition and increased mechanical stress has been shown to be involved in tumorigenesis. Here we tested the viscoelastic properties of leiomyoma and characterized dynamic and static mechanical signaling in leiomyoma cells using three approaches, including measurement of active RhoA. We found that the peak strain and pseudo-dynamic modulus of leiomyoma tissue was significantly increased relative to matched myometrium. In addition, leiomyoma cells demonstrated an attenuated response to applied cyclic uniaxial strain and to variation in substrate stiffness, relative to myometrial cells. However, on a flexible pronectin-coated silicone substrate, basal levels and lysophosphatidic acid-stimulated levels of activated RhoA were similar between leiomyoma and myometrial cells. In contrast, leiomyoma cells plated on a rigid polystyrene substrate had elevated levels of active RhoA, compared to myometrial cells. The results indicate that viscoelastic properties of the ECM of leiomyoma contribute significantly to the tumor’s inherent stiffness and that leiomyoma cells have an attenuated sensitivity to mechanical cues. The findings suggest there may be a fundamental alteration in the communication between the external mechanical environment (extracellular forces) and reorganization of the actin cytoskeleton mediated by RhoA in leiomyoma cells. Additional research will be needed to elucidate the mechanism(s) responsible for the attenuated mechanical signaling in leiomyoma cells. PMID:21983114

  13. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    International Nuclear Information System (INIS)

    Olofsson, Jakob; Svensson, Ingvar L

    2012-01-01

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to affect solidification and microstructure formation throughout the component and cause local variations in mechanical behavior as well as residual stresses. Though residual stresses are known to be an important factor in the mechanical behavior of the component, the importance of local mechanical behavior is not well established and the material is typically considered homogeneous throughout the component. This paper deals with the influence of solidification and solid state transformation on microstructure formation and the effect of local microstructure variations on the mechanical behavior of the cast component in service. The current work aims to investigate the coupling between simulation of solidification, microstructure and local variations in mechanical behavior and stress-strain simulation. This is done by performing several simulations of a ductile iron component using a recently developed simulation strategy, a closed chain of simulations for cast components, able to predict and describe the local variations in not only elastic but also plastic behavior throughout the component by using microstructural parameters determined by simulations of microstructural evolution in the component during the casting process. In addition the residual stresses are considered. The results show that the FEM simulation results are significantly affected by including microstructure based mechanical behavior. When the applied load is low and the component is subjected to stress levels

  14. Short bursts of cyclic mechanical compression modulate tissue formation in a 3D hybrid scaffold.

    Science.gov (United States)

    Brunelli, M; Perrault, C M; Lacroix, D

    2017-07-01

    Among the cues affecting cells behaviour, mechanical stimuli are known to have a key role in tissue formation and mineralization of bone cells. While soft scaffolds are better at mimicking the extracellular environment, they cannot withstand the high loads required to be efficient substitutes for bone in vivo. We propose a 3D hybrid scaffold combining the load-bearing capabilities of polycaprolactone (PCL) and the ECM-like chemistry of collagen gel to support the dynamic mechanical differentiation of human embryonic mesodermal progenitor cells (hES-MPs). In this study, hES-MPs were cultured in vitro and a BOSE Bioreactor was employed to induce cells differentiation by mechanical stimulation. From day 6, samples were compressed by applying a 5% strain ramp followed by peak-to-peak 1% strain sinewaves at 1Hz for 15min. Three different conditions were tested: unloaded (U), loaded from day 6 to day 10 (L1) and loaded as L1 and from day 16 to day 20 (L2). Cell viability, DNA content and osteocalcin expression were tested. Samples were further stained with 1% osmium tetroxide in order to investigate tissue growth and mineral deposition by micro-computed tomography (µCT). Tissue growth involved volumes either inside or outside samples at day 21 for L1, suggesting cyclic stimulation is a trigger for delayed proliferative response of cells. Cyclic load also had a role in the mineralization process preventing mineral deposition when applied at the early stage of culture. Conversely, cyclic load during the late stage of culture on pre-compressed samples induced mineral formation. This study shows that short bursts of compression applied at different stages of culture have contrasting effects on the ability of hES-MPs to induce tissue formation and mineral deposition. The results pave the way for a new approach using mechanical stimulation in the development of engineered in vitro tissue as replacement for large bone fractures. Copyright © 2017 Elsevier Ltd. All rights

  15. Mechanisms of foot-and-mouth disease virus tropism inferred from differential tissue gene expression.

    Directory of Open Access Journals (Sweden)

    James J Zhu

    Full Text Available Foot-and-mouth disease virus (FMDV targets specific tissues for primary infection, secondary high-titer replication (e.g. foot and mouth where it causes typical vesicular lesions and long-term persistence at some primary replication sites. Although integrin αVβ6 receptor has been identified as primary FMDV receptors in animals, their tissue distribution alone fails to explain these highly selective tropism-driven events. Thus, other molecular mechanisms must play roles in determining this tissue specificity. We hypothesized that differences in certain biological activities due to differential gene expression determine FMDV tropism and applied whole genome gene expression profiling to identify genes differentially expressed between FMDV-targeted and non-targeted tissues in terms of supporting primary infection, secondary replication including vesicular lesions, and persistence. Using statistical and bioinformatic tools to analyze the differential gene expression, we identified mechanisms that could explain FMDV tissue tropism based on its association with differential expression of integrin αVβ6 heterodimeric receptor (FMDV receptor, fibronectin (ligand of the receptor, IL-1 cytokines, death receptors and the ligands, and multiple genes in the biological pathways involved in extracellular matrix turnover and interferon signaling found in this study. Our results together with reported findings indicate that differences in (1 FMDV receptor availability and accessibility, (2 type I interferon-inducible immune response, and (3 ability to clear virus infected cells via death receptor signaling play roles in determining FMDV tissue tropism and the additional increase of high extracellular matrix turnover induced by FMDV infection, likely via triggering the signaling of highly expressed IL-1 cytokines, play a key role in the pathogenesis of vesicular lesions.

  16. Tuning Cell and Tissue Development by Combining Multiple Mechanical Signals.

    Science.gov (United States)

    Sinha, Ravi; Verdonschot, Nico; Koopman, Bart; Rouwkema, Jeroen

    2017-10-01

    Mechanical signals offer a promising way to control cell and tissue development. It has been established that cells constantly probe their mechanical microenvironment and employ force feedback mechanisms to modify themselves and when possible, their environment, to reach a homeostatic state. Thus, a correct mechanical microenvironment (external forces and mechanical properties and shapes of cellular surroundings) is necessary for the proper functioning of cells. In vitro or in the case of nonbiological implants in vivo, where cells are in an artificial environment, addition of the adequate mechanical signals can, therefore, enable the cells to function normally as in vivo. Hence, a wide variety of approaches have been developed to apply mechanical stimuli (such as substrate stretch, flow-induced shear stress, substrate stiffness, topography, and modulation of attachment area) to cells in vitro. These approaches have not just revealed the effects of the mechanical signals on cells but also provided ways for probing cellular molecules and structures that can provide a mechanistic understanding of the effects. However, they remain lower in complexity compared with the in vivo conditions, where the cellular mechanical microenvironment is the result of a combination of multiple mechanical signals. Therefore, combinations of mechanical stimuli have also been applied to cells in vitro. These studies have had varying focus-developing novel platforms to apply complex combinations of mechanical stimuli, observing the co-operation/competition between stimuli, combining benefits of multiple stimuli toward an application, or uncovering the underlying mechanisms of their action. In general, they provided new insights that could not have been predicted from previous knowledge. We present here a review of several such studies and the insights gained from them, thereby making a case for such studies to be continued and further developed.

  17. Suitability of a PLCL fibrous scaffold for soft tissue engineering applications: A combined biological and mechanical characterisation.

    Science.gov (United States)

    Laurent, Cédric P; Vaquette, Cédryck; Liu, Xing; Schmitt, Jean-François; Rahouadj, Rachid

    2018-04-01

    Poly(lactide-co-ε-caprolactone) (PLCL) has been reported to be a good candidate for tissue engineering because of its good biocompatibility. Particularly, a braided PLCL scaffold (PLL/PCL ratio = 85/15) has been recently designed and partially validated for ligament tissue engineering. In the present study, we assessed the in vivo biocompatibility of acellular and cellularised scaffolds in a rat model. We then determined its in vitro biocompatibility using stem cells issued from both bone marrow and Wharton Jelly. From a biological point of view, the scaffold was shown to be suitable for tissue engineering in all these cases. Secondly, while the initial mechanical properties of this scaffold have been previously reported to be adapted to load-bearing applications, we studied the evolution in time of the mechanical properties of PLCL fibres due to hydrolytic degradation. Results for isolated PLCL fibres were extrapolated to the fibrous scaffold using a previously developed numerical model. It was shown that no accumulation of plastic strain was to be expected for a load-bearing application such as anterior cruciate ligament tissue engineering. However, PLCL fibres exhibited a non-expected brittle behaviour after two months. This may involve a potential risk of premature failure of the scaffold, unless tissue growth compensates this change in mechanical properties. This combined study emphasises the need to characterise the properties of biomaterials in a pluridisciplinary approach, since biological and mechanical characterisations led in this case to different conclusions concerning the suitability of this scaffold for load-bearing applications.

  18. Possible role of mechanical force in regulating regeneration of the vascularized fat flap inside a tissue engineering chamber.

    Science.gov (United States)

    Ye, Yuan; Yuan, Yi; Lu, Feng; Gao, Jianhua

    2015-12-01

    In plastic and reconstructive surgery, adipose tissue is widely used as effective filler for tissue defects. Strategies for treating soft tissue deficiency, which include free adipose tissue grafts, use of hyaluronic acid, collagen injections, and implantation of synthetic materials, have several clinical limitations. With the aim of overcoming these limitations, researchers have recently utilized tissue engineering chambers to produce large volumes of engineered vascularized fat tissue. However, the process of growing fat tissue in a chamber is still relatively limited, and can result in unpredictable or dissatisfactory final tissue volumes. Therefore, detailed understanding of the process is both necessary and urgent. Many studies have shown that mechanical force can change the function of cells via mechanotransduction. Here, we hypothesized that, besides the inflammatory response, one of the key factors to control the regeneration of vascularized fat flap inside a tissue engineering chamber might be the balance of mechanical forces. To test our hypothesis, we intend to change the balance of forces by means of measures in order to make the equilibrium point in favor of the direction of regeneration. If those measures proved to be feasible, they could be applied in clinical practice to engineer vascularized adipose tissue of predictable size and shape, which would in turn help in the advancement of tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Aging and loading rate effects on the mechanical behavior of equine bone

    Science.gov (United States)

    Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.

    2008-06-01

    Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.

  20. Thermo-mechanical response and fatigue behavior of shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kusagawa, Masaki; Asada, Yasuhide; Nakamura, Toshiya [Tokyo Univ. (Japan). Dept. of Mechanical Engineering

    1998-11-01

    Mechanical, thermo-mechanical and fatigue behaviors of Ni-Ti-Nb shape memory alloy (SMA) have been studied to prepare material data for a design purpose. Presented are testing devices, testing procedure and test results of monotonic tensile, recovery of inelastic deformation due to post heating (thermo-mechanical recovery) and fatigue for future use of the SMA as a structural material of nuclear incore structures. (orig.)

  1. Thermo-mechanical response and fatigue behavior of shape memory alloy

    International Nuclear Information System (INIS)

    Kusagawa, Masaki; Asada, Yasuhide; Nakamura, Toshiya

    1998-01-01

    Mechanical, thermo-mechanical and fatigue behaviors of Ni-Ti-Nb shape memory alloy (SMA) have been studied to prepare material data for a design purpose. Presented are testing devices, testing procedure and test results of monotonic tensile, recovery of inelastic deformation due to post heating (thermo-mechanical recovery) and fatigue for future use of the SMA as a structural material of nuclear incore structures. (orig.)

  2. Modeling the impact of scaffold architecture and mechanical loading on collagen turnover in engineered cardiovascular tissues

    NARCIS (Netherlands)

    Argento, G.; de Jonge, N.; Söntjens, S.H.M.; Oomens, C.W.J.; Bouten, C.V.C.; Baaijens, F.P.T.

    2015-01-01

    The anisotropic collagen architecture of an engineered cardiovascular tissue has a major impact on its in vivo mechanical performance. This evolving collagen architecture is determined by initial scaffold microstructure and mechanical loading. Here, we developed and validated a theoretical and

  3. Improvement in reliability of the long-term mechanical behavior of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Shigeno, Yoshimasa; Shimogouchi, Takafumi; Hirai, Takashi; Shiratake, Toshikazu

    2005-02-01

    On the R and D of the HLW repository, it is essential that Engineered Barrier System (EBS) is stable mechanically over a long period of time for maintaining each ability required to EBS. After closing the repository, the various external forces will be affected to the buffer intricately for a long period of time. So, evaluation of mechanical behavior of the buffer is important to carry out safety assessment of EBS. In this report, the effects of mechanical behavior of the buffer to its safety performance are examined. As a result, the ability to filtrate colloids and the ability to keep diffusion-dominated environment are maintained for 100,000 years. Natural analogue of bentonite ore is also done to corroborate viscous parameter of the buffer. The results shows that the laboratory test data is reasonable compared with the analogized viscous parameters of the 15M years aged ore. Next, the mechanical parameters of the buffer under brine environment are examined. Then the mechanical behavior of the buffer is analyzed. Throughout these processes, the scheme for freshwater environment is confirmed to be valid under brine environment. At the last, the EBS field-test that is planned at Horonobe underground laboratory is analyzed. The analysis is encountered viscous behavior of the buffer and the surrounding rock under corrosion expansion of the overpack. The result offers the mechanical data to design the field test. (author)

  4. Modeling the impact of scaffold architecture and mechanical loading on collagen turnover in engineered cardiovascular tissues.

    Science.gov (United States)

    Argento, G; de Jonge, N; Söntjens, S H M; Oomens, C W J; Bouten, C V C; Baaijens, F P T

    2015-06-01

    The anisotropic collagen architecture of an engineered cardiovascular tissue has a major impact on its in vivo mechanical performance. This evolving collagen architecture is determined by initial scaffold microstructure and mechanical loading. Here, we developed and validated a theoretical and computational microscale model to quantitatively understand the interplay between scaffold architecture and mechanical loading on collagen synthesis and degradation. Using input from experimental studies, we hypothesize that both the microstructure of the scaffold and the loading conditions influence collagen turnover. The evaluation of the mechanical and topological properties of in vitro engineered constructs reveals that the formation of extracellular matrix layers on top of the scaffold surface influences the mechanical anisotropy on the construct. Results show that the microscale model can successfully capture the collagen arrangement between the fibers of an electrospun scaffold under static and cyclic loading conditions. Contact guidance by the scaffold, and not applied load, dominates the collagen architecture. Therefore, when the collagen grows inside the pores of the scaffold, pronounced scaffold anisotropy guarantees the development of a construct that mimics the mechanical anisotropy of the native cardiovascular tissue.

  5. A model of engineering materials inspired by biological tissues

    Directory of Open Access Journals (Sweden)

    Holeček M.

    2009-12-01

    Full Text Available The perfect ability of living tissues to control and adapt their mechanical properties to varying external conditions may be an inspiration for designing engineering materials. An interesting example is the smooth muscle tissue since this "material" is able to change its global mechanical properties considerably by a subtle mechanism within individual muscle cells. Multi-scale continuum models may be useful in designing essentially simpler engineering materials having similar properties. As an illustration we present the model of an incompressible material whose microscopic structure is formed by flexible, soft but incompressible balls connected mutually by linear springs. This simple model, however, shows a nontrivial nonlinear behavior caused by the incompressibility of balls and is very sensitive on some microscopic parameters. It may elucidate the way by which "small" changes in biopolymer networks within individual muscular cells may control the stiffness of the biological tissue, which outlines a way of designing similar engineering materials. The 'balls and springs' material presents also prestress-induced stiffening and allows elucidating a contribution of extracellular fluids into the tissue’s viscous properties.

  6. Validation of Triphasic Mixture Theory for a Mimic of Intervertebral Disk Tissue

    NARCIS (Netherlands)

    Oomens, C.W.J.; Heus, de H.J.; Huyghe, J.M.R.J.; Nelissen, J.G.L.; Janssen, J.D.

    1995-01-01

    This paper describes experimental studies an synthetic madel materials that mimic the mechanical behavior af intervertebral disk tissue. The results are used ta validate the triphasic mixture theory to describe soft charged hydrated materiais. Permeability and swelling pressure experiments were used

  7. Mechanical behavior and stress effects in hard superconductors: a review

    International Nuclear Information System (INIS)

    Koch, C.C.; Easton, D.S.

    1977-11-01

    The mechanical properties of type II superconducting materials are reviewed as well as the effect of stress on the superconducting properties of these materials. The bcc alloys niobium-titanium and niobium-zirconium exhibit good strength and extensive ductility at room temperature. Mechanical tests on these alloys at 4.2 0 K revealed serrated stress-strain curves, nonlinear elastic effects and reduced ductility. The nonlinear behavior is probably due to twinning and detwinning or a reversible stress-induced martensitic transformation. The brittle A-15 compound superconductors, such as Nb 3 Sn and V 3 Ga, exhibit unusual elastic properties and structural instabilities at cryogenic temperatures. Multifilamentary composites consisting of superconducting filaments in a normal metal matrix are generally used for superconducting devices. The mechanical properties of alloy and compound composites, tapes, as well as composites of niobium carbonitride chemically vapor deposited on high strength carbon fibers are presented. Hysteretic stress-strain behavior in the metal matrix composites produces significant heat generation, an effect which may lead to degradation in the performance of high field magnets. Measurements of the critical current density, J/sub c/, under stress in a magnetic field are reported. Modest stress-reversible degradation in J/sub c/ was observed in niobium-titanium composites, while more serious degradation was found in Nb 3 Sn samples. The importance of mechanical behavior to device performance is discussed

  8. Mussel-inspired tough hydrogels with self-repairing and tissue adhesion

    Science.gov (United States)

    Gao, Zijian; Duan, Lijie; Yang, Yongqi; Hu, Wei; Gao, Guanghui

    2018-01-01

    The mussel-inspired polymeric hydrogels have been attractively explored owing to their self-repairing or adhesive property when the catechol groups of dopamine could chelate metal ions. However, it was a challenge for self-repairing hydrogels owning high mechanical properties. Herein, a synergistic strategy was proposed by combining catechol-Fe3+ complexes and hydrophobic association. The resulting hydrogels exhibited seamless self-repairing behavior, tissue adhesion and high mechanical property. Moreover, the pH-dependent stoichiometry of catechol-Fe3+ and temperature-sensitive hydrophobic association endue hydrogels with pH/thermo responsive characteristics. Subsequently, the self-repairing rate and mechanical property of hydrogels were investigated at different pH and temperature. This bio-inspired strategy would build an avenue for designing and constructing a new generation of self-repairing, tissue-adhesive and tough hydrogel.

  9. Effects of the Variation in Brain Tissue Mechanical Properties on the Intracranial Response of a 6-Year-Old Child.

    Science.gov (United States)

    Cui, Shihai; Li, Haiyan; Li, Xiangnan; Ruan, Jesse

    2015-01-01

    Brain tissue mechanical properties are of importance to investigate child head injury using finite element (FE) method. However, these properties used in child head FE model normally vary in a large range in published literatures because of the insufficient child cadaver experiments. In this work, a head FE model with detailed anatomical structures is developed from the computed tomography (CT) data of a 6-year-old healthy child head. The effects of brain tissue mechanical properties on traumatic brain response are also analyzed by reconstruction of a head impact on engine hood according to Euro-NCAP testing regulation using FE method. The result showed that the variations of brain tissue mechanical parameters in linear viscoelastic constitutive model had different influences on the intracranial response. Furthermore, the opposite trend was obtained in the predicted shear stress and shear strain of brain tissues caused by the variations of mentioned parameters.

  10. Effects of the Variation in Brain Tissue Mechanical Properties on the Intracranial Response of a 6-Year-Old Child

    Directory of Open Access Journals (Sweden)

    Shihai Cui

    2015-01-01

    Full Text Available Brain tissue mechanical properties are of importance to investigate child head injury using finite element (FE method. However, these properties used in child head FE model normally vary in a large range in published literatures because of the insufficient child cadaver experiments. In this work, a head FE model with detailed anatomical structures is developed from the computed tomography (CT data of a 6-year-old healthy child head. The effects of brain tissue mechanical properties on traumatic brain response are also analyzed by reconstruction of a head impact on engine hood according to Euro-NCAP testing regulation using FE method. The result showed that the variations of brain tissue mechanical parameters in linear viscoelastic constitutive model had different influences on the intracranial response. Furthermore, the opposite trend was obtained in the predicted shear stress and shear strain of brain tissues caused by the variations of mentioned parameters.

  11. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy

    International Nuclear Information System (INIS)

    Ma, Kaka; Wen, Haiming; Hu, Tao; Topping, Troy D.; Isheim, Dieter; Seidman, David N.; Lavernia, Enrique J.; Schoenung, Julie M.

    2014-01-01

    To provide insight into the relationships between precipitation phenomena, grain size and mechanical behavior in a complex precipitation-strengthened alloy system, Al 7075 alloy, a commonly used aluminum alloy, was selected as a model system in the present study. Ultrafine-grained (UFG) bulk materials were fabricated through cryomilling, degassing, hot isostatic pressing and extrusion, followed by a subsequent heat treatment. The mechanical behavior and microstructure of the materials were analyzed and compared directly to the coarse-grained (CG) counterpart. Three-dimensional atom-probe tomography was utilized to investigate the intermetallic precipitates and oxide dispersoids formed in the as-extruded UFG material. UFG 7075 exhibits higher strength than the CG 7075 alloy for each equivalent condition. After a T6 temper, the yield strength (YS) and ultimate tensile strength (UTS) of UFG 7075 achieved 734 and 774 MPa, respectively, which are ∼120 MPa higher than those of the CG equivalent. The strength of as-extruded UFG 7075 (YS: 583 MPa, UTS: 631 MPa) is even higher than that of commercial 7075-T6. More importantly, the strengthening mechanisms in each material were established quantitatively for the first time for this complex precipitation-strengthened system, accounting for grain-boundary, dislocation, solid-solution, precipitation and oxide dispersoid strengthening contributions. Grain-boundary strengthening was the predominant mechanism in as-extruded UFG 7075, contributing a strength increment estimated to be 242 MPa, whereas Orowan precipitation strengthening was predominant in the as-extruded CG 7075 (∼102 MPa) and in the T6-tempered materials, and was estimated to contribute 472 and 414 MPa for CG-T6 and UFG-T6, respectively

  12. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    Directory of Open Access Journals (Sweden)

    Yue Hou

    2017-02-01

    Full Text Available Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM experiments, Phase Dynamics Theory and Molecular Dynamics (MD Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  13. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    Science.gov (United States)

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  14. On the Control of Social Approach-Avoidance Behavior: Neural and Endocrine Mechanisms.

    Science.gov (United States)

    Kaldewaij, Reinoud; Koch, Saskia B J; Volman, Inge; Toni, Ivan; Roelofs, Karin

    The ability to control our automatic action tendencies is crucial for adequate social interactions. Emotional events trigger automatic approach and avoidance tendencies. Although these actions may be generally adaptive, the capacity to override these emotional reactions may be key to flexible behavior during social interaction. The present chapter provides a review of the neuroendocrine mechanisms underlying this ability and their relation to social psychopathologies. Aberrant social behavior, such as observed in social anxiety or psychopathy, is marked by abnormalities in approach-avoidance tendencies and the ability to control them. Key neural regions involved in the regulation of approach-avoidance behavior are the amygdala, widely implicated in automatic emotional processing, and the anterior prefrontal cortex, which exerts control over the amygdala. Hormones, especially testosterone and cortisol, have been shown to affect approach-avoidance behavior and the associated neural mechanisms. The present chapter also discusses ways to directly influence social approach and avoidance behavior and will end with a research agenda to further advance this important research field. Control over approach-avoidance tendencies may serve as an exemplar of emotional action regulation and might have a great value in understanding the underlying mechanisms of the development of affective disorders.

  15. Protective role of Arapaima gigas fish scales: structure and mechanical behavior.

    Science.gov (United States)

    Yang, Wen; Sherman, Vincent R; Gludovatz, Bernd; Mackey, Mason; Zimmermann, Elizabeth A; Chang, Edwin H; Schaible, Eric; Qin, Zhao; Buehler, Markus J; Ritchie, Robert O; Meyers, Marc A

    2014-08-01

    The scales of the arapaima (Arapaima gigas), one of the largest freshwater fish in the world, can serve as inspiration for the design of flexible dermal armor. Each scale is composed of two layers: a laminate composite of parallel collagen fibrils and a hard, highly mineralized surface layer. We review the structure of the arapaima scales and examine the functions of the different layers, focusing on the mechanical behavior, including tension and penetration of the scales, with and without the highly mineralized outer layer. We show that the fracture of the mineral and the stretching, rotation and delamination of collagen fibrils dissipate a significant amount of energy prior to catastrophic failure, providing high toughness and resistance to penetration by predator teeth. We show that the arapaima's scale has evolved to minimize damage from penetration by predator teeth through a Bouligand-like arrangement of successive layers, each consisting of parallel collagen fibrils with different orientations. This inhibits crack propagation and restricts damage to an area adjoining the penetration. The flexibility of the lamellae is instrumental to the redistribution of the compressive stresses in the underlying tissue, decreasing the severity of the concentrated load produced by the action of a tooth. The experimental results, combined with small-angle X-ray scattering characterization and molecular dynamics simulations, provide a complete picture of the mechanisms of deformation, delamination and rotation of the lamellae during tensile extension of the scale. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  16. Mechanics of additively manufactured biomaterials.

    Science.gov (United States)

    Zadpoor, Amir A

    2017-06-01

    Additive manufacturing (3D printing) has found many applications in healthcare including fabrication of biomaterials as well as bioprinting of tissues and organs. Additively manufactured (AM) biomaterials may possess arbitrarily complex micro-architectures that give rise to novel mechanical, physical, and biological properties. The mechanical behavior of such porous biomaterials including their quasi-static mechanical properties and fatigue resistance is not yet well understood. It is particularly important to understand the relationship between the designed micro-architecture (topology) and the resulting mechanical properties. The current special issue is dedicated to understanding the mechanical behavior of AM biomaterials. Although various types of AM biomaterials are represented in the special issue, the primary focus is on AM porous metallic biomaterials. As a prelude to this special issue, this editorial reviews some of the latest findings in the mechanical behavior of AM porous metallic biomaterials so as to describe the current state-of-the-art and set the stage for the other studies appearing in the issue. Some areas that are important for future research are also briefly mentioned. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Mechanical control of notochord morphogenesis by extra-embryonic tissues in mouse embryos.

    Science.gov (United States)

    Imuta, Yu; Koyama, Hiroshi; Shi, Dongbo; Eiraku, Mototsugu; Fujimori, Toshihiko; Sasaki, Hiroshi

    2014-05-01

    Mammalian embryos develop in coordination with extraembryonic tissues, which support embryonic development by implanting embryos into the uterus, supplying nutrition, providing a confined niche, and also providing patterning signals to embryos. Here, we show that in mouse embryos, the expansion of the amniotic cavity (AC), which is formed between embryonic and extraembryonic tissues, provides the mechanical forces required for a type of morphogenetic movement of the notochord known as convergent extension (CE) in which the cells converge to the midline and the tissue elongates along the antero-posterior (AP) axis. The notochord is stretched along the AP axis, and the expansion of the AC is required for CE. Both mathematical modeling and physical simulation showed that a rectangular morphology of the early notochord caused the application of anisotropic force along the AP axis to the notochord through the isotropic expansion of the AC. AC expansion acts upstream of planar cell polarity (PCP) signaling, which regulates CE movement. Our results highlight the importance of extraembryonic tissues as a source of the forces that control the morphogenesis of embryos. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Multi-scale mechanical response of freeze-dried collagen scaffolds for tissue engineering applications.

    Science.gov (United States)

    Offeddu, Giovanni S; Ashworth, Jennifer C; Cameron, Ruth E; Oyen, Michelle L

    2015-02-01

    Tissue engineering has grown in the past two decades as a promising solution to unresolved clinical problems such as osteoarthritis. The mechanical response of tissue engineering scaffolds is one of the factors determining their use in applications such as cartilage and bone repair. The relationship between the structural and intrinsic mechanical properties of the scaffolds was the object of this study, with the ultimate aim of understanding the stiffness of the substrate that adhered cells experience, and its link to the bulk mechanical properties. Freeze-dried type I collagen porous scaffolds made with varying slurry concentrations and pore sizes were tested in a viscoelastic framework by macroindentation. Membranes made up of stacks of pore walls were indented using colloidal probe atomic force microscopy. It was found that the bulk scaffold mechanical response varied with collagen concentration in the slurry consistent with previous studies on these materials. Hydration of the scaffolds resulted in a more compliant response, yet lesser viscoelastic relaxation. Indentation of the membranes suggested that the material making up the pore walls remains unchanged between conditions, so that the stiffness of the scaffolds at the scale of seeded cells is unchanged; rather, it is suggested that thicker pore walls or more of these result in the increased moduli for the greater slurry concentration conditions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Bone scaffolds with homogeneous and discrete gradient mechanical properties.

    Science.gov (United States)

    Jelen, C; Mattei, G; Montemurro, F; De Maria, C; Mattioli-Belmonte, M; Vozzi, G

    2013-01-01

    Bone TE uses a scaffold either to induce bone formation from surrounding tissue or to act as a carrier or template for implanted bone cells or other agents. We prepared different bone tissue constructs based on collagen, gelatin and hydroxyapatite using genipin as cross-linking agent. The fabricated construct did not present a release neither of collagen neither of genipin over its toxic level in the surrounding aqueous environment. Each scaffold has been mechanically characterized with compression, swelling and creep tests, and their respective viscoelastic mechanical models were derived. Mechanical characterization showed a practically elastic behavior of all samples and that compressive elastic modulus basically increases as content of HA increases, and it is strongly dependent on porosity and water content. Moreover, by considering that gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues, we developed discrete functionally graded scaffolds (discrete FGSs) in order to mimic the graded structure of bone tissue. These new structures were mechanically characterized showing a marked anisotropy as the native bone tissue. Results obtained have shown FGSs could represent valid bone substitutes. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Neuroinflammatory Mechanisms of Connective Tissue Fibrosis: Targeting Neurogenic and Mast Cell Contributions

    Science.gov (United States)

    Monument, Michael J.; Hart, David A.; Salo, Paul T.; Befus, A. Dean; Hildebrand, Kevin A.

    2015-01-01

    Significance: The pathogenesis of fibrogenic wound and connective tissue healing is complex and incompletely understood. Common observations across a vast array of human and animal models of fibroproliferative conditions suggest neuroinflammatory mechanisms are important upstream fibrogenic events. Recent Advances: As detailed in this review, mast cell hyperplasia is a common observation in fibrotic tissue. Recent investigations in human and preclinical models of hypertrophic wound healing and post-traumatic joint fibrosis provides evidence that fibrogenesis is governed by a maladaptive neuropeptide-mast cell-myofibroblast signaling pathway. Critical Issues: The blockade and manipulation of these factors is providing promising evidence that if timed correctly, the fibrogenic process can be appropriately regulated. Clinically, abnormal fibrogenic healing responses are not ubiquitous to all patients and the identification of those at-risk remains an area of priority. Future Directions: Ultimately, an integrated appreciation of the common pathobiology shared by many fibrogenic connective tissue conditions may provide a scientific framework to facilitate the development of novel antifibrotic prevention and treatment strategies. PMID:25785237

  1. Mechanical Stimulation of Adipose-Derived Stem Cells for Functional Tissue Engineering of the Musculoskeletal System via Cyclic Hydrostatic Pressure, Simulated Microgravity, and Cyclic Tensile Strain.

    Science.gov (United States)

    Nordberg, Rachel C; Bodle, Josie C; Loboa, Elizabeth G

    2018-01-01

    It is critical that human adipose stem cell (hASC) tissue-engineering therapies possess appropriate mechanical properties in order to restore function of the load bearing tissues of the musculoskeletal system. In an effort to elucidate the hASC response to mechanical stimulation and develop mechanically robust tissue engineered constructs, recent research has utilized a variety of mechanical loading paradigms including cyclic tensile strain, cyclic hydrostatic pressure, and mechanical unloading in simulated microgravity. This chapter describes methods for applying these mechanical stimuli to hASC to direct differentiation for functional tissue engineering of the musculoskeletal system.

  2. Deformation Behavior of Human Dentin under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Dmitry Zaytsev

    2012-01-01

    Full Text Available Deformation behavior of a human dentin under compression including size and rate effects is studied. No difference between mechanical properties of crown and root dentin is found. It is mechanically isotropic high elastic and strong hard tissue, which demonstrates considerable plasticity and ability to suppress a crack growth. Mechanical properties of dentin depend on a shape of samples and a deformation rate.

