WorldWideScience

Sample records for tissue mass spectrometry

  1. Pathology interface for the molecular analysis of tissue by mass spectrometry

    Directory of Open Access Journals (Sweden)

    Jeremy L Norris

    2016-01-01

    Full Text Available Background: Imaging mass spectrometry (IMS generates molecular images directly from tissue sections to provide better diagnostic insights and expand the capabilities of clinical anatomic pathology. Although IMS technology has matured over recent years, the link between microscopy imaging currently used by pathologists and MS-based molecular imaging has not been established. Methods: We adapted the Vanderbilt University Tissue Core workflow for IMS into a web-based system that facilitates remote collaboration. The platform was designed to perform within acceptable web response times for viewing, annotating, and processing high resolution microscopy images. Results: We describe a microscopy-driven approach to tissue analysis by IMS. Conclusion: The Pathology Interface for Mass Spectrometry is designed to provide clinical access to IMS technology and deliver enhanced diagnostic value.

  2. A Comparison of Tissue Spray and Lipid Extract Direct Injection Electrospray Ionization Mass Spectrometry for the Differentiation of Eutopic and Ectopic Endometrial Tissues

    Science.gov (United States)

    Chagovets, Vitaliy; Wang, Zhihao; Kononikhin, Alexey; Starodubtseva, Natalia; Borisova, Anna; Salimova, Dinara; Popov, Igor; Kozachenko, Andrey; Chingin, Konstantin; Chen, Huanwen; Frankevich, Vladimir; Adamyan, Leila; Sukhikh, Gennady

    2018-02-01

    Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction.

  3. Mass Spectrometry Imaging for the Classification of Tumor Tissue

    NARCIS (Netherlands)

    Mascini, N.E.

    2016-01-01

    Mass spectrometry imaging (MSI) can detect and identify many different molecules without the need for labeling. In addition, it can provide their spatial distributions as ‘molecular maps’. These features make MSI well suited for studying the molecular makeup of tumor tissue. Currently, there is an

  4. Tissue spray ionization mass spectrometry for rapid recognition of human lung squamous cell carcinoma

    Science.gov (United States)

    Wei, Yiping; Chen, Liru; Zhou, Wei; Chingin, Konstantin; Ouyang, Yongzhong; Zhu, Tenggao; Wen, Hua; Ding, Jianhua; Xu, Jianjun; Chen, Huanwen

    2015-05-01

    Tissue spray ionization mass spectrometry (TSI-MS) directly on small tissue samples has been shown to provide highly specific molecular information. In this study, we apply this method to the analysis of 38 pairs of human lung squamous cell carcinoma tissue (cancer) and adjacent normal lung tissue (normal). The main components of pulmonary surfactants, dipalmitoyl phosphatidylcholine (DPPC, m/z 757.47), phosphatidylcholine (POPC, m/z 782.52), oleoyl phosphatidylcholine (DOPC, m/z 808.49), and arachidonic acid stearoyl phosphatidylcholine (SAPC, m/z 832.43), were identified using high-resolution tandem mass spectrometry. Monte Carlo sampling partial least squares linear discriminant analysis (PLS-LDA) was used to distinguish full-mass-range mass spectra of cancer samples from the mass spectra of normal tissues. With 5 principal components and 30 - 40 Monte Carlo samplings, the accuracy of cancer identification in matched tissue samples reached 94.42%. Classification of a tissue sample required less than 1 min, which is much faster than the analysis of frozen sections. The rapid, in situ diagnosis with minimal sample consumption provided by TSI-MS is advantageous for surgeons. TSI-MS allows them to make more informed decisions during surgery.

  5. Sample Preparation of Corn Seed Tissue to Prevent Analyte Relocations for Mass Spectrometry Imaging

    Science.gov (United States)

    Kim, Shin Hye; Kim, Jeongkwon; Lee, Young Jin; Lee, Tae Geol; Yoon, Sohee

    2017-08-01

    Corn seed tissue sections were prepared by the tape support method using an adhesive tape, and mass spectrometry imaging (MSI) was performed. The effect of heat generated during sample preparation was investigated by time-of-flight secondary mass spectrometry (TOF-SIMS) imaging of corn seed tissue prepared by the tape support and the thaw-mounted methods. Unlike thaw-mounted sample preparation, the tape support method does not cause imaging distortion because of the absence of heat, which can cause migration of the analytes on the sample. By applying the tape-support method, the corn seed tissue was prepared without structural damage and MSI with accurate spatial information of analytes was successfully performed.

  6. Sample Preparation of Corn Seed Tissue to Prevent Analyte Relocations for Mass Spectrometry Imaging.

    Science.gov (United States)

    Kim, Shin Hye; Kim, Jeongkwon; Lee, Young Jin; Lee, Tae Geol; Yoon, Sohee

    2017-08-01

    Corn seed tissue sections were prepared by the tape support method using an adhesive tape, and mass spectrometry imaging (MSI) was performed. The effect of heat generated during sample preparation was investigated by time-of-flight secondary mass spectrometry (TOF-SIMS) imaging of corn seed tissue prepared by the tape support and the thaw-mounted methods. Unlike thaw-mounted sample preparation, the tape support method does not cause imaging distortion because of the absence of heat, which can cause migration of the analytes on the sample. By applying the tape-support method, the corn seed tissue was prepared without structural damage and MSI with accurate spatial information of analytes was successfully performed. Graphical Abstract ᅟ.

  7. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  8. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review

    Science.gov (United States)

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites. PMID:26904042

  9. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review.

    Science.gov (United States)

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites.

  10. MALDI Mass Spectrometry Imaging of N-Linked Glycans in Cancer Tissues.

    Science.gov (United States)

    Drake, R R; Powers, T W; Jones, E E; Bruner, E; Mehta, A S; Angel, P M

    2017-01-01

    Glycosylated proteins account for a majority of the posttranslation modifications of cell surface, secreted, and circulating proteins. Within the tumor microenvironment, the presence of immune cells, extracellular matrix proteins, cell surface receptors, and interactions between stroma and tumor cells are all processes mediated by glycan binding and recognition reactions. Changes in glycosylation during tumorigenesis are well documented to occur and affect all of these associated adhesion and regulatory functions. A MALDI imaging mass spectrometry (MALDI-IMS) workflow for profiling N-linked glycan distributions in fresh/frozen tissues and formalin-fixed paraffin-embedded tissues has recently been developed. The key to the approach is the application of a molecular coating of peptide-N-glycosidase to tissues, an enzyme that cleaves asparagine-linked glycans from their protein carrier. The released N-linked glycans can then be analyzed by MALDI-IMS directly on tissue. Generally 40 or more individual glycan structures are routinely detected, and when combined with histopathology localizations, tumor-specific glycans are readily grouped relative to nontumor regions and other structural features. This technique is a recent development and new approach in glycobiology and mass spectrometry imaging research methodology; thus, potential uses such as tumor-specific glycan biomarker panels and other applications are discussed. © 2017 Elsevier Inc. All rights reserved.

  11. High mass accuracy and high mass resolving power FT-ICR secondary ion mass spectrometry for biological tissue imaging

    NARCIS (Netherlands)

    Smith, D.F.; Kiss, A.; Leach, F.E.; Robinson, E.W.; Paša-Tolić, L.; Heeren, R.M.A.

    2013-01-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically

  12. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    Science.gov (United States)

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Imaging mass spectrometry in drug development and toxicology.

    Science.gov (United States)

    Karlsson, Oskar; Hanrieder, Jörg

    2017-06-01

    During the last decades, imaging mass spectrometry has gained significant relevance in biomedical research. Recent advances in imaging mass spectrometry have paved the way for in situ studies on drug development, metabolism and toxicology. In contrast to whole-body autoradiography that images the localization of radiolabeled compounds, imaging mass spectrometry provides the possibility to simultaneously determine the discrete tissue distribution of the parent compound and its metabolites. In addition, imaging mass spectrometry features high molecular specificity and allows comprehensive, multiplexed detection and localization of hundreds of proteins, peptides and lipids directly in tissues. Toxicologists traditionally screen for adverse findings by histopathological examination. However, studies of the molecular and cellular processes underpinning toxicological and pathologic findings induced by candidate drugs or toxins are important to reach a mechanistic understanding and an effective risk assessment strategy. One of IMS strengths is the ability to directly overlay the molecular information from the mass spectrometric analysis with the tissue section and allow correlative comparisons of molecular and histologic information. Imaging mass spectrometry could therefore be a powerful tool for omics profiling of pharmacological/toxicological effects of drug candidates and toxicants in discrete tissue regions. The aim of the present review is to provide an overview of imaging mass spectrometry, with particular focus on MALDI imaging mass spectrometry, and its use in drug development and toxicology in general.

  14. Direct molecular analysis of whole-body animal tissue sections by MALDI imaging mass spectrometry.

    Science.gov (United States)

    Reyzer, Michelle L; Chaurand, Pierre; Angel, Peggi M; Caprioli, Richard M

    2010-01-01

    The determination of the localization of various compounds in a whole animal is valuable for many applications, including pharmaceutical absorption, distribution, metabolism, and excretion (ADME) studies and biomarker discovery. Imaging mass spectrometry is a powerful tool for localizing compounds of biological interest with molecular specificity and relatively high resolution. Utilizing imaging mass spectrometry for whole-body animal sections offers considerable analytical advantages compared to traditional methods, such as whole-body autoradiography, but the experiment is not straightforward. This chapter addresses the advantages and unique challenges that the application of imaging mass spectrometry to whole-body animal sections entails, including discussions of sample preparation, matrix application, signal normalization, and image generation. Lipid and protein images obtained from whole-body tissue sections of mouse pups are presented along with detailed protocols for the experiments.

  15. Mass Spectrometry Imaging of Biological Tissue: An Approach for Multicenter Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rompp, Andreas; Both, Jean-Pierre; Brunelle, Alain; Heeren, Ronald M.; Laprevote, Olivier; Prideaux, Brendan; Seyer, Alexandre; Spengler, Bernhard; Stoeckli, Markus; Smith, Donald F.

    2015-03-01

    Mass spectrometry imaging has become a popular tool for probing the chemical complexity of biological surfaces. This led to the development of a wide range of instrumentation and preparation protocols. It is thus desirable to evaluate and compare the data output from different methodologies and mass spectrometers. Here, we present an approach for the comparison of mass spectrometry imaging data from different laboratories (often referred to as multicenter studies). This is exemplified by the analysis of mouse brain sections in five laboratories in Europe and the USA. The instrumentation includes matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF), MALDI-QTOF, MALDIFourier transform ion cyclotron resonance (FTICR), atmospheric-pressure (AP)-MALDI-Orbitrap, and cluster TOF-secondary ion mass spectrometry (SIMS). Experimental parameters such as measurement speed, imaging bin width, and mass spectrometric parameters are discussed. All datasets were converted to the standard data format imzML and displayed in a common open-source software with identical parameters for visualization, which facilitates direct comparison of MS images. The imzML conversion also allowed exchange of fully functional MS imaging datasets between the different laboratories. The experiments ranged from overview measurements of the full mouse brain to detailed analysis of smaller features (depending on spatial resolution settings), but common histological features such as the corpus callosum were visible in all measurements. High spatial resolution measurements of AP-MALDI-Orbitrap and TOF-SIMS showed comparable structures in the low-micrometer range. We discuss general considerations for planning and performing multicenter studies in mass spectrometry imaging. This includes details on the selection, distribution, and preparation of tissue samples as well as on data handling. Such multicenter studies in combination with ongoing activities for reporting guidelines, a common

  16. Mass Spectrometry-Based Biomarker Discovery.

    Science.gov (United States)

    Zhou, Weidong; Petricoin, Emanuel F; Longo, Caterina

    2017-01-01

    The discovery of candidate biomarkers within the entire proteome is one of the most important and challenging goals in proteomic research. Mass spectrometry-based proteomics is a modern and promising technology for semiquantitative and qualitative assessment of proteins, enabling protein sequencing and identification with exquisite accuracy and sensitivity. For mass spectrometry analysis, protein extractions from tissues or body fluids and subsequent protein fractionation represent an important and unavoidable step in the workflow for biomarker discovery. Following extraction of proteins, the protein mixture must be digested, reduced, alkylated, and cleaned up prior to mass spectrometry. The aim of our chapter is to provide comprehensible and practical lab procedures for sample digestion, protein fractionation, and subsequent mass spectrometry analysis.

  17. Prognostic Metabolite Biomarkers for Soft Tissue Sarcomas Discovered by Mass Spectrometry Imaging

    Science.gov (United States)

    Lou, Sha; Balluff, Benjamin; Cleven, Arjen H. G.; Bovée, Judith V. M. G.; McDonnell, Liam A.

    2017-02-01

    Metabolites can be an important read-out of disease. The identification and validation of biomarkers in the cancer metabolome that can stratify high-risk patients is one of the main current research aspects. Mass spectrometry has become the technique of choice for metabolomics studies, and mass spectrometry imaging (MSI) enables their visualization in patient tissues. In this study, we used MSI to identify prognostic metabolite biomarkers in high grade sarcomas; 33 high grade sarcoma patients, comprising osteosarcoma, leiomyosarcoma, myxofibrosarcoma, and undifferentiated pleomorphic sarcoma were analyzed. Metabolite MSI data were obtained from sections of fresh frozen tissue specimens with matrix-assisted laser/desorption ionization (MALDI) MSI in negative polarity using 9-aminoarcridine as matrix. Subsequent annotation of tumor regions by expert pathologists resulted in tumor-specific metabolite signatures, which were then tested for association with patient survival. Metabolite signals with significant clinical value were further validated and identified by high mass resolution Fourier transform ion cyclotron resonance (FTICR) MSI. Three metabolite signals were found to correlate with overall survival ( m/z 180.9436 and 241.0118) and metastasis-free survival ( m/z 160.8417). FTICR-MSI identified m/z 241.0118 as inositol cyclic phosphate and m/z 160.8417 as carnitine.

  18. Determination of iodine in oyster tissue by isotope dilution laser resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Fassett, J.D.; Murphy, T.J.

    1990-01-01

    The technique of laser resonance ionization mass spectrometry has been combined with isotope dilution analysis to determine iodine in oyster tissue. The long-lived radioisotope, 129I, was used to spike the samples. Samples were equilibrated with the 129I, wet ashed under controlled conditions, and iodine separated by coprecipitation with silver chloride. The analyte was dried as silver ammonium iodide upon a tantalum filament from which iodine was thermally desorbed in the resonance ionization mass spectrometry instrument. A single-color, two-photon resonant plus one-photon ionization scheme was used to form positive iodine ions. Long-lived iodine signals were achieved from 100 ng of iodine. The precision of 127I/129I measurement has been evaluated by replicate determinations of the spike, the spike calibration samples, and the oyster tissue samples and was 1.0%. Measurement precision among samples was 1.9% for the spike calibration and 1.4% for the oyster tissue. The concentration of iodine determined in SRM 1566a, Oyster Tissue, was 4.44 micrograms/g with an estimate of the overall uncertainty for the analysis of +/- 0.12 microgram/g

  19. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Directory of Open Access Journals (Sweden)

    Debasish Paul

    2013-01-01

    Full Text Available Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches.

  20. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Science.gov (United States)

    Paul, Debasish; Kumar, Avinash; Gajbhiye, Akshada; Santra, Manas K.; Srikanth, Rapole

    2013-01-01

    Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA) were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches. PMID:23586059

  1. Determination of d-limonene in adipose tissue by gas chromatography-mass spectrometry

    Science.gov (United States)

    Miller, Jessica A.; Hakim, Iman A.; Thomson, Cynthia; Thompson, Patricia; Chow, H-H. Sherry

    2008-01-01

    We developed a novel method for analyzing d-limonene levels in adipose tissue. Fat samples were subjected to saponification followed by solvent extraction. d-Limonene in the sample extract was analyzed using gas chromatography-mass spectrometry (GC-MS) with selected ion monitoring. Linear calibration curves were established over the mass range of 79.0-2,529 ng d-limonene per 0.1 grams of adipose tissue. Satisfactory within day precision (RSD 6.7 to 9.6%) and accuracy (% difference of −2.7 to 3.8%) and between day precision (RSD 6.0 to 10.7%) and accuracy (% difference of 1.8 to 2.6%) were achieved. The assay was successfully applied to human fat biopsy samples from a d-limonene feeding trial. PMID:18571481

  2. Affinity imaging mass spectrometry (AIMS): high-throughput screening for specific small molecule interactions with frozen tissue sections.

    Science.gov (United States)

    Yoshimi, T; Kawabata, S; Taira, S; Okuno, A; Mikawa, R; Murayama, S; Tanaka, K; Takikawa, O

    2015-11-07

    A novel screening system, using affinity imaging mass spectrometry (AIMS), has been developed to identify protein aggregates or organ structures in unfixed human tissue. Frozen tissue sections are positioned on small (millimetre-scale) stainless steel chips and incubated with an extensive library of small molecules. Candidate molecules showing specific affinity for the tissue section are identified by imaging mass spectrometry (IMS). As an example application, we screened over a thousand compounds against Alzheimer's disease (AD) brain tissue and identified several compounds with high affinity for AD brain sections containing tau deposits compared to age-matched controls. It should also be possible to use AIMS to isolate chemical compounds with affinity for tissue structures or components that have been extensively modified by events such as oxidation, phosphorylation, acetylation, aggregation, racemization or truncation, for example, due to aging. It may also be applicable to biomarker screening programs.

  3. Determination of trimethoprim in tissues using liquid chromatography-thermospray mass spectrometry.

    Science.gov (United States)

    Cannavan, A; Hewitt, S A; Floyd, S D; Kennedy, D G

    1997-11-01

    A method is described for the determination of the antibacterial drug trimethoprim in tissues. Minced tissue is homogenised with chloroform-acetone (1 + 1 v/v), filtered, and the filtrate evaporated to an oily residue using a rotary evaporator. The residue is redissolved in methanol-water-acetic acid (50 + 48.7 + 1.3 v/v) and any fats present are partitioned into hexane. The aqueous phase is analysed by liquid chromatography-thermospray mass spectrometry in positive mode with the protonated molecular ion at m/z 291 being monitored. Recoveries ranged between 60% in liver and 79% in muscle. The limit of determination was 25 micrograms kg-1 and the limit of detection was approximately 4 micrograms kg-1. The method is suitable for monitoring tissues taken under national surveillance schemes for veterinary drug residues.

  4. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Marolla, Ana Paula Cleto; Waisberg, Jaques; Saba, Gabriela Tognini; Waisberg, Daniel Reis; Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva

    2015-01-01

    To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student'st test. The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues.

  5. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Marolla, Ana Paula Cleto [Universidade Federal de São Paulo, São Paulo, SP (Brazil); Waisberg, Jaques [Hospital do Servidor Público Estadual, São Paulo, SP (Brazil); Faculdade de Medicina do ABC, Santo André, SP (Brazil); Saba, Gabriela Tognini [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Waisberg, Daniel Reis [Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP (Brazil); Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva [Faculdade de Medicina do ABC, Santo André, SP (Brazil)

    2015-07-01

    To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student’s t test. The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues.

  6. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Marolla, Ana Paula Cleto; Waisberg, Jaques; Saba, Gabriela Tognini; Waisberg, Daniel Reis; Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva

    2015-01-01

    To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student’s t test. The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues

  7. Mass Spectrometry Imaging, an Emerging Technology in Neuropsychopharmacology

    Science.gov (United States)

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience. PMID:23966069

  8. Mass spectrometry imaging, an emerging technology in neuropsychopharmacology.

    Science.gov (United States)

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience.

  9. Development of stereotactic mass spectrometry for brain tumor surgery.

    Science.gov (United States)

    Agar, Nathalie Y R; Golby, Alexandra J; Ligon, Keith L; Norton, Isaiah; Mohan, Vandana; Wiseman, Justin M; Tannenbaum, Allen; Jolesz, Ferenc A

    2011-02-01

    Surgery remains the first and most important treatment modality for the majority of solid tumors. Across a range of brain tumor types and grades, postoperative residual tumor has a great impact on prognosis. The principal challenge and objective of neurosurgical intervention is therefore to maximize tumor resection while minimizing the potential for neurological deficit by preserving critical tissue. To introduce the integration of desorption electrospray ionization mass spectrometry into surgery for in vivo molecular tissue characterization and intraoperative definition of tumor boundaries without systemic injection of contrast agents. Using a frameless stereotactic sampling approach and by integrating a 3-dimensional navigation system with an ultrasonic surgical probe, we obtained image-registered surgical specimens. The samples were analyzed with ambient desorption/ionization mass spectrometry and validated against standard histopathology. This new approach will enable neurosurgeons to detect tumor infiltration of the normal brain intraoperatively with mass spectrometry and to obtain spatially resolved molecular tissue characterization without any exogenous agent and with high sensitivity and specificity. Proof of concept is presented in using mass spectrometry intraoperatively for real-time measurement of molecular structure and using that tissue characterization method to detect tumor boundaries. Multiple sampling sites within the tumor mass were defined for a patient with a recurrent left frontal oligodendroglioma, World Health Organization grade II with chromosome 1p/19q codeletion, and mass spectrometry data indicated a correlation between lipid constitution and tumor cell prevalence. The mass spectrometry measurements reflect a complex molecular structure and are integrated with frameless stereotaxy and imaging, providing 3-dimensional molecular imaging without systemic injection of any agents, which can be implemented for surgical margins delineation of

  10. A Derivatization and Validation Strategy for Determining the Spatial Localization of Endogenous Amine Metabolites in Tissues using MALDI Imaging Mass Spectrometry

    Science.gov (United States)

    Manier, M. Lisa; Spraggins, Jeffrey M.; Reyzer, Michelle L.; Norris, Jeremy L.; Caprioli, Richard M.

    2014-01-01

    Imaging mass spectrometry (IMS) studies increasingly focus on endogenous small molecular weight metabolites and consequently bring special analytical challenges. Since analytical tissue blanks do not exist for endogenous metabolites, careful consideration must be given to confirm molecular identity. Here we present approaches for the improvement in detection of endogenous amine metabolites such as amino acids and neurotransmitters in tissues through chemical derivatization and matrix-assisted laser desorption/ionization (MALDI) IMS. Chemical derivatization with 4-hydroxy-3-methoxycinnamaldehyde (CA) was used to improve sensitivity and specificity. CA was applied to the tissue via MALDI sample targets precoated with a mixture of derivatization reagent and ferulic acid (FA) as a MALDI matrix. Spatial distributions of chemically derivatized endogenous metabolites in tissue were determined by high-mass resolution and MSn imaging mass spectrometry. We highlight an analytical strategy for metabolite validation whereby tissue extracts are analyzed by high-performance liquid chromatography (HPLC)-MS/MS to unambiguously identify metabolites and distinguish them from isobaric compounds. PMID:25044893

  11. Analysis of posttranslational modifications of proteins by tandem mass spectrometry

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Trelle, Morten B; Thingholm, Tine E

    2006-01-01

    -temporal distribution in cells and tissues. Most PTMs can be detected by protein and peptide analysis by mass spectrometry (MS), either as a mass increment or a mass deficit relative to the nascent unmodified protein. Tandem mass spectrometry (MS/MS) provides a series of analytical features that are highly useful...

  12. Mass spectrometry-based analysis of the HLA-ligandomes of renal cell carcinoma and benign renal tissue

    OpenAIRE

    Rabsteyn, Armin

    2018-01-01

    Peptide vaccination is a promising immunotherapeutic approach for the treatment of malignancies. In this project, the unique opportunity to analyze HLA ligandomes of samples from tumor and adjacent benign tissue of renal cell carcinoma (RCC) patients by mass spectrometry was given. This allowed for the establishment of a novel approach of antigen definition by comparative profiling of malignant and benign HLA ligandomes. Analyses were performed for HLA class I and II of tumor and benign tissu...

  13. A novel liquid chromatography/mass spectrometry method for determination of neurotransmitters in brain tissue: Application to human tauopathies.

    Science.gov (United States)

    Forgacsova, Andrea; Galba, Jaroslav; Garruto, Ralph M; Majerova, Petra; Katina, Stanislav; Kovac, Andrej

    2018-01-15

    Neurotransmitters, small molecules widely distributed in the central nervous system are essential in transmitting electrical signals across neurons via chemical communication. Dysregulation of these chemical signaling molecules is linked to numerous neurological diseases including tauopathies. In this study, a precise and reliable liquid chromatography method was established with tandem mass spectrometry detection for the simultaneous determination of aspartic acid, asparagine, glutamic acid, glutamine, γ-aminobutyric acid, N-acetyl-l-aspartic acid, pyroglutamic acid, acetylcholine and choline in human brain tissue. The method was successfully applied to the analysis of human brain tissues from three different tauopathies; corticobasal degeneration, progressive supranuclear palsy and parkinsonism-dementia complex of Guam. Neurotransmitters were analyzed on ultra-high performance chromatography (UHPLC) using an ethylene bridged hybrid amide column coupled with tandem mass spectrometry (MS/MS). Identification and quantification of neurotransmitters was carried out by ESI+ mass spectrometry detection. We optimized sample preparation to achieve simple and fast extraction of all nine analytes. Our method exhibited an excellent linearity for all analytes (all coefficients of determination >0.99), with inter-day and intra-day precision yielding relative standard deviations 3.2%-11.2% and an accuracy was in range of 92.6%-104.3%. The present study, using the above method, is the first to demonstrate significant alterations of brain neurotransmitters caused by pathological processes in the brain tissues of patient with three different tauopathies. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mass-spectrometry analysis of histone post-translational modifications in pathology tissue using the PAT-H-MS approach

    Directory of Open Access Journals (Sweden)

    Roberta Noberini

    2016-06-01

    Full Text Available Aberrant histone post-translational modifications (hPTMs have been implicated with various pathologies, including cancer, and may represent useful epigenetic biomarkers. The data described here provide a mass spectrometry-based quantitative analysis of hPTMs from formalin-fixed paraffin-embedded (FFPE tissues, from which histones were extracted through the recently developed PAT-H-MS method. First, we analyzed FFPE samples from mouse spleen and liver or human breast cancer up to six years old, together with their corresponding fresh frozen tissue. We then combined the PAT-H-MS approach with a histone-focused version of the super-SILAC strategy-using a mix of histones from four breast cancer cell lines as a spike-in standard- to accurately quantify hPTMs from breast cancer specimens belonging to different subtypes. The data, which are associated with a recent publication (Pathology tissue-quantitative mass spectrometry analysis to profile histone post-translational modification patterns in patient samples (Noberini, 2015 [1], are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier http://www.ebi.ac.uk/pride/archive/projects/PXD002669.

  15. [Imaging Mass Spectrometry in Histopathologic Analysis].

    Science.gov (United States)

    Yamazaki, Fumiyoshi; Seto, Mitsutoshi

    2015-04-01

    Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) enables visualization of the distribution of a range of biomolecules by integrating biochemical information from mass spectrometry with positional information from microscopy. IMS identifies a target molecule. In addition, IMS enables global analysis of biomolecules containing unknown molecules by detecting the ratio of the molecular weight to electric charge without any target, which makes it possible to identify novel molecules. IMS generates data on the distribution of lipids and small molecules in tissues, which is difficult to visualize with either conventional counter-staining or immunohistochemistry. In this review, we firstly introduce the principle of imaging mass spectrometry and recent advances in the sample preparation method. Secondly, we present findings regarding biological samples, especially pathological ones. Finally, we discuss the limitations and problems of the IMS technique and clinical application, such as in drug development.

  16. Molecular identification of Mucorales in human tissues: contribution of PCR electrospray-ionization mass spectrometry.

    Science.gov (United States)

    Alanio, A; Garcia-Hermoso, D; Mercier-Delarue, S; Lanternier, F; Gits-Muselli, M; Menotti, J; Denis, B; Bergeron, A; Legrand, M; Lortholary, O; Bretagne, S

    2015-06-01

    Molecular methods are crucial for mucormycosis diagnosis because cultures are frequently negative, even if microscopy suggests the presence of hyphae in tissues. We assessed PCR/electrospray-ionization mass spectrometry (PCR/ESI-MS) for Mucorales identification in 19 unfixed tissue samples from 13 patients with proven or probable mucormycosis and compared the results with culture, quantitative real-time PCR, 16S-23S rRNA gene internal transcribed spacer region (ITS PCR) and 18S PCR sequencing. Concordance with culture identification to both genus and species levels was higher for PCR/ESI-MS than for the other techniques. Thus, PCR/ESI-MS is suitable for Mucorales identification, within 6 hours, for tissue samples for which microscopy results suggest the presence of hyphae. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  17. Statistical analysis of proteomics, metabolomics, and lipidomics data using mass spectrometry

    CERN Document Server

    Mertens, Bart

    2017-01-01

    This book presents an overview of computational and statistical design and analysis of mass spectrometry-based proteomics, metabolomics, and lipidomics data. This contributed volume provides an introduction to the special aspects of statistical design and analysis with mass spectrometry data for the new omic sciences. The text discusses common aspects of design and analysis between and across all (or most) forms of mass spectrometry, while also providing special examples of application with the most common forms of mass spectrometry. Also covered are applications of computational mass spectrometry not only in clinical study but also in the interpretation of omics data in plant biology studies. Omics research fields are expected to revolutionize biomolecular research by the ability to simultaneously profile many compounds within either patient blood, urine, tissue, or other biological samples. Mass spectrometry is one of the key analytical techniques used in these new omic sciences. Liquid chromatography mass ...

  18. MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays.

    Science.gov (United States)

    Powers, Thomas W; Neely, Benjamin A; Shao, Yuan; Tang, Huiyuan; Troyer, Dean A; Mehta, Anand S; Haab, Brian B; Drake, Richard R

    2014-01-01

    A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed tissues from normal mouse kidney, human pancreatic and prostate cancers, and a human hepatocellular carcinoma tissue microarray were processed by antigen retrieval followed by on-tissue digestion with peptide N-glycosidase F. The released N-glycans were detected by MALDI-IMS analysis, and the structural composition of a subset of glycans could be verified directly by on-tissue collision-induced fragmentation. Other structural assignments were confirmed by off-tissue permethylation analysis combined with multiple database comparisons. Imaging of mouse kidney tissue sections demonstrates specific tissue distributions of major cellular N-linked glycoforms in the cortex and medulla. Differential tissue distribution of N-linked glycoforms was also observed in the other tissue types. The efficacy of using MALDI-IMS glycan profiling to distinguish tumor from non-tumor tissues in a tumor microarray format is also demonstrated. This MALDI-IMS workflow has the potential to be applied to any FFPE tissue block or tissue microarray to enable higher throughput analysis of the global changes in N-glycosylation associated with cancers.

  19. Accelerator-based ultrasensitive mass spectrometry

    International Nuclear Information System (INIS)

    Gove, H.E.

    1985-01-01

    This chapter describes a new mass spectrometry technique involving charged particle accelerators normally used for basic research in nuclear science. Topics considered include the limitations of conventional mass spectrometry, the limitations of the direct measurement of radioactive decay, mass spectrometry using a tandem electrostatic accelerator, mass spectrometry using a cyclotron, how accelerator mass spectrometry circumvents the limitations of conventional mass spectrometry, measurements of stable isotopes, nuclear physics and astrophysics applications, modifications to existing accelerators, descriptions of dedicated systems, and future applications

  20. Determination of thyroid hormones in mouse tissues by isotope-dilution microflow liquid chromatography-mass spectrometry method.

    Science.gov (United States)

    De Angelis, Meri; Giesert, Florian; Finan, Brian; Clemmensen, Christoffer; Müller, Timo D; Vogt-Weisenhorn, Daniela; Tschöp, Matthias H; Schramm, Karl-Werner

    2016-10-15

    Thyroid hormones (THs) play a critical role in the regulation of many biological processes such as growth, metabolism and development both in humans and wildlife. In general, TH levels are measured by immunoassay (IA) methods but the specificity of the antibodies used in these assays limits selectivity. In the last decade, several analytical methods using liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS) have been developed to measure THs. These new techniques proved to be more accurate than the IA analysis and they were widely used for the determination of TH level in different human and animal tissues. A large part of LC-MS/MS methods described in literature employed between 200 and 500mg of sample, however this quantity can be considered too high especially when preclinical studies are conducted using mice as test subjects. Thus an analytical method that reduces the amount of tissue is essential. In this study, we developed a procedure for the analysis of six THs; L-thyroxine (T4), 3,3',5-triiodo-l-thyronine (T3), 3,3',5'-triiodo-l-thyronine (rT3), 3,5-diiodo-l-thyronine (rT2), 3,3'-diiodo-l-thyronine (T2), 3-iodo-l-thyronine (T1) using isotope ((13)C6-T4, (13)C6-T3, (13)C6-rT3, (13)C6-T2) dilution liquid chromatography-mass spectrometry. The major difference with previously described methods lies in the utilization of a nano-UPLC (Ultra Performance Liquid Chromatography) system in micro configuration. This approach leads to a reduction compared to the published methods, of column internal diameter, flow rate, and injected volume. The result of all these improvements is a decrease in the amount of sample necessary for the analysis. The method was tested on six different mouse tissues: liver, heart, kidney, muscle, lung and brown adipose tissue (BAT). The nano-UPLC system was interfaced with a quadrupole time-of-flight mass spectrometer (Q-TOF2-MS) using the positive ion mode electrospray ionization. In our analytical method

  1. Lipid imaging by mass spectrometry - a review.

    Science.gov (United States)

    Gode, David; Volmer, Dietrich A

    2013-03-07

    Mass spectrometry imaging (MSI) has proven to be extremely useful for applications such as the spatial analysis of peptides and proteins in biological tissue, the performance assessment of drugs in vivo or the measurement of protein or metabolite expression as tissue classifiers or biomarkers from disease versus control tissue comparisons. The most popular MSI technique is MALDI mass spectrometry. First invented by Richard Caprioli in the mid-1990s, it is the highest performing MSI technique in terms of spatial resolution, sensitivity for intact biomolecules and application range today. The unique ability to identify and spatially resolve numerous compounds simultaneously, based on m/z values has inter alia been applied to untargeted and targeted chemical mapping of biological compartments, revealing changes of physiological states, disease pathologies and metabolic faith and distribution of xenobiotics. Many MSI applications focus on lipid species because of the lipids' diverse roles as structural components of cell membranes, their function in the surfactant cycle, and their involvement as second messengers in signalling cascades of tissues and cells. This article gives a comprehensive overview of lipid imaging techniques and applications using established MALDI and SIMS methods but also other promising MSI techniques such as DESI.

  2. Automated, parallel mass spectrometry imaging and structural identification of lipids

    DEFF Research Database (Denmark)

    Ellis, Shane R.; Paine, Martin R.L.; Eijkel, Gert B.

    2018-01-01

    We report a method that enables automated data-dependent acquisition of lipid tandem mass spectrometry data in parallel with a high-resolution mass spectrometry imaging experiment. The method does not increase the total image acquisition time and is combined with automatic structural assignments....... This lipidome-per-pixel approach automatically identified and validated 104 unique molecular lipids and their spatial locations from rat cerebellar tissue....

  3. Accelerator mass spectrometry: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Tuniz, C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Accelerator Mass Spectrometry (AMS) is the analytical technique of choice for the detection of long-lived radionuclides which cannot be practically analysed with decay counting or conventional mass spectrometry. The main use of AMS has been in the analysis of radiocarbon and other cosmogenic radionuclides for archaeological, geological and environmental applications. In addition, AMS has been recently applied in biomedicine to study exposure of human tissues to chemicals and biomolecules at attomole levels. There is also a world-wide effort to analyse rare nuclides of heavier masses, such as long-lived actinides, with important applications in safeguards and nuclear waste disposal. The use of AMS is limited by the expensive accelerator technology required and there are several attempts to develop smaller and cheaper AMS spectrometers. 5 refs.

  4. Accelerator mass spectrometry: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Tuniz, C [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    Accelerator Mass Spectrometry (AMS) is the analytical technique of choice for the detection of long-lived radionuclides which cannot be practically analysed with decay counting or conventional mass spectrometry. The main use of AMS has been in the analysis of radiocarbon and other cosmogenic radionuclides for archaeological, geological and environmental applications. In addition, AMS has been recently applied in biomedicine to study exposure of human tissues to chemicals and biomolecules at attomole levels. There is also a world-wide effort to analyse rare nuclides of heavier masses, such as long-lived actinides, with important applications in safeguards and nuclear waste disposal. The use of AMS is limited by the expensive accelerator technology required and there are several attempts to develop smaller and cheaper AMS spectrometers. 5 refs.

  5. Mass spectrometry protein expression profiles in colorectal cancer tissue associated with clinico-pathological features of disease

    Directory of Open Access Journals (Sweden)

    Liao Christopher CL

    2010-08-01

    Full Text Available Abstract Background Studies of several tumour types have shown that expression profiling of cellular protein extracted from surgical tissue specimens by direct mass spectrometry analysis can accurately discriminate tumour from normal tissue and in some cases can sub-classify disease. We have evaluated the potential value of this approach to classify various clinico-pathological features in colorectal cancer by employing matrix-assisted laser desorption ionisation time of-flight-mass spectrometry (MALDI-TOF MS. Methods Protein extracts from 31 tumour and 33 normal mucosa specimens were purified, subjected to MALDI-Tof MS and then analysed using the 'GenePattern' suite of computational tools (Broad Institute, MIT, USA. Comparative Gene Marker Selection with either a t-test or a signal-to-noise ratio (SNR test statistic was used to identify and rank differentially expressed marker peaks. The k-nearest neighbours algorithm was used to build classification models either using separate training and test datasets or else by using an iterative, 'leave-one-out' cross-validation method. Results 73 protein peaks in the mass range 1800-16000Da were differentially expressed in tumour verses adjacent normal mucosa tissue (P ≤ 0.01, false discovery rate ≤ 0.05. Unsupervised hierarchical cluster analysis classified most tumour and normal mucosa into distinct cluster groups. Supervised prediction correctly classified the tumour/normal mucosa status of specimens in an independent test spectra dataset with 100% sensitivity and specificity (95% confidence interval: 67.9-99.2%. Supervised prediction using 'leave-one-out' cross validation algorithms for tumour spectra correctly classified 10/13 poorly differentiated and 16/18 well/moderately differentiated tumours (P = P = P = 0.001; ROC error, 0.212. Conclusions Protein expression profiling of surgically resected CRC tissue extracts by MALDI-TOF MS has potential value in studies aimed at improved molecular

  6. Quantitating subcellular metabolism with multi-isotope imaging mass spectrometry

    OpenAIRE

    Steinhauser, Matthew L.; Bailey, Andrew; Senyo, Samuel E.; Guillermier, Christelle; Perlstein, Todd S.; Gould, Alex P.; Lee, Richard T.; Lechene, Claude P.

    2012-01-01

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter 1,2 but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with sub-micron resolution 3,4 . Here we apply MIMS to diverse organisms, including Drosophila, mice, and humans. We test the “immortal strand hypothesis,” which predicts that during asymmetric stem cell division ch...

  7. Forensic Mass Spectrometry

    Science.gov (United States)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  8. Capillary electrophoresis - Mass spectrometry metabolomics analysis revealed enrichment of hypotaurine in rat glioma tissues.

    Science.gov (United States)

    Gao, Peng; Ji, Min; Fang, Xueyan; Liu, Yingyang; Yu, Zhigang; Cao, Yunfeng; Sun, Aijun; Zhao, Liang; Zhang, Yong

    2017-11-15

    Glioma is one of the most lethal brain malignancies with unknown etiologies. Many metabolomics analysis aiming at diverse kinds of samples had been performed. Due to the varied adopted analytical platforms, the reported disease-related metabolites were not consistent across different studies. Comparable metabolomics results are more likely to be acquired by analyzing the same sample types with identical analytical platform. For tumor researches, tissue samples metabolomics analysis own the unique advantage that it can gain more direct insight into disease-specific pathological molecules. In this light, a previous reported capillary electrophoresis - mass spectrometry human tissues metabolomics analysis method was employed to profile the metabolome of rat C6 cell implantation gliomas and the corresponding precancerous tissues. It was found that 9 metabolites increased in the glioma tissues. Of them, hypotaurine was the only metabolite that enriched in the malignant tissues as what had been reported in the relevant human tissues metabolomics analysis. Furthermore, hypotaurine was also proved to inhibit α-ketoglutarate-dependent dioxygenases (2-KDDs) through immunocytochemistry staining and in vitro enzymatic activity assays by using C6 cell cultures. This study reinforced the previous conclusion that hypotaurine acted as a competitive inhibitor of 2-KDDs and proved the value of metabolomics in oncology studies. Copyright © 2017. Published by Elsevier Inc.

  9. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Perdian, David C. [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  10. Investigation of Figopitant and Its Metabolites in Rat Tissue by Combining Whole-Body Autoradiography with Liquid Extraction Surface Analysis Mass Spectrometry

    DEFF Research Database (Denmark)

    Schadt, S.; Kallbach, S.; Almeida, R.

    2012-01-01

    tissue extraction, sample cleanup, and high-performance liquid chromatography analysis. The parent drug and the N-dealkylated metabolite M474(1) (BIIF 1148) in varying ratios were the predominant compounds in all tissues investigated. In addition, several metabolites formed by oxygenation, dealkylation......This article describes the combination of whole-body autoradiography with liquid extraction surface analysis (LESA) and mass spectrometry (MS) to study the distribution of the tachykinin neurokinin-1 antagonist figopitant and its metabolites in tissue sections of rats after intravenous...

  11. Direct Analysis of Large Living Organism by Megavolt Electrostatic Ionization Mass Spectrometry

    Science.gov (United States)

    Ng, Kwan-Ming; Tang, Ho-Wai; Man, Sin-Heng; Mak, Pui-Yuk; Choi, Yi-Ching; Wong, Melody Yee-Man

    2014-09-01

    A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer.

  12. Gas chromatography mass spectrometry : key technology in metabolomics

    NARCIS (Netherlands)

    Koek, Maud Marijtje

    2009-01-01

    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues. Gas chromatography coupled to mass spectrometry (GC-MS) is very suitable for metabolomics analysis, as it combines high separation power with

  13. Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging

    DEFF Research Database (Denmark)

    Li, Bin; Baden, Camilla Knudsen; Hansen, Natascha Kristine Krahl

    2013-01-01

    In comparison to the technology platforms developed to localize transcripts and proteins, imaging tools for visualization of metabolite distributions in plant tissues are less well developed and lack versatility. This hampers our understanding of plant metabolism and dynamics. In this study we...... demonstrate that Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI) of tissue imprints on porous Teflon can be used to accurately image the distribution of even labile plant metabolites such as hydroxynitrile glucosides, which normally undergo enzymatic hydrolysis by specific ß......-glucosidases upon cell disruption. This fast and simple sample preparation resulted in no substantial differences in the distribution and ratios of all hydroxynitrile glucosides between leaves from wildtype Lotus japonicus and a ß-glucosidase mutant plant lacking the ability to hydrolyze certain hydroxynitrile...

  14. Imaging mass spectrometry statistical analysis.

    Science.gov (United States)

    Jones, Emrys A; Deininger, Sören-Oliver; Hogendoorn, Pancras C W; Deelder, André M; McDonnell, Liam A

    2012-08-30

    Imaging mass spectrometry is increasingly used to identify new candidate biomarkers. This clinical application of imaging mass spectrometry is highly multidisciplinary: expertise in mass spectrometry is necessary to acquire high quality data, histology is required to accurately label the origin of each pixel's mass spectrum, disease biology is necessary to understand the potential meaning of the imaging mass spectrometry results, and statistics to assess the confidence of any findings. Imaging mass spectrometry data analysis is further complicated because of the unique nature of the data (within the mass spectrometry field); several of the assumptions implicit in the analysis of LC-MS/profiling datasets are not applicable to imaging. The very large size of imaging datasets and the reporting of many data analysis routines, combined with inadequate training and accessible reviews, have exacerbated this problem. In this paper we provide an accessible review of the nature of imaging data and the different strategies by which the data may be analyzed. Particular attention is paid to the assumptions of the data analysis routines to ensure that the reader is apprised of their correct usage in imaging mass spectrometry research. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. SwePep, a database designed for endogenous peptides and mass spectrometry.

    Science.gov (United States)

    Fälth, Maria; Sköld, Karl; Norrman, Mathias; Svensson, Marcus; Fenyö, David; Andren, Per E

    2006-06-01

    A new database, SwePep, specifically designed for endogenous peptides, has been constructed to significantly speed up the identification process from complex tissue samples utilizing mass spectrometry. In the identification process the experimental peptide masses are compared with the peptide masses stored in the database both with and without possible post-translational modifications. This intermediate identification step is fast and singles out peptides that are potential endogenous peptides and can later be confirmed with tandem mass spectrometry data. Successful applications of this methodology are presented. The SwePep database is a relational database developed using MySql and Java. The database contains 4180 annotated endogenous peptides from different tissues originating from 394 different species as well as 50 novel peptides from brain tissue identified in our laboratory. Information about the peptides, including mass, isoelectric point, sequence, and precursor protein, is also stored in the database. This new approach holds great potential for removing the bottleneck that occurs during the identification process in the field of peptidomics. The SwePep database is available to the public.

  16. Mass spectrometry in clinical chemistry

    International Nuclear Information System (INIS)

    Pettersen, J.E.

    1977-01-01

    A brief description is given of the functional elements of a mass spectrometer and of some currently employed mass spectrometric techniques, such as combined gas chromatography-mass spectrometry, mass chromatography, and selected ion monitoring. Various areas of application of mass spectrometry in clinical chemistry are discussed, such as inborn errors of metabolism and other metabolic disorders, intoxications, quantitative determinations of drugs, hormones, gases, and trace elements, and the use of isotope dilution mass spectrometry as a definitive method for the establishment of true values for concentrations of various compounds in reference sera. It is concluded that mass spectrometry is of great value in clinical chemistry. (Auth.)

  17. Top-Down and Bottom-Up Identification of Proteins by Liquid Extraction Surface Analysis Mass Spectrometry of Healthy and Diseased Human Liver Tissue

    Science.gov (United States)

    Sarsby, Joscelyn; Martin, Nicholas J.; Lalor, Patricia F.; Bunch, Josephine; Cooper, Helen J.

    2014-09-01

    Liquid extraction surface analysis mass spectrometry (LESA MS) has the potential to become a useful tool in the spatially-resolved profiling of proteins in substrates. Here, the approach has been applied to the analysis of thin tissue sections from human liver. The aim was to determine whether LESA MS was a suitable approach for the detection of protein biomarkers of nonalcoholic liver disease (nonalcoholic steatohepatitis, NASH), with a view to the eventual development of LESA MS for imaging NASH pathology. Two approaches were considered. In the first, endogenous proteins were extracted from liver tissue sections by LESA, subjected to automated trypsin digestion, and the resulting peptide mixture was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) (bottom-up approach). In the second (top-down approach), endogenous proteins were extracted by LESA, and analyzed intact. Selected protein ions were subjected to collision-induced dissociation (CID) and/or electron transfer dissociation (ETD) mass spectrometry. The bottom-up approach resulted in the identification of over 500 proteins; however identification of key protein biomarkers, liver fatty acid binding protein (FABP1), and its variant (Thr→Ala, position 94), was unreliable and irreproducible. Top-down LESA MS analysis of healthy and diseased liver tissue revealed peaks corresponding to multiple (~15-25) proteins. MS/MS of four of these proteins identified them as FABP1, its variant, α-hemoglobin, and 10 kDa heat shock protein. The reliable identification of FABP1 and its variant by top-down LESA MS suggests that the approach may be suitable for imaging NASH pathology in sections from liver biopsies.

  18. Atomic mass spectrometry

    International Nuclear Information System (INIS)

    Sanz-Medel, A.

    1997-01-01

    The elemental inorganic analysis seems to be dominated today by techniques based on atomic spectrometry. After an evaluation of advantages and limitations of using mass analysers (ion detectors) versus conventional photomultipliers (photon detector) a brief review of the more popular techniques of the emerging Atomic Mass spectrometry is carried out. Their huge potential for inorganic trace analysis is such that in the future we could well witness how this end of the century and millennium marked the fall of the photons empire in Analytical Atomic Spectrometry. (Author)

  19. Mass spectrometry and tandem mass spectrometry of citrus limonoids.

    Science.gov (United States)

    Tian, Qingguo; Schwartz, Steven J

    2003-10-15

    Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring

  20. Mass spectrometry imaging: Towards a lipid microscope?

    Science.gov (United States)

    Touboul, David; Brunelle, Alain; Laprévote, Olivier

    2011-01-01

    Biological imaging techniques are the most efficient way to locally measure the variation of different parameters on tissue sections. These analyses are gaining increasing interest since 20 years and allow observing extremely complex biological phenomena at lower and lower time and resolution scale. Nevertheless, most of them only target very few compounds of interest, which are chosen a priori, due to their low resolution power and sensitivity. New chemical imaging technique has to be introduced in order to overcome these limitations, leading to more informative and sensitive analyses for biologists and physicians. Two major mass spectrometry methods can be efficiently used to generate the distribution of biological compounds over a tissue section. Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry (MALDI-MS) needs the co-crystallization of the sample with a matrix before to be irradiated by a laser, whereas the analyte is directly desorbed by a primary ion bombardment for Secondary Ion Mass Spectrometry (SIMS) experiments. In both cases, energy used for desorption/ionization is locally deposited -some tens of microns for the laser and some hundreds of nanometers for the ion beam- meaning that small areas over the surface sample can be separately analyzed. Step by step analysis allows spectrum acquisitions over the tissue sections and the data are treated by modern informatics software in order to create ion density maps, i.e., the intensity plot of one specific ion versus the (x,y) position. Main advantages of SIMS and MALDI compared to other chemical imaging techniques lie in the simultaneous acquisition of a large number of biological compounds in mixture with an excellent sensitivity obtained by Time-of-Flight (ToF) mass analyzer. Moreover, data treatment is done a posteriori, due to the fact that no compound is selectively marked, and let us access to the localization of different lipid classes in only one complete acquisition. Copyright © 2010

  1. Mass Spectrometry Imaging under Ambient Conditions

    Science.gov (United States)

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  2. Accurate determination of silver nanoparticles in animal tissues by inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Veverková, Lenka [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Hradilová, Šárka [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Milde, David, E-mail: david.mlde@upol.cz [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Panáček, Aleš [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Skopalová, Jana [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Kvítek, Libor [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Petrželová, Kamila [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); National Reference Laboratory for Chemical Elements, Department of Residues in Kroměříž, State Veterinary Institute Olomouc, Hulínská 2286, CZ 767 60 Kroměříž (Czech Republic); and others

    2014-12-01

    This study examined recoveries of silver determination in animal tissues after wet digestion by inductively coupled plasma mass spectrometry. The composition of the mineralization mixture for microwave assisted digestion was optimized and the best recoveries were obtained for mineralization with HNO{sub 3} and addition of HCl promptly after digestion. The optimization was performed on model samples of chicken meat spiked with silver nanoparticles and a solution of ionic silver. Basic calculations of theoretical distribution of Ag among various silver-containing species were implemented and the results showed that most of the silver is in the form of soluble complexes AgCl{sub 2}{sup −} and AgCl{sub 3}{sup 2−} for the optimized composition of the mineralization mixture. Three animal tissue certified reference materials were then analyzed to verify the trueness and precision of the results. - Highlights: • We performed detailed optimization of microwave assisted digestion procedure of animal tissue used prior to Ag determination by ICP-MS. • We provide basic equilibrium calculations to give theoretical explanation of results from optimization of tested mineralization mixtures. • Results from method validation that was done by analysis of several matrix CRMs are presented.

  3. Eleventh ISMAS workshop on mass spectrometry

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Jaison, P.G.

    2004-10-01

    This volume deals with the latest developments in this field, exposing the innumerable applications of mass spectrometry. The topics covered include basic fundamentals of mass spectrometry, qualitative and quantitative aspects and data interpretation, maintenance of mass spectrometers, selection of a mass spectrometer, its applications in various branches of science as well as recent advances in mass spectrometry. Emphasis is also laid on the practical aspects of mass spectrometry. Papers relevant to INIS are indexed separately

  4. Ninth ISMAS workshop on mass spectrometry

    International Nuclear Information System (INIS)

    Aggarwal, S.K.

    2000-12-01

    Mass spectrometry has wide-ranging applications in such diverse areas as nuclear industry, agriculture, drugs, environment, petroleum and lentils. There is an urgent need to absorb and assimilate state-of-the-art technological developments in the field. Emerging trends in atomic mass spectrometry, advances in organic mass spectrometry, qualitative and quantitative analyses by mass spectrometry and mass spectrometry in oceanography are some of the areas that need to be expeditiously examined and are covered in this volume. Papers relevant to INIS are indexed separately

  5. A comparative study of three tissue-cultured Dendrobium species and their wild correspondences by headspace gas chromatography-mass spectrometry combined with chemometric methods.

    Science.gov (United States)

    Chen, Nai-Dong; You, Tao; Li, Jun; Bai, Li-Tao; Hao, Jing-Wen; Xu, Xiao-Yuan

    2016-10-01

    Plant tissue culture technique is widely used in the conservation and utilization of rare and endangered medicinal plants and it is crucial for tissue culture stocks to obtain the ability to produce similar bioactive components as their wild correspondences. In this paper, a headspace gas chromatography-mass spectrometry method combined with chemometric methods was applied to analyze and evaluate the volatile compounds in tissue-cultured and wild Dendrobium huoshanense Cheng and Tang, Dendrobium officinale Kimura et Migo and Dendrobium moniliforme (Linn.) Sw. In total, 63 volatile compounds were separated, with 53 being identified from the three Dendrobium spp. Different provenances of Dendrobiums had characteristic chemicals and showed remarkable quantity discrepancy of common compositions. The similarity evaluation disclosed that the accumulation of volatile compounds in Dendrobium samples might be affected by their provenance. Principal component analysis showed that the first three components explained 85.9% of data variance, demonstrating a good discrimination between samples. Gas chromatography-mass spectrometry techniques, combined with chemometrics, might be an effective strategy for identifying the species and their provenance, especially in the assessment of tissue-cultured Dendrobium quality for use in raw herbal medicines. Copyright © 2016. Published by Elsevier B.V.

