WorldWideScience

Sample records for tissue lubricin gene

  1. Advances in Tribology of Lubricin and Lubricin-Like Synthetic Polymer Nanostructures

    Directory of Open Access Journals (Sweden)

    Ilker S. Bayer

    2018-04-01

    Full Text Available Articular cartilage surrounds the ends of diarthrodial joints (most common movable joints and during motion, it experiences a wide range of loading conditions while remaining under exceedingly low-friction and wear-free conditions. This remarkable tribological performance stems from complex interactions between the synovial fluid and articular cartilage. In fact, lubricin and hyaluronic acid (HA that are part of the synovial fluid are now known to be the key contributors to effective joint lubrication and wear protection. Studies involving animal models and artificial systems suggest that lubricin and HA molecules may work in tandem to produce a highly synergistic effect for lubrication. However, latest observations suggest that lubricin has significant potential for protecting the articular joints, probably more than HA. Recently, lurbicin-related friction regulation in soft eye tissues, where much lower forces are involved compared to knee joints for instance, has been shown to be related to dry eye disease and contact lens discomfort. As such, lubricin’s role in natural friction regulation is very complex. Moreover, partially unresolved water-lubricin interactions are essential for lubrication and load carrying function in the joints. The chemical structure of lubricin has inspired several chemists to synthesize new copolymers and polymer brushes that function just like lubricin in order to design new synthetic or bio-based lubricants with ultra-low-friction coefficients. Hence, lubricin has emerged as a key natural molecule for bioinspired tribology. The aim of this review is to present the latest advances in understanding of lubricin’s function in joint lubrication and in soft tissue friction (i.e., human eye and document what has been achieved so far in transforming this biomedical knowledge into new polymer design for advanced engineering tribology. It is hoped that this review will catalyze research and development efforts in

  2. Boundary mode lubrication of articular cartilage by recombinant human lubricin.

    Science.gov (United States)

    Gleghorn, Jason P; Jones, Aled R C; Flannery, Carl R; Bonassar, Lawrence J

    2009-06-01

    Lubrication of cartilage involves a variety of physical and chemical factors, including lubricin, a synovial glycoprotein that has been shown to be a boundary lubricant. It is unclear how lubricin boundary lubricates a wide range of bearings from tissue to artificial surfaces, and if the mechanism is the same for both soluble and bound lubricin. In the current study, experiments were conducted to investigate the hypothesis that recombinant human lubricin (rh-lubricin) lubricates cartilage in a dose-dependent manner and that soluble and bound fractions of rh-lubricin both contribute to the lubrication process. An rh-lubricin dose response was observed with maximal lubrication achieved at concentrations of rh-lubricin greater than 50 microg/mL. A concentration-response variable-slope model was fit to the data, and indicated that rh-lubricin binding to cartilage was not first order. The pattern of decrease in equilibrium friction coefficient indicated that aggregation of rh-lubricin or steric arrangement may regulate boundary lubrication. rh-lubricin localized at the cartilage surface was found to lubricate a cartilage-glass interface in boundary mode, as did soluble rh-lubricin at high concentrations (150 microg/mL); however, the most effective lubrication occurred when both soluble and bound rh-lubricin were present at the interface. These findings point to two distinct mechanisms by which rh-lubricin lubricates, one mechanism involving lubricin bound to the tissue surface and the other involving lubricin in solution. Copyright 2008 Orthopaedic Research Society

  3. Optimization of Methods for Articular Cartilage Surface Tissue Engineering: Cell Density and Transforming Growth Factor Beta Are Critical for Self-Assembly and Lubricin Secretion.

    Science.gov (United States)

    Iwasa, Kenjiro; Reddi, A Hari

    2017-07-01

    Lubricin/superficial zone protein (SZP)/proteoglycan4 (PRG4) plays an important role in boundary lubrication in articular cartilage. Lubricin is secreted by superficial zone chondrocytes and synoviocytes of the synovium. The specific objective of this investigation is to optimize the methods for tissue engineering of articular cartilage surface. The aim of this study is to investigate the effect of cell density on the self-assembly of superficial zone chondrocytes and lubricin secretion as a functional assessment. Superficial zone chondrocytes were cultivated as a monolayer at low, medium, and high densities. Chondrocytes at the three different densities were treated with transforming growth factor beta (TGF-β)1 twice a week or daily, and the accumulated lubricin in the culture medium was analyzed by immunoblots and quantitated by enzyme-linked immunosorbent assay (ELISA). Cell numbers in low and medium densities were increased by TGF-β1; whereas cell numbers in high-density cell cultures were decreased by twice-a-week treatment of TGF-β1. On the other hand, the cell numbers were maintained by daily TGF-β treatment. Immunoblots and quantitation of lubricin by ELISA analysis indicated that TGF-β1 stimulated lubricin secretion by superficial zone chondrocytes at all densities with twice-a-week TGF-β treatment. It is noteworthy that the daily treatment of TGF-β1 increased lubricin much higher compared with twice-a-week treatment. These data demonstrate that daily treatment is optimal for the TGF-β1 response in a higher density of monolayer cultures. These findings have implications for self-assembly of surface zone chondrocytes of articular cartilage for application in tissue engineering of articular cartilage surface.

  4. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo

    Science.gov (United States)

    Nakagawa, Yusuke; Muneta, Takeshi; Otabe, Koji; Ozeki, Nobutake; Mizuno, Mitsuru; Udo, Mio; Saito, Ryusuke; Yanagisawa, Katsuaki; Ichinose, Shizuko; Koga, Hideyuki; Tsuji, Kunikazu; Sekiya, Ichiro

    2016-01-01

    Objective Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs) are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1) whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2) whether aggregates of human MSCs promoted lubricin expression, and (3) whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats. Methods For in vitro analysis, human bone marrow (BM) MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages. Results In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4), which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and

  5. Not all lubricin isoforms are substituted with a glycosaminoglycan chain

    DEFF Research Database (Denmark)

    Lord, Megan S; Estrella, Ruby P; Chuang, Christine Y

    2012-01-01

    antibodies (MAb) 2-B-6 and MAb 3-B-3 after chondroitinase ABC treatment and keratan sulfate (KS) that was detected by MAb 5-D-4. Further analysis of lubricin-containing fractions that eluted from an anion exchange column indicated that the major population of lubricin could be separated from the CS and KS...... stubs which indicated that this fraction of lubricin was not decorated with glycosaminoglycan chain and was the glycoprotein form of lubricin. Lubricin present in fractions that also contained CS was found to be decorated with CS structures which were reactive with MAb 3-B-3 after chondroitinase ABC...

  6. Co-Expression and Co-Localization of Cartilage Glycoproteins CHI3L1 and Lubricin in Osteoarthritic Cartilage: Morphological, Immunohistochemical and Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Marta Anna Szychlinska

    2016-03-01

    Full Text Available Osteoarthritis is the most common human arthritis characterized by degeneration of articular cartilage. Several studies reported that levels of human cartilage glycoprotein chitinase 3-like-1 (CHI3L1 are known as a potential marker for the activation of chondrocytes and the progression of Osteoarthritis (OA, whereas lubricin appears to be chondroprotective. The aim of this study was to investigate the co-expression and co-localization of CHI3L1 and lubricin in normal and osteoarthritic rat articular cartilage to correlate their modified expression to a specific grade of OA. Samples of normal and osteoarthritic rat articular cartilage were analyzed by the Kellgren–Lawrence OA severity scores, the Kraus’ modified Mankin score and the Histopathology Osteoarthritis Research Society International (OARSI system for histomorphometric evaluations, and through CHI3L1 and lubricin gene expression, immunohistochemistry and double immuno-staining analysis. The immunoexpression and the mRNA levels of lubricin increased in normal cartilage and decreased in OA cartilage (normal vs. OA, p < 0.01. By contrast, the immunoexpression and the mRNA levels of CHI3L1 increased in OA cartilage and decreased in normal cartilage (normal vs. OA, p < 0.01. Our findings are consistent with reports suggesting that these two glycoproteins are functionally associated with the development of OA and in particular with grade 2/3 of OA, suggesting that in the future they could be helpful to stage the severity and progression of the disease.

  7. Elastoviscous Transitions of Articular Cartilage Reveal a Mechanism of Synergy between Lubricin and Hyaluronic Acid.

    Directory of Open Access Journals (Sweden)

    Edward D Bonnevie

    Full Text Available When lubricated by synovial fluid, articular cartilage provides some of the lowest friction coefficients found in nature. While it is known that macromolecular constituents of synovial fluid provide it with its lubricating ability, it is not fully understood how two of the main molecules, lubricin and hyaluronic acid, lubricate and interact with one another. Here, we develop a novel framework for cartilage lubrication based on the elastoviscous transition to show that lubricin and hyaluronic acid lubricate by distinct mechanisms. Such analysis revealed nonspecific interactions between these molecules in which lubricin acts to concentrate hyaluronic acid near the tissue surface and promotes a transition to a low friction regime consistent with the theory of viscous boundary lubrication. Understanding the mechanics of synovial fluid not only provides insight into the progression of diseases such as arthritis, but also may be applicable to the development of new biomimetic lubricants.

  8. Galectin-3 Binds to Lubricin and Reinforces the Lubricating Boundary Layer of Articular Cartilage.

    Science.gov (United States)

    Reesink, Heidi L; Bonnevie, Edward D; Liu, Sherry; Shurer, Carolyn R; Hollander, Michael J; Bonassar, Lawrence J; Nixon, Alan J

    2016-05-09

    Lubricin is a mucinous, synovial fluid glycoprotein that enables near frictionless joint motion via adsorption to the surface of articular cartilage and its lubricating properties in solution. Extensive O-linked glycosylation within lubricin's mucin-rich domain is critical for its boundary lubricating function; however, it is unknown exactly how glycosylation facilitates cartilage lubrication. Here, we find that the lubricin glycome is enriched with terminal β-galactosides, known binding partners for a family of multivalent lectins called galectins. Of the galectin family members present in synovial fluid, we find that galectin-3 is a specific, high-affinity binding partner for lubricin. Considering the known ability of galectin-3 to crosslink glycoproteins, we hypothesized that galectins could augment lubrication via biomechanical stabilization of the lubricin boundary layer. We find that competitive inhibition of galectin binding results in lubricin loss from the cartilage surface, and addition of multimeric galectin-3 enhances cartilage lubrication. We also find that galectin-3 has low affinity for the surface layer of osteoarthritic cartilage and has reduced affinity for sialylated O-glycans, a glycophenotype associated with inflammatory conditions. Together, our results suggest that galectin-3 reinforces the lubricin boundary layer; which, in turn, enhances cartilage lubrication and may delay the onset and progression of arthritis.

  9. Altered joint tribology in osteoarthritis: Reduced lubricin synthesis due to the inflammatory process. New horizons for therapeutic approaches.

    Science.gov (United States)

    Szychlinska, M A; Leonardi, R; Al-Qahtani, M; Mobasheri, A; Musumeci, G

    2016-06-01

    Osteoarthritis (OA) is the most common form of joint disease. This review aimed to consolidate the current evidence that implicates the inflammatory process in the attenuation of synovial lubrication and joint tissue homeostasis in OA. Moreover, with these findings, we propose some evidence for novel therapeutic strategies for preventing and/or treating this complex disorder. The studies reviewed support that inflammatory mediators participate in the onset and progression of OA after joint injury. The flow of pro-inflammatory cytokines following an acute injury seems to be directly associated with altered lubricating ability in the joint tissue. The latter is associated with reduced level of lubricin, one of the major joint lubricants. Future research should focus on the development of new therapies that attenuate the inflammatory process and restore lubricin synthesis and function. This approach could support joint tribology and synovial lubrication leading to improved joint function and pain relief. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Synthesis and characterization of a lubricin mimic (mLub) to reduce friction and adhesion on the articular cartilage surface.

    Science.gov (United States)

    Lawrence, Alexandra; Xu, Xin; Bible, Melissa D; Calve, Sarah; Neu, Corey P; Panitch, Alyssa

    2015-12-01

    The lubricating proteoglycan, lubricin, facilitates the remarkable low friction and wear properties of articular cartilage in the synovial joints of the body. Lubricin lines the joint surfaces and plays a protective role as a boundary lubricant in sliding contact; decreased expression of lubricin is associated with cartilage degradation and the pathogenesis of osteoarthritis. An unmet need for early osteoarthritis treatment is the development of therapeutic molecules that mimic lubricin function and yet are also resistant to enzymatic degradation common in the damaged joint. Here, we engineered a lubricin mimic (mLub) that is less susceptible to enzymatic degradation and binds to the articular surface to reduce friction. mLub was synthesized using a chondroitin sulfate backbone with type II collagen and hyaluronic acid (HA) binding peptides to promote interaction with the articular surface and synovial fluid constituents. In vitro and in vivo characterization confirmed the binding ability of mLub to isolated type II collagen and HA, and to the cartilage surface. Following trypsin treatment to the cartilage surface, application of mLub, in combination with purified or commercially available hyaluronan, reduced the coefficient of friction, and adhesion, to control levels as assessed over macro-to micro-scales by rheometry and atomic force microscopy. In vivo studies demonstrate an mLub residency time of less than 1 week. Enhanced lubrication by mLub reduces surface friction and adhesion, which may suppress the progression of degradation and cartilage loss in the joint. mLub therefore shows potential for treatment in early osteoarthritis following injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Extra-virgin olive oil diet and mild physical activity prevent cartilage degeneration in an osteoarthritis model: an in vivo and in vitro study on lubricin expression.