  3. MODELLING OF RING-SHAPED ULTRASONIC WAVEGUIDES FOR TESTING OF MECHANICAL PROPERTIES AND THERAPEUTIC TREATMENT OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    V. T. Minchenya

    2011-01-01

    Full Text Available The article presents results of modelling of ring-shaped waveguide tool for ultrasonic treatment of biological materials, particularly malignant tumours, and testing of their mechanical properties. Harmonic analysis of forced flexural vibration of the waveguide using ANSYS software and APDL programming language was implemented for determination of waveguide geometric parameters providing its resonance for the given excitation frequency. The developed finite element model accounts for interaction between the waveguide and tumour tissue as well as initial prestressing of tissue radially compressed by the waveguide. Resonant curves of the waveguide in terms of its thickness and diameter are calculated and presented. Principle of application of the developed modeling technique for extraction of diagnostic data on mechanical properties of biological tissues is described.

  4. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.

    Science.gov (United States)

    Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong

    2015-08-01

    Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics.

    Directory of Open Access Journals (Sweden)

    Maryna Perepelyuk

    Full Text Available Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G' and G" and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver.

  6. Social carry-over effects on non-social behavioral variation: mechanisms and consequences

    Directory of Open Access Journals (Sweden)

    Petri Toivo Niemelä

    2015-05-01

    Full Text Available The field of animal personality is interested in decomposing behaviors into different levels of variation, with its present focus on the ecological and evolutionary causes and consequences of expressed variation. Recently the role of the social environment, i.e. social partners, has been suggested to affect behavioral variation and induce selection on animal personality. Social partner effects exist because characters of social partners (e.g. size, behavior, affect the behavioral expression of a focal individual. Here, we 1 first review the proximate mechanisms underlying the social partner effects on behavioral expression and the timescales at which such effects might take place. We then 2 discuss how within- and among-individual variation in single behaviors and covariation between multiple behaviors, caused by social partners, can carry-over to non-social behaviors expressed outside the social context. Finally, we 3 highlight evolutionary consequences of social carry-over effects to non-social behaviors and 4 suggest study designs and statistical approaches which can be applied to study the nature and evolutionary consequences of social carry-over effects on non-social behaviors. Understanding the proximate mechanisms underpinning the social partner effects is important since it opens a door for deeper understanding of how social environments can affect behavioral variation and covariation at multiple levels, and the evolution of non-social behaviors (i.e. exploration, activity, boldness that are affected by social interactions.

  7. 2010 Thin Film & Small Scale Mechanical Behavior Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Thomas Balk

    2010-07-30

    Over the past decades, it has been well established that the mechanical behavior of materials changes when they are confined geometrically at least in one dimension to small scale. It is the aim of the 2010 Gordon Conference on 'Thin Film and Small Scale Mechanical Behavior' to discuss cutting-edge research on elastic, plastic and time-dependent deformation as well as degradation mechanisms like fracture, fatigue and wear at small scales. As in the past, the conference will benefit from contributions from fundamental studies of physical mechanisms linked to material science and engineering reaching towards application in modern applications ranging from optical and microelectronic devices and nano- or micro-electrical mechanical systems to devices for energy production and storage. The conference will feature entirely new testing methodologies and in situ measurements as well as recent progress in atomistic and micromechanical modeling. Particularly, emerging topics in the area of energy conversion and storage, such as material for batteries will be highlighted. The study of small-scale mechanical phenomena in systems related to energy production, conversion or storage offer an enticing opportunity to materials scientists, who can provide new insight and investigate these phenomena with methods that have not previously been exploited.

  8. Mechanics of neurulation: From classical to current perspectives on the physical mechanics that shape, fold, and form the neural tube.

    Science.gov (United States)

    Vijayraghavan, Deepthi S; Davidson, Lance A

    2017-01-30

    Neural tube defects arise from mechanical failures in the process of neurulation. At the most fundamental level, formation of the neural tube relies on coordinated, complex tissue movements that mechanically transform the flat neural epithelium into a lumenized epithelial tube (Davidson, 2012). The nature of this mechanical transformation has mystified embryologists, geneticists, and clinicians for more than 100 years. Early embryologists pondered the physical mechanisms that guide this transformation. Detailed observations of cell and tissue movements as well as experimental embryological manipulations allowed researchers to generate and test elementary hypotheses of the intrinsic and extrinsic forces acting on the neural tissue. Current research has turned toward understanding the molecular mechanisms underlying neurulation. Genetic and molecular perturbation have identified a multitude of subcellular components that correlate with cell behaviors and tissue movements during neural tube formation. In this review, we focus on methods and conceptual frameworks that have been applied to the study of amphibian neurulation that can be used to determine how molecular and physical mechanisms are integrated and responsible for neurulation. We will describe how qualitative descriptions and quantitative measurements of strain, force generation, and tissue material properties as well as simulations can be used to understand how embryos use morphogenetic programs to drive neurulation. Birth Defects Research 109:153-168, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Osteoarthritis Year in Review 2015: Mechanics

    Science.gov (United States)

    Varady, Nathan H.; Grodzinsky, Alan J.

    2015-01-01

    Motivated by the conceptual framework of multi-scale biomechanics, this narrative review highlights recent major advances with a focus on gait and joint kinematics, then tissue-level mechanics, cell mechanics and mechanotransduction, matrix mechanics, and finally the nanoscale mechanics of matrix macromolecules. A literature review was conducted from January 2014 to April 2015 using PubMed to identify major developments in mechanics related to osteoarthritis (OA). Studies of knee adduction, flexion, rotation, and contact mechanics have extended our understanding of medial compartment loading. In turn, advances in measurement methodologies have shown how injuries to both the meniscus and ligaments, together, can alter joint kinematics. At the tissue scale, novel findings have emerged regarding the mechanics of the meniscus as well as cartilage superficial zone. Moving to the cell level, poroelastic and poroviscoelastic mechanisms underlying chondrocyte deformation have been reported, along with the response to osmotic stress. Further developments have emerged on the role of calcium signaling in chondrocyte mechanobiology, including exciting findings on the function of mechanically activated cation channels newly found to be expressed in chondrocytes. Finally, AFM-based nano-rheology systems have enabled studies of thin murine tissues and brush layers of matrix molecules over a wide range of loading rates including high rates corresponding to impact injury. With OA acknowledged to be a disease of the joint as an organ, understanding mechanical behavior at each length scale helps to elucidate the connections between cell biology, matrix biochemistry and tissue structure/function that may play a role in the pathomechanics of OA. PMID:26707990

  10. Correlation between the mechanical and histological properties of liver tissue.

    Science.gov (United States)

    Yarpuzlu, Berkay; Ayyildiz, Mehmet; Tok, Olgu Enis; Aktas, Ranan Gulhan; Basdogan, Cagatay

    2014-01-01

    In order to gain further insight into the mechanisms of tissue damage during the progression of liver diseases as well as the liver preservation for transplantation, an improved understanding of the relation between the mechanical and histological properties of liver is necessary. We suggest that this relation can only be established truly if the changes in the states of those properties are investigated dynamically as a function of post mortem time. In this regard, we first perform mechanical characterization experiments on three bovine livers to investigate the changes in gross mechanical properties (stiffness, viscosity, and fracture toughness) for the preservation periods of 5, 11, 17, 29, 41 and 53h after harvesting. Then, the histological examination is performed on the samples taken from the same livers to investigate the changes in apoptotic cell count, collagen accumulation, sinusoidal dilatation, and glycogen deposition as a function of the same preservation periods. Finally, the correlation between the mechanical and histological properties is investigated via the Spearman's Rank-Order Correlation method. The results of our study show that stiffness, viscosity, and fracture toughness of bovine liver increase as the preservation period is increased. These macroscopic changes are very strongly correlated with the increase in collagen accumulation and decrease in deposited glycogen level at the microscopic level. Also, we observe that the largest changes in mechanical and histological properties occur after the first 11-17h of preservation. © 2013 Elsevier Ltd. All rights reserved.

  11. Association between traumatic bone marrow abnormalities of the knee, the trauma mechanism and associated soft-tissue knee injuries

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Nicole [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); University of Zurich, Department of Forensic Medicine and Radiology, Institute of Forensic Medicine, Zurich (Switzerland); Andreisek, Gustav; Karer, Anissja T.; Manoliu, Andrei; Ulbrich, Erika J. [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Bouaicha, Samy [University Hospital Zurich, Department of Trauma Surgery, Zurich (Switzerland); Naraghi, Ali [University of Toronto, Department of Medical Imaging, Mount Sinai Hospital and the University Health Network, Toronto, ON (Canada); Seifert, Burkhardt [University of Zurich, Epidemiology, Biostatistics and Prevention Institute, Department of Biostatistics, Zurich (Switzerland)

    2017-01-15

    To determine the association between traumatic bone marrow abnormalities, the knee injury mechanism, and associated soft tissue injuries in a larger cohort than those in the published literature. Retrospective study including 220 patients with traumatic knee injuries. Knee MRIs were evaluated for trauma mechanism, soft tissue injury, and the location of bone marrow abnormalities. The locations of the abnormalities were correlated with trauma mechanisms and soft tissue injuries using the chi-square test with Bonferroni correction. One hundred and forty-four valgus injuries, 39 pivot shift injuries, 25 lateral patellar dislocations, 8 hyperextensions, and 4 dashboard injuries were included. Valgus and pivot shift injuries showed traumatic bone marrow abnormalities in the posterolateral regions of the tibia. Abnormalities after patellar dislocation were found in the anterolateral and centrolateral femur and patella. Hyperextension injuries were associated with abnormalities in almost all regions, and dashboard injuries were associated with changes in the anterior regions of the tibia and femur. Our study provides evidence of associations between traumatic bone marrow abnormality patterns and different trauma mechanisms in acute knee injury, and reveals some overlap, especially of the two most common trauma mechanisms (valgus and pivot shift), in a large patient cohort. (orig.)

  12. Association between traumatic bone marrow abnormalities of the knee, the trauma mechanism and associated soft-tissue knee injuries

    International Nuclear Information System (INIS)

    Berger, Nicole; Andreisek, Gustav; Karer, Anissja T.; Manoliu, Andrei; Ulbrich, Erika J.; Bouaicha, Samy; Naraghi, Ali; Seifert, Burkhardt

    2017-01-01

    To determine the association between traumatic bone marrow abnormalities, the knee injury mechanism, and associated soft tissue injuries in a larger cohort than those in the published literature. Retrospective study including 220 patients with traumatic knee injuries. Knee MRIs were evaluated for trauma mechanism, soft tissue injury, and the location of bone marrow abnormalities. The locations of the abnormalities were correlated with trauma mechanisms and soft tissue injuries using the chi-square test with Bonferroni correction. One hundred and forty-four valgus injuries, 39 pivot shift injuries, 25 lateral patellar dislocations, 8 hyperextensions, and 4 dashboard injuries were included. Valgus and pivot shift injuries showed traumatic bone marrow abnormalities in the posterolateral regions of the tibia. Abnormalities after patellar dislocation were found in the anterolateral and centrolateral femur and patella. Hyperextension injuries were associated with abnormalities in almost all regions, and dashboard injuries were associated with changes in the anterior regions of the tibia and femur. Our study provides evidence of associations between traumatic bone marrow abnormality patterns and different trauma mechanisms in acute knee injury, and reveals some overlap, especially of the two most common trauma mechanisms (valgus and pivot shift), in a large patient cohort. (orig.)

  13. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries

    Science.gov (United States)

    Zhang, Chao; Xu, Jun; Cao, Lei; Wu, Zenan; Santhanagopalan, Shriram

    2017-07-01

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion and a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. The test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.

  14. Influence of nanostructural environment and fluid flow on osteoblast-like cell behavior: a model for cell-mechanics studies.

    Science.gov (United States)

    Prodanov, L; Semeins, C M; van Loon, J J W A; te Riet, J; Jansen, J A; Klein-Nulend, J; Walboomers, X F

    2013-05-01

    Introducing nanoroughness on various biomaterials has been shown to profoundly effect cell-material interactions. Similarly, physical forces act on a diverse array of cells and tissues. Particularly in bone, the tissue experiences compressive or tensile forces resulting in fluid shear stress. The current study aimed to develop an experimental setup for bone cell behavior, combining a nanometrically grooved substrate (200 nm wide, 50 nm deep) mimicking the collagen fibrils of the extracellular matrix, with mechanical stimulation by pulsatile fluid flow (PFF). MC3T3-E1 osteoblast-like cells were assessed for morphology, expression of genes involved in cell attachment and osteoblastogenesis and nitric oxide (NO) release. The results showed that both nanotexture and PFF did affect cellular morphology. Cells aligned on nanotexture substrate in a direction parallel to the groove orientation. PFF at a magnitude of 0.7 Pa was sufficient to induce alignment of cells on a smooth surface in a direction perpendicular to the applied flow. When environmental cues texture and flow were interacting, PFF of 1.4 Pa applied parallel to the nanogrooves initiated significant cellular realignment. PFF increased NO synthesis 15-fold in cells attached to both smooth and nanotextured substrates. Increased collagen and alkaline phosphatase mRNA expression was observed on the nanotextured substrate, but not on the smooth substrate. Furthermore, vinculin and bone sialoprotein were up-regulated after 1 h of PFF stimulation. In conclusion, the data show that interstitial fluid forces and structural cues mimicking extracellular matrix contribute to the final bone cell morphology and behavior, which might have potential application in tissue engineering. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Mechanisms involved in the transport of mercuric ions in target tissues

    Science.gov (United States)

    Bridges, Christy C.; Zalups, Rudolfs K.

    2016-01-01

    Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells. PMID:27422290

  16. Generalization of exponential based hyperelastic to hyper-viscoelastic model for investigation of mechanical behavior of rate dependent materials.

    Science.gov (United States)

    Narooei, K; Arman, M

    2018-03-01

    In this research, the exponential stretched based hyperelastic strain energy was generalized to the hyper-viscoelastic model using the heredity integral of deformation history to take into account the strain rate effects on the mechanical behavior of materials. The heredity integral was approximated by the approach of Goh et al. to determine the model parameters and the same estimation was used for constitutive modeling. To present the ability of the proposed hyper-viscoelastic model, the stress-strain response of the thermoplastic elastomer gel tissue at different strain rates from 0.001 to 100/s was studied. In addition to better agreement between the current model and experimental data in comparison to the extended Mooney-Rivlin hyper-viscoelastic model, a stable material behavior was predicted for pure shear and balance biaxial deformation modes. To present the engineering application of current model, the Kolsky bars impact test of gel tissue was simulated and the effects of specimen size and inertia on the uniform deformation were investigated. As the mechanical response of polyurea was provided over wide strain rates of 0.0016-6500/s, the current model was applied to fit the experimental data. The results were shown more accuracy could be expected from the current research than the extended Ogden hyper-viscoelastic model. In the final verification example, the pig skin experimental data was used to determine parameters of the hyper-viscoelastic model. Subsequently, a specimen of pig skin at different strain rates was loaded to a fixed strain and the change of stress with time (stress relaxation) was obtained. The stress relaxation results were revealed the peak stress increases by applied strain rate until the saturated loading rate and the equilibrium stress with magnitude of 0.281MPa could be reached. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The effects of matrix inhomogeneities on the cellular mechanical environment in tissue-engineered cartilage : an in silico investigation

    NARCIS (Netherlands)

    Khoshgoftar, M.; Wilson, W.; Ito, K.; Donkelaar, van C.C.

    2014-01-01

    Mechanical stimulation during cartilage tissue-engineering (TE) enhances extracellular matrix (ECM) synthesis and thereby improves the mechanical properties of TE cartilage. Generally, these mechanical stimuli are of a fixed magnitude. However, as a result of ECM synthesis and spatial variations

  18. Mechanical behavior of Be–Ti pebbles at blanket relevant temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kurinskiy, Petr, E-mail: petr.kurinskiy@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials—Applied Materials Physics (IAM-AWP), P.O. Box 3640, 76021 Karlsruhe (Germany); Rolli, Rolf [Karlsruhe Institute of Technology, Institute for Applied Materials—Materials Biomechanics (IAM-WBM), P.O. Box 3640, 76021 Karlsruhe (Germany); Kim, Jae-Hwan; Nakamichi, Masaru [Breeding Functional Materials Development Group, Department of Blanket Fusion Institute, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Oaza-Obuchi-Aza-Omotedate, Rokkasho-mura, Kamikita-gun, Aoori 039-3212 (Japan)

    2016-11-01

    Highlights: • Mechanical behavior of two kinds of Be–Ti pebbles in the temperature range of 400–800 °C was investigated. • It was experimentally shown that Be-7 at.%Ti pebbles have the enhanced ductile properties compared to Be-7.7 at.%Ti pebbles. • Brittle failure of both kinds of Be–Ti pebbles was observed by testing at 400 °C using the constant loading with 150 N. - Abstract: Mechanical performance of beryllium-based materials is a matter of a great interest from the point of view of their use as neutron multipliers of the tritium breeding blankets. The compression strains which can occur in beryllium pebble beds under blanket working conditions will lead to deformation or even failure of individual pebbles [1,2] (Reimann et al. 2002; Ishitsuka and Kawamura, 1995). Mechanical behavior of Be–Ti pebbles having chemical contents of Be-7.0 at.% Ti and Be-7.7 at.%Ti was investigated in the temperature range of 400–800 °C. Constant loads varying from 10 up to 150 N were applied uniaxially. It was shown that Be–Ti pebbles compared to pure beryllium pebbles possess much lower ductility, although their strength properties exceed corresponding characteristics of pure beryllium. Also, the influence of titanium content on mechanical behavior of Be–Ti pebbles was investigated. Specific features of deformation of pure beryllium and Be–Ti pebbles having different titanium contents at blanket operation temperatures are discussed.

  19. Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern

    KAUST Repository

    Kachalo, Së ma; Naveed, Hammad; Cao, Youfang; Zhao, Jieling; Liang, Jie

    2015-01-01

    development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating

  20. Engineering mechanical microenvironment of macrophage and its biomedical applications.

    Science.gov (United States)

    Li, Jing; Li, Yuhui; Gao, Bin; Qin, Chuanguang; He, Yining; Xu, Feng; Yang, Hui; Lin, Min

    2018-03-01

    Macrophages are the most plastic cells in the hematopoietic system and can be widely found in almost all tissues. Recently studies have shown that mechanical cues (e.g., matrix stiffness and stress/strain) can significantly affect macrophage behaviors. Although existing reviews on the physical and mechanical cues that regulate the macrophage's phenotype are available, engineering mechanical microenvironment of macrophages in vitro as well as a comprehensive overview and prospects for their biomedical applications (e.g., tissue engineering and immunotherapy) has yet to be summarized. Thus, this review provides an overview on the existing methods for engineering mechanical microenvironment of macrophages in vitro and then a section on their biomedical applications and further perspectives are presented.

  1. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.

    Science.gov (United States)

    Jahnavi, S; Saravanan, U; Arthi, N; Bhuvaneshwar, G S; Kumary, T V; Rajan, S; Verma, R S

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44 + , αSMA + , Vimentin + and CD105 - human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.

    Science.gov (United States)

    Salarian, Mehrnaz; Xu, William Z; Wang, Zhiqiang; Sham, Tsun-Kong; Charpentier, Paul A

    2014-10-08

    Calcium phosphate-based nanocomposites offer a unique solution toward producing scaffolds for orthopedic and dental implants. However, despite attractive bioactivity and biocompatibility, hydroxyapatite (HAp) has been limited in heavy load-bearing applications due to its intrinsically low mechanical strength. In this work, to improve the mechanical properties of HAp, we grew HAp nanoplates from the surface of one-dimensional titania nanorod structures by combining a coprecipitation and sol-gel methodology using supercritical fluid processing with carbon dioxide (scCO2). The effects of metal alkoxide concentration (1.1-1.5 mol/L), reaction temperature (60-80 °C), and pressure (6000-8000 psi) on the morphology, crystallinity, and surface area of the resulting nanostructured composites were examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) method. Chemical composition of the products was characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray absorption near-edge structure (XANES) analyses. HAp nanoplates and HAp-TiO2 nanocomposites were homogeneously mixed within poly(ε-caprolactone) (PCL) to develop scaffolds with enhanced physical and mechanical properties for bone regeneration. Mechanical behavior analysis demonstrated that the Young's and flexural moduli of the PCL/HAp-TiO2 composites were substantially higher than the PCL/HAp composites. Therefore, this new synthesis methodology in scCO2 holds promise for bone tissue engineering with improved mechanical properties.

  3. Learning from evolutionary optimisation: what are toughening mechanisms good for in dentine, a nonrepairing bone tissue?

    Science.gov (United States)

    Zaslansky, Paul; Currey, John D; Fleck, Claudia

    2016-09-12

    The main mass of material found in teeth is dentine, a bone-like tissue, riddled with micron-sized tubules and devoid of living cells. It provides support to the outer wear-resistant layer of enamel, and exhibits toughening mechanisms which contribute to crack resistance. And yet unlike most bone tissues, dentine does not remodel and consequently any accumulated damage does not 'self repair'. Because damage containment followed by tissue replacement is a prime reason for the crack-arresting microstructures found in most bones, the occurrence of toughening mechanisms without the biological capability to repair is puzzling. Here we consider the notion that dentine might be overdesigned for strength, because it has to compensate for the lack of cell-mediated healing mechanisms. Based on our own and on literature-reported observations, including quasistatic and fatigue properties, dentine design principles are discussed in light of the functional conditions under which teeth evolved. We conclude that dentine is only slightly overdesigned for everyday cyclic loading because usual mastication stresses may come close to its endurance strength. The in-built toughening mechanisms constitute an evolutionary benefit because they prevent catastrophic failure during rare overload events, which was probably very advantageous in our hunter gatherer ancestor times. From a bio-inspired perspective, understanding the extent of evolutionary overdesign might be useful for optimising biomimetic structures used for load bearing.

  4. Mechanical perturbation control of cardiac alternans

    Science.gov (United States)

    Hazim, Azzam; Belhamadia, Youssef; Dubljevic, Stevan

    2018-05-01

    Cardiac alternans is a disturbance in heart rhythm that is linked to the onset of lethal cardiac arrhythmias. Mechanical perturbation control has been recently used to suppress alternans in cardiac tissue of relevant size. In this control strategy, cardiac tissue mechanics are perturbed via active tension generated by the heart's electrical activity, which alters the tissue's electric wave profile through mechanoelectric coupling. We analyze the effects of mechanical perturbation on the dynamics of a map model that couples the membrane voltage and active tension systems at the cellular level. Therefore, a two-dimensional iterative map of the heart beat-to-beat dynamics is introduced, and a stability analysis of the system of coupled maps is performed in the presence of a mechanical perturbation algorithm. To this end, a bidirectional coupling between the membrane voltage and active tension systems in a single cardiac cell is provided, and a discrete form of the proposed control algorithm, that can be incorporated in the coupled maps, is derived. In addition, a realistic electromechanical model of cardiac tissue is employed to explore the feasibility of suppressing alternans at cellular and tissue levels. Electrical activity is represented in two detailed ionic models, the Luo-Rudy 1 and the Fox models, while two active contractile tension models, namely a smooth variant of the Nash-Panfilov model and the Niederer-Hunter-Smith model, are used to represent mechanical activity in the heart. The Mooney-Rivlin passive elasticity model is employed to describe passive mechanical behavior of the myocardium.

  5. A Quantitative Study of the Relationship between the Distribution of Different Types of Collagen and the Mechanical Behavior of Rabbit Medial Collateral Ligaments

    Science.gov (United States)

    Wan, Chao; Hao, Zhixiu; Wen, Shizhu; Leng, Huijie

    2014-01-01

    The mechanical properties of ligaments are key contributors to the stability and function of musculoskeletal joints. Ligaments are generally composed of ground substance, collagen (mainly type I and III collagen), and minimal elastin fibers. However, no consensus has been reached about whether the distribution of different types of collagen correlates with the mechanical behaviors of ligaments. The main objective of this study was to determine whether the collagen type distribution is correlated with the mechanical properties of ligaments. Using axial tensile tests and picrosirius red staining-polarization observations, the mechanical behaviors and the ratios of the various types of collagen were investigated for twenty-four rabbit medial collateral ligaments from twenty-four rabbits of different ages, respectively. One-way analysis of variance was used in the comparison of the Young's modulus in the linear region of the stress-strain curves and the ratios of type I and III collagen for the specimens (the mid-substance specimens of the ligaments) with different ages. A multiple linear regression was performed using the collagen contents (the ratios of type I and III collagen) and the Young's modulus of the specimens. During the maturation of the ligaments, the type I collagen content increased, and the type III collagen content decreased. A significant and strong correlation () was identified by multiple linear regression between the collagen contents (i.e., the ratios of type I and type III collagen) and the mechanical properties of the specimens. The collagen content of ligaments might provide a new perspective for evaluating the linear modulus of global stress-strain curves for ligaments and open a new door for studying the mechanical behaviors and functions of connective tissues. PMID:25062068

  6. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level.

    Science.gov (United States)

    Imbert, Laurianne; Aurégan, Jean-Charles; Pernelle, Kélig; Hoc, Thierry

    2014-08-01

    Osteogenesis imperfecta (OI) is a genetic disorder characterized by an increase in bone fragility on the macroscopic scale, but few data are available to describe the mechanisms involved on the tissue scale and the possible correlations between these scales. To better understand the effects of OI on the properties of human bone, we studied the mechanical and chemical properties of eight bone samples from children suffering from OI and compared them to the properties of three controls. High-resolution computed tomography, nanoindentation and Raman microspectroscopy were used to assess those properties. A higher tissue mineral density was found for OI bone (1.131 gHA/cm3 vs. 1.032 gHA/cm3, p=0.032), along with a lower Young's modulus (17.6 GPa vs. 20.5 GPa, p=0.024). Obviously, the mutation-induced collagen defects alter the collagen matrix, thereby affecting the mineralization. Raman spectroscopy showed that the mineral-to-matrix ratio was higher in the OI samples, while the crystallinity was lower, suggesting that the mineral crystals were smaller but more abundant in the case of OI. This change in crystal size, distribution and composition contributes to the observed decrease in mechanical strength. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Concentration of labelled polyphosphates in soft tissue lesions. Application to the study of cerebral and myocardial infarction

    International Nuclear Information System (INIS)

    Guillemart, Alain.

    1975-01-01

    The biological behavior and tissue localization of phosphorus compounds used in Nuclear Medicine are reviewed. The mechanism of skeletal localization is emphasized. Labeled pyrophosphate compounds have proved extremely useful for skeletal imaging, however the mechanism of increased accumulation of these agents has been observed also in soft tissues. They localize in the acutely infarcted myocardium and in brain lesions. Clinical results obtained with sup(99m)Tc stannous pyrophosphate in brain and myocardium imaging are reported [fr

  8. Mechanical behavior of silicon carbide nanoparticles under uniaxial compression

    Energy Technology Data Exchange (ETDEWEB)

    He, Qiuxiang; Fei, Jing; Tang, Chao; Zhong, Jianxin; Meng, Lijun, E-mail: ljmeng@xtu.edu.cn [Xiangtan University, Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Faculty of School of Physics and Optoelectronics (China)

    2016-03-15

    The mechanical behavior of SiC nanoparticles under uniaxial compression was investigated using an atomic-level compression simulation technique. The results revealed that the mechanical deformation of SiC nanocrystals is highly dependent on compression orientation, particle size, and temperature. A structural transformation from the original zinc-blende to a rock-salt phase is identified for SiC nanoparticles compressed along the [001] direction at low temperature. However, the rock-salt phase is not observed for SiC nanoparticles compressed along the [110] and [111] directions irrespective of size and temperature. The high-pressure-generated rock-salt phase strongly affects the mechanical behavior of the nanoparticles, including their hardness and deformation process. The hardness of [001]-compressed nanoparticles decreases monotonically as their size increases, different from that of [110] and [111]-compressed nanoparticles, which reaches a maximal value at a critical size and then decreases. Additionally, a temperature-dependent mechanical response was observed for all simulated SiC nanoparticles regardless of compression orientation and size. Interestingly, the hardness of SiC nanocrystals with a diameter of 8 nm compressed in [001]-orientation undergoes a steep decrease at 0.1–200 K and then a gradual decline from 250 to 1500 K. This trend can be attributed to different deformation mechanisms related to phase transformation and dislocations. Our results will be useful for practical applications of SiC nanoparticles under high pressure.

  9. Animal behavior models of the mechanisms underlying antipsychotic atypicality.

    NARCIS (Netherlands)

    Geyer, M.A.; Ellenbroek, B.A.

    2003-01-01

    This review describes the animal behavior models that provide insight into the mechanisms underlying the critical differences between the actions of typical vs. atypical antipsychotic drugs. Although many of these models are capable of differentiating between antipsychotic and other psychotropic

  10. Mechanical behavior of porous ceramic disks

    International Nuclear Information System (INIS)

    Pucheu, M.A; Sandoval, M.L; Tomba Martinez, A.G; Camerucci, M.A

    2008-01-01

    The mechanical behavior of green and sintered porous ceramic materials, obtained by processing control, in relation to the microstructure developed was studied. Disks in green state were prepared by direct thermal consolidation of aqueous suspensions of kaolin, talc and alumina (preliminary mixture of cordierite) with the addition of different starches as consolidating/binding agents and as formers of pores at high temperature. Commercial kaolin (C-80 washed kaolin, Piedra Grande S.A., Argentina), micronized talc (Talc 40, China), calcinated alumina (A2G ALCOA, USA) and commercial potato, manioc, modified potato and corn starches were used as raw materials. The preliminary ceramic mixture was prepared based on the composition in oxides of the ceramic raw materials, in a relationship that was as close as possible to stoichiometric cordierite. Aqueous suspensions of the powders (65% solids; 0.5% sodium naphtolenosulfonate; 1% Dolapix with 17% of each kind of starch were prepared by intensive mechanical mixing, homogenization (ball mills, 2h) and extracting the air with vacuum 20 min. Disks were prepared (diameter=20-30 mm; thickness=3-4 mm) by thermal consolidation of the suspensions in steel molds at the maximum swelling factor temperature (Tms) for each starch (75- 85 o C) for 4h and, later drying at 50 o C, 12h. The porous materials of cordierite were obtained by calcination and reaction-sintering using a controlled thermal cycle: 1 o C/min up to 650 o C, 2h; 3 o C/min up to 1330 o C, 4h and 5 o C/min to room temperature. The characterization of the porous materials in green and sintered state was done by measuring density and apparent porosity, distribution of pore sizes and SEM. The mechanical resistance of the materials in green and sintered state was evaluated in diametrical compression (Instron universal testing machine servo hydraulic model 8501), in position control (0.1-0.2 mm/min) with a statistical number of test pieces, at room air temperature. The

  11. Differential effects of diet composition and timing of feeding behavior on rat brown adipose tissue and skeletal muscle peripheral clocks.

    NARCIS (Netherlands)

    De Goede, P.; Sen, Satish; Oosterman, Johanneke E; Kalsbeek, A.

    2018-01-01

    The effects of feeding behavior and diet composition,as well as their possible interactions,on daily (clock) gene expression rhythms have mainly been studied in the liver, and to a lesser degree in white adipose tissue(WAT), but hardly in other metabolic tissues such as skeletal muscle (SM) and

  12. Abnormal Base Excision Repair at Trinucleotide Repeats Associated with Diseases: A Tissue-Selective Mechanism

    Directory of Open Access Journals (Sweden)

    Agathi-Vasiliki Goula

    2013-07-01

    Full Text Available More than fifteen genetic diseases, including Huntington’s disease, myotonic dystrophy 1, fragile X syndrome and Friedreich ataxia, are caused by the aberrant expansion of a trinucleotide repeat. The mutation is unstable and further expands in specific cells or tissues with time, which can accelerate disease progression. DNA damage and base excision repair (BER are involved in repeat instability and might contribute to the tissue selectivity of the process. In this review, we will discuss the mechanisms of trinucleotide repeat instability, focusing more specifically on the role of BER.

  13. Investigation of the mechanisms that influence the accretion of bovine intramuscular and subcutaneous adipose tissue

    International Nuclear Information System (INIS)

    Miller, M.F.