  6. Simultaneous determination of β-agonists and monitoring in bovine tissues by liquid chromatography-tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Kyunghun Jeong

    2018-01-01

    Full Text Available The misuse of β-agonists leads to a potential risk to public health and is forbidden in many countries. We developed a rapid, sensitive and reliable multi-residue detection method for zilpaterol, ractopamine, and clenbuterol in bovine tissues by liquid chromatography–tandem mass spectrometry. Residues were extracted in ethyl acetate after protein precipitation, and then analyzed by the developed method. Good linearities (R2 > 0.99 were observed, and the recoveries of zilpaterol, ractopamine, and clenbuterol were 99%, 74%, and 102%, respectively. The limits of quantitation for zilpaterol, ractopamine, and clenbuterol were 1.3, 5.0, and 1.7 ng/g, respectively. The method is also applied successfully to bovine tissues within the Korean National Residue Programme. None of the 3 β-agonists were detected from 50 domestic samples. However, zilpaterol (6.3 ng/g was quantified in one out of the 50 imported samples. The application of this method will be helpful in quality control analysis of β-agonists residues in bovine tissues.

  7. Targeted Multiplex Imaging Mass Spectrometry with Single Chain Fragment Variable (scfv) Recombinant Antibodies

    Science.gov (United States)

    Thiery, Gwendoline; Mernaugh, Ray L.; Yan, Heping; Spraggins, Jeffrey M.; Yang, Junhai; Parl, Fritz F.; Caprioli, Richard M.

    2012-10-01

    Recombinant scfv antibodies specific for CYP1A1 and CYP1B1 P450 enzymes were combined with targeted imaging mass spectrometry to simultaneously detect the P450 enzymes present in archived, paraffin-embedded, human breast cancer tissue sections. By using CYP1A1 and CYP1B1 specific scfv, each coupled to a unique reporter molecule (i.e., a mass tag) it was possible to simultaneously detect multiple antigens within a single tissue sample with high sensitivity and specificity using mass spectrometry. The capability of imaging multiple antigens at the same time is a significant advance that overcomes technical barriers encountered when using present day approaches to develop assays that can simultaneously detect more than a single antigen in the same tissue sample.

  8. Fourier Transform Mass Spectrometry

    Science.gov (United States)

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  9. Mass spectrometry protein expression profiles in colorectal cancer tissue associated with clinico-pathological features of disease

    International Nuclear Information System (INIS)

    Liao, Christopher CL; Ward, Nicholas; Marsh, Simon; Arulampalam, Tan; Norton, John D

    2010-01-01

    Studies of several tumour types have shown that expression profiling of cellular protein extracted from surgical tissue specimens by direct mass spectrometry analysis can accurately discriminate tumour from normal tissue and in some cases can sub-classify disease. We have evaluated the potential value of this approach to classify various clinico-pathological features in colorectal cancer by employing matrix-assisted laser desorption ionisation time of-flight-mass spectrometry (MALDI-TOF MS). Protein extracts from 31 tumour and 33 normal mucosa specimens were purified, subjected to MALDI-Tof MS and then analysed using the 'GenePattern' suite of computational tools (Broad Institute, MIT, USA). Comparative Gene Marker Selection with either a t-test or a signal-to-noise ratio (SNR) test statistic was used to identify and rank differentially expressed marker peaks. The k-nearest neighbours algorithm was used to build classification models either using separate training and test datasets or else by using an iterative, 'leave-one-out' cross-validation method. 73 protein peaks in the mass range 1800-16000Da were differentially expressed in tumour verses adjacent normal mucosa tissue (P ≤ 0.01, false discovery rate ≤ 0.05). Unsupervised hierarchical cluster analysis classified most tumour and normal mucosa into distinct cluster groups. Supervised prediction correctly classified the tumour/normal mucosa status of specimens in an independent test spectra dataset with 100% sensitivity and specificity (95% confidence interval: 67.9-99.2%). Supervised prediction using 'leave-one-out' cross validation algorithms for tumour spectra correctly classified 10/13 poorly differentiated and 16/18 well/moderately differentiated tumours (P = < 0.001; receiver-operator characteristics - ROC - error, 0.171); disease recurrence was correctly predicted in 5/6 cases and disease-free survival (median follow-up time, 25 months) was correctly predicted in 22

  10. Detection and quantification of neurotensin in human brain tissue by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Gobom, J; Kraeuter, K O; Persson, R

    2000-01-01

    A method was developed for mass spectrometric detection of neurotensin (NT)-like immunoreactivity and quantification of NT in human brain tissue. The method is based on immunoprecipitation followed by analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF......-MS). The identity of the major component of the immunoprecipitates as neurotensin was confirmed by fragment ion analysis on an electrospray ionization quadrupole time-of-flight instrument. MALDI-TOF-MS quantification of NT was achieved using stable-isotope-labeled NT as the internal standard, yielding an error...

  11. Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues.

    Science.gov (United States)

    Drexler, Dieter M; Garrett, Timothy J; Cantone, Joseph L; Diters, Richard W; Mitroka, James G; Prieto Conaway, Maria C; Adams, Stephen P; Yost, Richard A; Sanders, Mark

    2007-01-01

    The properties and potential liabilities of drug candidate are investigated in detailed ADME assays and in toxicity studies, where findings are placed in context of exposure to dosed drug and metabolites. The complex nature of biological samples may necessitate work-up procedures prior to high performance liquid chromatography-mass spectrometric (HPLC-MS) analysis of endogenous or xenobiotic compounds. This concept can readily be applied to biological fluids such as blood or urine, but in localized samples such as organs and tissues potentially important spatial, thus anatomical, information is lost during sample preparation as the result of homogenization and extraction procedures. However, the localization of test article or spatial identification of metabolites may be critical to the understanding of the mechanism of target-organ toxicity and its relevance to clinical safety. Tissue imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) and ion trap mass spectrometry (MS) with higher order mass spectrometric scanning functions was utilized for localization of dosed drug or metabolite in tissue. Laser capture microscopy (LCM) was used to obtain related samples from tissue for analyses by standard MALDI-MS and HPLC-MS. In a toxicology study, rats were administered with a high dosage of a prodrug for 2 weeks. Birefringent microcrystalline material (10-25 microm) was observed in histopathologic formalin-fixed tissue samples. Direct analysis by IMS provided the identity of material in the microcrystals as circulating active drug while maintaining spatial orientation. Complementary data from visual cross-polarized light microscopy as well as standard MALDI-MS and HPLC-MS experiments on LCM samples validated the qualitative results obtained by IMS. Furthermore, the HPLC-MS analysis on the LCM samples afforded a semi-quantitative assessment of the crystalline material in the tissue samples. IMS by MALDI ion trap MS proved sensitive

  12. Identification of Biomarkers of Necrosis in Xenografts Using Imaging Mass Spectrometry.

    Science.gov (United States)

    Fernández, Roberto; Garate, Jone; Lage, Sergio; Terés, Silvia; Higuera, Mónica; Bestard-Escalas, Joan; López, Daniel H; Guardiola-Serrano, Francisca; Escribá, Pablo V; Barceló-Coblijn, Gwendolyn; Fernández, José A

    2016-02-01

    Xenografts are commonly used to test the effect of new drugs on human cancer. However, because of their heterogeneity, analysis of the results is often controversial. Part of the problem originates in the existence of tumor cells at different metabolic stages: from metastatic to necrotic cells, as it happens in real tumors. Imaging mass spectrometry is an excellent solution for the analysis of the results as it yields detailed information not only on the composition of the tissue but also on the distribution of the biomolecules within the tissue. Here, we use imaging mass spectrometry to determine the distribution of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and their plasmanyl- and plasmenylether derivatives (PC-P/O and PE-P/O) in xenografts of five different tumor cell lines: A-549, NCI-H1975, BX-PC3, HT29, and U-87 MG. The results demonstrate that the necrotic areas showed a higher abundance of Na(+) adducts and of PC-P/O species, whereas a large abundance of PE-P/O species was found in all the xenografts. Thus, the PC/PC-ether and Na(+)/K(+) ratios may highlight the necrotic areas while an increase on the number of PE-ether species may be pointing to the existence of viable tumor tissues. Furthermore, the existence of important changes in the concentration of Na(+) and K(+) adducts between different tissues has to be taken into account while interpreting the imaging mass spectrometry results. Graphical Abstract ᅟ.

  13. Glycomics using mass spectrometry

    OpenAIRE

    Wuhrer, Manfred

    2013-01-01

    Mass spectrometry plays an increasingly important role in structural glycomics. This review provides an overview on currently used mass spectrometric approaches such as the characterization of glycans, the analysis of glycopeptides obtained by proteolytic cleavage of proteins and the analysis of glycosphingolipids. The given examples are demonstrating the application of mass spectrometry to study glycosylation changes associated with congenital disorders of glycosylation, lysosomal storage di...

  14. Imaging mass spectrometry in papillary thyroid carcinoma for the identification and validation of biomarker proteins.

    Science.gov (United States)

    Min, Kyueng-Whan; Bang, Joo-Young; Kim, Kwang Pyo; Kim, Wan-Seop; Lee, Sang Hwa; Shanta, Selina Rahman; Lee, Jeong Hwa; Hong, Ji Hye; Lim, So Dug; Yoo, Young-Bum; Na, Chan-Hyun

    2014-07-01

    Direct tissue imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization and time-of-flight (MALDI-TOF) mass spectrometry has become increasingly important in biology and medicine, because this technology can detect the relative abundance and spatial distribution of interesting proteins in tissues. Five thyroid cancer samples, along with normal tissue, were sliced and transferred onto conductive glass slides. After laser scanning by MALDI-TOF equipped with a smart beam laser, images were created for individual masses and proteins were classified at 200-µm spatial resolution. Based on the spatial distribution, region-specific proteins on a tumor lesion could be identified by protein extraction from tumor tissue and analysis using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Using all the spectral data at each spot, various intensities of a specific peak were detected in the tumor and normal regions of the thyroid. Differences in the molecular weights of expressed proteins between tumor and normal regions were analyzed using unsupervised and supervised clustering. To verify the presence of discovered proteins through IMS, we identified ribosomal protein P2, which is specific for cancer. We have demonstrated the feasibility of IMS as a useful tool for the analysis of tissue sections, and identified the tumor-specific protein ribosomal protein P2.

  15. Ultra-sensitive radionuclide spectrometry. Radiometrics and mass spectrometry synergy

    International Nuclear Information System (INIS)

    Povinec, P.P.

    2005-01-01

    Recent developments in radiometrics and mass spectrometry techniques for ultra-sensitive analysis of radionuclides in the marine environment are reviewed. In the radiometrics sector the dominant development has been the utilization of large HPGe detectors in underground laboratories with anti-cosmic or anti-Compton shielding for the analysis of short and medium-lived radionuclides in the environment. In the mass spectrometry sector, applications of inductively coupled plasma mass spectrometry (ICP-MS) and accelerator mass spectrometry (AMS) for the analysis of long-lived radionuclides in the environment are the most important recent achievements. The recent developments do not only considerably decrease the detection limits for several radionuclides (up to several orders of magnitude), but they also enable to decrease sample volumes so that sampling, e.g., of the water column can be much easier and more effective. A comparison of radiometrics and mass spectrometry results for the analysis of radionuclides in the marine environment shows a reasonable agreement - within quoted uncertainties, for wide range of activities and different sample matrices analyzed. (author)

  16. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry.

    Science.gov (United States)

    Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán

    2011-10-15

    Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. © 2011 American Chemical Society

  17. Reagent Precoated Targets for Rapid In-Tissue Derivatization of the Anti-Tuberculosis Drug Isoniazid Followed by MALDI Imaging Mass Spectrometry

    Science.gov (United States)

    Manier, M. Lisa; Reyzer, Michelle L.; Goh, Anne; Dartois, Veronique; Via, Laura E.; Barry, Clifton E.; Caprioli, Richard M.

    2011-08-01

    Isoniazid (INH) is an important component of front-line anti-tuberculosis therapy with good serum pharmacokinetics but unknown ability to penetrate tuberculous lesions. However, endogenous background interferences hinder our ability to directly analyze INH in tissues. Chemical derivatization has been successfully used to measure isoniazid directly from tissue samples using matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). MALDI targets were pretreated with trans-cinnamaldehyde (CA) prior to mounting tissue slices. Isoniazid present in the tissues was efficiently derivatized and the INH-CA product measured by MS/MS. Precoating of MALDI targets allows the tissues to be directly thaw-mounted and derivatized, thus simplifying the preparation. A time-course series of tissues from tuberculosis infected/INH dosed animals were assayed and the MALDI MS/MS response correlates well with the amount of INH determined to be in the tissues by high-performance liquid chromatography (HPLC)-MS/MS.

  18. Identification and Quantitation of Biomarkers for Radiation-Induced Injury via Mass Spectrometry

    Science.gov (United States)

    Jones, Jace W.; Scott, Alison J.; Tudor, Gregory; Xu, Pu-Ting; Jackson, Isabel L.; Vujaskovic, Zeljko; Booth, Catherine; MacVittie, Thomas J.; Ernst, Robert K.; Kane, Maureen A.

    2013-01-01

    Biomarker identification and validation for radiation exposure is a rapidly expanding field encompassing the need for well-defined animal models and advanced analytical techniques. The resources within the consortium, Medical Countermeasures Against Radiological Threats (MCART), provide a unique opportunity for accessing well-defined animal models that simulate the key sequelae of the acute radiation syndrome and the delayed effects of acute radiation exposure. Likewise, the use of mass spectrometry-based analytical techniques for biomarker discovery and validation enables a robust analytical platform that is amenable to a variety of sample matrices and considered the benchmark for bio-molecular identification and quantitation. Herein, we demonstrate the use of two targeted mass spectrometry approaches to link established MCART animal models to identified metabolite biomarkers. Circulating citrulline concentration was correlated to gross histological gastrointestinal tissue damage and retinoic acid production in lung tissue was established to be reduced at early and late time points post high dose irradiation. Going forward, the use of mass spectrometry-based metabolomics coupled to well-defined animal models provides the unique opportunity for comprehensive biomarker discovery. PMID:24276554

  19. A REVIEW ON MASS SPECTROMETRY DETECTORS

    OpenAIRE

    Khatri Neetu; Gupta Ankit; Taneja Ruchi; Bilandi Ajay; Beniwal Prashant

    2012-01-01

    Mass spectrometry is an analytical technique for "weighing" molecules. Obviously, this is not done with a conventional scale or balance. Instead, mass spectrometry is based upon the principle of the motion of a charged particle that is called an ion, in an electric or magnetic field. The mass to charge ratio (m/z) of the ion affects particles motion. Since the charge of an electron is known, the mass to charge ratio (m/z) is a measurement of mass of an ion. Mass spectrometry research focuses ...

  20. Mass spectrometry. [in organic chemistry

    Science.gov (United States)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  1. Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry.

    Science.gov (United States)

    Kami, Kenjiro; Fujimori, Tamaki; Sato, Hajime; Sato, Mutsuko; Yamamoto, Hiroyuki; Ohashi, Yoshiaki; Sugiyama, Naoyuki; Ishihama, Yasushi; Onozuka, Hiroko; Ochiai, Atsushi; Esumi, Hiroyasu; Soga, Tomoyoshi; Tomita, Masaru

    2013-04-01

    Metabolic microenvironment of tumor cells is influenced by oncogenic signaling and tissue-specific metabolic demands, blood supply, and enzyme expression. To elucidate tumor-specific metabolism, we compared the metabolomics of normal and tumor tissues surgically resected pairwise from nine lung and seven prostate cancer patients, using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Phosphorylation levels of enzymes involved in central carbon metabolism were also quantified. Metabolomic profiles of lung and prostate tissues comprised 114 and 86 metabolites, respectively, and the profiles not only well distinguished tumor from normal tissues, but also squamous cell carcinoma from the other tumor types in lung cancer and poorly differentiated tumors from moderately differentiated tumors in prostate cancer. Concentrations of most amino acids, especially branched-chain amino acids, were significantly higher in tumor tissues, independent of organ type, but of essential amino acids were particularly higher in poorly differentiated than moderately differentiated prostate cancers. Organ-dependent differences were prominent at the levels of glycolytic and tricarboxylic acid cycle intermediates and associated energy status. Significantly high lactate concentrations and elevated activating phosphorylation levels of phosphofructokinase and pyruvate kinase in lung tumors confirmed hyperactive glycolysis. We highlighted the potential of CE-TOFMS-based metabolomics combined with phosphorylated enzyme analysis for understanding tissue-specific tumor microenvironments, which may lead to the development of more effective and specific anticancer therapeutics.

  2. Characterization of the phosphoproteome and sialoproteome in brain tissues by mass spectrometry

    DEFF Research Database (Denmark)

    Ibáñez-Vea, María; Kempf, Stefan J.; Larsen, Martin R.

    2017-01-01

    Mass spectrometry is an essential tool for the characterization of proteins within neuroscience. The development of faster instruments enables neuroscientists to investigate a large proportion of the proteome in the brain in only short analysis time. Yet, a detailed functional investigation of th...

  3. Aspects of Quantitation in Mass Spectrometry Imaging Investigated on Cryo-Sections of Spiked Tissue Homogenates.

    Science.gov (United States)

    Hansen, Heidi Toft; Janfelt, Christian

    2016-12-06

    Internal standards have been introduced in quantitative mass spectrometry imaging in order to compensate for differences in intensities throughout an image caused by, for example, difference in ion suppression or analyte extraction efficiency. To test how well the internal standards compensate for differences in tissue types in, for example, whole-body imaging, a set of tissue homogenates of different tissue types (lung, liver, kidney, heart, and brain) from rabbit was spiked to the same concentration with the drug amitriptyline and imaged in the same experiment using isotope labeled amitriptyline as internal standard. The results showed, even after correction with internal standard, significantly lower intensities from brain and to some extent also lung tissue, differences which may be ascribed to binding of the drug to proteins or lipids as known from traditional bioanalysis. The differences, which for these results range approximately within a factor of 3 (but for other compounds in other tissues could be higher), underscore the importance of preparing the standard curve in the same matrix as the unknown sample whenever possible. In, for example, whole-body imaging where a diversity of tissue types are present, this variation across tissue types will therefore add to the overall uncertainty in quantitation. The tissue homogenates were also used in a characterization of various phenomena in quantitative MSI, such as to study how the signal depends of the thickness of the cryo-section, and to assess the accuracy of calibration by droplet deposition. For experiments on liver tissue, calibration by spiked tissue homogenates and droplet deposition was found to provide highly similar results and in both cases linearity with R 2 values of 0.99. In the process, a new method was developed for preparation of standard curves of spiked tissue homogenates, based on the drilling of holes in a block of frozen liver homogenate, providing easy cryo-slicing and good quantitative

  4. Mass spectrometry of long-lived radionuclides

    International Nuclear Information System (INIS)

    Becker, Johanna Sabine.

    2003-01-01

    The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated--therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129 Xe + for the determination of 129 I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass

  5. Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.; Smith, Jordan N.; Timchalk, Charles; Laskin, Julia

    2013-01-15

    Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissue samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.

  6. Analysis of Chloroquine and Metabolites Directly from Whole-body Animal Tissue Sections by Liquid Extraction Surface Analysis (LESA) and Tandem Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Parson, Whitney B [ORNL; Koeniger, Stormy L [Abbott Laboratories; Johnson, Robert W [Abbott Laboratories; Erickson, Jamie [Abbott Laboratories; Tian, Yu [Abbott Laboratories; Stedman, Christopher A. [Abbott Laboratories; Schwartz, Annette [Abbott Laboratories; Tarcsa, Edit [Abbott Laboratories; Cole, Roderic [ORNL; Van Berkel, Gary J [ORNL

    2012-01-01

    The rapid and direct analysis of the amount and spatial distribution of exogenous chloroquine and chloroquine metabolites from tissue sections by liquid extraction surface sampling analysis coupled with tandem mass spectrometry (LESA-MS) was demonstrated. LESA-MS results compared well with previously published chloroquine quantification data collected by organ excision, extraction and fluorescent detection. The ability to directly sample and analyze spatially-resolved exogenous molecules from tissue sections with minimal sample preparation and analytical method development has the potential to facilitate the assessment of target tissue penetration of pharmaceutical compounds, to establish pharmacokinetic/pharmacodynamic (PK/PD) relationships, and to complement established pharmacokinetic methods used in the drug discovery process during tissue distribution assessment.

  7. Tissue-specific metabolite profiling of Cyperus rotundus L. rhizomes and (+)-nootkatone quantitation by laser microdissection, ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and gas chromatography-mass spectrometry techniques.

    Science.gov (United States)

    Jaiswal, Yogini; Liang, Zhitao; Guo, Ping; Ho, Hing-Man; Chen, Hubiao; Zhao, Zhongzhen

    2014-07-23

    Cyperus rotundus L. is a plant species commonly found in both India and China. The caused destruction of this plant is of critical concern for agricultural produce. Nevertheless, it can serve as a potential source of the commercially important sesquiterpenoid (+)-nootkatone. The present work describes comparative metabolite profiling and (+)-nootkatone content determination in rhizome samples collected from these two countries. Laser dissected tissues, namely, the cortex, hypodermal fiber bundles, endodermis, amphivasal vascular bundles, and whole rhizomes were analyzed by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). Gas chromatography-mass spectrometry (GC-MS) analysis was used for profiling of essential oil constituents and quantitation of (+)-nootkatone. The content of (+)-nootkatone was found to be higher in samples from India (30.47 μg/10 g) compared to samples from China (21.72 μg/10 g). The method was validated as per International Conference on Harmonisation (ICH) guidelines (Q2 R1). The results from this study can be applied for quality control and efficient utilization of this terpenoid-rich plant for several applications in food-based industries.

  8. Preface Miniaturization and Mass Spectrometry

    NARCIS (Netherlands)

    Unknown, [Unknown; le Gac, Severine; le Gac, S.; van den Berg, Albert; van den Berg, A.

    2009-01-01

    Miniaturization and Mass Spectrometry illustrates this trend and focuses on one particular analysis technique, mass spectrometry whose popularity has "dramatically" increased in the last two decades with the explosion of the field of biological analysis and the development of two "soft" ionization

  9. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Gray, Evan P; Coleman, Jessica G; Bednar, Anthony J; Kennedy, Alan J; Ranville, James F; Higgins, Christopher P

    2013-12-17

    Expanded use of engineered nanoparticles (ENPs) in consumer products increases the potential for environmental release and unintended biological exposures. As a result, measurement techniques are needed to accurately quantify ENP size, mass, and particle number distributions in biological matrices. This work combines single particle inductively coupled plasma mass spectrometry (spICPMS) with tissue extraction to quantify and characterize metallic ENPs in environmentally relevant biological tissues for the first time. ENPs were extracted from tissues via alkaline digestion using tetramethylammonium hydroxide (TMAH). Method development was performed using ground beef and was verified in Daphnia magna and Lumbriculus variegatus . ENPs investigated include 100 and 60 nm Au and Ag stabilized by polyvynylpyrrolidone (PVP). Mass- and number-based recovery of spiked Au and Ag ENPs was high (83-121%) from all tissues tested. Additional experiments suggested ENP mixtures (60 and 100 nm Ag ENPs) could be extracted and quantitatively analyzed. Biological exposures were also conducted to verify the applicability of the method for aquatic organisms. Size distributions and particle number concentrations were determined for ENPs extracted from D. magna exposed to 98 μg/L 100 nm Au and 4.8 μg/L 100 nm Ag ENPs. The D. magna nanoparticulate body burden for Au ENP uptake was 613 ± 230 μg/kgww, while the measured nanoparticulate body burden for D. magna exposed to Ag ENPs was 59 ± 52 μg/kgww. Notably, the particle size distributions determined from D. magna tissues suggested minimal shifts in the size distributions of ENPs accumulated, as compared to the exposure media.

  10. Surface analysis of lipids by mass spectrometry: more than just imaging.

    Science.gov (United States)

    Ellis, Shane R; Brown, Simon H; In Het Panhuis, Marc; Blanksby, Stephen J; Mitchell, Todd W

    2013-10-01

    Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the "omics" age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Mass spectrometry imaging: a novel technology in rheumatology.

    Science.gov (United States)

    Rocha, Beatriz; Ruiz-Romero, Cristina; Blanco, Francisco J

    2017-01-01

    Mass spectrometry imaging (MSI) is used to determine the relative abundance and spatial distribution of biomolecules such as peptides, proteins, lipids and other organic compounds in tissue sections by their molecular masses. This technique provides a sensitive and label-free approach for high-resolution imaging, and is currently used in an increasing number of biomedical applications such as biomarker discovery, tissue classification and drug monitoring. Owing to technological advances in the past 5 years in diverse MSI strategies, this technology is expected to become a standard tool in clinical practice and provides information complementary to that obtained using existing methods. Given that MSI is able to extract mass-spectral signatures from pathological tissue samples, this technique provides a novel platform to study joint-related tissues affected by rheumatic diseases. In rheumatology, MSI has been performed on articular cartilage, synovium and bone to increase the understanding of articular destruction and to characterize diagnostic and prognostic biomarkers for osteoarthritis, rheumatoid arthritis and osteoporosis. In this Review, we provide an overview of MSI technology and of the studies in which joint tissues have been analysed by use of this methodology. This approach might increase knowledge of rheumatic pathologies and ultimately prompt the development of targeted strategies for their management.

  12. The use of secondary ion mass spectrometry for uranium analysis in bioassays

    International Nuclear Information System (INIS)

    Amaral, Ademir de Jesus

    1997-01-01

    Today many researches are performed to use mass spectrometry as complementary methods to the alpha spectrometry. In this study performance of the secondary ion mass spectrometry (SIMS) are evaluated for traces of uranium analysis in biological tissues and more particularly in urine. A special attention is done for the samples preparation, using thin polymers. the SIMS method feasibility is presented. The second part of the thesis deals with the use of a tracer to quantify the urinary uranium, the 233 U. The isotopic ratio are obtained with a detection limit of 10 -6 Bq in 238 U per urine litre. Other biological samples are studied to illustrate the adaptability of the SIMS method to internal dosimetry. (A.L.B.)

  13. Protein biomarkers on tissue as imaged via MALDI mass spectrometry: A systematic approach to study the limits of detection.

    Science.gov (United States)

    van de Ven, Stephanie M W Y; Bemis, Kyle D; Lau, Kenneth; Adusumilli, Ravali; Kota, Uma; Stolowitz, Mark; Vitek, Olga; Mallick, Parag; Gambhir, Sanjiv S

    2016-06-01

    MALDI mass spectrometry imaging (MSI) is emerging as a tool for protein and peptide imaging across tissue sections. Despite extensive study, there does not yet exist a baseline study evaluating the potential capabilities for this technique to detect diverse proteins in tissue sections. In this study, we developed a systematic approach for characterizing MALDI-MSI workflows in terms of limits of detection, coefficients of variation, spatial resolution, and the identification of endogenous tissue proteins. Our goal was to quantify these figures of merit for a number of different proteins and peptides, in order to gain more insight in the feasibility of protein biomarker discovery efforts using this technique. Control proteins and peptides were deposited in serial dilutions on thinly sectioned mouse xenograft tissue. Using our experimental setup, coefficients of variation were biomarkers and a new benchmarking strategy that can be used for comparing diverse MALDI-MSI workflows. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mass Spectrometry-Based Proteomics for Pre-Eclampsia and Preterm Birth

    Directory of Open Access Journals (Sweden)

    Kai P. Law

    2015-05-01

    Full Text Available Pregnancy-related complications such as pre-eclampsia and preterm birth now represent a notable burden of adverse health. Pre-eclampsia is a hypertensive disorder unique to pregnancy. It is an important cause of maternal death worldwide and a leading cause of fetal growth restriction and iatrogenic prematurity. Fifteen million infants are born preterm each year globally, but more than one million of those do not survive their first month of life. Currently there are no predictive tests available for diagnosis of these pregnancy-related complications and the biological mechanisms of the diseases have not been fully elucidated. Mass spectrometry-based proteomics have all the necessary attributes to provide the needed breakthrough in understanding the pathophysiology of complex human diseases thorough the discovery of biomarkers. The mass spectrometry methodologies employed in the studies for pregnancy-related complications are evaluated in this article. Top-down proteomic and peptidomic profiling by laser mass spectrometry, liquid chromatography or capillary electrophoresis coupled to mass spectrometry, and bottom-up quantitative proteomics and targeted proteomics by liquid chromatography mass spectrometry have been applied to elucidate protein biomarkers and biological mechanism of pregnancy-related complications. The proteomes of serum, urine, amniotic fluid, cervical-vaginal fluid, placental tissue, and cytotrophoblastic cells have all been investigated. Numerous biomarkers or biomarker candidates that could distinguish complicated pregnancies from healthy controls have been proposed. Nevertheless, questions as to the clinically utility and the capacity to elucidate the pathogenesis of the pre-eclampsia and preterm birth remain to be answered.

  15. Mass Spectrometry-Based Proteomics for Pre-Eclampsia and Preterm Birth

    Science.gov (United States)

    Law, Kai P.; Han, Ting-Li; Tong, Chao; Baker, Philip N.

    2015-01-01

    Pregnancy-related complications such as pre-eclampsia and preterm birth now represent a notable burden of adverse health. Pre-eclampsia is a hypertensive disorder unique to pregnancy. It is an important cause of maternal death worldwide and a leading cause of fetal growth restriction and iatrogenic prematurity. Fifteen million infants are born preterm each year globally, but more than one million of those do not survive their first month of life. Currently there are no predictive tests available for diagnosis of these pregnancy-related complications and the biological mechanisms of the diseases have not been fully elucidated. Mass spectrometry-based proteomics have all the necessary attributes to provide the needed breakthrough in understanding the pathophysiology of complex human diseases thorough the discovery of biomarkers. The mass spectrometry methodologies employed in the studies for pregnancy-related complications are evaluated in this article. Top-down proteomic and peptidomic profiling by laser mass spectrometry, liquid chromatography or capillary electrophoresis coupled to mass spectrometry, and bottom-up quantitative proteomics and targeted proteomics by liquid chromatography mass spectrometry have been applied to elucidate protein biomarkers and biological mechanism of pregnancy-related complications. The proteomes of serum, urine, amniotic fluid, cervical-vaginal fluid, placental tissue, and cytotrophoblastic cells have all been investigated. Numerous biomarkers or biomarker candidates that could distinguish complicated pregnancies from healthy controls have been proposed. Nevertheless, questions as to the clinically utility and the capacity to elucidate the pathogenesis of the pre-eclampsia and preterm birth remain to be answered. PMID:26006232

  16. Quantitative images of metals in plant tissues measured by laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Becker, J.S.; Dietrich, R.C.; Matusch, A.; Pozebon, D.; Dressler, V.L.

    2008-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for quantitative imaging of toxic and essential elements in thin sections (thickness of 30 or 40 μm) of tobacco plant tissues. Two-dimensional images of Mg, Fe, Mn, Zn, Cu, Cd, Rh, Pt and Pb in leaves, shoots and roots of tobacco were produced. Sections of the plant tissues (fixed onto glass slides) were scanned by a focused beam of a Nd:YAG laser in a laser ablation chamber. The ablated material was transported with argon as carrier gas to the ICP ion source at a quadrupole ICP-MS instrument. Ion intensities of the investigated elements were measured together with 13 C + , 33 S + and 34 S + within the entire plant tissue section. Matrix matching standards (prepared using powder of dried tobacco leaves) were used to constitute calibration curves, whereas the regression coefficient of the attained calibration curves was typically 0.99. The variability of LA-ICP-MS process, sample heterogeneity and water content in the sample were corrected by using 13 C + as internal standard. Quantitative imaging of the selected elements revealed their inhomogeneous distribution in leaves, shoots and roots

  17. Laboratory of acceleration mass spectrometry

    International Nuclear Information System (INIS)

    Hybler, P.; Chrapan, J.

    2002-01-01

    In this paper authors describe the principle of the method of acceleration mass spectrometry and the construction plans of this instrument at the Faculty of ecology and environmental sciences in Banska Stiavnica. Using of this instrument for radiocarbon dating is discussed. A review of laboratories with acceleration mass spectrometry is presented

  18. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    Science.gov (United States)

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  19. Symposium on accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  20. Symposium on accelerator mass spectrometry

    International Nuclear Information System (INIS)

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base

  1. Application of secondary ions mass spectrometry (SIMS) in studies of internal contamination

    International Nuclear Information System (INIS)

    Amaral, Ademir; Galle, Pierre; Colas-Linhart, Nicole

    2000-01-01

    Secondary Ion Mass Spectrometry (SIMS) permits the detection of stable and radioactive nuclides. Based on the ablation of specimens by ion bombardment this mass spectrometry method allows a rapid assessment of trace elements in biological samples. Its resolving mass power provides an efficient analytical method and, in particular, it makes possible accurate isotopic ratio determination. In this work, the application of SIMS has been investigated in studies of internal contamination. In vivo studies were carried out using duodenal tissue sections from rats contaminated with cerium. Tests were performed to localize this element as a result of the contamination. In this report, analytical procedures and the potential of SIMS in biological research are presented and discussed. (author)

  2. Fourier Transform Mass Spectrometry.

    Science.gov (United States)

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  3. Role of Mass Spectrometry in Clinical Endocrinology.

    Science.gov (United States)

    Ketha, Siva S; Singh, Ravinder J; Ketha, Hemamalini

    2017-09-01

    The advent of mass spectrometry into the clinical laboratory has led to an improvement in clinical management of several endocrine diseases. Liquid chromatography tandem mass spectrometry found some of its first clinical applications in the diagnosis of inborn errors of metabolism, in quantitative steroid analysis, and in drug analysis laboratories. Mass spectrometry assays offer analytical sensitivity and specificity that is superior to immunoassays for many analytes. This article highlights several areas of clinical endocrinology that have witnessed the use of liquid chromatography tandem mass spectrometry to improve clinical outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Mass spectrometry

    DEFF Research Database (Denmark)

    Nyvang Hartmeyer, Gitte; Jensen, Anne Kvistholm; Böcher, Sidsel

    2010-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently being introduced for the rapid and accurate identification of bacteria. We describe 2 MALDI-TOF MS identification cases - 1 directly on spinal fluid and 1 on grown bacteria. Rapidly obtained...

  5. Imaging of Selenium by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in 2-D Electrophoresis Gels and Biological Tissues.

    Science.gov (United States)

    Cruz, Elisa Castañeda Santa; Susanne Becker, J; Sabine Becker, J; Sussulini, Alessandra

    2018-01-01

    Selenium and selenoproteins are important components of living organisms that play a role in different biological processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful analytical technique that has been employed to obtain distribution maps of selenium in biological tissues in a direct manner, as well as in selenoproteins, previously separated by their molecular masses and isoelectric points using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In this chapter, we present the protocols to perform LA-ICP-MS imaging experiments, allowing the distribution visualization and determination of selenium and/or selenoproteins in biological systems.

  6. Measurements of natural levels of 14C in human's and rat's tissues by accelerator mass spectrometry in Korea

    International Nuclear Information System (INIS)

    Cho, S.Y.; Khu, H.J.; Kang, J.H.; Yoon, M.Y.; Kim, J.C.

    2005-01-01

    Accelerator mass spectrometry (AMS) is the most sensitive, safe and precise analytical method for quantifying long-lived isotope in biomedical research with animals as well as human beings. In Korea, AMS Laboratory has been operating successfully for years measuring especially archaeological samples for 14 C dating. In this year, a biological sample pretreatment facility was setup to work on biomedical applications. As a preliminary study, we have measured the natural background levels of 14 C in tissues and blood of humans and rats have been measured. The results were agreed with the other reported levels and gave stable and reproducible results within 1-2%. (author)

  7. Characterization of a novel miniaturized burst-mode infrared laser system for IR-MALDESI mass spectrometry imaging.

    Science.gov (United States)

    Ekelöf, Måns; Manni, Jeffrey; Nazari, Milad; Bokhart, Mark; Muddiman, David C

    2018-03-01

    Laser systems are widely used in mass spectrometry as sample probes and ionization sources. Mid-infrared lasers are particularly suitable for analysis of high water content samples such as animal and plant tissues, using water as a resonantly excited sacrificial matrix. Commercially available mid-IR lasers have historically been bulky and expensive due to cooling requirements. This work presents a novel air-cooled miniature mid-IR laser with adjustable burst-mode output and details an evaluation of its performance for mass spectrometry imaging. The miniature laser was found capable of generating sufficient energy for complete ablation of animal tissue in the context of an IR-MALDESI experiment with exogenously added ice matrix, yielding several hundred confident metabolite identifications. Graphical abstract The use of a novel miniature 2.94 μm burst-mode laser in IR-MALDESI allows for rapid and sensitive mass spectrometry imaging of a whole mouse.

  8. Mass spectrometry with accelerators.

    Science.gov (United States)

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  9. Mass spectrometry at the Pittsburgh conference

    International Nuclear Information System (INIS)

    Borman, S.

    1987-01-01

    Each year analytical chemists flock to the Pittsburgh Conference to learn about the latest trends in analytical instrumentation. In this Focus, a number of prominent mass spectroscopists who attended this year's meeting in Atlantic City, NJ, discuss their perceptions of current developments in the field of mass spectrometry (MS). In the June 1 issue of Analytical Chemistry, the authors coverage of the Pittsburgh Conferences continues with a follow-up article on specific developments in hyphenated mass spectrometry - primarily liquid chromatography - MS (LC/MS) and gas chromatography - infrared spectrometry MS (GC/IR/MS)

  10. Chromatography–mass spectrometry in aerospace industry

    International Nuclear Information System (INIS)

    Buryak, Alexey K; Serduk, T M

    2013-01-01

    The applications of chromatography–mass spectrometry in aerospace industry are considered. The primary attention is devoted to the development of physicochemical grounds of the use of various chromatography–mass spectrometry procedures to solve topical problems of this industry. Various methods for investigation of the composition of rocket fuels, surfaces of structural materials and environmental media affected by aerospace activities are compared. The application of chromatography–mass spectrometry for the development and evaluation of processes for decontaminations of equipment, industrial wastes and soils from rocket fuel components is substantiated. The bibliography includes 135 references.

  11. Negative chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Smit, A.L.C.

    1979-01-01

    This thesis describes some aspects of Negative Chemical Ionization (NCI) mass spectrometry. The reasons for the growing interest in NCI are: (i) to extend the basic knowledge of negative ions and their reactions in the gas phase; (ii) to investigate whether or not this knowledge of negative ions can be used successfully to elucidate the structure of molecules by mass spectrometry. (Auth.)

  12. Imaging and mapping of mouse bone using MALDI-imaging mass spectrometry

    Directory of Open Access Journals (Sweden)

    Yoko Fujino

    2016-12-01

    Full Text Available Matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS is an advanced method used globally to analyze the distribution of biomolecules on tissue cryosections without any probes. In bones, however, hydroxyapatite crystals make it difficult to determine the distribution of biomolecules using MALDI-IMS. Additionally, there is limited information regarding the use of this method to analyze bone tissues. To determine whether MALDI-IMS analysis of bone tissues can facilitate comprehensive mapping of biomolecules in mouse bone, we first dissected femurs and tibiae from 8-week-old male mice and characterized the quality of multiple fixation and decalcification methods for preparation of the samples. Cryosections were mounted on indium tin oxide-coated glass slides, dried, and then a matrix solution was sprayed on the tissue surface. Images were acquired using an iMScope at a mass-to-charge range of 100–1000. Hematoxylin-eosin, Alcian blue, Azan, and periodic acid-Schiff staining of adjacent sections was used to evaluate histological and histochemical features. Among the various fixation and decalcification conditions, sections from trichloroacetic acid-treated samples were most suitable to examine both histology and comprehensive MS images. However, histotypic MS signals were detected in all sections. In addition to the MS images, phosphocholine was identified as a candidate metabolite. These results indicate successful detection of biomolecules in bone using MALDI-IMS. Although analytical procedures and compositional adjustment regarding the performance of the device still require further development, IMS appears to be a powerful tool to determine the distribution of biomolecules in bone tissues. Keywords: Matrix-assisted laser desorption/ionization-imaging mass spectrometry, Tissue cryosection, Bone, Fixation, Decalcification

  13. Automated Morphological and Morphometric Analysis of Mass Spectrometry Imaging Data: Application to Biomarker Discovery

    Science.gov (United States)

    Picard de Muller, Gaël; Ait-Belkacem, Rima; Bonnel, David; Longuespée, Rémi; Stauber, Jonathan

    2017-12-01

    Mass spectrometry imaging datasets are mostly analyzed in terms of average intensity in regions of interest. However, biological tissues have different morphologies with several sizes, shapes, and structures. The important biological information, contained in this highly heterogeneous cellular organization, could be hidden by analyzing the average intensities. Finding an analytical process of morphology would help to find such information, describe tissue model, and support identification of biomarkers. This study describes an informatics approach for the extraction and identification of mass spectrometry image features and its application to sample analysis and modeling. For the proof of concept, two different tissue types (healthy kidney and CT-26 xenograft tumor tissues) were imaged and analyzed. A mouse kidney model and tumor model were generated using morphometric - number of objects and total surface - information. The morphometric information was used to identify m/z that have a heterogeneous distribution. It seems to be a worthwhile pursuit as clonal heterogeneity in a tumor is of clinical relevance. This study provides a new approach to find biomarker or support tissue classification with more information. [Figure not available: see fulltext.

  14. Mass spectrometry-assisted protease substrate screening

    DEFF Research Database (Denmark)

    Schlüter, Hartmut; Rykl, Jana; Thiemann, Joachim

    2007-01-01

    -phase chromatography they are analyzed by tandem mass spectrometry and the substrates identified by database searching. The proof of principle in this study is demonstrated by incubating immobilized human plasma proteins with thrombin and by identifying by tandem mass spectrometry the fibrinopeptides, released...

  15. Matrix-assisted laser desorption/ionisation mass spectrometry imaging and its development for plant protein imaging

    Directory of Open Access Journals (Sweden)

    Millar A Harvey

    2011-07-01

    Full Text Available Abstract Matrix-Assisted Laser Desorption/Ionisation (MALDI mass spectrometry imaging (MSI uses the power of high mass resolution time of flight (ToF mass spectrometry coupled to the raster of lasers shots across the cut surface of tissues to provide new insights into the spatial distribution of biomolecules within biological tissues. The history of this technique in animals and plants is considered and the potential for analysis of proteins by this technique in plants is discussed. Protein biomarker identification from MALDI-MSI is a challenge and a number of different approaches to address this bottleneck are discussed. The technical considerations needed for MALDI-MSI are reviewed and these are presented alongside examples from our own work and a protocol for MALDI-MSI of proteins in plant samples.

  16. Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Annesley, Thomas M.; Cooks, Robert G.; Herold, David A.; Hoofnagle, Andrew N.

    2016-01-04

    Each year the journal Clinical Chemistry publishes a January special issue on a topic that is relevant to the laboratory medicine community. In January 2016 the topic is mass spectrometry, and the issue is entitled “Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine”. One popular feature in our issues is a Q&A on a topic, clearly in this case mass spectrometry. The journal is assembling a panel of 5-6 experts from various areas of mass spectrometry ranging from instrument manufacturing to practicing clinical chemists. Dick Smith is one of the scientist requested to participate in this special issue Q&A on Mass Spectrometry. The Q&A Transcript is attached

  17. Thermal ionisation mass spectrometry (TIMS): what, how and why?

    International Nuclear Information System (INIS)

    Aggarwal, S.K.

    2002-01-01

    Thermal ionisation mass spectrometry (TIMS) is one of the oldest mass spectrometric techniques, which has been used for determining the isotopic composition and concentration of different elements using isotope dilution. In spite of the introduction of many other inorganic mass spectrometric techniques like spark source mass spectrometry (SSMS), glow discharge mass spectrometry (GDMS), inductively coupled plasma-mass spectrometry (ICP-MS), secondary ion mass spectrometry (SIMS), the TIMS technique plays the role of a definitive analytical methodology and still occupies a unique position in terms of its capabilities with respect to precision and accuracy as well as sensitivity

  18. Surface analysis by imaging mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Vidová, Veronika; Volný, Michael; Lemr, Karel; Havlíček, Vladimír

    2009-01-01

    Roč. 74, 7-8 (2009), s. 1101-1116 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z50200510 Keywords : secondary ion mass spectrometry * matrix assisted laser desorption ionization * mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.856, year: 2009

  19. Introduction to mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Matthiesen, R.; Bunkenborg, J.

    2013-01-01

    Mass spectrometry has been widely applied to study biomolecules and one rapidly developing field is the global analysis of proteins, proteomics. Understanding and handling mass spectrometry data is a multifaceted task that requires many decisions to be made to get the most comprehensive informati...

  20. Burnup determination of mass spectrometry for nuclear fuels

    International Nuclear Information System (INIS)

    Zhang Chunhua.

    1987-01-01

    The various methods currently being used in burnup determination of nuclear fuels are studied and reviewed. The mass spectrometry method of destructive testing is discussed emphatically. The burnup determination of mass spectrometry includes heavy isotopic abundance ratio method and isotope dilution mass spectrometry used as burnup indicator for the fission products. The former is applied to high burnup level, but the later to various burnup level. According to experiences, some problems which should be noticed in burnup determination of mass spectrometry are presented

  1. Instrumentation for mass spectrometry: 1997

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  2. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging.

    Science.gov (United States)

    Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz

    2015-09-21

    Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.

  3. Tandem mass spectrometry at low kinetic energy

    International Nuclear Information System (INIS)

    Cooks, R.G.; Hand, O.W.

    1987-01-01

    Recent progress in mass spectrometry, as applied to molecular analysis, is reviewed with emphasis on tandem mass spectrometry. Tandem instruments use multiple analyzers (sector magnets, quadrupole mass filters and time-of-flight devices) to select particular molecules in ionic form, react them in the gas-phase and then record the mass, momenta or kinetic energies of their products. The capabilities of tandem mass spectrometry for identification of individual molecules or particular classes of compounds in complex mixtures are illustrated. Several different types of experiments can be run using a tandem mass spectrometer; all share the feature of sifting the molecular mixture being analyzed on the basis of chemical properties expressed in terms of ionic mass, kinetic energy or charge state. Applications of mass spectrometry to biological problems often depend upon desorption methods of ionization in which samples are bombarded with particle beams. Evaporation of preformed charged species from the condensed phase into the vacuum is a particularly effective method of ionization. It is suggested that the use of accelerator mass spectrometers be extended to include problems of molecular analysis. In such experiments, low energy tandem mass spectrometry conducted in the eV or keV range of energies, would be followed by further characterization of the production ion beam using high selective MeV collision processes

  4. Final LDRD report : development of sample preparation methods for ChIPMA-based imaging mass spectrometry of tissue samples.

    Energy Technology Data Exchange (ETDEWEB)

    Maharrey, Sean P.; Highley, Aaron M.; Behrens, Richard, Jr.; Wiese-Smith, Deneille

    2007-12-01

    The objective of this short-term LDRD project was to acquire the tools needed to use our chemical imaging precision mass analyzer (ChIPMA) instrument to analyze tissue samples. This effort was an outgrowth of discussions with oncologists on the need to find the cellular origin of signals in mass spectra of serum samples, which provide biomarkers for ovarian cancer. The ultimate goal would be to collect chemical images of biopsy samples allowing the chemical images of diseased and nondiseased sections of a sample to be compared. The equipment needed to prepare tissue samples have been acquired and built. This equipment includes an cyro-ultramicrotome for preparing thin sections of samples and a coating unit. The coating unit uses an electrospray system to deposit small droplets of a UV-photo absorbing compound on the surface of the tissue samples. Both units are operational. The tissue sample must be coated with the organic compound to enable matrix assisted laser desorption/ionization (MALDI) and matrix enhanced secondary ion mass spectrometry (ME-SIMS) measurements with the ChIPMA instrument Initial plans to test the sample preparation using human tissue samples required development of administrative procedures beyond the scope of this LDRD. Hence, it was decided to make two types of measurements: (1) Testing the spatial resolution of ME-SIMS by preparing a substrate coated with a mixture of an organic matrix and a bio standard and etching a defined pattern in the coating using a liquid metal ion beam, and (2) preparing and imaging C. elegans worms. Difficulties arose in sectioning the C. elegans for analysis and funds and time to overcome these difficulties were not available in this project. The facilities are now available for preparing biological samples for analysis with the ChIPMA instrument. Some further investment of time and resources in sample preparation should make this a useful tool for chemical imaging applications.

  5. Ambient ionization mass spectrometry

    International Nuclear Information System (INIS)

    Lebedev, A T

    2015-01-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references

  6. Mass spectrometry imaging of biomarker lipids for phagocytosis and signalling during focal cerebral ischaemia

    DEFF Research Database (Denmark)

    Nielsen, Mette M B; Lambertsen, Kate L; Clausen, Bettina H

    2016-01-01

    biomarker CD11b, and probably with cholesteryl ester. Mass spectrometry imaging can visualize spatiotemporal changes in the lipidome during the progression and resolution of focal cerebral inflammation and suggests that BMP(22:6/22:6) and N-acyl-phosphatidylethanolamines can be used as biomarkers......Focal cerebral ischaemia has an initial phase of inflammation and tissue injury followed by a later phase of resolution and repair. Mass spectrometry imaging (desorption electrospray ionization and matrix assisted laser desorption ionization) was applied on brain sections from mice 2 h, 24 h, 5d, 7...

  7. Histology-directed and imaging mass spectrometry: an emerging technology in ectopic calcification

    OpenAIRE

    Taverna, Domenico; Boraldi, Federica; De Santis, Giorgio; Caprioli, Richard M; Quaglino, Daniela

    2015-01-01

    The present study was designed to demonstrate the potential of an optimized histology directed protein identification combined with imaging mass spectrometry technology to reveal and identify molecules associated to ectopic calcification in human tissue. As a proof of concept, mineralized and non-mineralized areas were compared within the same dermal tissue obtained from a patient affected by Pseudoxanthoma elasticum, a genetic disorder characterized by calcification only at specific sites of...

  8. Multiresidue analysis of 22 sulfonamides and their metabolites in animal tissues using quick, easy, cheap, effective, rugged, and safe extraction and high resolution mass spectrometry (hybrid linear ion trap-Orbitrap).

    Science.gov (United States)

    Abdallah, H; Arnaudguilhem, C; Jaber, F; Lobinski, R

    2014-08-15

    A new high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) method was developed for a simultaneous multi-residue analysis of 22 sulfonamides (SAs) and their metabolites in edible animal (pig, beef, sheep and chicken) tissues. Sample preparation was optimized on the basis of the "QuEChERS" protocol. The analytes were identified using their LC retention times and accurate mass; the identification was further confirmed by multi-stage high mass accuracy (Pig kidney" with ǀ Z-scoreǀpig, beef, sheep, and chicken) allowing the simultaneous quantification of target sulfonamides at concentration levels above the MRL/2 and the identification of untargeted compounds such as N(4)-acetyl metabolites using multi-stage high mass accuracy mass spectrometry. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Alpha spectrometry and secondary ion mass spectrometry of thorium

    International Nuclear Information System (INIS)

    Strisovska, Jana; Kuruc, Jozef; Galanda, Dusan; Matel, Lubomir; Velic, Dusan; Aranyosiova, Monika

    2009-01-01

    A sample of thorium content on steel discs was prepared by electrodeposition with a view to determining the natural thorium isotope. Thorium was determined by alpha spectrometry and by secondary ion mass spectrometry and the results of the two methods were compared

  10. High-sensitivity mass spectrometry with a tandem accelerator

    International Nuclear Information System (INIS)

    Henning, W.

    1984-01-01

    The characteristic features of accelerator mass spectrometry are discussed. A short overview is given of the current status of mass spectrometry with high-energy (MeV/nucleon) heavy-ion accelerators. Emphasis is placed on studies with tandem accelerators and on future mass spectrometry of heavier isotopes with the new generation of higher-voltage tandems

  11. Inorganic mass spectrometry of solid samples

    International Nuclear Information System (INIS)

    Adams, F.; Vertes, A.

    1990-01-01

    In this review some recent developments in the field of inorganic mass spectrometry of solids are described with special emphasis on the actual state of understanding of the ionization processes. It concentrates on the common characteristics of methods such as spark source-, laser-, secondary ion-, inductively coupled plasma- and glow discharge mass spectrometry. (orig.)