    Science.gov (United States)

    Musumeci, Giuseppe; Trovato, Francesca Maria; Pichler, Karin; Weinberg, Annelie Martina; Loreto, Carla; Castrogiovanni, Paola

    2013-12-01

    Mediterranean diet includes a relatively high fat consumption mostly from monounsaturated fatty acids mainly provided by olive oil, the principal source of culinary and dressing fat. The beneficial effects of olive oil have been widely studied and could be due to its phytochemicals, which have been shown to possess anti-inflammatory properties. Lubricin is a chondroprotective glycoprotein and it serves as a critical boundary lubricant between opposing cartilage surfaces. A joint injury causes an initial flare of cytokines, which decreases lubricin expression and predisposes to cartilage degeneration such as osteoarthritis. The aim of this study was to evaluate the role of extra-virgin olive oil diet and physical activity on inflammation and expression of lubricin in articular cartilage of rats after injury. In this study we used histomorphometric, histological, immunocytochemical, immunohistochemical, western blot and biochemical analysis for lubricin and interleukin-1 evaluations in the cartilage and in the synovial fluid. We report the beneficial effect of physical activity (treadmill training) and extra-virgin olive oil supplementation, on the articular cartilage. The effects of anterior cruciate ligament transection decrease drastically the expression of lubricin and increase the expression of interleukin-1 in rats, while after physical activity and extra-virgin olive oil supplemented diet, the values return to a normal level compared to the control group. With our results we can confirm the importance of the physical activity in conjunction with extra-virgin olive oil diet in medical therapy to prevent osteoarthritis disease in order to preserve the articular cartilage and then the entire joint.

  12. Synergistic Interactions of a Synthetic Lubricin-Mimetic with Fibronectin for Enhanced Wear Protection

    Directory of Open Access Journals (Sweden)

    Roberto C. Andresen Eguiluz

    2017-06-01

    Full Text Available Lubricin (LUB, a major mucinous glycoprotein of mammalian synovial fluids, is believed to provide excellent lubrication to cartilage surfaces. Consequently, when joint disease or replacement leads to increased friction and surface damage in the joint, robust synthetic LUB alternatives that could be used therapeutically to improve lubrication and surface protection are needed. Here, we report the characterization of a lubricating multiblock bottlebrush polymer whose architecture was inspired by LUB, and we investigate the role of fibronectin (FN, a glycoprotein found in the superficial zone of cartilage, in mediating the tribological properties of the polymer upon shear between mica surfaces. Our surface forces apparatus (SFA normal force measurements indicate that the lubricin-mimetic (mimLUB could be kept anchored between mica surfaces, even under high contact pressures, when an intermediate layer of FN was present. Additional SFA friction measurements show that FN would also extend the wearless friction regime of the polymer up to pressures of 3.4 MPa while ensuring stable friction coefficients (μ ≈ 0.28. These results demonstrate synergistic interactions between mimLUB and FN in assisting the lubrication and wear protection of ideal (mica substrates upon shear. Collectively, these findings suggest that our proposed mimLUB might be a promising alternative to LUB, as similar mechanisms could potentially facilitate the interaction between the polymer and cartilage surfaces in articular joints and prosthetic implants in vivo.

  13. Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Zhang Lu; Spector, Myron

    2009-01-01

    The objective of this study was to compare the chondrogenesis in type I and II collagen scaffolds seeded with chondrocytes from three types of cartilage, after four weeks of culture: auricular (AU), articular (AR) and meniscal (ME). Related aims were to investigate the expression of a contractile muscle actin isoform, α-smooth muscle actin (SMA), in the cells in the scaffold and to determine the presence of a lubricating glycoprotein, lubricin, in the constructs. Adult goat AU, AR and ME chondrocytes were seeded into two types of collagen scaffolds: type II collagen and type I/III collagen. After four weeks of culture, the constructs were prepared for histochemical and immunohistochemical analysis of the distribution of glycosaminoglycan (GAG), types I and II collagen, elastin, SM and lubricin. AU constructs contained substantially more tissue than the AR and ME samples. The AU constructs exhibited neocartilage, but no elastin. There were no notable differences between the type I and II collagen scaffolds. Novel findings were the expression of SMA by the AU cells in the scaffolds and the presence of lubricin in the AR and AU constructs. AU cells have the capability to produce cartilage in collagen scaffolds under conditions in which there is little histogenesis by AR and ME cells.

  14. Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lu [Department of Plastic and Reconstructive Surgery, Shanghai Tissue Engineering Center, Shanghai 9th People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Spector, Myron, E-mail: luzhangmd@gmail.co [Tissue Engineering, VA Boston Healthcare System, Boston, MA (United States)

    2009-08-15

    The objective of this study was to compare the chondrogenesis in type I and II collagen scaffolds seeded with chondrocytes from three types of cartilage, after four weeks of culture: auricular (AU), articular (AR) and meniscal (ME). Related aims were to investigate the expression of a contractile muscle actin isoform, alpha-smooth muscle actin (SMA), in the cells in the scaffold and to determine the presence of a lubricating glycoprotein, lubricin, in the constructs. Adult goat AU, AR and ME chondrocytes were seeded into two types of collagen scaffolds: type II collagen and type I/III collagen. After four weeks of culture, the constructs were prepared for histochemical and immunohistochemical analysis of the distribution of glycosaminoglycan (GAG), types I and II collagen, elastin, SM and lubricin. AU constructs contained substantially more tissue than the AR and ME samples. The AU constructs exhibited neocartilage, but no elastin. There were no notable differences between the type I and II collagen scaffolds. Novel findings were the expression of SMA by the AU cells in the scaffolds and the presence of lubricin in the AR and AU constructs. AU cells have the capability to produce cartilage in collagen scaffolds under conditions in which there is little histogenesis by AR and ME cells.

  15. Reference Gene Screening for Analyzing Gene Expression Across Goat Tissue

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2013-12-01

    Full Text Available Real-time quantitative PCR (qRT-PCR is one of the important methods for investigating the changes in mRNA expression levels in cells and tissues. Selection of the proper reference genes is very important when calibrating the results of real-time quantitative PCR. Studies on the selection of reference genes in goat tissues are limited, despite the economic importance of their meat and dairy products. We used real-time quantitative PCR to detect the expression levels of eight reference gene candidates (18S, TBP, HMBS, YWHAZ, ACTB, HPRT1, GAPDH and EEF1A2 in ten tissues types sourced from Boer goats. The optimal reference gene combination was selected according to the results determined by geNorm, NormFinder and Bestkeeper software packages. The analyses showed that tissue is an important variability factor in genes expression stability. When all tissues were considered, 18S, TBP and HMBS is the optimal reference combination for calibrating quantitative PCR analysis of gene expression from goat tissues. Dividing data set by tissues, ACTB was the most stable in stomach, small intestine and ovary, 18S in heart and spleen, HMBS in uterus and lung, TBP in liver, HPRT1 in kidney and GAPDH in muscle. Overall, this study provided valuable information about the goat reference genes that can be used in order to perform a proper normalisation when relative quantification by qRT-PCR studies is undertaken.

  16. Gene expression in periodontal tissues following treatment

    Directory of Open Access Journals (Sweden)

    Eisenacher Martin

    2008-07-01

    Full Text Available Abstract Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A, Versican (CSPG-2, Matrixmetalloproteinase-1 (MMP-1, Down syndrome critical region protein-1 (DSCR-1, Macrophage inflammatory protein-2β (Cxcl-3, Inhibitor of apoptosis protein-1 (BIRC-1, Cluster of differentiation antigen 38 (CD38, Regulator of G-protein signalling-1 (RGS-1, and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS; the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2, Complement component 3 (C3, Prostaglandin-endoperoxide synthase-2 (COX-2, Interleukin-8 (IL-8, Endothelin-1 (EDN-1, Plasminogen activator inhibitor type-2 (PAI-2, Matrix-metalloproteinase-14 (MMP-14, and Interferon regulating factor-7 (IRF-7. Conclusion Gene expression profiles found in periodontal tissues following

  17. Phase analysis of circadian-related genes in two tissues

    Directory of Open Access Journals (Sweden)

    Li Leping

    2006-02-01

    Full Text Available Abstract Background Recent circadian clock studies using gene expression microarray in two different tissues of mouse have revealed not all circadian-related genes are synchronized in phase or peak expression times across tissues in vivo. Instead, some circadian-related genes may be delayed by 4–8 hrs in peak expression in one tissue relative to the other. These interesting biological observations prompt a statistical question regarding how to distinguish the synchronized genes from genes that are systematically lagged in phase/peak expression time across two tissues. Results We propose a set of techniques from circular statistics to analyze phase angles of circadian-related genes in two tissues. We first estimate the phases of a cycling gene separately in each tissue, which are then used to estimate the paired angular difference of the phase angles of the gene in the two tissues. These differences are modeled as a mixture of two von Mises distributions which enables us to cluster genes into two groups; one group having synchronized transcripts with the same phase in the two tissues, the other containing transcripts with a discrepancy in phase between the two tissues. For each cluster of genes we assess the association of phases across the tissue types using circular-circular regression. We also develop a bootstrap methodology based on a circular-circular regression model to evaluate the improvement in fit provided by allowing two components versus a one-component von-Mises model. Conclusion We applied our proposed methodologies to the circadian-related genes common to heart and liver tissues in Storch et al. 2, and found that an estimated 80% of circadian-related transcripts common to heart and liver tissues were synchronized in phase, and the other 20% of transcripts were lagged about 8 hours in liver relative to heart. The bootstrap p-value for being one cluster is 0.063, which suggests the possibility of two clusters. Our methodologies can

  18. A compendium of canine normal tissue gene expression.

    Directory of Open Access Journals (Sweden)

    Joseph Briggs

    Full Text Available BACKGROUND: Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. METHODOLOGY/PRINCIPAL FINDINGS: The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. CONCLUSIONS/SIGNIFICANCE: These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large.

  19. Simultaneous inference of phenotype-associated genes and relevant tissues from GWAS data via Bayesian integration of multiple tissue-specific gene networks.

    Science.gov (United States)

    Wu, Mengmeng; Lin, Zhixiang; Ma, Shining; Chen, Ting; Jiang, Rui; Wong, Wing Hung

    2017-12-01

    Although genome-wide association studies (GWAS) have successfully identified thousands of genomic loci associated with hundreds of complex traits in the past decade, the debate about such problems as missing heritability and weak interpretability has been appealing for effective computational methods to facilitate the advanced analysis of the vast volume of existing and anticipated genetic data. Towards this goal, gene-level integrative GWAS analysis with the assumption that genes associated with a phenotype tend to be enriched in biological gene sets or gene networks has recently attracted much attention, due to such advantages as straightforward interpretation, less multiple testing burdens, and robustness across studies. However, existing methods in this category usually exploit non-tissue-specific gene networks and thus lack the ability to utilize informative tissue-specific characteristics. To overcome this limitation, we proposed a Bayesian approach called SIGNET (Simultaneously Inference of GeNEs and Tissues) to integrate GWAS data and multiple tissue-specific gene networks for the simultaneous inference of phenotype-associated genes and relevant tissues. Through extensive simulation studies, we showed the effectiveness of our method in finding both associated genes and relevant tissues for a phenotype. In applications to real GWAS data of 14 complex phenotypes, we demonstrated the power of our method in both deciphering genetic basis and discovering biological insights of a phenotype. With this understanding, we expect to see SIGNET as a valuable tool for integrative GWAS analysis, thereby boosting the prevention, diagnosis, and treatment of human inherited diseases and eventually facilitating precision medicine.

  20. Tissue-specific regulation of mouse MicroRNA genes in endoderm-derived tissues

    OpenAIRE

    Gao, Yan; Schug, Jonathan; McKenna, Lindsay B.; Le Lay, John; Kaestner, Klaus H.; Greenbaum, Linda E.

    2010-01-01

    MicroRNAs fine-tune the activity of hundreds of protein-coding genes. The identification of tissue-specific microRNAs and their promoters has been constrained by the limited sensitivity of prior microRNA quantification methods. Here, we determine the entire microRNAome of three endoderm-derived tissues, liver, jejunum and pancreas, using ultra-high throughput sequencing. Although many microRNA genes are expressed at comparable levels, 162 microRNAs exhibited striking tissue-specificity. After...

  1. Gene therapy for cartilage and bone tissue engineering

    CERN Document Server

    Hu, Yu-Chen

    2014-01-01

    "Gene Therapy for Cartilage and Bone Tissue Engineering" outlines the tissue engineering and possible applications of gene therapy in the field of biomedical engineering as well as basic principles of gene therapy, vectors and gene delivery, specifically for cartilage and bone engineering. It is intended for tissue engineers, cell therapists, regenerative medicine scientists and engineers, gene therapist and virologists. Dr. Yu-Chen Hu is a Distinguished Professor at the Department of Chemical Engineering, National Tsing Hua University and has received the Outstanding Research Award (National Science Council), Asia Research Award (Society of Chemical Engineers, Japan) and Professor Tsai-Teh Lai Award (Taiwan Institute of Chemical Engineers). He is also a fellow of the American Institute for Medical and Biological Engineering (AIMBE) and a member of the Tissue Engineering International & Regenerative Medicine Society (TERMIS)-Asia Pacific Council.

  2. TiGER: a database for tissue-specific gene expression and regulation.

    Science.gov (United States)

    Liu, Xiong; Yu, Xueping; Zack, Donald J; Zhu, Heng; Qian, Jiang

    2008-06-09

    Understanding how genes are expressed and regulated in different tissues is a fundamental and challenging question. However, most of currently available biological databases do not focus on tissue-specific gene regulation. The recent development of computational methods for tissue-specific combinational gene regulation, based on transcription factor binding sites, enables us to perform a large-scale analysis of tissue-specific gene regulation in human tissues. The results are stored in a web database called TiGER (Tissue-specific Gene Expression and Regulation). The database contains three types of data including tissue-specific gene expression profiles, combinatorial gene regulations, and cis-regulatory module (CRM) detections. At present the database contains expression profiles for 19,526 UniGene genes, combinatorial regulations for 7,341 transcription factor pairs and 6,232 putative CRMs for 2,130 RefSeq genes. We have developed and made publicly available a database, TiGER, which summarizes and provides large scale data sets for tissue-specific gene expression and regulation in a variety of human tissues. This resource is available at 1.