    1987-01-01

    The understanding of the mechanisms that differ between breeds of cattle and their ability to deposit intramuscular adipose tissue is imperative to profitable beef production. Thus, the interactions among breeds, metabolic substrates and specific hormones in bovine intramuscular and subcutaneous adipose tissue were investigated. Subcutaneous and intramuscular adipose tissues were obtained from 10 Angus and 9 Santa Gertrudis steers immediately postmortem. The adipose tissues were incubated for 2 h and 48 h with and without 1 mU/ml insulin and 30 mg/ml bovine serum albumin (BSA) to measure the incorporation of 14 C-labeled acetate and glucose into lipid fractions. At the same chronological age, Angus steers had a more youthful lean maturity score, higher USDA marbling scores and higher USDA quality grades than carcasses from Santa Gertrudis steers

  14. Amphetamine and cocaine suppress social play behavior in rats through distinct mechanisms.

    Science.gov (United States)

    Achterberg, E J Marijke; Trezza, Viviana; Siviy, Stephen M; Schrama, Laurens; Schoffelmeer, Anton N M; Vanderschuren, Louk J M J

    2014-04-01

    Social play behavior is a characteristic form of social behavior displayed by juvenile and adolescent mammals. This social play behavior is highly rewarding and of major importance for social and cognitive development. Social play is known to be modulated by neurotransmitter systems involved in reward and motivation. Interestingly, psychostimulant drugs, such as amphetamine and cocaine, profoundly suppress social play, but the neural mechanisms underlying these effects remain to be elucidated. In this study, we investigated the pharmacological underpinnings of amphetamine- and cocaine-induced suppression of social play behavior in rats. The play-suppressant effects of amphetamine were antagonized by the alpha-2 adrenoreceptor antagonist RX821002 but not by the dopamine receptor antagonist alpha-flupenthixol. Remarkably, the effects of cocaine on social play were not antagonized by alpha-2 noradrenergic, dopaminergic, or serotonergic receptor antagonists, administered either alone or in combination. The effects of a subeffective dose of cocaine were enhanced by a combination of subeffective doses of the serotonin reuptake inhibitor fluoxetine, the dopamine reuptake inhibitor GBR12909, and the noradrenaline reuptake inhibitor atomoxetine. Amphetamine, like methylphenidate, exerts its play-suppressant effect through alpha-2 noradrenergic receptors. On the other hand, cocaine reduces social play by simultaneous increases in dopamine, noradrenaline, and serotonin neurotransmission. In conclusion, psychostimulant drugs with different pharmacological profiles suppress social play behavior through distinct mechanisms. These data contribute to our understanding of the neural mechanisms of social behavior during an important developmental period, and of the deleterious effects of psychostimulant exposure thereon.

  15. Semiclassical asymptotic behavior and the rearrangement mechanisms for Coulomb particles

    International Nuclear Information System (INIS)

    Bogdanov, A.V.; Gevorkyan, A.S.; Dubrovskii, G.V.

    1986-01-01

    The semiclassical asymptotic behavior of the eikonal amplitude of the resonance rearrangement in a system of three Coulomb particles is studied. It is shown that the general formula for the amplitude correctly describes two classical mechanisms (pickup and knockout) and one nonclassical mechanism (stripping). The classical mechanisms predominate at high energies, while the stripping mechanism predominates at lower energies. In the region of medium energies the dominant mechanism is the pickup (or Thomas) mechanism, which is realized by nonclassical means. For such transitions the classical cross section diverges, and the amplitude must be computed on a complex trajectory. The physical reasons for introducing the approximate complex trajectories are discussed. The contributions of all the mechanisms to the rearrangement cross section are found in their analytic forms

  16. Finite-element simulation of blood perfusion in muscle tissue during compression and sustained contraction.

    Science.gov (United States)

    Vankan, W J; Huyghe, J M; Slaaf, D W; van Donkelaar, C C; Drost, M R; Janssen, J D; Huson, A

    1997-09-01

    Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a finite-element model of the mechanical behavior of blood-perfused muscle tissue, which accounts for mechanical blood-tissue interaction in maximally vasodilated vasculature. Verification of the model was performed by comparing finite-element results of blood pressure and flow with experimental measurements in a muscle that is subject to well-controlled mechanical loading conditions. In addition, we performed simulations of blood perfusion during tetanic, isometric contraction and maximal vasodilation in a simplified, two-dimensional finite-element model of a rat calf muscle. A vascular waterfall in the venous compartment was identified as the main cause for blood flow impediment both in the experiment and in the finite-element simulations. The validated finite-element model offers possibilities for detailed analysis of blood perfusion in three-dimensional muscle models under complicated loading conditions.

  17. A dynamic cellular vertex model of growing epithelial tissues

    Science.gov (United States)

    Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao

    2017-04-01

    Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.

  18. Effect of Thermal Environment on the Mechanical Behaviors of Building Marble

    Directory of Open Access Journals (Sweden)

    Haijian Su

    2018-01-01

    Full Text Available High temperature and thermal environment can influence the mechanical properties of building materials worked in the civil engineering, for example, concrete, building rock, and steel. This paper examines standard cylindrical building marble specimens (Φ50 × 100 mm that were treated with high temperatures in two different thermal environments: vacuum (VE and airiness (AE. Uniaxial compression tests were also carried out on those specimens after heat treatment to study the effect that the thermal environment has on mechanical behaviors. With an increase in temperature, the mechanical behavior of marble in this study indicates a critical temperature of 600°C. Both the peak stress and elasticity modulus were larger for the VE than they were for the AE. The thermal environment has an obvious influence on the mechanical properties, especially at temperatures of 450∼750°C. The failure mode of marble specimens under uniaxial compression is mainly affected by the thermal environment at 600°C.

  19. Osteoarthritis year in review 2015: mechanics.

    Science.gov (United States)

    Varady, N H; Grodzinsky, A J

    2016-01-01

    Motivated by the conceptual framework of multi-scale biomechanics, this narrative review highlights recent major advances with a focus on gait and joint kinematics, then tissue-level mechanics, cell mechanics and mechanotransduction, matrix mechanics, and finally the nanoscale mechanics of matrix macromolecules. A literature review was conducted from January 2014 to April 2015 using PubMed to identify major developments in mechanics related to osteoarthritis (OA). Studies of knee adduction, flexion, rotation, and contact mechanics have extended our understanding of medial compartment loading. In turn, advances in measurement methodologies have shown how injuries to both the meniscus and ligaments, together, can alter joint kinematics. At the tissue scale, novel findings have emerged regarding the mechanics of the meniscus as well as cartilage superficial zone. Moving to the cell level, poroelastic and poro-viscoelastic mechanisms underlying chondrocyte deformation have been reported, along with the response to osmotic stress. Further developments have emerged on the role of calcium signaling in chondrocyte mechanobiology, including exciting findings on the function of mechanically activated cation channels newly found to be expressed in chondrocytes. Finally, AFM-based nano-rheology systems have enabled studies of thin murine tissues and brush layers of matrix molecules over a wide range of loading rates including high rates corresponding to impact injury. With OA acknowledged to be a disease of the joint as an organ, understanding mechanical behavior at each length scale helps to elucidate the connections between cell biology, matrix biochemistry and tissue structure/function that may play a role in the pathomechanics of OA. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  20. Decreased mechanical properties of heart valve tissue constructs cultured in platelet lysate as compared to fetal bovine serum

    NARCIS (Netherlands)

    Geemen, van D.; Riem Vis, P.W.; Soekhradj - Soechit, R.S.; Sluijter, J.P.G.; Liefde - van Beest, de M.; Kluin, J.; Bouten, C.V.C.

    2011-01-01

    In autologous heart valve tissue engineering, there is an ongoing search for alternatives of fetal bovine serum (FBS). Human platelet-lysate (PL) might be a promising substitute. In the present article, we aimed to examine the tissue formation, functionality, and mechanical properties of engineered

  1. Tissue specific distribution of pyrimidine deoxynucleoside salvage enzymes shed light on the mechanism of mitochondrial DNA depletion.

    Science.gov (United States)

    Wang, L; Eriksson, S

    2010-06-01

    Deficiency in thymidine kinase 2 (TK2) activity due to genetic alterations caused tissue specific mitochondrial DNA (mtDNA) depletion syndrome with symptoms resembling these of AIDS patients treated with nucleoside analogues. Mechanisms behind this mitochondrial effects is still not well understood. With rat as a model we isolated mitochondrial and cytosolic fractions from major organs and studied enzymes involved in thymidine (dT) and deoxycytidine (dC) phosphorylation by using ionic exchange column chromatography. A cytosolic form of TK2 was identified in all tested tissues in addition to mitochondrial TK2. TK1 was detected in liver and spleen cytosolic extracts while dCK was found in liver, spleen and lung cytosolic extracts. Thus, the nature of dT and dC salvage enzymes in each tissue type was determined. In most tissues TK2 is the only salvage enzyme present except liver and spleen. These results may help to explain the mechanisms of mitochondrial toxicity of antiviral nucleoside analogues and mtDNA depletion caused by TK2 deficiency.

  2. Peripheral afferent mechanisms underlying acupuncture inhibition of cocaine behavioral effects in rats.

    Directory of Open Access Journals (Sweden)

    Seol Ah Kim

    Full Text Available Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles or 200 (for Pacinian corpuscles Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue.

  3. Cell-biomaterial mechanical interaction in the framework of tissue engineering: insights, computational modeling and perspectives.

    Science.gov (United States)

    Sanz-Herrera, Jose A; Reina-Romo, Esther

    2011-01-01

    Tissue engineering is an emerging field of research which combines the use of cell-seeded biomaterials both in vitro and/or in vivo with the aim of promoting new tissue formation or regeneration. In this context, how cells colonize and interact with the biomaterial is critical in order to get a functional tissue engineering product. Cell-biomaterial interaction is referred to here as the phenomenon involved in adherent cells attachment to the biomaterial surface, and their related cell functions such as growth, differentiation, migration or apoptosis. This process is inherently complex in nature involving many physico-chemical events which take place at different scales ranging from molecular to cell body (organelle) levels. Moreover, it has been demonstrated that the mechanical environment at the cell-biomaterial location may play an important role in the subsequent cell function, which remains to be elucidated. In this paper, the state-of-the-art research in the physics and mechanics of cell-biomaterial interaction is reviewed with an emphasis on focal adhesions. The paper is focused on the different models developed at different scales available to simulate certain features of cell-biomaterial interaction. A proper understanding of cell-biomaterial interaction, as well as the development of predictive models in this sense, may add some light in tissue engineering and regenerative medicine fields.

  4. Biphasic Finite Element Modeling Reconciles Mechanical Properties of Tissue-Engineered Cartilage Constructs Across Testing Platforms.

    Science.gov (United States)

    Meloni, Gregory R; Fisher, Matthew B; Stoeckl, Brendan D; Dodge, George R; Mauck, Robert L

    2017-07-01

    Cartilage tissue engineering is emerging as a promising treatment for osteoarthritis, and the field has progressed toward utilizing large animal models for proof of concept and preclinical studies. Mechanical testing of the regenerative tissue is an essential outcome for functional evaluation. However, testing modalities and constitutive frameworks used to evaluate in vitro grown samples differ substantially from those used to evaluate in vivo derived samples. To address this, we developed finite element (FE) models (using FEBio) of unconfined compression and indentation testing, modalities commonly used for such samples. We determined the model sensitivity to tissue radius and subchondral bone modulus, as well as its ability to estimate material parameters using the built-in parameter optimization tool in FEBio. We then sequentially tested agarose gels of 4%, 6%, 8%, and 10% weight/weight using a custom indentation platform, followed by unconfined compression. Similarly, we evaluated the ability of the model to generate material parameters for living constructs by evaluating engineered cartilage. Juvenile bovine mesenchymal stem cells were seeded (2 × 10 7 cells/mL) in 1% weight/volume hyaluronic acid hydrogels and cultured in a chondrogenic medium for 3, 6, and 9 weeks. Samples were planed and tested sequentially in indentation and unconfined compression. The model successfully completed parameter optimization routines for each testing modality for both acellular and cell-based constructs. Traditional outcome measures and the FE-derived outcomes showed significant changes in material properties during the maturation of engineered cartilage tissue, capturing dynamic changes in functional tissue mechanics. These outcomes were significantly correlated with one another, establishing this FE modeling approach as a singular method for the evaluation of functional engineered and native tissue regeneration, both in vitro and in vivo.

  5. Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression.

    Science.gov (United States)

    Stokes, Ian A F; Laible, Jeffrey P; Gardner-Morse, Mack G; Costi, John J; Iatridis, James C

    2011-01-01

    Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force-time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity.

  6. On the mechanical behavior of a cryomilled Al-Ti-Cu alloy

    International Nuclear Information System (INIS)

    Han, Bing Q.; Lavernia, Enrique J.; Mohamed, Farghalli A.

    2003-01-01

    The mechanical behavior of a cryomilled Al10Ti2Cu that was later extruded was investigated in compression. The data obtained show that the strength of the extruded alloy parallel to the extrusion axis is higher than that normal to the axis. Also, a comparison between the compression behavior of the alloy and its tensile behavior reveals that there is a small asymmetry of yield strength with respect to deformation mode. Examination of the microstructure of the cryomilled alloy by means of transmission electron microscopy (TEM) indicates the presence of two phases: approximately 90% nanostructured Al(Cu) phase containing a dispersion of Al 3 Ti and 10% coarse-grained Al(Cu) phase. TEM observations indicate that as a result of the extrusion process, the larger (softer) grains of the Al(Cu) phase experience severe deformation, resulting in the development of mechanical fibering. It is suggested that the presence of coarse-grained Al(Cu) 'islands' in the matrix of the nanostructured phase and their change during extrusion into elongated bands may be responsible for the anisotropy of the mechanical properties of the extruded cryomilled Al10Ti2Cu

  7. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting.

    Science.gov (United States)

    Park, Ju Young; Choi, Jong-Cheol; Shim, Jin-Hyung; Lee, Jung-Seob; Park, Hyoungjun; Kim, Sung Won; Doh, Junsang; Cho, Dong-Woo

    2014-09-01

    Bioprinting is a promising technique for engineering composite tissues, such as osteochondral tissues. In this study, as a first step toward bioprinting-based osteochondral tissue regeneration, we systematically examined the behavior of chondrocytes and osteoblasts to hyaluronic acid (HA) and type I collagen (Col-1) hydrogels. First, we demonstrated that cells on hydrogels that were comprised of major native tissue extracellular matrix (ECM) components (i.e. chondrocytes on HA hydrogels and osteoblasts on Col-1 hydrogels) exhibited better proliferation and cell function than cells on non-native ECM hydrogels (i.e., chondrocytes on Col-1 hydrogels and osteoblasts on HA hydrogels). In addition, cells located near their native ECM hydrogels migrated towards them. Finally, we bioprinted three-dimensional (3D) osteochondral tissue-mimetic structures composed of two compartments, osteoblast-encapsulated Col-1 hydrogels and chondrocyte-encapsulated HA hydrogels, and found viability and functions of each cell type were well maintained within the 3D structures up to 14 days in vitro. These results suggest that with proper choice of hydrogel materials, bioprinting-based approaches can be successfully applied for osteochondral tissue regeneration.

  8. A positional code and anisotropic forces control tissue remodeling in Drosophila

    Science.gov (United States)

    Zallen, Jennifer

    A major challenge in developmental biology is to understand how tissue-scale changes in organism structure arise from events that occur on a cellular and molecular level. We are using cell biological, biophysical, and quantitative live-embryo imaging approaches to understand how genes encode the forces that shape tissues, and to identify the mechanisms that modulate cell behavior in response to local forces. In many animals, the elongated head-to-tail body axis is achieved by rapid and coordinated movements of hundreds of cells. We found that in the fruit fly, these cell movements are regulated by subcellular asymmetries in the localization of proteins that generate contractile and adhesive forces between cells. Asymmetries in the force-generating machinery are in turn controlled by a positional code of spatial information provided by an ancient family of Toll-related receptors that are widely used for pathogen recognition by the innate immune system. I will describe how this spatial system systematically orients local cell movements and collective rosette-like clusters in the Drosophila embryo. Rosettes have now also been shown to shape the body axis in chicks, frogs, and mice, demonstrating that rosette behaviors are a general mechanism linking cellular asymmetry to tissue reorganization.

  9. A three-dimensional collagen-fiber network model of the extracellular matrix for the simulation of the mechanical behaviors and micro structures.

    Science.gov (United States)

    Dong, Shoubin; Huang, Zetao; Tang, Liqun; Zhang, Xiaoyang; Zhang, Yongrou; Jiang, Yi

    2017-07-01

    The extracellular matrix (ECM) provides structural and biochemical support to cells and tissues, which is a critical factor for modulating cell dynamic behavior and intercellular communication. In order to further understand the mechanisms of the interactive relationship between cell and the ECM, we developed a three-dimensional (3D) collagen-fiber network model to simulate the micro structure and mechanical behaviors of the ECM and studied the stress-strain relationship as well as the deformation of the ECM under tension. In the model, the collagen-fiber network consists of abundant random distributed collagen fibers and some crosslinks, in which each fiber is modeled as an elastic beam and a crosslink is modeled as a linear spring with tensile limit, it means crosslinks will fail while the tensile forces exceed the limit of spring. With the given parameters of the beam and the spring, the simulated tensile stress-strain relation of the ECM highly matches the experimental results including damaged and failed behaviors. Moreover, by applying the maximal inscribed sphere method, we measured the size distribution of pores in the fiber network and learned the variation of the distribution with deformation. We also defined the alignment of the collagen-fibers to depict the orientation of fibers in the ECM quantitatively. By the study of changes of the alignment and the damaged crosslinks against the tensile strain, this paper reveals the comprehensive mechanisms of four stages of 'toe', 'linear', 'damage' and 'failure' in the tensile stress-strain relation of the ECM which can provide further insight in the study of cell-ECM interaction.

  10. Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures

    International Nuclear Information System (INIS)

    Sha, Zhen-Dong; Pei, Qing-Xiang; Ding, Zhiwei; Zhang, Yong-Wei; Jiang, Jin-Wu

    2015-01-01

    Phosphorene, a new two-dimensional (2D) material beyond graphene, has attracted great attention in recent years due to its superior physical and electrical properties. However, compared to graphene and other 2D materials, phosphorene has a relatively low Young’s modulus and fracture strength, which may limit its applications due to possible structure failures. For the mechanical reliability of future phosphorene-based nanodevices, it is necessary to have a deep understanding of the mechanical properties and fracture behaviors of phosphorene. Previous studies on the mechanical properties of phosphorene were based on first principles calculations at 0 K. In this work, we employ molecular dynamics simulations to explore the mechanical properties and fracture behaviors of phosphorene at finite temperatures. It is found that temperature has a significant effect on the mechanical properties of phosphorene. The fracture strength and strain reduce by more than 65% when the temperature increases from 0 K to 450 K. Moreover, the fracture strength and strain in the zigzag direction is more sensitive to the temperature rise than that in the armchair direction. More interestingly, the failure crack propagates preferably along the groove in the puckered structure when uniaxial tension is applied in the armchair direction. In contrast, when the uniaxial tension is applied in the zigzag direction, multiple cracks are observed with rough fracture surfaces. Our present work provides useful information about the mechanical properties and failure behaviors of phosphorene at finite temperatures. (paper)

  11. A quantitative study of the relationship between the distribution of different types of collagen and the mechanical behavior of rabbit medial collateral ligaments.

    Science.gov (United States)

    Wan, Chao; Hao, Zhixiu; Wen, Shizhu; Leng, Huijie

    2014-01-01

    The mechanical properties of ligaments are key contributors to the stability and function of musculoskeletal joints. Ligaments are generally composed of ground substance, collagen (mainly type I and III collagen), and minimal elastin fibers. However, no consensus has been reached about whether the distribution of different types of collagen correlates with the mechanical behaviors of ligaments. The main objective of this study was to determine whether the collagen type distribution is correlated with the mechanical properties of ligaments. Using axial tensile tests and picrosirius red staining-polarization observations, the mechanical behaviors and the ratios of the various types of collagen were investigated for twenty-four rabbit medial collateral ligaments from twenty-four rabbits of different ages, respectively. One-way analysis of variance was used in the comparison of the Young's modulus in the linear region of the stress-strain curves and the ratios of type I and III collagen for the specimens (the mid-substance specimens of the ligaments) with different ages. A multiple linear regression was performed using the collagen contents (the ratios of type I and III collagen) and the Young's modulus of the specimens. During the maturation of the ligaments, the type I collagen content increased, and the type III collagen content decreased. A significant and strong correlation (R2 = 0.839, P < 0.05) was identified by multiple linear regression between the collagen contents (i.e., the ratios of type I and type III collagen) and the mechanical properties of the specimens. The collagen content of ligaments might provide a new perspective for evaluating the linear modulus of global stress-strain curves for ligaments and open a new door for studying the mechanical behaviors and functions of connective tissues.

  12. A quantitative study of the relationship between the distribution of different types of collagen and the mechanical behavior of rabbit medial collateral ligaments.

    Directory of Open Access Journals (Sweden)

    Chao Wan

    Full Text Available The mechanical properties of ligaments are key contributors to the stability and function of musculoskeletal joints. Ligaments are generally composed of ground substance, collagen (mainly type I and III collagen, and minimal elastin fibers. However, no consensus has been reached about whether the distribution of different types of collagen correlates with the mechanical behaviors of ligaments. The main objective of this study was to determine whether the collagen type distribution is correlated with the mechanical properties of ligaments. Using axial tensile tests and picrosirius red staining-polarization observations, the mechanical behaviors and the ratios of the various types of collagen were investigated for twenty-four rabbit medial collateral ligaments from twenty-four rabbits of different ages, respectively. One-way analysis of variance was used in the comparison of the Young's modulus in the linear region of the stress-strain curves and the ratios of type I and III collagen for the specimens (the mid-substance specimens of the ligaments with different ages. A multiple linear regression was performed using the collagen contents (the ratios of type I and III collagen and the Young's modulus of the specimens. During the maturation of the ligaments, the type I collagen content increased, and the type III collagen content decreased. A significant and strong correlation (R2 = 0.839, P < 0.05 was identified by multiple linear regression between the collagen contents (i.e., the ratios of type I and type III collagen and the mechanical properties of the specimens. The collagen content of ligaments might provide a new perspective for evaluating the linear modulus of global stress-strain curves for ligaments and open a new door for studying the mechanical behaviors and functions of connective tissues.

  13. Nanoscale mechanical stimulation method for quantifying C. elegans mechanosensory behavior and memory

    OpenAIRE

    Kiso, Kaori; Sugi, Takuma; Okumura, Etsuko; Igarashi, Ryuji

    2016-01-01

    Here, we establish a novel economic system to quantify C. elegans mechanosensory behavior and memory by a controllable nanoscale mechanical stimulation. Using piezoelectric sheet speaker, we can flexibly change the vibration properties at a nanoscale displacement level and quantify behavioral responses and memory under the control of each vibration property. This system will facilitate understanding of physiological aspects of C. elegans mechanosensory behavior and memory.

  14. Mechanism by which BMI influences leisure-time physical activity behavior.

    Science.gov (United States)

    Godin, Gaston; Bélanger-Gravel, Ariane; Nolin, Bertrand

    2008-06-01

    The objective of this prospective study was to clarify the mechanism by which BMI influences leisure-time physical activity. This was achieved in accordance with the assumptions underlying the Theory of Planned Behavior (TPB), considered as one of the most useful theories to predict behavior adoption. At baseline, a sample of 1,530 respondents completed a short questionnaire to measure intention and perceived behavioral control (PBC), the two proximal determinants of behavior of TPB. Past behavior, sociodemographic variables, and weight and height were also assessed. The dependent variable, leisure-time physical activity was assessed 3 months later. Hierarchical multiple regression analyses revealed that BMI is a direct predictor of future leisure-time physical activity, not mediated by the variables of TPB. Additional hierarchical analyses indicated that BMI was not a moderator of the intention-behavior and PBC-behavior relationships. The results of this study suggest that high BMI is a significant negative determinant of leisure-time physical activity. This observation reinforces the importance of preventing weight gain as a health promotion strategy for avoiding a sedentary lifestyle.

  15. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium–niobium alloy with low Young's modulus

    International Nuclear Information System (INIS)

    Bai, Yanjie; Deng, Yi; Zheng, Yunfei; Li, Yongliang; Zhang, Ranran; Lv, Yalin; Zhao, Qiang; Wei, Shicheng

    2016-01-01

    β-Type titanium alloys with a low elastic modulus are a potential strategy to enhance bone remodeling and to mitigate the concern over the risks of osteanabrosis and bone resorption caused by stress shielding, when used to substitute irreversibly impaired hard tissue. Hence, in this study, a Ti–45Nb alloy with low Young's modulus and high strength was developed, and microstructure, mechanical properties, corrosion behaviors, cytocompatibility and in vivo osteo-compatibility of the alloy were systematically investigated for the first time. The results of mechanical tests showed that Young's modulus of the Ti–Nb alloy was reduced to about 64.3 GPa (close to human cortical bone) accompanied with higher tensile strength and hardness compared with those of pure Ti. Importantly, the Ti–Nb alloy exhibited superior corrosion resistance to Ti in different solutions including SBF, MAS and FAAS (MAS containing NaF) media. In addition, the Ti–Nb alloy produced no deleterious effect to L929 and MG-63 cells, and cells performed excellent cell attachment onto Ti–Nb surface, indicating a good in vitro cytocompatibility. In vivo evaluations indicated that Ti–Nb had comparable bone tissue compatibility to Ti determined from micro-CT and histological evaluations. The Ti–Nb alloy with an elasticity close to human bone, thus, could be suitable for orthopedic/dental applications. - Highlights: • A β-type Ti–45Nb alloy was developed with low Young's modulus close to human bone. • Ti–Nb alloy had superior corrosion resistance to pure Ti in different solutions. • Ti–Nb alloy displayed good cytocompatibility and in vivo bone tissue compatibility. • Ti–Nb alloy could be suitable for orthopedic/dental application based on the study.

  16. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium–niobium alloy with low Young's modulus

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yanjie [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Department of Stomatology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Science, Beijing 100012 (China); Deng, Yi [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zheng, Yunfei; Li, Yongliang [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Zhang, Ranran; Lv, Yalin [Department of Stomatology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029 (China); Zhao, Qiang, E-mail: 15911025865@139.com [Department of Stomatology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Science, Beijing 100012 (China); Wei, Shicheng, E-mail: sc-wei@pku.edu.cn [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

    2016-02-01

    β-Type titanium alloys with a low elastic modulus are a potential strategy to enhance bone remodeling and to mitigate the concern over the risks of osteanabrosis and bone resorption caused by stress shielding, when used to substitute irreversibly impaired hard tissue. Hence, in this study, a Ti–45Nb alloy with low Young's modulus and high strength was developed, and microstructure, mechanical properties, corrosion behaviors, cytocompatibility and in vivo osteo-compatibility of the alloy were systematically investigated for the first time. The results of mechanical tests showed that Young's modulus of the Ti–Nb alloy was reduced to about 64.3 GPa (close to human cortical bone) accompanied with higher tensile strength and hardness compared with those of pure Ti. Importantly, the Ti–Nb alloy exhibited superior corrosion resistance to Ti in different solutions including SBF, MAS and FAAS (MAS containing NaF) media. In addition, the Ti–Nb alloy produced no deleterious effect to L929 and MG-63 cells, and cells performed excellent cell attachment onto Ti–Nb surface, indicating a good in vitro cytocompatibility. In vivo evaluations indicated that Ti–Nb had comparable bone tissue compatibility to Ti determined from micro-CT and histological evaluations. The Ti–Nb alloy with an elasticity close to human bone, thus, could be suitable for orthopedic/dental applications. - Highlights: • A β-type Ti–45Nb alloy was developed with low Young's modulus close to human bone. • Ti–Nb alloy had superior corrosion resistance to pure Ti in different solutions. • Ti–Nb alloy displayed good cytocompatibility and in vivo bone tissue compatibility. • Ti–Nb alloy could be suitable for orthopedic/dental application based on the study.

  17. An investigation of the mechanical behavior of initially curved microplates under electrostatic actuation

    KAUST Repository

    Saghir, Shahid

    2018-03-28

    In this article, we investigate the mechanical behavior of initially curved microplates under electrostatic actuation. Microplates are essential components of many Micro-Electro-Mechanical System devices; however, they commonly undergo an initial curvature imperfection, due to the microfabrication process. Initial curvature imperfection significantly affects the mechanical behavior of microplates. In this work, we derive a dynamic analogue of the von Kármán governing equation for such plates. These equations are then used to develop a reduced order model based on the Galerkin procedure to simulate the static and dynamic behavior of the microplate. Two profiles of initial curvature commonly encountered in microfabricated structures are considered, where one assumes a variation in shape along one dimension of the plate only (cylindrical bending shape) while the other assumes a variation in shape along both dimensions of the plate. Their effects on both the static and dynamic responses of the microplates are examined and compared. We validate the reduced order model by comparing the calculated static behavior and the fundamental natural frequency with those computed by a finite element model over a range of the initial plate rise. The static behavior of the microplate is investigated when varying the DC voltage. Then, the dynamic behavior of the microplate is examined under the application of a harmonic AC voltage superimposed to a DC voltage.

  18. Examining tissue composition, whole-bone morphology and mechanical behavior of GorabPrx1 mice tibiae: A mouse model of premature aging.

    Science.gov (United States)

    Yang, Haisheng; Albiol, Laia; Chan, Wing-Lee; Wulsten, Dag; Seliger, Anne; Thelen, Michael; Thiele, Tobias; Spevak, Lyudmila; Boskey, Adele; Kornak, Uwe; Checa, Sara; Willie, Bettina M

    2017-12-08

    Gerodermia osteodysplastica (GO) is a segmental progeroid disorder caused by loss-of-function mutations in the GORAB gene, associated with early onset osteoporosis and bone fragility. A conditional mouse model of GO (Gorab Prx1 ) was generated in which the Gorab gene was deleted in long bones. We examined the biomechanical/functional relevance of the Gorab Prx1 mutants as a premature aging model by characterizing bone composition, tissue-level strains, and whole-bone morphology and mechanical properties of the tibia. MicroCT imaging showed that Gorab Prx1 tibiae had an increased anterior convex curvature and decreased cortical cross-sectional area, cortical thickness and moments of inertia, compared to littermate control (LC) tibiae. Fourier transform infrared (FTIR) imaging indicated a 34% decrease in mineral/matrix ratio and a 27% increase in acid phosphate content in the posterior metaphyseal cortex of the Gorab Prx1 tibiae (p finite element analysis showed ∼two times higher tissue-level strains within the Gorab Prx1 tibiae relative to LC tibiae when subjected to axial compressive loads of the same magnitude. Three-point bending tests suggested that Gorab Prx1 tibiae were weaker and more brittle, as indicated by decreasing whole-bone strength (46%), stiffness (55%), work-to-fracture (61%) and post-yield displacement (47%). Many of these morphological and biomechanical characteristics of the Gorab Prx1 tibia recapitulated changes in other animal models of skeletal aging. Future studies are necessary to confirm how our observations might guide the way to a better understanding and treatment of GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. On the Impact of Intraluminal Thrombus Mechanical Behavior in AAA Passive Mechanics.

    Science.gov (United States)

    Riveros, Fabián; Martufi, Giampaolo; Gasser, T Christian; Rodriguez-Matas, Jose F

    2015-09-01

    Intraluminal thrombus (ILT) is a pseudo-tissue that develops from coagulated blood, and is found in most abdominal aortic aneurysms (AAAs) of clinically relevant size. A number of studies have suggested that ILT mechanical characteristics may be related to AAA risk of rupture, even though there is still great controversy in this regard. ILT is isotropic and inhomogeneous and may appear as a soft (single-layered) or stiff (multilayered fibrotic) tissue. This paper aims to investigate how ILT constitution and topology influence the magnitude and location of peak wall stress (PWS). In total 21 patient-specific AAAs (diameter 4.2-5.4 cm) were reconstructed from computer tomography images and biomechanically analyzed using state-of-the-art modeling assumptions. Results indicated that PWS correlated stronger with ILT volume (ρ = 0.44, p = 0.05) and minimum thickness of ILT layer (ρ = 0.73, p = 0.001) than with maximum AAA diameter (ρ = 0.05, p = 0.82). On average PWS was 20% (SD 12%) higher for FE models that used soft instead of stiff ILT models (p AAA diameter and was independent from ILT stiffness. In addition, ILT heterogeneity, i.e., the spatial composition of soft and stiff thrombus tissue, can considerably influence stress in the AAA wall. The present study is limited to identification of influential biomechanical factors, and how its findings translate to an AAA rupture risk assessment remains to be explored by clinical studies.

  20. The mechanical properties of human adipose tissues and their relationships to the structure and composition of the extracellular matrix.

    Science.gov (United States)

    Alkhouli, Nadia; Mansfield, Jessica; Green, Ellen; Bell, James; Knight, Beatrice; Liversedge, Neil; Tham, Ji Chung; Welbourn, Richard; Shore, Angela C; Kos, Katarina; Winlove, C Peter

    2013-12-01

    Adipose tissue (AT) expansion in obesity is characterized by cellular growth and continuous extracellular matrix (ECM) remodeling with increased fibrillar collagen deposition. It is hypothesized that the matrix can inhibit cellular expansion and lipid storage. Therefore, it is important to fully characterize the ECM's biomechanical properties and its interactions with cells. In this study, we characterize and compare the mechanical properties of human subcutaneous and omental tissues, which have different physiological functions. AT was obtained from 44 subjects undergoing surgery. Force/extension and stress/relaxation data were obtained. The effects of osmotic challenge were measured to investigate the cellular contribution to tissue mechanics. Tissue structure and its response to tensile strain were determined using nonlinear microscopy. AT showed nonlinear stress/strain characteristics of up to a 30% strain. Comparing paired subcutaneous and omental samples (n = 19), the moduli were lower in subcutaneous: initial 1.6 ± 0.8 (means ± SD) and 2.9 ± 1.5 kPa (P = 0.001), final 11.7 ± 6.4 and 32 ± 15.6 kPa (P matrix fibers. These results suggest that subcutaneous AT has greater capacity for expansion and recovery from mechanical deformation than omental AT.