  12. Mass spectrometry a versatile aid to inorganic analysis

    International Nuclear Information System (INIS)

    Stefani, Rene

    1976-01-01

    Several hundred publications have appeared in the last three years that deal with applications of Mass Spectrometry to inorganic analysis. Bulk and localized trace analysis, surface and thin film characterization and microstructure examination are currently performed by Secondary Ion Mass Spectrometry, Spark Source Mass Spectrometry and the newly developed Laser Probe Mass Spectrometry. Suitable experimental procedures allow insulators, biologic materials and microsamples to be analysed. In spite of the classification by techniques this review is essentially devoted to the most significant papers in analytical applications but instrumental and basic features are sometimes introduced to support the discussions

  13. Three-Dimensional Imaging of Lipids and Metabolites in Tissues by Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Burnum-Johnson, Kristin E.; Thomas, Mathew; Cha, Jeeyeon; Dey, Sudhansu K.; yang, Pengxiang; Prieto, Mari; Laskin, Julia

    2015-03-01

    Abstract Three-dimensional (3D) imaging of tissue sections is a new frontier in mass spectrometry imaging (MSI). Here we report on fast 3D imaging of lipids and metabolites associated with mouse uterine decidual cells and embryo at the implantation site on day 6 of pregnancy. 2D imaging of 16-20 serial tissue sections deposited on the same glass slide was performed using nanospray desorption electrospray ionization (nano-DESI) – an ambient ionization technique that enables sensitive localized analysis of analytes on surfaces without special sample pre-treatment. In this proof-of-principle study, nano-DESI was coupled to a high-resolution Q-Exactive instrument operated at high repetition rate of >5 Hz with moderate mass resolution of 35,000 (m/Δm at m/z 200), which enabled acquisition of the entire 3D image with a spatial resolution of ~150 μm in less than 4.5 hours. The results demonstrate localization of acetylcholine in the primary decidual zone (PDZ) of the implantation site throughout the depth of the tissue examined, indicating an important role of this signaling molecule in decidualization. Choline and phosphocholine – metabolites associated with cell growth – are enhanced in the PDZ and abundant in other cellular regions of the implantation site. Very different 3D distributions were obtained for fatty acids (FA), oleic acid and linoleic acid (FA 18:1 and FA 18:2), differing only by one double bond. Localization of FA 18:2 in the PDZ indicates its important role in decidualization while FA 18:1 is distributed more evenly throughout the tissue. In contrast, several lysophosphatidylcholines (LPC) observed in this study show donut-like distributions with localization around the PDZ. Complementary distributions with minimal overlap were observed for LPC 18:0 and FA 18:2 while the 3D image of the potential precursor phosphatidylcholine (PC 36:2) showed a significant overlap with both LPC 18:0 and FA 18:2.

  14. Mass spectrometry for protein quantification in biomarker discovery.

    Science.gov (United States)

    Wang, Mu; You, Jinsam

    2012-01-01

    Major technological advances have made proteomics an extremely active field for biomarker discovery in recent years due primarily to the development of newer mass spectrometric technologies and the explosion in genomic and protein bioinformatics. This leads to an increased emphasis on larger scale, faster, and more efficient methods for detecting protein biomarkers in human tissues, cells, and biofluids. Most current proteomic methodologies for biomarker discovery, however, are not highly automated and are generally labor-intensive and expensive. More automation and improved software programs capable of handling a large amount of data are essential to reduce the cost of discovery and to increase throughput. In this chapter, we discuss and describe mass spectrometry-based proteomic methods for quantitative protein analysis.

  15. Application of inductively coupled plasma mass spectrometry for multielement analysis in small sample amounts of thyroid tissue from Chernobyl area

    International Nuclear Information System (INIS)

    Becker, J.S.; Dietze, H.J.; Boulyga, S.F.; Bazhanova, N.N.; Kanash, N.V.; Malenchenko, A.F.

    2000-01-01

    As a result of the Chernobyl nuclear power plant accident in 1986, thyroid pathologies occurred among children in some regions of belarus. Besides the irradiation of children's thyroids by radioactive iodine and caesium nuclides, toxic elements from fallout are a direct risk to health. Inductively coupled plasma quadrupole-based mass spectrometry (Icp-Ms) and instrumental neutron activation analysis (IAA) were used for multielement determination in small amounts (I-10 mg) of human thyroid tissue samples. The accuracy of the applied analytical technique for small biological sample amounts was checked using NIST standard reference material oyster tissue (SRM 1566 b). Almost all essential elements as well as a number of toxic elements such as Cd, Pb, Hg, U etc. Were determined in a multitude of human thyroid tissues by quadrupole-based Icp-Ms using micro nebulization. In general, the thyroid tissue affected by pathology is characterized by higher calcium content. Some other elements, among them Sr, Zn, Fe, Mn, V, As, Cr, Ni, Pb, U, Ba, Sb, were also Accumulated in such tissue. The results obtained will be used as initial material for further specific studies of the role of particular elements in thyroid pathology development

  16. High-throughput screening and quantitation of guanidino and ureido compounds using liquid chromatography-drift tube ion mobility spectrometry-mass spectrometry.

    Science.gov (United States)

    Fan, Ruo-Jing; Zhang, Fang; Chen, Xiu-Ping; Qi, Wan-Shu; Guan, Qing; Sun, Tuan-Qi; Guo, Yin-Long

    2017-04-08

    The present work focused on the high-throughput screening and quantitation of guanidino compounds (GCs) and ureido compounds (UCs) in human thyroid tissues. The strategy employed benzylic rearrangement stable isotope labeling (BRSIL) for the sample preparation and then detection using liquid chromatography-drift tube ion mobility spectrometry-quadrupole time of flight mass spectrometry (LC-DTIMS-QTOF MS). A short reversed-phase LC realized an on-line desalting and a measurement cycle of 5.0 min. DTIMS separation enhanced the better specificity and selectivity for the benzil labeled GCs and UCs. The elevated mass resolution of QTOF MS enabled measure of the characteristic ions at accurate mass in MS and tandem MS spectra. Collision cross section (CCS) from DTIMS and accurate mass from QTOF MS were used as two qualifiers for the profiling and identification of GCs and UCs. In addition, an integral abundance arising from 3-D ion features (retention time, drift time, m/z) was applied to quantify the GCs and UCs in human thyroid tissues. The quantitative validation indicated good linearity (coefficient values ≥ 0.9981), good precision (1.0%-12.3% for intra-day and 0.9%-7.8% for inter-day) and good accuracy (91%-109%). The results demonstrated that the developed BRSIL coupled with LC-DTIMS-QTOF MS can be a powerful analysis platform to investigate GCs and UCs in human thyroid tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Tissue gadolinium deposition in hepatorenally impaired rats exposed to Gd-EOB-DTPA: evaluation with inductively coupled plasma mass spectrometry (ICP-MS).

    Science.gov (United States)

    Sato, Tomohiro; Tamada, Tsutomu; Watanabe, Shigeru; Nishimura, Hirotake; Kanki, Akihiko; Noda, Yasufumi; Higaki, Atsushi; Yamamoto, Akira; Ito, Katsuyoshi

    2015-06-01

    This study was undertaken to quantify tissue gadolinium (Gd) deposition in hepatorenally impaired rats exposed to gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) by means of inductively coupled plasma mass spectrometry (ICP-MS) and to compare differences in Gd distribution among major organs as possible triggers for nephrogenic systemic fibrosis. Five hepatorenally impaired rats (5/6-nephrectomized, with carbon-tetrachloride-induced liver fibrosis) were injected with Gd-EOB-DTPA. Histological assessment was conducted and Gd content of the skin, liver, kidneys, lungs, heart, spleen, diaphragm, and femoral muscle was measured by inductively coupled plasma mass spectrometry (ICP-MS) at 7 days after last injection. In addition, five renally impaired rats were injected with Gd-EOB-DTPA and the degree of tissue Gd deposition was compared with that in the hepatorenally impaired rats. ICP-MS analysis revealed significantly higher Gd deposition in the kidneys, spleen, and liver (p = 0.009-0.047) in the hepatorenally impaired group (42.6 ± 20.1, 17.2 ± 6.1, 8.4 ± 3.2 μg/g, respectively) than in the renally impaired group (17.2 ± 7.7, 5.4 ± 2.1, 2.8 ± 0.7 μg/g, respectively); no significant difference was found for other organs. In the hepatorenally impaired group, Gd was predominantly deposited in the kidneys, followed by the spleen, liver, lungs, skin, heart, diaphragm, and femoral muscle. Histopathological investigation revealed hepatic fibrosis in the hepatorenally impaired group. Compared with renally impaired rats, tissue Gd deposition in hepatorenally impaired rats exposed to Gd-EOB-DTPA was significantly increased in the kidneys, spleen, and liver, probably due to the impairment of the dual excretion pathways of the urinary and biliary systems.

  18. Mass spectrometry in nuclear science and technology

    International Nuclear Information System (INIS)

    Komori, Takuji

    1985-01-01

    Mass spectrometry has been widely used and playing a very important role in the field of nuclear science and technology. A major reason for this is that not only the types of element but also its isotopes have to be identified and measured in this field. Thus, some applications of this analytical method are reviewed and discussed in this article. Its application to analytical chemistry is described in the second section following an introductory section, which includes subsections for isotropic dilution mass spectrometry, resonance ionization mass spectrometry and isotopic correlation technique. The isotopic ratio measurement for hydrogen, uranium and plutonium as well as nuclear material control and safeguards are also reviewed in this section. In the third section, mass spectrometry is discussed in relation to nuclear reactors, with subsections on natural uranium reactor and neutron flux observation. Some techniques for measuring the burnup fraction, including the heavy isotopic ratio method and fission product monitoring, are also described. In the fourth section, application of mass spectrometry to measurement of nuclear constants, such as ratio of effective cross-sectional area for 235 U, half-life and fission yield is reviewed. (Nogami, K.)

  19. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging for Peptide and Protein Analyses: A Critical Review of On-Tissue Digestion

    NARCIS (Netherlands)

    Cillero-Pastor, B.; Heeren, R.M.A.

    2013-01-01

    Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has established itself among the plethora of mass spectrometry applications. In the biomedical field, MALDI-MSI is being more frequently recognized as a new method for the discovery of biomarkers and targets of

  20. Rapid methods to determine procyanidins, anthocyanins, theobromine and caffeine in rat tissues by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Serra, Aida; Macià, Alba; Romero, Maria-Paz; Piñol, Carme; Motilva, Maria-José

    2011-06-01

    Rapid, selective and sensitive methods were developed and validated to determine procyanidins, anthocyanins and alkaloids in different biological tissues, such as liver, brain, the aorta vein and adipose tissue. For this purpose, standards of procyanidins (catechin, epicatechin, and dimer B(2)), anthocyanins (cyanidin-3-glucoside and malvidin-3-glucoside) and alkaloids (theobromine, caffeine and theophylline) were used. The methods included the extraction of homogenized tissues by off-line liquid-solid extraction, and then solid-phase extraction to analyze alkaloids, or microelution solid-phase extraction plate for the analysis of procyanidins and anthocyanins. The eluted extracts were then analyzed by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry, using a triple quadrupole as the analyzer. The optimum extraction solution was water/methanol/phosphoric acid 4% (94/4.5/1.5, v/v/v). The extraction recoveries were higher than 81% for all the studied compounds in all the tissues, except the anthocyanins, which were between 50 and 65% in the liver and brain. In order to show the applicability of the developed methods, different rat tissues were analyzed to determine the procyanidins, anthocyanins and alkaloids and their generated metabolites. The rats had previously consumed 1g of a grape pomace extract (to analyze procyanidins and anthocyanins) or a cocoa extract (to analyze alkaloids) per kilogram of body weight. Different tissues were extracted 4h after administration of the respective extracts. The analysis of the metabolites revealed a hepatic metabolism of procyanidins. The liver was the tissue which produced a greater accumulation of these metabolites. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Mass spectrometric characterization of elements and molecules in cell cultures and tissues

    International Nuclear Information System (INIS)

    Arlinghaus, H.F.; Kriegeskotte, C.; Fartmann, M.; Wittig, A.; Sauerwein, W.; Lipinsky, D.

    2006-01-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and laser post-ionization secondary neutral mass spectrometry (laser-SNMS) have been used to image and quantify targeted compounds, intrinsic elements and molecules with subcellular resolution in single cells of both cell cultures and tissues. Special preparation procedures for analyzing cell cultures and tissue materials were developed. Cancer cells type MeWo, incubated with boronated compounds, were sandwiched between two substrates, cryofixed, freeze-fractured and freeze-dried. Also, after injection with boronated compounds, different types of mouse tissues were extracted, prepared on a special specimen carrier and plunged with high velocity into LN 2 -cooled propane for cryofixation. After trimming, these tissue blocks were freeze-dried. The measurements of the K/Na ratio demonstrated that for both cell cultures and tissue materials the special preparation techniques used were appropriate for preserving the chemical and structural integrity of the living cell. The boron images show inter- and intracellular boron signals with different intensities. Molecular images show distinct features partly correlated with the cell structure. A comparison between laser-SNMS and ToF-SIMS showed that especially laser-SNMS is particularly well-suited for identifying specific cell structures and imaging ultratrace element concentrations in tissues

  2. Mass Spectrometry Analyses of Multicellular Tumor Spheroids.

    Science.gov (United States)

    Acland, Mitchell; Mittal, Parul; Lokman, Noor A; Klingler-Hoffmann, Manuela; Oehler, Martin K; Hoffmann, Peter

    2018-05-01

    Multicellular tumor spheroids (MCTS) are a powerful biological in vitro model, which closely mimics the 3D structure of primary avascularized tumors. Mass spectrometry (MS) has established itself as a powerful analytical tool, not only to better understand and describe the complex structure of MCTS, but also to monitor their response to cancer therapeutics. The first part of this review focuses on traditional mass spectrometry approaches with an emphasis on elucidating the molecular characteristics of these structures. Then the mass spectrometry imaging (MSI) approaches used to obtain spatially defined information from MCTS is described. Finally the analysis of primary spheroids, such as those present in ovarian cancer, and the great potential that mass spectrometry analysis of these structures has for improved understanding of cancer progression and for personalized in vitro therapeutic testing is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The emergence of mass spectrometry in biochemical research

    OpenAIRE

    1995-01-01

    The initial steps toward routinely applying mass spectrometry in the biochemical laboratory have been achieved. In the past, mass spectrometry was confined to the realm of small, relatively stable molecules; large or thermally labile molecules did not survive the desorption and ionization processes intact. Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry allow for the analysis of both small and large biomolecules through "mild" desorption...

  4. Fast atom bombardment tandem mass spectrometry of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    van Breeman, R.B. [Univ. of Illinois, Chicago, IL (United States); Schmitz, H.H.; Schwartz, S.J. [North Carolina State Univ., Raleigh, NC (United States)

    1995-02-01

    Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenes formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.

  5. Speciation of arsenic in marine food (Anemonia sulcata) by liquid chromatography coupled to inductively coupled plasma mass spectrometry and organic mass spectrometry.

    Science.gov (United States)

    Contreras-Acuña, M; García-Barrera, T; García-Sevillano, M A; Gómez-Ariza, J L

    2013-03-22

    Arsenic species have been investigated in Anemonia sulcata, which is frequently consumed food staple in Spain battered in wheat flour and fried with olive oil. Speciation in tissue extracts was carried out by anion/cation exchange chromatography with inductively coupled plasma mass spectrometry (HPLC-(AEC/CEC)-ICP-MS). Three methods for the extraction of arsenic species were investigated (ultrasonic bath, ultrasonic probe and focused microwave) and the optimal one was applied. Arsenic speciation was carried out in raw and cooked anemone and the dominant species are dimethylarsinic acid (DMA(V)) followed by arsenobetaine (AB), As(V), monomethylarsonic acid (MA(V)), tetramethylarsonium ion (TETRA) and trimethylarsine oxide (TMAO). In addition, arsenocholine (AsC), glyceryl phosphorylarsenocholine (GPAsC) and dimethylarsinothioic acid (DMAS) were identified by liquid chromatography coupled to triple quadrupole mass spectrometry (HPLC-MS). These results are interesting since GPAsC has been previously reported in marine organisms after experimental exposure to AsC, but not in natural samples. In addition, this paper reports for the first time the identification of DMAS in marine food. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Zero voltage mass spectrometry probes and systems

    Science.gov (United States)

    Cooks, Robert Graham; Wleklinski, Michael Stanley; Bag, Soumabha; Li, Yafeng

    2017-10-10

    The invention generally relates to zero volt mass spectrometry probes and systems. In certain embodiments, the invention provides a system including a mass spectrometry probe including a porous material, and a mass spectrometer (bench-top or miniature mass spectrometer). The system operates without an application of voltage to the probe. In certain embodiments, the probe is oriented such that a distal end faces an inlet of the mass spectrometer. In other embodiments, the distal end of the probe is 5 mm or less from an inlet of the mass spectrometer.

  7. Mass spectrometry imaging enriches biomarker discovery approaches with candidate mapping.

    Science.gov (United States)

    Scott, Alison J; Jones, Jace W; Orschell, Christie M; MacVittie, Thomas J; Kane, Maureen A; Ernst, Robert K

    2014-01-01

    Integral to the characterization of radiation-induced tissue damage is the identification of unique biomarkers. Biomarker discovery is a challenging and complex endeavor requiring both sophisticated experimental design and accessible technology. The resources within the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Consortium, Medical Countermeasures Against Radiological Threats (MCART), allow for leveraging robust animal models with novel molecular imaging techniques. One such imaging technique, MALDI (matrix-assisted laser desorption ionization) mass spectrometry imaging (MSI), allows for the direct spatial visualization of lipids, proteins, small molecules, and drugs/drug metabolites-or biomarkers-in an unbiased manner. MALDI-MSI acquires mass spectra directly from an intact tissue slice in discrete locations across an x, y grid that are then rendered into a spatial distribution map composed of ion mass and intensity. The unique mass signals can be plotted to generate a spatial map of biomarkers that reflects pathology and molecular events. The crucial unanswered questions that can be addressed with MALDI-MSI include identification of biomarkers for radiation damage that reflect the response to radiation dose over time and the efficacy of therapeutic interventions. Techniques in MALDI-MSI also enable integration of biomarker identification among diverse animal models. Analysis of early, sublethally irradiated tissue injury samples from diverse mouse tissues (lung and ileum) shows membrane phospholipid signatures correlated with histological features of these unique tissues. This paper will discuss the application of MALDI-MSI for use in a larger biomarker discovery pipeline.

  8. MALDI TOF imaging mass spectrometry in clinical pathology: a valuable tool for cancer diagnostics (review).

    Science.gov (United States)

    Kriegsmann, Jörg; Kriegsmann, Mark; Casadonte, Rita

    2015-03-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) is an evolving technique in cancer diagnostics and combines the advantages of mass spectrometry (proteomics), detection of numerous molecules, and spatial resolution in histological tissue sections and cytological preparations. This method allows the detection of proteins, peptides, lipids, carbohydrates or glycoconjugates and small molecules.Formalin-fixed paraffin-embedded tissue can also be investigated by IMS, thus, this method seems to be an ideal tool for cancer diagnostics and biomarker discovery. It may add information to the identification of tumor margins and tumor heterogeneity. The technique allows tumor typing, especially identification of the tumor of origin in metastatic tissue, as well as grading and may provide prognostic information. IMS is a valuable method for the identification of biomarkers and can complement histology, immunohistology and molecular pathology in various fields of histopathological diagnostics, especially with regard to identification and grading of tumors.

  9. Mass spectrometry for biomarker development

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  10. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Novák, Ondřej; Hauserová, Eva; Amakorová, Petra; Doležal, Karel; Strnad, Miroslav

    2008-01-01

    Roč. 69, č. 11 (2008), s. 2214-2224 ISSN 0031-9422 R&D Projects: GA AV ČR KAN200380801 Institutional research plan: CEZ:AV0Z50380511 Keywords : Ultra-performance liquid chromatography (UPLC) * Tandem mass spectrometry (MS/MS) * Microextraction Subject RIV: EC - Immunology Impact factor: 2.946, year: 2008

  11. Characterisation of the volatile profiles of infant formulas by proton transfer reaction-mass spectrometry and gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Ruth, van S.M.; Floris, V.; Fayoux, S.

    2006-01-01

    The volatile profiles of 13 infant formulas were evaluated by proton transfer reaction-mass spectrometry (PTR-MS) and gas chromatography¿mass spectrometry (GC¿MS). The infant formulas varied in brand (Aptamil, Cow & Gate, SMA), type (for different infant target groups) and physical form

  12. Emerging mass spectrometry techniques for the direct analysis of microbial colonies

    OpenAIRE

    Fang, Jinshu; Dorrestein, Pieter C.

    2014-01-01

    One of the emerging areas in microbiology is detecting specialized metabolites produced by microbial colonies and communities with mass spectrometry. In this review/perspective, we illustrate the emerging mass spectrometry methodologies that enable the interrogation of specialized metabolites directly from microbial colonies. Mass spectrometry techniques such as imaging mass spectrometry and real-time mass spectrometry allow two and three dimensional visualization of the distri...

  13. Mass spectrometry in oceanography

    International Nuclear Information System (INIS)

    Aggarwal, Suresh K.

    2000-01-01

    Mass spectrometry plays an important role in oceanography for various applications. Different types of inorganic as well as organic mass spectrometric techniques are being exploited world-wide to understand the different aspects of marine science, for palaeogeography, palaeoclimatology and palaeoecology, for isotopic composition and concentrations of different elements as well as for speciation studies. The present paper reviews some of the applications of atomic mass spectrometric techniques in the area of oceanography

  14. Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging

    Energy Technology Data Exchange (ETDEWEB)

    Burnum-Johnson, Kristin E.; Baker, Erin S.; Metz, Thomas O.

    2017-12-01

    Successful pregnancy is dependent upon discrete biological events, which include embryo implantation, decidualization, and placentation. Problems associated with each of these events can cause infertility or conditions such as preeclampsia. A greater understanding of the molecular changes associated with these complex processes is necessary to aid in identifying treatments for each condition. Previous nuclear magnetic resonance spectroscopy and mass spectrometry studies have been used to identify metabolites and lipids associated with pregnancy-related complications. However, due to limitations associated with conventional implementations of both techniques, novel technology developments are needed to more fully understand the initiation and development of pregnancy related problems at the molecular level. In this perspective, we describe current analytical techniques for metabolomic and lipidomic characterization of pregnancy complications and discuss the potential for new technologies such as ion mobility spectrometry-mass spectrometry and mass spectrometry imaging to contribute to a better understanding of the molecular changes that affect the placenta and pregnancy outcomes.

  15. Lipidomic mass spectrometry and its application in neuroscience

    Institute of Scientific and Technical Information of China (English)

    Mabel; Enriquez-Algeciras; Sanjoy; K; Bhattacharya

    2013-01-01

    Central and peripheral nervous systems are lipid rich tissues. Lipids, in the context of lipid-protein complexes, surround neurons and provide electrical insulation for transmission of signals allowing neurons to remain embedded within a conducting environment. Lipids play a key role in vesicle formation and fusion in synapses. They provide means of rapid signaling, cell motility and migration for astrocytes and other cell types that surround and play supporting roles neurons. Unlike many other signaling molecules, lipids are capable of multiple signaling events based on the different fragments generated from a single precursor during each event. Lipidomics, until recently suffered from two major disadvantages:(1) level of expertise required an overwhelming amount of chemical detail to correctly identify a vast number of different lipids which could be close in their chemical reactivity; and(2) high amount of purified compounds needed by analytical techniques to determine their structures. Advances in mass spectrometry have enabled overcoming these two limitations. Mass spectrometry offers a great degree of simplicity in identification and quantification of lipids directly extracted from complex biological mixtures. Mass spectrometers can be regarded to as mass analyzers. There are those that separate and analyze the product ion fragments in space(spatial) and those which separate product ions in time in the same space(temporal). Databases and standardized instrument parameters have further aided the capabilities of the spatial instruments while recent advances in bioinformatics have made the identification and quantification possible using temporal instruments.

  16. microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling

    Science.gov (United States)

    Comi, Troy J.; Neumann, Elizabeth K.; Do, Thanh D.; Sweedler, Jonathan V.

    2017-09-01

    Image-guided mass spectrometry (MS) profiling provides a facile framework for analyzing samples ranging from single cells to tissue sections. The fundamental workflow utilizes a whole-slide microscopy image to select targets of interest, determine their spatial locations, and subsequently perform MS analysis at those locations. Improving upon prior reported methodology, a software package was developed for working with microscopy images. microMS, for microscopy-guided mass spectrometry, allows the user to select and profile diverse samples using a variety of target patterns and mass analyzers. Written in Python, the program provides an intuitive graphical user interface to simplify image-guided MS for novice users. The class hierarchy of instrument interactions permits integration of new MS systems while retaining the feature-rich image analysis framework. microMS is a versatile platform for performing targeted profiling experiments using a series of mass spectrometers. The flexibility in mass analyzers greatly simplifies serial analyses of the same targets by different instruments. The current capabilities of microMS are presented, and its application for off-line analysis of single cells on three distinct instruments is demonstrated. The software has been made freely available for research purposes. [Figure not available: see fulltext.

  17. Mass spectrometry in life science research.

    Science.gov (United States)

    Lehr, Stefan; Markgraf, Daniel

    2016-12-01

    Investigating complex signatures of biomolecules by mass spectrometry approaches has become indispensable in molecular life science research. Nowadays, various mass spectrometry-based omics technologies are available to monitor qualitative and quantitative changes within hundreds or thousands of biological active components, including proteins/peptides, lipids and metabolites. These comprehensive investigations have the potential to decipher the pathophysiology of disease development at a molecular level and to monitor the individual response of pharmacological treatment or lifestyle intervention.

  18. Phylogenetic Analysis Using Protein Mass Spectrometry.

    Science.gov (United States)

    Ma, Shiyong; Downard, Kevin M; Wong, Jason W H

    2017-01-01

    Through advances in molecular biology, comparative analysis of DNA sequences is currently the cornerstone in the study of molecular evolution and phylogenetics. Nevertheless, protein mass spectrometry offers some unique opportunities to enable phylogenetic analyses in organisms where DNA may be difficult or costly to obtain. To date, the methods of phylogenetic analysis using protein mass spectrometry can be classified into three categories: (1) de novo protein sequencing followed by classical phylogenetic reconstruction, (2) direct phylogenetic reconstruction using proteolytic peptide mass maps, and (3) mapping of mass spectral data onto classical phylogenetic trees. In this chapter, we provide a brief description of the three methods and the protocol for each method along with relevant tools and algorithms.

  19. Detection of Metastatic Breast and Thyroid Cancer in Lymph Nodes by Desorption Electrospray Ionization Mass Spectrometry Imaging

    Science.gov (United States)

    Zhang, Jialing; Feider, Clara L.; Nagi, Chandandeep; Yu, Wendong; Carter, Stacey A.; Suliburk, James; Cao, Hop S. Tran; Eberlin, Livia S.

    2017-06-01

    Ambient ionization mass spectrometry has been widely applied to image lipids and metabolites in primary cancer tissues with the purpose of detecting and understanding metabolic changes associated with cancer development and progression. Here, we report the use of desorption electrospray ionization mass spectrometry (DESI-MS) to image metastatic breast and thyroid cancer in human lymph node tissues. Our results show clear alterations in lipid and metabolite distributions detected in the mass spectra profiles from 42 samples of metastatic thyroid tumors, metastatic breast tumors, and normal lymph node tissues. 2D DESI-MS ion images of selected molecular species allowed discrimination and visualization of specific histologic features within tissue sections, including regions of metastatic cancer, adjacent normal lymph node, and fibrosis or adipose tissues, which strongly correlated with pathologic findings. In thyroid cancer metastasis, increased relative abundances of ceramides and glycerophosphoinisitols were observed. In breast cancer metastasis, increased relative abundances of various fatty acids and specific glycerophospholipids were seen. Trends in the alterations in fatty acyl chain composition of lipid species were also observed through detailed mass spectra evaluation and chemical identification of molecular species. The results obtained demonstrate DESI-MSI as a potential clinical tool for the detection of breast and thyroid cancer metastasis in lymph nodes, although further validation is needed. [Figure not available: see fulltext.

  20. From whole-body sections down to cellular level, multiscale imaging of phospholipids by MALDI mass spectrometry.

    Science.gov (United States)

    Chaurand, Pierre; Cornett, Dale S; Angel, Peggi M; Caprioli, Richard M

    2011-02-01

    Significant progress in instrumentation and sample preparation approaches have recently expanded the potential of MALDI imaging mass spectrometry to the analysis of phospholipids and other endogenous metabolites naturally occurring in tissue specimens. Here we explore some of the requirements necessary for the successful analysis and imaging of phospholipids from thin tissue sections of various dimensions by MALDI time-of-flight mass spectrometry. We address methodology issues relative to the imaging of whole-body sections such as those cut from model laboratory animals, sections of intermediate dimensions typically prepared from individual organs, as well as the requirements for imaging areas of interests from these sections at a cellular scale spatial resolution. We also review existing limitations of MALDI imaging MS technology relative to compound identification. Finally, we conclude with a perspective on important issues relative to data exploitation and management that need to be solved to maximize biological understanding of the tissue specimen investigated.

  1. A history of mass spectrometry in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Downard, K.M.; de Laeter, J.R. [University of Sydney, Sydney, NSW (Australia)

    2005-09-01

    An interest in mass spectrometry in Australia can be traced back to the 1920s with an early correspondence with Francis Aston who first visited these shores a decade earlier. The region has a rich tradition in both the development of the field and its application, from early measurements of ionization and appearance potentials by Jim Morrison at the Council for Scientific and Industrial Research (CSIR) around 1950 to the design and construction of instrumentation including the first use of a triple quadrupole mass spectrometer for tandem mass spectrometry, the first suite of programs to simulate ion optics (SIMION), the development of early TOF/TOF instruments and orthogonal acceleration and the local design and construction of several generations of a sensitive high-resolution ion microprobe (SHRIMP) instrument. Mass spectrometry has been exploited in the study and characterization of the constituents of this nation's unique flora and fauna from Australian apples, honey, tea plant and eucalyptus oil, snake, spider, fish and frog venoms, coal, oil, sediments and shale, environmental studies of groundwater to geochronological dating of limestone and granite, other terrestrial and meteoritic rocks and coral from the Great Barrier Reef. This article traces the history of mass spectrometry in its many guises and applications in the island continent of Australia. It focuses on contributions of scientists who played a major role in the early establishment of mass spectrometry in Australia. In general, those who are presently active in the field, and whose histories are incomplete, have been mentioned at best only briefly despite their important contributions to the field.

  2. Quantification of Oxidized and Unsaturated Bile Alcohols in Sea Lamprey Tissues by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ke Li

    2016-08-01

    Full Text Available A sensitive and reliable method was developed and validated for the determination of unsaturated bile alcohols in sea lamprey tissues using liquid-liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS. The liver, kidney, and intestine samples were extracted with acetonitrile and defatted by n-hexane. Gradient UHPLC separation was performed using an Acquity BEH C18 column with a mobile phase of water and methanol containing 20 mM triethylamine. Multiple reaction monitoring modes of precursor-product ion transitions for each analyte was used. This method displayed good linearity, with correlation coefficients greater than 0.99, and was validated. Precision and accuracy (RSD % were in the range of 0.31%–5.28%, while mean recoveries were between 84.3%–96.3%. With this technique, sea lamprey tissue samples were analyzed for unsaturated bile alcohol analytes. This method is practical and particularly suitable for widespread putative pheromone residue analysis.

  3. Cs+ ion source for secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Bentz, B.L.; Weiss, H.; Liebl, H.

    1981-12-01

    Various types of cesium ionization sources currently used in secondary ion mass spectrometry are briefly reviewed, followed by a description of the design and performance of a novel, thermal surface ionization Cs + source developed in this laboratory. The source was evaluated for secondary ion mass spectrometry applications using the COALA ion microprobe mass analyzer. (orig.)

  4. Analysis of Nitro-aromatic and Nitramine Explosives by Atmospheric Pressure Chemical Ionization / High Performance Liquid Chromatography / Mass Spectrometry / Mass Spectrometry

    International Nuclear Information System (INIS)

    Hicks, B.J.; Han, W.; Robben, J.R.

    2009-01-01

    This procedure is capable of separating and quantifying twenty-nine high explosives and internal surrogates with a single injection. After the initial preparation step, the sample is introduced to the high performance liquid chromatograph for target separation, ionized by atmospheric pressure chemical ionization and the explosives of interest are isolated / quantified by mass spectrometry / mass spectrometry. Concentrations of the target explosives are measured relative to the response of both internal and external standard concentrations. A C-18 reverse phase high performance liquid chromatograph column is used for separation. Ionization is performed using both positive and negative atmospheric pressure chemical ionization resulting in a molecular ion with little fragmentation. These ions are isolated at the first quadrupole of the mass spectrometer, dissociated by collision with argon in the collision cell and the resulting daughter ions are isolated at the second quadrupole. These daughter ions then reach the detector where they are quantified. To date this procedure represents the most thorough high performance liquid chromatography / mass spectrometry / mass spectrometry explosives analysis available in the environmental chemistry market. (authors)

  5. [Latest development in mass spectrometry for clinical application].

    Science.gov (United States)

    Takino, Masahiko

    2013-09-01

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in special clinical chemistry laboratories. It significantly increases the analytic potential in clinical chemistry, especially in the field of low molecular weight biomarker analysis. This review summarizes the state of the art in mass spectrometry and related techniques for clinical application with a main focus on recent developments in LC-MS. Current trends in ionization techniques, automated online sample preparation techniques coupled with LC-MS, and ion mobility spectrometry are discussed. Emerging mass spectrometric approaches complementary to LC-MS are discussed as well.

  6. Mass spectrometry: a revolution in clinical microbiology?

    Science.gov (United States)

    Lavigne, Jean-Philippe; Espinal, Paula; Dunyach-Remy, Catherine; Messad, Nourredine; Pantel, Alix; Sotto, Albert

    2013-02-01

    Recently, different bacteriological laboratory interventions that decrease reporting time have been developed. These promising new broad-based techniques have merit, based on their ability to identify rapidly many bacteria, organisms difficult to grow or newly emerging strains, as well as their capacity to track disease transmission. The benefit of rapid reporting of identification and/or resistance of bacteria can greatly impact patient outcomes, with an improvement in the use of antibiotics, in the reduction of the emergence of multidrug resistant bacteria and in mortality rates. Different techniques revolve around mass spectrometry (MS) technology: matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), PCR combined with electrospray ionization-mass spectrometry (PCR/ESIMS), iPLEX MassArray system and other new evolutions combining different techniques. This report emphasizes the (r)evolution of these technologies in clinical microbiology.

  7. NICHD Biomedical Mass Spectrometry Core Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Biomedical Mass Spectrometry Core Facility was created under the auspices of the Office of the Scientific Director to provide high-end mass-spectrometric...

  8. Mass spectrometry for real-time quantitative breath analysis

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Španěl, Patrik; Herbig, J.; Beauchamp, J.

    2014-01-01

    Roč. 8, č. 2 (2014), 027101 ISSN 1752-7155 Institutional support: RVO:61388955 Keywords : breath analysis * proton transfer reaction mass spectrometry * selected ion flow tube mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.631, year: 2014

  9. High-efficiency thermal ionization sources for mass spectrometry

    International Nuclear Information System (INIS)

    Olivares, Jose A.

    1996-01-01

    A version of the thermal ionization cavity (TIC) source developed specifically for use in mass spectrometry is presented. The performance of this ion source has been characterized extensively both with the use of an isotope separator and a quadrupole mass spectrometer. A detailed description of the TIC source for mass spectrometry is given along with the performance characteristics observed

  10. High-throughput screening and quantitation of guanidino and ureido compounds using liquid chromatography-drift tube ion mobility spectrometry-mass spectrometry

    International Nuclear Information System (INIS)

    Fan, Ruo-Jing; Zhang, Fang; Chen, Xiu-Ping; Qi, Wan-Shu; Guan, Qing; Sun, Tuan-Qi; Guo, Yin-Long

    2017-01-01

    The present work focused on the high-throughput screening and quantitation of guanidino compounds (GCs) and ureido compounds (UCs) in human thyroid tissues. The strategy employed benzylic rearrangement stable isotope labeling (BRSIL) for the sample preparation and then detection using liquid chromatography-drift tube ion mobility spectrometry-quadrupole time of flight mass spectrometry (LC-DTIMS-QTOF MS). A short reversed-phase LC realized an on-line desalting and a measurement cycle of 5.0 min. DTIMS separation enhanced the better specificity and selectivity for the benzil labeled GCs and UCs. The elevated mass resolution of QTOF MS enabled measure of the characteristic ions at accurate mass in MS and tandem MS spectra. Collision cross section (CCS) from DTIMS and accurate mass from QTOF MS were used as two qualifiers for the profiling and identification of GCs and UCs. In addition, an integral abundance arising from 3-D ion features (retention time, drift time, m/z) was applied to quantify the GCs and UCs in human thyroid tissues. The quantitative validation indicated good linearity (coefficient values ≥ 0.9981), good precision (1.0%–12.3% for intra-day and 0.9%–7.8% for inter-day) and good accuracy (91%–109%). The results demonstrated that the developed BRSIL coupled with LC-DTIMS-QTOF MS can be a powerful analysis platform to investigate GCs and UCs in human thyroid tissues. - Highlights: • The separation power of DTIMS-MS enhanced peak capacity, spectral clarity, and specificity of benzil labeled GCs and UCs. • Short-column LC for on-line desalting increased the throughput with a measurement cycle of 5.0 min. • CCS and accurate mass as a pair of qualifiers were used for the profiling and identification of GCs and UCs. • An integral abundance arising from 3-D ion features (RT, DT, m/z) was used as a novel quantifier for quantitation. • The developed method was applied to screen and quantify the GCs and UCs in human thyroid tissues.

  11. High-throughput screening and quantitation of guanidino and ureido compounds using liquid chromatography-drift tube ion mobility spectrometry-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ruo-Jing [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China); Zhang, Fang, E-mail: fzhang@sioc.ac.cn [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China); Chen, Xiu-Ping; Qi, Wan-Shu [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China); Guan, Qing [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Sun, Tuan-Qi, E-mail: tuanqisun@163.com [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Guo, Yin-Long, E-mail: ylguo@sioc.ac.cn [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China)

    2017-04-08

    The present work focused on the high-throughput screening and quantitation of guanidino compounds (GCs) and ureido compounds (UCs) in human thyroid tissues. The strategy employed benzylic rearrangement stable isotope labeling (BRSIL) for the sample preparation and then detection using liquid chromatography-drift tube ion mobility spectrometry-quadrupole time of flight mass spectrometry (LC-DTIMS-QTOF MS). A short reversed-phase LC realized an on-line desalting and a measurement cycle of 5.0 min. DTIMS separation enhanced the better specificity and selectivity for the benzil labeled GCs and UCs. The elevated mass resolution of QTOF MS enabled measure of the characteristic ions at accurate mass in MS and tandem MS spectra. Collision cross section (CCS) from DTIMS and accurate mass from QTOF MS were used as two qualifiers for the profiling and identification of GCs and UCs. In addition, an integral abundance arising from 3-D ion features (retention time, drift time, m/z) was applied to quantify the GCs and UCs in human thyroid tissues. The quantitative validation indicated good linearity (coefficient values ≥ 0.9981), good precision (1.0%–12.3% for intra-day and 0.9%–7.8% for inter-day) and good accuracy (91%–109%). The results demonstrated that the developed BRSIL coupled with LC-DTIMS-QTOF MS can be a powerful analysis platform to investigate GCs and UCs in human thyroid tissues. - Highlights: • The separation power of DTIMS-MS enhanced peak capacity, spectral clarity, and specificity of benzil labeled GCs and UCs. • Short-column LC for on-line desalting increased the throughput with a measurement cycle of 5.0 min. • CCS and accurate mass as a pair of qualifiers were used for the profiling and identification of GCs and UCs. • An integral abundance arising from 3-D ion features (RT, DT, m/z) was used as a novel quantifier for quantitation. • The developed method was applied to screen and quantify the GCs and UCs in human thyroid tissues.

  12. Imaging mass spectrometry identifies prognostic ganglioside species in rodent intracranial transplants of glioma and medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Leonardo Ermini

    Full Text Available Matrix-assisted laser desorption ionization (MALDI imaging mass spectrometry (MALDI-MSI allows us to investigate the distribution of lipid molecules within tissues. We used MALDI-MSI to identify prognostic gangliosides in tissue sections of rat intracranial allografts of rat glioma and mouse intracranial xenografts of human medulloblastoma. In the healthy adult rodent brain, GM1 and GD1 were the main types of glycolipids. Both gangliosides were absent in both intracranial transplants. The ganglioside GM3 was not present in the healthy adult brain but was highly expressed in rat glioma allografts. In combination with tandem mass spectrometry GM3 (d18:1/C24:0 was identified as the most abundant ganglioside species in the glioma allotransplant. By contrast, mouse xenografts of human medulloblastoma were characterized by prominent expression of the ganglioside GM2 (d18:0/C18:0. Together, these data demonstrate that tissue-based MALDI-MSI of gangliosides is able to discriminate between different brain tumors and may be a useful clinical tool for their classification and grading.

  13. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  14. The allure of mass spectrometry: From an earlyday chemist's perspective.

    Science.gov (United States)

    Tőkés, László

    2017-07-01

    This reminiscing review article is an account of the author's fascination and involvements with mass spectrometry from the perspective of an organic chemist with an interest in natural product chemistry. It covers a period from 1961 through the mid 1990s as mass spectrometry evolved form a novelty technique to become a most widely used analytical technique. Following a brief synopsis of my pathway to mass spectrometry, my research efforts in this field are presented with a focus mainly on evolving principles and technologies which I had personal involvements with. To provide historical perspectives, discussions of these developments are accompanied by brief outlines of the relevant state-of-the-art, shedding light on the technical and conceptual challenges encountered during those early days in mass spectrometry. Examples are presented of my involvements with basic and applied research in mass spectrometry during graduate studies at Stanford University and close to three decade tenure in pharmaceutical research at Syntex Research. My basic research interests focused mainly on principles of electron ionization induced fragmentation mechanisms, with an emphasis on steroids and other model compounds. Extensive deuterium labeling evidence was used to determine the fragmentation mechanisms of the diagnostically significant ions in the spectra of numerous model compounds, uncovering examples of wide-ranging hydrogen transfers, skeletal rearrangements, methyl and phenyl migrations, stereoselective fragmentations and low and high energy fragmentation processes. Depiction of the industrial research phase of my career includes comments on the pivotal role mass spectrometry played on advancing modern pharmaceutical research. Examples are presented of involvements with instrumental developments and a few select cases of applied research, including studies of bile mechanisms in vertebrates, identification of bisphenol-A leaching from sterilized polycarbonate containers, high

  15. Statistical methods for mass spectrometry-based clinical proteomics

    NARCIS (Netherlands)

    Kakourou, A.

    2018-01-01

    The work presented in this thesis focuses on methods for the construction of diagnostic rules based on clinical mass spectrometry proteomic data. Mass spectrometry has become one of the key technologies for jointly measuring the expression of thousands of proteins in biological samples.

  16. Sampling and analyte enrichment strategies for ambient mass spectrometry.

    Science.gov (United States)

    Li, Xianjiang; Ma, Wen; Li, Hongmei; Ai, Wanpeng; Bai, Yu; Liu, Huwei

    2018-01-01

    Ambient mass spectrometry provides great convenience for fast screening, and has showed promising potential in analytical chemistry. However, its relatively low sensitivity seriously restricts its practical utility in trace compound analysis. In this review, we summarize the sampling and analyte enrichment strategies coupled with nine modes of representative ambient mass spectrometry (desorption electrospray ionization, paper vhspray ionization, wooden-tip spray ionization, probe electrospray ionization, coated blade spray ionization, direct analysis in real time, desorption corona beam ionization, dielectric barrier discharge ionization, and atmospheric-pressure solids analysis probe) that have dramatically increased the detection sensitivity. We believe that these advances will promote routine use of ambient mass spectrometry. Graphical abstract Scheme of sampling stretagies for ambient mass spectrometry.

  17. Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  18. A new classification method for MALDI imaging mass spectrometry data acquired on formalin-fixed paraffin-embedded tissue samples.

    Science.gov (United States)

    Boskamp, Tobias; Lachmund, Delf; Oetjen, Janina; Cordero Hernandez, Yovany; Trede, Dennis; Maass, Peter; Casadonte, Rita; Kriegsmann, Jörg; Warth, Arne; Dienemann, Hendrik; Weichert, Wilko; Kriegsmann, Mark

    2017-07-01

    Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) shows a high potential for applications in histopathological diagnosis, and in particular for supporting tumor typing and subtyping. The development of such applications requires the extraction of spectral fingerprints that are relevant for the given tissue and the identification of biomarkers associated with these spectral patterns. We propose a novel data analysis method based on the extraction of characteristic spectral patterns (CSPs) that allow automated generation of classification models for spectral data. Formalin-fixed paraffin embedded (FFPE) tissue samples from N=445 patients assembled on 12 tissue microarrays were analyzed. The method was applied to discriminate primary lung and pancreatic cancer, as well as adenocarcinoma and squamous cell carcinoma of the lung. A classification accuracy of 100% and 82.8%, resp., could be achieved on core level, assessed by cross-validation. The method outperformed the more conventional classification method based on the extraction of individual m/z values in the first application, while achieving a comparable accuracy in the second. LC-MS/MS peptide identification demonstrated that the spectral features present in selected CSPs correspond to peptides relevant for the respective classification. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Translational imaging mass spectrometry: From CERN to the surgeon

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    A comprehensive understanding of molecular patterns of health and disease is needed to pave the way for personalized medicine and tissue regeneration. New Mass Spectrometry based chemical microscopes that target biomedical tissue analysis in various diseases as well as other chemically complex surfaces have now firmly established themselves in translational research. In concert they elucidate the way in which local environments can influence molecular signaling pathways on various scales, from molecule to man. The integration of this pathway information in a surgical setting is imminent, but innovations that push the boundaries of the technology and its application are still needed. In particular, researchers investigate comprehensive and isolated biomolecular molecular patterns of health and disease. This is a key element needed to pave the way for personalized medicine and tissue regeneration. One barrier to predictive, personalized medicine is the lack of a comprehensive molecular understanding at the ti...

  20. Atom counting with accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Kutschera, Walter

    1995-01-01

    A brief review of the current status and some recent applications of accelerator mass spectrometry (AMS) are presented. Some connections to resonance ionization mass spectroscopy (RIS) as the alternate atom counting method are discussed

  1. Mass Spectrometry Instrumentation in Proteomics

    DEFF Research Database (Denmark)

    Sprenger, Richard Remko; Roepstorff, Peter

    2012-01-01

    Mass spectrometry has evolved into a crucial technology for the field of proteomics, enabling the comprehensive study of proteins in biological systems. Innovative developments have yielded flexible and versatile mass spectrometric tools, including quadrupole time-of-flight, linear ion trap......, Orbitrap and ion mobility instruments. Together they offer various and complementary capabilities in terms of ionization, sensitivity, speed, resolution, mass accuracy, dynamic range and methods of fragmentation. Mass spectrometers can acquire qualitative and quantitative information on a large scale...

  2. Guideline on Isotope Dilution Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Amy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-19

    Isotope dilution mass spectrometry is used to determine the concentration of an element of interest in a bulk sample. It is a destructive analysis technique that is applicable to a wide range of analytes and bulk sample types. With this method, a known amount of a rare isotope, or ‘spike’, of the element of interest is added to a known amount of sample. The element of interest is chemically purified from the bulk sample, the isotope ratio of the spiked sample is measured by mass spectrometry, and the concentration of the element of interest is calculated from this result. This method is widely used, although a mass spectrometer required for this analysis may be fairly expensive.

  3. MALDI Imaging Mass Spectrometry (MALDI-IMS―Application of Spatial Proteomics for Ovarian Cancer Classification and Diagnosis

    Directory of Open Access Journals (Sweden)

    Johan O. R. Gustafsson

    2011-01-01

    Full Text Available MALDI imaging mass spectrometry (MALDI-IMS allows acquisition of mass data for metabolites, lipids, peptides and proteins directly from tissue sections. IMS is typically performed either as a multiple spot profiling experiment to generate tissue specific mass profiles, or a high resolution imaging experiment where relative spatial abundance for potentially hundreds of analytes across virtually any tissue section can be measured. Crucially, imaging can be achieved without prior knowledge of tissue composition and without the use of antibodies. In effect MALDI-IMS allows generation of molecular data which complement and expand upon the information provided by histology including immuno-histochemistry, making its application valuable to both cancer biomarker research and diagnostics. The current state of MALDI-IMS, key biological applications to ovarian cancer research and practical considerations for analysis of peptides and proteins on ovarian tissue are presented in this review.

  4. Mass spectrometry for characterizing plant cell wall polysaccharides

    Directory of Open Access Journals (Sweden)

    Stefan eBauer

    2012-03-01

    Full Text Available Mass spectrometry is a selective and powerful technique to obtain identification and structural information on compounds present in complex mixtures. Since it requires only small sample amount it is an excellent tool for researchers interested in detecting changes in composition of complex carbohydrates of plants. This mini-review gives an overview of common mass spectrometry techniques applied to the analysis of plant cell wall carbohydrates. It presents examples in which mass spectrometry has been used to elucidate the structure of oligosaccharides derived from hemicelluloses and pectins and illustrates how information on sequence, linkages, branching and modifications are obtained from characteristic fragmentation patterns.

  5. Proteomic Mass Spectrometry Imaging for Skin Cancer Diagnosis.

    Science.gov (United States)

    Lazova, Rossitza; Seeley, Erin H

    2017-10-01

    Mass spectrometry imaging can be successfully used for skin cancer diagnosis, particularly for the diagnosis of challenging melanocytic lesions. This method analyzes proteins within benign and malignant melanocytic tumor cells and, based on their differences, which constitute a unique molecular signature of 5 to 20 proteins, can render a diagnosis of benign nevus versus malignant melanoma. Mass spectrometry imaging may assist in the differentiation between metastases and nevi as well as between proliferative nodules in nevi and melanoma arising in a nevus. In the difficult area of atypical Spitzoid neoplasms, mass spectrometry diagnosis can predict clinical outcome better than histopathology. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Mass Spectrometry in the Home and Garden

    Science.gov (United States)

    Pulliam, Christopher J.; Bain, Ryan M.; Wiley, Joshua S.; Ouyang, Zheng; Cooks, R. Graham

    2015-02-01

    Identification of active components in a variety of chemical products used directly by consumers is described at both trace and bulk levels using mass spectrometry. The combination of external ambient ionization with a portable mass spectrometer capable of tandem mass spectrometry provides high chemical specificity and sensitivity as well as allowing on-site monitoring. These experiments were done using a custom-built portable ion trap mass spectrometer in combination with the ambient ionization methods of paper spray, leaf spray, and low temperature plasma ionization. Bactericides, garden chemicals, air fresheners, and other products were examined. Herbicide applied to suburban lawns was detected in situ on single leaves 5 d after application.

  7. Determination of steroid hormones in fish tissues by microwave-assisted extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Guedes-Alonso, Rayco; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan

    2017-12-15

    Steroid hormones produce adverse effects on biota as well as bioaccumulation in fish and seafood, making it necessary to develop methodologies to evaluate these compounds in samples related to the food chain. This work presents an analytical method for evaluating 15 steroid hormones in fish tissue. It is based on microwave-assisted extraction and solid-phase extraction coupled to ultra-high-performance liquid chromatography tandem mass spectrometry (MAE-SPE-UHPLC-MS/MS). The proposed method shows appropriate detection limits (0.14-49.0ngg -1 ), recoveries in the range of 50% and good repeatability. After optimization, the method was applied to different tissues from two small fishes of the Canary Islands that constitute an important level of the food web (Boops boops and Sphoeroides marmoratus) and were exposed to the outfall of the Las Palmas de Gran Canaria wastewater treatment plant. The concentrations of eight detected compounds ranged from below the quantification limits to 3.95μgg -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Quantitative Thin-Layer Chromatography/Mass Spectrometry Analysis of Caffeine Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J [ORNL; Deibel, Michael A. [Earlham College; Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  9. High-accuracy mass spectrometry for fundamental studies.

    Science.gov (United States)

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  10. Proceedings of the twelfth ISMAS triennial international conference on mass spectrometry

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Jaison, P.G.; Telmore, V.M.

    2013-03-01

    These Workshops are aimed at introducing the subject of Mass Spectrometry to novices, updating the Mass Spectrometrists with the latest developments in the field, exposing the participants to innumerable applications of Mass Spectrometry and providing a common forum for discussing the day-to-day problems when working with a Mass Spectrometer. The programme of these Workshops consists of Tutorials, Panel Discussions, Research Scholars' Presentations, Poster Presentations and Invited Lectures. The lectures include fundamentals of Mass Spectrometry, qualitative and quantitative aspects and data interpretation, maintenance of Mass Spectrometers, selection of a mass spectrometer, applications in various branches of science as well as recent advances in Mass Spectrometry. Papers relevant to INIS are indexed separately

  11. Miniaturization and Mass Spectrometry

    NARCIS (Netherlands)

    le Gac, S.; le Gac, Severine; van den Berg, Albert; van den Berg, A.; Unknown, [Unknown

    2009-01-01

    With this book we want to illustrate how two quickly growing fields of instrumentation and technology, both applied to life sciences, mass spectrometry and microfluidics (or microfabrication) naturally came to meet at the end of the last century and how this marriage impacts on several types of

  12. New Ionization and Detection Technologies for Mass Spectrometry Imaging. From Small Molecules to Intact Proteins

    NARCIS (Netherlands)

    Kiss, A.

    2014-01-01

    There is a constantly growing interest in biomedical research to visualize changes in the location of various biomolecules in tissue sections as a result of complex diseases. Mass spectrometry imaging is one of the techniques that enable the mapping of molecules on a 2D surface. However, the

  13. Recent applications of gas chromatography with high-resolution mass spectrometry.

    Science.gov (United States)

    Špánik, Ivan; Machyňáková, Andrea

    2018-01-01

    Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development and validation of a gas chromatography/mass spectrometry procedure for confirmation of para-toluenesulfonamide in edible fish fillet tissue.

    Science.gov (United States)

    Idowu, Olutosin R; Kijak, Philip J; Meinertz, Jeffery R; Schmidt, Larry J

    2004-01-01

    Chloramine-T is a disinfectant being developed as a treatment for bacterial gill disease in cultured fish. As part of the drug approval process, a method is required for the confirmation of chloramine-T residues in edible fish tissue. The marker residue that will be used to determine the depletion of chloramine-T residues from the edible tissue of treated fish is para-toluenesulfonamide (p-TSA), a metabolite of chloramine-T. The development and validation of a procedure for the confirmation of p-TSA is described. Homogenized fish tissue is dried by mixing with anhydrous sodium sulfate, and the mixture is extracted with methylene chloride. The extract is passed through a silica gel solid-phase extraction column, from which p-TSA is subsequently eluted with acetonitrile. The acetonitrile extract is evaporated, and the oily residue is dissolved in hexane. The hexane solution is shaken with fresh acetonitrile. The acetonitrile solution is evaporated and the residue is redissolved in dilute potassium hydroxide solution. The aqueous solution is extracted with methylene chloride to further remove more of the fat co-extractive. The aqueous solution is reacted with pentafluorobenzyl bromide in presence of tetrabutylammonium hydrogensulfate. The resulting di-(pentafluorobenzyl) derivative of p-TSA is analyzed by gas chromatography/mass spectrometry. This method permits the confirmation of p-TSA in edible fish tissue at 20 ppb.