  3. TiGER: A database for tissue-specific gene expression and regulation

    Directory of Open Access Journals (Sweden)

    Zack Donald J

    2008-06-01

    Full Text Available Abstract Background Understanding how genes are expressed and regulated in different tissues is a fundamental and challenging question. However, most of currently available biological databases do not focus on tissue-specific gene regulation. Results The recent development of computational methods for tissue-specific combinational gene regulation, based on transcription factor binding sites, enables us to perform a large-scale analysis of tissue-specific gene regulation in human tissues. The results are stored in a web database called TiGER (Tissue-specific Gene Expression and Regulation. The database contains three types of data including tissue-specific gene expression profiles, combinatorial gene regulations, and cis-regulatory module (CRM detections. At present the database contains expression profiles for 19,526 UniGene genes, combinatorial regulations for 7,341 transcription factor pairs and 6,232 putative CRMs for 2,130 RefSeq genes. Conclusion We have developed and made publicly available a database, TiGER, which summarizes and provides large scale data sets for tissue-specific gene expression and regulation in a variety of human tissues. This resource is available at 1.

  4. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans

    Directory of Open Access Journals (Sweden)

    Benjamin Mayne

    2016-10-01

    Full Text Available The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analysed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes, followed by the heart (375 genes, kidney (224 genes, colon (218 genes and thyroid (163 genes. More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  5. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  6. Ex vivo culture of patient tissue & examination of gene delivery.

    LENUS (Irish Health Repository)

    Rajendran, Simon

    2012-01-31

    This video describes the use of patient tissue as an ex vivo model for the study of gene delivery. Fresh patient tissue obtained at the time of surgery is sliced and maintained in culture. The ex vivo model system allows for the physical delivery of genes into intact patient tissue and gene expression is analysed by bioluminescence imaging using the IVIS detection system. The bioluminescent detection system demonstrates rapid and accurate quantification of gene expression within individual slices without the need for tissue sacrifice. This slice tissue culture system may be used in a variety of tissue types including normal and malignant tissue and allows us to study the effects of the heterogeneous nature of intact tissue and the high degree of variability between individual patients. This model system could be used in certain situations as an alternative to animal models and as a complementary preclinical mode prior to entering clinical trial.

  7. Tissue-specific functional networks for prioritizing phenotype and disease genes.

    Directory of Open Access Journals (Sweden)

    Yuanfang Guan

    Full Text Available Integrated analyses of functional genomics data have enormous potential for identifying phenotype-associated genes. Tissue-specificity is an important aspect of many genetic diseases, reflecting the potentially different roles of proteins and pathways in diverse cell lineages. Accounting for tissue specificity in global integration of functional genomics data is challenging, as "functionality" and "functional relationships" are often not resolved for specific tissue types. We address this challenge by generating tissue-specific functional networks, which can effectively represent the diversity of protein function for more accurate identification of phenotype-associated genes in the laboratory mouse. Specifically, we created 107 tissue-specific functional relationship networks through integration of genomic data utilizing knowledge of tissue-specific gene expression patterns. Cross-network comparison revealed significantly changed genes enriched for functions related to specific tissue development. We then utilized these tissue-specific networks to predict genes associated with different phenotypes. Our results demonstrate that prediction performance is significantly improved through using the tissue-specific networks as compared to the global functional network. We used a testis-specific functional relationship network to predict genes associated with male fertility and spermatogenesis phenotypes, and experimentally confirmed one top prediction, Mbyl1. We then focused on a less-common genetic disease, ataxia, and identified candidates uniquely predicted by the cerebellum network, which are supported by both literature and experimental evidence. Our systems-level, tissue-specific scheme advances over traditional global integration and analyses and establishes a prototype to address the tissue-specific effects of genetic perturbations, diseases and drugs.

  8. Robust multi-tissue gene panel for cancer detection

    Directory of Open Access Journals (Sweden)

    Talantov Dmitri

    2010-06-01

    Full Text Available Abstract Background We have identified a set of genes whose relative mRNA expression levels in various solid tumors can be used to robustly distinguish cancer from matching normal tissue. Our current feature set consists of 113 gene probes for 104 unique genes, originally identified as differentially expressed in solid primary tumors in microarray data on Affymetrix HG-U133A platform in five tissue types: breast, colon, lung, prostate and ovary. For each dataset, we first identified a set of genes significantly differentially expressed in tumor vs. normal tissue at p-value = 0.05 using an experimentally derived error model. Our common cancer gene panel is the intersection of these sets of significantly dysregulated genes and can distinguish tumors from normal tissue on all these five tissue types. Methods Frozen tumor specimens were obtained from two commercial vendors Clinomics (Pittsfield, MA and Asterand (Detroit, MI. Biotinylated targets were prepared using published methods (Affymetrix, CA and hybridized to Affymetrix U133A GeneChips (Affymetrix, CA. Expression values for each gene were calculated using Affymetrix GeneChip analysis software MAS 5.0. We then used a software package called Genes@Work for differential expression discovery, and SVM light linear kernel for building classification models. Results We validate the predictability of this gene list on several publicly available data sets generated on the same platform. Of note, when analysing the lung cancer data set of Spira et al, using an SVM linear kernel classifier, our gene panel had 94.7% leave-one-out accuracy compared to 87.8% using the gene panel in the original paper. In addition, we performed high-throughput validation on the Dana Farber Cancer Institute GCOD database and several GEO datasets. Conclusions Our result showed the potential for this panel as a robust classification tool for multiple tumor types on the Affymetrix platform, as well as other whole genome arrays

  9. Physical non-viral gene delivery methods for tissue engineering.

    Science.gov (United States)

    Mellott, Adam J; Forrest, M Laird; Detamore, Michael S

    2013-03-01

    The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that "fits-all" cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications.

  10. Physical non-viral gene delivery methods for tissue engineering

    Science.gov (United States)

    Mellott, Adam J.; Forrest, M. Laird; Detamore, Michael S.

    2016-01-01

    The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that “fits-all” cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications. PMID:23099792

  11. Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue

    Directory of Open Access Journals (Sweden)

    Dunner Susana

    2008-09-01

    Full Text Available Abstract Background Real-time reverse transcriptase quantitative polymerase chain reaction (real-time RTqPCR is a technique used to measure mRNA species copy number as a way to determine key genes involved in different biological processes. However, the expression level of these key genes may vary among tissues or cells not only as a consequence of differential expression but also due to different factors, including choice of reference genes to normalize the expression levels of the target genes; thus the selection of reference genes is critical for expression studies. For this purpose, ten candidate reference genes were investigated in bovine muscular tissue. Results The value of stability of ten candidate reference genes included in three groups was estimated: the so called 'classical housekeeping' genes (18S, GAPDH and ACTB, a second set of genes used in expression studies conducted on other tissues (B2M, RPII, UBC and HMBS and a third set of novel genes (SF3A1, EEF1A2 and CASC3. Three different statistical algorithms were used to rank the genes by their stability measures as produced by geNorm, NormFinder and Bestkeeper. The three methods tend to agree on the most stably expressed genes and the least in muscular tissue. EEF1A2 and HMBS followed by SF3A1, ACTB, and CASC3 can be considered as stable reference genes, and B2M, RPII, UBC and GAPDH would not be appropriate. Although the rRNA-18S stability measure seems to be within the range of acceptance, its use is not recommended because its synthesis regulation is not representative of mRNA levels. Conclusion Based on geNorm algorithm, we propose the use of three genes SF3A1, EEF1A2 and HMBS as references for normalization of real-time RTqPCR in muscle expression studies.

  12. Oxygen and tissue culture affect placental gene expression.

    Science.gov (United States)

    Brew, O; Sullivan, M H F

    2017-07-01

    Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mining tissue specificity, gene connectivity and disease association to reveal a set of genes that modify the action of disease causing genes

    Directory of Open Access Journals (Sweden)

    Reverter Antonio

    2008-09-01

    Full Text Available Abstract Background The tissue specificity of gene expression has been linked to a number of significant outcomes including level of expression, and differential rates of polymorphism, evolution and disease association. Recent studies have also shown the importance of exploring differential gene connectivity and sequence conservation in the identification of disease-associated genes. However, no study relates gene interactions with tissue specificity and disease association. Methods We adopted an a priori approach making as few assumptions as possible to analyse the interplay among gene-gene interactions with tissue specificity and its subsequent likelihood of association with disease. We mined three large datasets comprising expression data drawn from massively parallel signature sequencing across 32 tissues, describing a set of 55,606 true positive interactions for 7,197 genes, and microarray expression results generated during the profiling of systemic inflammation, from which 126,543 interactions among 7,090 genes were reported. Results Amongst the myriad of complex relationships identified between expression, disease, connectivity and tissue specificity, some interesting patterns emerged. These include elevated rates of expression and network connectivity in housekeeping and disease-associated tissue-specific genes. We found that disease-associated genes are more likely to show tissue specific expression and most frequently interact with other disease genes. Using the thresholds defined in these observations, we develop a guilt-by-association algorithm and discover a group of 112 non-disease annotated genes that predominantly interact with disease-associated genes, impacting on disease outcomes. Conclusion We conclude that parameters such as tissue specificity and network connectivity can be used in combination to identify a group of genes, not previously confirmed as disease causing, that are involved in interactions with disease causing

  14. Gene expression changes with age in skin, adipose tissue, blood and brain.

    Science.gov (United States)

    Glass, Daniel; Viñuela, Ana; Davies, Matthew N; Ramasamy, Adaikalavan; Parts, Leopold; Knowles, David; Brown, Andrew A; Hedman, Asa K; Small, Kerrin S; Buil, Alfonso; Grundberg, Elin; Nica, Alexandra C; Di Meglio, Paola; Nestle, Frank O; Ryten, Mina; Durbin, Richard; McCarthy, Mark I; Deloukas, Panagiotis; Dermitzakis, Emmanouil T; Weale, Michael E; Bataille, Veronique; Spector, Tim D

    2013-07-26

    Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age. Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues. Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.

  15. Repressor-mediated tissue-specific gene expression in plants

    Science.gov (United States)

    Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  16. Identification of reference genes and validation for gene expression studies in diverse axolotl (Ambystoma mexicanum) tissues.

    Science.gov (United States)

    Guelke, Eileen; Bucan, Vesna; Liebsch, Christina; Lazaridis, Andrea; Radtke, Christine; Vogt, Peter M; Reimers, Kerstin

    2015-04-10

    For the precise quantitative RT-PCR normalization a set of valid reference genes is obligatory. Moreover have to be taken into concern the experimental conditions as they bias the regulation of reference genes. Up till now, no reference targets have been described for the axolotl (Ambystoma mexicanum). In a search in the public database SalSite for genetic information of the axolotl we identified fourteen presumptive reference genes, eleven of which were further tested for their gene expression stability. This study characterizes the expressional patterns of 11 putative endogenous control genes during axolotl limb regeneration and in an axolotl tissue panel. All 11 reference genes showed variable expression. Strikingly, ACTB was to be found most stable expressed in all comparative tissue groups, so we reason it to be suitable for all different kinds of axolotl tissue-type investigations. Moreover do we suggest GAPDH and RPLP0 as suitable for certain axolotl tissue analysis. When it comes to axolotl limb regeneration, a validated pair of reference genes is ODC and RPLP0. With these findings, new insights into axolotl gene expression profiling might be gained. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Measurement of Gene Expression in Archival Paraffin-Embedded Tissues

    Science.gov (United States)

    Cronin, Maureen; Pho, Mylan; Dutta, Debjani; Stephans, James C.; Shak, Steven; Kiefer, Michael C.; Esteban, Jose M.; Baker, Joffre B.

    2004-01-01

    Throughout the last decade many laboratories have shown that mRNA levels in formalin-fixed and paraffin-embedded (FPE) tissue specimens can be quantified by reverse transcriptase-polymerase chain reaction (RT-PCR) techniques despite the extensive RNA fragmentation that occurs in tissues so preserved. We have developed RT-PCR methods that are sensitive, precise, and that have multianalyte capability for potential wide use in clinical research and diagnostic assays. Here it is shown that the extent of fragmentation of extracted FPE tissue RNA significantly increases with archive storage time. Probe and primer sets for RT-PCR assays based on amplicons that are both short and homogeneous in length enable effective reference gene-based data normalization for cross comparison of specimens that differ substantially in age. A 48-gene assay used to compare gene expression profiles from the same breast cancer tissue that had been either frozen or FPE showed very similar profiles after reference gene-based normalization. A 92-gene assay, using RNA extracted from three 10-μm FPE sections of archival breast cancer specimens (dating from 1985 to 2001) yielded analyzable data for these genes in all 62 tested specimens. The results were substantially concordant when estrogen receptor, progesterone receptor, and HER2 receptor status determined by RT-PCR was compared with immunohistochemistry assays for these receptors. Furthermore, the results highlight the advantages of RT-PCR over immunohistochemistry with respect to quantitation and dynamic range. These findings support the development of RT-PCR analysis of FPE tissue RNA as a platform for multianalyte clinical diagnostic tests. PMID:14695316

  18. Knowledge Enrichment Analysis for Human Tissue- Specific Genes Uncover New Biological Insights

    Directory of Open Access Journals (Sweden)

    Gong Xiu-Jun

    2012-06-01

    Full Text Available The expression and regulation of genes in different tissues are fundamental questions to be answered in biology. Knowledge enrichment analysis for tissue specific (TS and housekeeping (HK genes may help identify their roles in biological process or diseases and gain new biological insights.In this paper, we performed the knowledge enrichment analysis for 17,343 genes in 84 human tissues using Gene Set Enrichment Analysis (GSEA and Hypergeometric Analysis (HA against three biological ontologies: Gene Ontology (GO, KEGG pathways and Disease Ontology (DO respectively.The analyses results demonstrated that the functions of most gene groups are consistent with their tissue origins. Meanwhile three interesting new associations for HK genes and the skeletal muscle tissuegenes are found. Firstly, Hypergeometric analysis against KEGG database for HK genes disclosed that three disease terms (Parkinson’s disease, Huntington’s disease, Alzheimer’s disease are intensively enriched.Secondly, Hypergeometric analysis against the KEGG database for Skeletal Muscle tissue genes shows that two cardiac diseases of “Hypertrophic cardiomyopathy (HCM” and “Arrhythmogenic right ventricular cardiomyopathy (ARVC” are heavily enriched, which are also considered as no relationship with skeletal functions.Thirdly, “Prostate cancer” is intensively enriched in Hypergeometric analysis against the disease ontology (DO for the Skeletal Muscle tissue genes, which is a much unexpected phenomenon.