  1. Intermittent straining accelerates the development of tissue properties in engineered heart valve tissue

    NARCIS (Netherlands)

    Rubbens, M.P.; Mol, A.; Boerboom, R.A.; Bank, R.A.; Baaijens, F.P.T.; Bouten, C.V.C.

    2009-01-01

    Tissue-engineered heart valves lack sufficient amounts of functionally organized structures and consequently do not meet in vivo mechanical demands. To optimize tissue architecture and hence improve mechanical properties, various in vitro mechanical conditioning protocols have been proposed, of

  2. In situ tests for investigating thermal and mechanical rock behaviors at an underground research tunnel

    International Nuclear Information System (INIS)

    Kwon, Sangki; Cho, Won-Jin

    2013-01-01

    The understanding of the thermal and mechanical behaviors expected to be happened around an underground high-level radioactive waste (HLW) repository is important for a successful site selection, construction, operation, and closure of the repository. In this study, the thermal and mechanical behaviors of rock and rock mass were investigated from in situ borehole heater test and the studies for characterizing an excavation damaged zone (EDZ), which had been carried out at an underground research tunnel, KURT, constructed in granite for the validation of a HLW disposal concept. Thermal, mechanical, and hydraulic properties in EDZ could be predicted from various in situ and laboratory tests as well as numerical simulations. The complex thermo-mechanical coupling behavior of rock could be modeled using the rock properties. (author)

  3. Adaptive Breast Radiation Therapy Using Modeling of Tissue Mechanics: A Breast Tissue Segmentation Study

    International Nuclear Information System (INIS)

    Juneja, Prabhjot; Harris, Emma J.; Kirby, Anna M.; Evans, Philip M.

    2012-01-01

    Purpose: To validate and compare the accuracy of breast tissue segmentation methods applied to computed tomography (CT) scans used for radiation therapy planning and to study the effect of tissue distribution on the segmentation accuracy for the purpose of developing models for use in adaptive breast radiation therapy. Methods and Materials: Twenty-four patients receiving postlumpectomy radiation therapy for breast cancer underwent CT imaging in prone and supine positions. The whole-breast clinical target volume was outlined. Clinical target volumes were segmented into fibroglandular and fatty tissue using the following algorithms: physical density thresholding; interactive thresholding; fuzzy c-means with 3 classes (FCM3) and 4 classes (FCM4); and k-means. The segmentation algorithms were evaluated in 2 stages: first, an approach based on the assumption that the breast composition should be the same in both prone and supine position; and second, comparison of segmentation with tissue outlines from 3 experts using the Dice similarity coefficient (DSC). Breast datasets were grouped into nonsparse and sparse fibroglandular tissue distributions according to expert assessment and used to assess the accuracy of the segmentation methods and the agreement between experts. Results: Prone and supine breast composition analysis showed differences between the methods. Validation against expert outlines found significant differences (P<.001) between FCM3 and FCM4. Fuzzy c-means with 3 classes generated segmentation results (mean DSC = 0.70) closest to the experts' outlines. There was good agreement (mean DSC = 0.85) among experts for breast tissue outlining. Segmentation accuracy and expert agreement was significantly higher (P<.005) in the nonsparse group than in the sparse group. Conclusions: The FCM3 gave the most accurate segmentation of breast tissues on CT data and could therefore be used in adaptive radiation therapy-based on tissue modeling. Breast tissue segmentation

  4. Adaptive Breast Radiation Therapy Using Modeling of Tissue Mechanics: A Breast Tissue Segmentation Study

    Energy Technology Data Exchange (ETDEWEB)

    Juneja, Prabhjot, E-mail: Prabhjot.Juneja@icr.ac.uk [Joint Department of Physics, Institute of Cancer Research, Sutton (United Kingdom); Harris, Emma J. [Joint Department of Physics, Institute of Cancer Research, Sutton (United Kingdom); Kirby, Anna M. [Department of Academic Radiotherapy, Royal Marsden National Health Service Foundation Trust, Sutton (United Kingdom); Evans, Philip M. [Joint Department of Physics, Institute of Cancer Research, Sutton (United Kingdom)

    2012-11-01

    Purpose: To validate and compare the accuracy of breast tissue segmentation methods applied to computed tomography (CT) scans used for radiation therapy planning and to study the effect of tissue distribution on the segmentation accuracy for the purpose of developing models for use in adaptive breast radiation therapy. Methods and Materials: Twenty-four patients receiving postlumpectomy radiation therapy for breast cancer underwent CT imaging in prone and supine positions. The whole-breast clinical target volume was outlined. Clinical target volumes were segmented into fibroglandular and fatty tissue using the following algorithms: physical density thresholding; interactive thresholding; fuzzy c-means with 3 classes (FCM3) and 4 classes (FCM4); and k-means. The segmentation algorithms were evaluated in 2 stages: first, an approach based on the assumption that the breast composition should be the same in both prone and supine position; and second, comparison of segmentation with tissue outlines from 3 experts using the Dice similarity coefficient (DSC). Breast datasets were grouped into nonsparse and sparse fibroglandular tissue distributions according to expert assessment and used to assess the accuracy of the segmentation methods and the agreement between experts. Results: Prone and supine breast composition analysis showed differences between the methods. Validation against expert outlines found significant differences (P<.001) between FCM3 and FCM4. Fuzzy c-means with 3 classes generated segmentation results (mean DSC = 0.70) closest to the experts' outlines. There was good agreement (mean DSC = 0.85) among experts for breast tissue outlining. Segmentation accuracy and expert agreement was significantly higher (P<.005) in the nonsparse group than in the sparse group. Conclusions: The FCM3 gave the most accurate segmentation of breast tissues on CT data and could therefore be used in adaptive radiation therapy-based on tissue modeling. Breast tissue

  5. Recent advances in behavioral addiction treatments: focusing on mechanisms of change.

    Science.gov (United States)

    Longabaugh, Richard; Magill, Molly

    2011-10-01

    In the latter half of the 20th century, research on behavioral treatments for addictions aimed to develop and test effective treatments. Among the treatments found to be at least moderately effective, direct comparisons failed to reveal consistent superiority of one approach over another. This ubiquitous finding held true despite underlying theories that differed markedly in their proposed causal processes related to patient change. In the 21st century, the focus of treatment research is increasingly on how treatment works for whom rather than whether it works. Studies of active treatment ingredients and mechanisms of behavioral change, while promising, have yielded inconsistent results. Simple mediation analysis may need to be expanded via inclusion of models testing for moderated mediation, mediated moderation, and conditional indirect effects. Examples are offered as to how these more complex models can lead to increased understanding of the conditions under which specific treatment interventions will be effective and mechanisms of change operative in improving behavioral treatments for addictions.

  6. Experimental study of thermo-mechanical behavior of a thermosetting shape-memory polymer

    Science.gov (United States)

    Liu, Ruoxuan; Li, Yunxin; Liu, Zishun

    2018-01-01

    The thermo-mechanical behavior of shape-memory polymers (SMPs) serves for the engineering applications of SMPs. Therefore the understanding of thermo-mechanical behavior of SMPs is of great importance. This paper investigates the influence of loading rate and loading level on the thermo-mechanical behavior of a thermosetting shape-memory polymer through experimental study. A series of cyclic tension tests and shape recovery tests at different loading conditions are performed to study the strain level and strain rate effect. The results of tension tests show that the thermosetting shape-memory polymer will behave as rubber material at temperature lower than the glass transition temperature (Tg) and it can obtain a large shape fix ratio at cyclic loading condition. The shape recovery tests exhibit that loading rate and loading level have little effect on the beginning and ending of shape recovery process of the thermosetting shape-memory polymer. Compared with the material which is deformed at temperature higher than Tg, the material deformed at temperature lower than Tg behaves a bigger recovery speed.

  7. Cellular Mechanisms Underlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output

    Directory of Open Access Journals (Sweden)

    Julia Schiemann

    2015-05-01

    Full Text Available Neuronal activity in primary motor cortex (M1 correlates with behavioral state, but the cellular mechanisms underpinning behavioral state-dependent modulation of M1 output remain largely unresolved. Here, we performed in vivo patch-clamp recordings from layer 5B (L5B pyramidal neurons in awake mice during quiet wakefulness and self-paced, voluntary movement. We show that L5B output neurons display bidirectional (i.e., enhanced or suppressed firing rate changes during movement, mediated via two opposing subthreshold mechanisms: (1 a global decrease in membrane potential variability that reduced L5B firing rates (L5Bsuppressed neurons, and (2 a coincident noradrenaline-mediated increase in excitatory drive to a subpopulation of L5B neurons (L5Benhanced neurons that elevated firing rates. Blocking noradrenergic receptors in forelimb M1 abolished the bidirectional modulation of M1 output during movement and selectively impaired contralateral forelimb motor coordination. Together, our results provide a mechanism for how noradrenergic neuromodulation and network-driven input changes bidirectionally modulate M1 output during motor behavior.

  8. The influence of freezing and tissue porosity on the material properties of vegetable tissues

    International Nuclear Information System (INIS)

    Ralfs, Julie D.

    2002-01-01

    Tissue porosity and fluid flow have been shown to be important parameters affecting the mechanical and sensorial behaviour of edible plant tissues. The quantity of fluid and the manner with which it was released on compression of the plant tissue were also important regarding the sensory perception and a good indication of any structural damage resulting from freezing, for example. Potato, carrot and Chinese water chestnut were used to study the effects freezing has on model plant tissues. Mechanical and structural measurements of the plant tissue were correlated with sensory analysis. Conventional freezing was shown to cause severe structural damage predominantly in the form of cavities between or through cells, resulting in decreases in mechanical strength and stiffness, and samples that were perceived in the mouth as 'soft' and 'wet'. The location and size of the cavities formed from ice crystals, depended on the particular plant tissue being frozen, the processing it was subjected to prior to freezing, the size of the sample and the cooling regime employed to freeze the tissue. Cavitation in the tissue resulted in an increase in tissue porosity, which enabled fluid to flow more easily from the tissue on compression, thus affecting the mechanical properties and sensory perception. Freezing damage to plant tissues was shown to be reduced, and sometimes prevented, when active antifreeze proteins (AFPs) were introduced into the tissues by vacuum infiltration or transformation and the tissue was frozen at a suitable cooling rate. Theoretical modelling was applied to the fluid flow and porosity data to test the validity of the models and to subsequently predict the mechanical behaviour of potato from the structural properties of the tissue. (author)

  9. A Multiscale Simulation Method and Its Application to Determine the Mechanical Behavior of Heterogeneous Geomaterials

    Directory of Open Access Journals (Sweden)

    Shengwei Li

    2017-01-01

    Full Text Available To study the micro/mesomechanical behaviors of heterogeneous geomaterials, a multiscale simulation method that combines molecular simulation at the microscale, a mesoscale analysis of polished slices, and finite element numerical simulation is proposed. By processing the mesostructure images obtained from analyzing the polished slices of heterogeneous geomaterials and mapping them onto finite element meshes, a numerical model that more accurately reflects the mesostructures of heterogeneous geomaterials was established by combining the results with the microscale mechanical properties of geomaterials obtained from the molecular simulation. This model was then used to analyze the mechanical behaviors of heterogeneous materials. Because kernstone is a typical heterogeneous material that comprises many types of mineral crystals, it was used for the micro/mesoscale mechanical behavior analysis in this paper using the proposed method. The results suggest that the proposed method can be used to accurately and effectively study the mechanical behaviors of heterogeneous geomaterials at the micro/mesoscales.

  10. Understanding the Personality and Behavioral Mechanisms Defining Hypersexuality in Men Who Have Sex With Men.

    Science.gov (United States)

    Miner, Michael H; Romine, Rebecca Swinburne; Raymond, Nancy; Janssen, Erick; MacDonald, Angus; Coleman, Eli

    2016-09-01

    Hypersexuality has been conceptualized as sexual addiction, compulsivity, and impulsivity, among others, in the absence of strong empirical data in support of any specific conceptualization. To investigate personality factors and behavioral mechanisms that are relevant to hypersexuality in men who have sex with men. A sample of 242 men who have sex with men was recruited from various sites in a moderate-size mid-western city. Participants were assigned to a hypersexuality group or a control group using an interview similar to the Structured Clinical Interview for the Diagnostic and Statistical Manual for Mental Disorders, Fourth Edition. Self-report inventories were administered that measured the broad personality constructs of positive emotionality, negative emotionality, and constraint and more narrow constructs related to sexual behavioral control, behavioral activation, behavioral inhibition, sexual excitation, sexual inhibition, impulsivity, attention-deficit/hyperactivity disorder, and sexual behavior. Hierarchical logistic regression was used to determine the relation between these personality and behavioral variables and group membership. A hierarchical logistic regression controlling for age showed a significant positive relation between hypersexuality and negative emotionality and a negative relation with constraint. None of the behavioral mechanism variables entered this equation. However, a hierarchical multiple regression analysis predicting sexual behavioral control indicated that lack of such control was positively related to sexual excitation and sexual inhibition owing to the threat of performance failure and negatively related to sexual inhibition owing to the threat of performance consequences and general behavioral inhibition Hypersexuality was found to be related to two broad personality factors that are characterized by emotional reactivity, risk taking, and impulsivity. The associated lack of sexual behavior control is influenced by sexual

  11. Biomechanics and mechanobiology in functional tissue engineering

    Science.gov (United States)

    Guilak, Farshid; Butler, David L.; Goldstein, Steven A.; Baaijens, Frank P.T.

    2014-01-01

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of “functional tissue engineering” has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. PMID:24818797

  12. Mechanical behavior of peripheral stents and stent-vessel interaction: A computational study

    Science.gov (United States)

    Dottori, Serena; Flamini, Vittoria; Vairo, Giuseppe

    2016-05-01

    In this paper stents employed to treat peripheral artery disease are analyzed through a three-dimensional finite-element approach, based on a large-strain and large-displacement formulation. Aiming to evaluate the influence of some stent design parameters on stent mechanics and on the biomechanical interaction between stent and arterial wall, quasi-static and dynamic numerical analyses are carried out by referring to computational models of commercially and noncommercially available versions of both braided self-expandable stents and balloon-expandable stents. Addressing isolated device models, opening mechanisms and flexibility of both opened and closed stent configurations are numerically experienced. Moreover, stent deployment into a stenotic peripheral artery and possible postdilatation angioplasty (the latter for the self-expandable device only) are simulated by considering different idealized vessel geometries and accounting for the presence of a stenotic plaque. Proposed results highlight important differences in the mechanical response of the two types of stents, as well as a significant influence of the vessel shape on the stress distributions arising upon the artery-plaque system. Finally, computational results are used to assess both the stent mechanical performance and the effectiveness of the stenting treatment, allowing also to identify possible critical conditions affecting the risk of stent fracture, tissue damage, and/or pathological tissue response.

  13. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    Science.gov (United States)

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  14. Mechanics of the pulmonary valve in the aortic position

    NARCIS (Netherlands)

    Soares, A.L.F.; Geemen, van D.; Bogaerdt, van den A.J.; Oomens, C.W.J.; Bouten, C.V.C.; Baaijens, F.P.T.

    2014-01-01

    Mathematical models can provide valuable information to assess and evaluate the mechanical behavior and remodeling of native tissue. A relevant example when studying collagen remodeling is the Ross procedure because it involves placing the pulmonary autograft in the more demanding aortic valve

  15. Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis.

    Science.gov (United States)

    Besschetnova, Tatiana Y; Ichimura, Takaharu; Katebi, Negin; St Croix, Brad; Bonventre, Joseph V; Olsen, Bjorn R

    2015-03-01

    It is well known that angiogenesis is linked to fibrotic processes in fibroproliferative diseases, but insights into pathophysiological processes are limited, due to lack of understanding of molecular mechanisms controlling endothelial and fibroblastic homeostasis. We demonstrate here that the matrix receptor anthrax toxin receptor 1 (ANTXR1), also known as tumor endothelial marker 8 (TEM8), is an essential component of these mechanisms. Loss of TEM8 function in mice causes reduced synthesis of endothelial basement membrane components and hyperproliferative and leaky blood vessels in skin. In addition, endothelial cell alterations in mutants are almost identical to those of endothelial cells in infantile hemangioma lesions, including activated VEGF receptor signaling in endothelial cells, increased expression of the downstream targets VEGF and CXCL12, and increased numbers of macrophages and mast cells. In contrast, loss of TEM8 in fibroblasts leads to increased rates of synthesis of fiber-forming collagens, resulting in progressive fibrosis in skin and other organs. Compromised interactions between TEM8-deficient endothelial and fibroblastic cells cause dramatic reduction in the activity of the matrix-degrading enzyme MMP2. In addition to insights into mechanisms of connective tissue homeostasis, our data provide molecular explanations for vascular and connective tissue abnormalities in GAPO syndrome, caused by loss-of-function mutations in ANTXR1. Furthermore, the loss of MMP2 activity suggests that fibrotic skin abnormalities in GAPO syndrome are, in part, the consequence of pathophysiological mechanisms underlying syndromes (NAO, Torg and Winchester) with multicentric skin nodulosis and osteolysis caused by homozygous loss-of-function mutations in MMP2. Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  16. Mechanical Properties and Brittle Behavior of Silica Aerogels

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2015-12-01

    Full Text Available Sets of silica gels: aerogels, xerogels and sintered aerogels, have been studied in the objective to understand the mechanical behavior of these highly porous solids. The mechanical behaviour of gels is described in terms of elastic and brittle materials, like glasses or ceramics. The magnitude of the elastic and rupture modulus is several orders of magnitude lower compared to dense glass. The mechanical behaviours (elastic and brittle are related to the same kinds of gel characteristics: pore volume, silanol content and pore size. Elastic modulus depends strongly on the volume fraction of pores and on the condensation reaction between silanols. Concerning the brittleness features: rupture modulus and toughness, it is shown that pores size plays an important role. Pores can be considered as flaws in the terms of fracture mechanics and the flaw size is related to the pore size. Weibull’s theory is used to show the statistical nature of flaw. Moreover, stress corrosion behaviour is studied as a function of environmental conditions (water and alcoholic atmosphere and temperature.

  17. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting

    International Nuclear Information System (INIS)

    Park, Ju Young; Choi, Jong-Cheol; Lee, Jung-Seob; Park, Hyoungjun; Doh, Junsang; Cho, Dong-Woo; Shim, Jin-Hyung; Kim, Sung Won

    2014-01-01

    Bioprinting is a promising technique for engineering composite tissues, such as osteochondral tissues. In this study, as a first step toward bioprinting-based osteochondral tissue regeneration, we systematically examined the behavior of chondrocytes and osteoblasts to hyaluronic acid (HA) and type I collagen (Col-1) hydrogels. First, we demonstrated that cells on hydrogels that were comprised of major native tissue extracellular matrix (ECM) components (i.e. chondrocytes on HA hydrogels and osteoblasts on Col-1 hydrogels) exhibited better proliferation and cell function than cells on non-native ECM hydrogels (i.e., chondrocytes on Col-1 hydrogels and osteoblasts on HA hydrogels). In addition, cells located near their native ECM hydrogels migrated towards them. Finally, we bioprinted three-dimensional (3D) osteochondral tissue-mimetic structures composed of two compartments, osteoblast-encapsulated Col-1 hydrogels and chondrocyte-encapsulated HA hydrogels, and found viability and functions of each cell type were well maintained within the 3D structures up to 14 days in vitro. These results suggest that with proper choice of hydrogel materials, bioprinting-based approaches can be successfully applied for osteochondral tissue regeneration. (paper)

  18. New insights into mechanisms of stem cell daughter fate determination in regenerative tissues.

    Science.gov (United States)

    Sada, Aiko; Tumbar, Tudorita

    2013-01-01

    Stem cells can self-renew and differentiate over extended periods of time. Understanding how stem cells acquire their fates is a central question in stem cell biology. Early work in Drosophila germ line and neuroblast showed that fate choice is achieved by strict asymmetric divisions that can generate each time one stem and one differentiated cell. More recent work suggests that during homeostasis, some stem cells can divide symmetrically to generate two differentiated cells or two identical stem cells to compensate for stem cell loss that occurred by direct differentiation or apoptosis. The interplay of all these factors ensures constant tissue regeneration and the maintenance of stem cell pool size. This interplay can be modeled as a population-deterministic dynamics that, at least in some systems, may be described as stochastic behavior. Here, we overview recent progress made on the characterization of stem cell dynamics in regenerative tissues. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Experimental approach and micro-mechanical modeling of the mechanical behavior of irradiated zirconium alloys; Approche experimentale et modelisation micromecanique du comportement des alliages de zirconium irradies

    Energy Technology Data Exchange (ETDEWEB)

    Onimus, F

    2003-12-01

    Zirconium alloys cladding tubes containing nuclear fuel of the Pressurized Water Reactors constitute the first safety barrier against the dissemination of radioactive elements. Thus, it is essential to predict the mechanical behavior of the material in-reactor conditions. This study aims, on the one hand, to identify and characterize the mechanisms of the plastic deformation of irradiated zirconium alloys and, on the other hand, to propose a micro-mechanical modeling based on these mechanisms. The experimental analysis shows that, for the irradiated material, the plastic deformation occurs by dislocation channeling. For transverse tensile test and internal pressure test this channeling occurs in the basal planes. However, for axial tensile test, the study revealed that the plastic deformation also occurs by channeling but in the prismatic and pyramidal planes. In addition, the study of the macroscopic mechanical behavior, compared to the deformation mechanisms observed by TEM, suggested that the internal stress is higher in the case of irradiated material than in the case of non-irradiated material, because of the very heterogeneous character of the plastic deformation. This analysis led to a coherent interpretation of the mechanical behavior of irradiated materials, in terms of deformation mechanisms. The mechanical behavior of irradiated materials was finally modeled by applying homogenization methods for heterogeneous materials. This model is able to reproduce adequately the mechanical behavior of the irradiated material, in agreement with the TEM observations. (author)

  20. The influence of freezing and tissue porosity on the material properties of vegetable tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ralfs, Julie D

    2002-07-01

    Tissue porosity and fluid flow have been shown to be important parameters affecting the mechanical and sensorial behaviour of edible plant tissues. The quantity of fluid and the manner with which it was released on compression of the plant tissue were also important regarding the sensory perception and a good indication of any structural damage resulting from freezing, for example. Potato, carrot and Chinese water chestnut were used to study the effects freezing has on model plant tissues. Mechanical and structural measurements of the plant tissue were correlated with sensory analysis. Conventional freezing was shown to cause severe structural damage predominantly in the form of cavities between or through cells, resulting in decreases in mechanical strength and stiffness, and samples that were perceived in the mouth as 'soft' and 'wet'. The location and size of the cavities formed from ice crystals, depended on the particular plant tissue being frozen, the processing it was subjected to prior to freezing, the size of the sample and the cooling regime employed to freeze the tissue. Cavitation in the tissue resulted in an increase in tissue porosity, which enabled fluid to flow more easily from the tissue on compression, thus affecting the mechanical properties and sensory perception. Freezing damage to plant tissues was shown to be reduced, and sometimes prevented, when active antifreeze proteins (AFPs) were introduced into the tissues by vacuum infiltration or transformation and the tissue was frozen at a suitable cooling rate. Theoretical modelling was applied to the fluid flow and porosity data to test the validity of the models and to subsequently predict the mechanical behaviour of potato from the structural properties of the tissue. (author)

  1. Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models.

    Science.gov (United States)

    Yoo, Lawrence; Gupta, Vijay; Lee, Choongyeop; Kavehpore, Pirouz; Demer, Joseph L

    2011-12-01

    Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain-stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5-2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01-0.5 s(-1) strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multi-mode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus.

  2. Application of discrete element method to study mechanical behaviors of ceramic breeder pebble beds

    International Nuclear Information System (INIS)

    An Zhiyong; Ying, Alice; Abdou, Mohamed

    2007-01-01

    In this paper, the discrete element method (DEM) approach has been applied to study mechanical behaviors of ceramic breeder pebble beds. Directly simulating the contact state of each individual particle by the physically based interaction laws, the DEM numerical program is capable of predicting the mechanical behaviors of non-standard packing structures. The program can also provide the data to trace the evolution of contact characteristics and forces as deformation proceeds, as well as the particle movement when the pebble bed is subjected to external loadings. Our numerical simulations focus on predicting the mechanical behaviors of ceramic breeder pebble beds, which include typical fusion breeder materials in solid breeder blankets. Current numerical results clearly show that the packing density and the bed geometry can have an impact on the mechanical stiffness of the pebble beds. Statistical data show that the contact forces are highly related to the contact status of the pebbles

  3. Mechanical behavior of mullite green disks prepared by thermal consolidation with different starches

    International Nuclear Information System (INIS)

    Talou, M.H.; Tomba Martinez, A.G.; Camerucci, M.A.

    2011-01-01

    Mechanical behavior of porous green disks obtained by thermal consolidation of mullite suspensions with cassava and potato starches was studied by diametral compression testing. Disks (thickness/diameter ≤ 0.25) were prepared by thermal treatment (70-80 °C, 2h) of mullite (75 vol%)/starch (25 vol%) of suspensions (40 vol%) pre-gelled at 55-60 °C, and dried (40 °C, 24 h). Samples were characterized by porosity measurements (50-55%) and microstructural analysis (SEM). Several mechanical parameters were determined: mechanical strength, Young's modulus, strain to fracture and yield stress. Typical crack patterns were analyzed and the fractographic analysis was performed by SEM. Mechanical results were related to the developed microstructures, the behavior of the starches in aqueous suspension, and the properties of the formed gels. For comparative purposes, mullite green disks obtained by burning out the starch (650 °C, 2h) were also mechanically evaluated. (author)

  4. Mechanical properties and cellular response of novel electrospun nanofibers for ligament tissue engineering: Effects of orientation and geometry.

    Science.gov (United States)

    Pauly, Hannah M; Kelly, Daniel J; Popat, Ketul C; Trujillo, Nathan A; Dunne, Nicholas J; McCarthy, Helen O; Haut Donahue, Tammy L

    2016-08-01

    Electrospun nanofibers are a promising material for ligamentous tissue engineering, however weak mechanical properties of fibers to date have limited their clinical usage. The goal of this work was to modify electrospun nanofibers to create a robust structure that mimics the complex hierarchy of native tendons and ligaments. The scaffolds that were fabricated in this study consisted of either random or aligned nanofibers in flat sheets or rolled nanofiber bundles that mimic the size scale of fascicle units in primarily tensile load bearing soft musculoskeletal tissues. Altering nanofiber orientation and geometry significantly affected mechanical properties; most notably aligned nanofiber sheets had the greatest modulus; 125% higher than that of random nanofiber sheets; and 45% higher than aligned nanofiber bundles. Modifying aligned nanofiber sheets to form aligned nanofiber bundles also resulted in approximately 107% higher yield stresses and 140% higher yield strains. The mechanical properties of aligned nanofiber bundles were in the range of the mechanical properties of the native ACL: modulus=158±32MPa, yield stress=57±23MPa and yield strain=0.38±0.08. Adipose derived stem cells cultured on all surfaces remained viable and proliferated extensively over a 7 day culture period and cells elongated on nanofiber bundles. The results of the study suggest that aligned nanofiber bundles may be useful for ligament and tendon tissue engineering based on their mechanical properties and ability to support cell adhesion, proliferation, and elongation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ultrasound Imaging Techniques for Spatiotemporal Characterization of Composition, Microstructure, and Mechanical Properties in Tissue Engineering.

    Science.gov (United States)

    Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P

    2016-08-01

    Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.

  6. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species.

    Science.gov (United States)

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Eyles, Alieta; Shabala, Sergey

    2016-10-01

    Three different species of Brassica, with differential salt sensitivity were used to understand physiological mechanisms of salt tolerance operating in these species and to evaluate the relative contribution of different strategies to cope with salt load. Brassica napus was the most tolerant species in terms of the overall performance, with Brassica juncea and Brassica oleracea being much more sensitive to salt stress with no obvious difference between them. While prominent reduction in net CO2 assimilation was observed in both sensitive species, physiological mechanisms beyond this reduction differed strongly. Brassica juncea plants possessed high osmotolerance and were able to maintain high transpiration rate but showed a significant reduction in leaf chlorophyll content and efficiency of leaf photochemistry. On the contrary, B. oleracea plants possessed the highest (among the three species) tissue tolerance but showed a very significant stomatal limitation of photosynthesis. Electrophysiological experiments revealed that the high tissue tolerance in B. oleracea was related to the ability of leaf mesophyll cells to maintain highly negative membrane potential in the presence of high apoplastic Na(+) . In addition to high osmotolerance, the most tolerant B. napus showed also lesser accumulation of toxic Na(+) and Cl(-) in the leaf, possessed moderate tissue tolerance and had a superior K(+) retention ability. Taken together, the results from this study indicate that the three Brassica species employ very different mechanisms to cope with salinity and, despite its overall sensitivity to salinity, B. oleracea could be recommended as a valuable 'donor' of tissue tolerance genes to confer this trait for marker-assisted breeding programs. © 2016 Scandinavian Plant Physiology Society.

  7. Inclusions and mechanical behavior in the short transverse direction

    International Nuclear Information System (INIS)

    Aubert, H.; Bouleau, M.; Laniesse, J.; Lelong, C.; Pigoury, M.

    1977-01-01

    The variables liable to characterize the distribution of inclusions in plates, and the relationships between the mechanical properties and the fatigue behavior in, on the one hand, the short transverse direction, and, on the other hand, the inclusions are studied. A decoherence is shown between inclusions and matrix as the cause of the failure by lamellar tearing [fr

  8. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.

    Science.gov (United States)

    Dai, Xiaochuan; Hong, Guosong; Gao, Teng; Lieber, Charles M

    2018-02-20

    Nanobioelectronics represents a rapidly developing field with broad-ranging opportunities in fundamental biological sciences, biotechnology, and medicine. Despite this potential, seamless integration of electronics has been difficult due to fundamental mismatches, including size and mechanical properties, between the elements of the electronic and living biological systems. In this Account, we discuss the concept, development, key demonstrations, and future opportunities of mesh nanoelectronics as a general paradigm for seamless integration of electronics within synthetic tissues and live animals. We first describe the design and realization of hybrid synthetic tissues that are innervated in three dimensions (3D) with mesh nanoelectronics where the mesh serves as both as a tissue scaffold and as a platform of addressable electronic devices for monitoring and manipulating tissue behavior. Specific examples of tissue/nanoelectronic mesh hybrids highlighted include 3D neural tissue, cardiac patches, and vascular constructs, where the nanoelectronic devices have been used to carry out real-time 3D recording of electrophysiological and chemical signals in the tissues. This novel platform was also exploited for time-dependent 3D spatiotemporal mapping of cardiac tissue action potentials during cell culture and tissue maturation as well as in response to injection of pharmacological agents. The extension to simultaneous real-time monitoring and active control of tissue behavior is further discussed for multifunctional mesh nanoelectronics incorporating both recording and stimulation devices, providing the unique capability of bidirectional interfaces to cardiac tissue. In the case of live animals, new challenges must be addressed, including minimally invasive implantation, absence of deleterious chronic tissue response, and long-term capability for monitoring and modulating tissue activity. We discuss each of these topics in the context of implantation of mesh

  9. Behavioral and neurobiological mechanisms of extinction in Pavlovian and instrumental learning.

    Science.gov (United States)

    Todd, Travis P; Vurbic, Drina; Bouton, Mark E

    2014-02-01

    This article reviews research on the behavioral and neural mechanisms of extinction as it is represented in both Pavlovian and instrumental learning. In Pavlovian extinction, repeated presentation of a signal without its reinforcer weakens behavior evoked by the signal; in instrumental extinction, repeated occurrence of a voluntary action without its reinforcer weakens the strength of the action. In either case, contemporary research at both the behavioral and neural levels of analysis has been guided by a set of extinction principles that were first generated by research conducted at the behavioral level. The review discusses these principles and illustrates how they have informed the study of both Pavlovian and instrumental extinction. It shows that behavioral and neurobiological research efforts have been tightly linked and that their results are readily integrated. Pavlovian and instrumental extinction are also controlled by compatible behavioral and neural processes. Since many behavioral effects observed in extinction can be multiply determined, we suggest that the current close connection between behavioral-level and neural-level analyses will need to continue. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Mechanisms of transgenerational inheritance of addictive-like behaviors.