  15. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, Tanja C. W.; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J.; Boschker, Henricus T. S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  16. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of d13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  17. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    Rationale: We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence,

  18. MPAI (mass probes aided ionization) method for total analysis of biomolecules by mass spectrometry.

    Science.gov (United States)

    Honda, Aki; Hayashi, Shinichiro; Hifumi, Hiroki; Honma, Yuya; Tanji, Noriyuki; Iwasawa, Naoko; Suzuki, Yoshio; Suzuki, Koji

    2007-01-01

    We have designed and synthesized various mass probes, which enable us to effectively ionize various molecules to be detected with mass spectrometry. We call the ionization method using mass probes the "MPAI (mass probes aided ionization)" method. We aim at the sensitive detection of various biological molecules, and also the detection of bio-molecules by a single mass spectrometry serially without changing the mechanical settings. Here, we review mass probes for small molecules with various functional groups and mass probes for proteins. Further, we introduce newly developed mass probes for proteins for highly sensitive detection.

  19. Analysis of mass spectrometry data in proteomics

    DEFF Research Database (Denmark)

    Matthiesen, Rune; Jensen, Ole N

    2008-01-01

    The systematic study of proteins and protein networks, that is, proteomics, calls for qualitative and quantitative analysis of proteins and peptides. Mass spectrometry (MS) is a key analytical technology in current proteomics and modern mass spectrometers generate large amounts of high-quality data...... that in turn allow protein identification, annotation of secondary modifications, and determination of the absolute or relative abundance of individual proteins. Advances in mass spectrometry-driven proteomics rely on robust bioinformatics tools that enable large-scale data analysis. This chapter describes...... some of the basic concepts and current approaches to the analysis of MS and MS/MS data in proteomics....

  20. Comparison of drug distribution images from whole-body thin tissue sections obtained using desorption electrospray ionization tandem mass spectrometry and autoradiography.

    Science.gov (United States)

    Kertesz, Vilmos; Van Berkel, Gary J; Vavrek, Marissa; Koeplinger, Kenneth A; Schneider, Bradley B; Covey, Thomas R

    2008-07-01

    Desorption electrospray ionization tandem mass spectrometry (DESI-MS/MS) and whole-body autoradiography (WBA) were used for chemical imaging of whole-body thin tissue sections of mice intravenously dosed with propranolol (7.5 mg/kg). DESI-MS/MS imaging utilized selected reaction monitoring detection performed on an AB/MDS SCIEX 4000 QTRAP mass spectrometer equipped with a prototype extended length particle discriminator interface. Propranolol images of the tissue sections using DESI-MS/MS were obtained at surface scan rates of 0.1, 0.5, 2, and 7 mm/s. Although signal decreased with increasing scan rate, useful whole-body images for propranolol were obtained from the tissues even at 7 mm/s, which required just 79 min of analysis time. Attempts to detect and image the distribution of the known propranolol metabolites were unsuccessful. Regions of the tissue sections showing the most radioactivity from WBA sections were excised and analyzed by high-performance liquid chromatography (HPLC) with radiochemical detection to determine relative levels of propranolol and metabolites present. Comparison of the DESI-MS/MS signal for propranolol and the radioactivity attributed to propranolol from WBA sections indicated nominal agreement between the two techniques for the amount of propranolol in the brain, lung, and liver. Data from the kidney showed an unexplained disparity between the two techniques. The results of this study show the feasibility of using DESI-MS/MS to obtain useful chemical images of a drug in whole-body thin tissue sections following drug administration at a pharmacologically relevant level. Further optimization to improve sensitivity and enable detection of the drug metabolites will be among the requirements necessary to move DESI-MS/MS chemical imaging forward as a practical tool in drug discovery.

  1. Accelerator mass spectrometry-current status in techniques and applications

    International Nuclear Information System (INIS)

    Imamura, Mineo; Nagai, Hisao; Kobayashi, Koichi.

    1991-01-01

    Accelerator mass spectrometry (AMS) is the mass spectrometry by incorporating an accelerator. After samples are ionized, they are accelerated to a certain energy, and mass, energy, nuclear charge (atomic number) are distinguished, and ion counting is made one by one with a heavy ion detector. For the measurement of long half-life radioisotopes, mass spectrometry has been used because of the high sensitivity, but in low energy mass spectrometry, there are the difficulties due to the mixing of the molecular ions having nearly same mass and the existence of isobars. One of the methods solving these difficulties is an accelerator which enables background-free measurement. The progress of AMS is briefly described, and at present, it is carried out in about 30 facilities in the world. In AMS, the analysis is carried out in the order of the ionization of samples, the acceleration of beam, the electron stripping with a thin film, the sorting of the momentum and energy of beam and the identification of particles. The efficiency, sensitivity and accuracy of detection and the application are reported. (K.I.)

  2. [Advances in mass spectrometry-based approaches for neuropeptide analysis].

    Science.gov (United States)

    Ji, Qianyue; Ma, Min; Peng, Xin; Jia, Chenxi; Ji, Qianyue

    2017-07-25

    Neuropeptides are an important class of endogenous bioactive substances involved in the function of the nervous system, and connect the brain and other neural and peripheral organs. Mass spectrometry-based neuropeptidomics are designed to study neuropeptides in a large-scale manner and obtain important molecular information to further understand the mechanism of nervous system regulation and the pathogenesis of neurological diseases. This review summarizes the basic strategies for the study of neuropeptides using mass spectrometry, including sample preparation and processing, qualitative and quantitative methods, and mass spectrometry imagining.

  3. [Determination of hydroxyproline in liver tissue by hydrophilic interaction chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry].

    Science.gov (United States)

    Liu, Wei; Qi, Shenglan; Xu, Ying; Xiao, Zhun; Fu, Yadong; Chen, Jiamei; Yang, Tao; Liu, Ping

    2017-12-08

    A method for the determination of hydroxyproline (Hyp) in liver tissue of mice by hydrophilic interaction chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry (HILIC-HRMS) was developed. The liver tissue samples of normal mice and liver fibrosis mice induced by carbon tetrachloride were hydrolyzed by concentrated hydrochloric acid. After filtrated and diluted by solution, the diluent was separated on an Hypersil GOLD HILIC column (100 mm×2.1 mm, 3 μm). Water-acetonitrile (28:72, v/v)were used as the mobile phases with isocratic elution. Finally, the target analytes were detected in positive model by HRMS equipped with an electrospray ionization source. The linear range of hydroxyproline was from 0.78 to 100.00 μg/L with the correlation coefficient ( R 2 ) of 0.9983. The limit of quantification was 0.78 μg/L. By detecting the spiked samples, the recoveries were in the range of 97.4%-100.9% with the relative standard deviations (RSDs) between 1.4% and 2.0%. In addition, comparison of the measurement results by this method and the chloramine T method was proceeded. It was found that the linear correlation between the two methods was very good, and the Pearson correlation coefficient was 0.927. And this method had simpler operation procedure and higher accuracy than chloramine T method. This method can be used for the quick determination of hydroxyproline in liver tissue samples.

  4. Determination of fluoroquinolones in fish tissues, biological fluids, and environmental waters by liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Ziarrusta, Haizea; Val, Nahia; Dominguez, Haizea; Mijangos, Leire; Prieto, Ailette; Usobiaga, Aresatz; Etxebarria, Nestor; Zuloaga, Olatz; Olivares, Maitane

    2017-11-01

    This work describes the optimization, validation, and application in real samples of accurate and precise analytical methods to determine ten fluoroquinolones (FQs) (norfloxacin, enoxacin, pefloxacin, ofloxacin, levofloxacin, ciprofloxacin, danofloxacin, lomefloxacin, enrofloxacin, and sparfloxacin) in different environmental matrices, such as water (estuarine, seawater, and wastewater treatment plant effluent), fish tissues (muscle and liver), and fish biofluids (plasma and bile). The analysis step performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was fully optimized to improve the separation and detection steps. The extraction of analytes from fish tissues was accomplished using focused ultrasound solid-liquid extraction using methanol/acetic acid (95:5 v/v) as extractant. The preconcentration and clean-up steps were optimized in terms of extraction efficiency and cleanliness and the best strategy for each matrix was selected: (i) Oasis HLB for seawater and muscle, (ii) liquid-liquid extraction combined with Oasis HLB for the lipid-rich liver, (iii) the combination of Evolute-WAX and Oasis HLB for estuarine water and wastewater treatment plant effluent, and (iv) molecular imprinted polymers for biofluids. The methods afforded satisfactory apparent recoveries (80-126%) and repeatability (RSD < 15%), except for sparfloxacin, which showed a lack of correction with the available isotopically labeled surrogates ([ 2 H 8 ]-ciprofloxacin and [ 2 H 5 ]-enrofloxacin). Ciprofloxacin, norfloxacin, and ofloxacin were detected in both water and fish liver samples from the Biscay Coast at concentrations up to 278 ng/L and 4 ng/g, respectively. To the best of our knowledge, this work is one of the few analyzing up to ten FQs and in so many fish tissues and biofluids. Graphical abstract Determination of fluoroquinolones in different environmental matrices, such as water (estuarine, seawater, and wastewater treatment plant effluent), fish tissues (muscle

  5. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  6. Review of application of mass spectrometry for analyses of anterior eye proteome

    Institute of Scientific and Technical Information of China (English)

    Sherif; Elsobky; Ashley; M; Crane; Michael; Margolis; Teresia; A; Carreon; Sanjoy; K; Bhattacharya

    2014-01-01

    Proteins have important functional roles in the body, which can be altered in disease states. The eye is a complex organ rich in proteins; in particular, the anterior eye is very sophisticated in function and is most commonly involved in ophthalmic diseases. Proteomics, the large scale study of proteins, has greatly impacted our knowledge and understanding of gene function in the post-genomic period. The most significant breakthrough in proteomics has been mass spectrometric identification of proteins, which extends analysis far beyond the mere display of proteins that classical techniques provide. Mass spectrometry functions as a "mass analyzer" which simplifies the identification and quantification of proteins extracted from biological tissue. Mass spectrometric analysis of the anterior eye proteome provides a differential display for protein comparison of normal and diseased tissue. In this article wepresent the key proteomic findings in the recent literature related to the cornea, aqueous humor, trabecular meshwork, iris, ciliary body and lens. Through this we identified unique proteins specific to diseases related to the anterior eye.

  7. Imaging Mass Spectrometry in Neuroscience

    Science.gov (United States)

    2013-01-01

    Imaging mass spectrometry is an emerging technique of great potential for investigating the chemical architecture in biological matrices. Although the potential for studying neurobiological systems is evident, the relevance of the technique for application in neuroscience is still in its infancy. In the present Review, a principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro. The potential of the various approaches is discussed based on both fundamental and biomedical neuroscience research. This Review aims to serve as a general guide to familiarize the neuroscience community and other biomedical researchers with the technique, highlighting its great potential and suitability for comprehensive and specific chemical imaging. PMID:23530951

  8. Quantification of steroid conjugates using fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Gaskell, S.J.

    1990-01-01

    Fast atom bombardment/mass spectrometry or liquid secondary ion mass spectrometry provides the capability for direct analysis of steroid conjugates (sulfates, glucuronides) without prior hydrolysis or derivatization. During the analysis of biologic extracts, limitations on the sensitivity of detection arise from the presence of co-extracted material which may suppress or obscure the analyte signal. A procedure is described for the quantitative determination of dehydroepiandrosterone sulfate in serum which achieved selective isolation of the analyte using immunoadsorption extraction and highly specific detection using tandem mass spectrometry. A stable isotope-labeled analog [( 2H2]dehydroepiandrosterone sulfate) was used as internal standard. Fast atom bombardment of dehydroepiandrosterone sulfate yielded abundant [M-H]- ions that fragmented following collisional activation to give HSO4-; m/z 97. During fast atom bombardment/tandem mass spectrometry of serum extracts, a scan of precursor ions fragmenting to give m/z 97 detected dehydroepiandrosterone sulfate and the [2H2]-labeled analog with a selectivity markedly superior to that observed using conventional mass spectrometry detection. Satisfactory agreement was observed between quantitative data obtained in this way and data obtained by gas chromatography/mass spectrometry of the heptafluorobutyrates of dehydroepiandrosterone sulfate and [2H2]dehydroepiandrosterone sulfate obtained by direct derivatization. 21 refs

  9. Quantitative mass spectrometry: an overview

    Science.gov (United States)

    Urban, Pawel L.

    2016-10-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.

  10. Demonstration of conjugated dopamine in monkey CSF by gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Elchisak, M A; Powers, K H; Ebert, M H

    1982-09-01

    A method for measuring unconjugated and conjugated dopamine in body tissues and fluids is described. Conjugated dopamine was hydrolyzed in acid to unconjugated dopamine, separated from the sample matrix by alumina chromatography, and assayed by gas chromatography-mass spectrometry. Conjugated dopamine was detected in greater concentrations than unconjugated dopamine in CSF taken from lateral ventricle or thecal sac of the Rhesus monkey. Haloperidol administration did not increase the levels of conjugated dopamine in lumbar CSF.

  11. Structural analyses of sucrose laurate regioisomers by mass spectrometry techniques

    DEFF Research Database (Denmark)

    Lie, Aleksander; Stensballe, Allan; Pedersen, Lars Haastrup

    2015-01-01

    6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore the physic......6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore.......8, respectively, and Orbitrap HRMS confirmed the mass of [M+Na]+ (m/z 547.2712). ESI-MS/MS on the precursor ion [M+Na]+ resulted in product ion mass spectra showing two high-intensity signals for each sample. 6-O-Lauroyl sucrose produced signals located at m/z 547.27 and m/z 385.21, corresponding to the 6-O...

  12. Absorption Mode FT-ICR Mass Spectrometry Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco; O' Connor, Peter B.; Heeren, Ronald M.

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  13. Quantitating subcellular metabolism with multi-isotope imaging mass spectrometry

    Science.gov (United States)

    Steinhauser, Matthew L.; Bailey, Andrew; Senyo, Samuel E.; Guillermier, Christelle; Perlstein, Todd S.; Gould, Alex P.; Lee, Richard T.; Lechene, Claude P.

    2011-01-01

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter1,2 but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with sub-micron resolution3,4. Here we apply MIMS to diverse organisms, including Drosophila, mice, and humans. We test the “immortal strand hypothesis,” which predicts that during asymmetric stem cell division chromosomes containing older template DNA are segregated to the daughter destined to remain a stem cell, thus insuring lifetime genetic stability. After labeling mice with 15N-thymidine from gestation through post-natal week 8, we find no 15N label retention by dividing small intestinal crypt cells after 4wk chase. In adult mice administered 15N-thymidine pulse-chase, we find that proliferating crypt cells dilute label consistent with random strand segregation. We demonstrate the broad utility of MIMS with proof-of-principle studies of lipid turnover in Drosophila and translation to the human hematopoietic system. These studies show that MIMS provides high-resolution quantitation of stable isotope labels that cannot be obtained using other techniques and that is broadly applicable to biological and medical research. PMID:22246326

  14. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    Science.gov (United States)

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  15. Determination of the neuropharmacological drug nodakenin in rat plasma and brain tissues by liquid chromatography tandem mass spectrometry: Application to pharmacokinetic studies.

    Science.gov (United States)

    Song, Yingshi; Yan, Huiyu; Xu, Jingbo; Ma, Hongxi

    2017-09-01

    A rapid and sensitive liquid chromatography tandem mass spectrometry detection using selected reaction monitoring in positive ionization mode was developed and validated for the quantification of nodakenin in rat plasma and brain. Pareruptorin A was used as internal standard. A single step liquid-liquid extraction was used for plasma and brain sample preparation. The method was validated with respect to selectivity, precision, accuracy, linearity, limit of quantification, recovery, matrix effect and stability. Lower limit of quantification of nodakenin was 2.0 ng/mL in plasma and brain tissue homogenates. Linear calibration curves were obtained over concentration ranges of 2.0-1000 ng/mL in plasma and brain tissue homogenates for nodakenin. Intra-day and inter-day precisions (relative standard deviation, RSD) were <15% in both biological media. This assay was successfully applied to plasma and brain pharmacokinetic studies of nodakenin in rats after intravenous administration. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Boundaries of mass resolution in native mass spectrometry

    NARCIS (Netherlands)

    Lössl, Philip|info:eu-repo/dai/nl/371559693; Snijder, Joost|info:eu-repo/dai/nl/338018328; Heck, Albert J R|info:eu-repo/dai/nl/105189332

    Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)-protein interactions, to nanomachineries such as the proteasome and ribosome, to even

  17. OBT measurement of vegetation by mass spectrometry and radiometry

    International Nuclear Information System (INIS)

    Tamari, T.; Kakiuchi, H.; Momoshima, N.; Sugihara, S.; Baglan, N.; Uda, T.

    2011-01-01

    We carried out OBT (organically bound tritium) measurement by two different methods those are radiometry and mass spectrometry and compared the applicability of these methods for environmental tritium analysis. The dried grass sample was used for the experiments. To eliminate the exchangeable OBT, the sample was washed with tritium free water before analysis. Three times washing reduced the tritium activity in the labile sites below the detectable level. In radiometry the sample was combusted to convert the OBT as well as other hydrogen isotopes to. water and tritium activity in the water was measured by liquid scintillation counting (LSC). In mass spectrometry, the sample was kept in a glass container and 3 He produced by tritium decay was measured by mass spectrometry. The results were in good agreement suggesting applicability of these methods for environmental tritium analysis. The mass spectrometry is more suitable for environmental tritium research because of a lower detection limit than that of the LSC. (authors)

  18. Mass Spectrometry of Halopyrazolium Salts

    DEFF Research Database (Denmark)

    Larsen, Elfinn; Egsgaard, Helge; Pande, U. C.

    1983-01-01

    Eleven halogen substituted 1-methyl-2-phenylpyrazolium bromides or chlorides were investigated by field desorption, field ionization, and electron impact mass spectrometry. Dealkylation was found to be the predominant thermal decomposition. An exchange between covalent and ionic halogen prior...

  19. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  20. Use of mass spectrometry for study of coordination compounds

    International Nuclear Information System (INIS)

    Gehrbehlehu, N.V.; Indrichan, K.M.

    1981-01-01

    A review on mass-spectrometry of coordination compounds including the works published up to 1979 inclusive is provided. Mainly the products of metals with bi- and tetradentate ligands are considered using the method. Mo and Be carboxylates for which molecular ions lines are found in mass-spectra are studied. The study of mass-spectra for VO chelates with thiosemicarbazone of salicyl aldehyde is carried out. Application of the mass-spectrometry method permits to establish the mass of coordination compounds, the structure of complexes, dentate structure and the way of ligand coordination, the bond strength [ru

  1. New experiments in organic, fast-atom-bomdardment, and secondary-ion mass spectrometry

    International Nuclear Information System (INIS)

    DiDonato, G.C.

    1987-01-01

    The goal of research presented in this dissertation is the creative use of new ionization and instrumental techniques in mass spectrometry. This goal manifests itself in three areas of mass spectrometry. In the first portion, modern, state-of-the-art instrumentation and new experiments were used to re-examine the mass spectra of transition-metal acetates and acetylacetonates. High resolution, chemical ionization, negative chemical ionization, and extended-mass-range mass spectrometry uncovered a wealth of new gas-phase ionic species. Energy-resolved mass spectrometry/mass spectrometry was applied to the characterization of molecular and fragment ion first-row transition-metal acetylacetonates, and comprises the second portion of the thesis. Studies in fast-atom-bombardment mass spectrometry are the subject of the third portion of the dissertation. Since fast-atom bombardment samples a liquid matrix, absolute and relative abundances of sputtered secondary ions are influenced by solution chemistry. The design and construction of an imaging secondary-ion mass spectrometer is the subject of the final portion of the thesis. This instrument provides for direct mass-spectrometric analysis of thin-layer and paper chromatograms and electrophoretograms

  2. Rapid analysis of aminoglycoside antibiotics in bovine tissues using disposable pipette extraction and ultrahigh performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Lehotay, Steven J; Mastovska, Katerina; Lightfield, Alan R; Nuñez, Alberto; Dutko, Terry; Ng, Chilton; Bluhm, Louis

    2013-10-25

    A high-throughput qualitative screening and identification method for 9 aminoglycosides of regulatory interest has been developed, validated, and implemented for bovine kidney, liver, and muscle tissues. The method involves extraction at previously validated conditions, cleanup using disposable pipette extraction, and analysis by a 3 min ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. The drug analytes include neomycin, streptomycin, dihydrosptreptomycin, and spectinomycin, which have residue tolerances in bovine in the US, and kanamicin, gentamicin, apramycin, amikacin, and hygromycin, which do not have US tolerances established in bovine tissues. Tobramycin was used as an internal standard. An additional drug, paromomycin also was validated in the method, but it was dropped during implementation due to conversion of neomycin into paromomycin. Proposed fragmentation patterns for the monitored ions of each analyte were elucidated with the aid of high resolution MS using a quadrupole-time-of-flight instrument. Recoveries from spiking experiments at regulatory levels of concern showed that all analytes averaged 70-120% recoveries in all tissues, except hygromycin averaged 61% recovery. Lowest calibrated levels were as low as 0.005 μg/g in matrix extracts, which approximately corresponded to the limit of detection for screening purposes. Drug identifications at levels advantages compared to the previous microbial inhibition screening assay, especially for distinguishing individual drugs from a mixture and improving identification of gentamicin in tissue samples. Published by Elsevier B.V.

  3. On the Importance of Mathematical Methods for Analysis of MALDI-Imaging Mass Spectrometry Data

    Directory of Open Access Journals (Sweden)

    Trede Dennis

    2012-03-01

    Full Text Available In the last decade, matrix-assisted laser desorption/ionization (MALDI imaging mass spectrometry (IMS, also called as MALDI-imaging, has proven its potential in proteomics and was successfully applied to various types of biomedical problems, in particular to histopathological label-free analysis of tissue sections. In histopathology, MALDI-imaging is used as a general analytic tool revealing the functional proteomic structure of tissue sections, and as a discovery tool for detecting new biomarkers discriminating a region annotated by an experienced histologist, in particular, for cancer studies.

  4. Identification and localization of trauma-related biomarkers using matrix assisted laser desorption/ionization imaging mass spectrometry

    Science.gov (United States)

    Jones, Kirstin; Reilly, Matthew A.; Glickman, Randolph D.

    2017-02-01

    Current treatments for ocular and optic nerve trauma are largely ineffective and may have adverse side effects; therefore, new approaches are needed to understand trauma mechanisms. Identification of trauma-related biomarkers may yield insights into the molecular aspects of tissue trauma that can contribute to the development of better diagnostics and treatments. The conventional approach for protein biomarker measurement largely relies on immunoaffinity methods that typically can only be applied to analytes for which antibodies or other targeting means are available. Matrix assisted laser-assisted desorption/ionization imaging mass spectrometry (MALDI-IMS) is a specialized application of mass spectrometry that not only is well suited to the discovery of novel or unanticipated biomarkers, but also provides information about the spatial localization of biomarkers in tissue. We have been using MALDI-IMS to find traumarelated protein biomarkers in retina and optic nerve tissue from animal models subjected to ocular injury produced by either blast overpressure or mechanical torsion. Work to date by our group, using MALDI-IMS, found that the pattern of protein expression is modified in the injured ocular tissue as soon as 24 hr post-injury, compared to controls. Specific proteins may be up- or down-regulated by trauma, suggesting different tissue responses to a given injury. Ongoing work is directed at identifying the proteins affected and mapping their expression in the ocular tissue, anticipating that systematic analysis can be used to identify targets for prospective therapies for ocular trauma.

  5. Applications of mass spectrometry in the trace element analysis of biological materials

    International Nuclear Information System (INIS)

    Moens, L.

    1997-01-01

    The importance of mass spectrometry for the analysis of biological material is illustrated by reviewing the different mass spectrometric methods applied and describing some typical applications published recently. Though atomic absorption spectrometry is used in the majority of analyses of biological material, most mass spectrometric methods have been used to some extent for trace element determination in biomedical research. The relative importance of the different methods is estimated by reviewing recent research papers. It is striking that especially inductively coupled plasma mass spectrometry is increasingly being applied, partly because the method can be used on-line after chromatographic separation, in speciation studies. Mass spectrometric methods prove to offer unique possibilities in stable isotope tracer studies and for this purpose also experimentally demanding methods such as thermal ionization mass spectrometry and accelerator mass spectrometry are frequently used. (orig.)

  6. Indigenous instrumentation for mass spectrometry: Part II - development of plasma source mass spectrometers. PD-5-3

    International Nuclear Information System (INIS)

    Nataraju, V.

    2007-01-01

    The growing demands from analytical community, for a precise isotope ratio and ultra trace concentration measurements, has lead to significant improvement in mass spectrometer instrumentation development with respect to sensitivity, detection limits, precision and accuracy. Among the many analytical techniques available, plasma source mass spectrometers like Inductively Coupled Plasma Mass Spectrometry (ICPMS), multi collector (MC) ICPMS and Glow Discharge Mass Spectrometry (GDMS), have matured into reliable tools for the above applications. Where as ICPMS is by far the most successful method for aqueous solutions, GDMS is being applied for bulk and impurity analysis of conducting as well non-conducting solids. VPID, BARC has been developing mass spectrometers for different inorganic applications of DAE users. Over the years expertise has been developed in all the aspects of mass spectrometry instrumentation. Part 1 of this indigenous instrumentation on mass spectrometry gives details of magnetic sector instruments with either EI or TI source for isotopic ratio analysis. The present paper is a continuation of that on plasma source and quadrupole mass spectrometers. This paper covers i) ICP-QMS, ii) MC-ICPMS, iii) GDMS and iv) QMS

  7. A Review of the Emerging Field of Underwater Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Emily Chua

    2016-11-01

    Full Text Available Mass spectrometers are versatile sensor systems, owing to their high sensitivity and ability to simultaneously measure multiple chemical species. Over the last two decades, traditional laboratory-based membrane inlet mass spectrometers have been adapted for underwater use. Underwater mass spectrometry has drastically improved our capability to monitor a broad suite of gaseous compounds (e.g., dissolved atmospheric gases, light hydrocarbons, and volatile organic compounds in the aquatic environment. Here we provide an overview of the progress made in the field of underwater mass spectrometry since its inception in the 1990s to the present. In particular, we discuss the approaches undertaken by various research groups in developing in situ mass spectrometers. We also provide examples to illustrate how underwater mass spectrometers have been used in the field. Finally, we present future trends in the field of in situ mass spectrometry. Most of these efforts are aimed at improving the quality and spatial and temporal scales of chemical measurements in the ocean. By providing up-to-date information on underwater mass spectrometry, this review offers guidance for researchers interested in adapting this technology as well as goals for future progress in the field.

  8. High-resolution, three-step resonance ionization mass spectrometry of gadolinium

    International Nuclear Information System (INIS)

    Blaum, K.; Wendt, K.; Bushaw, B.A.; Noertershaeuser, W.

    2001-01-01

    High-resolution resonance ionization mass spectrometry has been used to measure triple-resonance autoionization (AI) spectra of gadolinium. Al resonances as narrow as 10 MHz have been observed and isotope shifts and hyperfine structure have been measured in selected AI states. The strongest AI state observed at 49663.576 cm-1 with a photoionization cross section of >3.6x10 -15 cm 2 was found to have an overall detection efficiency of >3x10 -5 , allowing application to a number of ultratrace determination problems. Analytical measurements with a diode-laser-based system have been successfully performed on bio-medical tissue samples

  9. Correcting mass shifts: A lock mass-free recalibration procedure for mass spectrometry imaging data

    Czech Academy of Sciences Publication Activity Database

    Kulkarni, P.; Kaftan, F.; Kynast, P.; Svatoš, Aleš; Böcker, S.

    2015-01-01

    Roč. 407, č. 25 (2015), s. 7603-7613 ISSN 1618-2642 Institutional support: RVO:61388963 Keywords : mass spectrometry imaging * recalibration * mass shift correction * data processing Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 3.125, year: 2015

  10. Monitoring Toxic Ionic Liquids in Zebrafish ( Danio rerio) with Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI)

    Science.gov (United States)

    Perez, Consuelo J.; Tata, Alessandra; de Campos, Michel L.; Peng, Chun; Ifa, Demian R.

    2017-06-01

    Ambient mass spectrometry imaging has become an increasingly powerful technique for the direct analysis of biological tissues in the open environment with minimal sample preparation and fast analysis times. In this study, we introduce desorption electrospray ionization mass spectrometry imaging (DESI-MSI) as a novel, rapid, and sensitive approach to localize the accumulation of a mildly toxic ionic liquid (IL), AMMOENG 130 in zebrafish ( Danio rerio). The work demonstrates that DESI-MSI has the potential to rapidly monitor the accumulation of IL pollutants in aquatic organisms. AMMOENG 130 is a quaternary ammonium-based IL reported to be broadly used as a surfactant in commercialized detergents. It is known to exhibit acute toxicity to zebrafish causing extensive damage to gill secondary lamellae and increasing membrane permeability. Zebrafish were exposed to the IL in a static 96-h exposure study in concentrations near the LC50 of 1.25, 2.5, and 5.0 mg/L. DESI-MS analysis of zebrafish gills demonstrated the appearance of a dealkylated AMMOENG 130 metabolite in the lowest concentration of exposure identified by a high resolution hybrid LTQ-Orbitrap mass spectrometer as the trimethylstearylammonium ion, [C21H46N]+. With DESI-MSI, the accumulation of AMMOENG 130 and its dealkylated metabolite in zebrafish tissue was found in the nervous and respiratory systems. AMMOENG 130 and the metabolite were capable of penetrating the blood brain barrier of the fish with significant accumulation in the brain. Hence, we report for the first time the simultaneous characterization, distribution, and metabolism of a toxic IL in whole body zebrafish analyzed by DESI-MSI. This ambient mass spectrometry imaging technique shows great promise for the direct analysis of biological tissues to qualitatively monitor foreign, toxic, and persistent compounds in aquatic organisms from the environment. [Figure not available: see fulltext.

  11. Mass spectrometry in epigenetic research

    DEFF Research Database (Denmark)

    Beck, Hans Christian

    2010-01-01

    cancers has gained tremendous interest in recent years, and many of these inhibitors are currently undergoing clinical trials. Despite intense research, however, the exact molecular mechanisms of action of these molecules remain, to a wide extent, unclear. The recent application of mass spectrometry...

  12. RNA-Seq and Mass-Spectrometry-Based Lipidomics Reveal Extensive Changes of Glycerolipid Pathways in Brown Adipose Tissue in Response to Cold

    DEFF Research Database (Denmark)

    Marcher, Ann-Britt; Loft, Anne; Nielsen, Ronni

    2015-01-01

    involved in glycerophospholipid synthesis and fatty acid elongation. This is accompanied by significant changes in the acyl chain composition of triacylglycerols (TAGs) as well as subspecies-selective changes of acyl chains in glycerophospholipids. These results indicate that cold adaptation of BAT......Cold exposure greatly alters brown adipose tissue (BAT) gene expression and metabolism to increase thermogenic capacity. Here, we used RNA sequencing and mass-spectrometry-based lipidomics to provide a comprehensive resource describing the molecular signature of cold adaptation at the level...... of the transcriptome and lipidome. We show that short-term (3-day) cold exposure leads to a robust increase in expression of several brown adipocyte genes related to thermogenesis as well as the gene encoding the hormone irisin. However, pathway analysis shows that the most significantly induced genes are those...

  13. Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging

    DEFF Research Database (Denmark)

    Li, Bin; Bhandari, Dhaka Ram; Janfelt, Christian

    2014-01-01

    The rhizome of Glycyrrhiza glabra (licorice) was analyzed by high-resolution mass spectrometry imaging and tandem mass spectrometry imaging. An atmospheric pressure matrix-assisted laser desorption/ionization imaging ion source was combined with an orbital trapping mass spectrometer in order to o...... and saponins in legume species, combing the spatially resolved chemical information with morphological details at the microscopic level. Furthermore, the technique offers a scheme capable of high-throughput profiling of metabolites in plant tissues....

  14. Tissue gadolinium deposition in renally impaired rats exposed to different gadolinium-based MRI contrast agents: evaluation with inductively coupled plasma mass spectrometry (ICP-MS).

    Science.gov (United States)

    Sato, Tomohiro; Ito, Katsuyoshi; Tamada, Tsutomu; Kanki, Akihiko; Watanabe, Shigeru; Nishimura, Hirotake; Tanimoto, Daigo; Higashi, Hiroki; Yamamoto, Akira

    2013-10-01

    To quantify tissue gadolinium (Gd) deposition in renally impaired rats exposed to Gd-EOB-DTPA and other Gd-based MRI contrast agents by means of inductively coupled plasma mass spectrometry (ICP-MS), and to compare the differences in distribution among major organs as possible triggers for nephrogenic systemic fibrosis (NSF). A total of 15 renally impaired rats were injected with Gd-EOB-DTPA, Gd-DTPA-BMA and Gd-HP-DO3A. Gd contents of skin, liver, kidney, lung, heart, spleen, diaphragm and femoral muscle were measured by inductively coupled plasma mass spectrometry (ICP-MS). Histological assessment was also conducted. Tissue Gd deposition in all organs was significantly higher (P=0.005~0.009) in the Gd-DTPA-BMA group than in the Gd-HP-DO3A and Gd-EOB-DTPA groups. In the Gd-DTPA-BMA group, Gd was predominantly deposited in kidney (1306±605.7μg/g), followed by skin, liver, lung, spleen, femoral muscle, diaphragm and heart. Comparing Gd-HP-DO3A and Gd-EOB-DTPA groups, Gd depositions in the kidney, liver and lung were significantly lower (P=0.009~0.011) in the Gd-EOB-DTPA group than in the Gd-HP-DO3A group although no significant differences were seen for any other organs. Gd-EOB-DTPA is a stable and safe Gd-based contrast agent (GBCA) showing lower Gd deposition in major organs in renally impaired rats, compared with other GBCAs. This fact suggests that the risk of NSF onset would be low in the use of Gd-EOB-DTPA. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Liquid chromatography-mass spectrometry in forensic toxicology.

    Science.gov (United States)

    Van Bocxlaer, J F; Clauwaert, K M; Lambert, W E; Deforce, D L; Van den Eeckhout, E G; De Leenheer, A P

    2000-01-01

    Liquid chromatography-mass spectrometry has evolved from a topic of mainly research interest into a routinely usable tool in various application fields. With the advent of new ionization approaches, especially atmospheric pressure, the technique has established itself firmly in many areas of research. Although many applications prove that LC-MS is a valuable complementary analytical tool to GC-MS and has the potential to largely extend the application field of mass spectrometry to hitherto "MS-phobic" molecules, we must recognize that the use of LC-MS in forensic toxicology remains relatively rare. This rarity is all the more surprising because forensic toxicologists find themselves often confronted with the daunting task of actually searching for evidence materials on a scientific basis without any indication of the direction in which to search. Through the years, mass spectrometry, mainly in the GC-MS form, has gained a leading role in the way such quandaries are tackled. The advent of robust, bioanalytically compatible combinations of liquid chromatographic separation with mass spectrometric detection really opens new perspectives in terms of mass spectrometric identification of difficult molecules (e.g., polar metabolites) or biopolymers with toxicological relevance, high throughput, and versatility. Of course, analytical toxicologists are generally mass spectrometry users rather than mass spectrometrists, and this difference certainly explains the slow start of LC-MS in this field. Nevertheless, some valuable applications have been published, and it seems that the introduction of the more universal atmospheric pressure ionization interfaces really has boosted interests. This review presents an overview of what has been realized in forensic toxicological LC-MS. After a short introduction into LC-MS interfacing operational characteristics (or limitations), it covers applications that range from illicit drugs to often abused prescription medicines and some

  16. Determination of 238U in marine organisms by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Ishii, Toshiaki; Nakahara, Motokazu; Matsuba, Mitsue; Ishikawa, Masafumi

    1991-01-01

    Determination of 238 U in fifty-five species of marine organisms was carried out by inductively coupled plasma mass spectrometry which showed some advantages such as high sensitivity, wide dynamic range and small interferences from matrices for the analysis of high mass elements. The concentrations of 238 U in soft tissues of marine animals ranged from 0.076 to 5000 ng/g wet wt. Especially, the branchial heart of cephalopod molluscs showed the specific accumulation of 238 U. The concentration factor of the branchial heart of Octopus vulgaris, which indicated the highest value, was calculated to be about 10 3 by comparing it with the concentration of 238 U (3.2±0.2 ng/ml) in coastal seawaters of Japan. The concentrations of 238 U in hard tissues of marine invertebrates were similar to those in soft tissues. In contrast, hard tissues like bone, scale, fin, etc. of fishes showed much higher concentrations of 238 U than soft tissues like muscle and liver. The concentrations of 238 U of twenty species of algae ranged from 10 to 3700 ng/g dry wt. (author)

  17. Analysis of [U-13C6]glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry compared with two other mass spectrometry techniques

    NARCIS (Netherlands)

    Schierbeek, H.; Moerdijk-Poortvliet, T.C.W.; van den Akker, C.H.P.; te Braake, F.W.J.; Boschker, H.T.S.; van Goudoever, J.B.

    2009-01-01

    The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C-isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques

  18. Minimizing technical variation during sample preparation prior to label-free quantitative mass spectrometry.

    Science.gov (United States)

    Scheerlinck, E; Dhaenens, M; Van Soom, A; Peelman, L; De Sutter, P; Van Steendam, K; Deforce, D

    2015-12-01

    Sample preparation is the crucial starting point to obtain high-quality mass spectrometry data and can be divided into two main steps in a bottom-up proteomics approach: cell/tissue lysis with or without detergents and a(n) (in-solution) digest comprising denaturation, reduction, alkylation, and digesting of the proteins. Here, some important considerations, among others, are that the reagents used for sample preparation can inhibit the digestion enzyme (e.g., 0.1% sodium dodecyl sulfate [SDS] and 0.5 M guanidine HCl), give rise to ion suppression (e.g., polyethylene glycol [PEG]), be incompatible with liquid chromatography-tandem mass spectrometry (LC-MS/MS) (e.g., SDS), and can induce additional modifications (e.g., urea). Taken together, all of these irreproducible effects are gradually becoming a problem when label-free quantitation of the samples is envisioned such as during the increasingly popular high-definition mass spectrometry (HDMS(E)) and sequential window acquisition of all theoretical fragment ion spectra (SWATH) data-independent acquisition strategies. Here, we describe the detailed validation of a reproducible method with sufficient protein yield for sample preparation without any known LC-MS/MS interfering substances by using 1% sodium deoxycholate (SDC) during both cell lysis and in-solution digest. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry--a method to differentiate isomers by mass spectrometry.

    Science.gov (United States)

    Ahmed, Arif; Kim, Sunghwan

    2013-12-01

    In this report, a method for in-source hydrogen/deuterium (H/D) exchange at atmospheric pressure is reported. The method was named atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry (APPI HDX MS). H/D exchange was performed by mixing samples dissolved in toluene with CH3OD solvent and analyzing the mixture using atmospheric pressure photo ionization mass spectrometry (APPI-MS). The APPI HDX spectra obtained with contact times between the analyte solution and methanol-OD (CH3OD) of atmospheric pressure. H/D exchange can be performed in any laboratory with a mass spectrometer and a commercial APPI source. Using this method, multiple H/D exchanges of aromatic hydrogen and/or H/D exchange of active hydrogen were observed. These results demonstrated that H/D exchange can be used to distinguish between isomers containing primary, secondary, and tertiary amines, as well as pyridine and pyrrole functional groups.

  20. Mass spectrometry with particle accelerator

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The heavy ion accelerator use is renewing the ultrasensitive mass spectrometry in extending the detection limits. These new devices allow the measurement of rare isotope ratio, as 10 Be, 14 C, 26 Al, 36 Cl or 41 Ca, from the earth natural reservoirs [fr

  1. Radiation Biomarker Research Using Mass Spectrometry

    National Research Council Canada - National Science Library

    Bach, Stephan B; Hubert, Walter

    2007-01-01

    .... This review is intended to give an overview of mass spectrometry and its application to biological systems and biomarker discovery and how that might relate to relevant radiation dosimetry studies...

  2. Inorganic trace analysis by laser ionization mass spectrometry

    International Nuclear Information System (INIS)

    Becker, S.; Dietze, H.J.

    1991-01-01

    Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytic method with a wide coverage. In the LIMS the sample material is evaporated and ionized by means of a focused pulsed laser beam in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The formed ions are separated according to mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments, and applications of laser ionization mass spectrometry in inorganic trace analysis are described. (orig.)

  3. Laser ionization mass spectrometry in inorganic trace analysis

    International Nuclear Information System (INIS)

    Becker, J.S.; Dietze, H.J.

    1992-01-01

    Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytical method. With the LIMS technique the sample material is evaporated and ionized by means of a focused pulsed laser in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The ions formed are separated according to their mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments and applications of laser ionization mass spectrometry in inorganic trace analysis are described. (orig.)

  4. Hands-on Electrospray Ionization-Mass Spectrometry for Upper-Level Undergraduate and Graduate Students

    Science.gov (United States)

    Stock, Naomi L.; March, Raymond E.

    2014-01-01

    Electrospray ionization-mass spectrometry (ESI-MS) is a powerful technique for the detection, identification, and quantification of organic compounds. As mass spectrometers have become more user-friendly and affordable, many students--often with little experience in mass spectrometry--find themselves needing to incorporate mass spectrometry into…

  5. Identification of chemical components in Baidianling Capsule based on gas chromatography-mass spectrometry and high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Wu, Wenying; Chen, Yu; Wang, Binjie; Sun, Xiaoyang; Guo, Ping; Chen, Xiaohui

    2017-08-01

    Baidianling Capsule, which is made from 16 Chinese herbs, has been widely used for treating vitiligo clinically. In this study, the sensitive and rapid method has been developed for the analysis of chemical components in Baidianling Capsule by gas chromatography-mass spectrometry in combination with retention indices and high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Firstly, a total of 110 potential volatile compounds obtained from different extraction procedures including alkanes, alkenes, alkynes, ketones, ethers, aldehydes, alcohols, phenols, organic acids, esters, furans, pyrrole, acid amides, heterocycles, and oxides were detected from Baidianling Capsule by gas chromatography-mass spectrometry, of which 75 were identified by mass spectrometry in combination with the retention index. Then, a total of 124 components were tentatively identified by high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Fifteen constituents from Baidianling Capsule were accurately identified by comparing the retention times with those of reference compounds, others were identified by comparing the retention times and mass spectrometry data, as well as retrieving the reference literature. This study provides a practical strategy for rapidly screening and identifying the multiple constituents of a complex traditional Chinese medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry

    International Nuclear Information System (INIS)

    Koelmel, Jeremy; Leland, Thomas; Wang, Huanhua; Amarasiriwardena, Dulasiri; Xing, Baoshan

    2013-01-01

    The tissue level uptake and spatial distribution of gold nanoparticles (AuNPs) in rice (Oryza sativa L.) roots and shoots under hydroponic conditions was investigated using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Rice plants were hydroponically exposed to positively, neutrally, and negatively charged AuNPs [AuNP1(+), AuNP2(0), AuNP3(−)] with a core diameter of 2 nm. Plants were exposed to AuNPs having 1.6 mg Au/L for 5 days or 0.14 mg Au/L for 3 months to elucidate how the surface charges of the nanoparticles affects their uptake into living plant tissues. The results demonstrate that terminal functional groups greatly affected the AuNP uptake into plant tissues. Au concentration determined by LA-ICP-MS in 5 day treated rice roots followed this order: AuNP1(+) > AuNP2(0) > AuNP3(−) but this order was reversed for rice shoots, indicating preferential translocation of AuNP3(−). Bioimages revealed distributions of mesophyll and vascular AuNP dependent on organ or AuNP concentration. Highlights: ► LA-ICP-MS technique was effectively used to quantify engineered AuNP in rice plant. ► Uptake and translocation of AuNPs are evident in rice roots and shoots. ► Organ level distribution of AuNPs is affected by their surface charges. ► Bioimaging of AuNP distribution in rice tissues by LA-ICP-MS was demonstrated. -- The tissue level uptake and spatial distribution of engineered gold nanoparticles (AuNP) by rice plants was demonstrated by LA-ICP-MS bioimaging

  7. Mass Spectrometry Applications for Toxicology.

    Science.gov (United States)

    Mbughuni, Michael M; Jannetto, Paul J; Langman, Loralie J

    2016-12-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MS n ) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology.

  8. Mass Spectrometry Applications for Toxicology

    Science.gov (United States)

    Mbughuni, Michael M.; Jannetto, Paul J.

    2016-01-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MSn) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology. PMID:28149262

  9. Identifying modifications in RNA by MALDI mass spectrometry

    DEFF Research Database (Denmark)

    Douthwaite, Stephen; Kirpekar, Finn

    2007-01-01

    as RNA modifications added in cell-free in vitro systems. MALDI-MS is particularly useful in cases in which other techniques such as those involving primer extension or chromatographic analyses are not practicable. To date, MALDI-MS has been used to localize rRNA modifications that are involved......Posttranscriptional modifications on the base or sugar of ribonucleosides generally result in mass increases that can be measured by mass spectrometry. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a direct and accurate means of determining the masses of RNAs. Mass...... spectra produced by MALDI are relatively straightforward to interpret, because they are dominated by singly charged ions, making it possible to analyze complex mixtures of RNA oligonucleotides ranging from trinucleotides up to 20-mers. Analysis of modifications within much longer RNAs, such as ribosomal...

  10. Application of Laser Mass Spectrometry to Art and Archaeology

    Science.gov (United States)

    Gulian, Lase Lisa E.; Callahan, Michael P.; Muliadi, Sarah; Owens, Shawn; McGovern, Patrick E.; Schmidt, Catherine M.; Trentelman, Karen A.; deVries, Mattanjah S.

    2011-01-01

    REMPI laser mass spectrometry is a combination of resonance enhanced multiphoton ionization spectroscopy and time of flight mass spectrometry, This technique enables the collection of mass specific optical spectra as well as of optically selected mass spectra. Analytes are jet-cooled by entrainment in a molecular beam, and this low temperature gas phase analysis has the benefit of excellent vibronic resolution. Utilizing this method, mass spectrometric analysis of historically relevant samples can be simplified and improved; Optical selection of targets eliminates the need for chromatography while knowledge of a target's gas phase spectroscopy allows for facile differentiation of molecules that are in the aqueous phase considered spectroscopically indistinguishable. These two factors allow smaller sample sizes than commercial MS instruments, which in turn will require less damage to objects of antiquity. We have explored methods to optimize REMPI laser mass spectrometry as an analytical tool to archaeology using theobromine and caffeine as molecular markers in Mesoamerican pottery, and are expanding this approach to the field of art to examine laccaic acid in shellacs.

  11. Mass Spectrometry and Antibody-Based Characterization of Blood Vessels from Brachylophosaurus canadensis.

    Science.gov (United States)

    Cleland, Timothy P; Schroeter, Elena R; Zamdborg, Leonid; Zheng, Wenxia; Lee, Ji Eun; Tran, John C; Bern, Marshall; Duncan, Michael B; Lebleu, Valerie S; Ahlf, Dorothy R; Thomas, Paul M; Kalluri, Raghu; Kelleher, Neil L; Schweitzer, Mary H

    2015-12-04

    Structures similar to blood vessels in location, morphology, flexibility, and transparency have been recovered after demineralization of multiple dinosaur cortical bone fragments from multiple specimens, some of which are as old as 80 Ma. These structures were hypothesized to be either endogenous to the bone (i.e., of vascular origin) or the result of biofilm colonizing the empty osteonal network after degradation of original organic components. Here, we test the hypothesis that these structures are endogenous and thus retain proteins in common with extant archosaur blood vessels that can be detected with high-resolution mass spectrometry and confirmed by immunofluorescence. Two lines of evidence support this hypothesis. First, peptide sequencing of Brachylophosaurus canadensis blood vessel extracts is consistent with peptides comprising extant archosaurian blood vessels and is not consistent with a bacterial, cellular slime mold, or fungal origin. Second, proteins identified by mass spectrometry can be localized to the tissues using antibodies specific to these proteins, validating their identity. Data are available via ProteomeXchange with identifier PXD001738.

  12. Applications of accelerator mass spectrometry to nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Guo Zhiyu; Zhang Chuan

    2002-01-01

    As an ultra high sensitive analyzing method, accelerator mass spectrometry is playing an important role in the studies of nuclear physics and astrophysics. The accelerator mass spectrometry (AMS) applications in searching for violation of Pauli exclusion principle and study on supernovae are discussed as examples

  13. Quantitation of Acrylamide in Foods by High-Resolution Mass Spectrometry

    NARCIS (Netherlands)

    Troise, A.D.; Fogliano, Vincenzo

    2016-01-01

    The use of liquid chromatography high-resolution mass spectrometry (LC-HRMS) and direct analysis real-time high-resolution mass spectrometry (DART-HRMS) defines a new scenario in the analysis of thermal-induced toxicants, such as acrylamide. Several factors contribute to the definition of the

  14. Practical aspects of trapped ion mass spectrometry, 5 applications of ion trapping devices

    CERN Document Server

    March, Raymond E

    2009-01-01

    Examines ion/neutral and ion/ion reactions, ion spectroscopy, and the structural characterization of proteins and peptides using quadropole ion trap mass spectrometry, Fourier transform - ion cyclotron resonance (FT-ICR) mass spectrometry, and traveling wave ion mobility mass spectrometry.

  15. Hydrogen/deuterium exchange in mass spectrometry.

    Science.gov (United States)

    Kostyukevich, Yury; Acter, Thamina; Zherebker, Alexander; Ahmed, Arif; Kim, Sunghwan; Nikolaev, Eugene

    2018-03-30

    The isotopic exchange approach is in use since the first observation of such reactions in 1933 by Lewis. This approach allows the investigation of the pathways of chemical and biochemical reactions, determination of structure, composition, and conformation of molecules. Mass spectrometry has now become one of the most important analytical tools for the monitoring of the isotopic exchange reactions. Investigation of conformational dynamics of proteins, quantitative measurements, obtaining chemical, and structural information about individual compounds of the complex natural mixtures are mainly based on the use of isotope exchange in combination with high resolution mass spectrometry. The most important reaction is the Hydrogen/Deuterium exchange, which is mainly performed in the solution. Recently we have developed the approach allowing performing of the Hydrogen/Deuterium reaction on-line directly in the ionization source under atmospheric pressure. Such approach simplifies the sample preparation and can accelerate the exchange reaction so that certain hydrogens that are considered as non-labile will also participate in the exchange. The use of in-ionization source H/D exchange in modern mass spectrometry for structural elucidation of molecules serves as the basic theme in this review. We will focus on the mechanisms of the isotopic exchange reactions and on the application of in-ESI, in-APCI, and in-APPI source Hydrogen/Deuterium exchange for the investigation of petroleum, natural organic matter, oligosaccharides, and proteins including protein-protein complexes. The simple scenario for adaptation of H/D exchange reactions into mass spectrometric method is also highlighted along with a couple of examples collected from previous studies. © 2018 Wiley Periodicals, Inc.

  16. Mass spectrometry in grape and wine chemistry. Part II: The consumer protection.

    Science.gov (United States)

    Flamini, Riccardo; Panighel, Annarita

    2006-01-01

    Controls in food industry are fundamental to protect the consumer health. For products of high quality, warranty of origin and identity is required and analytical control is very important to prevent frauds. In this article, the "state of art" of mass spectrometry in enological chemistry as a consumer safety contribute is reported. Gas chromatography-mass spectrometry (GC/MS) and liquid-chromatography-mass spectrometry (LC/MS) methods have been developed to determine pesticides, ethyl carbamate, and compounds from the yeast and bacterial metabolism in wine. The presence of pesticides in wine is mainly linked to the use of dicarboxyimide fungicides on vineyard shortly before the harvest to prevent the Botrytis cinerea attack of grape. Pesticide residues are regulated at maximum residue limits in grape of low ppm levels, but significantly lower levels in wine have to be detected, and mass spectrometry offers effective and sensitive methods. Moreover, mass spectrometry represent an advantageous alternative to the radioactive-source-containing electron capture detector commonly used in GC analysis of pesticides. Analysis of ochratoxin A (OTA) in wine by LC/MS and multiple mass spectrometry (MS/MS) permits to confirm the toxin presence without the use of expensive immunoaffinity columns, or time and solvent consuming sample derivatization procedures. Inductively coupled plasma-mass spectrometry (ICP/MS) is used to control heavy metals contamination in wine, and to verify the wine origin and authenticity. Isotopic ratio-mass spectrometry (IRMS) is applied to reveal wine watering and sugar additions, and to determine the product origin and traceability.