  19. Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data

    Directory of Open Access Journals (Sweden)

    Teng Shaolei

    2013-01-01

    Full Text Available Abstract Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study, we have developed a machine learning approach for predicting the human tissue-specific genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected from UniProt database, and the expression data retrieved from the previously compiled dataset according to the lists were used for input vector encoding. Random Forests (RFs and Support Vector Machines (SVMs were used to construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable information for further experimental studies. Our approach was also applied for identifying tissue-selective gene targets for different types of tissues. Conclusions A machine learning approach has been developed for accurately identifying the candidate genes for tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for developing new biomedical markers and improve our knowledge of tissue-specific expression.

  20. Methods for transient assay of gene function in floral tissues

    Directory of Open Access Journals (Sweden)

    Pathirana Nilangani N

    2007-01-01

    Full Text Available Abstract Background There is considerable interest in rapid assays or screening systems for assigning gene function. However, analysis of gene function in the flowers of some species is restricted due to the difficulty of producing stably transformed transgenic plants. As a result, experimental approaches based on transient gene expression assays are frequently used. Biolistics has long been used for transient over-expression of genes of interest, but has not been exploited for gene silencing studies. Agrobacterium-infiltration has also been used, but the focus primarily has been on the transient transformation of leaf tissue. Results Two constructs, one expressing an inverted repeat of the Antirrhinum majus (Antirrhinum chalcone synthase gene (CHS and the other an inverted repeat of the Antirrhinum transcription factor gene Rosea1, were shown to effectively induce CHS and Rosea1 gene silencing, respectively, when introduced biolistically into petal tissue of Antirrhinum flowers developing in vitro. A high-throughput vector expressing the Antirrhinum CHS gene attached to an inverted repeat of the nos terminator was also shown to be effective. Silencing spread systemically to create large zones of petal tissue lacking pigmentation, with transmission of the silenced state spreading both laterally within the affected epidermal cell layer and into lower cell layers, including the epidermis of the other petal surface. Transient Agrobacterium-mediated transformation of petal tissue of tobacco and petunia flowers in situ or detached was also achieved, using expression of the reporter genes GUS and GFP to visualise transgene expression. Conclusion We demonstrate the feasibility of using biolistics-based transient RNAi, and transient transformation of petal tissue via Agrobacterium infiltration to study gene function in petals. We have also produced a vector for high throughput gene silencing studies, incorporating the option of using T-A cloning to

  1. Friction-Induced Mitochondrial Dysregulation Contributes to Joint Deterioration in Prg4 Knockout Mice

    Directory of Open Access Journals (Sweden)

    Kimberly A. Waller

    2017-06-01

    Full Text Available Deficiency of PRG4 (lubricin, the boundary lubricant in mammalian joints, contributes to increased joint friction accompanied by superficial and upper intermediate zone chondrocyte caspase-3 activation, as shown in lubricin-null (Prg4−/− mice. Caspase-3 activity appears to be reversible upon the restitution of Prg4 either endogenously in vivo, in a gene trap mouse, or as an applied lubricant in vitro. In this study we show that intra-articular injection of human PRG4 in vivo in Prg4−/− mice prevented caspase-3 activation in superficial zone chondrocytes and was associated with a modest decrease in whole joint friction measured ex vivo using a joint pendulum method. Non-lubricated Prg4−/− mouse cartilage shows caspase cascade activation caused by mitochondrial dysregulation, and significantly higher levels of peroxynitrite (ONOO− and −OH and superoxide (O−2 compared to Prg4+/+ and Prg4+/− cartilage. Enzymatic activity levels of caspase 8 across Prg4 mutant mice were not significantly different, indicating no extrinsic apoptosis pathway activation. Western blots showed caspase-3 and 9 activation in Prg4−/− tissue extracts, and the appearance of nitrosylated Cys163 in the active cleft of caspase-3 which inhibits its enzymatic activity. These findings are relevant to patients at risk for arthrosis, from camptodactyl-arthropathy-coxa vara-pericarditis (CACP syndrome and transient lubricin insufficiency due to trauma and inflammation.

  2. Systematic analysis of gene expression patterns associated with postmortem interval in human tissues.

    Science.gov (United States)

    Zhu, Yizhang; Wang, Likun; Yin, Yuxin; Yang, Ence

    2017-07-14

    Postmortem mRNA degradation is considered to be the major concern in gene expression research utilizing human postmortem tissues. A key factor in this process is the postmortem interval (PMI), which is defined as the interval between death and sample collection. However, global patterns of postmortem mRNA degradation at individual gene levels across diverse human tissues remain largely unknown. In this study, we performed a systematic analysis of alteration of gene expression associated with PMI in human tissues. From the Genotype-Tissue Expression (GTEx) database, we evaluated gene expression levels of 2,016 high-quality postmortem samples from 316 donors of European descent, with PMI ranging from 1 to 27 hours. We found that PMI-related mRNA degradation is tissue-specific, gene-specific, and even genotype-dependent, thus drawing a more comprehensive picture of PMI-associated gene expression across diverse human tissues. Additionally, we also identified 266 differentially variable (DV) genes, such as DEFB4B and IFNG, whose expression is significantly dispersed between short PMI (S-PMI) and long PMI (L-PMI) groups. In summary, our analyses provide a comprehensive profile of PMI-associated gene expression, which will help interpret gene expression patterns in the evaluation of postmortem tissues.

  3. 78 FR 44133 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-07-23

    ...] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide... documents issued from the Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and...

  4. 78 FR 79699 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-12-31

    ...] Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue, and Gene Therapies Advisory Committee. General Function of the Committee: To provide... updates on guidance documents issued from the Office of Cellular, Tissue, and Gene Therapies, Center for...

  5. Association between plasma metabolites and gene expression profiles in five porcine endocrine tissues

    Directory of Open Access Journals (Sweden)

    Bassols Anna

    2011-07-01

    Full Text Available Abstract Background Endocrine tissues play a fundamental role in maintaining homeostasis of plasma metabolites such as non-esterified fatty acids and glucose, the levels of which reflect the energy balance or the health status of animals. However, the relationship between the transcriptome of endocrine tissues and plasma metabolites has been poorly studied. Methods We determined the blood levels of 12 plasma metabolites in 27 pigs belonging to five breeds, each breed consisting of both females and males. The transcriptome of five endocrine tissues i.e. hypothalamus, adenohypophysis, thyroid gland, gonads and backfat tissues from 16 out of the 27 pigs was also determined. Sex and breed effects on the 12 plasma metabolites were investigated and associations between genes expressed in the five endocrine tissues and the 12 plasma metabolites measured were analyzed. A probeset was defined as a quantitative trait transcript (QTT when its association with a particular metabolic trait achieved a nominal P value Results A larger than expected number of QTT was found for non-esterified fatty acids and alanine aminotransferase in at least two tissues. The associations were highly tissue-specific. The QTT within the tissues were divided into co-expression network modules enriched for genes in Kyoto Encyclopedia of Genes and Genomes or gene ontology categories that are related to the physiological functions of the corresponding tissues. We also explored a multi-tissue co-expression network using QTT for non-esterified fatty acids from the five tissues and found that a module, enriched in hypothalamus QTT, was positioned at the centre of the entire multi-tissue network. Conclusions These results emphasize the relationships between endocrine tissues and plasma metabolites in terms of gene expression. Highly tissue-specific association patterns suggest that candidate genes or gene pathways should be investigated in the context of specific tissues.

  6. 77 FR 65693 - Cellular, Tissue and Gene Therapies Advisory Committee; Amendment of Notice

    Science.gov (United States)

    2012-10-30

    ...] Cellular, Tissue and Gene Therapies Advisory Committee; Amendment of Notice AGENCY: Food and Drug... notice of a meeting of the Cellular, Tissue and Gene Therapies Advisory Committee. This meeting was... announced that a meeting of the Cellular, Tissue and Gene Therapies Advisory Committee would be held on...

  7. Gene Expression Changes in Femoral Head Necrosis of Human Bone Tissue

    Directory of Open Access Journals (Sweden)

    Bernadett Balla

    2011-01-01

    Full Text Available Osteonecrosis of the femoral head (ONFH is the result of an interruption of the local circulation and the injury of vascular supply of bone. Multiple factors have been implicated in the development of the disease. However the mechanism of ischemia and necrosis in non-traumatic ONFH is not clear. The aim of our investigation was to identify genes that are differently expressed in ONFH vs. non-ONFH human bone and to describe the relationships between these genes using multivariate data analysis. Six bone tissue samples from ONFH male patients and 8 bone tissue samples from non-ONFH men were examined. The expression differences of selected 117 genes were analyzed by TaqMan probe-based quantitative real-time RT-PCR system. The significance test indicated marked differences in the expression of nine genes between ONFH and non-ONFH individuals. These altered genes code for collagen molecules, an extracellular matrix digesting metalloproteinase, a transcription factor, an adhesion molecule, and a growth factor. Canonical variates analysis demonstrated that ONFH and non-ONFH bone tissues can be distinguished by the multiple expression profile analysis of numerous genes controlled via canonical TGFB pathway as well as genes coding for extracellular matrix composing collagen type molecules. The markedly altered gene expression profile observed in the ONFH of human bone tissue may provide further insight into the pathogenetic process of osteonecrotic degeneration of bone.

  8. Correlation of Claudins6 (CLDN6 gene expression in meningioma tissue with the expression of matrix metalloproteinases (MMPs/ tissue inhibitors of matrix metalloproteinase (TIMPs and epithelialmesenchymal transition (EMT genes

    Directory of Open Access Journals (Sweden)

    An-Qiang Yang

    2017-09-01

    Full Text Available Objective: To study the correlation of Claudins6 (CLDN6 gene expression in meningioma tissue with the expression of matrix metalloproteinases (MMPs/tissue inhibitors of matrix metalloproteinase (TIMPs and epithelial-mesenchymal transition (EMT genes. Methods: Meningioma tissue samples that were surgically removed in Yibin First People’s Hospital between April 2014 and May 2017 were selected, normal arachnoid tissue samples that were collected from decompressive craniectomy in Yibin First People’s Hospital during the same period were selected, and the expression of CLDN6, MMPs/TIMPs and EMT genes in tissues were determined. Results: CLDN6 protein expression in meningioma tissue was significantly lower than that in normal arachnoid tissue; EMMPRIN, MMP2, MMP9, Vimentin and N-cadherin protein expression in meningioma tissue were significantly higher than those in normal arachnoid tissue while TIMP1, TIMP2, E-cadherin and α-catenin protein expression were significantly lower than those in normal arachnoid tissue; EMMPRIN, MMP2, MMP9, Vimentin and N-cadherin protein expression in meningioma tissue with higher CLDN6 expression were significantly lower than those in meningioma tissue with lower CLDN6 expression while TIMP1, TIMP2, E-cadherin and α-catenin protein expression were significantly higher than those in meningioma tissue with lower CLDN6 expression. Conclusion: Lowly expressed CLDN6 gene in meningioma tissue can increase the hydrolysis activity of MMPs, induce epithelial-mesenchymal transition and thus promote the invasive growth of meningioma.

  9. Description of electrophoretic loci and tissue specific gene ...

    African Journals Online (AJOL)

    Protein electrophoresis was used to study the distributions and tissue specificity of gene expression of enzymes encoded by 42 loci in Rhinolophus clivosus and R. landeri, the genetically most divergent of the ten species of southern African horseshoe bats. No differences in gene expression were found between R.

  10. Creating and validating cis-regulatory maps of tissue-specific gene expression regulation

    Science.gov (United States)

    O'Connor, Timothy R.; Bailey, Timothy L.

    2014-01-01

    Predicting which genomic regions control the transcription of a given gene is a challenge. We present a novel computational approach for creating and validating maps that associate genomic regions (cis-regulatory modules–CRMs) with genes. The method infers regulatory relationships that explain gene expression observed in a test tissue using widely available genomic data for ‘other’ tissues. To predict the regulatory targets of a CRM, we use cross-tissue correlation between histone modifications present at the CRM and expression at genes within 1 Mbp of it. To validate cis-regulatory maps, we show that they yield more accurate models of gene expression than carefully constructed control maps. These gene expression models predict observed gene expression from transcription factor binding in the CRMs linked to that gene. We show that our maps are able to identify long-range regulatory interactions and improve substantially over maps linking genes and CRMs based on either the control maps or a ‘nearest neighbor’ heuristic. Our results also show that it is essential to include CRMs predicted in multiple tissues during map-building, that H3K27ac is the most informative histone modification, and that CAGE is the most informative measure of gene expression for creating cis-regulatory maps. PMID:25200088

  11. A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes

    DEFF Research Database (Denmark)

    Hansen, Kasper Lage; Hansen, Niclas Tue; Karlberg, Erik, Olof, Linnart

    2008-01-01

    to be overexpressed in the normal tissues where defects cause pathology. In contrast, cancer genes and complexes were not overexpressed in the tissues from which the tumors emanate. We specifically identified a complex involved in XY sex reversal that is testis-specific and down-regulated in ovaries. We also......Heritable diseases are caused by germ-line mutations that, despite tissuewide presence, often lead to tissue-specific pathology. Here, we make a systematic analysis of the link between tissue-specific gene expression and pathological manifestations in many human diseases and cancers. Diseases were...