    Science.gov (United States)

    Vassoler, F M; Sadri-Vakili, G

    2014-04-04

    Genetic factors are implicated in the heritability of drug abuse. However, even with advances in current technology no specific genes have been identified that are critical for the transmission of drug-induced phenotypes to subsequent generations. It is now evident that epigenetic factors contribute to disease heritability and represent a link between genes and the environment. Recently, epigenetic mechanisms have been shown to underlie drug-induced structural, synaptic, and behavioral plasticity by coordinating the expression of gene networks within the brain. Therefore, the epigenome provides a direct mechanism for drugs of abuse to influence the genetic events involved in the development of addiction as well as its heritability to subsequent generations. In this review we discuss the mechanisms underlying intergenerational epigenetic transmission, highlight studies that demonstrate this phenomenon with particular attention to the field of addiction, and identify gaps for future studies. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Creation of Cardiac Tissue Exhibiting Mechanical Integration of Spheroids Using 3D Bioprinting.

    Science.gov (United States)

    Ong, Chin Siang; Fukunishi, Takuma; Nashed, Andrew; Blazeski, Adriana; Zhang, Huaitao; Hardy, Samantha; DiSilvestre, Deborah; Vricella, Luca; Conte, John; Tung, Leslie; Tomaselli, Gordon; Hibino, Narutoshi

    2017-07-02

    This protocol describes 3D bioprinting of cardiac tissue without the use of biomaterials, using only cells. Cardiomyocytes, endothelial cells and fibroblasts are first isolated, counted and mixed at desired cell ratios. They are co-cultured in individual wells in ultra-low attachment 96-well plates. Within 3 days, beating spheroids form. These spheroids are then picked up by a nozzle using vacuum suction and assembled on a needle array using a 3D bioprinter. The spheroids are then allowed to fuse on the needle array. Three days after 3D bioprinting, the spheroids are removed as an intact patch, which is already spontaneously beating. 3D bioprinted cardiac patches exhibit mechanical integration of component spheroids and are highly promising in cardiac tissue regeneration and as 3D models of heart disease.

  12. Differences in the mechanical properties of the developing cerebral cortical proliferative zone between mice and ferrets at both the tissue and single-cell levels

    Directory of Open Access Journals (Sweden)

    Arata Nagasaka

    2016-11-01

    Full Text Available Cell-producing events in developing tissues are mechanically dynamic throughout the cell cycle. In many epithelial systems, cells are apicobasally tall, with nuclei and somata that adopt different apicobasal positions because nuclei and somata move in a cell cycle–dependent manner. This movement is apical during G2 phase and basal during G1 phase, whereas mitosis occurs at the apical surface. These movements are collectively referred to as interkinetic nuclear migration, and such epithelia are called pseudostratified. The embryonic mammalian cerebral cortical neuroepithelium is a good model for highly pseudostratified epithelia, and we previously found differences between mice and ferrets in both horizontal cellular density (greater in ferrets and nuclear/somal movements (slower during G2 and faster during G1 in ferrets. These differences suggest that neuroepithelial cells alter their nucleokinetic behavior in response to physical factors that they encounter, which may form the basis for evolutionary transitions towards more abundant brain-cell production from mice to ferrets and primates. To address how mouse and ferret neuroepithelia may differ physically in a quantitative manner, we used atomic force microscopy to determine that the vertical stiffness of their apical surface is greater in ferrets (Young’s modulus = 1700 Pa than in mice (1400 Pa. We systematically analyzed factors underlying the apical-surface stiffness through experiments to pharmacologically inhibit actomyosin or microtubules and to examine recoiling behaviors of the apical surface upon laser ablation and also through electron microscopy to observe adherens junction. We found that although both actomyosin and microtubules are partly responsible for the apical-surface stiffness, the mouse

  13. Scaffold microstructure effects on functional and mechanical performance: Integration of theoretical and experimental approaches for bone tissue engineering applications.

    Science.gov (United States)

    Cavo, Marta; Scaglione, Silvia

    2016-11-01

    The really nontrivial goal of tissue engineering is combining all scaffold micro-architectural features, affecting both fluid-dynamical and mechanical performance, to obtain a fully functional implant. In this work we identified an optimal geometrical pattern for bone tissue engineering applications, best balancing several graft needs which correspond to competing design goals. In particular, we investigated the occurred changes in graft behavior by varying pore size (300μm, 600μm, 900μm), interpore distance (equal to pore size or 300μm fixed) and pores interconnection (absent, 45°-oriented, 90°-oriented). Mathematical considerations and Computational Fluid Dynamics (CFD) tools, here combined in a complete theoretical model, were carried out to this aim. Poly-lactic acid (PLA) based samples were realized by 3D printing, basing on the modeled architectures. A collagen (COL) coating was also realized on grafts surface and the interaction between PLA and COL, besides the protein contribution to graft bioactivity, was evaluated. Scaffolds were extensively characterized; human articular cells were used to test their biocompatibility and to evaluate the theoretical model predictions. Grafts fulfilled both the chemical and physical requirements. Finally, a good agreement was found between the theoretical model predictions and the experimental data, making these prototypes good candidates for bone graft replacements. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mechanical properties and crystallization behavior of hydroxyapatite/poly(butylenes succinate) composites.

    Science.gov (United States)

    Guo, Wenmin; Zhang, Yihe; Zhang, Wei

    2013-09-01

    Biodegradable synthetic polymers have attracted much attention nowadays, and more and more researches have been done on biodegradable polymers due to their excellent mechanical properties, biocompatibility, and biodegradability. In this work, hydroxyapatite (HA) particles were melt-mixing with poly (butylenes succinate) (PBS) to prepare the material, which could be used in the biomedical industry. To develop high-performance PBS for cryogenic engineering applications, it is necessary to investigate the cryogenic mechanical properties and crystallization behavior of HA/PBS composites. Cryogenic mechanical behaviors of the composites were studied in terms of tensile and impact strength at the glass transition temperature (-30°C) and compared to their corresponding behaviors at room temperature. With the increase of HA content, the crystallization of HA/PBS composites decreased and crystallization onset temperature shifted to a lower temperature. The diameter of spherulites increased at first and decreased with a further HA content. At the same time, the crystallization rate became slow when the HA content was no more than 15wt% and increased when HA content reached 20wt%. In all, the results we obtained demonstrate that HA/PBS composites reveal a better tensile strength at -30°C in contrast to the strength at room temperature. HA particles with different amount affect the crystallization of PBS in different ways. Copyright © 2013 Wiley Periodicals, Inc.

  15. Theoretical models to predict the mechanical behavior of thick composite tubes

    Directory of Open Access Journals (Sweden)

    Volnei Tita

    2012-02-01

    Full Text Available This paper shows theoretical models (analytical formulations to predict the mechanical behavior of thick composite tubes and how some parameters can influence this behavior. Thus, firstly, it was developed the analytical formulations for a pressurized tube made of composite material with a single thick ply and only one lamination angle. For this case, the stress distribution and the displacement fields are investigated as function of different lamination angles and reinforcement volume fractions. The results obtained by the theoretical model are physic consistent and coherent with the literature information. After that, the previous formulations are extended in order to predict the mechanical behavior of a thick laminated tube. Both analytical formulations are implemented as a computational tool via Matlab code. The results obtained by the computational tool are compared to the finite element analyses, and the stress distribution is considered coherent. Moreover, the engineering computational tool is used to perform failure analysis, using different types of failure criteria, which identifies the damaged ply and the mode of failure.

  16. Mechanical Stimulation Protocols of Human Derived Cells in Articular Cartilage Tissue Engineering - A Systematic Review.

    Science.gov (United States)

    Khozoee, Baktash; Mafi, Pouya; Mafi, Reza; Khan, Wasim S

    2017-01-01

    Mechanical stimulation is a key factor in articular cartilage generation and maintenance. Bioreactor systems have been designed and built in order to deliver specific types of mechanical stimulation. The focus has been twofold, applying a type of preconditioning in order to stimulate cell differentiation, and to simulate in vivo conditions in order to gain further insight into how cells respond to different stimulatory patterns. Due to the complex forces at work within joints, it is difficult to simulate mechanical conditions using a bioreactor. The aim of this review is to gain a deeper understanding of the complexities of mechanical stimulation protocols by comparing those employed in bioreactors in the context of tissue engineering for articular cartilage, and to consider their effects on cultured cells. Allied and Complementary Medicine 1985 to 2016, Ovid MEDLINE[R] 1946 to 2016, and Embase 1974 to 2016 were searched using key terms. Results were subject to inclusion and exclusion criteria, key findings summarised into a table and subsequently discussed. Based on this review it is overwhelmingly clear that mechanical stimulation leads to increased chondrogenic properties in the context of bioreactor articular cartilage tissue engineering using human cells. However, given the variability and lack of controlled factors between research articles, results are difficult to compare, and a standardised method of evaluating stimulation protocols proved challenging. With improved standardisation in mechanical stimulation protocol reporting, bioreactor design and building processes, along with a better understanding of joint behaviours, we hope to perform a meta-analysis on stimulation protocols and methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Theoretical effects of fully ductile versus fully brittle behaviors of bone tissue on the strength of the human proximal femur and vertebral body.

    Science.gov (United States)

    Nawathe, Shashank; Yang, Haisheng; Fields, Aaron J; Bouxsein, Mary L; Keaveny, Tony M

    2015-05-01

    The influence of the ductility of bone tissue on whole-bone strength represents a fundamental issue of multi-scale biomechanics. To gain insight, we performed a computational study of 16 human proximal femurs and 12 T9 vertebral bodies, comparing the whole-bone strength for the two hypothetical bounding cases of fully brittle versus fully ductile tissue-level failure behaviors, all other factors, including tissue-level elastic modulus and yield stress, held fixed. For each bone, a finite element model was generated (60-82 μm element size; up to 120 million elements) and was virtually loaded in habitual (stance for femur, compression for vertebra) and non-habitual (sideways fall, only for femur) loading modes. Using a geometrically and materially non-linear model, the tissue was assumed to be either fully brittle or fully ductile. We found that, under habitual loading, changing the tissue behavior from fully ductile to fully brittle reduced whole-bone strength by 38.3±2.4% (mean±SD) and 39.4±1.9% for the femur and vertebra, respectively (p=0.39 for site difference). These reductions were remarkably uniform across bones, but (for the femur) were greater for non-habitual (57.1±4.7%) than habitual loading (pductile cases. These theoretical results suggest that the whole-bone strength of the proximal femur and vertebra can vary substantially between fully brittle and fully ductile tissue-level behaviors, an effect that is relatively insensitive to bone morphology but greater for non-habitual loading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Volume Resistivity and Mechanical Behavior of Epoxy Nanocomposite Materials

    Directory of Open Access Journals (Sweden)

    M. F. Abdelkarim

    2015-04-01

    Full Text Available Electrical and mechanical properties of polymer composite materials are investigated through the determination of resistivity and hardness for composites samples. Epoxy composite samples have been prepared with different concentrations of certain inorganic fillers such as; Titanium dioxide (TiO2 and Silica (SiO2, of various size (micro, nano and hybrid to study the electrical and mechanical behavior. The volume resistivity reaches 3.23×1014 ohm.cm for the micro silica composite. Surface of composite material has been mechanically examined by hardness test. The results show that the resistivity of microcomposites and nanocmposites are increased with the decrease of filler concentration. But the resistivity of hybrid composites is increased with the increase of filler concentration. Maximum hardness value was obtained from hybrid silica composite with 0.1% filler concentration.

  19. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue

    Science.gov (United States)

    Goh, Kheng Lim; Holmes, David F.

    2017-01-01

    Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action—the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced

  20. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue.

    Science.gov (United States)

    Goh, Kheng Lim; Holmes, David F

    2017-04-25

    Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action-the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced

  1. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue

    Directory of Open Access Journals (Sweden)

    Kheng Lim Goh

    2017-04-01

    Full Text Available Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs. The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action—the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre

  2. On the genetic control of planar growth during tissue morphogenesis in plants.

    Science.gov (United States)

    Enugutti, Balaji; Kirchhelle, Charlotte; Schneitz, Kay

    2013-06-01

    Tissue morphogenesis requires extensive intercellular communication. Plant organs are composites of distinct radial cell layers. A typical layer, such as the epidermis, is propagated by stereotypic anticlinal cell divisions. It is presently unclear what mechanisms coordinate cell divisions relative to the plane of a layer, resulting in planar growth and maintenance of the layer structure. Failure in the regulation of coordinated growth across a tissue may result in spatially restricted abnormal growth and the formation of a tumor-like protrusion. Therefore, one way to approach planar growth control is to look for genetic mutants that exhibit localized tumor-like outgrowths. Interestingly, plants appear to have evolved quite robust genetic mechanisms that govern these aspects of tissue morphogenesis. Here we provide a short summary of the current knowledge about the genetics of tumor formation in plants and relate it to the known control of coordinated cell behavior within a tissue layer. We further portray the integuments of Arabidopsis thaliana as an excellent model system to study the regulation of planar growth. The value of examining this process in integuments was established by the recent identification of the Arabidopsis AGC VIII kinase UNICORN as a novel growth suppressor involved in the regulation of planar growth and the inhibition of localized ectopic growth in integuments and other floral organs. An emerging insight is that misregulation of central determinants of adaxial-abaxial tissue polarity can lead to the formation of spatially restricted multicellular outgrowths in several tissues. Thus, there may exist a link between the mechanisms regulating adaxial-abaxial tissue polarity and planar growth in plants.

  3. A multi-scale investigation of the mechanical behavior of durable sisal fiber cement composites

    OpenAIRE

    Silva, Flávio de Andrade; Toledo Filho, Romildo D.; Mobasher, Barzin; Chawla, Nikhilesh

    2010-01-01

    Durable sisal fiber cement composites reinforced with long unidirectional aligned fibers were developed and their mechanical behavior was characterized in a multi-scale level. Tensile tests were performed in individual sisal fibers. Weibull statistics were used to quantify the degree of variability in fiber strength at different gage lengths. The fiber-matrix pull-out behavior was evaluated at several curing ages and embedded lengths. The composite's mechanical response was measured under dir...

  4. Fabrication and mechanical characterization of a polyvinyl alcohol sponge for tissue engineering applications.

    Science.gov (United States)

    Karimi, A; Navidbakhsh, M; Faghihi, S

    2014-05-01

    Polyvinyl alcohol (PVA) sponges are widely used for clinical applications, including ophthalmic surgical treatments, wound healing and tissue engineering. There is, however, a lack of sufficient data on the mechanical properties of PVA sponges. In this study, a biomechanical method is used to characterize the elastic modulus, maximum stress and strain as well as the swelling ratio of a fabricated PVA sponge (P-sponge) and it is compared with two commercially available PVA sponges (CENEFOM and EYETEC). The results indicate that the elastic modulus of the P-sponge is 5.32% and 13.45% lower than that of the CENEFOM and EYETEC sponges, while it bears 4.11% more and 10.37% less stress compared to the CENEFOM and EYETEC sponges, respectively. The P-sponge shows a maximum strain of 32% more than the EYETEC sponge as well as a 26.78% higher swelling ratio, which is a significantly higher absorbency compared to the CENEFOM. It is believed that the results of this study would help for a better understanding of the extension, rupture and swelling mechanism of PVA sponges, which could lead to crucial improvement in the design and application of PVA-based materials in ophthalmic and plastic surgeries as well as wound healing and tissue engineering.

  5. Induction of Migraine-Like Photophobic Behavior in Mice by Both Peripheral and Central CGRP Mechanisms

    Science.gov (United States)

    Mason, Bianca N.; Kaiser, Eric A.; Kuburas, Adisa; Loomis, Maria-Cristina M.; Latham, John A.; Garcia-Martinez, Leon F.

    2017-01-01

    The neuropeptide calcitonin gene-related peptide (CGRP) is a key player in migraine. Although migraine can be treated using CGRP antagonists that act peripherally, the relevant sites of CGRP action remain unknown. To address the role of CGRP both within and outside the CNS, we used CGRP-induced light-aversive behavior in mice as a measure of migraine-associated photophobia. Peripheral (intraperitoneal) injection of CGRP resulted in light-aversive behavior in wild-type CD1 mice similar to aversion seen previously after central (intracerebroventricular) injection. The phenotype was also observed in C57BL/6J mice, although to a lesser degree and with more variability. After intraperitoneal CGRP, motility was decreased in the dark only, similar to motility changes after intracerebroventricular CGRP. In addition, as with intracerebroventricular CGRP, there was no general increase in anxiety as measured in an open-field assay after intraperitoneal CGRP. Importantly, two clinically effective migraine drugs, the 5-HT1B/D agonist sumatriptan and a CGRP-blocking monoclonal antibody, attenuated the peripheral CGRP-induced light aversion and motility behaviors. To begin to address the mechanism of peripheral CGRP action, we used transgenic CGRP-sensitized mice that have elevated levels of the CGRP receptor hRAMP1 subunit in nervous tissue (nestin/hRAMP1). Surprisingly, sensitivity to low light was not seen after intraperitoneal CGRP injection, but was seen after intracerebroventricular CGRP injection. These results suggest that CGRP can act in both the periphery and the brain by distinct mechanisms and that CGRP actions may be transmitted to the CNS via indirect sensitization of peripheral nerves. SIGNIFICANCE STATEMENT The neuropeptide calcitonin gene-related peptide (CGRP) is a central player in migraine pathogenesis, yet its site(s) of action remains unknown. Some preclinical studies have pointed to central sites in the brain and brainstem. However, a peripheral site of

  6. Mechanical behavior of the ATLAS B0 model coil

    CERN Document Server

    Foussat, A; Acerbi, E; Alessandria, F; Berthier, R; Broggi, F; Daël, A; Dudarev, A; Mayri, C; Miele, P; Reytier, M; Rossi, L; Sorbi, M; Sun, Z; ten Kate, H H J; Vanenkov, I; Volpini, G

    2002-01-01

    The ATLAS B0 model coil has been developed and constructed to verify the design parameters and the manufacture techniques of the Barrel Toroid coils (BT) that are under construction for the ATLAS Detector. Essential for successful operation is the mechanical behavior of the superconducting coil and its support structure. In the ATLAS magnet test facility, a magnetic mirror is used to reproduce in the model coil the electromagnetic forces of the BT coils when assembled in the final Barrel Toroid magnet system. The model coil is extensively equipped with mechanical instrumentation to monitor stresses and force levels as well as contraction during a cooling down and excitation up to nominal current. The installed set up of strain gauges, position sensors and capacitive force transducers is presented. Moreover the first mechanical results in terms of expected main stress, strain and deformation values are presented based on detailed mechanical analysis of the design. (7 refs).

  7. Toward the topology design of mechanisms that exhibit snap-through behavior

    DEFF Research Database (Denmark)

    Burns, T. E.; Sigmund, Ole

    2004-01-01

    Topology optimization has proven to be a powerful method for the conceptual design of structures and mechanisms. In previously published work, we concentrated on the development of numerical methods that accommodate the finite deformation and incorporated these analyses into the topology...... optimization. We demonstrated by relatively straightforward transversely loaded clamped-clamped beam examples that topology optimization can be used to design structures that experience snap-through behavior. Here, we focus our attention on the design problem formulation where the goal is to develop a general...... approach for the design of mechanisms that experience more complex snap-through behavior. A multiphase design strategy is outlined, numerous significant challenges to this complex design process are discussed, and several examples are presented that demonstrate progress toward this goal. (C) 2004 Elsevier...

  8. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    Science.gov (United States)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  9. Calcium sensing receptor as a novel mediator of adipose tissue dysfunction: mechanisms and potential clinical implications

    Directory of Open Access Journals (Sweden)

    Roberto Bravo

    2016-09-01

    Full Text Available Obesity is currently a serious worldwide public health problem, reaching pandemic levels. For decades, dietary and behavioral approaches have failed to prevent this disease from expanding, and health authorities are challenged by the elevated prevalence of co-morbid conditions. Understanding how obesity-associated diseases develop from a basic science approach is recognized as an urgent task to face this growing problem. White adipose tissue is an active endocrine organ, with a crucial influence on whole-body homeostasis. White adipose tissue dysfunction plays a key role linking obesity with its associated diseases such as type 2 diabetes mellitus, cardiovascular disease and some cancers. Among the regulators of white adipose tissue physiology, the calcium-sensing receptor has arisen as a potential mediator of white adipose tissue dysfunction. Expression of the receptor has been described in human preadipocytes, adipocytes, and the human adipose cell lines LS14 and SW872. The evidence suggests that calcium-sensing receptor activation in the visceral (i.e. unhealthy white adipose tissue is associated with an increased proliferation of adipose progenitor cells and elevated adipocyte differentiation. In addition, exposure of adipose cells to calcium-sensing receptor activators in vitro elevates proinflammatory cytokine expression and secretion. An increased proinflammatory environment in white adipose tissue plays a key role in the development of white adipose tissue dysfunction that leads to peripheral organ fat deposition and insulin resistance, among other consequences. We propose that calcium-sensing receptor may be one relevant therapeutic target in the struggle to confront the health consequences of the current worldwide obesity pandemic.

  10. The mechanical environment modulates intracellular calcium oscillation activities of myofibroblasts.

    Directory of Open Access Journals (Sweden)

    Charles Godbout

    Full Text Available Myofibroblast contraction is fundamental in the excessive tissue remodeling that is characteristic of fibrotic tissue contractures. Tissue remodeling during development of fibrosis leads to gradually increasing stiffness of the extracellular matrix. We propose that this increased stiffness positively feeds back on the contractile activities of myofibroblasts. We have previously shown that cycles of contraction directly correlate with periodic intracellular calcium oscillations in cultured myofibroblasts. We analyze cytosolic calcium dynamics using fluorescent calcium indicators to evaluate the possible impact of mechanical stress on myofibroblast contractile activity. To modulate extracellular mechanics, we seeded primary rat subcutaneous myofibroblasts on silicone substrates and into collagen gels of different elastic modulus. We modulated cell stress by cell growth on differently adhesive culture substrates, by restricting cell spreading area on micro-printed adhesive islands, and depolymerizing actin with Cytochalasin D. In general, calcium oscillation frequencies in myofibroblasts increased with increasing mechanical challenge. These results provide new insight on how changing mechanical conditions for myofibroblasts are encoded in calcium oscillations and possibly explain how reparative cells adapt their contractile behavior to the stresses occurring in normal and pathological tissue repair.

  11. Nanoscale Mechanical Stimulation Method for Quantifying C. elegans Mechanosensory Behavior and Memory.

    Science.gov (United States)

    Sugi, Takuma; Okumura, Etsuko; Kiso, Kaori; Igarashi, Ryuji

    2016-01-01

    Withdrawal escape response of C. elegans to nonlocalized vibration is a useful behavioral paradigm to examine mechanisms underlying mechanosensory behavior and its memory-dependent change. However, there are very few methods for investigating the degree of vibration frequency, amplitude and duration needed to induce behavior and memory. Here, we establish a new system to quantify C. elegans mechanosensory behavior and memory using a piezoelectric sheet speaker. In the system, we can flexibly change the vibration properties at a nanoscale displacement level and quantify behavioral responses under each vibration property. This system is an economic setup and easily replicated in other laboratories. By using the system, we clearly detected withdrawal escape responses and confirmed habituation memory. This system will facilitate the understanding of physiological aspects of C. elegans mechanosensory behavior in the future.

  12. Differences in in vivo muscle fascicle and tendinous tissue behavior between the ankle plantarflexors during running.

    Science.gov (United States)

    Lai, A K M; Lichtwark, G A; Schache, A G; Pandy, M G

    2018-03-30

    The primary human ankle plantarflexors, soleus (SO), medial gastrocnemius (MG), and lateral gastrocnemius (LG) are typically regarded as synergists and play a critical role in running. However, due to differences in muscle-tendon architecture and joint articulation, the muscle fascicles and tendinous tissue of the plantarflexors may exhibit differences in their behavior and interactions during running. We combined in vivo dynamic ultrasound measurements with inverse dynamics analyses to identify and explain differences in muscle fascicle, muscle-tendon unit, and tendinous tissue behavior of the primary ankle plantarflexors across a range of steady-state running speeds. Consistent with their role as a force generator, the muscle fascicles of the uniarticular SO shortened less rapidly than the fascicles of the MG during early stance. Furthermore, the MG and LG exhibited delays in tendon recoil during the stance phase, reflecting their ability to transfer power and work between the knee and ankle via tendon stretch and storage of elastic strain energy. Our findings add to the growing body of evidence surrounding the distinct mechanistic functions of uni- and biarticular muscles during dynamic movements. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    Science.gov (United States)

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus.

  14. In vitro evaluation of ionizing radiation effects in bone tissue by FTIR spectroscopy and dynamic mechanical analysis

    International Nuclear Information System (INIS)

    Veloso, Marcelo Noronha

    2013-01-01

    Ionizing radiation from gamma radiation sources or X-ray generators is frequently used in Medical Science, such as radiodiagnostic exams, radiotherapy, and sterilization of haloenxerts. Ionizing radiation is capable of breaking polypeptidic chains and causing the release of free radicals by radiolysis.of water. It interacts also with organic material at the molecular level, and it may change its mechanical properties. In the specific case of bone tissue, studies report that ionizing radiation induces changes in collagen molecules and reduces the density of intermolecular crosslinks. The aim of this study was to verify the changes promoted by different doses of ionizing radiation in bone tissue using Fourier Transform Infrared Spectroscopy (FTIR) and dynamic mechanical analysis (DMA). Samples of bovine bone were irradiated using Cobalt-60 with five different doses: 0.01 kGy, 0.1 kGy, 1 kGy, 15 kGy and 75 kGy. To study the effects of ionizing irradiation on the chemical structure of the bone, the sub-bands of amide I, the crystallinity index and relation of organic and inorganic materials, were studied. The mechanical changes were evaluated using the elastic modulus and the damping value. To verify whether the chemical changes and the mechanical characteristics of the bone were correlated, the relation between the analysis made with spectroscopic data and the mechanical analysis data was studied. It was possible to evaluate the effects of different doses of ionizing radiation in bone tissue. With ATR-FTIR spectroscopy, it was possible to observe changes in the organic components and in the hydroxyapatite crystals organization. Changes were also observed in the elastic modulus and in the damping value. High correlation with statistical significance was observed among (amide III + collagen)/ v1,v3 , PO 4 3- and the delta tangent, and among 1/FHWM and the elastic modulus. (author)

  15. Assessment of the mechanics of a tissue-engineered rat trachea in an image-processing environment.

    Science.gov (United States)

    Silva, Thiago Henrique Gomes da; Pazetti, Rogerio; Aoki, Fabio Gava; Cardoso, Paulo Francisco Guerreiro; Valenga, Marcelo Henrique; Deffune, Elenice; Evaristo, Thaiane; Pêgo-Fernandes, Paulo Manuel; Moriya, Henrique Takachi

    2014-07-01

    Despite the recent success regarding the transplantation of tissue-engineered airways, the mechanical properties of these grafts are not well understood. Mechanical assessment of a tissue-engineered airway graft before implantation may be used in the future as a predictor of function. The aim of this preliminary work was to develop a noninvasive image-processing environment for the assessment of airway mechanics. Decellularized, recellularized and normal tracheas (groups DECEL, RECEL, and CONTROL, respectively) immersed in Krebs-Henseleit solution were ventilated by a small-animal ventilator connected to a Fleisch pneumotachograph and two pressure transducers (differential and gauge). A camera connected to a stereomicroscope captured images of the pulsation of the trachea before instillation of saline solution and after instillation of Krebs-Henseleit solution, followed by instillation with Krebs-Henseleit with methacholine 0.1 M (protocols A, K and KMCh, respectively). The data were post-processed with computer software and statistical comparisons between groups and protocols were performed. There were statistically significant variations in the image measurements of the medial region of the trachea between the groups (two-way analysis of variance [ANOVA], pmechanical assessment of engineered tracheal grafts that will enable evaluation of the viscoelastic properties of neo-tracheas prior to transplantation.

  16. Electro-mechanical behaviors of composite superconducting strand with filament breakage

    International Nuclear Information System (INIS)

    Wang, Xu; Gao, Yuanwen; Zhou, Youhe

    2016-01-01

    Highlights: • The electromechanical behaviors of the superconducting (SC) strand are investigated. • A 3D FEM model for bending behaviors and electric properties of strand is developed. • The influence of breakage of filaments on the critical current of SC strand is calculated. • The impact of current transfer length on the electric properties of SC strand is discussed. - Abstract: The bending behaviors of superconducting strand with typical multi-filament twist configuration are investigated based on a three-dimensional finite element method (FEM) model, named as the Multi-filament twist model, of the strand. In this 3D FEM model, the impacts of initial thermal residual stress, filament-breakage and its evaluation are taken into accounts. The mechanical responses of the strand under bending load are studied with the factors taken into consideration one by one. The distribution of the damage of the filaments and its evolution and the movement of the neutral axis caused by it are studied and displayed in detail. Besides, taking the advantages of the Multi-filament twist model, the normalized critical current of the strand under bending load is also calculated based on the invariant temperature and field strain functions. In addition, the non-negligible influences of the pitch length of the filaments on both the mechanical behaviors and the normalized critical current are discussed. The stress-strain characteristics of the strand under tensile load and the normalized critical current of it under axial and bending loads resulting from the Multi-filament twist model show good agreement with the experimental data.

  17. Electro-mechanical behaviors of composite superconducting strand with filament breakage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou, Youhe [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2016-10-15

    Highlights: • The electromechanical behaviors of the superconducting (SC) strand are investigated. • A 3D FEM model for bending behaviors and electric properties of strand is developed. • The influence of breakage of filaments on the critical current of SC strand is calculated. • The impact of current transfer length on the electric properties of SC strand is discussed. - Abstract: The bending behaviors of superconducting strand with typical multi-filament twist configuration are investigated based on a three-dimensional finite element method (FEM) model, named as the Multi-filament twist model, of the strand. In this 3D FEM model, the impacts of initial thermal residual stress, filament-breakage and its evaluation are taken into accounts. The mechanical responses of the strand under bending load are studied with the factors taken into consideration one by one. The distribution of the damage of the filaments and its evolution and the movement of the neutral axis caused by it are studied and displayed in detail. Besides, taking the advantages of the Multi-filament twist model, the normalized critical current of the strand under bending load is also calculated based on the invariant temperature and field strain functions. In addition, the non-negligible influences of the pitch length of the filaments on both the mechanical behaviors and the normalized critical current are discussed. The stress-strain characteristics of the strand under tensile load and the normalized critical current of it under axial and bending loads resulting from the Multi-filament twist model show good agreement with the experimental data.

  18. Three-dimensional FE analysis of the thermal-mechanical behaviors in the nuclear fuel rods

    International Nuclear Information System (INIS)

    Jiang Yijie; Cui Yi; Huo Yongzhong; Ding Shurong

    2011-01-01

    Highlights: → We establish three-dimensional finite element models for nuclear fuel rods. → The thermal-mechanical behaviors at the initial stage of burnup are obtained. → Several parameters on the in-pile performances are investigated. → The parameters have remarkable effects on the in-pile behaviors. → This study lays a foundation for optimal design and irradiation safety. - Abstract: In order to implement numerical simulation of the thermal-mechanical behaviors in the nuclear fuel rods, a three-dimensional finite element model is established. The thermal-mechanical behaviors at the initial stage of burnup in both the pellet and the cladding are obtained. Comparison of the obtained numerical results with those from experiments validates the developed finite element model. The effects of the constraint conditions, several operation and structural parameters on the thermal-mechanical performances of the fuel rod are investigated. The research results indicate that: (1) with increasing the heat generation rates from 0.15 to 0.6 W/mm 3 , the maximum temperature within the pellet increases by 99.3% and the maximum radial displacement at the outer surface of the pellet increases by 94.3%. And the maximum Mises stresses in the cladding all increase; while the maximum values of the first principal stresses within the pellet decrease as a whole; (2) with increasing the heat transfer coefficients between the cladding and the coolant, the internal temperatures reduce and the temperature gradient remains similar; when the heat transfer coefficient is lower than a critical value, the temperature change is sensitive to the heat transfer coefficient. The maximum temperature increases only 7.13% when h changes from 0.5 W/mm 2 K to 0.01 W/mm 2 K, while increases up to 54.7% when h decreases from 0.01 W/mm 2 K to 0.005 W/mm 2 K; (3) the initial gap sizes between the pellet and the cladding significantly affect the thermal-mechanical behaviors in the fuel rod; when the

  19. Computational Modeling in Tissue Engineering

    CERN Document Server

    2013-01-01

    One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in:  (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each...

  20. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering.