  17. Elucidating rhizosphere processes by mass spectrometry – A review

    International Nuclear Information System (INIS)

    Rugova, Ariana; Puschenreiter, Markus; Koellensperger, Gunda; Hann, Stephan

    2017-01-01

    The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. - Highlights: • State-of-the-art mass spectrometry methods developed and applied in rhizosphere research are reviewed. • Elemental and molecular mass spectrometry emphasizing different separation techniques (GC, LC or CE) are discussed. • Case studies on metal detoxification and

  18. Elucidating rhizosphere processes by mass spectrometry – A review

    Energy Technology Data Exchange (ETDEWEB)

    Rugova, Ariana [Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences-BOKU, Vienna (Austria); Puschenreiter, Markus [Department of Forest and Soil Sciences, Rhizosphere Ecology and Biogeochemistry Group, University of Natural Resources and Life Sciences-BOKU, Vienna (Austria); Koellensperger, Gunda [Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna (Austria); Hann, Stephan, E-mail: stephan.hann@boku.ac.at [Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences-BOKU, Vienna (Austria)

    2017-03-01

    The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. - Highlights: • State-of-the-art mass spectrometry methods developed and applied in rhizosphere research are reviewed. • Elemental and molecular mass spectrometry emphasizing different separation techniques (GC, LC or CE) are discussed. • Case studies on metal detoxification

  19. Towards airborne nanoparticle mass spectrometry with nanomechanical string resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Kurek, Maksymilian; Boisen, Anja

    2013-01-01

    airborne nanoparticle sensors. Recently, nanomechanical mass spectrometry was established. One of the biggest challenges of nanomechanical sensors is the low efficiency of diffusion-based sampling. We developed an inertial-based sampling method that enables the efficient sampling of airborne nanoparticles...... mode. Mass spectrometry of airborne nanoparticles requires the simultaneous operation in the first and second mode, which can be implemented in the transduction scheme of the resonator. The presented results lay the cornerstone for the realization of a portable airborne nanoparticle mass spectrometer....

  20. Detection of sputtered molecular doubly charged anions: a comparison of secondary-ion mass spectrometry (SIMS) and accelerator mass spectrometry (AMS)

    International Nuclear Information System (INIS)

    Gnaser, Hubert; Golser, Robin; Kutschera, Walter; Priller, Alfred; Steier, Peter; Vockenhuber, Christof

    2004-01-01

    The detection of small molecular dianions by secondary-ion mass spectrometry (SIMS) and by accelerator mass spectrometry (AMS) is compared. In SIMS, the existence of these dianions can be identified safely if the total mass number of the molecule is odd and the dianion is hence detected at a half-integral mass number. The occurrence of fragmentation processes which may interfere with this scheme, is illustrated by means of the energy spectra of singly and doubly charged negative cluster ions. As compared to SIMS, AMS can rely, in addition, on the break-up of molecular species in the stripping process: this allows to monitor the simultaneous arrival of several atomic constituents with a clear energetic pattern in coincidence at the detector. This feature is exemplified for the C 10 2- dianion

  1. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Winston Chen, C.H.; Taranenko, N.I.; Zhu, Y.F.; Chung, C.N.; Allman, S.L.

    1997-03-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, the authors recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Snager`s enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. The preliminary results indicate laser mass spectrometry can possibly be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, the authors applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  2. Differential Rapid Screening of Phytochemicals by Leaf Spray Mass Spectrometry

    International Nuclear Information System (INIS)

    Mueller, Thomas; Graham Cooks, R.

    2014-01-01

    Ambient ionization can be achieved by generating an electrospray directly from plant tissue ('leaf spray'). The resulting mass spectra are characteristic of ionizable phytochemicals in the plant material. By subtracting the leaf spray spectra recorded from the petals of two hibiscus species H. moscheutos and H. syriacus one gains rapid access to the metabolites that differ most in the two petals. One such compound was identified as the sambubioside of quercitin (or delphinidin) while others are known flavones. Major interest centered on a C 19 H 29 NO 5 compound that occurs only in the large H. moscheutos bloom. Attempts were made to characterize this compound by mass spectrometry alone as a test of such an approach. This showed that the compound is an alkaloid, assigned to the polyhydroxylated pyrrolidine class, and bound via a C 3 hydrocarbon unit to a monoterpene

  3. A mass spectrometry proteomics data management platform.

    Science.gov (United States)

    Sharma, Vagisha; Eng, Jimmy K; Maccoss, Michael J; Riffle, Michael

    2012-09-01

    Mass spectrometry-based proteomics is increasingly being used in biomedical research. These experiments typically generate a large volume of highly complex data, and the volume and complexity are only increasing with time. There exist many software pipelines for analyzing these data (each typically with its own file formats), and as technology improves, these file formats change and new formats are developed. Files produced from these myriad software programs may accumulate on hard disks or tape drives over time, with older files being rendered progressively more obsolete and unusable with each successive technical advancement and data format change. Although initiatives exist to standardize the file formats used in proteomics, they do not address the core failings of a file-based data management system: (1) files are typically poorly annotated experimentally, (2) files are "organically" distributed across laboratory file systems in an ad hoc manner, (3) files formats become obsolete, and (4) searching the data and comparing and contrasting results across separate experiments is very inefficient (if possible at all). Here we present a relational database architecture and accompanying web application dubbed Mass Spectrometry Data Platform that is designed to address the failings of the file-based mass spectrometry data management approach. The database is designed such that the output of disparate software pipelines may be imported into a core set of unified tables, with these core tables being extended to support data generated by specific pipelines. Because the data are unified, they may be queried, viewed, and compared across multiple experiments using a common web interface. Mass Spectrometry Data Platform is open source and freely available at http://code.google.com/p/msdapl/.

  4. Simultaneous mass detection for direct inlet mass spectrometry

    International Nuclear Information System (INIS)

    Gordon, R.L.

    1979-05-01

    The evolution of analytical techniques for application in trace analysis has led to interest in practical methods for real-time monitoring. Direct inlet mass spectrometry (DIMS) has been the subject of considerable activity in recent years. A DIMS instrument is described which consists of an inlet system designed to permit particles entrained in the inlet air stream to strike a hot, oxidized rhenium filament which serves as a surface ionization source. A mass analyzer and detection system then permits identification of the elemental composition of particulates which strike the filament

  5. Probing the Composition, Assembly and Activity of Protein Molecular Machines using Native Mass Spectrometry

    NARCIS (Netherlands)

    van de Waterbeemd, M.J.

    2017-01-01

    Native mass spectrometry and mass spectrometry in general, are powerful analytical tools for studying proteins and protein complexes. Native mass spectrometry may provide accurate mass measurements of large macromolecular assemblies enabling the investigation of their composition and stoichiometry.

  6. Infrared laser ablation atmospheric pressure photoionization mass spectrometry.

    Science.gov (United States)

    Vaikkinen, Anu; Shrestha, Bindesh; Kauppila, Tiina J; Vertes, Akos; Kostiainen, Risto

    2012-02-07

    In this paper we introduce laser ablation atmospheric pressure photoionization (LAAPPI), a novel atmospheric pressure ion source for mass spectrometry. In LAAPPI the analytes are ablated from water-rich solid samples or from aqueous solutions with an infrared (IR) laser running at 2.94 μm wavelength. Approximately 12 mm above the sample surface, the ablation plume is intercepted with an orthogonal hot solvent (e.g., toluene or anisole) jet, which is generated by a heated nebulizer microchip and directed toward the mass spectrometer inlet. The ablated analytes are desolvated and ionized in the gas-phase by atmospheric pressure photoionization using a 10 eV vacuum ultraviolet krypton discharge lamp. The effect of operational parameters and spray solvent on the performance of LAAPPI is studied. LAAPPI offers ~300 μm lateral resolution comparable to, e.g., matrix-assisted laser desorption ionization. In addition to polar compounds, LAAPPI efficiently ionizes neutral and nonpolar compounds. The bioanalytical application of the method is demonstrated by the direct LAAPPI analysis of rat brain tissue sections and sour orange (Citrus aurantium) leaves. © 2012 American Chemical Society

  7. Focusing procedures in time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Ioanoviciu, D.

    2002-01-01

    Time-of-flight mass spectrometry is a fast growing field due to its ability to handle very fast processes and due to its theoretically unlimited mass range. The performances of the time-of-flight mass analysers are heavily dependent on the progress in ion optics, a periodically reviewed field. In this presentation the various focusing procedures in time-of-flight mass spectrometry are reviewed. For ions of the same charge and mass flight time differences result from different potentials at the location of formation and from the initial velocity spread. There is no simultaneous space and velocity focusing in time-of-flight mass spectrometry. Space focusing of first and second order can be reached in time-of-flight mass analysers having two homogeneous electric field ion sources followed by a field free space in front of the detector. Single and double stage homogeneous electric field mirrors can focus in time ions of different energies. These different energies result when ions leaving different initial sites and arriving simultaneously to an intermediate space focus. Convenient mass dispersion can be obtained by including a mirror. Initial velocity focusing is obtained by the delayed extraction procedure in drift space and mirror time-of-flight mass analysers. Post source pulse focusing aims at the same purpose. Ion source electrodes of hyperbolic shape, operated by high voltage pulses can bring major improvements of the resolution, especially at high masses. For each focusing procedure the geometric and/or electric conditions are given as well as the aberrations allowing the mass resolution determination. The various focusing procedures are compared and a prediction of their future performances was tempted. (author)

  8. Quantitative correlations between collision induced dissociation mass spectrometry coupled with electrospray ionization or atmospheric pressure chemical ionization mass spectrometry - Experiment and theory

    Science.gov (United States)

    Ivanova, Bojidarka; Spiteller, Michael

    2018-04-01

    The problematic that we consider in this paper treats the quantitative correlation model equations between experimental kinetic and thermodynamic parameters of coupled electrospray ionization (ESI) mass spectrometry (MS) or atmospheric pressure chemical ionization (APCI) mass spectrometry with collision induced dissociation mass spectrometry, accounting for the fact that the physical phenomena and mechanisms of ESI- and APCI-ion formation are completely different. There are described forty two fragment reactions of three analytes under independent ESI- and APCI-measurements. The developed new quantitative models allow us to study correlatively the reaction kinetics and thermodynamics using the methods of mass spectrometry, which complementary application with the methods of the quantum chemistry provide 3D structural information of the analytes. Both static and dynamic quantum chemical computations are carried out. The object of analyses are [2,3-dimethyl-4-(4-methyl-benzoyl)-2,3-di-p-tolyl-cyclobutyl]-p-tolyl-methanone (1) and the polycyclic aromatic hydrocarbons derivatives of dibenzoperylen (2) and tetrabenzo [a,c,fg,op]naphthacene (3), respectively. As far as (1) is known to be a product of [2π+2π] cycloaddition reactions of chalcone (1,3-di-p-tolyl-propenone), however producing cyclic derivatives with different stereo selectivity, so that the study provide crucial data about the capability of mass spectrometry to provide determine the stereo selectivity of the analytes. This work also first provides quantitative treatment of the relations '3D molecular/electronic structures'-'quantum chemical diffusion coefficient'-'mass spectrometric diffusion coefficient', thus extending the capability of the mass spectrometry for determination of the exact 3D structure of the analytes using independent measurements and computations of the diffusion coefficients. The determination of the experimental diffusion parameters is carried out within the 'current monitoring method

  9. Hydrogen Exchange Mass Spectrometry

    Science.gov (United States)

    Mayne, Leland

    2018-01-01

    Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data. PMID:26791986

  10. Mass spectrometry applied to high temperature chemistry, (2)

    International Nuclear Information System (INIS)

    Asano, Mitsuru; Kato, Eiichi; Sata, Toshiyuki.

    1980-01-01

    The application of mass spectrometry to high temperature chemistry is reviewed. As a blanket material for fusion reactors, the behavior of lithium has been investigated by using mass analysers. The enthalpies of the chemical reactions of metallic lithium were obtained. The enthalpies of isomolecular exchange reactions and the derived atomization energies of LiD, Li 2 D and Li 2 D 2 were also obtained by mass spectrometry. The thermomechanical character of lithium oxide was studied. The vaporization behaviors of LiCrO 2 and Li 5 FeO 4 were studied with a quadrupole mass analyser. The vaporization of cobalt from nickel alloy was studied. The evaporated ions were analysed with a mass analyser. The measurement of the vaporized molecules of metals and fused silicate was made by mass spectrometry. The activities of Fe-V system were determined by measuring the ion current ratio. The activities of Fe-V-Cr system were also obtained. The vapor pressure of phosphor from Fe-P alloys can be measured. The activity coefficients and interaction parameters for the dilute solutions of elements, such as Mn, Al, Cu, Cr, Co, Ni, Si, Ti, V, B, Zr, Mo, C, S, and P, dissolved in liquid iron are shown in a table. The activities of NaCl-KCl system were derived by measuring the ion current ratio and by monomer-dimer method. (Kato, T.)

  11. Protein Analysis by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Cindic, M.

    2008-04-01

    Full Text Available Soft ionization techniques, electrospray (ESI and matrix-assisted laser desorption/ionization (MALDI make the analysis of biomolecules by mass spectrometry (MS possible. MS is used for determination of the molecular weight of peptides and protein, sequence analysis, characterization of protein-ligand interactions etc. The detection limit, resolution and mass accuracy depend on instrument used (Table 1. Impurities (buffers, salts, detergents can reduce the ion intensities or even totally suppress them, so a separation method (chromatography, 2D-gel electrophoresis must be used for purification of the sample.Molecular mass of intact protein can be determined by ESI or MALDI MS. Multiply charged ions are produced by ESI MS, while singly charged ions are predominant in MALDI spectra (Fig. 2.Sequence analysis of proteins by MS can be performed using peptide mass fingerprint. In this method, proteins are separated by 2-D gel electrophoresis and digested with specific protease (Table 2 or digested and then separated by two-dimensional chromatography (Fig. 1. The obtained peptide mixtures are analyzed by MS or MALDI-TOF technique. The masses determined by MS are compared with calculated masses from database entries. Different algorithms have been developed for protein identification. Example of posttranslational modifications (N- and O-glycosylation and protein sequence complex analysis after dual digestion (endoproteinase digestion followed by endoglycosidase digestion is shown in Fig. 3.It is known that detection of peptides by MS is influenced by intrinsic properties like amino acid composition, the basicity of the C-terminal amino acid, hydrophobicity, etc. Arginine-containing peptides dominate in MS spectra of tryptic digest, so the chemical derivatization of lysine terminal residue by O-methilisourea or 2-methoxy-4,5-1H-imidazole was suggested (Fig. 4.The peptide mass fingerprint method can be improved further by peptide fragmentation using tandem

  12. Identification of keratinocyte specific markers using phage display and mass spectrometry

    DEFF Research Database (Denmark)

    Jensen, K.B.; Jensen, O.N.; Ravn, P.

    2003-01-01

    and mass spectrometry that allows identification of cell type-specific protein markers. The most important features of the method are (i) reduction of experimental noise originating from background binding of phage particles and (ii) isolation of affinity binders after a single round of selection, which...... antigens were subsequently identified by mass spectrometry as laminin-5, plectin, and fibronectin. The combination of phage display technology with mass spectrometry methods for protein identification is a general and promising approach for proteomic analysis of cell surface complexity....

  13. Mass spectrometry of large molecules

    International Nuclear Information System (INIS)

    Facchetti, S.

    1985-01-01

    The lectures in this volume were given at a course on mass spectrometry of large molecules, organized within the framework of the Training and Education programme of the Joint Research Centre of the European Communities. Although first presented in 1983, most of the lectures have since been updated by their authors. (orig.)

  14. Methods for recalibration of mass spectrometry data

    Science.gov (United States)

    Tolmachev, Aleksey V [Richland, WA; Smith, Richard D [Richland, WA

    2009-03-03

    Disclosed are methods for recalibrating mass spectrometry data that provide improvement in both mass accuracy and precision by adjusting for experimental variance in parameters that have a substantial impact on mass measurement accuracy. Optimal coefficients are determined using correlated pairs of mass values compiled by matching sets of measured and putative mass values that minimize overall effective mass error and mass error spread. Coefficients are subsequently used to correct mass values for peaks detected in the measured dataset, providing recalibration thereof. Sub-ppm mass measurement accuracy has been demonstrated on a complex fungal proteome after recalibration, providing improved confidence for peptide identifications.

  15. MALDI-Imaging Mass Spectrometry of Ochratoxin A and Fumonisins in Mold-Infected Food.

    Science.gov (United States)

    Hickert, Sebastian; Cramer, Benedikt; Letzel, Matthias C; Humpf, Hans-Ulrich

    2016-09-06

    Mycotoxins are toxic secondary metabolites produced by various fungi. Their distribution within contaminated material is of high interest to obtain insight into infection mechanisms and the possibility of reducing contamination during food processing. Various vegetable foodstuffs were infected with fungi of the genera Fusarium and Aspergillus. The localization of the produced mycotoxins was studied by matrix assisted laser desorption ionization time of flight imaging mass spectrometry (MALDI-MSI) of cryosections obtained from infected material. The results were confirmed by HPLC-electrospray ionization triple quadrupole mass spectrometry (HPLC/MS/MS). The mycotoxins ochratoxin A (OTA) and fumonisins of the B- and C-series (FB 1 , FB 2 , FB 3 , FB 4 , FC 2/3 , and FC 4 ) as well as partially hydrolyzed fumonisins (pHFB 1 , pHFB 2 , pHFB 3 , pHFC 1 , and pHFC 2/3 ) could successfully be detected by MALDI-IMS in mold-infested foodstuffs. The toxins are distributed differently in the material: OTA is co-localized with visible fungal spoilage while fumonisins could be detected throughout the whole sample. This work shows the applicability of MALDI-Imaging Mass Spectrometry (MALDI-MSI) to mycotoxin analysis. It has been demonstrated that the analyzed mycotoxins are differently distributed within moldy foodstuffs. These findings show the potential of MALDI-MSI for the localization of these hazardous compounds in various plant tissues. This article is protected by copyright. All rights reserved.

  16. Application of solid phase microextraction followed by liquid chromatography-mass spectrometry in the determination of antibiotic drugs and their metabolites in human whole blood and tissue samples.

    Science.gov (United States)

    Szultka-Mlynska, Malgorzata; Pomastowski, Pawel; Buszewski, Boguslaw

    2018-06-01

    A sensitive, rapid and specific analytical method using high performance liquid chromatography coupled with mass spectrometry (HPLC-QqQ-MS) was developed to determine selected antibiotic drugs and their metabolites (amoxicillin, cefotaxime, ciprofloxacin, clindamycin and metronidazole; amoxycilloic acid, 4-hydroxyphenyl glycyl amoxicillin, desacetyl cefotaxime, 3-desacetyl cefotaxime lactone, ciprofloxacin N-oxide, N-demethylclindamycin, clindamycin sulfoxide, and hydroxy metronidazole) in human whole blood and vascularized tissue after single oral administration. The samples were prepared by solid phase microextraction with C18 fibers (SPME C18 ) and determined on a GRACE analytical C18 column, Vision HT (50 × 2 mm, 1.5 μm) at the flow rate of 0.4 mL min -1 using water and acetonitrile (containing 0.1% formic acid) as the mobile phase. The proposed method was successfully applied in a pharmacokinetic study of the selected antibiotic drugs and their metabolites in real human samples. Additionally, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF-MS) was used for identification and qualification analysis of the target compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Parsimonious Charge Deconvolution for Native Mass Spectrometry

    Science.gov (United States)

    2018-01-01

    Charge deconvolution infers the mass from mass over charge (m/z) measurements in electrospray ionization mass spectra. When applied over a wide input m/z or broad target mass range, charge-deconvolution algorithms can produce artifacts, such as false masses at one-half or one-third of the correct mass. Indeed, a maximum entropy term in the objective function of MaxEnt, the most commonly used charge deconvolution algorithm, favors a deconvolved spectrum with many peaks over one with fewer peaks. Here we describe a new “parsimonious” charge deconvolution algorithm that produces fewer artifacts. The algorithm is especially well-suited to high-resolution native mass spectrometry of intact glycoproteins and protein complexes. Deconvolution of native mass spectra poses special challenges due to salt and small molecule adducts, multimers, wide mass ranges, and fewer and lower charge states. We demonstrate the performance of the new deconvolution algorithm on a range of samples. On the heavily glycosylated plasma properdin glycoprotein, the new algorithm could deconvolve monomer and dimer simultaneously and, when focused on the m/z range of the monomer, gave accurate and interpretable masses for glycoforms that had previously been analyzed manually using m/z peaks rather than deconvolved masses. On therapeutic antibodies, the new algorithm facilitated the analysis of extensions, truncations, and Fab glycosylation. The algorithm facilitates the use of native mass spectrometry for the qualitative and quantitative analysis of protein and protein assemblies. PMID:29376659

  18. Quantification of 8-α-hydroxy-mutilin as marker residue for tiamulin in rabbit tissues by high-performance liquid chromatography-mass spectrometry.

    Science.gov (United States)

    De Baere, Siegrid; Devreese, Mathias; Maes, An; De Backer, Patrick; Croubels, Siska

    2015-06-01

    For the first time, a sensitive and specific method was developed and fully validated for the quantification of the EU marker residue of tiamulin, 8-α-hydroxy-mutilin, in rabbit muscle and liver tissues using liquid chromatography combined with positive heated electrospray ionization triple quadrupole mass spectrometry. The mass spectrometer was operated in the selected reaction monitoring (SRM) mode with selection of the [M + H](+) ion in both quadrupoles 1 and 3, resulting in the SRM transition m/z 337.25 > 337.25 for quantification. Chromatography was performed using a Hypersil Gold C18 column using a gradient elution program with water and methanol as mobile phases. The sample preparation procedure for the analysis of 8-α-hydroxy-mutilin in liver and muscle samples consisted of three main steps: (1) extraction of the tissue matrix using 0.1 N hydrochloric acid/acetone (50/50, v/v), (2) hydrolysis of tiamulin and metabolites to 8-α-hydroxy-mutilin in alkaline medium at 45 °C, and (3) liquid-liquid extraction in acidic medium using ethyl acetate. This is the first method presenting fully validated results, encompassing a linearity of 50 to 2,000 μg/kg, within-run and between-run accuracy and precision, limit of quantification (50 μg/kg for both muscle and liver tissues), limit of detection (muscle, 11.9 μg/kg; liver, 20.6 μg/kg), extraction recovery (muscle, 66.2%; liver, 75.5%), signal suppression and enhancement (muscle, 51.7%; liver, 43.3%), carryover, applicability and practicability, and stability during storage and analysis. This novel method is therefore sensitive enough to be used for residue depletion studies of tiamulin in rabbits and for food safety monitoring with respect to MRL compliance of residues.

  19. Nanostructure-initiator mass spectrometry biometrics

    Science.gov (United States)

    Leclerc, Marion; Bowen, Benjamin; Northen, Trent

    2015-09-08

    Several embodiments described herein are drawn to methods of identifying an analyte on a subject's skin, methods of generating a fingerprint, methods of determining a physiological change in a subject, methods of diagnosing health status of a subject, and assay systems for detecting an analyte and generating a fingerprint, by nanostructure-initiator mass spectrometry (NIMS).

  20. Functional genomics by mass spectrometry

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Mann, M

    2000-01-01

    Systematic analysis of the function of genes can take place at the oligonucleotide or protein level. The latter has the advantage of being closest to function, since it is proteins that perform most of the reactions necessary for the cell. For most protein based ('proteomic') approaches to gene f...... numbers of intact proteins by mass spectrometry directly. Examples from this laboratory illustrate biological problem solving by modern mass spectrometric techniques. These include the analysis of the structure and function of the nucleolus and the analysis of signaling complexes....

  1. Determination of ultra-low levels of uranium using resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Kiran Kumar, P.V.; Acharyulu, G.V.S.G.

    2015-01-01

    The determination of isotopic composition of actinides like U and Pu is important, due to their distribution in the environment as a result of nuclear weapons testing, fuel reprocessing, reactor operations and to a smaller extent from accidental releases. The analytical methods like fission track analysis (FTA), thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS) and resonance ionization mass spectrometry (RIMS) have evolved as sensitive techniques. Resonance Ionization Mass Spectrometry yields rapid isotopic signature data for material containing actinides without requiring time-consuming sample preparation and chemical separation procedures. In this paper, authors presented the details of the methodology and results for low-level detection of uranium using RIMS

  2. Membrane introduction proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Alexander, M.; Boscaini, E.; Maerk, T.; Lindinger, W.

    2002-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) is a rapidly expanding field with multiple applications in ion physics, atmospheric chemistry, food chemistry, volatile organic compounds monitoring and biology. Initial studies that combine PTR-MS and membrane introduction mass spectrometry (MIMS) were researched and outlined. First using PTR-MS, certain fundamental physical properties of a poly-dimethylsiloxane (PDMS) membrane including solubilities and diffusion coefficients were measured. Second, it was shown how the chemical selectivity of the (PDMS) can be used to extend the capabilities of the PTR-MS instrument by eliminating certain isobaric interferences and excluding water from volatile organic compounds (VOCs). Experiments with mixtures of several VOCs (toluene, benzene, acetone, propanal, methanol) are presented. (nevyjel)

  3. Development of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) for plant metabolite analysis

    Energy Technology Data Exchange (ETDEWEB)

    Korte, Andrew R [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis presents efforts to improve the methodology of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) as a method for analysis of metabolites from plant tissue samples. The first chapter consists of a general introduction to the technique of MALDI-MSI, and the sixth and final chapter provides a brief summary and an outlook on future work.

  4. Optimization Of A Mass Spectrometry Process

    International Nuclear Information System (INIS)

    Lopes, Jose; Alegria, F. Correa; Redondo, Luis; Barradas, N. P.; Alves, E.; Rocha, Jorge

    2011-01-01

    In this paper we present and discuss a system developed in order to optimize the mass spectrometry process of an ion implanter. The system uses a PC to control and display the mass spectrum. The operator interacts with the I/O board, that interfaces with the computer and the ion implanter by a LabVIEW code. Experimental results are shown and the capabilities of the system are discussed.

  5. Paradigms in isotope dilution mass spectrometry for elemental speciation analysis

    International Nuclear Information System (INIS)

    Meija, Juris; Mester, Zoltan

    2008-01-01

    Isotope dilution mass spectrometry currently stands out as the method providing results with unchallenged precision and accuracy in elemental speciation. However, recent history of isotope dilution mass spectrometry has shown that the extent to which this primary ratio measurement method can deliver accurate results is still subject of active research. In this review, we will summarize the fundamental prerequisites behind isotope dilution mass spectrometry and discuss their practical limits of validity and effects on the accuracy of the obtained results. This review is not to be viewed as a critique of isotope dilution; rather its purpose is to highlight the lesser studied aspects that will ensure and elevate current supremacy of the results obtained from this method

  6. Steroid Profiling by Gas Chromatography–Mass Spectrometry and High Performance Liquid Chromatography–Mass Spectrometry for Adrenal Diseases

    Science.gov (United States)

    McDonald, Jeffrey G.; Matthew, Susan

    2012-01-01

    The ability to measure steroid hormone concentrations in blood and urine specimens is central to the diagnosis and proper treatment of adrenal diseases. The traditional approach has been to assay each steroid hormone, precursor, or metabolite using individual aliquots of serum, each with a separate immunoassay. For complex diseases, such as congenital adrenal hyperplasia and adrenocortical cancer, in which the assay of several steroids is essential for management, this approach is time consuming and costly, in addition to using large amounts of serum. Gas chromatography/mass spectrometry profiling of steroid metabolites in urine has been employed for many years but only in a small number of specialized laboratories and suffers from slow throughput. The advent of commercial high-performance liquid chromatography instruments coupled to tandem mass spectrometers offers the potential for medium- to high-throughput profiling of serum steroids using small quantities of sample. Here, we review the physical principles of mass spectrometry, the instrumentation used for these techniques, the terminology used in this field and applications to steroid analysis. PMID:22170384

  7. Next-generation technologies for spatial proteomics: Integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis.

    Science.gov (United States)

    Spraggins, Jeffrey M; Rizzo, David G; Moore, Jessica L; Noto, Michael J; Skaar, Eric P; Caprioli, Richard M

    2016-06-01

    MALDI imaging mass spectrometry is a powerful analytical tool enabling the visualization of biomolecules in tissue. However, there are unique challenges associated with protein imaging experiments including the need for higher spatial resolution capabilities, improved image acquisition rates, and better molecular specificity. Here we demonstrate the capabilities of ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR IMS platforms as they relate to these challenges. High spatial resolution MALDI-TOF protein images of rat brain tissue and cystic fibrosis lung tissue were acquired at image acquisition rates >25 pixels/s. Structures as small as 50 μm were spatially resolved and proteins associated with host immune response were observed in cystic fibrosis lung tissue. Ultra-high speed MALDI-TOF enables unique applications including megapixel molecular imaging as demonstrated for lipid analysis of cystic fibrosis lung tissue. Additionally, imaging experiments using MALDI FTICR IMS were shown to produce data with high mass accuracy (z 5000) for proteins up to ∼20 kDa. Analysis of clear cell renal cell carcinoma using MALDI FTICR IMS identified specific proteins localized to healthy tissue regions, within the tumor, and also in areas of increased vascularization around the tumor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Differential Rapid Screening of Phytochemicals by Leaf Spray Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Thomas; Graham Cooks, R. [Univ. of Innsbruck, Innsbruck (Austria)

    2014-03-15

    Ambient ionization can be achieved by generating an electrospray directly from plant tissue ('leaf spray'). The resulting mass spectra are characteristic of ionizable phytochemicals in the plant material. By subtracting the leaf spray spectra recorded from the petals of two hibiscus species H. moscheutos and H. syriacus one gains rapid access to the metabolites that differ most in the two petals. One such compound was identified as the sambubioside of quercitin (or delphinidin) while others are known flavones. Major interest centered on a C{sub 19}H{sub 29}NO{sub 5} compound that occurs only in the large H. moscheutos bloom. Attempts were made to characterize this compound by mass spectrometry alone as a test of such an approach. This showed that the compound is an alkaloid, assigned to the polyhydroxylated pyrrolidine class, and bound via a C{sub 3} hydrocarbon unit to a monoterpene.

  9. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    Science.gov (United States)

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  10. Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples

    NARCIS (Netherlands)

    Horvatovich, Peter; Hoekman, Berend; Govorukhina, Natalia; Bischoff, Rainer

    Multidimensional chromatography coupled to mass spectrometry (LC(n)-MS) provides more separation power and an extended measured dynamic concentration range to analyse complex proteomics samples than one dimensional liquid chromatography coupled to mass spectrometry (1D-LC-MS). This review gives an

  11. Boundaries of mass resolution in native mass spectrometry.

    Science.gov (United States)

    Lössl, Philip; Snijder, Joost; Heck, Albert J R

    2014-06-01

    Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)-protein interactions, to nanomachineries such as the proteasome and ribosome, to even virus assembly. In native MS, ions attain high m/z values, requiring special mass analyzers for their detection. Depending on the particular mass analyzer used, instrumental mass resolution does often decrease at higher m/z but can still be above a couple of thousand at m/z 5000. However, the mass resolving power obtained on charge states of protein complexes in this m/z region is experimentally found to remain well below the inherent instrument resolution of the mass analyzers employed. Here, we inquire into reasons for this discrepancy and ask how native MS would benefit from higher instrumental mass resolution. To answer this question, we discuss advantages and shortcomings of mass analyzers used to study intact biomolecules and biomolecular complexes in their native state, and we review which other factors determine mass resolving power in native MS analyses. Recent examples from the literature are given to illustrate the current status and limitations.

  12. Correlation analysis of measurement result between accelerator mass spectrometry and gamma counter

    International Nuclear Information System (INIS)

    Minamimoto, Ryogo; Cheng, C.; Oka, Takashi; Inoue, Tomio; Hamabe, Yoshimi; Shimoda, Marika

    2010-01-01

    The guidelines for microdosing in clinical trials were published in Japan in 2008 following the guidelines of the European Medicines Agency and the Food and Drug Administration. They recommend utilizing accelerator mass spectrometry (AMS) and positron emission tomography as candidates for monitoring drug metabolites in preclinical studies. We correlate the two methods by measuring appropriately labeled tissue samples from various mouse organs using both AMS and gamma counter. First, we measured the 14 C background levels in mouse organs using the AMS system. We then clarified the relationship between AMS and gamma counter by simultaneously administering 14 C-2-fluoro-2-deoxyglucose ( 14 C-FDG) and 18 F-2-fluoro-2-deoxyglucose ( 18 F-FDG). Tissue distribution was examined after 30 min, 1 h, 2 h and 4 h using the AMS system for 14 C-FDG and gamma counter for 18 F-FDG. Background 14 C levels were subtracted from the data obtained with radiotracer administration. The background 14 C concentration differed with tissue type measured. Background 14 C concentration in mouse liver was higher than in other organs, and was approximately 1.5-fold that in blood. The correlation coefficient (r) of the measurements between AMS ( 14 C-FDG) and gamma counter ( 18 F-FDG) was high in both normal (0.99 in blood, 0.91 in brain, 0.61 in liver and 0.78 in kidney) and tumor-bearing mice (0.95 in blood and 0.99 in tumor). The clearance profile of 18 F-FDG was nearly identical to that of 14 C-FDG measured with AMS. Accelerator mass spectrometry analysis has an excellent correlation with biodistribution measurements using gamma counter. Our results suggest that the combination of AMS and positron emission tomography (PET) can act as a complementary approach to accelerate drug development. (author)

  13. High-Performance Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Vestal, Marvin L.

    1984-01-01

    Reviews techniques for online coupling of high-performance liquid chromatography with mass spectrometry, emphasizing those suitable for application to nonvolatile samples. Also summarizes the present status, strengths, and weaknesses of various techniques and discusses potential applications of recently developed techniques for combined liquid…

  14. Symposium on fast atom and ion induced mass spectrometry of nonvolatile organic solids

    International Nuclear Information System (INIS)

    McNeal, C.J.

    1982-01-01

    The mechanisms of molecular and fragment ion production and the various parameters affecting ion yields were discussed by 6 invited speakers from Europe, Canada, and the US at this symposium. The work reported was almost equally divided between that using low-energy (keV) primary ion (or atom) beams, e.g. fast atom bombardment mass spectrometry (FABMS) and secondary ion mass spectrometry (SIMS) and that using high energy (MeV) particles, e.g. heavy ion induced mass spectrometry (HIIDMS) and 252 Cf-plasma desorption mass spectrometry ( 252 Cf-PDMS). Both theoretical foundations and observed experimental results for both techniques are included

  15. Technical and economical aspects of mass spectrometry in food and agricultural industries

    International Nuclear Information System (INIS)

    Cornu, Ayme

    1975-01-01

    Mass spectrometry proved to be very useful for solving analytical problems in food and agricultural industries. Its essential properties are: high resolution mass spectrometry allows to find the molecular structure of an isolated compound, even with a very small sample; associated with on line gas chromatographic separation, it gives the possibility to identify a great number of components in a small complex extract; isotope determinations by mass spectrometry give an essential contribution to follow kinetic mechanisms of formation of natural molecules in plant-growing, photosynthesis, fertilization, ..., leading to identification of the origin of foods and beverages. The economical aspect of mass spectrometry is characterized by the cost of investment in instrumentation and the necessary high level of competence of the technicians [fr

  16. Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism.

    Science.gov (United States)

    Steinhauser, Matthew L; Bailey, Andrew P; Senyo, Samuel E; Guillermier, Christelle; Perlstein, Todd S; Gould, Alex P; Lee, Richard T; Lechene, Claude P

    2012-01-15

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter, but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with submicrometre resolution. Here we apply MIMS to diverse organisms, including Drosophila, mice and humans. We test the 'immortal strand hypothesis', which predicts that during asymmetric stem cell division chromosomes containing older template DNA are segregated to the daughter destined to remain a stem cell, thus insuring lifetime genetic stability. After labelling mice with (15)N-thymidine from gestation until post-natal week 8, we find no (15)N label retention by dividing small intestinal crypt cells after a four-week chase. In adult mice administered (15)N-thymidine pulse-chase, we find that proliferating crypt cells dilute the (15)N label, consistent with random strand segregation. We demonstrate the broad utility of MIMS with proof-of-principle studies of lipid turnover in Drosophila and translation to the human haematopoietic system. These studies show that MIMS provides high-resolution quantification of stable isotope labels that cannot be obtained using other techniques and that is broadly applicable to biological and medical research.

  17. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  18. Time‐of‐flight secondary ion mass spectrometry imaging of biological samples with delayed extraction for high mass and high spatial resolutions

    Science.gov (United States)

    Vanbellingen, Quentin P.; Elie, Nicolas; Eller, Michael J.; Della‐Negra, Serge; Touboul, David

    2015-01-01

    Rationale In Time‐of‐Flight Secondary Ion Mass Spectrometry (TOF‐SIMS), pulsed and focused primary ion beams enable mass spectrometry imaging, a method which is particularly useful to map various small molecules such as lipids at the surface of biological samples. When using TOF‐SIMS instruments, the focusing modes of the primary ion beam delivered by liquid metal ion guns can provide either a mass resolution of several thousand or a sub‐µm lateral resolution, but the combination of both is generally not possible. Methods With a TOF‐SIMS setup, a delayed extraction applied to secondary ions has been studied extensively on rat cerebellum sections in order to compensate for the effect of long primary ion bunches. Results The use of a delayed extraction has been proven to be an efficient solution leading to unique features, i.e. a mass resolution up to 10000 at m/z 385.4 combined with a lateral resolution of about 400 nm. Simulations of ion trajectories confirm the experimental determination of optimal delayed extraction and allow understanding of the behavior of ions as a function of their mass‐to‐charge ratio. Conclusions Although the use of a delayed extraction has been well known for many years and is very popular in MALDI, it is much less used in TOF‐SIMS. Its full characterization now enables secondary ion images to be recorded in a single run with a submicron spatial resolution and with a mass resolution of several thousand. This improvement is very useful when analyzing lipids on tissue sections, or rare, precious, or very small size samples. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26395603

  19. The Effect of Collimating Lens Focusing on Laser Beam Shape in Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS).

    Science.gov (United States)

    O'Rourke, Matthew B; Raymond, Benjamin B A; Djordjevic, Steven P; Padula, Matthew P

    2018-03-01

    Tissue imaging using matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a well-established technique that, in recent years, has seen wider adoption and novel application. Applications such imaging mass spectrometry (IMS) and biotyping are beginning to gain greater exposure and use; however, with limitations in optimization methods, producing the best result often relies on the ability to customize the physical characteristics of the instrumentation, a task that is challenging for most mass spectrometry laboratories. With this in mind, we have described the effect of making simple adjustments to the laser optics at the final collimating lens area, to adjust the laser beam size and shape in order to allow greater customization of the instrument for improving techniques such as IMS. We have therefore been able to demonstrate that improvements can be made without requiring the help of an electrical engineer or external funding in a way that only costs a small amount of time. Graphical Abstract ᅟ.

  20. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents

    International Nuclear Information System (INIS)

    Lebedev, Albert T.

    2005-01-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10 -21 ), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents

  1. Transmission Geometry Laser Ablation into a Non-Contact Liquid Vortex Capture Probe for Mass Spectrometry Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikova, Olga S [ORNL; Bhandari, Deepak [ORNL; Lorenz, Matthias [ORNL; Van Berkel, Gary J [ORNL

    2014-01-01

    RATIONALE: Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. Methods: A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) setup to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. Results: The estimated capture efficiency of laser ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~ 2.8 mm2) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution of not only particulates, but also gaseous products of the laser ablation. The use of DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 m was demonstrated for stamped ink on DIRECTOR slides based on the ability to distinguish features present both in the optical and in the

  2. Interpretation of Tandem Mass Spectrometry (MSMS) Spectra for Peptide Analysis

    DEFF Research Database (Denmark)

    Hjernø, Karin; Højrup, Peter

    2015-01-01

    The aim of this chapter is to give a short introduction to peptide analysis by mass spectrometry (MS) and interpretation of fragment mass spectra. Through examples and guidelines we demonstrate how to understand and validate search results and how to perform de novo sequencing based on the often...... very complex fragmentation pattern obtained by tandem mass spectrometry (also referred to as MSMS). The focus is on simple rules for interpretation of MSMS spectra of tryptic as well as non-tryptic peptides....

  3. The expression profile of phosphatidylinositol in high spatial resolution imaging mass spectrometry as a potential biomarker for prostate cancer.

    Directory of Open Access Journals (Sweden)

    Takayuki Goto

    Full Text Available High-resolution matrix-assisted laser desorption/ionization imaging mass spectrometry (HR-MALDI-IMS is an emerging application for the comprehensive and detailed analysis of the spatial distribution of ionized molecules in situ on tissue slides. HR-MALDI-IMS in negative mode in a mass range of m/z 500-1000 was performed on optimal cutting temperature (OCT compound-embedded human prostate tissue samples obtained from patients with prostate cancer at the time of radical prostatectomy. HR-MALDI-IMS analysis of the 14 samples in the discovery set identified 26 molecules as highly expressed in the prostate. Tandem mass spectrometry (MS/MS showed that these molecules included 14 phosphatidylinositols (PIs, 3 phosphatidylethanolamines (PEs and 3 phosphatidic acids (PAs. Among the PIs, the expression of PI(18:0/18:1, PI(18:0/20:3 and PI(18:0/20:2 were significantly higher in cancer tissue than in benign epithelium. A biomarker algorithm for prostate cancer was formulated by analyzing the expression profiles of PIs in cancer tissue and benign epithelium of the discovery set using orthogonal partial least squares discriminant analysis (OPLS-DA. The sensitivity and specificity of this algorithm for prostate cancer diagnosis in the 24 validation set samples were 87.5 and 91.7%, respectively. In conclusion, HR-MALDI-IMS identified several PIs as being more highly expressed in prostate cancer than benign prostate epithelium. These differences in PI expression profiles may serve as a novel diagnostic tool for prostate cancer.

  4. Plutonium determination in urine by techniques of mass spectrometry

    International Nuclear Information System (INIS)

    Hernandez M, H.; Yllera de Ll, A.

    2013-10-01

    The objective of this study was to develop an analytic method for quantification and plutonium reappraisal in plane tables of alpha spectrometry be means of the mass spectrometry technique of high resolution with plasma source inductively coupled and desolvator Aridus (Aridus-Hr-Icp-Ms) and mass spectrometry with accelerator (AMS). The obtained results were, the recovery percentage of Pu in the plane table was of ∼ 90% and activity minimum detectable obtained with Aridus-Hr-Icp-Ms and AMS was of ∼ 3 and ∼ 0.4 f g of 239 Pu, respectively. Conclusion, the results demonstrate the aptitude of the Aridus-Hr-Icp-Ms and AMS techniques in the Pu reappraisal in plane tables with bigger speed and precision, improving the values notably of the activity minimum detectable that can be obtained with the alpha spectrometry (∼ 50 f g of 239 Pu). (author)

  5. Detection of high molecular weight proteins by MALDI imaging mass spectrometry.

    Science.gov (United States)

    Mainini, Veronica; Bovo, Giorgio; Chinello, Clizia; Gianazza, Erica; Grasso, Marco; Cattoretti, Giorgio; Magni, Fulvio

    2013-06-01

    MALDI imaging mass spectrometry (IMS) is a unique technology to explore the spatial distribution of biomolecules directly on tissues. It allows the in situ investigation of a large number of small proteins and peptides. Detection of high molecular weight proteins through MALDI IMS still represents an important challenge, as it would allow the direct investigation of the distribution of more proteins involved in biological processes, such as cytokines, enzymes, neuropeptide precursors and receptors. In this work we compare the traditional method performed with sinapinic acid with a comparable protocol using ferulic acid as the matrix. Data show a remarkable increase of signal acquisition in the mass range of 20k to 150k Th. Moreover, we report molecular images of biomolecules above 70k Th, demonstrating the possibility of expanding the application of this technology both in clinical investigations and basic science.

  6. Surface ionization mass spectrometry of opiates

    International Nuclear Information System (INIS)

    Usmanov, D.T.

    2009-07-01

    Key words: surface ionization, adsorption, heterogeneous reactions, surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy, thermoemitter, opiates, extracts of biosamples. Subjects of study. The mass - spectrometric study of thermal - ion emission: surface ionization of opiates by on the surface of oxidized refractory metals. Purpose of work is to establish the regularities of surface ionization (SI) of multi-atomic molecule opiates and their mixtures develop the scientific base of SI methods for high sensitive and selective detection and analysis of these substances in the different objects, including biosamples. Methods of study: surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy. The results obtained and their novelty. For the first time, SI of molecule opiates on the oxidized tungsten surface has been studied and their SI mass-spectra and temperature dependences of ion currents have been obtained, the characteristic heterogeneous reactions of an adsorbed molecules and the channels of monomolecular decays vibrationally-excited ions on their way in mass-spectrometry have been revealed, sublimation energy has been defined, the activation energy of E act , of these decays has been estimated for given period of time. Additivity of the SI mass-spectra of opiate mixtures of has been established under conditions of joint opiate adsorption. High selectivity of SI allows the extracts of biosamples to be analyzed without their preliminary chromatographic separation. The opiates are ionized by SI with high efficiency (from 34 C/mol to 112 C/mol), which provides high sensitivity of opiate detection by SI/MS and APTDSIS methods from - 10 -11 g in the samples under analysis. Practical value. The results of these studies create the scientific base for novel SI methods of high sensitive detection and analysis of the trace amounts of opiates in complicated mixtures, including biosamples without their preliminary

  7. Analysis of chirality by femtosecond laser ionization mass spectrometry.

    Science.gov (United States)

    Horsch, Philipp; Urbasch, Gunter; Weitzel, Karl-Michael

    2012-09-01

    Recent progress in the field of chirality analysis employing laser ionization mass spectrometry is reviewed. Emphasis is given to femtosecond (fs) laser ionization work from the author's group. We begin by reviewing fundamental aspects of determining circular dichroism (CD) in fs-laser ionization mass spectrometry (fs-LIMS) discussing an example from the literature (resonant fs-LIMS of 3-methylcyclopentanone). Second, we present new data indicating CD in non-resonant fs-LIMS of propylene oxide. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.

  8. ISMAS international discussion meet on elemental mass spectrometry in health and environmental sciences

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Jaison, P.G.; Telmore, V.M.

    2011-04-01

    Mass spectrometry is an indispensable analytical tool associated with almost all branches of science including biology, chemistry, earth sciences, nuclear science, physics, etc. The technique holds tremendous potential owing to its high sensitivity, selectivity and its ability to measure small changes in the isotopic abundances of different elements. Innovations in mass spectrometry instrumentation are further widening the scope by making it possible to handle very large bio-molecules and polymers. New techniques for mass analysis, novel designs for ionization and developments in electronic accessories have contributed to elevate mass spectrometry to a position of prime importance in research. Development in mass spectrometry has revolutionized the study of micro-nutrient metabolism, of biologically active compounds and for drug discovery in pharmaceutical research. Elemental mass spectrometry is making major contributions to food toxicology, food forensics, and study of metabolism of nutrient minerals including Fe, Zn, Ca, Cu and Se. The area of speciation analysis using hyphenated techniques as well as electro-spray ionization have undergone a phenomenal evolution and development in the recent past. Impressive progress in mass spectrometry towards lower detection limits, higher resolution and molecule-specific detection at trace levels in complex matrices allows new frontiers to be crossed. Papers relevant to INIS are indexed separately

  9. Mass Spectrometry Market: Value chain and stakeholder analysis up to 2024

    OpenAIRE

    Smita Deshmukh

    2016-01-01

    Transparency Market Research Reports incorporated a definite business overview and investigation inclines on "Mass Spectrometry Market". This report likewise incorporates more illumination about fundamental review of the business including definitions, requisitions and worldwide business sector industry structure. Read Full Report: http://www.transparencymarketresearch.com/mass-spectrometry-market.html

  10. Measurement of Endogenous versus Exogenous Formaldehyde-Induced DNA-Protein Crosslinks in Animal Tissues by Stable Isotope Labeling and Ultrasensitive Mass Spectrometry.

    Science.gov (United States)

    Lai, Yongquan; Yu, Rui; Hartwell, Hadley J; Moeller, Benjamin C; Bodnar, Wanda M; Swenberg, James A

    2016-05-01

    DNA-protein crosslinks (DPC) arise from a wide range of endogenous and exogenous chemicals, such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Because of their bulky nature, DPCs pose severe threats to genome stability, but previous methods to measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and exogenous sources of chemical. In this study, we developed methods that provide accurate and distinct measurements of both exogenous and endogenous DPCs in a structurally specific manner. We exposed experimental animals to stable isotope-labeled formaldehyde ([(13)CD2]-formaldehyde) by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) and exogenous ((13)CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in nasal respiratory tissues but were absent in tissues distant to the site of contact. This observation, together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues examined, suggests that endogenous DPCs may be responsible for increased risks of bone marrow toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for the persistence of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a new perspective for the potential health risks inflicted by endogenous formaldehyde and may inform improved disease prevention and treatment strategies. Cancer Res; 76(9); 2652-61. ©2016 AACR. ©2016 American Association for Cancer Research.

  11. Mass Spectrometry Imaging of Drugs of Abuse in Hair.

    Science.gov (United States)

    Flinders, Bryn; Cuypers, Eva; Porta, Tiffany; Varesio, Emmanuel; Hopfgartner, Gérard; Heeren, Ron M A

    2017-01-01

    Hair testing is a powerful tool routinely used for the detection of drugs of abuse. The analysis of hair is highly advantageous as it can provide prolonged drug detectability versus that in biological fluids and chronological information about drug intake based on the average growth of hair. However, current methodology requires large amounts of hair samples and involves complex time-consuming sample preparation followed by gas or liquid chromatography coupled with mass spectrometry. Mass spectrometry imaging is increasingly being used for the analysis of single hair samples, as it provides more accurate and visual chronological information in single hair samples.Here, two methods for the preparation of single hair samples for mass spectrometry imaging are presented.The first uses an in-house built cutting apparatus to prepare longitudinal sections, the second is a method for embedding and cryo-sectioning hair samples in order to prepare cross-sections all along the hair sample.

  12. Analytical applications of resonance ionization mass spectrometry (RIMS)

    International Nuclear Information System (INIS)

    Fassett, J.D.; Travis, J.C.

    1988-01-01

    A perspective on the role of resonance ionization mass spectrometry (RIMS) in the field of analytical chemistry is presented. RIMS provides new, powerful, and complementary capabilities relative to traditional methods of inorganic mass spectrometry. Much of the initial work in RIMS has been to illustrate these capabilities and define the potential of RIMS in the generalized field of chemical analysis. Three areas of application are reviewed here: (1) noble gas measurements; (2) materials analysis using isotope dilution (IDMS); and, (3) solids analysis using direct sampling. The role of RIMS is discussed relative to the more traditional mass spectrometric methods of analysis in these areas. The applications are meant to illustrate the present state-of-the-art as well as point to the future state-of-the-art of RIMS in chemical analysis. (author)

  13. Analysis of organic compounds by secondary neutral mass spectrometry (SNMS) and secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    Ewinger, H.P.

    1993-05-01

    This study is about the use of secondary neutral mass spectrometry (SNMS) and secondary ion mass spectrometry (SIMS) as analytical techniques with depth resolution in determining organic components in environmental solid microparticles. The first application of plasma SNMS to organic compounds revealed the spectra to be composed mainly of signals from the atoms of all participating elements, such as C, H, O, N, S, P, and Cl. In addition, signals produced by multi-atomic clusters can be detected, such as CH, C 2 , CH 2 , C 2 H, and C 3 , as well as signals indicating the presence of organic compounds with hetero elements, such as OH, NH, and CN. Their intensity decreases very markedly with increasing numbers of atoms. Among the signals from bi-atomic clusters, those coming from elements with large mass differences are most intense. The use of plasma SNMS with organic compounds has shown that, except for spurious chemical reactions induced by ion bombardment and photodesorption by the photons of the plasma, it is possible to analyze with resolution in depth, elements of organic solids. A more detailed molecular characterization of organic compounds is possible by means of SIMS on the basis of multi-atomic fragments and by comparison with suitable signal patterns. (orig./BBR) [de

  14. Impact of automation on mass spectrometry.

    Science.gov (United States)

    Zhang, Yan Victoria; Rockwood, Alan

    2015-10-23

    Mass spectrometry coupled to liquid chromatography (LC-MS and LC-MS/MS) is an analytical technique that has rapidly grown in popularity in clinical practice. In contrast to traditional technology, mass spectrometry is superior in many respects including resolution, specificity, multiplex capability and has the ability to measure analytes in various matrices. Despite these advantages, LC-MS/MS remains high cost, labor intensive and has limited throughput. This specialized technology requires highly trained personnel and therefore has largely been limited to large institutions, academic organizations and reference laboratories. Advances in automation will be paramount to break through this bottleneck and increase its appeal for routine use. This article reviews these challenges, shares perspectives on essential features for LC-MS/MS total automation and proposes a step-wise and incremental approach to achieve total automation through reducing human intervention, increasing throughput and eventually integrating the LC-MS/MS system into the automated clinical laboratory operations. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Mass Spectrometry on Future Mars Landers

    Science.gov (United States)

    Brinckerhoff, W. B.; Mahaffy, P. R.

    2011-01-01

    Mass spectrometry investigations on the 2011 Mars Science Laboratory (MSL) and the 2018 ExoMars missions will address core science objectives related to the potential habitability of their landing site environments and more generally the near-surface organic inventory of Mars. The analysis of complex solid samples by mass spectrometry is a well-known approach that can provide a broad and sensitive survey of organic and inorganic compounds as well as supportive data for mineralogical analysis. The science value of such compositional information is maximized when one appreciates the particular opportunities and limitations of in situ analysis with resource-constrained instrumentation in the context of a complete science payload and applied to materials found in a particular environment. The Sample Analysis at Mars (SAM) investigation on MSL and the Mars Organic Molecule Analyzer (MOMA) investigation on ExoMars will thus benefit from and inform broad-based analog field site work linked to the Mars environments where such analysis will occur.

  16. Helium-3 mass spectrometry for low-level tritium analysis of environmental samples

    International Nuclear Information System (INIS)

    Surano, K.A.; Hudson, G.B.; Failor, R.A.; Sims, J.M.; Holland, R.C.; MacLean, S.C.; Garrison, J.C.