  12. Chitosan for gene delivery and orthopedic tissue engineering applications.

    Science.gov (United States)

    Raftery, Rosanne; O'Brien, Fergal J; Cryan, Sally-Ann

    2013-05-15

    Gene therapy involves the introduction of foreign genetic material into cells in order exert a therapeutic effect. The application of gene therapy to the field of orthopaedic tissue engineering is extremely promising as the controlled release of therapeutic proteins such as bone morphogenetic proteins have been shown to stimulate bone repair. However, there are a number of drawbacks associated with viral and synthetic non-viral gene delivery approaches. One natural polymer which has generated interest as a gene delivery vector is chitosan. Chitosan is biodegradable, biocompatible and non-toxic. Much of the appeal of chitosan is due to the presence of primary amine groups in its repeating units which become protonated in acidic conditions. This property makes it a promising candidate for non-viral gene delivery. Chitosan-based vectors have been shown to transfect a number of cell types including human embryonic kidney cells (HEK293) and human cervical cancer cells (HeLa). Aside from its use in gene delivery, chitosan possesses a range of properties that show promise in tissue engineering applications; it is biodegradable, biocompatible, has anti-bacterial activity, and, its cationic nature allows for electrostatic interaction with glycosaminoglycans and other proteoglycans. It can be used to make nano- and microparticles, sponges, gels, membranes and porous scaffolds. Chitosan has also been shown to enhance mineral deposition during osteogenic differentiation of MSCs in vitro. The purpose of this review is to critically discuss the use of chitosan as a gene delivery vector with emphasis on its application in orthopedic tissue engineering.

  13. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  14. 76 FR 22405 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-04-21

    ...] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide... June 29, 2011, the committee will discuss cellular and gene therapy products for the treatment of...

  15. Digital sorting of complex tissues for cell type-specific gene expression profiles.

    Science.gov (United States)

    Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong

    2013-03-07

    Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.

  16. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data.

    Directory of Open Access Journals (Sweden)

    Daniel Ramsköld

    2009-12-01

    Full Text Available The parts of the genome transcribed by a cell or tissue reflect the biological processes and functions it carries out. We characterized the features of mammalian tissue transcriptomes at the gene level through analysis of RNA deep sequencing (RNA-Seq data across human and mouse tissues and cell lines. We observed that roughly 8,000 protein-coding genes were ubiquitously expressed, contributing to around 75% of all mRNAs by message copy number in most tissues. These mRNAs encoded proteins that were often intracellular, and tended to be involved in metabolism, transcription, RNA processing or translation. In contrast, genes for secreted or plasma membrane proteins were generally expressed in only a subset of tissues. The distribution of expression levels was broad but fairly continuous: no support was found for the concept of distinct expression classes of genes. Expression estimates that included reads mapping to coding exons only correlated better with qRT-PCR data than estimates which also included 3' untranslated regions (UTRs. Muscle and liver had the least complex transcriptomes, in that they expressed predominantly ubiquitous genes and a large fraction of the transcripts came from a few highly expressed genes, whereas brain, kidney and testis expressed more complex transcriptomes with the vast majority of genes expressed and relatively small contributions from the most expressed genes. mRNAs expressed in brain had unusually long 3'UTRs, and mean 3'UTR length was higher for genes involved in development, morphogenesis and signal transduction, suggesting added complexity of UTR-based regulation for these genes. Our results support a model in which variable exterior components feed into a large, densely connected core composed of ubiquitously expressed intracellular proteins.

  17. Bayesian models and meta analysis for multiple tissue gene expression data following corticosteroid administration

    Directory of Open Access Journals (Sweden)

    Kelemen Arpad

    2008-08-01

    Full Text Available Abstract Background This paper addresses key biological problems and statistical issues in the analysis of large gene expression data sets that describe systemic temporal response cascades to therapeutic doses in multiple tissues such as liver, skeletal muscle, and kidney from the same animals. Affymetrix time course gene expression data U34A are obtained from three different tissues including kidney, liver and muscle. Our goal is not only to find the concordance of gene in different tissues, identify the common differentially expressed genes over time and also examine the reproducibility of the findings by integrating the results through meta analysis from multiple tissues in order to gain a significant increase in the power of detecting differentially expressed genes over time and to find the differential differences of three tissues responding to the drug. Results and conclusion Bayesian categorical model for estimating the proportion of the 'call' are used for pre-screening genes. Hierarchical Bayesian Mixture Model is further developed for the identifications of differentially expressed genes across time and dynamic clusters. Deviance information criterion is applied to determine the number of components for model comparisons and selections. Bayesian mixture model produces the gene-specific posterior probability of differential/non-differential expression and the 95% credible interval, which is the basis for our further Bayesian meta-inference. Meta-analysis is performed in order to identify commonly expressed genes from multiple tissues that may serve as ideal targets for novel treatment strategies and to integrate the results across separate studies. We have found the common expressed genes in the three tissues. However, the up/down/no regulations of these common genes are different at different time points. Moreover, the most differentially expressed genes were found in the liver, then in kidney, and then in muscle.

  18. Effect of hrHPV infection on anti-apoptotic gene and pro-apoptotic gene expression in cervical cancer tissue

    Directory of Open Access Journals (Sweden)

    Min-Er Tang

    2016-09-01

    Full Text Available Objective: To study the effect of hrHPV infection on anti-apoptotic gene and pro-apoptotic gene expression in cervical cancer tissue. Methods: A total of 56 patients with cervical cancer, 94 cases of patients with cervical intraepithelial neoplasia and 48 cases of patients with chronic cervicitis who were treated in our hospital from May 2013 to December 2015 were selected for study and included in malignant group, precancerous lesion group and benign group respectively. hrHPV infection as well as the expression of anti-apoptotic genes and proapoptotic genes in cervical tissue were detected. Results: hrHPV infection rate and viral load in cervical tissue of malignant group were significantly higher than those of precancerous lesion group and benign group; P27 and p16 levels in cervical tissue of malignant group were significantly lower than those of precancerous lesion group and benign group, and K-ras, c-myc, Prdx4 and TNFAIP8 levels were significantly higher than those of precancerous lesion group and benign group; the greater the HPV virus load, the lower the p27 and p16 levels and the higher the K-ras, c-myc, Prdx4 and TNFAIP8 levels in cervical tissue. Conclusions: hrHPV infection can result in tumor suppressor genes p27 and p16 expression deletion and increase the expression of proto-oncogene and apoptosis-inhibiting genes, and it is associated with the occurrence and development of cervical cancer.

  19. A pipeline to determine RT-QPCR control genes for evolutionary studies: application to primate gene expression across multiple tissues.

    Directory of Open Access Journals (Sweden)

    Olivier Fedrigo

    Full Text Available Because many species-specific phenotypic differences are assumed to be caused by differential regulation of gene expression, many recent investigations have focused on measuring transcript abundance. Despite the availability of high-throughput platforms, quantitative real-time polymerase chain reaction (RT-QPCR is often the method of choice because of its low cost and wider dynamic range. However, the accuracy of this technique heavily relies on the use of multiple valid control genes for normalization. We created a pipeline for choosing genes potentially useful as RT-QPCR control genes for measuring expression between human and chimpanzee samples across multiple tissues, using published microarrays and a measure of tissue-specificity. We identified 13 genes from the pipeline and from commonly used control genes: ACTB, USP49, ARGHGEF2, GSK3A, TBP, SDHA, EIF2B2, GPDH, YWHAZ, HPTR1, RPL13A, HMBS, and EEF2. We then tested these candidate genes and validated their expression stability across species. We established the rank order of the most preferable set of genes for single and combined tissues. Our results suggest that for at least three tissues (cerebral cortex, liver, and skeletal muscle, EIF2B2, EEF2, HMBS, and SDHA are useful genes for normalizing human and chimpanzee expression using RT-QPCR. Interestingly, other commonly used control genes, including TBP, GAPDH, and, especially ACTB do not perform as well. This pipeline could be easily adapted to other species for which expression data exist, providing taxonomically appropriate control genes for comparisons of gene expression among species.

  20. Maternal nutrition induces gene expression changes in fetal muscle and adipose tissues in sheep.

    Science.gov (United States)

    Peñagaricano, Francisco; Wang, Xin; Rosa, Guilherme Jm; Radunz, Amy E; Khatib, Hasan

    2014-11-28

    Maternal nutrition during different stages of pregnancy can induce significant changes in the structure, physiology, and metabolism of the offspring. These changes could have important implications on food animal production especially if these perturbations impact muscle and adipose tissue development. Here, we evaluated the impact of different maternal isoenergetic diets, alfalfa haylage (HY; fiber), corn (CN; starch), and dried corn distillers grains (DG; fiber plus protein plus fat), on the transcriptome of fetal muscle and adipose tissues in sheep. Prepartum diets were associated with notable gene expression changes in fetal tissues. In longissimus dorsi muscle, a total of 224 and 823 genes showed differential expression (FDR ≤0.05) in fetuses derived from DG vs. CN and HY vs. CN maternal diets, respectively. Several of these significant genes affected myogenesis and muscle differentiation. In subcutaneous and perirenal adipose tissues, 745 and 208 genes were differentially expressed (FDR ≤0.05), respectively, between CN and DG diets. Many of these genes are involved in adipogenesis, lipogenesis, and adipose tissue development. Pathway analysis revealed that several GO terms and KEGG pathways were enriched (FDR ≤0.05) with differentially expressed genes associated with tissue and organ development, chromatin biology, and different metabolic processes. These findings provide evidence that maternal nutrition during pregnancy can alter the programming of fetal muscle and fat tissues in sheep. The ramifications of the observed gene expression changes, in terms of postnatal growth, body composition, and meat quality of the offspring, warrant future investigation.

  1. Adipose tissue endocannabinoid system gene expression: depot differences and effects of diet and exercise

    Directory of Open Access Journals (Sweden)

    Yang Rongze

    2011-10-01

    Full Text Available Abstract Background Alterations of endocannabinoid system in adipose tissue play an important role in lipid regulation and metabolic dysfunction associated with obesity. The purpose of this study was to determine whether gene expression levels of cannabinoid type 1 receptor (CB1 and fatty acid amide hydrolase (FAAH are different in subcutaneous abdominal and gluteal adipose tissue, and whether hypocaloric diet and aerobic exercise influence subcutaneous adipose tissue CB1 and FAAH gene expression in obese women. Methods Thirty overweight or obese, middle-aged women (BMI = 34.3 ± 0.8 kg/m2, age = 59 ± 1 years underwent one of three 20-week weight loss interventions: caloric restriction only (CR, N = 9, caloric restriction plus moderate-intensity aerobic exercise (CRM, 45-50% HRR, N = 13, or caloric restriction plus vigorous-intensity aerobic exercise (CRV, 70-75% HRR, N = 8. Subcutaneous abdominal and gluteal adipose tissue samples were collected before and after the interventions to measure CB1 and FAAH gene expression. Results At baseline, FAAH gene expression was higher in abdominal, compared to gluteal adipose tissue (2.08 ± 0.11 vs. 1.78 ± 0.10, expressed as target gene/β-actin mRNA ratio × 10-3, P Conclusions There are depot differences in subcutaneous adipose tissue endocannabinoid system gene expression in obese individuals. Aerobic exercise training may preferentially modulate abdominal adipose tissue endocannabinoid-related gene expression during dietary weight loss. Trial Registration ClinicalTrials.gov: NCT00664729.

  2. Progress in Tissue Specimens Alternative for the Driver Genes Testing of Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yan SUN

    2015-06-01

    Full Text Available Target treatment based on driver genes in advanced non-small cell lung cancer is very important currently. Tumor tissues is the gold standard for driver genes testing. However, most of patients could not get the gene information for lack of enough tissues. To explore the tissue specimens alternatives is a hot spot in clinical work. This report reviews the tissue specimen alternatives of driver gene testing in non-small cell lung cancer.

  3. Correlation-maximizing surrogate gene space for visual mining of gene expression patterns in developing barley endosperm tissue

    Directory of Open Access Journals (Sweden)

    Usadel Björn

    2007-05-01

    Full Text Available Abstract Background Micro- and macroarray technologies help acquire thousands of gene expression patterns covering important biological processes during plant ontogeny. Particularly, faithful visualization methods are beneficial for revealing interesting gene expression patterns and functional relationships of coexpressed genes. Such screening helps to gain deeper insights into regulatory behavior and cellular responses, as will be discussed for expression data of developing barley endosperm tissue. For that purpose, high-throughput multidimensional scaling (HiT-MDS, a recent method for similarity-preserving data embedding, is substantially refined and used for (a assessing the quality and reliability of centroid gene expression patterns, and for (b derivation of functional relationships of coexpressed genes of endosperm tissue during barley grain development (0–26 days after flowering. Results Temporal expression profiles of 4824 genes at 14 time points are faithfully embedded into two-dimensional displays. Thereby, similar shapes of coexpressed genes get closely grouped by a correlation-based similarity measure. As a main result, by using power transformation of correlation terms, a characteristic cloud of points with bipolar sandglass shape is obtained that is inherently connected to expression patterns of pre-storage, intermediate and storage phase of endosperm development. Conclusion The new HiT-MDS-2 method helps to create global views of expression patterns and to validate centroids obtained from clustering programs. Furthermore, functional gene annotation for developing endosperm barley tissue is successfully mapped to the visualization, making easy localization of major centroids of enriched functional categories possible.

  4. 75 FR 66381 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-10-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide...

  5. 76 FR 49774 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-08-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide...

  6. 76 FR 64951 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-10-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide...

  7. 78 FR 15726 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-03-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of...

  8. Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue

    DEFF Research Database (Denmark)

    Smith, Julie; Fahrenkrug, Jan; Jørgensen, Henrik L

    2015-01-01

    Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart, but the tem......Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart......, but the temporal expression profile of their cognate receptors has not been examined in white adipose tissue. We therefore collected peri-renal white adipose tissue and serum from WT mice. Tissue mRNA contents of NPRs - NPR-A and NPR-C, the clock genes Per1 and Bmal1, and transcripts involved in lipid metabolism...... in serum peaked in the active dark period (P=0.003). In conclusion, NPR-A and NPR-C gene expression is associated with the expression of clock genes in white adipose tissue. The reciprocal expression may thus contribute to regulate lipolysis and energy homeostasis in a diurnal manner....