    Science.gov (United States)

    Xu, Yuan; Dong, Shiwu; Zhou, Qiang; Mo, Xiumei; Song, Lei; Hou, Tianyong; Wu, Jinglei; Li, Songtao; Li, Yudong; Li, Pei; Gan, Yibo; Xu, Jianzhong

    2014-03-01

    Mechanical stimulation plays an important role in the development and remodeling of tendons. Tendon-derived stem cells (TDSCs) are an attractive cell source for tendon injury and tendon tissue engineering. However, these cells have not yet been fully explored for tendon tissue engineering application, and there is also lack of understanding to the effect of mechanical stimulation on the maturation of TDSCs-scaffold construct for tendon tissue engineering. In this study, we assessed the efficacy of TDSCs in a poly(L-lactide-co-ε-caprolactone)/collagen (P(LLA-CL)/Col) scaffold under mechanical stimulation for tendon tissue engineering both in vitro and in vivo, and evaluated the utility of the transplanted TDSCs-scaffold construct to promote rabbit patellar tendon defect regeneration. TDSCs displayed good proliferation and positive expressed tendon-related extracellular matrix (ECM) genes and proteins under mechanical stimulation in vitro. After implanting into the nude mice, the fluorescence imaging indicated that TDSCs had long-term survival, and the macroscopic evaluation, histology and immunohistochemistry examinations showed high-quality neo-tendon formation under mechanical stimulation in vivo. Furthermore, the histology, immunohistochemistry, collagen content assay and biomechanical testing data indicated that dynamically cultured TDSCs-scaffold construct could significantly contributed to tendon regeneration in a rabbit patellar tendon window defect model. TDSCs have significant potential to be used as seeded cells in the development of tissue-engineered tendons, which can be successfully fabricated through seeding of TDSCs in a P(LLA-CL)/Col scaffold followed by mechanical stimulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Influence of the temporal deposition of extracellular matrix on the mechanical properties of tissue-engineered cartilage

    NARCIS (Netherlands)

    Khoshgoftar, M.; Wilson, W.; Ito, K.; Donkelaar, van C.C.

    2014-01-01

    Enhancement of the load-bearing capacity of tissue engineered (TE) cartilage is expected to improve the clinical outcome of implantations. Generally, cartilage TE studies aim to increase the total extracellular matrix (ECM) content to improve implant mechanical properties. Besides the ECM content,

  2. Low-Temperature Mechanical Behavior of Super Duplex Stainless Steel with Sigma Precipitation

    OpenAIRE

    Kim, Seul-Kee; Kang, Ki-Yeob; Kim, Myung-Soo; Lee, Jae-Myung

    2015-01-01

    Experimental studies in various aspects have to be conducted to maintain stable applications of super duplex stainless steels (SDSS) because the occurrence rate of sigma phase, variable temperature and growth direction of sigma phase can influence mechanical performances of SDSS. Tensile tests of precipitated SDSS were performed under various temperatures to analyze mechanical and morphological behavior.

  3. Low-Temperature Mechanical Behavior of Super Duplex Stainless Steel with Sigma Precipitation

    Directory of Open Access Journals (Sweden)

    Seul-Kee Kim

    2015-09-01

    Full Text Available Experimental studies in various aspects have to be conducted to maintain stable applications of super duplex stainless steels (SDSS because the occurrence rate of sigma phase, variable temperature and growth direction of sigma phase can influence mechanical performances of SDSS. Tensile tests of precipitated SDSS were performed under various temperatures to analyze mechanical and morphological behavior.

  4. Sensory Gain Outperforms Efficient Readout Mechanisms in Predicting Attention-Related Improvements in Behavior

    Science.gov (United States)

    Ester, Edward F.; Deering, Sean

    2014-01-01

    Spatial attention has been postulated to facilitate perceptual processing via several different mechanisms. For instance, attention can amplify neural responses in sensory areas (sensory gain), mediate neural variability (noise modulation), or alter the manner in which sensory signals are selectively read out by postsensory decision mechanisms (efficient readout). Even in the context of simple behavioral tasks, it is unclear how well each of these mechanisms can account for the relationship between attention-modulated changes in behavior and neural activity because few studies have systematically mapped changes between stimulus intensity, attentional focus, neural activity, and behavioral performance. Here, we used a combination of psychophysics, event-related potentials (ERPs), and quantitative modeling to explicitly link attention-related changes in perceptual sensitivity with changes in the ERP amplitudes recorded from human observers. Spatial attention led to a multiplicative increase in the amplitude of an early sensory ERP component (the P1, peaking ∼80–130 ms poststimulus) and in the amplitude of the late positive deflection component (peaking ∼230–330 ms poststimulus). A simple model based on signal detection theory demonstrates that these multiplicative gain changes were sufficient to account for attention-related improvements in perceptual sensitivity, without a need to invoke noise modulation. Moreover, combining the observed multiplicative gain with a postsensory readout mechanism resulted in a significantly poorer description of the observed behavioral data. We conclude that, at least in the context of relatively simple visual discrimination tasks, spatial attention modulates perceptual sensitivity primarily by modulating the gain of neural responses during early sensory processing PMID:25274817

  5. Mechanical analysis of bone rulers sterilized by gamma radiation for use in tissue banks

    International Nuclear Information System (INIS)

    Kosmiskas, Luis Otavio Carvalho

    2007-01-01

    In the production process of health care products, contamination must be considered as one of the principal hazards to be avoided. Among the developed methods for sterilization, ionizing radiation has largely been used by many sectors in health care area as it is efficient in eliminating biological contaminants of several origins. The difficulty of deploying ionizing radiation in materials of human origin, though, includes which possible alterations it might cause in human tissue. In the present work, the extension of the bio mechanical alteration generated by radiation in bone tissue was evaluated by bio mechanical methods. More specifically, we evaluated alterations to the elastic modulus, rupture tension and percentage of deformation that are thought to be a consequence of the sterilization process. As a research model, bovine femur struts obtained from the diaphysis were used. The struts were frozen in a temperature of -70 deg C and irradiated with crescent doses of gamma radiation (0, 12.5, 25 e 50 kGy). During this work, a cutting system to obtain precision samples to use in such essays was developed. As results show that there is a significant different between the analyzed characteristics in the different doses of radiation. (author)

  6. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage.

    Science.gov (United States)

    Gaut, Carrie; Sugaya, Kiminobu

    2015-01-01

    Articular cartilage defects often progress to osteoarthritis, which negatively impacts quality of life for millions of people worldwide and leads to high healthcare expenditures. Tissue engineering approaches to osteoarthritis have concentrated on proliferation and differentiation of stem cells by activation and suppression of signaling pathways, and by using a variety of scaffolding techniques. Recent studies indicate a key role of environmental factors in the differentiation of mesenchymal stem cells to mature cartilage-producing chondrocytes. Therapeutic approaches that consider environmental regulation could optimize chondrogenesis protocols for regeneration of articular cartilage. This review focuses on the effect of scaffold structure and composition, mechanical stress and hypoxia in modulating mesenchymal stem cell fate and the current use of these environmental factors in tissue engineering research.

  7. Mechanism analysis of improved DLC films friction behaviors with liquid sulfidation treatment

    International Nuclear Information System (INIS)

    Zeng Qunfeng; Yu Fei; Dong Guangneng; Mao Junhong

    2012-01-01

    Highlights: ► Liquid sulfidation is applied to treat DLC films. ► Sulfur atoms are chemically bonded and the graphitization presented in the treated films. ► The treated films exhibited much lower coefficient of friction than the untreated films under dry friction condition. ► The sulfidation mechanisms are supposed as surface chemical reaction and surface diffusion. ► The presence of sulfur-containing materials and graphitization are beneficial to improve anti-friction behaviors of the treated films. - Abstract: Diamond like carbon (DLC) films were treated by liquid sulfidation to improve their friction behaviors. Friction behaviors of DLC films were experimentally evaluated in ambient air under dry friction using GCr15 steel ball sliding over DLC-coated steel flat in a ball-on-disk tribometer system. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were applied to identify the chemical composition and structure of DLC films. It was found that the content of sp 2 carbon bond increased and G peak shifted to high wave number after sulfidation treatment. The measurement results showed that sulfur atoms were chemically bonded and the graphitization occurred in the treated DLC films. It was indicated that the treated DLC films exhibited much better friction behaviors than the untreated films, especially for DLC films deposited with high nitrogen ratio. In this paper, we proposed the possible sulfidation mechanism of sulfurized DLC films. Sulfidation mechanism is postulated that thiourea reacted with oxygen to form sulfur-containing organic compounds which included CSSC, CSOH and (NH 2 )NH=CSO 2 H and surface diffusion during sulfidation treatment. The anti-friction behaviors of the treated DLC films can be attributed to the production of the compounds containing sulfur on the DLC film surface, the reduce of oxygen content and the presence of graphitization of DLC films.

  8. Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition.

    Science.gov (United States)

    Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B; Spevak, Lyudmila; Boskey, Adele L; Jepsen, Karl J

    2008-11-01

    Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways.

  9. Gambling behavior in Parkinson's Disease: Impulsivity, reward mechanism and cortical brain oscillations.

    Science.gov (United States)

    Balconi, Michela; Angioletti, Laura; Siri, Chiara; Meucci, Nicoletta; Pezzoli, Gianni

    2018-03-20

    Psychopathological components, such as reward sensitivity and impulsivity, and dopaminergic treatment are crucial characteristics related to the development of Pathological Gambling (PG) in Parkinson's Disease (PD). The aim of the present study is to investigate the differences in decision-making in PD patients with or without PG considering both neurophysiological and behavioral aspects. The IOWA Gambling Task (IGT) and electroencephalographic (EEG) activity were considered to elucidate the decision and post-feedback processes in PG. The sample included fifty-two PD patients, divided in three groups: 17 PD patients with active gambling behavior (PD Gamblers, PDG); 15 PD patients who remitted from PG (PD Non-Gamblers, PDNG); and a Control Group (CG) composed by 20 patients with PD only. EEG and IGT performance were recorded during decision and post-feedback phase. Results showed worse performance and an increase of the low frequency bands in the frontal area for the PDG group compared to the other two groups. In addition, higher BAS (Behavioral Activation System) and BIS-11 (Barratt Impulsiveness Scale) personality components were correlated to groups' behavioral response. These results show an anomalous behavioral (IGT) and cortical response of PDG patients related to their inability to use adequate control mechanisms during a decision-making task where reward mechanisms (BAS) and impulsivity (BIS-11) are relevant. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Interactive mechanism of working environments and construction behaviors with cognitive work analysis: an elevator installation case study.

    Science.gov (United States)

    Wang, Yanqing; Chong, Heap-Yih; Liao, Pin-Chao; Ren, Hantao

    2017-09-25

    Unsafe behavior is a leading factor in accidents, and the working environment significantly affects behaviors. However, few studies have focused on detailed mechanisms for addressing unsafe behaviors resulting from environmental constraints. This study aims to delineate these mechanisms using cognitive work analysis (CWA) for an elevator installation case study. Elevator installation was selected for study because it involves operations at heights: falls from heights remain a major cause of construction worker mortality. This study adopts a mixed research approach based on three research methodology stages. This research deconstructs the details of the working environment, the workers' decision-making processes, the strategies chosen given environmental conditions and the conceptual model for workers' behaviors, which jointly depict environment-behavior mechanisms at length. By applying CWA to the construction industry, environmental constraints can easily be identified, and targeted engineering suggestions can be generated.

  11. Effect of tumor therapeutic irradiation on the mechanical properties of teeth tissue

    International Nuclear Information System (INIS)

    Fraenzel, W.; Gerlach, R.; Hein, H.J.; Schaller, H.G.

    2006-01-01

    Tumor irradiation of the head-neck area is accompanied by the development of a so-called radiation caries in the treated patients. In spite of conservative therapeutic measures, the process results in tooth destruction. The present study investigated the effects of irradiation on the demineralization and remineralization of the dental tissue. For this purpose, retained third molars were prepared and assigned either to a test group, which was exposed to fractional irradiation up to 60 Gy, or to a non-irradiated control group. Irradiated and non-irradiated teeth were then demineralized using acidic hydroxyl-cellulose gel; afterwards the teeth were remineralized using either Bifluorid12 registered or elmex gelee registered . The nanoindentation technique was used to measure the mechanical properties, hardness and elasticity, of the teeth in each of the conditions. The values were compared to the non-irradiated control group. Irradiation decreased dramatically the mechanical parameters of enamel and dentine. In non-irradiated teeth, demineralization had nearly the same effects of irradiation on the mechanical properties. In irradiated teeth, the effects of demineralization were negligible in comparison to non-irradiated teeth. Remineralization with Bifluorid12 registered or elmex gelee registered led to a partial improvement of the mechanical properties of the teeth. The enamel was more positively affected, by remineralization than the dentine. (orig.)

  12. Quantitative assessment of the mechanical properties of prostate tissue with optical coherence elastography

    Science.gov (United States)

    Ling, Yuting; Li, Chunhui; Zhou, Kanheng; Guan, Guangying; Lang, Stephen; McGloin, David; Nabi, Ghulam; Huang, Zhihong

    2018-02-01

    Prostate cancer (PCa) is a heterogeneous disease with multifocal origin. In current clinical care, the Gleason scoring system is the well-established diagnosis by microscopic evaluation of the tissue from trans-rectal ultrasound (TRUS) guided biopsies. Nevertheless, the sensitivity and specificity in detecting PCa can range from 40 to 50% for conventional TRUS B-mode imaging. Tissue elasticity is associated with the disease progression and elastography technique has recently shown promise in aiding PCa diagnosis. However, many cancer foci in the prostate gland has very small size less than 1 mm and those detected by medical elastography were larger than 2 mm. Hereby, we introduce optical coherence elastography (OCE) to quantify the prostate stiffness with high resolution in the magnitude of 10 µm. Following our feasibility study of 10 patients reported previously, we recruited 60 more patients undergoing 12-core TRUS guided biopsies for suspected PCa with a total of 720 biopsies. The stiffness of cancer tissue was approximately 57.63% higher than that of benign ones. Using histology as reference standard and cut-off threshold of 600kPa, the data analysis showed sensitivity and specificity of 89.6% and 99.8% respectively. The method also demonstrated potential in characterising different grades of PCa based on the change of tissue morphology and quantitative mechanical properties. In conclusion, quantitative OCE can be a reliable technique to identify PCa lesion and differentiate indolent from aggressive cancer.

  13. Braided nanofibrous scaffold for tendon and ligament tissue engineering.

    Science.gov (United States)

    Barber, John G; Handorf, Andrew M; Allee, Tyler J; Li, Wan-Ju

    2013-06-01

    Tendon and ligament (T/L) injuries present an important clinical challenge due to their intrinsically poor healing capacity. Natural healing typically leads to the formation of scar-like tissue possessing inferior mechanical properties. Therefore, tissue engineering has gained considerable attention as a promising alternative for T/L repair. In this study, we fabricated braided nanofibrous scaffolds (BNFSs) as a potential construct for T/L tissue engineering. Scaffolds were fabricated by braiding 3, 4, or 5 aligned bundles of electrospun poly(L-lactic acid) nanofibers, thus introducing an additional degree of flexibility to alter the mechanical properties of individual scaffolds. We observed that the Young's modulus, yield stress, and ultimate stress were all increased in the 3-bundle compared to the 4- and 5-bundle BNFSs. Interestingly, acellular BNFSs mimicked the normal tri-phasic mechanical behavior of native tendon and ligament (T/L) during loading. When cultured on the BNFSs, human mesenchymal stem cells (hMSCs) adhered, aligned parallel to the length of the nanofibers, and displayed a concomitant realignment of the actin cytoskeleton. In addition, the BNFSs supported hMSC proliferation and induced an upregulation in the expression of key pluripotency genes. When cultured on BNFSs in the presence of tenogenic growth factors and stimulated with cyclic tensile strain, hMSCs differentiated into the tenogenic lineage, evidenced most notably by the significant upregulation of Scleraxis gene expression. These results demonstrate that BNFSs provide a versatile scaffold capable of supporting both stem cell expansion and differentiation for T/L tissue engineering applications.

  14. Insertion mechanics of bioinspired needles into soft tissues.

    Science.gov (United States)

    Sahlabadi, Mohammad; Khodaei, Seyedvahid; Jezler, Kyle; Hutapea, Parsaoran

    2017-12-22

    Most studies to date confirm that any increase in the needle insertion force increases the damage to the tissue. When it comes to brain tissue, even minor damage can cause a long-lasting traumatic brain injury. Thus there is a great demand for innovative minimally invasive needles among the medical community. In our previous studies a novel bioinspired needle design with specially designed barbs was used to perform insertion tests into Polyvinyl chloride (PVC) tissue-mimicking gels, in which it decreased the insertion force by as much as 25%. In this work, bioinspired needles were designed using a CAD software, and were then manufactured using a 3 D printer. The insertion tests into bovine brain and liver were then performed to further investigate the performance of our bioinspired needles in real tissues. Our results show that there was a 10-25% decrease in the insertion force for insertions into bovine brain, and a 35-45% reduction in the insertion force for insertions into bovine liver using the proposed bioinspired needles. The reduction in the insertion force is due to the decrease in the friction force of the bioinspired needle with the bovine tissues, and its results are consistent with our previous results.

  15. Anisotropic polyvinyl alcohol hydrogel phantom for shear wave elastography in fibrous biological soft tissue: a multimodality characterization

    International Nuclear Information System (INIS)

    Chatelin, Simon; Bernal, Miguel; Deffieux, Thomas; Papadacci, Clément; Nahas, Amir; Boccara, Claude; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu; Flaud, Patrice

    2014-01-01

    Shear wave elastography imaging techniques provide quantitative measurement of soft tissues elastic properties. Tendons, muscles and cerebral tissues are composed of fibers, which induce a strong anisotropic effect on the mechanical behavior. Currently, these tissues cannot be accurately represented by existing elastography phantoms. Recently, a novel approach for orthotropic hydrogel mimicking soft tissues has been developed (Millon et al 2006 J. Biomed. Mater. Res. B 305–11). The mechanical anisotropy is induced in a polyvinyl alcohol (PVA) cryogel by stretching the physical crosslinks of the polymeric chains while undergoing freeze/thaw cycles. In the present study we propose an original multimodality imaging characterization of this new transverse isotropic (TI) PVA hydrogel. Multiple properties were investigated using a large variety of techniques at different scales compared with an isotropic PVA hydrogel undergoing similar imaging and rheology protocols. The anisotropic mechanical (dynamic and static) properties were studied using supersonic shear wave imaging technique, full-field optical coherence tomography (FFOCT) strain imaging and classical linear rheometry using dynamic mechanical analysis. The anisotropic optical and ultrasonic spatial coherence properties were measured by FFOCT volumetric imaging and backscatter tensor imaging, respectively. Correlation of mechanical and optical properties demonstrates the complementarity of these techniques for the study of anisotropy on a multi-scale range as well as the potential of this TI phantom as fibrous tissue-mimicking phantom for shear wave elastographic applications. (paper)

  16. Anisotropic polyvinyl alcohol hydrogel phantom for shear wave elastography in fibrous biological soft tissue: a multimodality characterization

    Science.gov (United States)

    Chatelin, Simon; Bernal, Miguel; Deffieux, Thomas; Papadacci, Clément; Flaud, Patrice; Nahas, Amir; Boccara, Claude; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-11-01

    Shear wave elastography imaging techniques provide quantitative measurement of soft tissues elastic properties. Tendons, muscles and cerebral tissues are composed of fibers, which induce a strong anisotropic effect on the mechanical behavior. Currently, these tissues cannot be accurately represented by existing elastography phantoms. Recently, a novel approach for orthotropic hydrogel mimicking soft tissues has been developed (Millon et al 2006 J. Biomed. Mater. Res. B 305-11). The mechanical anisotropy is induced in a polyvinyl alcohol (PVA) cryogel by stretching the physical crosslinks of the polymeric chains while undergoing freeze/thaw cycles. In the present study we propose an original multimodality imaging characterization of this new transverse isotropic (TI) PVA hydrogel. Multiple properties were investigated using a large variety of techniques at different scales compared with an isotropic PVA hydrogel undergoing similar imaging and rheology protocols. The anisotropic mechanical (dynamic and static) properties were studied using supersonic shear wave imaging technique, full-field optical coherence tomography (FFOCT) strain imaging and classical linear rheometry using dynamic mechanical analysis. The anisotropic optical and ultrasonic spatial coherence properties were measured by FFOCT volumetric imaging and backscatter tensor imaging, respectively. Correlation of mechanical and optical properties demonstrates the complementarity of these techniques for the study of anisotropy on a multi-scale range as well as the potential of this TI phantom as fibrous tissue-mimicking phantom for shear wave elastographic applications.

  17. Starch behaviors and mechanical properties of starch blend films with different plasticizers.

    Science.gov (United States)

    Nguyen Vu, Hoang Phuong; Lumdubwong, Namfone

    2016-12-10

    The main objective of the study was to gain insight into structural and mechanical starch behaviors of the plasticized starch blend films. Mechanical properties and starch behaviors of cassava (CS)/and mungbean (MB) (50/50, w/w) starch blend films containing glycerol (Gly) or sorbitol (Sor) at 33% weight content were investigated. It was found that tensile strength TS and %E of the Gly-CSMB films were similar to those of MB films; but%E of all Sor-films was identical. TS of plasticized films increased when AM content and crystallinity increased. When Sor was substituted for Gly, crystallinity of starch films and their TS increased. The CSMB and MB films had somewhat a similar molecular profile and comparable mechanical properties. Therefore, it was proposed the starch molecular profile containing amylopectin with high M¯w, low M¯w of amylose, and the small size of intermediates may impart the high TS and%E of starch films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Interneuronal Mechanism for Tinbergen’s Hierarchical Model of Behavioral Choice

    Science.gov (United States)

    Pirger, Zsolt; Crossley, Michael; László, Zita; Naskar, Souvik; Kemenes, György; O’Shea, Michael; Benjamin, Paul R.; Kemenes, Ildikó

    2014-01-01

    Summary Recent studies of behavioral choice support the notion that the decision to carry out one behavior rather than another depends on the reconfiguration of shared interneuronal networks [1]. We investigated another decision-making strategy, derived from the classical ethological literature [2, 3], which proposes that behavioral choice depends on competition between autonomous networks. According to this model, behavioral choice depends on inhibitory interactions between incompatible hierarchically organized behaviors. We provide evidence for this by investigating the interneuronal mechanisms mediating behavioral choice between two autonomous circuits that underlie whole-body withdrawal [4, 5] and feeding [6] in the pond snail Lymnaea. Whole-body withdrawal is a defensive reflex that is initiated by tactile contact with predators. As predicted by the hierarchical model, tactile stimuli that evoke whole-body withdrawal responses also inhibit ongoing feeding in the presence of feeding stimuli. By recording neurons from the feeding and withdrawal networks, we found no direct synaptic connections between the interneuronal and motoneuronal elements that generate the two behaviors. Instead, we discovered that behavioral choice depends on the interaction between two unique types of interneurons with asymmetrical synaptic connectivity that allows withdrawal to override feeding. One type of interneuron, the Pleuro-Buccal (PlB), is an extrinsic modulatory neuron of the feeding network that completely inhibits feeding when excited by touch-induced monosynaptic input from the second type of interneuron, Pedal-Dorsal12 (PeD12). PeD12 plays a critical role in behavioral choice by providing a synaptic pathway joining the two behavioral networks that underlies the competitive dominance of whole-body withdrawal over feeding. PMID:25155505

  19. Evolution of mechanical behavior of 6XXX aluminium alloy due to the precipitation state during a thermo-mechanical process

    International Nuclear Information System (INIS)

    Bardel, Didier; Perez, Michel; Nelias, Daniel; Chaise, Thibaut; Garnier, Jerome; Bourlier, Florent

    2014-01-01

    The aim of this research is to link the microstructural state and the mechanical properties of an age hardening alloy during a fast heat treatment such as encountered during welding. A coupled model between precipitation state and mechanical properties is used to predict the yield strength and hardening behavior that can be observed experimentally. The method permits the identification of the kinematic and isotropic contributions in the hardening model. The methodology is applied to a 6061-T6 aluminium alloy which is used in the Jules Horowitz reactor vessel. The general idea of this methodology is to couple an efficient microstructural model to a mechanical one based on the dislocation theory and ad'hoc experiments. The theoretical background is based on the work of Kampmann and Wagner, known as the KWN model, to account for nucleation, growth/dissolution and coarsening of precipitates. This analysis requires transient thermo-mechanical experimental data. The efficiency of these models and their coupling are shown for a series 6XXX aluminium alloy which contains β'' and β' precipitates. Ultimately these models are coupled to a FEA model and allows to predict the distribution of precipitates within each element of the mesh, and subsequently its mechanical behavior. (authors)

  20. An adaptation model for trabecular bone at different mechanical levels

    Directory of Open Access Journals (Sweden)

    Lv Linwei

    2010-07-01

    Full Text Available Abstract Background Bone has the ability to adapt to mechanical usage or other biophysical stimuli in terms of its mass and architecture, indicating that a certain mechanism exists for monitoring mechanical usage and controlling the bone's adaptation behaviors. There are four zones describing different bone adaptation behaviors: the disuse, adaptation, overload, and pathologic overload zones. In different zones, the changes of bone mass, as calculated by the difference between the amount of bone formed and what is resorbed, should be different. Methods An adaptation model for the trabecular bone at different mechanical levels was presented in this study based on a number of experimental observations and numerical algorithms in the literature. In the proposed model, the amount of bone formation and the probability of bone remodeling activation were proposed in accordance with the mechanical levels. Seven numerical simulation cases under different mechanical conditions were analyzed as examples by incorporating the adaptation model presented in this paper with the finite element method. Results The proposed bone adaptation model describes the well-known bone adaptation behaviors in different zones. The bone mass and architecture of the bone tissue within the adaptation zone almost remained unchanged. Although the probability of osteoclastic activation is enhanced in the overload zone, the potential of osteoblasts to form bones compensate for the osteoclastic resorption, eventually strengthening the bones. In the disuse zone, the disuse-mode remodeling removes bone tissue in disuse zone. Conclusions The study seeks to provide better understanding of the relationships between bone morphology and the mechanical, as well as biological environments. Furthermore, this paper provides a computational model and methodology for the numerical simulation of changes of bone structural morphology that are caused by changes of mechanical and biological

  1. Development of mechanically expanded gelatin-AAc-PLLA/PLCL nanofibers for vascular tissue engineering by radiation-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Oh; Jeong, Sung In; Seo, Da Eun; Park, Jong Seok; Gwon, Hui Jeong; Ahn, Sung Jun; Lim, Youn Mook [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Shin, Young Min [Dept. of Bioengineering, Division of Applied Chemical and Bio Engineering, Hanyang University, Seoul (Korea, Republic of)

    2015-12-15

    Vascular tissue engineering has been accessed to mimic the natural composition of the blood vessel containing inmate, media, and adventitia layers. We fabricated mechanically expanded PLLA/PLCL nanofibers using electrospinning and UTM. The pore size of the meshes was increased the gelatin immobilized AAc-PLLA/PLCL nanofibers (203.30±49.62 microns) than PLLA/PLCL nanofibers (59.99±8.66 microns) after mechanical expansion. To increase the cell adhesion and proliferation, we introduced carboxyl group, and gelatin was conjugated on them. The properties of the PLLA/PLCL nanofibers were analyzed with SEM, ATR-FTIR, TBO staining, and water contact angle measurement, general cell responses on the PLLA/PLCL nanofibers such as adhesion, proliferation, and infiltration were also investigated using smooth muscle cell (SMC). During the SMC culture, the initial viability of the cells was significantly increased on the gelatin immobilized AAc-PLLA/PLCL nanofibers, and infiltration of the cells was also enhanced on them. Therefore, gelatin immobilized AAc-PLLA/PLCL nanofibers and mechanically expanded meshes may be a good tool for vascular tissue engineering application.

  2. Autonomous informational stability in connective tissues.

    Science.gov (United States)

    Brand, R A

    1992-02-01

    No coherent theories currently explain connective tissue stability (i.e. 'memory') as well as spatial and temporal adaptability in the face of continual flux of its constituents. Furthermore, explanations of stability based exclusively upon DNA raise certain inherent problems, particularly with the spatial concordance of somatic tissues. As an alternative explanation, it is hypothesized that while connective tissue cells produce extracellular protein precursors through DNA-dependent processes, the assembly, location, orientation and configuration of the extracellular macromolecules as well as their degree of cell attachment depend primarily upon local micro-environmental conditions and/or self-organization rather than strictly cellular processes. The resulting extracellular matrix (ECM) serves as a time- and spatially-variable filter about each cell to afford a relatively consistent micro-environment for all similar cells, regardless of the more variable macro-environment. By insuring a consistent set of signals to the cell, the filter provides a non-genetic memory complementary to genetic memory. The half-lives of constituent molecules define the duration of the filter, allowing the filter to adapt to new environmental demands, yet to maintain a consistent milieu for the cell. The cell/matrix construct permits local, self-optimizing, non-deterministic tissue autonomy obviating the need to postulate certain intricate mechanisms coordinating spatial morphology and temporal behavior.

  3. Perinatal programming of neuroendocrine mechanisms connecting feeding behavior and stress

    Directory of Open Access Journals (Sweden)

    Sarah J Spencer

    2013-06-01

    Full Text Available Feeding behavior is closely regulated by neuroendocrine mechanisms that can be influenced by stressful life events. However, the feeding response to stress varies among individuals with some increasing and others decreasing food intake after stress. In addition to the impact of acute lifestyle and genetic backgrounds, the early life environment can have a life-long influence on neuroendocrine mechanisms connecting stress to feeding behavior and may partially explain these opposing feeding responses to stress. In this review I will discuss the perinatal programming of adult hypothalamic stress and feeding circuitry. Specifically I will address how early life (prenatal and postnatal nutrition, early life stress, and the early life hormonal profile can program the hypothalamic-pituitary-adrenal (HPA axis, the endocrine arm of the body’s response to stress long-term and how these changes can, in turn, influence the hypothalamic circuitry responsible for regulating feeding behavior. Thus, over- or under-feeding and / or stressful events during critical windows of early development can alter glucocorticoid (GC regulation of the HPA axis, leading to changes in the GC influence on energy storage and changes in GC negative feedback on HPA axis-derived satiety signals such as corticotropin-releasing-hormone. Furthermore, peripheral hormones controlling satiety, such as leptin and insulin are altered by early life events, and can be influenced, in early life and adulthood, by stress. Importantly, these neuroendocrine signals act as trophic factors during development to stimulate connectivity throughout the hypothalamus. The interplay between these neuroendocrine signals, the perinatal environment, and activation of the stress circuitry in adulthood thus strongly influences feeding behavior and may explain why individuals have unique feeding responses to similar stressors.

  4. Identification of molecular mechanisms of radiation-induced vascular damage in normal tissues using microarray analyses

    International Nuclear Information System (INIS)

    Kruse, J.J.C.M.; Te Poele, J.A.M.; Russell, N.S.; Boersma, L.J.; Stewart, F.A.

    2003-01-01

    Radiation-induced telangiectasia, characterized by thin-walled dilated blood vessels, can be a serious late complication in patients that have been previously treated for cancer. It might cause cosmetic problems when occurring in the skin, and excessive bleeding requiring surgery when occurring in rectal mucosa. The mechanisms underlying the development of radiation-induced telangiectasia are unclear. The aim of the present study is to determine whether microarrays are useful for studying mechanisms of radiation-induced telangiectasia. The second aim is to test the hypotheses that telangiectasia is characterized by a final common pathway in different tissues. Microarray experiments were performed using amplified RNA from (sham)irradiated mouse tissues (kidney, rectum) at different intervals (1-30 weeks) after irradiation. After normalization procedures, the differentially expressed genes were identified. Control/repeat experiments were done to confirm that the observations were not artifacts of the array procedure. The mouse kidney experiments showed significant upregulation of 31 and 42 genes and downregulation of 9 and 4 genes at 10 and 20 weeks after irradiation, respectively. Irradiated mouse rectum has 278 upregulated and 537 downregulated genes at 10 weeks and 86 upregulated and 29 downregulated genes at 20 weeks. During the development of telangiectasia, 19 upregulated genes and 5 downregulated genes were common to both tissues. Upregulation of Jagged-1, known to play a role in angiogenesis, is particularly interesting in the context of radiation-induced telangiectasia. Microarrays are affective discovery tools to identify novel genes of interest, which may be involved in radiation-induced normal tissue injury. Using information from control arrays (particularly straight color, color reverse and self-self experiments) allowed for a more accurate and reproducible identification of differentially expressed genes than the selection of an arbitrary 2-fold change

  5. Time-dependent chemo-electro-mechanical behavior of hydrogel-based structures

    Science.gov (United States)

    Leichsenring, Peter; Wallmersperger, Thomas

    2018-03-01

    Charged hydrogels are ionic polymer gels and belong to the class of smart materials. These gels are multiphasic materials which consist of a solid phase, a fluid phase and an ionic phase. Due to the presence of bound charges these materials are stimuli-responsive to electrical or chemical loads. The application of electrical or chemical stimuli as well as mechanical loads lead to a viscoelastic response. On the macroscopic scale, the response is governed by a local reversible release or absorption of water which, in turn, leads to a local decrease or increase of mass and a respective volume change. Furthermore, the chemo-electro-mechanical equilibrium of a hydrogel depends on the chemical composition of the gel and the surrounding solution bath. Due to the presence of bound charges in the hydrogel, this system can be understood as an osmotic cell where differences in the concentration of mobile ions in the gel and solution domain lead to an osmotic pressure difference. In the present work, a continuum-based numerical model is presented in order to describe the time-dependent swelling behavior of hydrogels. The numerical model is based on the Theory of Porous Media and captures the fluid-solid, fluid-ion and ion-ion interactions. As a direct consequence of the chemo-electro-mechanical equilibrium, the corresponding boundary conditions are defined following the equilibrium conditions. For the interaction of the hydrogel with surrounding mechanical structures, also respective jump condtions are formulated. Finaly, numerical results of the time-dependent behavior of a hydrogel-based chemo-sensor will be presented.