    1991-04-01

    Helium-3 ( 3 He) mass spectrometry for the analysis of low-level tritium ( 3 H) concentrations in environmental sample matrices was compared with conventional low-level β-decay counting methods. The mass-spectrometry method compared favorably, equaling or surpassing conventional decay-counting methods with respect to most criteria. Additional research and method refinements may make 3 He mass spectrometry the method of choice for routine, low-level to very-low-level 3 H measurements in a wide variety of environmental samples in the future

  17. Determination of 5-fluorouracil in plasma with HPLC-tandem mass spectrometry

    NARCIS (Netherlands)

    van Kuilenburg, A. B. P.; van Lenthe, H.; Maring, J. G.; van Gennip, A. H.

    2006-01-01

    In this article, we describe a fast and specific method to measure 5FU with HPLC tandem-mass spectrometry. Reversed-phase HPLC was combined with electrospray ionization tandem mass spectrometry and detection was performed by multiple-reaction monitoring. Stable-isotope-labeled 5FU (1,3-15N2-5FU) was

  18. Proceedings of twelfth ISMAS symposium cum workshop on mass spectrometry

    International Nuclear Information System (INIS)

    Alamelu, D.; Jaison, P.G.; Aggarwal, S.K.

    2007-03-01

    Mass Spectrometry is an important analytical tool and has encompassed almost all branches of science and technology including Agricultural, biology, Chemistry, Earth sciences, environment, Forensic Science, Medical Sciences, Hydrology, Nuclear Technology, Oceanography, Physics etc. Recent advancements in the instrumentation of Mass Spectrometry have further strengthened its role for various applications. It is indeed a matter of great pleasure to present this special Issue of ISMAS Bulletin which is brought out on the occasion of the 12th ISMAS Symposium cum Workshop on Mass spectrometry (12th ISMAS-WS 2007) being held at Cidade-de-Goa, Dona Paula, Goa from March 25 to 30, 2007 in association with National Institute of Oceanography, Goa. This Symposium cum Workshop is co-sponsored by Scientific Departments of Government of India. Papers relevant to INIS are indexed separately

  19. Impact of comprehensive two-dimensional gas chromatography with mass spectrometry on food analysis.

    Science.gov (United States)

    Tranchida, Peter Q; Purcaro, Giorgia; Maimone, Mariarosa; Mondello, Luigi

    2016-01-01

    Comprehensive two-dimensional gas chromatography with mass spectrometry has been on the separation-science scene for about 15 years. This three-dimensional method has made a great positive impact on various fields of research, and among these that related to food analysis is certainly at the forefront. The present critical review is based on the use of comprehensive two-dimensional gas chromatography with mass spectrometry in the untargeted (general qualitative profiling and fingerprinting) and targeted analysis of food volatiles; attention is focused not only on its potential in such applications, but also on how recent advances in comprehensive two-dimensional gas chromatography with mass spectrometry will potentially be important for food analysis. Additionally, emphasis is devoted to the many instances in which straightforward gas chromatography with mass spectrometry is a sufficiently-powerful analytical tool. Finally, possible future scenarios in the comprehensive two-dimensional gas chromatography with mass spectrometry food analysis field are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Native Mass Spectrometry in Fragment-Based Drug Discovery

    Directory of Open Access Journals (Sweden)

    Liliana Pedro

    2016-07-01

    Full Text Available The advent of native mass spectrometry (MS in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein–ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD. Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.

  1. Native Mass Spectrometry in Fragment-Based Drug Discovery.

    Science.gov (United States)

    Pedro, Liliana; Quinn, Ronald J

    2016-07-28

    The advent of native mass spectrometry (MS) in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein-ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD). Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.

  2. A MASSive Laboratory Tour. An Interactive Mass Spectrometry Outreach Activity for Children

    Science.gov (United States)

    Jungmann, Julia H.; Mascini, Nadine E.; Kiss, Andras; Smith, Donald F.; Klinkert, Ivo; Eijkel, Gert B.; Duursma, Marc C.; Cillero Pastor, Berta; Chughtai, Kamila; Chughtai, Sanaullah; Heeren, Ron M. A.

    2013-07-01

    It is imperative to fascinate young children at an early stage in their education for the analytical sciences. The exposure of the public to mass spectrometry presently increases rapidly through the common media. Outreach activities can take advantage of this exposure and employ mass spectrometry as an exquisite example of an analytical science in which children can be fascinated. The presented teaching modules introduce children to mass spectrometry and give them the opportunity to experience a modern research laboratory. The modules are highly adaptable and can be applied to young children from the age of 6 to 14 y. In an interactive tour, the students explore three major scientific concepts related to mass spectrometry; the building blocks of matter, charged particle manipulation by electrostatic fields, and analyte identification by mass analysis. Also, the students carry out a mass spectrometry experiment and learn to interpret the resulting mass spectra. The multistage, inquiry-based tour contains flexible methods, which teach the students current-day research techniques and possible applications to real research topics. Besides the scientific concepts, laboratory safety and hygiene are stressed and the students are enthused for the analytical sciences by participating in "hands-on" work. The presented modules have repeatedly been successfully employed during laboratory open days. They are also found to be extremely suitable for (early) high school science classes during laboratory visit-focused field trips.

  3. The origins of enhanced activity in factor VIIa analogs and the interplay between key allosteric sites revealed by hydrogen exchange mass spectrometry

    DEFF Research Database (Denmark)

    Rand, Kasper D; Andersen, Mette D; Olsen, Ole H

    2008-01-01

    Factor VIIa (FVIIa) circulates in the blood in a zymogen-like state. Only upon association with membrane-bound tissue factor (TF) at the site of vascular injury does FVIIa become active and able to initiate blood coagulation. Here we used hydrogen exchange monitored by mass spectrometry to invest......Factor VIIa (FVIIa) circulates in the blood in a zymogen-like state. Only upon association with membrane-bound tissue factor (TF) at the site of vascular injury does FVIIa become active and able to initiate blood coagulation. Here we used hydrogen exchange monitored by mass spectrometry...... to investigate the conformational effects of site-directed mutagenesis at key positions in FVIIa and the origins of enhanced intrinsic activity of FVIIa analogs. The differences in hydrogen exchange of two highly active variants, FVIIa(DVQ) and FVIIa(VEAY), imply that enhanced catalytic efficiency was attained...

  4. Stable isotope mass spectrometry in petroleum exploration

    International Nuclear Information System (INIS)

    Mathur, Manju

    1997-01-01

    The stable isotope mass spectrometry plays an important role to evaluate the stable isotopic composition of hydrocarbons. The isotopic ratios of certain elements in petroleum samples reflect certain characteristics which are useful for petroleum exploration

  5. Tissue imaging with a stigmatic mass microscope using laser desorption/ionization

    Science.gov (United States)

    Awazu, Kunio; Hazama, Hisanao; Hamanaka, Tomonori; Aoki, Jun; Toyoda, Michisato; Naito, Yasuhide

    2012-03-01

    A novel stigmatic mass microscope using laser desorption/ionization and a multi-turn time-of-flight mass spectrometer, MULTUM-IMG, has been developed. Stigmatic ion images of crystal violet masked by a fine square mesh grid with a 12.7 μm pitch were clearly observed, and the estimated spatial resolution was about 3 μm in the linear mode with a 20-fold ion optical magnification. Tissue sections of a brain and eyes of a mouse stained with crystal violet and methylene blue were observed in the linear mode, and the stigmatic total ion images of crystal violet and methylene blue agreed well with the optical photomicrograph of the same sections. Especially, the fine structure in the cornea tissue was clearly observed with a spatial resolution in the range of micrometers. Although the total measurement time of the stigmatic ion image for the whole-eye section was about 59 minutes using a laser with a 10 Hz repetition rate, the measurement time could be reduced to about 35 s using a laser with a 1 kHz repetition rate and automation of measurements. The stigmatic mass microscope developed in this research should be suitable for high-spatial resolution and high-throughput imaging mass spectrometry for pathology, pharmacokinetics, and so on.

  6. Fast DNA analysis by laser mass spectrometry for human genome analysis

    International Nuclear Information System (INIS)

    Tang, K.; Taranenko, N. I.; Allman, S. L.; Chang, L. Y.; Chen, C. H.

    1995-01-01

    Fast DNA sequencing by laser mass spectrometry is possible if the following 3 criteria are met: (1) Size of DNA fragment should be greater than 300 nucleotides. (2) Enough sensitivity to detect DNA produce from polymerases chain reactins (PCR). (3) Higher resolution of mass spectr. So far, the firt 2 criteria are met: If the resolution can be significantly improve, fast DNA sequencing by laser mass spectrometry weil be a reality in the near feature

  7. Pyrolysis - gas chromatography - mass spectrometry of lignins

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F; Saiz-Jimenez, C; Gonzalez-Vila, F J

    1979-01-01

    Milled wood lignins from spruce, beech and bamboo were pyrolysed. The high-boiling products of pyrolysis were studied by GLC and mass spectrometry. The forty-three products identified provide information on the structural units of lignin.

  8. Toward single-cell analysis by plume collimation in laser ablation electrospray ionization mass spectrometry.

    Science.gov (United States)

    Stolee, Jessica A; Vertes, Akos

    2013-04-02

    Ambient ionization methods for mass spectrometry have enabled the in situ and in vivo analysis of biological tissues and cells. When an etched optical fiber is used to deliver laser energy to a sample in laser ablation electrospray ionization (LAESI) mass spectrometry, the analysis of large single cells becomes possible. However, because in this arrangement the ablation plume expands in three dimensions, only a small portion of it is ionized by the electrospray. Here we show that sample ablation within a capillary helps to confine the radial expansion of the plume. Plume collimation, due to the altered expansion dynamics, leads to greater interaction with the electrospray plume resulting in increased ionization efficiency, reduced limit of detection (by a factor of ~13, reaching 600 amol for verapamil), and extended dynamic range (6 orders of magnitude) compared to conventional LAESI. This enhanced sensitivity enables the analysis of a range of metabolites from small cell populations and single cells in the ambient environment. This technique has the potential to be integrated with flow cytometry for high-throughput metabolite analysis of sorted cells.

  9. Mass spectrometry. [review of techniques

    Science.gov (United States)

    Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.

    1976-01-01

    Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.

  10. LILBID-mass spectrometry of the mitochondrial preprotein translocase TOM

    International Nuclear Information System (INIS)

    Mager, Frauke; Lintzel, Julia; Nussberger, Stephan; Sokolova, Lucie; Brutschy, Bernhard

    2010-01-01

    In the present work we applied a novel mass spectrometry method termed laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS) to the outer mitochondrial membrane protein translocon TOM to analyze its subunit composition and stoichiometry. With TOM core complex, purified at high pH, we demonstrate that a TOM core complex of Neurospora crassa is composed of at least two Tom40 and Tom22 molecules, respectively, and more than five small Tom subunits between 5.5 and 6.4 kDa. We show that the multiprotein complex has a total molecular mass higher than 170 depending on the number of Tom5, Tom6 and Tom7 molecules bound.

  11. LILBID-mass spectrometry of the mitochondrial preprotein translocase TOM

    Science.gov (United States)

    Mager, Frauke; Sokolova, Lucie; Lintzel, Julia; Brutschy, Bernhard; Nussberger, Stephan

    2010-11-01

    In the present work we applied a novel mass spectrometry method termed laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS) to the outer mitochondrial membrane protein translocon TOM to analyze its subunit composition and stoichiometry. With TOM core complex, purified at high pH, we demonstrate that a TOM core complex of Neurospora crassa is composed of at least two Tom40 and Tom22 molecules, respectively, and more than five small Tom subunits between 5.5 and 6.4 kDa. We show that the multiprotein complex has a total molecular mass higher than 170 depending on the number of Tom5, Tom6 and Tom7 molecules bound.

  12. Laser desorption mass spectrometry for biomolecule detection and its applications

    Science.gov (United States)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  13. Laser desorption mass spectrometry for biomolecule detection and its applications

    International Nuclear Information System (INIS)

    Winston Chen, C.H.; Allman, S.L.; Sammartano, L.J.; Isola, N.R.

    2001-01-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications

  14. Clinical review: improving the measurement of serum thyroglobulin with mass spectrometry.

    Science.gov (United States)

    Hoofnagle, Andrew N; Roth, Mara Y

    2013-04-01

    Serum thyroglobulin (Tg) measurements are central to the management of patients treated for differentiated thyroid carcinoma. For decades, Tg measurements have relied on methods that are subject to interference by commonly found substances in human serum and plasma, such as Tg autoantibodies. As a result, many patients need additional imaging studies to rule out cancer persistence or recurrence that could be avoided with more sensitive and specific testing methods. The aims of this review are to: 1) briefly review the interferences common to Tg immunoassays; 2) introduce readers to liquid chromatography-tandem mass spectrometry as a method for quantifying proteins in human serum/plasma; and 3) discuss the potential benefits and limitations of the method in the quantification of serum Tg. Mass spectrometric methods have traditionally lacked the sensitivity, robustness, and throughput to be useful clinical assays. These methods failed to meet the necessary clinical benchmarks due to the nature of the mass spectrometry workflow and instrumentation. Over the past few years, there have been major advances in reagents, automation, and instrumentation for the quantification of proteins using mass spectrometry. More recently, methods using mass spectrometry to detect and quantify Tg have been developed and are of sufficient quality to be used in the management of patients. Novel serum Tg assays that use mass spectrometry may avoid the issue of autoantibody interference and other problems with currently available immunoassays for Tg. Prospective studies are needed to fully understand the potential benefits of novel Tg assays to patients and care providers.

  15. Atmospheric pressure ionization-tandem mass spectrometry of the phenicol drug family.

    Science.gov (United States)

    Alechaga, Élida; Moyano, Encarnación; Galceran, M Teresa

    2013-11-01

    In this work, the mass spectrometry behaviour of the veterinary drug family of phenicols, including chloramphenicol (CAP) and its related compounds thiamphenicol (TAP), florfenicol (FF) and FF amine (FFA), was studied. Several atmospheric pressure ionization sources, electrospray (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization were compared. In all atmospheric pressure ionization sources, CAP, TAP and FF were ionized in both positive and negative modes; while for the metabolite FFA, only positive ionization was possible. In general, in positive mode, [M + H](+) dominated the mass spectrum for FFA, while the other compounds, CAP, TAP and FF, with lower proton affinity showed intense adducts with species present in the mobile phase. In negative mode, ESI and atmospheric pressure photoionization showed the deprotonated molecule [M-H](-), while atmospheric pressure chemical ionization provided the radical molecular ion by electron capture. All these ions were characterized by tandem mass spectrometry using the combined information obtained by multistage mass spectrometry and high-resolution mass spectrometry in a quadrupole-Orbitrap instrument. In general, the fragmentation occurred via cyclization and losses or fragmentation of the N-(alkyl)acetamide group, and common fragmentation pathways were established for this family of compounds. A new chemical structure for the product ion at m/z 257 for CAP, on the basis of the MS(3) and MS(4) spectra is proposed. Thermally assisted ESI and selected reaction monitoring are proposed for the determination of these compounds by ultra high-performance liquid chromatography coupled to tandem mass spectrometry, achieving instrumental detection limits down to 0.1 pg. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Elucidating rhizosphere processes by mass spectrometry - A review.

    Science.gov (United States)

    Rugova, Ariana; Puschenreiter, Markus; Koellensperger, Gunda; Hann, Stephan

    2017-03-01

    The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Sample processing, protocol, and statistical analysis of the time-of-flight secondary ion mass spectrometry (ToF-SIMS) of protein, cell, and tissue samples.

    Science.gov (United States)

    Barreto, Goncalo; Soininen, Antti; Sillat, Tarvo; Konttinen, Yrjö T; Kaivosoja, Emilia

    2014-01-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is increasingly being used in analysis of biological samples. For example, it has been applied to distinguish healthy and osteoarthritic human cartilage. This chapter discusses ToF-SIMS principle and instrumentation including the three modes of analysis in ToF-SIMS. ToF-SIMS sets certain requirements for the samples to be analyzed; for example, the samples have to be vacuum compatible. Accordingly, sample processing steps for different biological samples, i.e., proteins, cells, frozen and paraffin-embedded tissues and extracellular matrix for the ToF-SIMS are presented. Multivariate analysis of the ToF-SIMS data and the necessary data preprocessing steps (peak selection, data normalization, mean-centering, and scaling and transformation) are discussed in this chapter.

  18. Tissue-based quantitative proteome analysis of human hepatocellular carcinoma using tandem mass tags.

    Science.gov (United States)

    Megger, Dominik Andre; Rosowski, Kristin; Ahrens, Maike; Bracht, Thilo; Eisenacher, Martin; Schlaak, Jörg F; Weber, Frank; Hoffmann, Andreas-Claudius; Meyer, Helmut E; Baba, Hideo A; Sitek, Barbara

    2017-03-01

    Human hepatocellular carcinoma (HCC) is a severe malignant disease, and accurate and reliable diagnostic markers are still needed. This study was aimed for the discovery of novel marker candidates by quantitative proteomics. Proteomic differences between HCC and nontumorous liver tissue were studied by mass spectrometry. Among several significantly upregulated proteins, translocator protein 18 (TSPO) and Ras-related protein Rab-1A (RAB1A) were selected for verification by immunohistochemistry in an independent cohort. For RAB1A, a high accuracy for the discrimination of HCC and nontumorous liver tissue was observed. RAB1A was verified to be a potent biomarker candidate for HCC.

  19. The future of the accelerator mass spectrometry of rare long-lived radioactive isotopes

    International Nuclear Information System (INIS)

    Litherland, A.E.

    1990-01-01

    Accelerators, originally designed for nuclear physics, can be added to mass spectrometric apparatus to increase the sensitivity so that isotope ratios in the range 10 -12 to 10 -15 can be measured routinely. This significant improvement of high-sensitivity mass spectrometry has been called Accelerator Mass Spectrometry. The present article addresses the basic principles of accelerator mass spectrometry and some recent applications which show its versatility. In particular, it is noted that accelerator mass spectrometry could play an increasing role in the measurement of the levels of long lived radioactivities in the environment, including the actinides, which result from human activities such as the use of nuclear power. To fulfill this promise, continued research and development is necessary to provide ion sources, various types of heavy ion accelerators and peripheral magnetic and electric analysers. (N.K.)

  20. Protein Alterations in Infiltrating Ductal Carcinomas of the Breast as Detected by Nonequilibrium pH Gradient Electrophoresis and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Maria Kabbage

    2008-01-01

    Full Text Available Improvement of breast-cancer detection through the identification of potential cancer biomarkers is considered as a promising strategy for effective assessment of the disease. The current study has used nonequilibrium pH gradient electrophoresis with subsequent analysis by mass spectrometry to identify protein alterations in invasive ductal carcinomas of the breast from Tunisian women. We have identified multiple protein alterations in tumor tissues that were picked, processed, and unambiguously assigned identities by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF. The proteins identified span a wide range of functions and are believed to have potential clinical applications as cancer biomarkers. They include glycolytic enzymes, molecular chaperones, cytoskeletal-related proteins, antioxydant enzymes, and immunologic related proteins. Among these proteins, enolase 1, phosphoglycerate kinase 1, deoxyhemoglobin, Mn-superoxyde dismutase, α-B-crystallin, HSP27, Raf kinase inhibitor protein, heterogeneous nuclear ribonucleoprotein A2/B1, cofilin 1, and peptidylprolyl isomerase A were overexpressed in tumors compared with normal tissues. In contrast, the IGHG1 protein, the complement C3 component C3c, which are two newly identified protein markers, were downregulated in IDCA tissues.

  1. Analytical capabilities of laser-probe mass spectrometry

    International Nuclear Information System (INIS)

    Kovalev, I.D.; Madsimov, G.A.; Suchkov, A.I.; Larin, N.V.

    1978-01-01

    The physical bases and quantitative analytical procedures of laser-probe mass spectrometry are considered in this review. A comparison is made of the capabilities of static and dynamic mass spectrometers. Techniques are studied for improving the analytical characteristics of laser-probe mass spectrometers. The advantages, for quantitative analysis, of the Q-switched mode over the normal pulse mode for lasers are: (a) the possibility of analysing metals, semiconductors and insulators without the use of standards; and (b) the possibility of layer-by-layer and local analysis. (Auth.)

  2. Selective quantitation of the neurotoxin BMAA by use of hydrophilic-interaction liquid chromatography-differential mobility spectrometry-tandem mass spectrometry (HILIC-DMS-MS/MS).

    Science.gov (United States)

    Beach, Daniel G; Kerrin, Elliott S; Quilliam, Michael A

    2015-11-01

    The neurotoxin β-N-methylamino-L-alanine (BMAA) has been reported in cyanobacteria and shellfish, raising concerns about widespread human exposure. However, inconsistent results for BMAA analysis have led to controversy. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is the most appropriate method for analysis of BMAA, but the risk of interference from isomers, other sample components, and the electrospray background is still present. We have investigated differential mobility spectrometry (DMS) as an ion filter to improve selectivity in the hydrophilic interaction liquid chromatographic (HILIC)-MS/MS determination of BMAA. We obtained standards for two BMAA isomers not previously analyzed by HILIC-MS, β-amino-N-methylalanine and 3,4-diaminobutanoic acid, and the typically used 2,4-diaminobutanoic acid and N-(2-aminoethyl)glycine. DMS separation of BMAA from these isomers was achieved and optimized conditions were used to develop a sensitive and highly selective multidimensional HILIC-DMS-MS/MS method. This work revealed current technical limitations of DMS for trace quantitation, and practical solutions were implemented. Accurate control of low levels of DMS carrier gas modifier was essential, but required external metering. The linearity of our optimized method was excellent from 0.01 to 6 μmol L(-1). The instrumental LOD was 0.4 pg BMAA injected on-column and the estimated method LOD was 20 ng g(-1) dry weight for BMAA in sample matrix. The method was used to analyze cycad plant tissue, a cyanobacterial reference material, and mussel tissues, by use of isotope-dilution quantitation with deuterated BMAA. This confirmed the presence of BMAA and several of its isomers in cycad and mussel tissues, including commercially available mussel tissue reference materials certified for other biotoxins. Graphical Abstract Differential Mobility Spectrometry is used to increases the selectivity of BMAA analysis by HILIC-MS/MS.

  3. Practical aspects and trends in analytical organic mass spectrometry

    International Nuclear Information System (INIS)

    Schlunegger, U.P.

    1981-01-01

    Proceeding from the fundamentals of mass spectrometry (MS), some more recent developments of analytical organic MS are shown in comparison with conventional MS. Sections are headed: the vacuum, production of ions in the mass spectrometer, ions in the analyzer of a mass spectrometer, general considerations, practice of modern MS: selected examples

  4. SU-8 as a material for lab-on-a-chip-based mass spectrometry.

    Science.gov (United States)

    Arscott, Steve

    2014-10-07

    This short review focuses on the application of SU-8 for the microchip-based approach to the miniaturization of mass spectrometry. Chip-based mass spectrometry will make the technology commonplace and bring benefits such as lower costs and autonomy. The chip-based miniaturization of mass spectrometry necessitates the use of new materials which are compatible with top-down fabrication involving both planar and non-planar processes. In this context, SU-8 is a very versatile epoxy-based, negative tone resist which is sensitive to ultraviolet radiation, X-rays and electron beam exposure. It has a very wide thickness range, from nanometres to millimetres, enabling the formation of mechanically rigid, very high aspect ratio, vertical, narrow width structures required to form microfluidic slots and channels for laboratory-on-a-chip design. It is also relatively chemically resistant and biologically compatible in terms of the liquid solutions used for mass spectrometry. This review looks at the impact and potential of SU-8 on the different parts of chip-based mass spectrometry - pre-treatment, ionization processes, and ion sorting and detection.

  5. [Application of Imaging Mass Spectrometry for Drug Discovery].

    Science.gov (United States)

    Hayasaka, Takahiro

    2016-01-01

    Imaging mass spectrometry (IMS) can reveal the distribution of biomolecules on tissue sections. In this process, the biomolecules are directly ionized within tissue sections using matrix-assisted laser desorption/ionization, and then their distribution is visualized by pseudo-color based on the relative signal intensity. The biomolecules, such as fatty acids, phospholipids, glycolipids, peptides, proteins, and neurotransmitters, have been analyzed at a spatial resolution of 5 μm. A special instrument for IMS analysis was developed by Shimadzu. The IMS analysis does not require the labeling of biomolecules and is capable of analyzing all the ionized biomolecules. Interest in this method has expanded to many research fields, including biology, agriculture, medicine, and pharmacology. The technique is especially relevant to the drug discovery process. As practiced currently, drug discovery is expensive and time consuming, requiring the preparation of probes for each drug and its metabolites, followed by systematic probe tracking in animal models. The IMS technique is expected to overcome these drawbacks by revealing the distribution of drugs and their metabolites using only a single analysis. In this symposium, I introduced the methodology and applications of IMS and discussed the feasibility of its application to drug discovery in the near future.

  6. Laser sputter neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    King, B.V.; Clarke, M.; Hu, H.; Betz [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    Laser sputter neutral mass spectrometry (LSNMS) is an emerging technique for highly sensitive surface analysis. In this technique a target is bombarded with a pulsed beam of keV ions. The sputtered particles are intercepted by a high intensity pulsed laser beam above the surface and ionised with almost 100% efficiency. The photions may then be mass analysed using a quadrupole or, more commonly, using time of flight (TOF) techniques. In this method photoions are extracted from the ionisation region, accelerated to a known energy E{sub o} and strike a channelplate detector a distance `d` away. The flight time `t` of the photoions is then related to their mass by `d` {radical}m / {radical} 2E{sub o} so measurement of `t` allows mass spectra to be obtained. It is found that LSNMS is an emerging technique of great sensitivity and flexibility, useful for both applied analysis and to investigate basic sputtering processes. 4 refs., 3 figs.

  7. Laser sputter neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    King, B V; Clarke, M; Hu, H; Betz, [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    Laser sputter neutral mass spectrometry (LSNMS) is an emerging technique for highly sensitive surface analysis. In this technique a target is bombarded with a pulsed beam of keV ions. The sputtered particles are intercepted by a high intensity pulsed laser beam above the surface and ionised with almost 100% efficiency. The photions may then be mass analysed using a quadrupole or, more commonly, using time of flight (TOF) techniques. In this method photoions are extracted from the ionisation region, accelerated to a known energy E{sub o} and strike a channelplate detector a distance `d` away. The flight time `t` of the photoions is then related to their mass by `d` {radical}m / {radical} 2E{sub o} so measurement of `t` allows mass spectra to be obtained. It is found that LSNMS is an emerging technique of great sensitivity and flexibility, useful for both applied analysis and to investigate basic sputtering processes. 4 refs., 3 figs.

  8. Radiocarbon accelerator mass spectrometry: background and contamination

    International Nuclear Information System (INIS)

    Beukens, R.P.

    1993-01-01

    Since the advent of radiocarbon accelerator mass spectrometry (AMS) many studies have been conducted to understand the background from mass spectrometric processes and the origins of contamination associated with the ion source and sample preparation. By studying the individual contributions a better understanding of these processes has been obtained and it has been demonstrated that it is possible to date samples reliably up to 60 000 BP. (orig.)

  9. Automated MALDI Matrix Coating System for Multiple Tissue Samples for Imaging Mass Spectrometry

    Science.gov (United States)

    Mounfield, William P.; Garrett, Timothy J.

    2012-03-01

    Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.

  10. Microbial metabolomics with gas chromatography/mass spectrometry

    NARCIS (Netherlands)

    Koek, M.M.; Muilwijk, B.; Werf, M.J. van der; Hankemeier, T.

    2006-01-01

    An analytical method was set up suitable for the analysis of microbial metabolomes, consisting of an oximation and silylation derivatization reaction and subsequent analysis by gas chromatography coupled to mass spectrometry. Microbial matrixes contain many compounds that potentially interfere with

  11. Analytical strategies in mass spectrometry-based phosphoproteomics

    DEFF Research Database (Denmark)

    Rosenqvist, Heidi; Ye, Juanying; Jensen, Ole N

    2011-01-01

    then discuss various tandem mass spectrometry approaches for phosphopeptide sequencing and quantification, and we consider aspects of phosphoproteome data analysis and interpretation. Efficient integration of these stages of phosphoproteome analysis is highly important to ensure a successful outcome of large...

  12. Multi-Reflection Time-of-Flight Mass Separation and Spectrometry

    CERN Document Server

    Kreim, Susanne; Wolf, R N

    2014-01-01

    The mass of a nucleus is one of its most fundamental ground-state properties and reveals the strength of nuclear binding. Investigating the binding energy of nuclei with respect to the number of protons and neutrons in a nucleus is important for advancing nuclear theory and increases our understanding of nucleosynthesis in supernovae and neutron stars. Precision mass measurements on radioactive nuclides belong to the state-of-the-art techniques [1, 2]. Presently, four complementary techniques are applied: isochronous and Schottky mass spectrometry in storage rings (IMS and SMS, respectively), magnetic-rigidity time-of-flight (TOF-ρ) measurements, and Penning-trap mass spectrometry (PTMS). With measurement cycles in the sub-ms range, IMS and TOF-Bρ MS are well suited for very short-lived species while offering moderate relative precision on the level of 10−6. A higher precision is achieved by SMS but with the need for measurement times on the order of several seconds. As soon as masses with a relative prec...

  13. High efficiency nebulization for helium inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jorabchi, Kaveh; McCormick, Ryan; Levine, Jonathan A.; Liu Huiying; Nam, S.-H.; Montaser, Akbar

    2006-01-01

    A pneumatically-driven, high efficiency nebulizer is explored for helium inductively coupled plasma mass spectrometry. The aerosol characteristics and analyte transport efficiencies of the high efficiency nebulizer for nebulization with helium are measured and compared to the results obtained with argon. Analytical performance indices of the helium inductively coupled plasma mass spectrometry are evaluated in terms of detection limits and precision. The helium inductively coupled plasma mass spectrometry detection limits obtained with the high efficiency nebulizer at 200 μL/min are higher than those achieved with the ultrasonic nebulizer consuming 2 mL/min solution, however, precision is generally better with high efficiency nebulizer (1-4% vs. 3-8% with ultrasonic nebulizer). Detection limits with the high efficiency nebulizer at 200 μL/min solution uptake rate approach those using ultrasonic nebulizer upon efficient desolvation with a heated spray chamber followed by a Peltier-cooled multipass condenser

  14. Multi photon ionization mass spectrometry of carbamate pesticides, herbicides and fungicides

    International Nuclear Information System (INIS)

    Grun, Carsten; Koenig, Marcelle; Grotemeyer, Juergen

    2001-01-01

    Pesticides and herbicides are useful for a wide range of applications today. The determination of these substances either in the pure form or in complex matrices is of high analytical interest. Especially since these substances can by found in every day products. The combination of multi photon ionization (MUPI) and time of flight laser mass spectrometry may be a powerful tool for achieving fast well interpretable mass spectra for analytical purposes. In this paper we will discuss the mass spectra of several pesticides and herbicides accessed by MUPI-time-of-flight mass spectrometry. The influence of the laser pulse duration on the mass spectra are discussed

  15. Current medical research with the application of coupled techniques with mass spectrometry

    OpenAIRE

    Ka?u?na-Czapli?ska, Joanna

    2011-01-01

    Summary The most effective methods of analysis of organic compounds in biological fluids are coupled chromatographic techniques. Capillary gas chromatography/mass spectrometry (GC-MS) allows the most efficient separation, identification and quantification of volatile metabolites in biological fluids. Liquid chromatography-mass spectrometry (LC-MS) is especially suitable for the analysis of non-volatile and/or thermally unstable compounds. A major drawback of liquid chromatography-mass spectro...

  16. Real-time cellular exometabolome analysis with a microfluidic-mass spectrometry platform.

    Directory of Open Access Journals (Sweden)

    Christina C Marasco

    Full Text Available To address the challenges of tracking the multitude of signaling molecules and metabolites that is the basis of biological complexity, we describe a strategy to expand the analytical techniques for dynamic systems biology. Using microfluidics, online desalting, and mass spectrometry technologies, we constructed and validated a platform well suited for sampling the cellular microenvironment with high temporal resolution. Our platform achieves success in: automated cellular stimulation and microenvironment control; reduced non-specific adsorption to polydimethylsiloxane due to surface passivation; real-time online sample collection; near real-time sample preparation for salt removal; and real-time online mass spectrometry. When compared against the benchmark of "in-culture" experiments combined with ultraperformance liquid chromatography-electrospray ionization-ion mobility-mass spectrometry (UPLC-ESI-IM-MS, our platform alleviates the volume challenge issues caused by dilution of autocrine and paracrine signaling and dramatically reduces sample preparation and data collection time, while reducing undesirable external influence from various manual methods of manipulating cells and media (e.g., cell centrifugation. To validate this system biologically, we focused on cellular responses of Jurkat T cells to microenvironmental stimuli. Application of these stimuli, in conjunction with the cell's metabolic processes, results in changes in consumption of nutrients and secretion of biomolecules (collectively, the exometabolome, which enable communication with other cells or tissues and elimination of waste. Naïve and experienced T-cell metabolism of cocaine is used as an exemplary system to confirm the platform's capability, highlight its potential for metabolite discovery applications, and explore immunological memory of T-cell drug exposure. Our platform proved capable of detecting metabolomic variations between naïve and experienced Jurkat T cells

  17. Mass Spectrometry Applications for Toxicology

    OpenAIRE

    Mbughuni, Michael M.; Jannetto, Paul J.; Langman, Loralie J.

    2016-01-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used i...

  18. Space Applications of Mass Spectrometry. Chapter 31

    Science.gov (United States)

    Hoffman, John H.; Griffin, Timothy P.; Limero, Thomas; Arkin, C. Richard

    2010-01-01

    Mass spectrometers have been involved in essentially all aspects of space exploration. This chapter outlines some of these many uses. Mass spectrometers have not only helped to expand our knowledge and understanding of the world and solar system around us, they have helped to put man safely in space and expand our frontier. Mass spectrometry continues to prove to be a very reliable, robust, and flexible analytical instrument, ensuring that its use will continue to help aid our investigation of the universe and this small planet that we call home.

  19. Comparison of different mass spectrometry techniques in the measurement of L-[ring-13C6]phenylalanine incorporation into mixed muscle proteins

    Science.gov (United States)

    Zabielski, Piotr; Ford, G. Charles; Persson, X. Mai; Jaleel, Abdul; Dewey, Jerry D.; Nair, K Sreekumaran

    2013-01-01

    Precise measurement of low enrichment of stable isotope labeled amino-acid tracers in tissue samples is a prerequisite in measuring tissue protein synthesis rates. The challenge of this analysis is augmented when small sample size is a critical factor. Muscle samples from human participants following an 8 hour intravenous infusion of L-[ring-13C6]phenylalanine and a bolus dose of L-[ring-13C6]phenylalanine in a mouse were utilized. Liquid Chromatography tandem mass spectrometry (LC/MS/MS), Gas Chromatography tandem mass spectrometry (GC/MS/MS) and Gas Chromatography/Mass spectrometry (GC/MS) were compared to the Gas Chromatography-Combustion-Isotope Ratio mass spectrometry (GC/C/IRMS), to measure mixed muscle protein enrichment of [ring13C6]phenylalanine enrichment. The sample isotope enrichment ranged from 0.0091 to 0.1312 Molar Percent excess (MPE). As compared with GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS showed coefficients of determination of R2 = 0.9962 and R2 = 0.9942, and 0.9217 respectively. However, the precision of measurements (coefficients of variation) for intra-assay are 13.0%, 1.7%, 6.3% and 13.5% and for inter-assay are 9.2%, 3.2%, 10.2% and 25% for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS respectively. The muscle sample sizes required to obtain these results were 8μg, 0.8μg, 3μg and 3μg for GC/C/IRMS, LC/MS/MS, GC/MS/MS, and GC/MS respectively. We conclude that LC/MS/MS is optimally suited for precise measurements of L-[ring-13C6]phenylalanine tracer enrichment in low abundance and in small quantity samples. PMID:23378099

  20. Precise Temporal Profiling of Signaling Complexes in Primary Cells Using SWATH Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Etienne Caron

    2017-03-01

    Full Text Available Spatiotemporal organization of protein interactions in cell signaling is a fundamental process that drives cellular functions. Given differential protein expression across tissues and developmental stages, the architecture and dynamics of signaling interaction proteomes is, likely, highly context dependent. However, current interaction information has been almost exclusively obtained from transformed cells. In this study, we applied an advanced and robust workflow combining mouse genetics and affinity purification (AP-SWATH mass spectrometry to profile the dynamics of 53 high-confidence protein interactions in primary T cells, using the scaffold protein GRB2 as a model. The workflow also provided a sufficient level of robustness to pinpoint differential interaction dynamics between two similar, but functionally distinct, primary T cell populations. Altogether, we demonstrated that precise and reproducible quantitative measurements of protein interaction dynamics can be achieved in primary cells isolated from mammalian tissues, allowing resolution of the tissue-specific context of cell-signaling events.

  1. Identification of bacteria using mass spectrometry techniques

    Czech Academy of Sciences Publication Activity Database

    Krásný, Lukáš; Hynek, R.; Hochel, I.

    2013-01-01

    Roč. 353, NOV 2013 (2013), s. 67-79 ISSN 1387-3806 R&D Projects: GA ČR GAP503/10/0664 Institutional support: RVO:61388971 Keywords : Mass spectrometry * Bacteria * Identification Subject RIV: EE - Microbiology, Virology Impact factor: 2.227, year: 2013

  2. Mass spectrometry in structural biology and biophysics architecture, dynamics, and interaction of biomolecules

    CERN Document Server

    Kaltashov, Igor A; Desiderio, Dominic M; Nibbering, Nico M

    2012-01-01

    The definitive guide to mass spectrometry techniques in biology and biophysics The use of mass spectrometry (MS) to study the architecture and dynamics of proteins is increasingly common within the biophysical community, and Mass Spectrometry in Structural Biology and Biophysics: Architecture, Dynamics, and Interaction of Biomolecules, Second Edition provides readers with detailed, systematic coverage of the current state of the art. Offering an unrivalled overview of modern MS-based armamentarium that can be used to solve the most challenging problems in biophysics, structural biol

  3. imzML: Imaging Mass Spectrometry Markup Language: A common data format for mass spectrometry imaging.

    Science.gov (United States)

    Römpp, Andreas; Schramm, Thorsten; Hester, Alfons; Klinkert, Ivo; Both, Jean-Pierre; Heeren, Ron M A; Stöckli, Markus; Spengler, Bernhard

    2011-01-01

    Imaging mass spectrometry is the method of scanning a sample of interest and generating an "image" of the intensity distribution of a specific analyte. The data sets consist of a large number of mass spectra which are usually acquired with identical settings. Existing data formats are not sufficient to describe an MS imaging experiment completely. The data format imzML was developed to allow the flexible and efficient exchange of MS imaging data between different instruments and data analysis software.For this purpose, the MS imaging data is divided in two separate files. The mass spectral data is stored in a binary file to ensure efficient storage. All metadata (e.g., instrumental parameters, sample details) are stored in an XML file which is based on the standard data format mzML developed by HUPO-PSI. The original mzML controlled vocabulary was extended to include specific parameters of imaging mass spectrometry (such as x/y position and spatial resolution). The two files (XML and binary) are connected by offset values in the XML file and are unambiguously linked by a universally unique identifier. The resulting datasets are comparable in size to the raw data and the separate metadata file allows flexible handling of large datasets.Several imaging MS software tools already support imzML. This allows choosing from a (growing) number of processing tools. One is no longer limited to proprietary software, but is able to use the processing software which is best suited for a specific question or application. On the other hand, measurements from different instruments can be compared within one software application using identical settings for data processing. All necessary information for evaluating and implementing imzML can be found at http://www.imzML.org .

  4. Mass Determination of Entire Amyloid Fibrils by Using Mass Spectrometry.

    Science.gov (United States)

    Doussineau, Tristan; Mathevon, Carole; Altamura, Lucie; Vendrely, Charlotte; Dugourd, Philippe; Forge, Vincent; Antoine, Rodolphe

    2016-02-12

    Amyloid fibrils are self-assembled protein structures with important roles in biology (either pathogenic or physiological), and are attracting increasing interest in nanotechnology. However, because of their high aspect ratio and the presence of some polymorphism, that is, the possibility to adopt various structures, their characterization is challenging and basic information such as their mass is unknown. Here we show that charge-detection mass spectrometry, recently developed for large self-assembled systems such as viruses, provides such information in a straightforward manner. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. [Sample preparation and bioanalysis in mass spectrometry].

    Science.gov (United States)

    Bourgogne, Emmanuel; Wagner, Michel

    2015-01-01

    The quantitative analysis of compounds of clinical interest of low molecular weight (sample preparation. Sample preparation is a crucial part of chemical/biological analysis and in a sense is considered the bottleneck of the whole analytical process. The main objectives of sample preparation are the removal of potential interferences, analyte preconcentration, and converting (if needed) the analyte into a more suitable form for detection or separation. Without chromatographic separation, endogenous compounds, co-eluted products may affect a quantitative method in mass spectrometry performance. This work focuses on three distinct parts. First, quantitative bioanalysis will be defined, different matrices and sample preparation techniques currently used in bioanalysis by mass spectrometry of/for small molecules of clinical interest in biological fluids. In a second step the goals of sample preparation will be described. Finally, in a third step, sample preparation strategies will be made either directly ("dilute and shoot") or after precipitation.

  6. Simulation of Two Dimensional Electrophoresis and Tandem Mass Spectrometry for Teaching Proteomics

    Science.gov (United States)

    Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul

    2012-01-01

    In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations--2D electrophoresis and tandem mass spectrometry.…

  7. Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry.

    OpenAIRE

    Kirpekar, F; Douthwaite, S; Roepstorff, P

    2000-01-01

    We present a method to screen RNA for posttranscriptional modifications based on Matrix Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). After the RNA is digested to completion with a nucleotide-specific RNase, the fragments are analyzed by mass spectrometry. A comparison of the observed mass data with the data predicted from the gene sequence identifies fragments harboring modified nucleotides. Fragments larger than dinucleotides were valuable for the identification of post...

  8. A comprehensive high-resolution mass spectrometry approach for characterization of metabolites by combination of ambient ionization, chromatography and imaging methods.

    Science.gov (United States)

    Berisha, Arton; Dold, Sebastian; Guenther, Sabine; Desbenoit, Nicolas; Takats, Zoltan; Spengler, Bernhard; Römpp, Andreas

    2014-08-30

    An ideal method for bioanalytical applications would deliver spatially resolved quantitative information in real time and without sample preparation. In reality these requirements can typically not be met by a single analytical technique. Therefore, we combine different mass spectrometry approaches: chromatographic separation, ambient ionization and imaging techniques, in order to obtain comprehensive information about metabolites in complex biological samples. Samples were analyzed by laser desorption followed by electrospray ionization (LD-ESI) as an ambient ionization technique, by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging for spatial distribution analysis and by high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) for quantitation and validation of compound identification. All MS data were acquired with high mass resolution and accurate mass (using orbital trapping and ion cyclotron resonance mass spectrometers). Grape berries were analyzed and evaluated in detail, whereas wheat seeds and mouse brain tissue were analyzed in proof-of-concept experiments. In situ measurements by LD-ESI without any sample preparation allowed for fast screening of plant metabolites on the grape surface. MALDI imaging of grape cross sections at 20 µm pixel size revealed the detailed distribution of metabolites which were in accordance with their biological function. HPLC/ESI-MS was used to quantify 13 anthocyanin species as well as to separate and identify isomeric compounds. A total of 41 metabolites (amino acids, carbohydrates, anthocyanins) were identified with all three approaches. Mass accuracy for all MS measurements was better than 2 ppm (root mean square error). The combined approach provides fast screening capabilities, spatial distribution information and the possibility to quantify metabolites. Accurate mass measurements proved to be critical in order to reliably combine data from different MS

  9. Mass Spectrometry Parameters Optimization for the 46 Multiclass Pesticides Determination in Strawberries with Gas Chromatography Ion-Trap Tandem Mass Spectrometry

    Science.gov (United States)

    Fernandes, Virgínia C.; Vera, Jose L.; Domingues, Valentina F.; Silva, Luís M. S.; Mateus, Nuno; Delerue-Matos, Cristina

    2012-12-01

    Multiclass analysis method was optimized in order to analyze pesticides traces by gas chromatography with ion-trap and tandem mass spectrometry (GC-MS/MS). The influence of some analytical parameters on pesticide signal response was explored. Five ion trap mass spectrometry (IT-MS) operating parameters, including isolation time (IT), excitation voltage (EV), excitation time (ET), maximum excitation energy or " q" value (q), and isolation mass window (IMW) were numerically tested in order to maximize the instrument analytical signal response. For this, multiple linear regression was used in data analysis to evaluate the influence of the five parameters on the analytical response in the ion trap mass spectrometer and to predict its response. The assessment of the five parameters based on the regression equations substantially increased the sensitivity of IT-MS/MS in the MS/MS mode. The results obtained show that for most of the pesticides, these parameters have a strong influence on both signal response and detection limit. Using the optimized method, a multiclass pesticide analysis was performed for 46 pesticides in a strawberry matrix. Levels higher than the limit established for strawberries by the European Union were found in some samples.

  10. The combined measurement of uranium by alpha spectrometry and secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    Harvan, D.

    2009-01-01

    The aim of thesis was to found the dependence between radiometric method - alpha spectrometry and surface sensitive method - Secondary Ion Mass Spectrometry (SIMS). Uranium or naturally occurring uranium isotopes were studied. Samples (high polished stainless steel discs) with uranium isotopes were prepared by electrodeposition. Samples were measured by alpha spectrometry after electrodeposition and treatment. It gives surface activities. Weights, as well as surface's weights of uranium isotopes were calculated from their activities, After alpha spectrometry samples were analyzed by TOF-SIMS IV instrument in International Laser Centre in Bratislava. By the SIMS analysis intensities of uranium-238 were obtained. The interpretation of SIMS intensities vs. surface activity, or surface's weights of uranium isotopes indicates the possibility to use SIMS in quantitative analysis of surface contamination by uranium isotopes, especially 238 U. (author)

  11. Collisional Activation of Peptide Ions in FT-ICR Mass Spectrometry

    International Nuclear Information System (INIS)

    Laskin, Julia; Futrell, Jean H.

    2003-01-01

    In the last decade characterization of complex molecules, particularly biomolecules became a focus of both fundamental and applied research in mass spectrometry. Most of these studies utilize tandem mass spectrometry (MS/MS) for obtaining structural information for complex molecules. . Tandem mass spectrometry (MS/MS) typically involves the mass selection of a primary ion, its activation by collision or photon excitation, unimolecular decay into fragment ions characteristic of the ion structure and its internal excitation, and mass analysis of the fragment ions. Although the fundamental principles of tandem mass spectrometry of relatively small molecules are fairly well understood, our understanding of the activation and fragmentation of large molecules is much more primitive. For small ions a single energetic collision is sufficient to dissociate the ion but this is not the case for complex molecules. For large ions two fundamental limits severely constrain fragmentation in tandem mass spectrometry. First the center-of-mass collision energy?the absolute upper limit of energy transfer in a collision process?decreases with increasing mass of the projectile ion for fixed ion kinetic energy and neutral mass. Secondly, the dramatic increase in density of states with increasing internal degrees of freedom of the ion decreases the rate of dissociation by many orders of magnitude at a given internal energy. Consequently most practical MS/MS experiments with complex ions involve multiple collision activation (MCA-CID), multi-photon activation or surface-induced dissociation (SID). This review is focused on what has been learned in recent research studies concerned with fundamental aspects of MCA-CID and SID of model peptides with emphasis on experiments carried out using Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS). These studies provide the first quantitative comparison of gas-phase multiple-collision activation and SID of peptide ions

  12. 'Collisional Activation of Peptide Ions in FT-ICR Mass Spectrometry'

    International Nuclear Information System (INIS)

    Laskin, Julia; Futrell, Jean H.

    2003-01-01

    In the last decade characterization of complex molecules, particularly biomolecules became a focus of both fundamental and applied research in mass spectrometry. Most of these studies utilize tandem mass spectrometry (MS/MS) for obtaining structural information for complex molecules. . Tandem mass spectrometry (MS/MS) typically involves the mass selection of a primary ion, its activation by collision or photon excitation, unimolecular decay into fragment ions characteristic of the ion structure and its internal excitation, and mass analysis of the fragment ions. Although the fundamental principles of tandem mass spectrometry of relatively small molecules are fairly well understood, our understanding of the activation and fragmentation of large molecules is much more primitive. For small ions a single energetic collision is sufficient to dissociate the ion but this is not the case for complex molecules. For large ions two fundamental limits severely constrain fragmentation in tandem mass spectrometry. First the center-of-mass collision energy?the absolute upper limit of energy transfer in a collision process?decreases with increasing mass of the projectile ion for fixed ion kinetic energy and neutral mass. Secondly, the dramatic increase in density of states with increasing internal degrees of freedom of the ion decreases the rate of dissociation by many orders of magnitude at a given internal energy. Consequently most practical MS/MS experiments with complex ions involve multiple collision activation (MCA-CID), multi-photon activation or surface-induced dissociation (SID). This review is focused on what has been learned in recent research studies concerned with fundamental aspects of MCA-CID and SID of model peptides with emphasis on experiments carried out using Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS). These studies provide the first quantitative comparison of gas-phase multiple-collision activation and SID of peptide ions

  13. Four decades of joy in mass spectrometry

    NARCIS (Netherlands)

    Nibbering, N.M.M.

    2006-01-01

    Tremendous developments in mass spectrometry have taken place in the last 40 years. This holds for both the science and the instrumental revolutions in this field. In chemistry the research was heavily focused on organic molecules that upon electron ionization fragmented via complex mechanistic

  14. Inductively coupled plasma- mass spectrometry. Chapter 13

    International Nuclear Information System (INIS)

    Mahalingam, T.R.

    1997-01-01

    Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) is a new technique for elemental and isotopic analysis which is currently attracting a great deal of interest. This relatively new technique has found wide applications in different fields of research viz., nuclear, geological, biological and environmental sciences

  15. Determination of {sup 135}Cs by accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, C.M.; Charles, C.R.J. [Andre. E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Earth Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Zhao, X.-L.; Kieser, W.E. [Andre. E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Cornett, R.J. [Andre. E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Earth Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Litherland, A.E. [IsoTrace Laboratory, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7 (Canada)

    2015-10-15

    The ratio of anthropogenic {sup 135}Cs and {sup 137}Cs isotopes is characteristic of a uranium fission source. This research evaluates the technique of isotope dilution (yield tracing) for the purpose of quantifying {sup 135}Cs by accelerator mass spectrometry with on-line isobar separation. Interferences from Ba, Zn{sub 2}, and isotopes of equal mass to charge ratios were successfully suppressed. However, some sample crosstalk from source contamination remains. The transmission and di-fluoride ionization efficiencies of Cs isotopes were found to be 8 × 10{sup −3} and 1.7 × 10{sup −7} respectively. This quantification of {sup 135}Cs using yield tracing by accelerator mass spectrometry shows promise for future environmental sample analysis once the issues of sample crosstalk and low efficiency can be resolved.

  16. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sangwon [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  17. Laser mass spectrometry of chemical warfare agents using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Weickhardt, C.; Grun, C.; Grotemeyer, J.

    1998-01-01

    Fast relaxation processes in excited molecules such as IC, ISC, and fragmentation are observed in many environmentally and technically relevant substances. They cause severe problems to resonance ionization mass spectrometry because they reduce the ionization yield and lead to mass spectra which do not allow the identification of the compound. By the use of ultrashort laser pulses these problems can be overcome and the advantages of REMPI over conventional ionization techniques in mass spectrometry can be regained. This is demonstrated using soil samples contaminated with a chemical warfare agent

  18. Mass spectrometry in nuclear technology - a review of application of thermal ionization mass spectrometry in fuel reprocessing plants. PD-7-1

    International Nuclear Information System (INIS)

    Dakshinamoorthy, A.

    2007-01-01

    Mass spectrometry finds the widespread application in nuclear science and technology due to the fact that it can be employed for isotope composition measurements of different elements of interest and also concentration measurements of these elements using isotope dilution techniques. Thermal ionization mass spectrometer (TIMS), Inductively coupled plasma mass spectrometer (ICP-MS) and gas chromatography mass spectrometer (GC-MS) are the different types of mass spectrometers used in nuclear industry for the analyses of isotope composition of special nuclear material, trace impurities in nuclear fuels and components and characterization of various solvents respectively. Among them, TIMS plays a vital role in the nuclear fuel cycle in determining precisely the isotope composition of uranium, plutonium, D/H ratio in heavy water etc. TIMS is an indispensable analytical tool for nuclear material accounting at the input stage of a reprocessing plant by carrying out precise and accurate concentration measurement of plutonium and uranium by isotope dilution mass spectrometry (IDMS). It is the only accepted measurement technique for the purpose because of its high precision, better sensitivity and no quantitative separation is needed. The isotope abundance measurements of uranium and plutonium at this point are also useful for burn-up studies and isotope correlations. Mass spectrometric analysis of uranium and plutonium is also required for nuclear data measurements and calibrating other chemical methods

  19. Polymer and Additive Mass Spectrometry Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Shear, Trevor Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-06

    The use of mass spectrometry in fields related to polymers has increased significantly over the past three decades and will be explored in this literature review. The importance of this technique is highlighted when exploring how polymers degrade, verifying purchased materials, and as internal requirements change. The primary focus will be on four ionization techniques and the triple quadrupole and quadrupole / time-of-flight mass spectrometers. The advantages and limitations of each will also be explored.

  20. Recent applications of mass spectrometry in forensic toxicology

    Science.gov (United States)

    Foltz, Rodger L.

    1992-09-01

    This review encompasses applications of mass spectrometry reported during the years 1989, 1990 and 1991 for the analysis of cannabinoids, cocaine, opiates, amphetamines, lysergic acid diethylamide (LSD), and their metabolites in physiological specimens.