  9. Identification of conserved drought stress responsive gene-network across tissues and developmental stages in rice.

    Science.gov (United States)

    Smita, Shuchi; Katiyar, Amit; Pandey, Dev Mani; Chinnusamy, Viswanathan; Archak, Sunil; Bansal, Kailash Chander

    2013-01-01

    Identification of genes that are coexpressed across various tissues and environmental stresses is biologically interesting, since they may play coordinated role in similar biological processes. Genes with correlated expression patterns can be best identified by using coexpression network analysis of transcriptome data. In the present study, we analyzed the temporal-spatial coordination of gene expression in root, leaf and panicle of rice under drought stress and constructed network using WGCNA and Cytoscape. Total of 2199 differentially expressed genes (DEGs) were identified in at least three or more tissues, wherein 88 genes have coordinated expression profile among all the six tissues under drought stress. These 88 highly coordinated genes were further subjected to module identification in the coexpression network. Based on chief topological properties we identified 18 hub genes such as ABC transporter, ATP-binding protein, dehydrin, protein phosphatase 2C, LTPL153 - Protease inhibitor, phosphatidylethanolaminebinding protein, lactose permease-related, NADP-dependent malic enzyme, etc. Motif enrichment analysis showed the presence of ABRE cis-elements in the promoters of > 62% of the coordinately expressed genes. Our results suggest that drought stress mediated upregulated gene expression was coordinated through an ABA-dependent signaling pathway across tissues, at least for the subset of genes identified in this study, while down regulation appears to be regulated by tissue specific pathways in rice.

  10. Genetic effects on gene expression across human tissues

    NARCIS (Netherlands)

    Battle, Alexis; Brown, Christopher D.; Engelhardt, Barbara E.; Montgomery, Stephen B.; Aguet, François; Ardlie, Kristin G.; Cummings, Beryl B.; Gelfand, Ellen T.; Getz, Gad; Hadley, Kane; Handsaker, Robert E.; Huang, Katherine H.; Kashin, Seva; Karczewski, Konrad J.; Lek, Monkol; Li, Xiao; MacArthur, Daniel G.; Nedzel, Jared L.; Nguyen, Duyen T.; Noble, Michael S.; Segrè, Ayellet V.; Trowbridge, Casandra A.; Tukiainen, Taru; Abell, Nathan S.; Balliu, Brunilda; Barshir, Ruth; Basha, Omer; Bogu, Gireesh K.; Brown, Andrew; Castel, Stephane E.; Chen, Lin S.; Chiang, Colby; Conrad, Donald F.; Cox, Nancy J.; Damani, Farhan N.; Davis, Joe R.; Delaneau, Olivier; Dermitzakis, Emmanouil T.; Eskin, Eleazar; Ferreira, Pedro G.; Frésard, Laure; Gamazon, Eric R.; Garrido-Martín, Diego; Gewirtz, Ariel D. H.; Gliner, Genna; Gloudemans, Michael J.; Guigo, Roderic; Hall, Ira M.; Han, Buhm; He, Yuan

    2017-01-01

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression

  11. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  12. Isolation of two tissue-specific Drosophila paired box genes, Pox meso and Pox neuro.

    OpenAIRE

    Bopp, D; Jamet, E; Baumgartner, S; Burri, M; Noll, M

    1989-01-01

    Two new paired domain genes of Drosophila, Pox meso and Pox neuro, are described. In contrast to the previously isolated paired domain genes, paired and gooseberry, which contain both a paired and a homeo-domain (PHox genes), Pox meso and Pox neuro possess no homeodomain. Evidence suggesting that the new genes encode tissue-specific transcriptional factors and belong to the same regulatory cascade as the other paired domain genes includes (i) tissue-specific expression of Pox meso in the soma...

  13. Validation of reference genes for gene expression analysis in olive (Olea europaea) mesocarp tissue by quantitative real-time RT-PCR

    Science.gov (United States)

    2014-01-01

    Background Gene expression analysis using quantitative reverse transcription PCR (qRT-PCR) is a robust method wherein the expression levels of target genes are normalised using internal control genes, known as reference genes, to derive changes in gene expression levels. Although reference genes have recently been suggested for olive tissues, combined/independent analysis on different cultivars has not yet been tested. Therefore, an assessment of reference genes was required to validate the recent findings and select stably expressed genes across different olive cultivars. Results A total of eight candidate reference genes [glyceraldehyde 3-phosphate dehydrogenase (GAPDH), serine/threonine-protein phosphatase catalytic subunit (PP2A), elongation factor 1 alpha (EF1-alpha), polyubiquitin (OUB2), aquaporin tonoplast intrinsic protein (TIP2), tubulin alpha (TUBA), 60S ribosomal protein L18-3 (60S RBP L18-3) and polypyrimidine tract-binding protein homolog 3 (PTB)] were chosen based on their stability in olive tissues as well as in other plants. Expression stability was examined by qRT-PCR across 12 biological samples, representing mesocarp tissues at various developmental stages in three different olive cultivars, Barnea, Frantoio and Picual, independently and together during the 2009 season with two software programs, GeNorm and BestKeeper. Both software packages identified GAPDH, EF1-alpha and PP2A as the three most stable reference genes across the three cultivars and in the cultivar, Barnea. GAPDH, EF1-alpha and 60S RBP L18-3 were found to be most stable reference genes in the cultivar Frantoio while 60S RBP L18-3, OUB2 and PP2A were found to be most stable reference genes in the cultivar Picual. Conclusions The analyses of expression stability of reference genes using qRT-PCR revealed that GAPDH, EF1-alpha, PP2A, 60S RBP L18-3 and OUB2 are suitable reference genes for expression analysis in developing Olea europaea mesocarp tissues, displaying the highest level

  14. Network-Based Method for Identifying Co- Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues.

    Science.gov (United States)

    Chen, Lei; Pan, Hongying; Zhang, Yu-Hang; Feng, Kaiyan; Kong, XiangYin; Huang, Tao; Cai, Yu-Dong

    2017-10-02

    Bone and dental diseases are serious public health problems. Most current clinical treatments for these diseases can produce side effects. Regeneration is a promising therapy for bone and dental diseases, yielding natural tissue recovery with few side effects. Because soft tissues inside the bone and dentin are densely populated with nerves and vessels, the study of bone and dentin regeneration should also consider the co-regeneration of nerves and vessels. In this study, a network-based method to identify co-regeneration genes for bone, dentin, nerve and vessel was constructed based on an extensive network of protein-protein interactions. Three procedures were applied in the network-based method. The first procedure, searching, sought the shortest paths connecting regeneration genes of one tissue type with regeneration genes of other tissues, thereby extracting possible co-regeneration genes. The second procedure, testing, employed a permutation test to evaluate whether possible genes were false discoveries; these genes were excluded by the testing procedure. The last procedure, screening, employed two rules, the betweenness ratio rule and interaction score rule, to select the most essential genes. A total of seventeen genes were inferred by the method, which were deemed to contribute to co-regeneration of at least two tissues. All these seventeen genes were extensively discussed to validate the utility of the method.

  15. Novel strong tissue specific promoter for gene expression in human germ cells

    Directory of Open Access Journals (Sweden)

    Kuzmin Denis

    2010-08-01

    Full Text Available Abstract Background Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. Results Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102, where it demonstrated high promoter activity (~twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter. To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate ~60% was observed only in germ-derived cells (Tera-1, whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293. In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X. The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. Conclusions We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12, and an important role - in the rest two cell lines.

  16. Gene therapy with growth factors for periodontal tissue engineering–A review

    Science.gov (United States)

    Gupta, Shipra; Mahendra, Aneet

    2012-01-01

    The treatment of oral and periodontal diseases and associated anomalies accounts for a significant proportion of the healthcare burden, with the manifestations of these conditions being functionally and psychologically debilitating. A challenge faced by periodontal therapy is the predictable regeneration of periodontal tissues lost as a consequence of disease. Growth factors are critical to the development, maturation, maintenance and repair of oral tissues as they establish an extra-cellular environment that is conducive to cell and tissue growth. Tissue engineering principles aim to exploit these properties in the development of biomimetic materials that can provide an appropriate microenvironment for tissue development. The aim of this paper is to review emerging periodontal therapies in the areas of materials science, growth factor biology and cell/gene therapy. Various such materials have been formulated into devices that can be used as vehicles for delivery of cells, growth factors and DNA. Different mechanisms of drug delivery are addressed in the context of novel approaches to reconstruct and engineer oral and tooth supporting structure. Key words: Periodontal disease, gene therapy, regeneration, tissue repair, growth factors, tissue engineering. PMID:22143705

  17. Survey of the Heritability and Sparse Architecture of Gene Expression Traits across Human Tissues.

    Directory of Open Access Journals (Sweden)

    Heather E Wheeler

    2016-11-01

    Full Text Available Understanding the genetic architecture of gene expression traits is key to elucidating the underlying mechanisms of complex traits. Here, for the first time, we perform a systematic survey of the heritability and the distribution of effect sizes across all representative tissues in the human body. We find that local h2 can be relatively well characterized with 59% of expressed genes showing significant h2 (FDR < 0.1 in the DGN whole blood cohort. However, current sample sizes (n ≤ 922 do not allow us to compute distal h2. Bayesian Sparse Linear Mixed Model (BSLMM analysis provides strong evidence that the genetic contribution to local expression traits is dominated by a handful of genetic variants rather than by the collective contribution of a large number of variants each of modest size. In other words, the local architecture of gene expression traits is sparse rather than polygenic across all 40 tissues (from DGN and GTEx examined. This result is confirmed by the sparsity of optimal performing gene expression predictors via elastic net modeling. To further explore the tissue context specificity, we decompose the expression traits into cross-tissue and tissue-specific components using a novel Orthogonal Tissue Decomposition (OTD approach. Through a series of simulations we show that the cross-tissue and tissue-specific components are identifiable via OTD. Heritability and sparsity estimates of these derived expression phenotypes show similar characteristics to the original traits. Consistent properties relative to prior GTEx multi-tissue analysis results suggest that these traits reflect the expected biology. Finally, we apply this knowledge to develop prediction models of gene expression traits for all tissues. The prediction models, heritability, and prediction performance R2 for original and decomposed expression phenotypes are made publicly available (https://github.com/hakyimlab/PrediXcan.

  18. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks.

    Science.gov (United States)

    Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing

    2009-03-11

    Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene

  19. Relationship between promoter methylation & tissue expression of MGMT gene in ovarian cancer

    Directory of Open Access Journals (Sweden)

    V Shilpa

    2014-01-01

    Full Text Available Background & objectives: Epigenetic alterations, in addition to multiple gene abnormalities, are involved in the genesis and progression of human cancers. Aberrant methylation of CpG islands within promoter regions is associated with transcriptional inactivation of various tumour suppressor genes. O 6 -methyguanine-DNA methyltransferase (MGMT is a DNA repair gene that removes mutagenic and cytotoxic adducts from the O 6 -position of guanine induced by alkylating agents. MGMT promoter hypermethylation and reduced expression has been found in some primary human carcinomas. We studied DNA methylation of CpG islands of the MGMT gene and its relation with MGMT protein expression in human epithelial ovarian carcinoma. Methods: A total of 88 epithelial ovarian cancer (EOC tissue samples, 14 low malignant potential (LMP tumours and 20 benign ovarian tissue samples were analysed for MGMT promoter methylation by nested methylation-specific polymerase chain reaction (MSP after bisulphite modification of DNA. A subset of 64 EOC samples, 10 LMP and benign tumours and five normal ovarian tissue samples were analysed for protein expression by immunohistochemistry. Results: The methylation frequencies of the MGMT gene promoter were found to be 29.5, 28.6 and 20 per cent for EOC samples, LMP tumours and benign cases, respectively. Positive protein expression was observed in 93.8 per cent of EOC and 100 per cent in LMP, benign tumours and normal ovarian tissue samples. Promoter hypermethylation with loss of protein expression was seen only in one case of EOC. Interpretation & conclusions: Our results suggest that MGMT promoter hypermethylation does not always reflect gene expression.

  20. Evaluation of endogenous control genes for gene expression studies across multiple tissues and in the specific sets of fat- and muscle-type samples of the pig.

    Science.gov (United States)

    Gu, Y R; Li, M Z; Zhang, K; Chen, L; Jiang, A A; Wang, J Y; Li, X W

    2011-08-01

    To normalize a set of quantitative real-time PCR (q-PCR) data, it is essential to determine an optimal number/set of housekeeping genes, as the abundance of housekeeping genes can vary across tissues or cells during different developmental stages, or even under certain environmental conditions. In this study, of the 20 commonly used endogenous control genes, 13, 18 and 17 genes exhibited credible stability in 56 different tissues, 10 types of adipose tissue and five types of muscle tissue, respectively. Our analysis clearly showed that three optimal housekeeping genes are adequate for an accurate normalization, which correlated well with the theoretical optimal number (r ≥ 0.94). In terms of economical and experimental feasibility, we recommend the use of the three most stable housekeeping genes for calculating the normalization factor. Based on our results, the three most stable housekeeping genes in all analysed samples (TOP2B, HSPCB and YWHAZ) are recommended for accurate normalization of q-PCR data. We also suggest that two different sets of housekeeping genes are appropriate for 10 types of adipose tissue (the HSPCB, ALDOA and GAPDH genes) and five types of muscle tissue (the TOP2B, HSPCB and YWHAZ genes), respectively. Our report will serve as a valuable reference for other studies aimed at measuring tissue-specific mRNA abundance in porcine samples. © 2011 Blackwell Verlag GmbH.