  6. Mechanisms of odor-tracking: multiple sensors for enhanced perception and behavior

    Directory of Open Access Journals (Sweden)

    Alex Gomez-Marin

    2010-03-01

    Full Text Available Early in evolution, the ability to sense and respond to changing environments must have provided a critical survival advantage to living organisms. From bacteria and worms to flies and vertebrates, sophisticated mechanisms have evolved to enhance odor detection and localization. Here, we review several modes of chemotaxis. We further consider the relevance of a striking and recurrent motif in the organization of invertebrate and vertebrate sensory systems, namely the existence of two symmetrical olfactory sensors. By combining our current knowledge about the olfactory circuits of larval and adult Drosophila, we examine the molecular and neural mechanisms underlying robust olfactory perception and extend these analyses to recent behavioral studies addressing the relevance and function of bilateral olfactory input for gradient detection. Finally, using a comparative theoretical approach based on Braitenberg’s vehicles, we speculate about the relationships between anatomy, circuit architecture and stereotypical orientation behaviors.

  7. Assessment of thermo-mechanical behavior in CLAM steel first wall structures

    International Nuclear Information System (INIS)

    Liu Fubin; Yao Man

    2012-01-01

    Highlights: ► China Low Activation Martensitic steel (CLAM) as FW the structural material. ► The thermo-mechanical behavior of the FW was analyzed under the condition of normal ITER operation combined effect of plasma heat flux and neutron heating. ► The temperature dependence of the material physical properties of CLAM is summarized. - Abstract: The temperature and strain distributions of the mockup with distinct structural material (SS316L or China Low Activation Martensitic steel (CLAM)) in two-dimensional model were calculated and analyzed, based on a high heat flux (HHF) test recently reported with heat flux of 3.2 MW/m 2 . The calculated temperature and strain results in the first wall (FW), in which SS316L is as the structural material, showed good agreement with HHF test. By substituting CLAM steel for SS316L the contrast analysis indicates that the thermo-mechanical property for CLAM steel is better than that of SS316 at the same condition. Furthermore, the thermo-mechanical behavior of the FW was analyzed under the condition of normal ITER operation combined effect of plasma heat flux and neutron heating.

  8. Assessment of thermo-mechanical behavior in CLAM steel first wall structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fubin, E-mail: liufubin_1216@126.com [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning (China); Yao Man, E-mail: yaoman@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer China Low Activation Martensitic steel (CLAM) as FW the structural material. Black-Right-Pointing-Pointer The thermo-mechanical behavior of the FW was analyzed under the condition of normal ITER operation combined effect of plasma heat flux and neutron heating. Black-Right-Pointing-Pointer The temperature dependence of the material physical properties of CLAM is summarized. - Abstract: The temperature and strain distributions of the mockup with distinct structural material (SS316L or China Low Activation Martensitic steel (CLAM)) in two-dimensional model were calculated and analyzed, based on a high heat flux (HHF) test recently reported with heat flux of 3.2 MW/m{sup 2}. The calculated temperature and strain results in the first wall (FW), in which SS316L is as the structural material, showed good agreement with HHF test. By substituting CLAM steel for SS316L the contrast analysis indicates that the thermo-mechanical property for CLAM steel is better than that of SS316 at the same condition. Furthermore, the thermo-mechanical behavior of the FW was analyzed under the condition of normal ITER operation combined effect of plasma heat flux and neutron heating.

  9. Mechanical characterization of the mouse diaphragm with optical coherence elastography reveals fibrosis-related change of direction-dependent muscle tissue stiffness

    Science.gov (United States)

    Wang, Shang; Loehr, James A.; Larina, Irina V.; Rodney, George G.; Larin, Kirill V.

    2016-03-01

    The diaphragm, composed of skeletal muscle, plays an important role in respiration through its dynamic contraction. Genetic and molecular studies of the biomechanics of mouse diaphragm can provide great insights into an improved understanding and potential treatment of the disorders that lead to diaphragm dysfunction (i.e. muscular dystrophy). However, due to the small tissue size, mechanical assessment of mouse diaphragm tissue under its proper physiological conditions has been challenging. Here, we present the application of noncontact optical coherence elastography (OCE) for quantitative elastic characterization of ex vivo mouse diaphragm. Phase-sensitive optical coherence tomography was combined with a focused air-puff system to capture and measure the elastic wave propagation from tissue surface. Experiments were performed on wildtype and dystrophic mouse diaphragm tissues containing different levels of fibrosis. The OCE measurements of elastic wave propagation were conducted along both the longitudinal and transverse axis of the muscle fibers. Cross-correlation of the temporal displacement profiles from different spatial locations was utilized to obtain the propagation time delay, which was used to calculate the wave group velocity and to further quantify the tissue Young's modulus. Prior to and after OCE assessment, peak tetanic force was measured to monitor viability of the tissue during the elasticity measurements. Our experimental results indicate a positive correlation between fibrosis level and tissue stiffness, suggesting this elastic-wave-based OCE method could be a useful tool to monitor mechanical properties of skeletal muscle under physiological and pathological conditions.

  10. Linguistic Mechanisms Cause Rapid Behavior Change. Part Two: How Linguistic Frames Affect Motivation

    Science.gov (United States)

    Yeager, Joseph; Sommer, Linda

    2007-01-01

    Written and spoken language contains inherent mechanisms driving motivation. Accessing and modifying psycholinguistic mechanisms, links language frames to changes in behavior within the context of motivational profiling. For example, holding an object like an imported apple feels safe until one is informed it was grown in a toxic waste dump.…

  11. In vivo evaluation of hybrid patches composed of PLA based copolymers and collagen/chondroitin sulfate for ligament tissue regeneration.

    Science.gov (United States)

    Pinese, Coline; Gagnieu, Christian; Nottelet, Benjamin; Rondot-Couzin, Capucine; Hunger, Sylvie; Coudane, Jean; Garric, Xavier

    2017-10-01

    Biomaterials for soft tissues regeneration should exhibit sufficient mechanical strength, demonstrating a mechanical behavior similar to natural tissues and should also promote tissues ingrowth. This study was aimed at developing new hybrid patches for ligament tissue regeneration by synergistic incorporation of a knitted structure of degradable polymer fibers to provide mechanical strength and of a biomimetic matrix to help injured tissues regeneration. PLA- Pluronic ® (PLA-P) and PLA-Tetronic ® (PLA-T) new copolymers were shaped as knitted patches and were associated with collagen I (Coll) and collagen I/chondroitine-sulfate (Coll CS) 3-dimensional matrices. In vitro study using ligamentocytes showed the beneficial effects of CS on ligamentocytes proliferation. Hybrid patches were then subcutaneously implanted in rats for 4 and 12 weeks. Despite degradation, patches retained strength to answer the mechanical physiological needs. Tissue integration capacity was assessed with histological studies. We showed that copolymers, associated with collagen and chondroitin sulfate sponge, exhibited very good tissue integration and allowed neotissue synthesis after 12 weeks in vivo. To conclude, PLA-P/CollCS and PLA-T/CollCS hybrid patches in terms of structure and composition give good hopes for tendon and ligament regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1778-1788, 2017. © 2016 Wiley Periodicals, Inc.

  12. A chondroitinase-ABC and TGF-β1 treatment regimen for enhancing the mechanical properties of tissue engineered fibrocartilage

    Science.gov (United States)

    MacBarb, Regina F.; Makris, Eleftherios A.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2012-01-01

    The development of functionally equivalent fibrocartilage remains elusive despite efforts to engineer tissues such as the knee menisci, intervertebral disc, and TMJ disc. Attempts to engineer these structures often fail to create tissues with mechanical properties on par with native tissue, resulting in constructs unsuitable for clinical applications. The objective of this study was to engineer a spectrum of biomimetic fibrocartilages representative of the distinct functional properties found in native tissues. Using the self-assembly process, different co-cultures of meniscus cells (MCs) and articular chondrocytes (ACs) were seeded into agarose wells and treated with the catabolic agent chondroitinase-ABC (C-ABC) and the anabolic agent transforming growth factor-β1 (TGF-β1) via a two-factor (cell ratio and bioactive treatment), full factorial study design. Application of both C-ABC and TGF-β1 resulted in a beneficial or positive increase in the collagen content of treated constructs compared to controls. Significant increases in both the collagen density and fiber diameter were also seen with this treatment, increasing these values 32% and 15%, respectively, over control values. Mechanical testing found the combined bioactive treatment to synergistically increase the Young’s modulus and ultimate tensile strength of the engineered fibrocartilages compared to controls, with values reaching the lower spectrum of those found in native tissues. Together, these data demonstrate that C-ABC and TGF-β1 interact to develop a denser collagen matrix better able to withstand tensile loading. This study highlights a way to optimize the tensile properties of engineered fibrocartilage using a biochemical and biophysical agent together to create distinct fibrocartilages with functional properties mimicking those of native tissue. PMID:23041782

  13. Mechanical Behavior of Low Porosity Carbonate Rock: From Brittle Creep to Ductile Creep.

    Science.gov (United States)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2014-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this study, we focus on the mechanical behavior of a 14.7% porosity white Tavel (France) carbonate rock (>98% calcite). The samples were deformed in a triaxial cell at effective confining pressures ranging from 0 MPa to 85 MPa at room temperature and 70°C. Experiments were carried under dry and water saturated conditions in order to explore the role played by the pore fluids. Two types of experiments have been carried out: (1) a first series in order to investigate the rupture envelopes, and (2) a second series with creep experiments. During the experiments, elastic wave velocities (P and S) were measured to infer crack density evolution. Permeability was also measured during creep experiments. Our results show two different mechanical behaviors: (1) brittle behavior is observed at low confining pressures, whereas (2) ductile behavior is observed at higher confining pressures. During creep experiments, these two behaviors have a different signature in term of elastic wave velocities and permeability changes, due to two different mechanisms: development of micro-cracks at low confining pressures and competition between cracks and microplasticity at high confining pressure. The attached figure is a summary of 20 triaxial experiments performed on Tavel limestone under different conditions. Stress states C',C* and C*' and brittle strength are shown in the P-Q space: (a) 20°C and dry

  14. Mechanical behavior of fast reactor fuel pin cladding subjected to simulated overpower transients

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.

    1978-06-01

    Cladding mechanical property data for analysis and prediction of fuel pin transient behavior were obtained under experimental conditions in which the temperature ramps of reactor transients were simulated. All cladding specimens were 20% CW Type 316 stainless steel and were cut from EBR-II irradiated fuel pins. It was determined that irradiation degraded the cladding ductility and failure strength. Specimens that had been adjacent to the fuel exhibited the poorest properties. Correlations were developed to describe the effect of neutron fluence on the mechanical behavior of the cladding. Metallographic examinations were conducted to characterize the failure mode and to establish the nature of internal and external surface corrosion. Various mechanisms for the fuel adjacency effect were examined and results for helium concentration profiles were presented. Results from the simulated transient tests were compared with TREAT test results

  15. Mechanical, Permeability, and Degradation Properties of 3D Designed Poly(1,8 Octanediol-co-Citrate)(POC) Scaffolds for Soft Tissue Engineering

    Science.gov (United States)

    Jeong, Claire G.; Hollister, Scott J.

    2015-01-01

    Poly(1,8-octanediol-co-citric acid) (POC) is a synthetic biodegradable elastomer that can be processed into 3D scaffolds for tissue engineering. We investigated the effect of designed porosity on the mechanical properties, permeability and degradation profiles of the POC scaffolds. For mechanical properties, scaffold compressive data was fit to a 1D nonlinear elastic model and solid tensile data was fit to a Neohookean incompressible nonlinear elastic model. Chondrocytes were seeded on scaffolds to assess the biocompatibility of POC. Increased porosity was associated with increased degradation rate, increased permeability, and decreased mechanical stiffness which also became less nonlinear. Scaffold characterization in this paper will provide design guidance for POC scaffolds to meet the mechanical and biological parameters needed for engineering soft tissues such as cartilage. PMID:20091910

  16. On the biomechanical function of scaffolds for engineering load-bearing soft tissues.

    Science.gov (United States)

    Stella, John A; D'Amore, Antonio; Wagner, William R; Sacks, Michael S

    2010-07-01

    Replacement or regeneration of load-bearing soft tissues has long been the impetus for the development of bioactive materials. While maturing, current efforts continue to be confounded by our lack of understanding of the intricate multi-scale hierarchical arrangements and interactions typically found in native tissues. The current state of the art in biomaterial processing enables a degree of controllable microstructure that can be used for the development of model systems to deduce fundamental biological implications of matrix morphologies on cell function. Furthermore, the development of computational frameworks which allow for the simulation of experimentally derived observations represents a positive departure from what has mostly been an empirically driven field, enabling a deeper understanding of the highly complex biological mechanisms we wish to ultimately emulate. Ongoing research is actively pursuing new materials and processing methods to control material structure down to the micro-scale to sustain or improve cell viability, guide tissue growth, and provide mechanical integrity, all while exhibiting the capacity to degrade in a controlled manner. The purpose of this review is not to focus solely on material processing but to assess the ability of these techniques to produce mechanically sound tissue surrogates, highlight the unique structural characteristics produced in these materials, and discuss how this translates to distinct macroscopic biomechanical behaviors. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Mechanical Behavior of Shale Rock under Uniaxial Cyclic Loading and Unloading Condition

    Directory of Open Access Journals (Sweden)

    Baoyun Zhao

    2018-01-01

    Full Text Available In order to investigate the mechanical behavior of shale rock under cyclic loading and unloading condition, two kinds of incremental cyclic loading tests were conducted. Based on the result of the short-term uniaxial incremental cyclic loading test, the permanent residual strain, modulus, and damage evolution were analyzed firstly. Results showed that the relationship between the residual strains and the cycle number can be expressed by an exponential function. The deformation modulus E50 and elastic modulus ES first increased and then decreased with the peak stress under the loading condition, and both of them increased approximately linearly with the peak stress under the unloading condition. On the basis of the energy dissipation, the damage variables showed an exponential increasing with the strain at peak stress. The creep behavior of the shale rock was also analyzed. Results showed that there are obvious instantaneous strain, decay creep, and steady creep under each stress level and the specimen appears the accelerated creep stage under the 4th stress of 51.16 MPa. Based on the characteristics of the Burgers creep model, a viscoelastic-plastic creep model was proposed through viscoplastic mechanics, which agrees very well with the experimental results and can better describe the creep behavior of shale rock better than the Burgers creep model. Results can provide some mechanics reference evidence for shale gas development.

  18. Numerical Modeling of Mechanical Behavior for Buried Steel Pipelines Crossing Subsidence Strata.

    Directory of Open Access Journals (Sweden)

    J Zhang

    Full Text Available This paper addresses the mechanical behavior of buried steel pipeline crossing subsidence strata. The investigation is based on numerical simulation of the nonlinear response of the pipeline-soil system through finite element method, considering large strain and displacement, inelastic material behavior of buried pipeline and the surrounding soil, as well as contact and friction on the pipeline-soil interface. Effects of key parameters on the mechanical behavior of buried pipeline were investigated, such as strata subsidence, diameter-thickness ratio, buried depth, internal pressure, friction coefficient and soil properties. The results show that the maximum strain appears on the outer transition subsidence section of the pipeline, and its cross section is concave shaped. With the increasing of strata subsidence and diameter-thickness ratio, the out of roundness, longitudinal strain and equivalent plastic strain increase gradually. With the buried depth increasing, the deflection, out of roundness and strain of the pipeline decrease. Internal pressure and friction coefficient have little effect on the deflection of buried pipeline. Out of roundness is reduced and the strain is increased gradually with the increasing of internal pressure. The physical properties of soil have a great influence on the mechanical properties of buried pipeline. The results from the present study can be used for the development of optimization design and preventive maintenance for buried steel pipelines.

  19. Artificial neural networks in prediction of mechanical behavior of concrete at high temperature

    International Nuclear Information System (INIS)

    Mukherjee, A.; Nag Biswas, S.

    1997-01-01

    The behavior of concrete structures that are exposed to extreme thermo-mechanical loading is an issue of great importance in nuclear engineering. The mechanical behavior of concrete at high temperature is non-linear. The properties that regulate its response are highly temperature dependent and extremely complex. In addition, the constituent materials, e.g. aggregates, influence the response significantly. Attempts have been made to trace the stress-strain curve through mathematical models and rheological models. However, it has been difficult to include all the contributing factors in the mathematical model. This paper examines a new programming paradigm, artificial neural networks, for the problem. Implementing a feedforward network and backpropagation algorithm the stress-strain relationship of the material is captured. The neural networks for the prediction of uniaxial behavior of concrete at high temperature has been presented here. The results of the present investigation are very encouraging. (orig.)

  20. Development of Biodegradable Poly(citrate)-Polyhedral Oligomeric Silsesquioxanes Hybrid Elastomers with High Mechanical Properties and Osteogenic Differentiation Activity.

    Science.gov (United States)

    Du, Yuzhang; Yu, Meng; Chen, Xiaofeng; Ma, Peter X; Lei, Bo

    2016-02-10

    Biodegradable elastomeric biomaterials have attracted much attention in tissue engineering due to their biomimetic viscoelastic behavior and biocompatibility. However, the low mechanical stability at hydrated state, fast biodegradation in vivo, and poor osteogenic activity greatly limited bioelastomers applications in bone tissue regeneration. Herein, we develop a series of poly(octanediol citrate)-polyhedral oligomeric silsesquioxanes (POC-POSS) hybrids with highly tunable elastomeric behavior (hydrated state) and biodegradation and osteoblasts biocompatibility through a facile one-pot thermal polymerization strategy. POC-POSS hybrids show significantly improved stiffness and ductility in either dry or hydrated conditions, as well as good antibiodegradation ability (20-50% weight loss in 3 months). POC-POSS hybrids exhibit significantly enhanced osteogenic differentiation through upregulating alkaline phosphatase (ALP) activity, calcium deposition, and expression of osteogenic markers (ALPL, BGLAP, and Runx2). The high mechanical stability at hydrated state and enhanced osteogenic activity make POC-POSS hybrid elastomers promising as scaffolds and nanoscale vehicles for bone tissue regeneration and drug delivery. This study may also provide a new strategy (controlling the stiffness under hydrated condition) to design advanced hybrid biomaterials with high mechanical properties under physiological condition for tissue regeneration applications.

  1. In Vitro Evaluation of Essential Mechanical Properties and Cell Behaviors of a Novel Polylactic-co-Glycolic Acid (PLGA-Based Tubular Scaffold for Small-Diameter Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Nuoxin Wang

    2017-07-01

    Full Text Available In this paper, we investigate essential mechanical properties and cell behaviors of the scaffolds fabricated by rolling polylactic-co-glycolic acid (PLGA electrospinning (ES films for small-diameter vascular grafts (inner diameter < 6 mm. The newly developed strategy can be used to fabricate small diameter vascular grafts with or without pre-seeded cells, which are two main branches for small diameter vascular engineering. We demonstrate that the mechanical properties of our rolling-based scaffolds can be tuned flexibly by the number of layers. For cell-free scaffolds, with the increase of layer number, burst pressure and suture retention increase, elastic tensile modulus maintains unchanged statistically, but compliance and liquid leakage decrease. For cell-containing scaffolds, seeding cells will significantly decrease the liquid leakage, but there are no statistical differences for other mechanical properties; moreover, cells live and proliferate well in the scaffold after a 6-day culture.

  2. Regular behaviors in SU(2) Yang-Mills classical mechanics

    International Nuclear Information System (INIS)

    Xu Xiaoming

    1997-01-01

    In order to study regular behaviors in high-energy nucleon-nucleon collisions, a representation of the vector potential A i a is defined with respect to the (a,i)-dependence in the SU(2) Yang-Mills classical mechanics. Equations of the classical infrared field as well as effective potentials are derived for the elastic or inelastic collision of two plane wave in a three-mode model and the decay of an excited spherically-symmetric field

  3. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    Kumbar, S G; Toti, U S; Deng, M; James, R; Laurencin, C T; Aravamudhan, A; Harmon, M; Ramos, D M

    2011-01-01

    The success of the scaffold-based bone regeneration approach critically depends on the biomaterial's mechanical and biological properties. Cellulose and its derivatives are inherently associated with exceptional strength and biocompatibility due to their β-glycosidic linkage and extensive hydrogen bonding. This polymer class has a long medical history as a dialysis membrane, wound care system and pharmaceutical excipient. Recently cellulose-based scaffolds have been developed and evaluated for a variety of tissue engineering applications. In general porous polysaccharide scaffolds in spite of many merits lack the necessary mechanical competence needed for load-bearing applications. The present study reports the fabrication and characterization of three-dimensional (3D) porous sintered microsphere scaffolds based on cellulose derivatives using a solvent/non-solvent sintering approach for load-bearing applications. These 3D scaffolds exhibited a compressive modulus and strength in the mid-range of human trabecular bone and underwent degradation resulting in a weight loss of 10–15% after 24 weeks. A typical stress–strain curve for these scaffolds showed an initial elastic region and a less-stiff post-yield region similar to that of native bone. Human osteoblasts cultured on these scaffolds showed progressive growth with time and maintained expression of osteoblast phenotype markers. Further, the elevated expression of alkaline phosphatase and mineralization at early time points as compared to heat-sintered poly(lactic acid–glycolic acid) control scaffolds with identical pore properties affirmed the advantages of polysaccharides and their potential for scaffold-based bone regeneration.

  4. Continuum mechanical and computational aspects of material behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fried, Eliot; Gurtin, Morton E.

    2000-02-10

    The focus of the work is the application of continuum mechanics to materials science, specifically to the macroscopic characterization of material behavior at small length scales. The long-term goals are a continuum-mechanical framework for the study of materials that provides a basis for general theories and leads to boundary-value problems of physical relevance, and computational methods appropriate to these problems supplemented by physically meaningful regularizations to aid in their solution. Specific studies include the following: the development of a theory of polycrystalline plasticity that incorporates free energy associated with lattice mismatch between grains; the development of a theory of geometrically necessary dislocations within the context of finite-strain plasticity; the development of a gradient theory for single-crystal plasticity with geometrically necessary dislocations; simulations of dynamical fracture using a theory that allows for the kinking and branching of cracks; computation of segregation and compaction in flowing granular materials.

  5. Behavioral Outcomes Differ Between Rotational Acceleration and Blast Mechanisms of Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Brian D. Stemper

    2016-03-01

    Full Text Available Mild traumatic brain injury (mTBI can result from a number of mechanisms, including blunt impact, head rotational acceleration, exposure to blast, and penetration of projectiles. Mechanism is likely to influence the type, severity, and chronicity of outcomes. The objective of this study was to determine differences in the severity and time-course of behavioral outcomes following blast and rotational mTBI. The Medical College of Wisconsin (MCW Rotational Injury model and a shock tube model of primary blast injury were used to induce mTBI in rats and behavioral assessments were conducted within the first week, as well as 30 and 60 days following injury. Acute recovery time demonstrated similar increases over protocol-matched shams, indicating acute injury severity equivalence between the two mechanisms. Post-injury behavior in the elevated plus maze demonstrated differing trends, with rotationally injured rats acutely demonstrating greater activity, whereas blast-injured rats had decreased activity that developed at chronic time points. Similarly, blast-injured rats demonstrated trends associated with cognitive deficits that were not apparent following rotational injuries. These findings demonstrate that rotational and blast injury result in behavioral changes with different qualitative and temporal manifestations. Whereas rotational injury was characterized by a rapidly emerging phenotype consistent with behavioral disinhibition, blast injury was associated with emotional and cognitive differences that were not evident acutely, but developed later, with an anxiety-like phenotype still present in injured animals at our most chronic measurements.

  6. Preliminary study of mechanical behavior for Cr coated Zr-4 Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do-Hyoung; Kim, Hak-Sung [Hanyang Univ., Seoul (Korea, Republic of); Kim, Hyo-Chan; Yang, Yong-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To decrease the oxidation rate of Zr-based alloy components, many concepts of accident tolerant fuel (ATF) such as Mo-Zr cladding, SiC/SiCf cladding and iron-based alloy cladding are under development. One of the promised concept is the coated cladding which can remarkably increase the corrosion and wear resistance. Recently, KAERI is developing the Cr coated Zircaloy cladding as accident tolerance cladding. To coat the Cr powder on the Zircaloy, 3D laser coating technology has been employed because it is possible to make a coated layer on the tubular cladding surface by controlling the 3-diminational axis. Therefore, for this work, the mechanical integrity of Cr coated Zircaloy should be evaluated to predict the safety of fuel cladding during the operating or accident of nuclear reactor. In this work, the mechanical behavior of the Cr coated Zircaloy cladding has been studied by using finite element analysis (FEA). The ring compression test (RCT) of fuel cladding was simulated to evaluate the validity of mechanical properties of Zr-4 and Cr, which were referred from the literatures and experimental reports. In this work, the mechanical behavior of the Cr coated Zircaloy cladding has been studied by using finite element analysis (FEA). The ring compression test (RCT) of fuel cladding was simulated to evaluate the validity of mechanical properties of Zr-4 and Cr. The pellet-clad mechanical interaction (PCMI) properties of Cr coated Zr-4 cladding were investigated by thermo-mechanical finite element analysis (FEA) simulation. The mechanical properties of Zr-4 and Cr was validated by simulation of ring compression test (RCT) of fuel cladding.

  7. Non-destructive thermo-mechanical behavior assessment of glass-ceramics for dental applications

    Science.gov (United States)

    Kordatos, E. Z.; Abdulkadhim, Z.; Feteira, A. M.

    2017-05-01

    Every year millions of people seek dental treatment to either repair damaged, unaesthetic and dysfunctional teeth or replace missing natural teeth. Several dental materials have been developed to meet the stringent requirements in terms of mechanical properties, aesthetics and chemical durability in the oral environment. Glass-ceramics exhibit a suitable combination of these properties for dental restorations. This research is focused on the assessment of the thermomechanical behavior of bio-ceramics and particularly lithium aluminosilicate glass-ceramics (LAS glass-ceramics). Specifically, methodologies based on Infrared Thermography (IRT) have been applied in order the structure - property relationship to be evaluated. Non-crystallized, partially crystallized and fully crystallized glass-ceramic samples have been non-destructively assessed in order their thermo-mechanical behavior to be associated with their micro-structural features.

  8. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load.

    Science.gov (United States)

    Kocen, Rok; Gasik, Michael; Gantar, Ana; Novak, Saša

    2017-03-06

    Along with biocompatibility, bioinductivity and appropriate biodegradation, mechanical properties are also of crucial importance for tissue engineering scaffolds. Hydrogels, such as gellan gum (GG), are usually soft materials, which may benefit from the incorporation of inorganic particles, e.g. bioactive glass, not only due to the acquired bioactivity, but also due to improved mechanical properties. They exhibit complex viscoelastic properties, which can be evaluated in various ways. In this work, to reliably evaluate the effect of the bioactive glass (BAG) addition on viscoelastic properties of the composite hydrogel, we employed and compared the three most commonly used techniques, analyzing their advantages and limitations: monotonic uniaxial unconfined compression, small amplitude oscillatory shear (SAOS) rheology and dynamic mechanical analysis (DMA). Creep and small amplitude dynamic strain-controlled tests in DMA are suggested as the best ways for the characterization of mechanical properties of hydrogel composites, whereas the SAOS rheology is more useful for studying the hydrogel's processing kinetics, as it does not induce volumetric changes even at very high strains. Overall, the results confirmed a beneficial effect of BAG (nano)particles on the elastic modulus of the GG-BAG composite hydrogel. The Young's modulus of 6.6 ± 0.8 kPa for the GG hydrogel increased by two orders of magnitude after the addition of 2 wt.% BAG particles (500-800 kPa).

  9. Effect of tumor therapeutic irradiation on the mechanical properties of teeth tissue

    Energy Technology Data Exchange (ETDEWEB)

    Fraenzel, W. [Dept. of Physics, Martin Luther Univ. Halle (Germany); Gerlach, R. [Univ. Clinic and Policlinic for Radiation Therapy, Martin Luther Univ. Halle (Germany); Hein, H.J. [Univ. Clinic and Policlinic for Orthopaedics and Physical Medicine, Martin Luther Univ. Halle (Germany); Schaller, H.G. [Dept. of Operative Dentistry and Periodontology, Martin Luther Univ. Halle (Germany)

    2006-07-01

    Tumor irradiation of the head-neck area is accompanied by the development of a so-called radiation caries in the treated patients. In spite of conservative therapeutic measures, the process results in tooth destruction. The present study investigated the effects of irradiation on the demineralization and remineralization of the dental tissue. For this purpose, retained third molars were prepared and assigned either to a test group, which was exposed to fractional irradiation up to 60 Gy, or to a non-irradiated control group. Irradiated and non-irradiated teeth were then demineralized using acidic hydroxyl-cellulose gel; afterwards the teeth were remineralized using either Bifluorid12 {sup registered} or elmex gelee {sup registered}. The nanoindentation technique was used to measure the mechanical properties, hardness and elasticity, of the teeth in each of the conditions. The values were compared to the non-irradiated control group. Irradiation decreased dramatically the mechanical parameters of enamel and dentine. In non-irradiated teeth, demineralization had nearly the same effects of irradiation on the mechanical properties. In irradiated teeth, the effects of demineralization were negligible in comparison to non-irradiated teeth. Remineralization with Bifluorid12 {sup registered} or elmex gelee {sup registered} led to a partial improvement of the mechanical properties of the teeth. The enamel was more positively affected, by remineralization than the dentine. (orig.)

  10. Soft tissue modelling with conical springs.

    Science.gov (United States)

    Omar, Nadzeri; Zhong, Yongmin; Jazar, Reza N; Subic, Aleksandar; Smith, Julian; Shirinzadeh, Bijan

    2015-01-01

    This paper presents a new method for real-time modelling soft tissue deformation. It improves the traditional mass-spring model with conical springs to deal with nonlinear mechanical behaviours of soft tissues. A conical spring model is developed to predict soft tissue deformation with reference to deformation patterns. The model parameters are formulated according to tissue deformation patterns and the nonlinear behaviours of soft tissues are modelled with the stiffness variation of conical spring. Experimental results show that the proposed method can describe different tissue deformation patterns using one single equation and also exhibit the typical mechanical behaviours of soft tissues.

  11. The mechanical fingerprint of murine excisional wounds.

    Science.gov (United States)

    Pensalfini, Marco; Haertel, Eric; Hopf, Raoul; Wietecha, Mateusz; Werner, Sabine; Mazza, Edoardo

    2018-01-01

    A multiscale mechanics approach to the characterization of murine excisional wounds subjected to uniaxial tensile loading is presented. Local strain analysis at a physiological level of tension uncovers the presence of two distinct regions within the wound: i) a very compliant peripheral cushion and ii) a core area undergoing modest deformation. Microstructural visualizations of stretched wound specimens show negligible engagement of the collagen located in the center of a 7-day old wound; fibers remain coiled despite the applied tension, confirming the existence of a mechanically isolated wound core. The compliant cushion located at the wound periphery appears to protect the newly-formed tissue from excessive deformation during the phase of new tissue formation. The early remodeling phase (day 14) is characterized by a restored mechanical connection between far field and wound center. The latter remains less deformable, a characteristic possibly required for cell activities during tissue remodeling. The distribution of fibrillary collagens at these two time points corresponds well to the identified heterogeneity of mechanical properties of the wound region. This novel approach provides new insight into the mechanical properties of wounded skin and will be applicable to the analysis of compound-treated wounds or wounds in genetically modified tissue. Biophysical characterization of healing wounds is crucial to assess the recovery of the skin barrier function and the associated mechanobiological processes. For the first time, we performed highly resolved local deformation analysis to identify mechanical characteristics of the wound and its periphery. Our results reveal the presence of a compliant cushion surrounding a stiffer wound core; we refer to this heterogeneous mechanical behavior as "mechanical fingerprint" of the wound. The mechanical response is shown to progress towards that of the intact skin as healing takes place. Histology and multiphoton microscopy

  12. Mechanical Behavior and Fracture Properties of NiAl Intermetallic Alloy with Different Copper Contents

    Directory of Open Access Journals (Sweden)

    Tao-Hsing Chen

    2016-03-01

    Full Text Available The deformation behavior and fracture characteristics of NiAl intermetallic alloy containing 5~7 at% Cu are investigated at room temperature under strain rates ranging from 1 × 10−3 to 5 × 103 s−1. It is shown that the copper contents and strain rate both have a significant effect on the mechanical behavior of the NiAl alloy. Specifically, the flow stress increases with an increasing copper content and strain rate. Moreover, the ductility also improves as the copper content increases. The change in the mechanical response and fracture behavior of the NiAl alloy given a higher copper content is thought to be the result of the precipitation of β-phase (Ni,CuAl and γ'-phase (Ni,Cu3Al in the NiAl matrix.