  1. Radiocarbon positive-ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Stewart P.H.T.; Shanks, Richard P. [Scottish Universities Environmental Research Centre (SUERC), Scottish Enterprise Technology Park, East Kilbride G75 0QF (United Kingdom); Donzel, Xavier; Gaubert, Gabriel [Pantechnik S.A., 13 Rue de la Résistance, 14400 Bayeux (France)

    2015-10-15

    Proof-of-principle of a new mass spectrometric technique for radiocarbon measurement is demonstrated. Interfering nitrogen and hydrocarbon molecules are largely eliminated in a charge-exchange cell operating on non-metallic gas. The positive-to-negative ion conversion is the reverse of that conventionally used in accelerator mass spectrometry (AMS) and is compatible with plasma ion sources that may be significantly more efficient and capable of greater output than are AMS sputter ion sources. The Nanogan electron cyclotron resonance (ECR) ion source employed exhibited no sample memory and the >50 kyrs age range of AMS was reproduced. A bespoke prototype new instrument is now required to optimise the plasma and cell physics and to realise hypothetical performance gains over AMS.

  2. Radiocarbon positive-ion mass spectrometry

    International Nuclear Information System (INIS)

    Freeman, Stewart P.H.T.; Shanks, Richard P.; Donzel, Xavier; Gaubert, Gabriel

    2015-01-01

    Proof-of-principle of a new mass spectrometric technique for radiocarbon measurement is demonstrated. Interfering nitrogen and hydrocarbon molecules are largely eliminated in a charge-exchange cell operating on non-metallic gas. The positive-to-negative ion conversion is the reverse of that conventionally used in accelerator mass spectrometry (AMS) and is compatible with plasma ion sources that may be significantly more efficient and capable of greater output than are AMS sputter ion sources. The Nanogan electron cyclotron resonance (ECR) ion source employed exhibited no sample memory and the >50 kyrs age range of AMS was reproduced. A bespoke prototype new instrument is now required to optimise the plasma and cell physics and to realise hypothetical performance gains over AMS.

  3. Mass Spectrometry for Large Undergraduate Laboratory Sections

    Science.gov (United States)

    Illies, A.; Shevlin, P. B.; Childers, G.; Peschke, M.; Tsai, J.

    1995-08-01

    Mass spectrometry is routinely covered in undergraduate organic chemistry courses and a number of valuable laboratory experiments featuring its use have been discussed (1-7). Although such experiments work well at institutions with limited laboratory enrollments, we typically teach laboratories with enrollments of 160 or more in which it is difficult to allow each student to carry out a meaningful "hands on" mass spectrometry experiment. Since we feel that some practical experience with this technique is important, we have designed a simple gas chromatography-mass spectrometry (gc/ms) exercise that allows each student to analyze the products of a simple synthesis that they have performed. The exercise starts with the microscale SN2 synthesis of 1-bromobutane from 1-butanol as described by Williamson (8). The students complete the synthesis and place one drop of the distilled product in a screw capped vial. The vials are then sealed, labeled with the students name and taken to the mass spectrometry laboratory by a teaching assistant. Students are instructed to sign up for a 20-min block of time over the next few days in order to analyze their sample. When the student arrives at the laboratory, he or she adds 1 ml CH2Cl2 to the sample and injects 0.3 microliters of the solution into the gas chromatograph. The samples typically contain the 1-butanol starting material and the 1-bromobutane product along with traces of dibutyl ether. The figure shows a mass chromatogram along with the mass spectra of the starting material and product from an actual student run. For this analysis to be applicable to large numbers of students, the gc separation must be as rapid as possible. We have been able to analyze each sample in 6 minutes on a 30 m DB-5 capillary column with the following temperature program: 70 oC for 1 min, 70-80 oC at 10 oC/min, 86-140 oC at 67.5 oC/min, 140-210 oC at 70 oC/min, and 210 oC for 1 min. A mass range of 20-200 amu is scanned with a solvent delay of 2

  4. Can laser-ionisation time-of-flight mass spectrometry be a promising alternative to laser ablation/inductively-coupled plasma mass spectrometry and glow discharge mass spectrometry for the elemental analysis of solids?

    NARCIS (Netherlands)

    Sysoev, AA; Sysoev, AA

    2002-01-01

    At the beginning of the age of laser-ionisation mass spectrometry (LIMS) increasing numbers of publications were observed. However, later the method began to run into obstacles associated with poor reproducibility of analysis and large variations in elemental sensitivities so that the wide interest

  5. Cortisol production rates measured by liquid chromatography/mass spectrometry

    International Nuclear Information System (INIS)

    Esteban, N.V.; Yergey, A.L.

    1990-01-01

    Cortisol production rates (FPRs) in physiologic and pathologic states in humans have been investigated over the past 30 years. However, there has been conflicting evidence concerning the validity of the currently accepted value of FPRs in humans (12 to 15 mg/m2/d) as determined by radiotracer methodology. The present study reviews previous methods proposed for the measurement of FPRs in humans and discusses the applications of the first method for the direct determination of 24-hour plasma FPRs during continuous administration of a stable isotope, using a thermospray high-pressure liquid chromatography-mass spectrometry technique. The technique is fast, sensitive, and, unlike gas chromatography-mass spectrometry methods, does not require derivatization, allowing on-line detection and quantification of plasma cortisol after a simple extraction procedure. The results of determination of plasma FPRs by stable tracer/mass spectrometry are directly in units of mass/time and, unlike radiotracer methods, are independent of any determination of volume of distribution or cortisol concentration. Our methodology offers distinct advantages over radiotracer techniques in simplicity and reliability since only single measurements of isotope ratios are required. The technique was validated in adrenalectomized patients. Circadian variations in daily FRPs were observed in normal volunteers, and, to date, results suggest a lower FRP in normal children and adults than previously believed. 88 references

  6. MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue

    DEFF Research Database (Denmark)

    Hanrieder, Jørg; Wicher, Grzegorz; Bergquist, Jonas

    2011-01-01

    . Complementary proteomic experiments revealed the identity of these signature proteins that were predominantly expressed in the different glial cell types, including histone H4 for oligodendrocytes and S100-A10 for astrocytes. MALDI imaging MS was performed, and signature masses were employed as molecular...... tracers for prediction of oligodendroglial and astroglial localization in brain tissue. The different cell type specific protein distributions in tissue were validated using immunohistochemistry. ICMS of intact neuroglia is a simple and straightforward approach for characterization and discrimination...

  7. A theory of stable-isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Pickup, J.F.; McPherson, C.K.

    1977-01-01

    In order to perform quantitative analysis using stable isotope dilution with mass spectrometry, an equation is derived which describes the relationship between the relative proportions of natural and labelled material and measured isotope ratios

  8. Mass Spectrometry Imaging for the Investigation of Intratumor Heterogeneity.

    Science.gov (United States)

    Balluff, B; Hanselmann, M; Heeren, R M A

    2017-01-01

    One of the big clinical challenges in the treatment of cancer is the different behavior of cancer patients under guideline therapy. An important determinant for this phenomenon has been identified as inter- and intratumor heterogeneity. While intertumor heterogeneity refers to the differences in cancer characteristics between patients, intratumor heterogeneity refers to the clonal and nongenetic molecular diversity within a patient. The deciphering of intratumor heterogeneity is recognized as key to the development of novel therapeutics or treatment regimens. The investigation of intratumor heterogeneity is challenging since it requires an untargeted molecular analysis technique that accounts for the spatial and temporal dynamics of the tumor. So far, next-generation sequencing has contributed most to the understanding of clonal evolution within a cancer patient. However, it falls short in accounting for the spatial dimension. Mass spectrometry imaging (MSI) is a powerful tool for the untargeted but spatially resolved molecular analysis of biological tissues such as solid tumors. As it provides multidimensional datasets by the parallel acquisition of hundreds of mass channels, multivariate data analysis methods can be applied for the automated annotation of tissues. Moreover, it integrates the histology of the sample, which enables studying the molecular information in a histopathological context. This chapter will illustrate how MSI in combination with statistical methods and histology has been used for the description and discovery of intratumor heterogeneity in different cancers. This will give evidence that MSI constitutes a unique tool for the investigation of intratumor heterogeneity, and could hence become a key technology in cancer research. © 2017 Elsevier Inc. All rights reserved.

  9. Analysis of hydroxamate siderophores in soil solution using liquid chromatography with mass spectrometry and tandem mass spectrometry with on-line sample preconcentration.

    Science.gov (United States)

    Olofsson, Madelen A; Bylund, Dan

    2015-10-01

    A liquid chromatography with electrospray ionization mass spectrometry method was developed to quantitatively and qualitatively analyze 13 hydroxamate siderophores (ferrichrome, ferrirubin, ferrirhodin, ferrichrysin, ferricrocin, ferrioxamine B, D1 , E and G, neocoprogen I and II, coprogen and triacetylfusarinine C). Samples were preconcentrated on-line by a switch-valve setup prior to analyte separation on a Kinetex C18 column. Gradient elution was performed using a mixture of an ammonium formate buffer and acetonitrile. Total analysis time including column conditioning was 20.5 min. Analytes were fragmented by applying collision-induced dissociation, enabling structural identification by tandem mass spectrometry. Limit of detection values for the selected ion monitoring method ranged from 71 pM to 1.5 nM with corresponding values of two to nine times higher for the multiple reaction monitoring method. The liquid chromatography with mass spectrometry method resulted in a robust and sensitive quantification of hydroxamate siderophores as indicated by retention time stability, linearity, sensitivity, precision and recovery. The analytical error of the methods, assessed through random-order, duplicate analysis of soil samples extracted with a mixture of 10 mM phosphate buffer and methanol, appears negligible in relation to between-sample variations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development of a new screening method for the detection of antibiotic residues in muscle tissues using liquid chromatography and high resolution mass spectrometry with a LC-LTQ-Orbitrap instrument.

    Science.gov (United States)

    Hurtaud-Pessel, D; Jagadeshwar-Reddy, T; Verdon, E

    2011-10-01

    A liquid chromatography-high resolution mass spectrometry (LC-HRMS) method was developed for screening meat for a wide range of antibiotics used in veterinary medicine. Full-scan mode under high resolution mass spectral conditions using an LTQ-Orbitrap mass spectrometer with resolving power 60,000 full width at half maximum (FWHM) was applied for analysis of the samples. Samples were prepared using two extraction protocols prior to LC-HRMS analysis. The scope of the method focuses on screening the following main families of antibacterial veterinary drugs: penicillins, cephalosporins, sulfonamides, macrolides, tetracyclines, aminoglucosides and quinolones. Compounds were successfully identified in spiked samples from their accurate mass and LC retention times from the acquired full-scan chromatogram. Automated data processing using ToxId software allowed rapid treatment of the data. Analyses of muscle tissues from real samples collected from antibiotic-treated animals was carried out using the above methodology and antibiotic residues were identified unambiguously. Further analysis of the data for real samples allowed the identification of the targeted antibiotic residues but also non-targeted compounds, such as some of their metabolites.

  11. Resonance ionization mass spectrometry system for measurement of environmental samples

    International Nuclear Information System (INIS)

    Pibida, L.; McMahon, C.A.; Noertershaeuser, W.; Bushaw, B.A.

    2002-01-01

    A resonance ionization mass spectrometry (RIMS) system has been developed at the National Institute of Standards and Technology (NIST) for sensitive and selective determination of radio-cesium in the environment. The overall efficiency was determined to be 4x10-7 with a combined (laser and mass spectrometer) selectivity of 108 for both 135Cs and 137Cs with respect to 133Cs. RIMS isotopic ratio measurements of 135Cs/ 137Cs were performed on a nuclear fuel burn-up sample and compared to measurements on a similar system at Pacific Northwest National Laboratory (PNNL) and to conventional thermal ionization mass spectrometry (TIMS). Results of preliminary RIMS investigations on a freshwater lake sediment sample are also discussed

  12. Structural characterization of suppressor lipids by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Rovillos, Mary Joy; Pauling, Josch Konstantin; Hannibal-Bach, Hans Kristian

    2016-01-01

    RATIONALE: Suppressor lipids were originally identified in 1993 and reported to encompass six lipid classes that enable Saccharomyces cerevisiae to live without sphingolipids. Structural characterization, using non-mass spectrometric approaches, revealed that these suppressor lipids are very long...... chain fatty acid (VLCFA)-containing glycerophospholipids with polar head groups that are typically incorporated into sphingolipids. Here we report, for the first time, the structural characterization of the yeast suppressor lipids using high-resolution mass spectrometry. METHODS: Suppressor lipids were...... isolated by preparative chromatography and subjected to structural characterization using hybrid quadrupole time-of-flight and ion trap-orbitrap mass spectrometry. RESULTS: Our investigation recapitulates the overall structural features of the suppressor lipids and provides an in-depth characterization...

  13. Negative ion electrospray ionization mass spectrometry of nucleoside phosphoramidate monoesters: elucidation of novel rearrangement mechanisms by multistage mass spectrometry incorporating in-source deuterium labelling.

    Science.gov (United States)

    Xu, Peng-Xiang; Hu, An-Fu; Hu, Dan; Gao, Xiang; Zhao, Yu-Fen

    2008-10-01

    Several O-2',3'-isopropylideneuridine-O-5'-phosphoramidate monoesters were synthesized and analyzed by negative ion electrospray ionization tandem mass spectrometry (ESI-MS(n)). Two kinds of novel rearrangement reactions were observed due to the difference in the amino acid in the nucleoside phosphoramidate monoesters, and possible mechanisms were proposed. One involves a five-membered cyclic transition state. The other is formation of a stable five-membered ring intermediate by Michael addition. Results were confirmed by tandem mass spectrometry and isotopically labeled hydrogen atoms. Furthermore, the internal hydrogen exchange between active hydrogen and methyl acrylate in the heated capillary of the mass spectrometer was found. The characteristic fragmentation behavior in ESI-MS may be used to monitor this kind of compounds in the biological metabolism.

  14. Issues and opportunities in accelerator mass spectrometry for stable isotopes.

    Science.gov (United States)

    Matteson, Sam

    2008-01-01

    Accelerator mass spectrometry (AMS) has developed in the last 30 years many notable applications to the spectrometry of radioisotopes, particularly in radiocarbon dating. The instrumentation science of trace element AMS (TEAMS) that analyzes stable isotopes, also called Accelerator SIMS or MegaSIMS, while unique in many features, has also shared in many of these significant advances and has pushed TEAMS sensitivity to concentration levels surpassing many competing mass spectroscopic technologies. This review examines recent instrumentation developments, the capabilities of the new instrumentation and discernable trends for future development. Copyright 2008 Wiley Periodicals, Inc.

  15. Major roles for minor bacterial lipids identified by mass spectrometry.

    Science.gov (United States)

    Garrett, Teresa A

    2017-11-01

    Mass spectrometry of lipids, especially those isolated from bacteria, has ballooned over the past two decades, affirming in the process the complexity of the lipidome. With this has come the identification of new and interesting lipid structures. Here is an overview of several novel lipids, from both Gram-negative and Gram-positive bacteria with roles in health and disease, whose structural identification was facilitated using mass spectrometry. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Improving mass measurement accuracy in mass spectrometry based proteomics by combining open source tools for chromatographic alignment and internal calibration.

    Science.gov (United States)

    Palmblad, Magnus; van der Burgt, Yuri E M; Dalebout, Hans; Derks, Rico J E; Schoenmaker, Bart; Deelder, André M

    2009-05-02

    Accurate mass determination enhances peptide identification in mass spectrometry based proteomics. We here describe the combination of two previously published open source software tools to improve mass measurement accuracy in Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). The first program, msalign, aligns one MS/MS dataset with one FTICRMS dataset. The second software, recal2, uses peptides identified from the MS/MS data for automated internal calibration of the FTICR spectra, resulting in sub-ppm mass measurement errors.

  17. Mass spectrometry-based metabolomics: Targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders.

    Science.gov (United States)

    Luan, Hemi; Wang, Xian; Cai, Zongwei

    2017-11-12

    Metabolomics seeks to take a "snapshot" in a time of the levels, activities, regulation and interactions of all small molecule metabolites in response to a biological system with genetic or environmental changes. The emerging development in mass spectrometry technologies has shown promise in the discovery and quantitation of neuroactive small molecule metabolites associated with gut microbiota and brain. Significant progress has been made recently in the characterization of intermediate role of small molecule metabolites linked to neural development and neurodegenerative disorder, showing its potential in understanding the crosstalk between gut microbiota and the host brain. More evidence reveals that small molecule metabolites may play a critical role in mediating microbial effects on neurotransmission and disease development. Mass spectrometry-based metabolomics is uniquely suitable for obtaining the metabolic signals in bidirectional communication between gut microbiota and brain. In this review, we summarized major mass spectrometry technologies including liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and imaging mass spectrometry for metabolomics studies of neurodegenerative disorders. We also reviewed the recent advances in the identification of new metabolites by mass spectrometry and metabolic pathways involved in the connection of intestinal microbiota and brain. These metabolic pathways allowed the microbiota to impact the regular function of the brain, which can in turn affect the composition of microbiota via the neurotransmitter substances. The dysfunctional interaction of this crosstalk connects neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Huntington's disease. The mass spectrometry-based metabolomics analysis provides information for targeting dysfunctional pathways of small molecule metabolites in the development of the neurodegenerative diseases, which may be valuable for the

  18. Quantitation of mycotoxins using direct analysis in real time (DART)-mass spectrometry (MS)

    Science.gov (United States)

    Ambient ionization represents a new generation of mass spectrometry ion sources which is used for rapid ionization of small molecules under ambient conditions. The combination of ambient ionization and mass spectrometry allows analyzing multiple food samples with simple or no sample treatment, or in...

  19. Fusion of mass spectrometry-based metabolomics data

    NARCIS (Netherlands)

    Smilde, Age K.; van der Werf, Mariët J.; Bijlsma, Sabina; van der Werff-van der Vat, Bianca J. C.; Jellema, Renger H.

    2005-01-01

    A general method is presented for combining mass spectrometry-based metabolomics data. Such data are becoming more and more abundant, and proper tools for fusing these types of data sets are needed. Fusion of metabolomics data leads to a comprehensive view on the metabolome of an organism or

  20. Recent advances in matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for in situ analysis of endogenous molecules in plants.

    Science.gov (United States)

    Qin, Liang; Zhang, Yawen; Liu, Yaqin; He, Huixin; Han, Manman; Li, Yanyan; Zeng, Maomao; Wang, Xiaodong

    2018-04-17

    Mass spectrometry imaging (MSI) as a label-free and powerful imaging technique enables in situ evaluation of a tissue metabolome and/or proteome, becoming increasingly popular in the detection of plant endogenous molecules. The characterization of structure and spatial information of endogenous molecules in plants are both very important aspects to better understand the physiological mechanism of plant organism. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a commonly-used tissue imaging technique, which requires matrix to assist in situ detection of a variety of molecules on the surface of a tissue section. In previous studies, MALDI-MSI was mostly used for the detection of molecules from animal tissue sections, compared to plant samples due to cell structural limitations, such as plant cuticles, epicuticular waxes, and cell walls. Despite the enormous progress that has been made in tissue imaging, there is still a challenge for MALDI-MSI suitable for the imaging of endogenous compounds in plants. This review summarises the recent advances in MALDI-MSI, focusing on the application of in situ detection of endogenous molecules in different plant organs, i.e. root, stem, leaf, flower, fruit, and seed. Further improvements on instrumentation sensitivity, matrix selection, image processing and sample preparation will expand the application of MALDI-MSI in plant research. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Gas Chromatography Mass Spectrometry of Quassia undulata Seed ...

    African Journals Online (AJOL)

    Prof. Ogunji

    The use of gas chromatography mass spectrometry (GC MS) as a sensitive and specific technique ... cold flow properties and stability of the fuel to oxidation, peroxidation and polymerization .... determinants of both the physical and chemical ...

  2. Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Peng, Xianzhi; Jin, Jiabin; Wang, Chunwei; Ou, Weihui; Tang, Caiming

    2015-03-06

    A sensitive and reliable method was developed for multi-target determination of 13 most widely used organic ultraviolet (UV) absorbents (including UV filters and UV stabilizers) in aquatic organism tissues. The organic UV absorbents were extracted using ultrasonic-assisted extraction, purified via gel permeation chromatography coupled with silica gel column chromatography, and determined by ultra-high performance liquid chromatography-tandem mass spectrometry. Recoveries of the UV absorbents from organism tissues mostly ranged from 70% to 120% from fish filet with satisfactory reproducibility. Method quantification limits were 0.003-1.0ngg(-1) dry weight (dw) except for 2-ethylhexyl 4-methoxycinnamate. This method has been applied to analysis of the UV absorbents in wild and farmed aquatic organisms collected from the Pearl River Estuary, South China. 2-Hydroxy-4-methoxybenzophenone and UV-P were frequently detected in both wild and farmed marine organisms at low ngg(-1)dw. 3-(4-Methylbenzylidene)camphor and most of the benzotriazole UV stabilizers were also frequently detected in maricultured fish. Octocrylene and 2-ethylhexyl 4-methoxycinnamate were not detected in any sample. This work lays basis for in-depth study about bioaccumulation and biomagnification of the UV absorbents in marine environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Cocoa content influences chocolate molecular profile investigated by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Bonatto, Cínthia C; Silva, Luciano P

    2015-06-01

    Chocolate authentication is a key aspect of quality control and safety. Matrix-assisted laser desorption ionization time-of flight (MALDI-TOF) mass spectrometry (MS) has been demonstrated to be useful for molecular profiling of cells, tissues, and even food. The present study evaluated if MALDI-TOF MS analysis on low molecular mass profile may classify chocolate samples according to the cocoa content. The molecular profiles of seven processed commercial chocolate samples were compared by using MALDI-TOF MS. Some ions detected exclusively in chocolate samples corresponded to the metabolites of cocoa or other constituents. This method showed the presence of three distinct clusters according to confectionery and sensorial features of the chocolates and was used to establish a mass spectra database. Also, novel chocolate samples were evaluated in order to check the validity of the method and to challenge the database created with the mass spectra of the primary samples. Thus, the method was shown to be reliable for clustering unknown samples into the main chocolate categories. Simple sample preparation of the MALDI-TOF MS approach described will allow the surveillance and monitoring of constituents during the molecular profiling of chocolates. © 2014 Society of Chemical Industry.

  4. Human folate metabolism using 14C-accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Arjomand, A; Bucholz, B A; Clifford, A J; Duecker, S R; Johnson, H; Schneider, P D; Zulim, R A.

    1999-01-01

    Folate is a water soluble vitamin required for optimal health, growth and development. It occurs naturally in various states of oxidation of the pteridine ring and with varying lengths to its glutamate chain. Folates function as one-carbon donors through methyl transferase catalyzed reactions. Low-folate diets, especially by those with suboptimal methyltransferase activity, are associated with increased risk of neural tube birth defects in children, hyperhomocysteinemic heart disease, and cancer in adults. Rapidly dividing (neoplastic) cells have a high folate need for DNA synthesis. Chemical analogs of folate (antifolates) that interfere with folate metabolism are used as therapeutic agents in cancer treatment. Although much is known about folate chemistry, metabolism of this vitamin in vivo in humans is not well understood. Since folate levels in blood and tissues are very low and methods to measure them are inadequate, the few previous studies that have examined folate metabolism used large doses of radiolabeled folic acid in patients with Hodgkins disease and cancer (Butterworth et al. 1969, Krumdieck et al. 1978). A subsequent protocol using deuterated folic acid was also insufficiently sensitive to trace a physiologic folate dose (Stites et al. 1997). Accelerator mass spectrometry (AMS) is an emerging bioanalytical tool that overcomes the limitations of traditional mass spectrometry and of decay counting of long lived radioisotopes (Vogel et al. 1995). AMS can detect attomolar concentrations of 14 C in milligram-sized samples enabling in vivo radiotracer studies in healthy humans. We used AMS to study the metabolism of a physiologic 80 nmol oral dose of 14 C-folic acid (1/6 US RDA) by measuring the 14 C-folate levels in serial plasma, urine and feces samples taken over a 150-day period after dosing a healthy adult volunteer

  5. Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry

    KAUST Repository

    Raji, Misjudeen; Amad, Maan H.; Emwas, Abdul-Hamid M.

    2013-01-01

    RATIONALE Pterostilbene is a member of the hydroxystilbene family of compounds commonly found in plants such as blueberry and grapes. During the analysis of this compound by electrospray ionization mass spectrometry (ESI-MS), an ion was observed

  6. Mass Spectrometry in Clinical Laboratory: Applications in Therapeutic Drug Monitoring and Toxicology.

    Science.gov (United States)

    Garg, Uttam; Zhang, Yan Victoria

    2016-01-01

    Mass spectrometry (MS) has been used in research and specialized clinical laboratories for decades as a very powerful technology to identify and quantify compounds. In recent years, application of MS in routine clinical laboratories has increased significantly. This is mainly due to the ability of MS to provide very specific identification, high sensitivity, and simultaneous analysis of multiple analytes (>100). The coupling of tandem mass spectrometry with gas chromatography (GC) or liquid chromatography (LC) has enabled the rapid expansion of this technology. While applications of MS are used in many clinical areas, therapeutic drug monitoring, drugs of abuse, and clinical toxicology are still the primary focuses of the field. It is not uncommon to see mass spectrometry being used in routine clinical practices for those applications.

  7. Simultaneous qualitative assessment and quantitative analysis of flavonoids in various tissues of lotus (Nelumbo nucifera) using high performance liquid chromatography coupled with triple quad mass spectrometry.

    Science.gov (United States)

    Chen, Sha; Fang, Linchuan; Xi, Huifen; Guan, Le; Fang, Jinbao; Liu, Yanling; Wu, Benhong; Li, Shaohua

    2012-04-29

    Flavonoid composition and concentration were investigated in 12 different tissues of 'Ti-1' lotus (Nelumbo nucifera) by high performance liquid chromatography equipped with photodiode array detection tandem electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS(n)). A total of 20 flavonoids belonging to six groups (myricetin, quercetin, kaempferol, isohamnetin, diosmetin derivatives) were separated and identified. Myricetin 3-O-galactoside, myricetin 3-O-glucuronide, isorhamnetin 3-O-glucuronide and free aglycone diometin (3',5,7-trihydroxy-4'-methoxyflavone) were first reported in lotus. Flavonoid composition varied largely with tissue type, and diverse compounds (5-15) were found in leaf and flower stalks, flower pistils, seed coats and embryos. Flower tissues including flower petals, stamens, pistils, and, especially, reproductive tissue fruit coats had more flavonoid compounds (15-17) than leaves (12), while no flavonoids were detectable in seed kernels. The flavonoid content of seed embryos was high, 730.95 mg 100g(-1) DW (dry weight). As regards the other tissues, mature leaf pulp (771.79 mg 100 g(-1) FW (fresh weight)) and young leaves (650.67 mg 100 g(-1) FW) had higher total flavonoid amount than flower stamens (359.45 mg 100 g(-1) FW) and flower petals (342.97 mg 100g(-1) FW), while leaf stalks, flower stalks and seed coats had much less total flavonoid (less than 40 mg 100 g(-1) FW). Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    Science.gov (United States)

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.

  9. New developments in glow discharge optical emission and mass spectrometry

    International Nuclear Information System (INIS)

    Hoffmann, Volker; Dorka, Roland; Wilken, Ludger; Wetzig, Klaus

    2000-01-01

    This paper describes new developments in flow discharge optical emission (GD-OES) and mass spectrometry (GD-MS) at IFW and presents corresponding new applications (analysis of microelectronic multi-layer system by radio frequency glow discharge optical emission spectrometry (RF-GD-OES) and analysis of pure iron by a new Grimm-type GD-MS source)

  10. Mass Spectrometry-Based N-Glycomics of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Manveen K. Sethi

    2015-12-01

    Full Text Available Colorectal cancer (CRC is one of the most prevalent cancers worldwide. An increased molecular understanding of the CRC pathology is warranted to gain insights into the underlying molecular and cellular mechanisms of the disease. Altered protein glycosylation patterns are associated with most diseases including malignant transformation. Recent advances in mass spectrometry and bioinformatics have accelerated glycomics research and present a new paradigm for cancer biomarker discovery. Mass spectrometry (MS-based glycoproteomics and glycomics, therefore, hold considerable promise to improve the discovery of novel biomarkers with utility in disease diagnosis and therapy. This review focuses on the emerging field of glycomics to present a comprehensive review of advances in technologies and their application in studies aimed at discovering novel glycan-based biomarkers. We will also discuss some of the challenges associated with using glycans as biomarkers.

  11. Chiral recognition and determination of enantiomeric excess by mass spectrometry: A review

    International Nuclear Information System (INIS)

    Yu, Xiangying; Yao, Zhong-Ping

    2017-01-01

    Chiral analysis is of great importance to fundamental and applied research in chemical, biological and pharmaceutical sciences. Due to the superiority of mass spectrometry (MS) over other analytical methods in terms of speed, specificity and sensitivity, chiral analysis by MS has attracted much interest in recent years. Chiral analysis by MS typically involves introduction of a chiral selector to form diastereomers with analyte enantiomers, and comparison of the behaviors of diastereomers in MS. Chiral differentiation can be achieved by comparing the relative abundances of diastereomers, the thermodynamic or kinetic constants of ion-molecule reactions of diastereomers in the gas phase, the dissociation of diastereomers in MS/MS, or the mobility of diastereomers in ion mobility mass spectrometry. In this review, chiral recognition and determination of enantiomeric excess by these chiral MS methods were summarized, and the prospects of chiral analysis by MS were discussed. - Highlights: • Both chiral recognition and determination of enantiomeric excess by mass spectrometry are systematically reviewed. • Classification is based on the behavioral differences of diastereomers formed between chiral analytes and chiral selectors. • Development of ion mobility mass spectrometry for chiral differentiation is covered. • Various methods are highlighted and compared.

  12. Chiral recognition and determination of enantiomeric excess by mass spectrometry: A review

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiangying [College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong (China); State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057 (China); Yao, Zhong-Ping, E-mail: zhongping.yao@polyu.edu.hk [State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057 (China); Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules (Yanbian University), Ministry of Education, Yanji 133002, Jilin (China); State Key Laboratory of Chirosciences, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region (China)

    2017-05-22

    Chiral analysis is of great importance to fundamental and applied research in chemical, biological and pharmaceutical sciences. Due to the superiority of mass spectrometry (MS) over other analytical methods in terms of speed, specificity and sensitivity, chiral analysis by MS has attracted much interest in recent years. Chiral analysis by MS typically involves introduction of a chiral selector to form diastereomers with analyte enantiomers, and comparison of the behaviors of diastereomers in MS. Chiral differentiation can be achieved by comparing the relative abundances of diastereomers, the thermodynamic or kinetic constants of ion-molecule reactions of diastereomers in the gas phase, the dissociation of diastereomers in MS/MS, or the mobility of diastereomers in ion mobility mass spectrometry. In this review, chiral recognition and determination of enantiomeric excess by these chiral MS methods were summarized, and the prospects of chiral analysis by MS were discussed. - Highlights: • Both chiral recognition and determination of enantiomeric excess by mass spectrometry are systematically reviewed. • Classification is based on the behavioral differences of diastereomers formed between chiral analytes and chiral selectors. • Development of ion mobility mass spectrometry for chiral differentiation is covered. • Various methods are highlighted and compared.

  13. Accelerated identification of proteins by mass spectrometry by employing covalent pre-gel staining with Uniblue A.

    Directory of Open Access Journals (Sweden)

    Marco A Mata-Gómez

    Full Text Available BACKGROUND: The identification of proteins by mass spectrometry is a standard method in biopharmaceutical quality control and biochemical research. Prior to identification by mass spectrometry, proteins are usually pre-separated by electrophoresis. However, current protein staining and de-staining protocols are tedious and time consuming, and therefore prolong the sample preparation time for mass spectrometry. METHODOLOGY AND PRINCIPAL FINDINGS: We developed a 1-minute covalent pre-gel staining protocol for proteins, which does not require de-staining before the mass spectrometry analysis. We investigated the electrophoretic properties of derivatized proteins and peptides and studied their behavior in mass spectrometry. Further, we elucidated the preferred reaction of proteins with Uniblue A and demonstrate the integration of the peptide derivatization into typical informatics tools. CONCLUSIONS AND SIGNIFICANCE: The Uniblue A staining method drastically speeds up the sample preparation for the mass spectrometry based identification of proteins. The application of this chemo-proteomic strategy will be advantageous for routine quality control of proteins and for time-critical tasks in protein analysis.

  14. Exploring the Sea Urchin Neuropeptide Landscape by Mass Spectrometry.

    Science.gov (United States)

    Monroe, Eric B; Annangudi, Suresh P; Wadhams, Andinet A; Richmond, Timothy A; Yang, Ning; Southey, Bruce R; Romanova, Elena V; Schoofs, Liliane; Baggerman, Geert; Sweedler, Jonathan V

    2018-05-01

    Neuropeptides are essential cell-to-cell signaling messengers and serve important regulatory roles in animals. Although remarkable progress has been made in peptide identification across the Metazoa, for some phyla such as Echinodermata, limited neuropeptides are known and even fewer have been verified on the protein level. We employed peptidomic approaches using bioinformatics and mass spectrometry (MS) to experimentally confirm 23 prohormones and to characterize a new prohormone in nervous system tissue from Strongylocentrotus purpuratus, the purple sea urchin. Ninety-three distinct peptides from known and novel prohormones were detected with MS from extracts of the radial nerves, many of which are reported or experimentally confirmed here for the first time, representing a large-scale study of neuropeptides from the phylum Echinodermata. Many of the identified peptides and their precursor proteins have low homology to known prohormones from other species/phyla and are unique to the sea urchin. By pairing bioinformatics with MS, the capacity to characterize novel peptides and annotate prohormone genes is enhanced. Graphical Abstract.

  15. Applications of accelerator mass spectrometry for pharmacological and toxicological research.

    Science.gov (United States)

    Brown, Karen; Tompkins, Elaine M; White, Ian N H

    2006-01-01

    The technique of accelerator mass spectrometry (AMS), known for radiocarbon dating of archeological specimens, has revolutionized high-sensitivity isotope detection in pharmacology and toxicology by allowing the direct determination of the amount of isotope in a sample rather than measuring its decay. It can quantify many isotopes, including 26Al, 14C, 41Ca, and 3H with detection down to attomole (10(-18)) amounts. Pharmacokinetic data in humans have been achieved with ultra-low levels of radiolabel. One of the most exciting biomedical applications of AMS with 14C-labeled potential carcinogens is the detection of modified proteins or DNA in tissues. The relationship between low-level exposure and covalent binding of genotoxic chemicals has been compared in rodents and humans. Such compounds include heterocyclic amines, benzene, and tamoxifen. Other applications range from measuring the absorption of 26Al to monitoring 41Ca turnover in bone. In epoxy-embedded tissue sections, high-resolution imaging of 14C label in cells is possible. The uses of AMS are becoming more widespread with the availability of instrumentation dedicated to the analysis of biomedical samples. Copyright 2005 Wiley Periodicals, Inc.

  16. Advances in 193 nm excimer lasers for mass spectrometry applications

    Science.gov (United States)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  17. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    Science.gov (United States)

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  18. Theory and technique of spark source mass spectrometry; Theorie et technique de la spectrometrie de masse a etincelles

    Energy Technology Data Exchange (ETDEWEB)

    Stefani, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    Trace analysis in solids by spark source mass spectrometry involves complicated phenomena: element ionization in spark and blacking of sensitive emulsion by focused ion beam. However the principal risk of selectivity lies in analyser system, which realizes double focusing only for a part of the ions. Therefore, each analyst has to known ionic optics of his apparatus, for ensuring the transmission of mean energetic ions, which are representative of sample composition. By a careful photometry of mass spectrum, good reproducibility can be obtained. Thereafter accuracy depends on the knowledge of sensitivity coefficients proper to this apparatus. (author) [French] L'analyse de traces dans les solides par spectrometrie de masse a etincelles met en jeu des phenomenes complexes qui sont l'ionisation des elements dans l'etincelle, et le noircissement de l'emulsion sensible par les faisceaux ioniques focalises. Cependant, le risque majeur de selectivite provient de l'ensemble analyseur, qui realise la double focalisation sur une fraction seulement du faisceau d'ions. L'analyste doit donc connaitre en detail l'optique ionique de son appareil, pour assurer le passage de la bande d'energie moyenne des ions, qui seule caracterise quantitativement la composition chimique de l'echantillon. Une exploitation photometrique soignee du spectrogramme donne alors des resultats reproductibles, dont la justesse ne depend plus que des coefficients de sensibilite propres a ce type d'instrument. (auteur)

  19. Bayesian Integration and Characterization of Composition C-4 Plastic Explosives Based on Time-of-Flight Secondary Ion Mass Spectrometry and Laser Ablation-Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Christine M.; Kelly, Ryan T.; Alexander, M. L.; Newburn, Matthew K.; Bader, Sydney P.; Ewing, Robert G.; Fahey, Albert J.; Atkinson, David A.; Beagley, Nathaniel

    2016-02-25

    Key elements regarding the use of non-radioactive ionization sources will be presented as related to explosives detection by mass spectrometry and ion mobility spectrometry. Various non-radioactive ionization sources will be discussed along with associated ionization mechanisms pertaining to specific sample types.

  20. Mass spectrometry. Environment, biology, oenology, medicine, geology, chemistry, archaeology, mechanisms; Spectrometrie de masse. Environnement, biologie, oenologie, medecine, geologie, chimie, archeologie, mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This document provides the papers (communications and posters) presented at the 16. French days of mass spectrometry, held September 6-9, 1999 in Nancy, France. 7 papers are interesting for the ETDE database and are analyzed separately. (O.M.)

  1. Mass spectrometry. Environment, biology, oenology, medicine, geology, chemistry, archaeology, mechanisms; Spectrometrie de masse. Environnement, biologie, oenologie, medecine, geologie, chimie, archeologie, mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This document provides the papers (communications and posters) presented at the 16. French days of mass spectrometry, held September 6-9, 1999 in Nancy, France. 5 papers are interesting for the INIS database and are analyzed separately. (O.M.)

  2. Characterization of microbial siderophores by mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Pluháček, Tomáš; Lemr, Karel; Ghosh, D.; Milde, D.; Novák, Jiří; Havlíček, Vladimír

    2016-01-01

    Roč. 35, č. 1 (2016), s. 35-47 ISSN 0277-7037 R&D Projects: GA MŠk(CZ) LD13038; GA ČR(CZ) GAP206/12/1150; GA MŠk(CZ) LO1509 Institutional support: RVO:61388971 Keywords : iron * siderophores * mass spectrometry Subject RIV: CE - Biochemistry Impact factor: 9.373, year: 2016

  3. Proceedings of the twenty ninth ISMAS international symposium on mass spectrometry

    International Nuclear Information System (INIS)

    Aggarwal, Suresh K.; Pranaw Kumar; Jaison, P.G.; Sarkar, Arnab; Telmore, Vijay M.

    2015-02-01

    Mass spectrometry is a truly multi-disciplinary science and has emerged as an indispensable analytical tool due to its high sensitivity, specificity and universality. It is playing a key role in variety of scientific disciplines of chemistry, physics, biology, archaeology, material science etc. Progress in the field of mass spectrometry in the last two decades has led to the advent of new ion sources, improvements in existing mass analyzers and introduction of hybrid mass analyzers. As the technique continues to advance, many new applications have emerged particularly in health sciences and for forensic applications. The current world scenario demands determination at single atom and single molecule with high specificity. The vendors in the international mass spectrometric instrumentation market are guided by these requirements as well as the inputs from mass spectrometrists around the world engaged in new developments. Papers relevant to INIS are indexed separately

  4. Quantitative mass spectrometry of unconventional human biological matrices

    Science.gov (United States)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  5. Determination of Trace Iron in Red Wine by Isotope Dilution Mass Spectrometry Using Multiple-Collector Inductively Coupled Plasma Mass Spectrometry

    International Nuclear Information System (INIS)

    Zhou Tao; Wang Jun; Lu Hai; Zhou Yuanjing; Li Haifeng

    2009-01-01

    This paper introduces determination of trace iron in red wine certified reference material by isotope dilution mass spectrometry (IDMS) method using a multiplecollector inductively coupled plasma mass spectrometry, equipped with a hexapole collision cell. The measurement procedure of iron isotopic abundance ratios was deeply researched. Reduced polyatomic ion interferences to iron isotopes ion by collision reaction using Ar and H 2 gas, high precise isotopic abundance ratios were achieved. Two relative measurement methods (ICP-MS and ICP-OES) were used to analyze trace iron in red wine. The results are compared with IDMS results, which indicate that they are accordant. The uncertainty analyses include each uncertainty factor in whole experiment and the uncertainty of used certified reference material and it shows that the procedure blank is not neglectable to detect limit and precision of the method. The establishment of IDMS method for analysis of trace iron in red wine supports the certification of certified reference materials. (authors)

  6. Isotope analysis of micro metal particles by adopting laser-ablation mass spectrometry

    International Nuclear Information System (INIS)

    Song, Kyu Seok; Ha, Young Kyung; Han, Sun Ho; Park, Yong Joon; Kim, Won Ho

    2005-01-01

    The isotope analysis of microparticles in environmental samples as well as laboratory samples is an important task. A special concern is necessary in particle analysis of swipe samples. Micro particles are normally analyzed either by dissolving particles in the solvents and adopting conventional analytical methods or direct analysis method such as a laser-ablation ICP mass spectrometry (LA-ICP-MS), SIMS, and SNMS (sputtered neutral mass spectrometry). But the LA-ICPMS uses large amount of samples because normally laser beam is tightly focused on the target particle for the complete ablation. The SIMS and SNMS utilize ion beams for the generation of sample ions from the particle. But the number of ions generated by an ion beam is less than 5% of the total generated particles in SIMS. The SNMS is also an excellent analytical technique for particle analysis, however, ion beam and frequency tunable laser system are required for the analysis. Recently a direct analysis of elements as well as isotopes by using laser-ablation is recognized one of the most efficient detection technology for particle samples. The laser-ablation mass spectrometry requires only one laser source without frequency tuneability with no sample pretreatment. Therefore this technique is one of the simplest analysis techniques for solid samples as well as particles. In this study as a part of the development of the new isotope analysis techniques for particles samples, a direct laser-ablation is adopted with mass spectrometry. Zinc and gadolinium were chosen as target samples, since these elements have isotopes with minor abundance (0.62% for Zn, and 0.2% for Gd). The preliminary result indicates that isotopes of these two elements are analyzed within 10% of natural abundance with good mass resolution by using direct laser-ablation mass spectrometry

  7. Applicability of hybrid linear ion trap-high resolution mass spectrometry and quadrupole-linear ion trap-mass spectrometry for mycotoxin analysis in baby food.

    Science.gov (United States)

    Rubert, Josep; James, Kevin J; Mañes, Jordi; Soler, Carla

    2012-02-03

    Recent developments in mass spectrometers have created a paradoxical situation; different mass spectrometers are available, each of them with their specific strengths and drawbacks. Hybrid instruments try to unify several advantages in one instrument. In this study two of wide-used hybrid instruments were compared: hybrid quadrupole-linear ion trap-mass spectrometry (QTRAP®) and the hybrid linear ion trap-high resolution mass spectrometry (LTQ-Orbitrap®). Both instruments were applied to detect the presence of 18 selected mycotoxins in baby food. Analytical parameters were validated according to 2002/657/CE. Limits of quantification (LOQs) obtained by QTRAP® instrument ranged from 0.45 to 45 μg kg⁻¹ while lower limits of quantification (LLOQs) values were obtained by LTQ-Orbitrap®: 7-70 μg kg⁻¹. The correlation coefficients (r) in both cases were upper than 0.989. These values highlighted that both instruments were complementary for the analysis of mycotoxin in baby food; while QTRAP® reached best sensitivity and selectivity, LTQ-Orbitrap® allowed the identification of non-target and unknowns compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Advances in characterizing ubiquitylation sites by mass spectrometry

    DEFF Research Database (Denmark)

    Sylvestersen, K.B.; Young, C.; Nielsen, M.L.

    2013-01-01

    of ubiquitylation is a two-fold challenge that involves the mapping of ubiquitylation sites and the determination of ubiquitin chain topology. This review focuses on the technical advances in the mass spectrometry-based characterization of ubiquitylation sites, which have recently involved the large...

  9. Determination of trace amounts of impurities in molybdenum by spark source and glow discharge mass spectrometry

    International Nuclear Information System (INIS)

    Saito, Morimasa

    1994-01-01

    For the determination of trace and ultra-trace amounts of impurities in high-purity molybdenum, spark source mass spectrometry and glow discharge mass spectrometry were studied. In spark source mass spectrometry using the metal probe method, the liquid-helium cryogenic pump was used in order to protect the surface of the samples from oxidation. The theoretical relative sensitivity factors (Mo=1) calculated from physical properties were used. The analytical results obtained for molybdenum tablet and high-purity molybdenum were in good agreement with those obtained by other methods (atomic absorption spectrometry and others). In glow discharge mass spectrometry, the relative sensitivity factors were calculated by using the results obtained by spark source mass spectrometry and atomic absorption spectrometry, and this method was applied to the determination of ultra-trace amounts of impurities in ultra high-purity molybdenum and gave the satisfactory results. The detection limits (2σ, n=10) in the integration time of 600 s for U and Th were 0.6 ppb and 0.3 ppb, and the values for Al, Si, Cr, Mn and Cu were in the range of 10 ppb to 0.5 ppb. (author)

  10. Getting to the core of protein pharmaceuticals – comprehensive structure analysis by mass spectrometry

    DEFF Research Database (Denmark)

    Leurs, Ulrike; Mistarz, Ulrik Hvid; Rand, Kasper Dyrberg

    2015-01-01

    . Mass spectrometry has evolved as a powerful tool for the characterization of both primary and higher order structures of protein pharmaceuticals. Furthermore, the chemical and physical stability of protein drugs, as well as their pharmacokinetics are nowadays routinely determined by mass spectrometry...

  11. A SELDI mass spectrometry study of experimental autoimmune encephalomyelitis: sample preparation, reproducibility, and differential protein expression patterns.

    Science.gov (United States)

    Azzam, Sausan; Broadwater, Laurie; Li, Shuo; Freeman, Ernest J; McDonough, Jennifer; Gregory, Roger B

    2013-05-01

    Experimental autoimmune encephalomyelitis (EAE) is an autoimmune, inflammatory disease of the central nervous system that is widely used as a model of multiple sclerosis (MS). Mitochondrial dysfunction appears to play a role in the development of neuropathology in MS and may also play a role in disease pathology in EAE. Here, surface enhanced laser desorption ionization mass spectrometry (SELDI-MS) has been employed to obtain protein expression profiles from mitochondrially enriched fractions derived from EAE and control mouse brain. To gain insight into experimental variation, the reproducibility of sub-cellular fractionation, anion exchange fractionation as well as spot-to-spot and chip-to-chip variation using pooled samples from brain tissue was examined. Variability of SELDI mass spectral peak intensities indicates a coefficient of variation (CV) of 15.6% and 17.6% between spots on a given chip and between different chips, respectively. Thinly slicing tissue prior to homogenization with a rotor homogenizer showed better reproducibility (CV = 17.0%) than homogenization of blocks of brain tissue with a Teflon® pestle (CV = 27.0%). Fractionation of proteins with anion exchange beads prior to SELDI-MS analysis gave overall CV values from 16.1% to 18.6%. SELDI mass spectra of mitochondrial fractions obtained from brain tissue from EAE mice and controls displayed 39 differentially expressed proteins (p≤ 0.05) out of a total of 241 protein peaks observed in anion exchange fractions. Hierarchical clustering analysis showed that protein fractions from EAE animals with severe disability clearly segregated from controls. Several components of electron transport chain complexes (cytochrome c oxidase subunit 6b1, subunit 6C, and subunit 4; NADH dehydrogenase flavoprotein 3, alpha subcomplex subunit 2, Fe-S protein 4, and Fe-S protein 6; and ATP synthase subunit e) were identified as possible differentially expressed proteins. Myelin Basic Protein isoform 8 (MBP8) (14.2 k

  12. Electrospray and MALDI mass spectrometry in the identification of spermicides in criminal investigations.

    Science.gov (United States)

    Hollenbeck, T P; Siuzdak, G; Blackledge, R D

    1999-07-01

    Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry have been used to examine evidence in a sexual assault investigation. Because condoms are being used increasingly by sexual assailants and some condom brands include the spermicide nonoxynol-9 (nonylphenoxy polyethoxyethanol) in the lubricant formulation, the recovery, and identification of nonoxynol-9 from evidence items may assist in proving corpus delicti. A method was developed for the recovery of nonoxynol-9 from internal vaginal swabs and for its identification by reverse phase liquid chromatography/electrospray ionization mass spectrometry (LC ESI-MS), nanoelectrospray ionization (nanoESI) mass spectrometry, and high resolution MALDI Fourier transform mass spectrometry (MALDI-FTMS). The method was tested on extracts from precoitus, immediate postcoitus, and four-hours postcoitus vaginal swabs provided by a volunteer whose partner does not normally use condoms, but for this trial used a condom having a water-soluble gel-type lubricant that includes 5% nonoxynol-9 in its formulation. Subsequently, LC ESI-MS was used to identify traces of nonoxynol-9 from the internal vaginal swab of a victim of a sexual assault.

  13. Ion detection in mass spectrometry

    International Nuclear Information System (INIS)

    Bolbach, Gerard

    2016-03-01

    This course aims at providing some elements for a better understanding of ion detectors used in mass spectrometers, of their operations, and of their limitations. A first part addresses the functions and properties of an ideal detector, how to detect ions in gas phase, and particle detectors and ion detectors used in mass spectrometry. The second part proposes an overview of currently used detectors with respect to their operation principle: detection from the ion charge (Faraday cylinder), detection by inductive effects (FTICR, Fourier Transform Ion Cyclotron Resonance), and detection by secondary electron emission. The third part discusses the specificities of secondary electron emission. The fourth one addresses operating modes and parameters related to detectors. The sixth part proposes a prospective view on future detectors by addressing the following issues: cryo-detector, inductive effect and charge detectors, ion detection and nano materials

  14. Direct olive oil analysis by mass spectrometry: A comparison of different ambient ionization methods.

    Science.gov (United States)

    Lara-Ortega, Felipe J; Beneito-Cambra, Miriam; Robles-Molina, José; García-Reyes, Juan F; Gilbert-López, Bienvenida; Molina-Díaz, Antonio

    2018-04-01

    Analytical methods based on ambient ionization mass spectrometry (AIMS) combine the classic outstanding performance of mass spectrometry in terms of sensitivity and selectivity along with convenient features related to the lack of sample workup required. In this work, the performance of different mass spectrometry-based methods has been assessed for the direct analyses of virgin olive oil for quality purposes. Two sets of experiments have been setup: (1) direct analysis of untreated olive oil using AIMS methods such as Low-Temperature Plasma Mass Spectrometry (LTP-MS) or paper spray mass spectrometry (PS-MS); or alternatively (2) the use of atmospheric pressure ionization (API) mass spectrometry by direct infusion of a diluted sample through either atmospheric pressure chemical ionization (APCI) or electrospray (ESI) ionization sources. The second strategy involved a minimum sample work-up consisting of a simple olive oil dilution (from 1:10 to 1:1000) with appropriate solvents, which originated critical carry over effects in ESI, making unreliable its use in routine; thus, ESI required the use of a liquid-liquid extraction to shift the measurement towards a specific part of the composition of the edible oil (i.e. polyphenol rich fraction or lipid/fatty acid profile). On the other hand, LTP-MS enabled direct undiluted mass analysis of olive oil. The use of PS-MS provided additional advantages such as an extended ionization coverage/molecular weight range (compared to LTP-MS) and the possibility to increase the ionization efficiency towards nonpolar compounds such as squalene through the formation of Ag + adducts with carbon-carbon double bounds, an attractive feature to discriminate between oils with different degree of unsaturation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Desorption and ionization processes in laser mass spectrometry

    International Nuclear Information System (INIS)

    Peyl, G.J.Q. van der.

    1984-01-01

    In this thesis results are reported from a study on the desorption- and ionization process initiated by infra-red laser irradiation (LDMS) or ion bombardment (SIMS) of thin organic sample layers. The study is especially focused on the formation of quasimolecular ions under these conditions. Results of these investigations can be used for a better optimization of the LDMS and SIMS techniques in organic mass spectrometry. First, an overview is given of laser desorption mass spectrometry. Next, the coupling of the laser energy into the organic sample layer is investigated. It is concluded that the laser energy is primarily absorbed by the substrate material and not by the organic overlayer. The formation of quasi-molecular ions, either in the gas phase or in the substrate surface is investigated. The final section reports kinetic energy distributions for ions sputtered from organic solids and liquids. (Auth.)

  16. Meet interesting abbreviations in clinical mass spectrometry: from compound classification by REIMS to multimodal and mass spectrometry imaging (MSI)

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Dominika; Pluháček, Tomáš; Palyzová, Andrea; Přichystal, Jakub; Balogh, J.; Lemr, Karel; Juránek, I.; Havlíček, Vladimír

    2017-01-01

    Roč. 61, č. 3 (2017), s. 353-360 ISSN 0001-723X R&D Projects: GA MŠk(CZ) LO1509; GA ČR(CZ) GA16-20229S Institutional support: RVO:61388971 Keywords : REIMS * multimodal * mass spectrometry imaging Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 0.673, year: 2016

  17. Characterization of synthetic peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Mirza, Osman Asghar; Højrup, Peter

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI......-TOF-MS and LC-MS of synthetic peptides....