  1. Propagation characteristics of laser-induced stress wave in deep tissue for gene transfer

    International Nuclear Information System (INIS)

    Ando, Takahiro; Sato, Shunichi; Takano, Shinta; Ashida, Hiroshi; Obara, Minoru

    2009-01-01

    Propagation characteristics of laser-induced stress waves (LISWs) in tissue and their correlation with properties of gene transfection were investigated for targeted deep-tissue gene therapy. LISWs were generated by irradiating a laser-absorbing material with 532-nm Q-switched Nd:YAG laser pulses; a transparent plastic sheet was attached on the absorbing material for plasma confinement. Temporal pressure profiles of LISWs that were propagated through different thickness tissues were measured with a needle-type hydrophone and propagation of LISWs in water was visualized by shadowgraph technique. The measurements showed that at a laser fluence of 1.2 J/cm 2 with a laser spot diameter of 3 mm, flat wavefront was maintained for up to 5 mm in depth and peak pressure P decreased with increasing tissue thickness d; P was proportional to d -0.54 . Rat dorsal skin was injected with plasmid DNA coding for reporter gene, on which different numbers of excised skin(s) was/were placed, and LISWs were applied from the top of the skins. Efficient gene expression was observed in the skin under the 3 mm thick stacked skins, suggesting that deep-located tissue such as muscle can be transfected by transcutaneous application of LISWs.

  2. Reference gene selection for quantitative gene expression studies during biological invasions: A test on multiple genes and tissues in a model ascidian Ciona savignyi.

    Science.gov (United States)

    Huang, Xuena; Gao, Yangchun; Jiang, Bei; Zhou, Zunchun; Zhan, Aibin

    2016-01-15

    As invasive species have successfully colonized a wide range of dramatically different local environments, they offer a good opportunity to study interactions between species and rapidly changing environments. Gene expression represents one of the primary and crucial mechanisms for rapid adaptation to local environments. Here, we aim to select reference genes for quantitative gene expression analysis based on quantitative Real-Time PCR (qRT-PCR) for a model invasive ascidian, Ciona savignyi. We analyzed the stability of ten candidate reference genes in three tissues (siphon, pharynx and intestine) under two key environmental stresses (temperature and salinity) in the marine realm based on three programs (geNorm, NormFinder and delta Ct method). Our results demonstrated only minor difference for stability rankings among the three methods. The use of different single reference gene might influence the data interpretation, while multiple reference genes could minimize possible errors. Therefore, reference gene combinations were recommended for different tissues - the optimal reference gene combination for siphon was RPS15 and RPL17 under temperature stress, and RPL17, UBQ and TubA under salinity treatment; for pharynx, TubB, TubA and RPL17 were the most stable genes under temperature stress, while TubB, TubA and UBQ were the best under salinity stress; for intestine, UBQ, RPS15 and RPL17 were the most reliable reference genes under both treatments. Our results suggest that the necessity of selection and test of reference genes for different tissues under varying environmental stresses. The results obtained here are expected to reveal mechanisms of gene expression-mediated invasion success using C. savignyi as a model species. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Identification of Reference Genes for RT-qPCR Data Normalization in Cannabis sativa Stem Tissues

    Directory of Open Access Journals (Sweden)

    Lauralie Mangeot-Peter

    2016-09-01

    Full Text Available Gene expression profiling via quantitative real-time PCR is a robust technique widely used in the life sciences to compare gene expression patterns in, e.g., different tissues, growth conditions, or after specific treatments. In the field of plant science, real-time PCR is the gold standard to study the dynamics of gene expression and is used to validate the results generated with high throughput techniques, e.g., RNA-Seq. An accurate relative quantification of gene expression relies on the identification of appropriate reference genes, that need to be determined for each experimental set-up used and plant tissue studied. Here, we identify suitable reference genes for expression profiling in stems of textile hemp (Cannabis sativa L., whose tissues (isolated bast fibres and core are characterized by remarkable differences in cell wall composition. We additionally validate the reference genes by analysing the expression of putative candidates involved in the non-oxidative phase of the pentose phosphate pathway and in the first step of the shikimate pathway. The goal is to describe the possible regulation pattern of some genes involved in the provision of the precursors needed for lignin biosynthesis in the different hemp stem tissues. The results here shown are useful to design future studies focused on gene expression analyses in hemp.

  4. Identification of Reference Genes for RT-qPCR Data Normalization in Cannabis sativa Stem Tissues.

    Science.gov (United States)

    Mangeot-Peter, Lauralie; Legay, Sylvain; Hausman, Jean-Francois; Esposito, Sergio; Guerriero, Gea

    2016-09-15

    Gene expression profiling via quantitative real-time PCR is a robust technique widely used in the life sciences to compare gene expression patterns in, e.g., different tissues, growth conditions, or after specific treatments. In the field of plant science, real-time PCR is the gold standard to study the dynamics of gene expression and is used to validate the results generated with high throughput techniques, e.g., RNA-Seq. An accurate relative quantification of gene expression relies on the identification of appropriate reference genes, that need to be determined for each experimental set-up used and plant tissue studied. Here, we identify suitable reference genes for expression profiling in stems of textile hemp (Cannabis sativa L.), whose tissues (isolated bast fibres and core) are characterized by remarkable differences in cell wall composition. We additionally validate the reference genes by analysing the expression of putative candidates involved in the non-oxidative phase of the pentose phosphate pathway and in the first step of the shikimate pathway. The goal is to describe the possible regulation pattern of some genes involved in the provision of the precursors needed for lignin biosynthesis in the different hemp stem tissues. The results here shown are useful to design future studies focused on gene expression analyses in hemp.

  5. Adenovirus-mediated heme oxygenase-1 gene transfer into rabbit ocular tissues.

    Science.gov (United States)

    Abraham, N G; da Silva, J L; Lavrovsky, Y; Stoltz, R A; Kappas, A; Dunn, M W; Schwartzman, M L

    1995-10-01

    Heme oxygenase-1 (HO-1) is a stress protein induced up to 100-fold within a few hours after exposure to oxidative stress, and it has been shown to counteract oxidative injury induced by ultraviolet light or free radicals. The current study was undertaken to determine whether the HO-1 gene can be introduced into adult rabbit ocular tissues by microinjection of a recombinant replication-deficient adenovirus human HO-1 cDNA (Adv-HHO). Human HO-1 gene was used for transfection studies to differentiate endogenous from transfected HO. The purified Adv-HHO construct (10(8) pfu/ml) was mixed with lipofectamine and microinjected into the anterior chamber, vitreous cavity, and subretinal space of New Zealand rabbit eyes. After 2 weeks, total RNA was extracted from different ocular tissues, reverse transcription-polymerase chain reaction was performed using specific human HO-1 primers, and amplification products were subjected to Southern hybridization. Transfection with the Adv-HHO construct into rabbit corneal epithelial cells in culture resulted in a functional expression of the human HO-1 gene; the human HO-1 mRNA was detected, and enzyme activity increased threefold. Human HO-1 mRNA was detected in the retina after microinjection of the Adv-HHO construct into the subretinal space. Microinjection into the vitreous resulted in HO-1 mRNA expression in the corneal endothelium, iris, lens, and retina; after intracameral injection of the Adv-HHO construct, human HO-1 mRNA was detected in corneal epithelium and endothelium, ciliary body, lens, and iris. Regardless of the injection site, transfected human HO-1 mRNA was undetectable in tissues outside the eye, that is, brain, liver, and kidney. These results demonstrated a tissue-selective functional transfer of the human HO-1 gene into rabbit ocular tissues in vivo. This technique may be a promising means for delivering HO-1 gene in vivo as a protective mechanism against oxidative stress that contributes to the pathogenesis of

  6. Gene expression in cardiac tissues from infants with idiopathic conotruncal defects

    Directory of Open Access Journals (Sweden)

    Lofland Gary K

    2011-01-01

    Full Text Available Abstract Background Tetralogy of Fallot (TOF is the most commonly observed conotruncal congenital heart defect. Treatment of these patients has evolved dramatically in the last few decades, yet a genetic explanation is lacking for the failure of cardiac development for the majority of children with TOF. Our goal was to perform genome wide analyses and characterize expression patterns in cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery obtained at the time of reconstructive surgery from 19 children with tetralogy of Fallot. Methods We employed genome wide gene expression microarrays to characterize cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery obtained at the time of reconstructive surgery from 19 children with TOF (16 idiopathic and three with 22q11.2 deletions and compared gene expression patterns to normally developing subjects. Results We detected a signal from approximately 26,000 probes reflecting expression from about half of all genes, ranging from 35% to 49% of array probes in the three tissues. More than 1,000 genes had a 2-fold change in expression in the right ventricle (RV of children with TOF as compared to the RV from matched control infants. Most of these genes were involved in compensatory functions (e.g., hypertrophy, cardiac fibrosis and cardiac dilation. However, two canonical pathways involved in spatial and temporal cell differentiation (WNT, p = 0.017 and Notch, p = 0.003 appeared to be generally suppressed. Conclusions The suppression of developmental networks may represent a remnant of a broad malfunction of regulatory pathways leading to inaccurate boundary formation and improper structural development in the embryonic heart. We suggest that small tissue specific genomic and/or epigenetic fluctuations could be cumulative, leading to regulatory network disruption and failure of proper cardiac development.

  7. Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression

    Directory of Open Access Journals (Sweden)

    Vining Kelly J

    2012-01-01

    Full Text Available Abstract Background DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood. Results We surveyed DNA methylation from seven distinct tissue types (vegetative bud, male inflorescence [catkin], female catkin, leaf, root, xylem, phloem in the reference tree species black cottonwood (Populus trichocarpa. Using 5-methyl-cytosine DNA immunoprecipitation followed by Illumina sequencing (MeDIP-seq, we mapped a total of 129,360,151 36- or 32-mer reads to the P. trichocarpa reference genome. We validated MeDIP-seq results by bisulfite sequencing, and compared methylation and gene expression using published microarray data. Qualitative DNA methylation differences among tissues were obvious on a chromosome scale. Methylated genes had lower expression than unmethylated genes, but genes with methylation in transcribed regions ("gene body methylation" had even lower expression than genes with promoter methylation. Promoter methylation was more frequent than gene body methylation in all tissues except male catkins. Male catkins differed in demethylation of particular transposable element categories, in level of gene body methylation, and in expression range of genes with methylated transcribed regions. Tissue-specific gene expression patterns were correlated with both gene body and promoter methylation. Conclusions We found striking differences among tissues in methylation, which were apparent at the chromosomal scale and when genes and transposable elements were examined. In contrast to other studies in plants, gene body methylation had a more repressive effect on transcription than promoter methylation.

  8. Differentially expressed genes in embryonic cardiac tissues of mice lacking Folr1 gene activity

    Directory of Open Access Journals (Sweden)

    Schwartz Robert J

    2007-11-01

    Full Text Available Abstract Background Heart anomalies are the most frequently observed among all human congenital defects. As with the situation for neural tube defects (NTDs, it has been demonstrated that women who use multivitamins containing folic acid peri-conceptionally have a reduced risk for delivering offspring with conotruncal heart defects 123. Cellular folate transport is mediated by a receptor or binding protein and by an anionic transporter protein system. Defective function of the Folr1 (also known as Folbp1; homologue of human FRα gene in mice results in inadequate transport, accumulation, or metabolism of folate during cardiovascular morphogenesis. Results We have observed cardiovascular abnormalities including outflow tract and aortic arch arterial defects in genetically compromised Folr1 knockout mice. In order to investigate the molecular mechanisms underlying the failure to complete development of outflow tract and aortic arch arteries in the Folr1 knockout mouse model, we examined tissue-specific gene expression difference between Folr1 nullizygous embryos and morphologically normal heterozygous embryos during early cardiac development (14-somite stage, heart tube looping (28-somite stage, and outflow track septation (38-somite stage. Microarray analysis was performed as a primary screening, followed by investigation using quantitative real-time PCR assays. Gene ontology analysis highlighted the following ontology groups: cell migration, cell motility and localization of cells, structural constituent of cytoskeleton, cell-cell adhesion, oxidoreductase, protein folding and mRNA processing. This study provided preliminary data and suggested potential candidate genes for further description and investigation. Conclusion The results suggested that Folr1 gene ablation and abnormal folate homeostasis altered gene expression in developing heart and conotruncal tissues. These changes affected normal cytoskeleton structures, cell migration and

  9. Dynamic, mating-induced gene expression changes in female head and brain tissues of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Stirling Emma J

    2010-10-01

    Full Text Available Abstract Background Drosophila melanogaster females show changes in behavior and physiology after mating that are thought to maximize the number of progeny resulting from the most recent copulation. Sperm and seminal fluid proteins induce post-mating changes in females, however, very little is known about the resulting gene expression changes in female head and central nervous system tissues that contribute to the post-mating response. Results We determined the temporal gene expression changes in female head tissues 0-2, 24, 48 and 72 hours after mating. Females from each time point had a unique post-mating gene expression response, with 72 hours post-mating having the largest number of genes with significant changes in expression. At most time points, genes expressed in the head fat body that encode products involved in metabolism showed a marked change in expression. Additional analysis of gene expression changes in dissected brain tissues 24 hours post-mating revealed changes in transcript abundance of many genes, notably, the reduced transcript abundance of genes that encode ion channels. Conclusions Substantial changes occur in the regulation of many genes in female head tissues after mating, which might underlie aspects of the female post-mating response. These results provide new insights into the physiological and metabolic changes that accompany changes in female behaviors.