  13. Mechanical and corrosion behaviors of developed copper-based metal matrix composites

    Science.gov (United States)

    Singh, Manvandra Kumar; Gautam, Rakesh Kumar; Prakash, Rajiv; Ji, Gopal

    2018-03-01

    This work investigates mechanical properties and corrosion resistances of cast copper-tungsten carbide (WC) metal matrix composites (MMCs). Copper matrix composites have been developed by stir casting technique. Different sizes of micro and nano particles of WC particles are utilized as reinforcement to prepare two copper-based composites, however, nano size of WC particles are prepared by high-energy ball milling. XRD (X-rays diffraction) characterize the materials for involvement of different phases. The mechanical behavior of composites has been studied by Vickers hardness test and compression test; while the corrosion behavior of developed composites is investigated by electrochemical impedance spectroscopy in 0.5 M H2SO4 solutions. The results show that hardness, compressive strength and corrosion resistance of copper matrix composites are very high in comparison to that of copper matrix, which attributed to the microstructural changes occurred during composite formation. SEM (Scanning electron microscopy) reveals the morphology of the corroded surfaces.

  14. Mechanical properties, morphology, and hydrolytic degradation behavior of polylactic acid / natural rubber blends

    Science.gov (United States)

    Buys, Y. F.; Aznan, A. N. A.; Anuar, H.

    2018-01-01

    Due to its biodegradability and renewability, polylactic acid (PLA) has been receiving enormous attention as a potential candidate to replace petroleum based polymers. However, PLA has limitation due to its inherent brittleness. In order to overcome this limitation, blending PLA with elastomeric materials such as natural rubber (NR) are commonly reported. In previous, several researches on PLA/NR blend had been reported, with most of them evaluated the mechanical properties. On the other hand, study of degradation behavior is significance of importance, as controlling materials degradation is required in some applications. This research studied the effect of blend composition on mechanical properties, morphology development, and hydrolytic degradation behavior of PLA/NR blends. Various compositions of PLA/NR blends were prepared by melt blending technique. Tensile test and impact test of the blends were performed to evaluate the mechanical properties. Addition of NR improved the elongation at break and impact strength of the blends, but reduced the tensile strength and stiffness of the specimens. Dynamic Mechanical Analysis (DMA) measurements of the blends displayed two peaks at temperature -70˚C which corresponded to T g of NR and 65˚C which corresponded to T g of PLA. Field Emission Scanning Electron Microscopy (FE-SEM) micrograph of 70/30 PLA/NR specimen also showed two distinct phases, which lead to indication that PLA/NR blends are immiscible. Hydrolytic degradation behavior was evaluated by measuring the remaining weight of the samples immersed in sodium hydroxide solution for a predetermined times. It was shown that the degradation behavior of PLA/NR blends is affected by composition of the blends, with 100 PLA and 70/30 PLA/NR blend showed the fastest degradation rate and 100 NR displayed the slowest one.

  15. Effect of cement fineness and polycarboxylate dosage on the rheological and mechanical behavior of a mortar

    Directory of Open Access Journals (Sweden)

    Zahia Didouche

    2018-01-01

    Full Text Available The use of certain organic additives in the production of mortar and concrete influences the workability and the hydration kinetic of mortar. This results in a modification of some properties, namely rheological behavior and mechanical strength. The objective of this work is to evaluate the rheological and mechanical behavior of a mortar by varying the fineness of the cement and using the superplasticizer Polycarboxylate.

  16. Modification of PLGA Nanofibrous Mats by Electron Beam Irradiation for Soft Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Jae Baek Lee

    2015-01-01

    Full Text Available Biodegradable poly(lactide-co-glycolide (PLGA has found widespread use in modern medical practice. However, the degradation rate of PLGA should be adjusted for specific biomedical applications such as tissue engineering, drug delivery, and surgical implantation. This study focused on the effect of electron beam radiation on nanofibrous PLGA mats in terms of physical properties and degradation behavior with cell proliferation. PLGA nanofiber mats were prepared by electrospinning, and electron beam was irradiated at doses of 50, 100, 150, 200, 250, and 300 kGy. PLGA mats showed dimensional integrity after electron beam irradiation without change of fiber diameter. The degradation behavior of a control PLGA nanofiber (0 kGy and electron beam-irradiated PLGA nanofibers was analyzed by measuring the molecular weight, weight loss, change of chemical structure, and fibrous morphology. The molecular weight of the PLGA nanofibers decreased with increasing electron beam radiation dose. The mechanical properties of the PLGA nanofibrous mats were decreased with increasing electron beam irradiation dose. Cell proliferation behavior on all electron beam irradiated PLGA mats was similar to the control PLGA mats. Electron beam irradiation of PLGA nanofibrous mats is a potentially useful approach for modulating the biodegradation rate of tissue-specific nonwoven nanofibrous scaffolds, specifically for soft tissue engineering applications.

  17. Thermo-Mechanical Behavior and Shakedown of Shape Memory Alloy Cable Structures

    Science.gov (United States)

    Biggs, Daniel B.

    Shape memory alloys (SMAs) are a versatile class of smart materials that exhibit adaptive properties which have been applied to solve engineering problems in wide-ranging fields from aerospace to biomedical engineering. Yet there is a lack of understanding of the fundamental nature of SMAs in order to effectively apply them to challenging problems within these engineering fields. Stranding fine NiTi wires into a cable form satisfies the demands of many aerospace and civil engineering applications which require actuators to withstand large tensile loads. The impact of increased bending and twisting in stranded NiTi wire structures, as well as introducing contact mechanics to the unstable phase transformation is not well understood, and this work aims to fill that void. To study the scalability of NiTi cables, thermo-mechanical characterization tests are conducted on cables much larger than those previously tested. These cables are found to have good superelastic properties and repeatable cyclic behavior with minimal induced plasticity. The behavior of additional cables, which have higher transition temperatures that can be used in a shape memory mode as thermo-responsive, high force actuator elements, are explored. These cables are found to scale up the performance of straight wire by maintaining an equivalent work output. Moreover, this work investigates the degradation of the thermal actuation of SMA wires through novel stress-temperature paths, discovering several path dependent behaviors of transformation-induced plasticity. The local mechanics of NiTi cable structures are explored through experiments utilizing digital image correlation, revealing new periodic transformation instabilities. Finite element simulations are presented, which indicate that the instabilities are caused by friction and relative sliding between wires in a cable. Finally, a study of the convective heat transfer of helical wire involving a suite of wind tunnel experiments, numerical

  18. Mechanical Behavior of Fully Expanded Commercially Available Endovascular Coronary Stents

    OpenAIRE

    Tambaca, Josip; Canic, Suncica; Kosor, Mate; Fish, R. David; Paniagua, David

    2011-01-01

    The mechanical behavior of endovascular coronary stents influences their therapeutic efficacy. Through computational studies, researchers can analyze device performance and improve designs. We developed a 1-dimensional finite element method, net-based algorithm and used it to analyze the effects of radial loading and bending in commercially available stents. Our computational study included designs modeled on the Express, Cypher, Xience, and Palmaz stents.

  19. Effect of pore architecture and stacking direction on mechanical properties of solid freeform fabrication-based scaffold for bone tissue engineering.

    Science.gov (United States)

    Lee, Jung-Seob; Cha, Hwang Do; Shim, Jin-Hyung; Jung, Jin Woo; Kim, Jong Young; Cho, Dong-Woo

    2012-07-01

    Fabrication of a three-dimensional (3D) scaffold with increased mechanical strength may be an essential requirement for more advanced bone tissue engineering scaffolds. Various material- and chemical-based approaches have been explored to enhance the mechanical properties of engineered bone tissue scaffolds. In this study, the effects of pore architecture and stacking direction on the mechanical and cell proliferation properties of a scaffold were investigated. The 3D scaffold was prepared using solid freeform fabrication technology with a multihead deposition system. Various types of scaffolds with different pore architectures (lattice, stagger, and triangle types) and stacking directions (horizontal and vertical directions) were fabricated with a blend of polycaprolactone and poly lactic-co-glycolic acid. In compression tests, the triangle-type scaffold was the strongest among the experimental groups. Stacking direction affected the mechanical properties of scaffolds. An in vitro cell counting kit-8 assay showed no significant differences in optical density depending on the different pore architectures and stacking directions. In conclusion, mechanical properties of scaffolds can be enhanced by controlling pore architecture and stacking direction. Copyright © 2012 Wiley Periodicals, Inc.

  20. Effects of elastic anisotropy on mechanical behavior of intermetallic compounds

    International Nuclear Information System (INIS)

    Yoo, M.H.

    1991-01-01

    Fundamental aspects of the deformation and fracture behavior of ordered intermetallic compounds are examined within the framework of linear anisotropic elasticity theory of dislocations and cracks. The orientation dependence and the tension/compression asymmetry of yield stress are explained in terms of the anisotropic coupling effect of non-glide stresses to the glide strain. The anomalous yield behavior is related to the disparity (edge/screw) of dislocation mobility and the critical stress required for the dislocation multiplication mechanism of Frank-Read type. The slip-twin conjugate relationship, extensive faulting, and pseudo-twinning (martensitic transformation) at a crack tip can be enhanced also by the anisotropic coupling effect, which may lead to transformation toughening of shear type

  1. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low

    Energy Technology Data Exchange (ETDEWEB)

    Kadhim, Munira A

    2012-08-22

    The above studies will provide fundamental mechanistic information relating genetic predisposition to important low dose phenomena, and will aid in the development of Department of Energy policy, as well as radiation risk policy for the public and the workplace. We believe the proposed studies accurately reflect the goals of the DOE low dose program. To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e. less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these "non-targeted responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate non-targeted effects of ionizing radiation with a focus on the induction of genomic instability (GI) in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/CaH and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition in these models on genomic instability. We will specifically focus on the effects of low doses of low LET radiation, down to the dose of 10mGy (0.01Gy) X-rays. Using conventional X-ray and we will be able to assess the role of genetic variation under various conditions at a range of doses down to the very low dose of 0.01Gy. Irradiations will be carried out using facilities in routine operation for such studies. Mechanistic studies of instability in different cell

  2. Mechanical behavior of superalloys

    International Nuclear Information System (INIS)

    Floreen, S.

    1986-04-01

    Recent developments affecting the mechanical behavior of superalloys over three ranges of operating temperatures are reviewed. At lower temperatures, activity has been focused on stress corrosion cracking susceptibility in light water reactor and sour gas well environments. The susceptibility to intergranular crack growth is critically dependent upon the grain boundary chemistry, and a method of minimizing the sensitivity of the boundaries to attack has been pursued. At intermediate temperatures, considerable effort has been directed toward increasing the tensile and fatigue strengths. The higher strength materials, however, show increased fracture sensitivity. In particular, embrittlement due to diffusion into the grain boundaries of aggressive species, such as oxygen or sulfur from the environments, becomes a problem. Minor element alloying additions of boron, zirconium, magnesium, etc., are helpful in retarding the degradation caused by the environment. At higher temperatures, the major thrust is toward improving the creep strength. The weak link in the materials, which is the transverse grain boundaries, has been eliminated by the use of specialized processing steps to produce either directionally solidified materials with minimum transverse grain boundaries, or single crystal materials. Single crystal materials permit alloying and heat treating modifications that further enhance the creep strength. The materials are very anisotropic in properties, but are successfully used in turbine blades and could be useful in other special applications

  3. Fatigue behavior and failure mechanisms of direct laser deposited Ti–6Al–4V

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, Amanda J.; Torries, Brian [Department of Mechanical Engineering, Mississippi State University, Box 9552, Mississippi State, MS 39762 (United States); Shamsaei, Nima, E-mail: shamsaei@me.msstate.edu [Department of Mechanical Engineering, Mississippi State University, Box 9552, Mississippi State, MS 39762 (United States); Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Box 5405, , Mississippi State, MS 39762 (United States); Thompson, Scott M. [Department of Mechanical Engineering, Mississippi State University, Box 9552, Mississippi State, MS 39762 (United States); Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Box 5405, , Mississippi State, MS 39762 (United States); Seely, Denver W. [Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Box 5405, , Mississippi State, MS 39762 (United States)

    2016-02-08

    In order for additive-manufactured parts to become more widely utilized and trusted in application, it is important to have their mechanical properties well-characterized and certified. The fatigue behavior and failure mechanisms of Ti–6Al–4V specimens fabricated using Laser Engineered Net Shaping (LENS), a Direct Laser Deposition (DLD) additive manufacturing (AM) process, are investigated in this study. A series of fully-reversed strain-controlled fatigue tests is conducted on Ti–6Al–4V specimens manufactured via LENS in their as-built and heat-treated conditions. Scanning Electron Microscopy (SEM) is used to examine the fracture surfaces of fatigue specimens to qualify the failure mechanism, crack initiation sites, and defects such as porosity. Due to the relatively high localized heating and cooling rates experienced during DLD, fabricated parts are observed to possess anisotropic microstructures, and thus, different mechanical properties than those of their traditionally-manufactured wrought counterparts. The fatigue lives of the investigated LENS specimens were found to be shorter than those of wrought specimens, and porosity was found to be the primary contributor to these shorter fatigue lives, with the exception of the heat-treated LENS samples. The presence of pores promotes more unpredictable fatigue behavior, as evidenced by data scatter. Pore shape, size, location, and number were found to impact the fatigue behavior of the as-built and annealed DLD parts. As porosity seems to be the main contributor to the fatigue behavior of DLD parts, it is important to optimize the manufacturing process and design parameters to minimize and control pore generation during the build.

  4. Outsourcing neural active control to passive composite mechanics: a tissue engineered cyborg ray

    Science.gov (United States)

    Gazzola, Mattia; Park, Sung Jin; Park, Kyung Soo; Park, Shirley; di Santo, Valentina; Deisseroth, Karl; Lauder, George V.; Mahadevan, L.; Parker, Kevin Kit

    2016-11-01

    Translating the blueprint that stingrays and skates provide, we create a cyborg swimming ray capable of orchestrating adaptive maneuvering and phototactic navigation. The impossibility of replicating the neural system of batoids fish is bypassed by outsourcing algorithmic functionalities to the body composite mechanics, hence casting the active control problem into a design, passive one. We present a first step in engineering multilevel "brain-body-flow" systems that couple sensory information to motor coordination and movement, leading to behavior. This work paves the way for the development of autonomous and adaptive artificial creatures able to process multiple sensory inputs and produce complex behaviors in distributed systems and may represent a path toward soft-robotic "embodied cognition".

  5. A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation.

    Science.gov (United States)

    Du, Vicard; Luciani, Nathalie; Richard, Sophie; Mary, Gaëtan; Gay, Cyprien; Mazuel, François; Reffay, Myriam; Menasché, Philippe; Agbulut, Onnik; Wilhelm, Claire

    2017-09-12

    The ability to create a 3D tissue structure from individual cells and then to stimulate it at will is a major goal for both the biophysics and regenerative medicine communities. Here we show an integrated set of magnetic techniques that meet this challenge using embryonic stem cells (ESCs). We assessed the impact of magnetic nanoparticles internalization on ESCs viability, proliferation, pluripotency and differentiation profiles. We developed magnetic attractors capable of aggregating the cells remotely into a 3D embryoid body. This magnetic approach to embryoid body formation has no discernible impact on ESC differentiation pathways, as compared to the hanging drop method. It is also the base of the final magnetic device, composed of opposing magnetic attractors in order to form embryoid bodies in situ, then stretch them, and mechanically stimulate them at will. These stretched and cyclic purely mechanical stimulations were sufficient to drive ESCs differentiation towards the mesodermal cardiac pathway.The development of embryoid bodies that are responsive to external stimuli is of great interest in tissue engineering. Here, the authors culture embryonic stem cells with magnetic nanoparticles and show that the presence of magnetic fields could affect their aggregation and differentiation.

  6. A chondroitinase-ABC and TGF-β1 treatment regimen for enhancing the mechanical properties of tissue-engineered fibrocartilage.

    Science.gov (United States)

    MacBarb, Regina F; Makris, Eleftherios A; Hu, Jerry C; Athanasiou, Kyriacos A

    2013-01-01

    The development of functionally equivalent fibrocartilage remains elusive despite efforts to engineer tissues such as knee meniscus, intervertebral disc and temporomandibular joint disc. Attempts to engineer these structures often fail to create tissues with mechanical properties on a par with native tissue, resulting in constructs unsuitable for clinical applications. The objective of this study was to engineer a spectrum of biomimetic fibrocartilages representative of the distinct functional properties found in native tissues. Using the self-assembly process, different co-cultures of meniscus cells and articular chondrocytes were seeded into agarose wells and treated with the catabolic agent chondroitinase-ABC (C-ABC) and the anabolic agent transforming growth factor-β1 (TGF-β1) via a two-factor (cell ratio and bioactive treatment), full factorial study design. Application of both C-ABC and TGF-β1 resulted in a beneficial or positive increase in the collagen content of treated constructs compared to controls. Significant increases in both the collagen density and fiber diameter were also seen with this treatment, increasing these values by 32 and 15%, respectively, over control values. Mechanical testing found the combined bioactive treatment to synergistically increase the Young's modulus and ultimate tensile strength of the engineered fibrocartilages compared to controls, with values reaching the lower spectrum of those found in native tissues. Together, these data demonstrate that C-ABC and TGF-β1 interact to develop a denser collagen matrix better able to withstand tensile loading. This study highlights a way to optimize the tensile properties of engineered fibrocartilage using a biochemical and a biophysical agent together to create distinct fibrocartilages with functional properties mimicking those of native tissue. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. The evolution of different forms of sociality: behavioral mechanisms and eco-evolutionary feedback.

    Directory of Open Access Journals (Sweden)

    Daniel J van der Post

    Full Text Available Different forms of sociality have evolved via unique evolutionary trajectories. However, it remains unknown to what extent trajectories of social evolution depend on the specific characteristics of different species. Our approach to studying such trajectories is to use evolutionary case-studies, so that we can investigate how grouping co-evolves with a multitude of individual characteristics. Here we focus on anti-predator vigilance and foraging. We use an individual-based model, where behavioral mechanisms are specified, and costs and benefits are not predefined. We show that evolutionary changes in grouping alter selection pressures on vigilance, and vice versa. This eco-evolutionary feedback generates an evolutionary progression from "leader-follower" societies to "fission-fusion" societies, where cooperative vigilance in groups is maintained via a balance between within- and between-group selection. Group-level selection is generated from an assortment that arises spontaneously when vigilant and non-vigilant foragers have different grouping tendencies. The evolutionary maintenance of small groups, and cooperative vigilance in those groups, is therefore achieved simultaneously. The evolutionary phases, and the transitions between them, depend strongly on behavioral mechanisms. Thus, integrating behavioral mechanisms and eco-evolutionary feedback is critical for understanding what kinds of intermediate stages are involved during the evolution of particular forms of sociality.

  8. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  9. Cerebellar Fastigial Nucleus Electrical Stimulation Alleviates Depressive-Like Behaviors in Post-Stroke Depression Rat Model and Potential Mechanisms

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-03-01

    Full Text Available Objective: To identify the molecular mechanism of post-stroke depression (PSD, and observe the therapeutic effects of cerebellar fastigial nucleus electrical stimulation (FNS on the behaviors and regional cerebral blood flow (rCBF in a PSD rat model. Methods: Healthy SD rats were randomly divided into four groups (sham, stroke, post-stroke depress and FNS group. Sham group (n = 6 underwent sham operation. The other three groups (n = 6*3 underwent MCAO. Rats were examined twice a week in open filed test. Moreover, neuroprotective effect on cerebellar Purkinje cells and expression of cytokines in hippocampal tissue were examined. Results: The PSD group showed a significant weight loss, decreased consumption of sucrose water, reduced rearing and locomotor activities. The FNS significantly alleviates the body weight loss and sucrose preference, locomotor and rearing activities. The bilateral rCBF was also restored after FNS treatment. Moreover, FNS improved the neuroprotection via suppressing apoptosis of cerebellar Purkinje cells. And the inflammatory cytokines mRNA level in hippocampus was significantly decreased. Conclusion: FNS treatment alleviates depressive-like behaviors and rCBF in PSD rats model, which could be attributed to its ability to protect cerebellar Purkinje cells and decrease the mRNA level of inflammatory cytokines.

  10. MECHANICAL BEHAVIOR OF PRESTRESSED VISCOELASTIC ADHESIVE AREAS UNDER COMBINING LOADINGS

    Directory of Open Access Journals (Sweden)

    Halil Murat Enginsoy

    2017-12-01

    Full Text Available In this article, mechanical behaviors of adhesive tape VHB 4950 elastomeric material, which is an element of acrylic polymer group and which is in viscoelastic behavior, under different pre-stress conditions and complex forces of different geometric parameters created by combining loadings have been experimentally and numerically investigated. In experimental studies, loading-unloading cyclic tests, one of the different standardized tests for the mechanical characterization of viscoelastic material, have been applied which give the most suitable convergent optimization parameters for the finite element model. Different material models were also investigated by using the data obtained from loading-unloading test results in all numerical models. According to the experimental results, the most suitable material parameters were determined with the Abaqus Parallel Rheological Framework Model (PRF for 4 Yeoh Networks with Bergstrom-Boyce Flow model created in the Mcalibration software for finite element analysis. Subsequently, using these material parameters, finite element analysis was performed as three dimension non-linear viscoelastic with a commercial finite element software Abaqus. The finite element analysis results showed good correlation to the Force (N-Displacement (mm experimental data for maximum load-carrying capacity of structural specimens.

  11. An Examination of the Mechanisms of Action in Cognitive Behavioral Therapy for Bulimia Nervosa

    Science.gov (United States)

    Spangler, Diane L.; Baldwin, Scott A.; Agras, W. Stewart

    2004-01-01

    Cognitive-behavioral therapy (CBT) for bulimia nervosa (BN) has received considerable empirical support for its efficacy. However, few investigators have examined the mechanisms proposed to account for the reduction of BN symptoms during CBT. The current study examined the associations between therapist interventions, client mechanisms, and…

  12. Polyurethane/fluor-hydroxyapatite nanocomposite scaffolds for bone tissue engineering. Part I: morphological, physical, and mechanical characterization

    Science.gov (United States)

    Asefnejad, Azadeh; Behnamghader, Aliasghar; Khorasani, Mohammad Taghi; Farsadzadeh, Babak

    2011-01-01

    In this study, new nano-fluor-hydroxyapatite (nFHA)/polyurethane composite scaffolds were fabricated for potential use in bone tissue engineering. Polyester urethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and 1,4-butanediol as chain extender. Nano fluor-hydroxyapatite (nFHA) was successfully synthesized by sol-gel method. The solid–liquid phase separation and solvent sublimation methods were used for preparation of the porous composites. Mechanical properties, chemical structure, and morphological characteristics of the samples were investigated by compressive test, Fourier transform infrared, and scanning electron microscopy (SEM) techniques, respectively. The effect of nFHA powder content on porosity and pore morphology was investigated. SEM images demonstrated that the scaffolds were constituted of interconnected and homogeneously distributed pores. The pore size of the scaffolds was in the range 50–250 μm. The result obtained in this research revealed that the porosity and pore average size decreased and compressive modulus increased with nFHA percentage. Considering morphological, physical, and mechanical properties, the scaffold with a higher ratio of nFHA has suitable potential use in tissue regeneration. PMID:21289986

  13. Study of behavior incentive mechanism of energy conservation and emission reduction for China freshwater live fish supply chain

    Directory of Open Access Journals (Sweden)

    Liming Chen

    2016-02-01

    Full Text Available Purpose: The purpose of this paper investigates the subject behavior of Energy conservation and emission reduction (ECER based on structured classification of the organization types of FLF supply chain, and explores reasonable behavior incentive mechanism for ECER of FLF supply chain in China. Design/methodology/approach: This paper classifies the organization subjects of FLF supply chain, and different characteristics of organization subjects are compared in detail. ECER behavior incentive mechanism modeling of FLF supply chain is explored by taking advantage of principal-agent model in view of asymmetry information. Incentives issue of different operating subjects is discussed as enlightenment of the model. Findings: Three types of the organization subjects of FLF supply chain in China have been identified as: loose organization, semi-compact organization and compact organization.Subjects of different types have different abilities to conduct ECER work. Government needs to propose differentiation polices of incentive compensation for different operating subjects, widen the gap of differentiated subsidies/rewards for different investment levels on ECER conducted by different operating subjects of FLF supply chain. Research limitations/implications: It will take long-term unremitting efforts to achieve the target of ECER work for FLF supply chain in China, the dynamic issues and simulation modeling on behavior incentive mechanism of ECER should be developed in future research. Practical implications: Clear understanding of structured classification of the organization subject types of FLF supply chain and the behavior incentive mechanism for ECER, will help government to improve the ECER work in an efficient and effective way. Originality/value: Research to behavior incentive mechanism of ECER has important theoretical value and practical significance. This paper contributes to distinguish three types of operating subjects of FLF supply chain in

  14. Force transmission in epithelial tissues.

    Science.gov (United States)

    Vasquez, Claudia G; Martin, Adam C

    2016-03-01

    In epithelial tissues, cells constantly generate and transmit forces between each other. Forces generated by the actomyosin cytoskeleton regulate tissue shape and structure and also provide signals that influence cells' decisions to divide, die, or differentiate. Forces are transmitted across epithelia because cells are mechanically linked through junctional complexes, and forces can propagate through the cell cytoplasm. Here, we review some of the molecular mechanisms responsible for force generation, with a specific focus on the actomyosin cortex and adherens junctions. We then discuss evidence for how these mechanisms promote cell shape changes and force transmission in tissues. © 2016 Wiley Periodicals, Inc.

  15. The interplay between tissue growth and scaffold degradation in engineered tissue constructs

    KAUST Repository

    O’Dea, R. D.

    2012-09-18

    In vitro tissue engineering is emerging as a potential tool to meet the high demand for replacement tissue, caused by the increased incidence of tissue degeneration and damage. A key challenge in this field is ensuring that the mechanical properties of the engineered tissue are appropriate for the in vivo environment. Achieving this goal will require detailed understanding of the interplay between cell proliferation, extracellular matrix (ECM) deposition and scaffold degradation. In this paper, we use a mathematical model (based upon a multiphase continuum framework) to investigate the interplay between tissue growth and scaffold degradation during tissue construct evolution in vitro. Our model accommodates a cell population and culture medium, modelled as viscous fluids, together with a porous scaffold and ECM deposited by the cells, represented as rigid porous materials. We focus on tissue growth within a perfusion bioreactor system, and investigate how the predicted tissue composition is altered under the influence of (1) differential interactions between cells and the supporting scaffold and their associated ECM, (2) scaffold degradation, and (3) mechanotransduction-regulated cell proliferation and ECM deposition. Numerical simulation of the model equations reveals that scaffold heterogeneity typical of that obtained from μCT scans of tissue engineering scaffolds can lead to significant variation in the flow-induced mechanical stimuli experienced by cells seeded in the scaffold. This leads to strong heterogeneity in the deposition of ECM. Furthermore, preferential adherence of cells to the ECM in favour of the artificial scaffold appears to have no significant influence on the eventual construct composition; adherence of cells to these supporting structures does, however, lead to cell and ECM distributions which mimic and exaggerate the heterogeneity of the underlying scaffold. Such phenomena have important ramifications for the mechanical integrity of

  16. Mechanical properties and deformation behavior of Al/Al7075, two-phase material

    International Nuclear Information System (INIS)

    Sherafat, Z.; Paydar, M.H.; Ebrahimi, R.; Sohrabi, S.

    2010-01-01

    In the present study, mechanical properties and deformation behavior of Al/Al7075, two-phase material were investigated. The two-phase materials were fabricated by mixing commercially pure Al powder with Al7075 chips and consolidating the mixture through hot extrusion process at 500 o C. Mechanical properties and deformation behavior of the fabricated samples were evaluated using tensile and compression tests. A scanning electron microscope was used to study the fracture surface of the samples including different amount of Al powder, after they were fractured in tensile test. The results of the tensile and compression tests showed that with decreasing the amount of Al powder, the strength increases and ductility decreases. Calculation of work hardening exponent (n) indicated that deformation behavior does not follow a regular trend. In a way that the n value was approved to be variable and a strong function of strain and Al powder wt% of the sample. The results of the fractography studies indicate that the type of fracture happened changes from completely ductile to nearly brittle by decreasing the wt% of Al powder from 90% to 40%.

  17. Corrosion behavior, mechanical properties, and long-term aging of nickel-plated uranium

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.; Schoenfelder, C.W.

    1976-01-01

    The behavior of nickel-plated uranium upon exposure to moist nitrogen was evaluated. Plating thicknesses of 0.051 mm (2 mil) were adequate to prevent corrosion. Specimens with thinner coats showed some corrosion and some reduction in mechanical properties during subsequent testing. Plated samples exposed to dry air at ambient pressure for 10 y showed no corrosion and no degradation of mechanical properties. Surface and bulk hydrogen content, as well as free hydrogen generated during the test, were measured to determine the extent of corrosion. Results support an earlier proposed mechanism for uranium corrosion at low humidities

  18. Swelling behavior of ion exchange resins incorporated in tri-calcium silicate cement matrix: II. Mechanical analysis

    International Nuclear Information System (INIS)

    Neji, M.; Bary, B.; Le Bescop, P.; Burlion, N.

    2015-01-01

    This paper presents the second part of a study aiming at modelling the mechanical behavior of composites made up of ion exchange resins (IER) solidified in a tri-calcium silicate cement paste (C_3S). Such composites may be subjected to internal pressures due to ion exchange processes between ionic species which are in IER and interstitial solution of the cement paste. The reactive transport model developed in the companion paper is coupled in this study to a multi-scale approach describing the mechanical behavior of the material. It is based on an analogy with thermomechanics for taking in account the IER internal pressures, and on Eshelby-based homogenization techniques to estimate both mechanical and coupling parameters. A laboratory test has been set up to measure the macroscopic strain caused by the swelling phenomenon. The model has been finally implemented in a finite elements software. The simulation of the laboratory tests has been performed and the results have been analyzed and compared to experimental data. - Highlights: • Experimental analysis about mechanical behavior of a composite material. • Chemo-Mechanical-Transport modeling on a composite material made up with IER embedded into cement paste matrix. • Multi-scale modeling.

  19. Anomalous Scaling Behaviors in a Rice-Pile Model with Two Different Driving Mechanisms

    International Nuclear Information System (INIS)

    Zhang Duanming; Sun Hongzhang; Li Zhihua; Pan Guijun; Yu Boming; Li Rui; Yin Yanping

    2005-01-01

    The moment analysis is applied to perform large scale simulations of the rice-pile model. We find that this model shows different scaling behavior depending on the driving mechanism used. With the noisy driving, the rice-pile model violates the finite-size scaling hypothesis, whereas, with fixed driving, it shows well defined avalanche exponents and displays good finite size scaling behavior for the avalanche size and time duration distributions.

  20. Modeling an Excitable Biosynthetic Tissue with Inherent Variability for Paired Computational-Experimental Studies.

    Directory of Open Access Journals (Sweden)

    Tanmay A Gokhale

    2017-01-01

    Full Text Available To understand how excitable tissues give rise to arrhythmias, it is crucially necessary to understand the electrical dynamics of cells in the context of their environment. Multicellular monolayer cultures have proven useful for investigating arrhythmias and other conduction anomalies, and because of their relatively simple structure, these constructs lend themselves to paired computational studies that often help elucidate mechanisms of the observed behavior. However, tissue cultures of cardiomyocyte monolayers currently require the use of neonatal cells with ionic properties that change rapidly during development and have thus been poorly characterized and modeled to date. Recently, Kirkton and Bursac demonstrated the ability to create biosynthetic excitable tissues from genetically engineered and immortalized HEK293 cells with well-characterized electrical properties and the ability to propagate action potentials. In this study, we developed and validated a computational model of these excitable HEK293 cells (called "Ex293" cells using existing electrophysiological data and a genetic search algorithm. In order to reproduce not only the mean but also the variability of experimental observations, we examined what sources of variation were required in the computational model. Random cell-to-cell and inter-monolayer variation in both ionic conductances and tissue conductivity was necessary to explain the experimentally observed variability in action potential shape and macroscopic conduction, and the spatial organization of cell-to-cell conductance variation was found to not impact macroscopic behavior; the resulting model accurately reproduces both normal and drug-modified conduction behavior. The development of a computational Ex293 cell and tissue model provides a novel framework to perform paired computational-experimental studies to study normal and abnormal conduction in multidimensional excitable tissue, and the methodology of modeling