  18. T cells recognizing a peptide contaminant undetectable by mass spectrometry

    DEFF Research Database (Denmark)

    Brezar, Vedran; Culina, Slobodan; Østerbye, Thomas

    2011-01-01

    Synthetic peptides are widely used in immunological research as epitopes to stimulate their cognate T cells. These preparations are never completely pure, but trace contaminants are commonly revealed by mass spectrometry quality controls. In an effort to characterize novel major histocompatibility...... complex (MHC) Class I-restricted ß-cell epitopes in non-obese diabetic (NOD) mice, we identified islet-infiltrating CD8+ T cells recognizing a contaminating peptide. The amount of this contaminant was so small to be undetectable by direct mass spectrometry. Only after concentration by liquid...... chromatography, we observed a mass peak corresponding to an immunodominant islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)(206-214) epitope described in the literature. Generation of CD8+ T-cell clones recognizing IGRP(206-214) using a novel method confirmed the identity...

  19. Determination of "1"3"5Cs by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    MacDonald, C.M.; Charles, C.R.J.; Zhao, X.-L.; Kieser, W.E.; Cornett, R.J.; Litherland, A.E.

    2015-01-01

    The ratio of anthropogenic "1"3"5Cs and "1"3"7Cs isotopes is characteristic of a uranium fission source. This research evaluates the technique of isotope dilution (yield tracing) for the purpose of quantifying "1"3"5Cs by accelerator mass spectrometry with on-line isobar separation. Interferences from Ba, Zn_2, and isotopes of equal mass to charge ratios were successfully suppressed. However, some sample crosstalk from source contamination remains. The transmission and di-fluoride ionization efficiencies of Cs isotopes were found to be 8 × 10"−"3 and 1.7 × 10"−"7 respectively. This quantification of "1"3"5Cs using yield tracing by accelerator mass spectrometry shows promise for future environmental sample analysis once the issues of sample crosstalk and low efficiency can be resolved.

  20. Surface-MALDI mass spectrometry in biomaterials research

    DEFF Research Database (Denmark)

    Griesser, H.J.; Kingshott, P.; McArthur, S.L.

    2004-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) has been used for over a decade for the determination of purity and accurate molecular masses of macromolecular analytes, such as proteins, in solution. In the last few years the technique has been adapted to become a new...... surfaces and detecting their molecular ions with high mass resolution and at levels much below monolayer coverage. Thus, Surface-MALDI-MS offers unique means of addressing biomaterial surface analysis needs, such as identification of the proteins and lipids that adsorb from multicomponent biological...... solutions in vitro and in vivo, the study of interactions between biomaterial surfaces and biomolecules, and identification of surface-enriched additives and contaminants. Surface-MALDI-MS is rapid, experimentally convenient, overcomes limitations in mass resolution and sensitivity of established...

  1. A novel method for the determination of mercury and selenium in shark tissue using high-resolution inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Paul, Mitchell C.; Toia, Robert F.; Nagy-Felsobuki, Ellak I. von

    2003-01-01

    A method for measuring Hg and Se in shark tissue by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) has been developed. Using a matrix of 4% (v/v) aqueous methanol, the spray chamber and transfer tubing memory effects of Hg were significantly reduced. The methanol matrix was able to effectively wash out Hg (10 ppb) and return the signal to blank level in approximately 5 min. This enabled accurate and concomitant measurements of Hg and Se with detection limits (3σ blank signal, n=10) of 26 and 4 ppt, respectively. The recoveries of Hg and Se based on the CRM were 88 and 83%, respectively. The concentrations of Hg and Se in the (liver, muscle, kidney) of a hammerhead shark (dry weight) were (2.65±0.85, 7.09±1.32, 4.43±1.36) and (17.3±4.1, 1.28±0.29, 24.1±5.2) mg kg -1 (where the expanded uncertainty uses a k=2 value) respectively. Multi-elemental semi-quantitative analysis of a hammerhead shark liver, muscle and kidney revealed high levels of Cd, Zn and As

  2. Extending and refining the mass surface around $^{208}$Pb by high-precision Penning-trap mass spectrometry with ISOLTRAP

    CERN Multimedia

    Herfurth, F; Stora, T; Blaum, K; Beck, D; Kowalska, M; Schwarz, S; Stanja, J; Herlert, A J; Yamaguchi, T

    We propose high-precision mass spectrometry of nuclides around the doubly magic $^{208}$Pb. On the neutron-rich side, we aim to extend the knowledge of Fr, At, Hg, and Au masses to study the robustness of the N = 126 shell closure and to provide mass data necessary for modeling the rapid-neutron-capture process. On the proton-rich side, we aim at high-resolution mass spectrometry of selected Au, At, and Fr isotopes to verify the predicted existence of very low-lying isomeric states. The proposal will make use of newly-available laser-ionization schemes for Au and At. Finally, the recently implemented multi-reflection time-of-flight mass separator for auxiliary isobaric purification now allows measurements which were not feasible before.

  3. The Spatial Distribution of Alkaloids in Psychotria prunifolia (Kunth) Steyerm and Palicourea coriacea (Cham.) K. Schum Leaves Analysed by Desorption Electrospray Ionisation Mass Spectrometry Imaging

    DEFF Research Database (Denmark)

    Kato, Lucilia; Moraes, Aline Pereira; de Oliveira, Cecília Maria Alves

    2018-01-01

    INTRODUCTION: Species of the genera Psychotria and Palicourea are sources of indole alkaloids, however, the distribution of alkaloids within the plants is not known. Analysing the spatial distribution using desorption electrospray ionisation mass spectrometry imaging (DESI-MSI) has become...... analyses. METHODOLOGY: Based upon previous structure elucidation studies, four alkaloids targeted in this study were identified using high resolution mass spectrometry by direct infusion of plant extracts, and their distributions were imaged by DESI-MSI via tissue imprints on a porous Teflon surface....... Relative quantitation of the four alkaloids was obtained by HPLC-MS/MS analysis performed using multiple-reaction monitoring (MRM) mode on a triple quadrupole mass spectrometer. RESULTS: Alkaloids showed distinct distributions on the leaf surfaces. Prunifoleine was mainly present in the midrib, while 10...

  4. Chemical ionisation mass spectrometry: a survey of instrument technology

    International Nuclear Information System (INIS)

    Mather, R.E.; Todd, J.F.J.

    1979-01-01

    The purpose of this review is to survey the innovations and improvements which have been made in both instrumentation and methodology in chemical ionization mass spectrometry in the past ten years. (Auth.)

  5. Determination of Oxytetracycline and 4-Epi-Oxytetracycline Residues in Feathers and Edible Tissues of Broiler Chickens Using Liquid Chromatography Coupled with Tandem Mass Spectrometry.

    Science.gov (United States)

    Cornejo, Javiera; Pokrant, Ekaterina; Krogh, Magdalena; Briceño, Cristóbal; Hidalgo, Héctor; Maddaleno, Aldo; Araya-Jordán, Carolina; Martín, Betty San

    2017-04-01

    Antibiotics have been widely used in poultry production for the treatment of bacterial diseases. However, drug residues can remain in products derived from animals after the cessation of the drug therapies. Feathers, in particular, have shown an affinity for antibiotics such as tetracycline, suggesting the persistence of these drugs in nonedible tissue. After the birds are slaughtered, feathers are ground into feather meals, which are used as organic fertilizer or an ingredient in animal diets, thereby entering into the food chain and becoming a potential risk for public health. To evaluate the depletion of oxytetracycline (OTC) and its metabolite 4-epi-oxytetracycline (4-epi-OTC) in the muscles, liver, and feathers, 64 broiler chickens, bred under controlled conditions, were treated orally with a commercial formulation of 10% OTC for 7 days. The analytes were quantified using liquid chromatography-tandem mass spectrometry. OTC and 4-epi-OTC were found in the feathers for 46 days, whereas they were found in the muscle and liver for only 12 and 6 days, respectively. These results prove that the analytes remain in feathers in higher concentrations than they do in edible tissues after treatment with tetracyclines. Thus, feather meals represent a potential source of antimicrobial residue contamination in the food chain.

  6. Identification of Secreted Candida Proteins Using Mass Spectrometry

    NARCIS (Netherlands)

    Gómez-Molero, E.; Dekker, H.L.; de Boer, A.D.; de Groot, P.W.; Calderone, R.; Cihlar, R.

    2016-01-01

    Analysis of fungal secretomes using mass spectrometry is a useful technique in cell biology. Knowledge of the secretome of a human fungal pathogen may yield important information of host-pathogen interactions and may be useful for identifying vaccines candidates or diagnostic markers for antifungal

  7. Yeast expression proteomics by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Walther, Tobias C; Olsen, Jesper Velgaard; Mann, Matthias

    2010-01-01

    -translational controls contribute majorly to regulation of protein abundance, for example in heat shock stress response. The development of new sample preparation methods, high-resolution mass spectrometry and novel bioinfomatic tools close this gap and allow the global quantitation of the yeast proteome under different...

  8. Applications of accelerator mass spectrometry: advances and innovation

    International Nuclear Information System (INIS)

    Fifield, L.K.

    2004-01-01

    Emerging trends in the applications of accelerator mass spectrometry (AMS) are identified and illustrated with specific examples. Areas of application covered include rapid landscape evolution, calibration of the radiocarbon time scale, compound-specific radiocarbon studies, tracing of nuclear discharges, and searches for extraterrestrial isotopes

  9. Radiogas chromatography mass spectrometry in the selected ion monitoring mode

    International Nuclear Information System (INIS)

    Doerfler, D.L.; Rosenblum, E.R.; Malloy, J.M.; Naworal, J.D.; McManus, I.R.; Campbell, I.M.

    1980-01-01

    The value of selected ion monitoring in analyzing biological radio isotope incorporation experiments by radiogas chromatography mass spectrometry is illustrated with reference to the biosynthesis of the mycotoxin mycophenolic acid in Penicillium brevicompactum and the mode of action of the anticholesterolemic drug 20,25-diazacholesterol. Both examples used 1-[ 14 C]acetate precursors. It is shown that the increased sensitivity and specificity of the selected ion monitoring mode detector permits straightforward detection and identification of the relatively small cellular pools associated with metabolic intermediates. The computer program RADSIM is described. Problems that still exist in using radiogas gas chromatography mass spectrometry technology to analyse isotope incorporation experiments are discussed. (author)

  10. Electrochemistry-High Resolution Mass Spectrometry to Study Oxidation Products of Trimethoprim

    Directory of Open Access Journals (Sweden)

    Marc-André Lecours

    2018-01-01

    Full Text Available The study of the fate of emerging organic contaminants (EOCs, especially the identification of transformation products, after water treatment or in the aquatic environment, is a topic of growing interest. In recent years, electrochemistry coupled to mass spectrometry has attracted a lot of attention as an alternative technique to investigate oxidation metabolites of organic compounds. The present study used different electrochemical approaches, such as cyclic voltammetry, electrolysis, electro-assisted Fenton reaction coupled offline to high resolution mass spectrometry and thin-layer flow cell coupled online to high resolution mass spectrometry, to study oxidation products of the anti-infective trimethoprim, a contaminant of emerging concern frequently reported in wastewaters and surface waters. Results showed that mono- and di-hydroxylated derivatives of trimethoprim were generated in electrochemically and possibly tri-hydroxylated derivatives as well. Those compounds have been previously reported as mammalian and bacterial metabolites as well as transformation products of advance oxidation processes applied to waters containing trimethoprim. Therefore, this study confirmed that electrochemical techniques are relevant not only to mimic specific biotransformation reactions of organic contaminants, as it has been suggested previously, but also to study the oxidation reactions of organic contaminants of interest in water treatment. The key role that redox reactions play in the environment make electrochemistry-high resolution mass spectrometry a sensitive and simple technique to improve our understanding of the fate of organic contaminants in the environment.

  11. The analysis of aqueous mixtures using liquid chromatography-electrospray mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Steven [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    The focus of this dissertation is the use of chromatographic methods coupled with electrospray mass spectrometry (ES-MS) for the determination of both organic and inorganic compounds in aqueous solutions. The combination of liquid chromatography (LC) methods and ES-MS offers one of the foremost methods for determining compounds in complex aqueous solutions. In this work, LC-ES-MS methods are devised using ion exclusion chromatography, reversed phase chromatography, and ion exchange chromatography, as well as capillary electrophoresis (CE). For an aqueous sample, these LC-ES-MS and CE-ES-MS techniques require no sample preparation or analyte derivatization, which makes it possible to observe a wide variety of analytes as they exist in solution. The majority of this work focuses on the use of LC-ES-MS for the determination of unknown products and intermediates formed during electrochemical incineration (ECI), an experimental waste remediation process. This report contains a general introduction to the project and the general conclusions. Four chapters have been removed for separate processing. Titles are: Chapter 2: Determination of small carboxylic acids by ion exclusion chromatography with electrospray mass spectrometry; Chapter 3: Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte; Chapter 4: The determination of electrochemical incineration products of 4-chlorophenol by liquid chromatography-electrospray mass spectrometry; and Chapter 5: Determination of small carboxylic acids by capillary electrophoresis with electrospray mass spectrometry.

  12. The Role of Mass Spectrometry-Based Metabolomics in Medical Countermeasures Against Radiation

    Science.gov (United States)

    Patterson, Andrew D.; Lanz, Christian; Gonzalez, Frank J.; Idle, Jeffrey R.

    2013-01-01

    Radiation metabolomics can be defined as the global profiling of biological fluids to uncover latent, endogenous small molecules whose concentrations change in a dose-response manner following exposure to ionizing radiation. In response to the potential threat of nuclear or radiological terrorism, the Center for High-Throughput Minimally Invasive Radiation Biodosimetry (CMCR) was established to develop field-deployable biodosimeters based, in principle, on rapid analysis by mass spectrometry of readily and easily obtainable biofluids. In this review, we briefly summarize radiation biology and key events related to actual and potential nuclear disasters, discuss the important contributions the field of mass spectrometry has made to the field of radiation metabolomics, and summarize current discovery efforts to use mass spectrometry-based metabolomics to identify dose-responsive urinary constituents, and ultimately to build and deploy a noninvasive high-throughput biodosimeter. PMID:19890938

  13. Тhe mass-spectrometry studies of the interaction of polyhexamethyleneguanidine with lipids

    OpenAIRE

    A. V. Lysytsya; A. V. Rebriev

    2014-01-01

    In this work the integral components of the cytoplasmic membrane, lecithin and cholesterol were used for mass spectrometry analysis carried out on polyhexamethyleneguanidine (PHMG) mixtures with lipids. The study was performed by mass-spectrometry methods of the MALDI-TOF MS. Our results showed that despite the common use of PHGM polymer derivatives as disinfectants the persistent intermolecular complexes of PHMG oligomers with lipids were not formed. The binding of polycation PHMG with the m...

  14. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Ståhlman, Marcus; Ejsing, Christer S.; Tarasov, Kirill

    2009-01-01

    Technological advances in mass spectrometry and meticulous method development have produced several shotgun lipidomic approaches capable of characterizing lipid species by direct analysis of total lipid extracts. Shotgun lipidomics by hybrid quadrupole time-of-flight mass spectrometry allows...... the absolute quantification of hundreds of molecular glycerophospholipid species, glycerolipid species, sphingolipid species and sterol lipids. Future applications in clinical cohort studies demand detailed lipid molecule information and the application of high-throughput lipidomics platforms. In this review...... we describe a novel high-throughput shotgun lipidomic platform based on 96-well robot-assisted lipid extraction, automated sample infusion by mircofluidic-based nanoelectrospray ionization, and quantitative multiple precursor ion scanning analysis on a quadrupole time-of-flight mass spectrometer...

  15. Alpha spectrometry and the secondary ion mass spectrometry of thorium

    International Nuclear Information System (INIS)

    Strisovska, J.; Kuruc, J.; Galanda, D.; Matel, L.; Aranyosiova, M.; Velic, D.

    2009-01-01

    The main objective of this master thesis was preparation of samples with thorium content on the steel discs by electrodeposition for determination of natural thorium isotope by alpha spectrometry and the secondary ion mass spectrometry and finding out their possible linear correlation between these methods. The samples with electrolytically excluded isotope of 232 Th were prepared by electrodeposition from solution Th(NO 3 ) 4 ·12 H2 O on steel discs in electrodeposition cell with use of solutions Na 2 SO 4 , NaHSO 4 , KOH and (NH 4 ) 2 (C 2 O 4 ) by electric current 0.75 A. Discs were measured by alpha spectrometer. Activity was calculated from the registered impulses for 232 Th and surface's weight. After alpha spectrometry measurements discs were analyzed by TOF-SIMS IV which is installed in the International Laser Centre in Bratislava. Intensities of isotope of 232 Th and ions of ThO + , ThOH + , ThO 2 H + , Th 2 O 4 H + , ThO 2 - , ThO 3 H - , ThH 3 O 3 - and ThN 2 O 5 H - were identified. The linear correlation is between surface's weights of Th and intensities of ions of Th + from SIMS, however the correlation coefficient has relatively low value. We found out with SIMS method that oxidized and hydride forms of thorium are significantly represented in samples with electroplated thorium. (authors)

  16. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    International Nuclear Information System (INIS)

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; Sterbentz, James W.

    2014-01-01

    Highlights: • The burnup of irradiated AGR-1 TRISO fuel was analyzed using gamma spectrometry. • The burnup of irradiated AGR-1 TRISO fuel was also analyzed using mass spectrometry. • Agreement between experimental results and neutron physics simulations was excellent. - Abstract: AGR-1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR-1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non-destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR-1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs-137 activity and the other based on the ratio of Cs-134 and Cs-137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA (fissions per initial heavy metal atom) for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can be determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP-MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma

  17. Computer automation of an accelerator mass spectrometry system

    International Nuclear Information System (INIS)

    Gressett, J.D.; Maxson, D.L.; Matteson, S.; McDaniel, F.D.; Duggan, J.L.; Mackey, H.J.; North Texas State Univ., Denton, TX; Anthony, J.M.

    1989-01-01

    The determination of trace impurities in electronic materials using accelerator mass spectrometry (AMS) requires efficient automation of the beam transport and mass discrimination hardware. The ability to choose between a variety of charge states, isotopes and injected molecules is necessary to provide survey capabilities similar to that available on conventional mass spectrometers. This paper will discuss automation hardware and software for flexible, high-sensitivity trace analysis of electronic materials, e.g. Si, GaAs and HgCdTe. Details regarding settling times will be presented, along with proof-of-principle experimental data. Potential and present applications will also be discussed. (orig.)

  18. Profiling Changes in Histone Post-translational Modifications by Top-Down Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Mowei; Wu, Si; Stenoien, David L.; Zhang, Zhaorui; Connolly, Lanelle; Freitag, Michael; Pasa-Tolic, Ljiljana

    2016-11-11

    Top-down mass spectrometry is a valuable tool for charactering post-translational modifications on histones for understanding of gene control and expression. In this protocol, we describe a top-down workflow using liquid chromatography coupled to mass spectrometry for fast global profiling of changes in histone proteoforms between a wild-type and a mutant of a fungal species. The proteoforms exhibiting different abundances can be subjected to further targeted studies by other mass spectrometric or biochemical assays. This method can be generally adapted for preliminary screening for changes in histone modifications between samples such as wild-type vs. mutant, and control vs. disease.

  19. The diverse and expanding role of mass spectrometry in structural and molecular biology.

    Science.gov (United States)

    Lössl, Philip; van de Waterbeemd, Michiel; Heck, Albert Jr

    2016-12-15

    The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  20. Mass spectrometry by means of tandem accelerators

    International Nuclear Information System (INIS)

    Tuniz, C.

    1985-01-01

    Mass spectrometry based on an accelerator allows to measure rare cosmogenic isotopes found in natural samples with isotopic abundances up to 10E-15. The XTU Tandem of Legnaro National Laboratories can measure mean heavy isotopes (36Cl, 41Ca, 129I) in applications interesting cosmochronology and Medicine. The TTT-3 Tandem of the Naples University has been modified in view of precision studies of C14 in Archeology, Paleantology and Geology. In this paper a review is made of principles and methodologies and of some applicationy in the framework of the National Program for mass spectrametry research with the aid of accelerators

  1. Linking high resolution mass spectrometry data with exposure ...

    Science.gov (United States)

    There is a growing need in the field of exposure science for monitoring methods that rapidly screen environmental media for suspect contaminants. Measurement and analysis platforms, based on high resolution mass spectrometry (HRMS), now exist to meet this need. Here we describe results of a study that links HRMS data with exposure predictions from the U.S. EPA's ExpoCast™ program and in vitro bioassay data from the U.S. interagency Tox21 consortium. Vacuum dust samples were collected from 56 households across the U.S. as part of the American Healthy Homes Survey (AHHS). Sample extracts were analyzed using liquid chromatography time-of-flight mass spectrometry (LC–TOF/MS) with electrospray ionization. On average, approximately 2000 molecular features were identified per sample (based on accurate mass) in negative ion mode, and 3000 in positive ion mode. Exact mass, isotope distribution, and isotope spacing were used to match molecular features with a unique listing of chemical formulas extracted from EPA's Distributed Structure-Searchable Toxicity (DSSTox) database. A total of 978 DSSTox formulas were consistent with the dust LC–TOF/molecular feature data (match score ≥ 90); these formulas mapped to 3228 possible chemicals in the database. Correct assignment of a unique chemical to a given formula required additional validation steps. Each suspect chemical was prioritized for follow-up confirmation using abundance and detection frequency results, along wi

  2. Analysis of sulfates on low molecular weight heparin using mass spectrometry: structural characterization of enoxaparin.

    Science.gov (United States)

    Gupta, Rohitesh; Ponnusamy, Moorthy P

    2018-05-21

    Structural characterization of Low Molecular Weight Heparin (LMWH) is critical to meet biosimilarity standards. In this context, the review focuses on structural analysis of labile sulfates attached to the side-groups of LMWH using mass spectrometry. A comprehensive review of this topic will help readers to identify key strategies for tackling the problem related to sulfate loss. At the same time, various mass spectrometry techniques are presented to facilitate compositional analysis of LMWH, mainly Enoxaparin. Areas covered: This review summarizes findings on mass spectrometry application for LMWH, including modulation of sulfates, using enzymology and sample preparation approaches. Furthermore, popular open-source software packages for automated spectral data interpretation are also discussed. Successful use of LC/MS can decipher structural composition for LMWH and help evaluate their sameness or biosimilarity with the innovator molecule. Overall, the literature has been searched using PubMed by typing various search queries such as "enoxaparin", "mass spectrometry", "low molecular weight heparin", "structural characterization", etc. Expert commentary: This section highlights clinically relevant areas that need improvement to achieve satisfactory commercialization of LMWHs. It also primarily emphasizes the advancements in instrumentation related to mass spectrometry, and discusses building automated software for data interpretation and analysis.

  3. Application of ion mobility-mass spectrometry to microRNA analysis.

    Science.gov (United States)

    Takebayashi, Kosuke; Hirose, Kenji; Izumi, Yoshihiro; Bamba, Takeshi; Fukusaki, Eiichiro

    2013-03-01

    Liquid chromatography/mass spectrometry is widely used for studying sequence determination and modification analysis of small RNAs. However, the efficiency of liquid chromatography-based separation of intact small RNA species is insufficient, since the physiochemical properties among small RNAs are very similar. In this study, we focused on ion mobility-mass spectrometry (IM-MS), which is a gas-phase separation technique coupled with mass spectrometry; we have evaluated the utility of IM-MS for microRNA (miRNA) analysis. A multiply charged deprotonated ion derived from an 18-24-nt-long miRNA was formed by electrospray ionization, and then the time, called the "drift time", taken by each ion to migrate through a buffer gas was measured. Each multivalent ion was temporally separated on the basis of the charge state and structural formation; 3 types of unique mass-mobility correlation patterns (i.e., chainlike-form, hairpin-form, and dimer-form) were present on the two-dimensional mobility-mass spectrum. Moreover, we found that the ion size (sequence length) and the secondary structures of the small RNAs strongly contributed to the IM-MS-based separation, although solvent conditions such as pH had no effect. Therefore, sequence isomers could also be discerned by the selection of each specific charged ion, i.e., the 6(-) charged ion reflected a majority among chainlike-, hairpin-, and other structures. We concluded that the IM-MS provides additional capability for separation; thus, this analytical method will be a powerful tool for comprehensive small RNA analysis. Copyright © 2012. Published by Elsevier B.V.

  4. Visualization of metallodrugs in single cells by secondary ion mass spectrometry imaging.

    Science.gov (United States)

    Wu, Kui; Jia, Feifei; Zheng, Wei; Luo, Qun; Zhao, Yao; Wang, Fuyi

    2017-07-01

    Secondary ion mass spectrometry, including nanoscale secondary ion mass spectrometry (NanoSIMS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), has emerged as a powerful tool for biological imaging, especially for single cell imaging. SIMS imaging can provide information on subcellular distribution of endogenous and exogenous chemicals, including metallodrugs, from membrane through to cytoplasm and nucleus without labeling, and with high spatial resolution and chemical specificity. In this mini-review, we summarize recent progress in the field of SIMS imaging, particularly in the characterization of the subcellular distribution of metallodrugs. We anticipate that the SIMS imaging method will be widely applied to visualize subcellular distributions of drugs and drug candidates in single cells, exerting significant influence on early drug evaluation and metabolism in medicinal and pharmaceutical chemistry. Recent progress of SIMS applications in characterizing the subcellular distributions of metallodrugs was summarized.

  5. Resonance Ionization Mass Spectrometry (RIMS): applications in spectroscopy and chemical dynamics

    International Nuclear Information System (INIS)

    Naik, P.D.; Kumar, Awadhesh; Upadhyaya, Hari; Bajaj, P.N.

    2009-01-01

    Resonance ionization is a photophysical process wherein electromagnetic radiation is used to ionize atoms, molecules, transient species, etc., by exciting them through their quantum states. The number of photons required to ionize depends on the species being investigated and energy of the photon. Once a charged particle is produced, it is easy to detect it with high efficiency. With the advent of narrow band high power pulsed and cw tunable dye lasers, it has blossomed into a powerful spectroscopic and analytical technique, commonly known as resonance ionization spectroscopy (RIS)/resonance enhanced multiphoton ionization (REMPI). The alliance of resonance ionization with mass spectrometry has grown into a still more powerful technique, known as resonance ionization mass spectrometry (RIMS), which has made significant contributions in a variety of frontier areas of research and development, such as spectroscopy, chemical dynamics, analytical chemistry, cluster science, surface science, radiochemistry, nuclear physics, biology, environmental science, material science, etc. In this article, we shall describe the application of resonance ionization mass spectrometry to spectroscopy of uranium and chemical dynamics of polyatomic molecules

  6. Uniform elemental analysis of materials by sputtering and photoionization mass spectrometry

    International Nuclear Information System (INIS)

    Chun, He; Basler, J.N.; Becker, C.H.

    1997-01-01

    Analysis of the elemental composition of surfaces commonly involves techniques in which atoms or ions are ablated from the material's surface and detected by mass spectrometry. Secondary-ion mass spectrometry is widely used for detection with high sensitivity (down to a few parts per billion) but technical problems prevent it from being truly quantitative. Some of these problems are circumvented by nonresonant laser post-ionization of sputtered atoms followed by time-of-flight mass spectrometry (surface analysis by laser ionization: SALI). But when there are large differences in ionization probabilities amongst different elements in the material, the detection sensitivity can be non-uniform and accurate quantification remains out of reach. Here we report that highly uniform, quantitative and sensitive analysis of materials can be achieved using a high-energy (5-keV) ion beam for sputtering coupled with a very-high-intensity laser to induce multiphoton ionization of the sputtered atoms. We show uniform elemental sensitivity for several samples containing elements with very different ionization potentials, suggesting that this approach can now be regarded as quantitative for essentially any material. (author)

  7. Doping control analysis of anabolic steroids in equine urine by gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Wong, April S Y; Leung, Gary N W; Leung, David K K; Wan, Terence S M

    2017-09-01

    Anabolic steroids are banned substances in equine sports. Gas chromatography-mass spectrometry (GC-MS) has been the traditional technique for doping control analysis of anabolic steroids in biological samples. Although liquid chromatography-mass spectrometry (LC/MS) has become an important technique in doping control, the detection of saturated hydroxysteroids by LC-MS remains a problem due to their low ionization efficiency under electrospray. The recent development in fast-scanning gas-chromatography-triple-quadrupole mass spectrometry (GC-MS/MS) has provided a better alternative with a significant reduction in chemical noise by means of selective reaction monitoring. Herein, we present a sensitive and selective method for the screening of over 50 anabolic steroids in equine urine using gas chromatography-tandem mass spectrometry (GC-MS/MS). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. The use of mass spectrometry in peptide chemistry

    NARCIS (Netherlands)

    Leclercq, P.A.; White, P.A.; Hägele, K.; Desiderio, D.M.; Meienhofer, J.

    1972-01-01

    A review with 16 refs. Methods are detailed for derivatizing peptides (mg quantities) in order to provide sufficient volatility for mass spectrometry (at least 10-5 mm vapor pressure at 300 Deg is required). Three steps are used in producing the desired derivs.: (a) arginine side chains are

  9. Dynamic Secondary Ion Mass Spectrometry | Materials Science | NREL

    Science.gov (United States)

    Ion Mass Spectrometry (SIMS) uses a continuous, focused beam of primary ions to remove material from the surface of a sample by sputtering. The fraction of sputtered material that is ionized is extracted Identifies all elements or isotopes present in a material, from hydrogen to uranium. Different primary-ion

  10. [Mass spectrometry in the clinical microbiology laboratory].

    Science.gov (United States)

    Jordana-Lluch, Elena; Martró Català, Elisa; Ausina Ruiz, Vicente

    2012-12-01

    Infectious diseases are still a cause of high mortality and morbidity rates. Current microbiological diagnostic methods are based on culture and phenotypic identification of isolated microorganisms, which can be obtained in about 24-48 h. Given that the microbiological identification is of major importance for patient management, new diagnostic methods are needed in order to detect and identify microorganisms in a timely and accurate manner. Over the last few years, several molecular techniques based on the amplification of microbial nucleic acids have been developed with the aim of reducing the time needed for the identification of the microorganisms involved in different infectious processes. On the other hand, mass spectrometry has emerged as a rapid and consistent alternative to conventional methods for microorganism identification. This review describes the most widely used mass spectrometry technologies -matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray ionization time-of-flight (ESI-TOF)-, both for protein and nucleic acid analysis, as well as the commercial platforms available. Related publications of most interest in clinical microbiology are also reviewed. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  11. Insights into the polerovirus-plant interactome revealed by coimmunoprecipitation and mass spectrometry.

    Science.gov (United States)

    DeBlasio, Stacy L; Johnson, Richard; Mahoney, Jaclyn; Karasev, Alexander; Gray, Stewart M; MacCoss, Michael J; Cilia, Michelle

    2015-04-01

    Identification of host proteins interacting with the aphidborne Potato leafroll virus (PLRV) from the genus Polerovirus, family Luteoviridae, is a critical step toward understanding how PLRV and related viruses infect plants. However, the tight spatial distribution of PLRV to phloem tissues poses challenges. A polyclonal antibody raised against purified PLRV virions was used to coimmunoprecipitate virus-host protein complexes from Nicotiana benthamiana tissue inoculated with an infectious PLRV cDNA clone using Agrobacterium tumefaciens. A. tumefaciens-mediated delivery of PLRV enabled infection and production of assembled, insect-transmissible virus in most leaf cells, overcoming the dynamic range constraint posed by a systemically infected host. Isolated protein complexes were characterized using high-resolution mass spectrometry and consisted of host proteins interacting directly or indirectly with virions, as well as the nonincorporated readthrough protein (RTP) and three phosphorylated positional isomers of the RTP. A bioinformatics analysis using ClueGO and STRING showed that plant proteins in the PLRV protein interaction network regulate key biochemical processes, including carbon fixation, amino acid biosynthesis, ion transport, protein folding, and trafficking.

  12. Tandem mass spectrometry data quality assessment by self-convolution

    Directory of Open Access Journals (Sweden)

    Tham Wai

    2007-09-01

    Full Text Available Abstract Background Many algorithms have been developed for deciphering the tandem mass spectrometry (MS data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on de novo sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified. Results The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores. Conclusion We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the

  13. Tandem mass spectrometry data quality assessment by self-convolution.

    Science.gov (United States)

    Choo, Keng Wah; Tham, Wai Mun

    2007-09-20

    Many algorithms have been developed for deciphering the tandem mass spectrometry (MS) data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on de novo sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified. The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current) component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores. We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the predicted results. We conclude that the algorithm performs well

  14. An introduction to the technique of combined ion mobility spectrometry-mass spectrometry for the analysis of complex biological samples

    International Nuclear Information System (INIS)

    McDowall, Mark A.; Bateman, Robert H.; Bajic, Steve; Giles, Kevin; Langridge, Jim; McKenna, Therese; Pringle, Steven D.; Wildgoose, Jason L.

    2008-01-01

    Full Text: Ultra Performance Liquid Chromatography (UPLC) offers several advantages compared with conventional High Performance Liquid Chromatography (HPLC) as an 'inlet system' for mass spectrometry. UPLC provides improved chromatographic resolution, increased sensitivity and reduced analysis time. This is achieved through the use of sub 2μm particles (stationary phase) combined with high-pressure solvent delivery (up to 15,000 psi). When coupled with orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS), UPLC presents a means to achieve high sample throughput with reduced spectral overlap, increased sensitivity, and exact mass measurement capabilities with high mass spectral resolution (Ca 20,000 FWHM). Dispersive ion mobility spectrometry (IMS) implemented within a traveling-wave ion guide provides an orthogonal separation strategy for ions in the gas phase that can resolve isobaric ions formed by either Electrospray of MALDI ionization typically in Ca 20 mille seconds. All three techniques have the potential to be combined on-line (e.g. UPLC-IMS-MS/MS) in real time to maximize peak capacity and resolving power for the analysis of complex biological mixtures including; intact proteins, modified peptides and endogenous/exogenous metabolites

  15. Variability in Mass Spectrometry-based Quantification of Clinically Relevant Drug Transporters and Drug Metabolizing Enzymes

    NARCIS (Netherlands)

    Wegler, C.; Gaugaz, F.Z.; Andersson, T.B.; Wiśniewski, J.R.; Busch, D.; Gröer, C.; Oswald, S.; Norén, A.; Weiss, F.; Hammer, H.S.; Joos, T.O.; Poetz, O.; Achour, B.; Rostami-Hodjegan, A.; Steeg, E. van de; Wortelboer, H.M.; Artursson, P.

    2017-01-01

    Many different methods are used for mass-spectrometry-based protein quantification in pharmacokinetics and systems pharmacology. It has not been established to what extent the results from these various methods are comparable. Here, we compared six different mass spectrometry-based proteomics

  16. Application of secondary ion mass spectrometry (SIMS) to biological sample analysis

    International Nuclear Information System (INIS)

    Tamura, Hifumi

    1990-01-01

    Some major issues and problems related with the analysis of biological samples are discussed, focusing on demonstrated and possible solutions and the application of secondary ion mass spectrometry (SIMS) to investigation of the composition of biological samples. The effective use of secondary electrons in combination with negative ions is most practical for the analysis of biological samples. Regardless of whether positive or negative ions are used, the electric potential at the surface of a sample stays around a constant value because of the absense of the accumulation of electric charges at the surface, leading to almost complete avoidance of the charging of the biological sample. A soft tissue sample can suffer damage to the tissue or migration of atoms in removing water from the sample. Some processes including fixation and freeze drying are available to prevent this. The application of SIMS to biological analysis is still in the basic research stage and further studies will be required to develop practical methods. Possible areas of its application include medicine, pathology, toxicology, pharmacology, plant physiology and other areas related with marine life and marine contamination. (N.K.)

  17. Integrative Mass Spectrometry Approaches to Monitor Protein Structures, Modifications, and Interactions

    NARCIS (Netherlands)

    Lössl, P.

    2017-01-01

    This thesis illustrates the current standing of mass spectrometry (MS) in molecular and structural biology. The primary aim of the herein described research is to facilitate protein characterization by combining mass spectrometric methods among each other and with complementary analytical

  18. Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates

    Science.gov (United States)

    Martin, Nicholas J.; Griffiths, Rian L.; Edwards, Rebecca L.; Cooper, Helen J.

    2015-08-01

    Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)2 4H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The `contact' LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS.

  19. AM1 and electron impact mass spectrometry study of the ...

    African Journals Online (AJOL)

    Recently, in electron impact mass spectrometry (EIMS), it has been found a good correlation between the fragmentation processes of coumarins and the electronic charges of the atoms of their skeleton. In this paper, the same analytical method has been applied to 4-acyl isochroman-1,3-diones, whose mass spectra had ...

  20. Structural characterisation of medically relevant protein assemblies by integrating mass spectrometry with computational modelling.

    Science.gov (United States)

    Politis, Argyris; Schmidt, Carla

    2018-03-20

    Structural mass spectrometry with its various techniques is a powerful tool for the structural elucidation of medically relevant protein assemblies. It delivers information on the composition, stoichiometries, interactions and topologies of these assemblies. Most importantly it can deal with heterogeneous mixtures and assemblies which makes it universal among the conventional structural techniques. In this review we summarise recent advances and challenges in structural mass spectrometric techniques. We describe how the combination of the different mass spectrometry-based methods with computational strategies enable structural models at molecular levels of resolution. These models hold significant potential for helping us in characterizing the function of protein assemblies related to human health and disease. In this review we summarise the techniques of structural mass spectrometry often applied when studying protein-ligand complexes. We exemplify these techniques through recent examples from literature that helped in the understanding of medically relevant protein assemblies. We further provide a detailed introduction into various computational approaches that can be integrated with these mass spectrometric techniques. Last but not least we discuss case studies that integrated mass spectrometry and computational modelling approaches and yielded models of medically important protein assembly states such as fibrils and amyloids. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  1. Role of mass spectrometry in nuclear forensic science

    International Nuclear Information System (INIS)

    Joseph, M.; Sivaraman, N.

    2016-01-01

    The present talk will focus on the role of mass spectrometry in NFS in general; besides that, the various chromatographic methods developed towards separation of actinides and lanthanide fission products and characterization of dissolver solutions of nuclear reactor fuels using TIMS and some applications of using ICP-MS as well

  2. Optical spectroscopy versus mass spectrometry: The race for fieldable isotopic analysis

    International Nuclear Information System (INIS)

    Barshick, C.M.; Young, J.P.; Shaw, R.W.

    1995-01-01

    Several techniques have been developed to provide on-site isotopic analyses, including decay-counting and mass spectrometry, as well as methods that rely on the accessibility of optical transitions for isotopic selectivity (e.g., laser-induced fluorescence and optogalvanic spectroscopy). The authors have been investigating both mass spectrometry and optogalvanic spectroscopy for several years. Although others have considered these techniques for isotopic analysis, the authors have focussed on the use of a dc glow discharge for atomization and ionization, and a demountable discharge cell for rapid sample exchange. The authors' goal is a fieldable instrument that provides useful uranium isotope ratio information

  3. High throughput reaction screening using desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Wleklinski, Michael; Loren, Bradley P; Ferreira, Christina R; Jaman, Zinia; Avramova, Larisa; Sobreira, Tiago J P; Thompson, David H; Cooks, R Graham

    2018-02-14

    We report the high throughput analysis of reaction mixture arrays using methods and data handling routines that were originally developed for biological tissue imaging. Desorption electrospray ionization (DESI) mass spectrometry (MS) is applied in a continuous on-line process at rates that approach 10 4 reactions per h at area densities of up to 1 spot per mm 2 (6144 spots per standard microtiter plate) with the sprayer moving at ca. 10 4 microns per s. Data are analyzed automatically by MS using in-house software to create ion images of selected reagents and products as intensity plots in standard array format. Amine alkylation reactions were used to optimize the system performance on PTFE membrane substrates using methanol as the DESI spray/analysis solvent. Reaction times can be screening of processes like N -alkylation and Suzuki coupling reactions as reported herein. Products and by-products were confirmed by on-line MS/MS upon rescanning of the array.

  4. Quantification of cardiolipin by liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Garrett, Teresa A; Kordestani, Reza; Raetz, Christian R H

    2007-01-01

    Cardiolipin (CL), a tetra-acylated glycerophospholipid composed of two phosphatidyl moieties linked by a bridging glycerol, plays an important role in mitochondrial function in eukaryotic cells. Alterations to the content and acylation state of CL cause mitochondrial dysfunction and may be associated with pathologies such as ischemia, hypothyrodism, aging, and heart failure. The structure of CL is very complex because of microheterogeneity among its four acyl chains. Here we have developed a method for the quantification of CL molecular species by liquid chromatography-electrospray ionization mass spectrometry. We quantify the [M-2H](2-) ion of a CL of a given molecular formula and identify the CLs by their total number of carbons and unsaturations in the acyl chains. This method, developed using mouse macrophage RAW 264.7 tumor cells, is broadly applicable to other cell lines, tissues, bacteria and yeast. Furthermore, this method could be used for the quantification of lyso-CLs and bis-lyso-CLs.

  5. Accelerator mass spectrometry for measurement of long-lived radioisotopes.

    Science.gov (United States)

    Elmore, D; Phillips, F M

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes (10)Be, (14)C,(26)A1, 36Cl, and (129)1 can now be measured in small natural samples having isotopic abundances in the range 10(-12) to 10(- 5) and as few as 10(5) atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of halflives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  6. Establishing Drug Resistance in Microorganisms by Mass Spectrometry

    Science.gov (United States)

    Demirev, Plamen A.; Hagan, Nathan S.; Antoine, Miquel D.; Lin, Jeffrey S.; Feldman, Andrew B.

    2013-08-01

    A rapid method to determine drug resistance in bacteria based on mass spectrometry is presented. In it, a mass spectrum of an intact microorganism grown in drug-containing stable isotope-labeled media is compared with a mass spectrum of the intact microorganism grown in non-labeled media without the drug present. Drug resistance is determined by predicting characteristic mass shifts of one or more microorganism biomarkers using bioinformatics algorithms. Observing such characteristic mass shifts indicates that the microorganism is viable even in the presence of the drug, thus incorporating the isotopic label into characteristic biomarker molecules. The performance of the method is illustrated on the example of intact E. coli, grown in control (unlabeled) and 13C-labeled media, and analyzed by MALDI TOF MS. Algorithms for data analysis are presented as well.

  7. Computational mass spectrometry for small molecules

    Science.gov (United States)

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  8. Benzylic rearrangement stable isotope labeling for quantitation of guanidino and ureido compounds in thyroid tissues by liquid chromatography-electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Fan, Ruo-Jing; Guan, Qing; Zhang, Fang; Leng, Jia-Peng; Sun, Tuan-Qi; Guo, Yin-Long

    2016-01-01

    Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, L-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (L-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples. - Highlights: • A common reagent, benzil-d0/d5 was employed to label the GCs and UCs through BRSIL. • The benzil-d0/d5 labeling improved the retention behavior in RPLC and increased the sensitivity by ESI MS detection. • BRSIL coupled with LC-ESI MS was applied to the qualitation and quantitation of GCs and UCs in thyroid tissues.

  9. Benzylic rearrangement stable isotope labeling for quantitation of guanidino and ureido compounds in thyroid tissues by liquid chromatography-electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ruo-Jing [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Guan, Qing [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 (China); Zhang, Fang, E-mail: fzhang@sioc.ac.cn [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Leng, Jia-Peng [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Sun, Tuan-Qi, E-mail: tuanqisun@163.com [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 (China); Guo, Yin-Long, E-mail: ylguo@sioc.ac.cn [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China)

    2016-02-18

    Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, L-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (L-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples. - Highlights: • A common reagent, benzil-d0/d5 was employed to label the GCs and UCs through BRSIL. • The benzil-d0/d5 labeling improved the retention behavior in RPLC and increased the sensitivity by ESI MS detection. • BRSIL coupled with LC-ESI MS was applied to the qualitation and quantitation of GCs and UCs in thyroid tissues.

  10. Exploring the Sea Urchin Neuropeptide Landscape by Mass Spectrometry

    Science.gov (United States)

    Monroe, Eric B.; Annangudi, Suresh P.; Wadhams, Andinet A.; Richmond, Timothy A.; Yang, Ning; Southey, Bruce R.; Romanova, Elena V.; Schoofs, Liliane; Baggerman, Geert; Sweedler, Jonathan V.

    2018-04-01

    Neuropeptides are essential cell-to-cell signaling messengers and serve important regulatory roles in animals. Although remarkable progress has been made in peptide identification across the Metazoa, for some phyla such as Echinodermata, limited neuropeptides are known and even fewer have been verified on the protein level. We employed peptidomic approaches using bioinformatics and mass spectrometry (MS) to experimentally confirm 23 prohormones and to characterize a new prohormone in nervous system tissue from Strongylocentrotus purpuratus, the purple sea urchin. Ninety-three distinct peptides from known and novel prohormones were detected with MS from extracts of the radial nerves, many of which are reported or experimentally confirmed here for the first time, representing a large-scale study of neuropeptides from the phylum Echinodermata. Many of the identified peptides and their precursor proteins have low homology to known prohormones from other species/phyla and are unique to the sea urchin. By pairing bioinformatics with MS, the capacity to characterize novel peptides and annotate prohormone genes is enhanced. [Figure not available: see fulltext.

  11. Laser mass spectrometry for DNA fingerprinting for forensic applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.H.; Tang, K.; Taranenko, N.I.; Allman, S.L.; Chang, L.Y.

    1994-12-31

    The application of DNA fingerprinting has become very broad in forensic analysis, patient identification, diagnostic medicine, and wildlife poaching, since every individual`s DNA structure is identical within all tissues of their body. DNA fingerprinting was initiated by the use of restriction fragment length polymorphisms (RFLP). In 1987, Nakamura et al. found that a variable number of tandem repeats (VNTR) often occurred in the alleles. The probability of different individuals having the same number of tandem repeats in several different alleles is very low. Thus, the identification of VNTR from genomic DNA became a very reliable method for identification of individuals. DNA fingerprinting is a reliable tool for forensic analysis. In DNA fingerprinting, knowledge of the sequence of tandem repeats and restriction endonuclease sites can provide the basis for identification. The major steps for conventional DNA fingerprinting include (1) specimen processing (2) amplification of selected DNA segments by PCR, and (3) gel electrophoresis to do the final DNA analysis. In this work we propose to use laser desorption mass spectrometry for fast DNA fingerprinting. The process and advantages are discussed.

  12. Exploring the Sea Urchin Neuropeptide Landscape by Mass Spectrometry

    Science.gov (United States)

    Monroe, Eric B.; Annangudi, Suresh P.; Wadhams, Andinet A.; Richmond, Timothy A.; Yang, Ning; Southey, Bruce R.; Romanova, Elena V.; Schoofs, Liliane; Baggerman, Geert; Sweedler, Jonathan V.

    2018-05-01

    Neuropeptides are essential cell-to-cell signaling messengers and serve important regulatory roles in animals. Although remarkable progress has been made in peptide identification across the Metazoa, for some phyla such as Echinodermata, limited neuropeptides are known and even fewer have been verified on the protein level. We employed peptidomic approaches using bioinformatics and mass spectrometry (MS) to experimentally confirm 23 prohormones and to characterize a new prohormone in nervous system tissue from Strongylocentrotus purpuratus, the purple sea urchin. Ninety-three distinct peptides from known and novel prohormones were detected with MS from extracts of the radial nerves, many of which are reported or experimentally confirmed here for the first time, representing a large-scale study of neuropeptides from the phylum Echinodermata. Many of the identified peptides and their precursor proteins have low homology to known prohormones from other species/phyla and are unique to the sea urchin. By pairing bioinformatics with MS, the capacity to characterize novel peptides and annotate prohormone genes is enhanced. [Figure not available: see fulltext.

  13. Murine cutaneous leishmaniasis investigated by MALDI mass spectrometry imaging.

    Science.gov (United States)

    Negrão, Fernanda; de O Rocha, Daniele F; Jaeeger, Caroline F; Rocha, Francisca J S; Eberlin, Marcos N; Giorgio, Selma

    2017-09-26

    Imaging mass spectrometry (IMS) is recognized as a powerful tool to investigate the spatial distribution of untargeted or targeted molecules of a wide variety of samples including tissue sections. Leishmania is a protozoan parasite that causes different clinical manifestations in mammalian hosts. Leishmaniasis is a major public health risk in different continents and represents one of the most important neglected diseases. Cutaneous lesions from mice experimentally infected with Leishmania spp. were investigated by matrix-assisted laser desorption ionization MS using the SCiLS Lab software for statistical analysis. Being applied to cutaneous leishmaniasis (CL) for the first time, MALDI-IMS was used to search for peptides and low molecular weight proteins (2-10 kDa) as candidates for potential biomarkers. Footpad sections of Balb/c mice infected with (i) Leishmania amazonensis or (ii) Leishmania major were imaged. The comparison between healthy and infected skin highlighted a set of twelve possible biomarker proteins for L. amazonenis and four proteins for L. major. Further characterization of these proteins could reveal how these proteins act in pathology progression and confirm their values as biomarkers.

  14. 13th International Mass Spectrometry Conference. Book of Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    The collection contains abstracts of several hundred papers presented at the international conference on new research and development results and applications of mass spectrometry. Abstracts falling into the INIS scope were indexed separately in the INIS database. (Roboz, P.)

  15. 13th International Mass Spectrometry Conference. Book of Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The collection contains abstracts of several hundred papers presented at the international conference on new research and development results and applications of mass spectrometry. Abstracts falling into the INIS scope were indexed separately in the INIS database. (Roboz, P.).

  16. Study by Auger spectrometry and mass spectrometry of the chemisorption of carbon monoxide on polycrystalline molybdenum

    International Nuclear Information System (INIS)

    Gillet, E.; Chiarena, J.C.; Gillet, M.

    1976-01-01

    A combination of Auger spectrometry and mass spectrometry was employed to study CO chemisorption on polycrystalline Mo surfaces at room temperature. Five adsorption states were observed and the binding parameters (E,n 0 ,tau 0 ) were calculated for the three important states. The results obtained by the two methods are in accord but the occurence of electronic desorption in Auger experiments was pointed out. Contamination effects by C atoms in such studies were investigated by repeated cycles of adsorption-desorption and a characteristic evolution of flash desorption was observed. The results are discussed in this point of view enhancing the importance of a control of the adsorption surface cleanness by a method of great sensibility like Auger spectrometry. (Auth.)

  17. Analysis of electrocautery generated smoke by chromatographic-mass spectrometry.

    Science.gov (United States)

    Kalil, Jefferson; Pessine, Francisco B T; Fidelis, Carlos H V; Menezes, Fabio H; Palma, Paulo Cesar Rodrigues

    2016-01-01

    to analyze the chemical components of the smoke from electrocautery from coagulating muscle and liver tissues of pigs. we collected smoke produced by electrocautery applied to porcine tissue in previously evacuated bottles, with qualitative and quantitative analysis of the compounds present through the hyphenated technique gas chromatography / mass spectrometry. there was a majority of decanal aldehyde in the fumes from the subcutaneous, muscle and liver tissues. Fumes of subcutaneous and muscular tissues also showed the presence of hexanal and phenol. In the fumes of subcutaneous and liver tissues we also found toluene and limonene and, finally, nonanal smoke was present in the muscle and liver tissues. there is increasing evidence showing that smoke from electrocautery used in subcutaneous, muscle and liver tissue is harmful to human health. Thus, there is need to reduce exposure to it or wear masks with filters capable of retaining these particles. analisar quimicamente os componentes da fumaça do eletrocautério, provenientes da coagulação de tecidos, muscular e hepático de suino. coleta de fumaça produzida por eletrocauterização de tecido porcino em frascos previamente evacuados com análise qualitativa e quantitativa dos compostos presentes, através de técnica hifenada, cromatografia a gás/espectrometria de massas. houve presença majoritária do aldeído decanal nas fumaças provenientes dos tecidos subcutâneo, muscular e hepático. Fumaças dos tecidos subcutâneo e muscular mostraram também a presença de hexanal e fenol. Nas fumaças dos tecidos subcutâneo e hepático foram encontrados ainda tolueno e limoneno e, por fim, nonanal estava presente nas fumaças dos tecidos muscular e hepático. há número crescente de evidências mostrando que fumaça proveniente de eletrocauterização de tecidos subcutâneo, muscular e hepático é nociva à saúde de seres humanos. Portanto, há necessidade de reduzir a exposição a ela ou usar máscara com

  18. Qualitative and Quantitative Characterization of Therapeutic Antibodies by Native Mass Spectrometry

    NARCIS (Netherlands)

    Rosati, S

    2014-01-01

    This thesis describes the development of novel mass spectrometric methods for the analysis of therapeutic monoclonal antibodies. The first chapter of my thesis introduces the reader to the two main subjects discussed in this thesis: native mass spectrometry and therapeutic monoclonal antibodies.

  19. Real-Time Particle Mass Spectrometry Based on Resonant Micro Strings

    DEFF Research Database (Denmark)

    Schmid, Silvan; Dohn, Søren; Boisen, Anja

    2010-01-01

    by measuring the resonant frequency shifts of the first two bending modes. The method has been tested by detecting the mass spectrum of micro particles placed on a micro string. This method enables real-time mass spectrometry necessary for applications such as personal monitoring devices for the assessment......Micro- and nanomechanical resonators are widely being used as mass sensors due to their unprecedented mass sensitivity. We present a simple closed-form expression which allows a fast and quantitative calculation of the position and mass of individual particles placed on a micro or nano string...

  20. Recent research and progress of laser mass spectrometry

    International Nuclear Information System (INIS)

    Li Jinying; Wang Fan; Zhao Yonggang; Xiao Guoping; Guo Dongfa; Cui Haiping

    2012-01-01

    The progress of laser mass spectrometry (LMS) was introduced. Its history and principle characteristics were reviewed. The research and applications of LMS in geology, mining, organics, biochemistry, environment and nuclear industry were given. The trend of LMS in the future was outlined, and the main issue and the available solutions were discussed. (authors)