  10. Survey of the Heritability and Sparse Architecture of Gene Expression Traits across Human Tissues.

    Science.gov (United States)

    Wheeler, Heather E; Shah, Kaanan P; Brenner, Jonathon; Garcia, Tzintzuni; Aquino-Michaels, Keston; Cox, Nancy J; Nicolae, Dan L; Im, Hae Kyung

    2016-11-01

    Understanding the genetic architecture of gene expression traits is key to elucidating the underlying mechanisms of complex traits. Here, for the first time, we perform a systematic survey of the heritability and the distribution of effect sizes across all representative tissues in the human body. We find that local h2 can be relatively well characterized with 59% of expressed genes showing significant h2 (FDR Decomposition (OTD) approach. Through a series of simulations we show that the cross-tissue and tissue-specific components are identifiable via OTD. Heritability and sparsity estimates of these derived expression phenotypes show similar characteristics to the original traits. Consistent properties relative to prior GTEx multi-tissue analysis results suggest that these traits reflect the expected biology. Finally, we apply this knowledge to develop prediction models of gene expression traits for all tissues. The prediction models, heritability, and prediction performance R2 for original and decomposed expression phenotypes are made publicly available (https://github.com/hakyimlab/PrediXcan).

  11. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    Science.gov (United States)

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myofibers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid Implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postimtotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  12. Classification between normal and tumor tissues based on the pair-wise gene expression ratio

    International Nuclear Information System (INIS)

    Yap, YeeLeng; Zhang, XueWu; Ling, MT; Wang, XiangHong; Wong, YC; Danchin, Antoine

    2004-01-01

    Precise classification of cancer types is critically important for early cancer diagnosis and treatment. Numerous efforts have been made to use gene expression profiles to improve precision of tumor classification. However, reliable cancer-related signals are generally lacking. Using recent datasets on colon and prostate cancer, a data transformation procedure from single gene expression to pair-wise gene expression ratio is proposed. Making use of the internal consistency of each expression profiling dataset this transformation improves the signal to noise ratio of the dataset and uncovers new relevant cancer-related signals (features). The efficiency in using the transformed dataset to perform normal/tumor classification was investigated using feature partitioning with informative features (gene annotation) as discriminating axes (single gene expression or pair-wise gene expression ratio). Classification results were compared to the original datasets for up to 10-feature model classifiers. 82 and 262 genes that have high correlation to tissue phenotype were selected from the colon and prostate datasets respectively. Remarkably, data transformation of the highly noisy expression data successfully led to lower the coefficient of variation (CV) for the within-class samples as well as improved the correlation with tissue phenotypes. The transformed dataset exhibited lower CV when compared to that of single gene expression. In the colon cancer set, the minimum CV decreased from 45.3% to 16.5%. In prostate cancer, comparable CV was achieved with and without transformation. This improvement in CV, coupled with the improved correlation between the pair-wise gene expression ratio and tissue phenotypes, yielded higher classification efficiency, especially with the colon dataset – from 87.1% to 93.5%. Over 90% of the top ten discriminating axes in both datasets showed significant improvement after data transformation. The high classification efficiency achieved suggested

  13. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Silva Meirelles, Lindolfo da, E-mail: lindolfomeirelles@gmail.com [Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); Laboratory for Stem Cells and Tissue Engineering, PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS (Brazil); Deus Wagatsuma, Virgínia Mara de; Malta, Tathiane Maistro; Bonini Palma, Patrícia Viana [Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); Araújo, Amélia Goes; Panepucci, Rodrigo Alexandre [Laboratory of Large-Scale Functional Biology (LLSFBio), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); and others

    2016-12-10

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with an AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. - Highlights: • Non-cultured adipose tissue-derived human pericytes (ncATPCs) exhibit a distinctive gene expression signature. • ncATPCs express key adipose tissue stem cell genes previously described in vivo in mice. • ncATPCs express message for anti-proliferative and antiangiogenic molecules. • Most ncATPC-specific transcripts are absent in culture-expanded pericytes or ATMSCs • Gene expression changes ncATPCs undergo as they acquire a cultured ATMSC phenotype are pointed out.

  14. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue

    International Nuclear Information System (INIS)

    Silva Meirelles, Lindolfo da; Deus Wagatsuma, Virgínia Mara de; Malta, Tathiane Maistro; Bonini Palma, Patrícia Viana; Araújo, Amélia Goes; Panepucci, Rodrigo Alexandre

    2016-01-01

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with an AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. - Highlights: • Non-cultured adipose tissue-derived human pericytes (ncATPCs) exhibit a distinctive gene expression signature. • ncATPCs express key adipose tissue stem cell genes previously described in vivo in mice. • ncATPCs express message for anti-proliferative and antiangiogenic molecules. • Most ncATPC-specific transcripts are absent in culture-expanded pericytes or ATMSCs • Gene expression changes ncATPCs undergo as they acquire a cultured ATMSC phenotype are pointed out.

  15. Prediction of disease-related genes based on weighted tissue-specific networks by using DNA methylation.

    Science.gov (United States)

    Li, Min; Zhang, Jiayi; Liu, Qing; Wang, Jianxin; Wu, Fang-Xiang

    2014-01-01

    Predicting disease-related genes is one of the most important tasks in bioinformatics and systems biology. With the advances in high-throughput techniques, a large number of protein-protein interactions are available, which make it possible to identify disease-related genes at the network level. However, network-based identification of disease-related genes is still a challenge as the considerable false-positives are still existed in the current available protein interaction networks (PIN). Considering the fact that the majority of genetic disorders tend to manifest only in a single or a few tissues, we constructed tissue-specific networks (TSN) by integrating PIN and tissue-specific data. We further weighed the constructed tissue-specific network (WTSN) by using DNA methylation as it plays an irreplaceable role in the development of complex diseases. A PageRank-based method was developed to identify disease-related genes from the constructed networks. To validate the effectiveness of the proposed method, we constructed PIN, weighted PIN (WPIN), TSN, WTSN for colon cancer and leukemia, respectively. The experimental results on colon cancer and leukemia show that the combination of tissue-specific data and DNA methylation can help to identify disease-related genes more accurately. Moreover, the PageRank-based method was effective to predict disease-related genes on the case studies of colon cancer and leukemia. Tissue-specific data and DNA methylation are two important factors to the study of human diseases. The same method implemented on the WTSN can achieve better results compared to those being implemented on original PIN, WPIN, or TSN. The PageRank-based method outperforms degree centrality-based method for identifying disease-related genes from WTSN.

  16. Testing an aflatoxin B1 gene signature in rat archival tissues.

    Science.gov (United States)

    Merrick, B Alex; Auerbach, Scott S; Stockton, Patricia S; Foley, Julie F; Malarkey, David E; Sills, Robert C; Irwin, Richard D; Tice, Raymond R

    2012-05-21

    Archival tissues from laboratory studies represent a unique opportunity to explore the relationship between genomic changes and agent-induced disease. In this study, we evaluated the applicability of qPCR for detecting genomic changes in formalin-fixed, paraffin-embedded (FFPE) tissues by determining if a subset of 14 genes from a 90-gene signature derived from microarray data and associated with eventual tumor development could be detected in archival liver, kidney, and lung of rats exposed to aflatoxin B1 (AFB1) for 90 days in feed at 1 ppm. These tissues originated from the same rats used in the microarray study. The 14 genes evaluated were Adam8, Cdh13, Ddit4l, Mybl2, Akr7a3, Akr7a2, Fhit, Wwox, Abcb1b, Abcc3, Cxcl1, Gsta5, Grin2c, and the C8orf46 homologue. The qPCR FFPE liver results were compared to the original liver microarray data and to qPCR results using RNA from fresh frozen liver. Archival liver paraffin blocks yielded 30 to 50 μg of degraded RNA that ranged in size from 0.1 to 4 kB. qPCR results from FFPE and fresh frozen liver samples were positively correlated (p ≤ 0.05) by regression analysis and showed good agreement in direction and proportion of change with microarray data for 11 of 14 genes. All 14 transcripts could be amplified from FFPE kidney RNA except the glutamate receptor gene Grin2c; however, only Abcb1b was significantly upregulated from control. Abundant constitutive transcripts, S18 and β-actin, could be amplified from lung FFPE samples, but the narrow RNA size range (25-500 bp length) prevented consistent detection of target transcripts. Overall, a discrete gene signature derived from prior transcript profiling and representing cell cycle progression, DNA damage response, and xenosensor and detoxication pathways was successfully applied to archival liver and kidney by qPCR and indicated that gene expression changes in response to subchronic AFB1 exposure occurred predominantly in the liver, the primary target for AFB1-induced

  17. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    Science.gov (United States)

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (pentropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of Twist, Snail and YB-1 gene expression in cervical cancer tissue on cell invasion and epithelial-mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Xin-Qin Kang1

    2017-05-01

    Full Text Available Objective: To study the effect of Twist, Snail and YB-1 gene expression in cervical cancer tissue on cell invasion and epithelial-mesenchymal transition. Methods: Cervical cancer tissue samples and tissue samples adjacent to carcinoma were collected from 138 patients with radical operation for cervical cancer, fluorescence quantitative PCR method was used to detect the mRNA expression of Twist, Snail and YB-1 genes, cell invasion-related genes and epithelial-mesenchymal transition marker genes, the Pearson test was used to analyze the correlation of Twist, Snail and YB-1 gene mRNA expression in cervical cancer tissue with cell invasion and epithelial-mesenchymal transition. Results: Twist, Snail and YB-1 gene mRNA expression in cervical cancer tissue were higher than those in tissue adjacent to carcinoma, the invasion genes STAT3, YAP1, TUG1, FoxM1 and Rab11 mRNA expression were higher than those in tissue adjacent to carcinoma, and the epithelial-mesenchymal transition markers E-cadherin and β-catenin gene mRNA expression were lower than those in tissue adjacent to carcinoma while vimentin gene mRNA expression was higher than that in tissue adjacent to carcinoma. Pearson test showed that Twist, Snail and YB-1 gene mRNA expression in cervical cancer tissue were directly correlated with cell invasion and epithelial-mesenchymal transition. Conclusion: Twist, Snail and YB-1 genes are highly expressed in cervical cancer tissue, and their abnormal expression directly leads to the increased tumor cell invasion activity and the aggravated epithelial-mesenchymal transition.

  19. The claudin gene family: expression in normal and neoplastic tissues

    International Nuclear Information System (INIS)

    Hewitt, Kyle J; Agarwal, Rachana; Morin, Patrice J

    2006-01-01

    The claudin (CLDN) genes encode a family of proteins important in tight junction formation and function. Recently, it has become apparent that CLDN gene expression is frequently altered in several human cancers. However, the exact patterns of CLDN expression in various cancers is unknown, as only a limited number of CLDN genes have been investigated in a few tumors. We identified all the human CLDN genes from Genbank and we used the large public SAGE database to ascertain the gene expression of all 21 CLDN in 266 normal and neoplastic tissues. Using real-time RT-PCR, we also surveyed a subset of 13 CLDN genes in 24 normal and 24 neoplastic tissues. We show that claudins represent a family of highly related proteins, with claudin-16, and -23 being the most different from the others. From in silico analysis and RT-PCR data, we find that most claudin genes appear decreased in cancer, while CLDN3, CLDN4, and CLDN7 are elevated in several malignancies such as those originating from the pancreas, bladder, thyroid, fallopian tubes, ovary, stomach, colon, breast, uterus, and the prostate. Interestingly, CLDN5 is highly expressed in vascular endothelial cells, providing a possible target for antiangiogenic therapy. CLDN18 might represent a biomarker for gastric cancer. Our study confirms previously known CLDN gene expression patterns and identifies new ones, which may have applications in the detection, prognosis and therapy of several human cancers. In particular we identify several malignancies that express CLDN3 and CLDN4. These cancers may represent ideal candidates for a novel therapy being developed based on CPE, a toxin that specifically binds claudin-3 and claudin-4

  20. Effects of warm ischemic time on gene expression profiling in colorectal cancer tissues and normal mucosa.

    Directory of Open Access Journals (Sweden)

    Valeria Musella

    Full Text Available BACKGROUND: Genome-wide gene expression analyses of tumors are a powerful tool to identify gene signatures associated with biologically and clinically relevant characteristics and for several tumor types are under clinical validation by prospective trials. However, handling and processing of clinical specimens may significantly affect the molecular data obtained from their analysis. We studied the effects of tissue handling time on gene expression in human normal and tumor colon tissues undergoing routine surgical procedures. METHODS: RNA extracted from specimens of 15 patients at four time points (for a total of 180 samples after surgery was analyzed for gene expression on high-density oligonucleotide microarrays. A mixed-effects model was used to identify probes with different expression means across the four different time points. The p-values of the model were adjusted with the Bonferroni method. RESULTS: Thirty-two probe sets associated with tissue handling time in the tumor specimens, and thirty-one in the normal tissues, were identified. Most genes exhibited moderate changes in expression over the time points analyzed; however four of them were oncogenes, and two confirmed the effect of tissue handling by independent validation. CONCLUSIONS: Our results suggest that a critical time point for tissue handling in colon seems to be 60 minutes at room temperature. Although the number of time-dependent genes we identified was low, the three genes that already showed changes at this time point in tumor samples were all oncogenes, hence recommending standardization of tissue-handling protocols and effort to reduce the time from specimen removal to snap freezing accounting for warm ischemia in this tumor type.

  1. Gene expression patterns in pancreatic tumors, cells and tissues.

    Directory of Open Access Journals (Sweden)

    Anson W Lowe

    2007-03-01

    Full Text Available Cancers of the pancreas originate from both the endocrine and exocrine elements of the organ, and represent a major cause of cancer-related death. This study provides a comprehensive assessment of gene expression for pancreatic tumors, the normal pancreas, and nonneoplastic pancreatic disease.DNA microarrays were used to assess the gene expression for surgically derived pancreatic adenocarcinomas, islet cell tumors, and mesenchymal tumors. The addition of normal pancreata, isolated islets, isolated pancreatic ducts, and pancreatic adenocarcinoma cell lines enhanced subsequent analysis by increasing the diversity in gene expression profiles obtained. Exocrine, endocrine, and mesenchymal tumors displayed unique gene expression profiles. Similarities in gene expression support the pancreatic duct as the origin of adenocarcinomas. In addition, genes highly expressed in other cancers and associated with specific signal transduction pathways were also found in pancreatic tumors.The scope of the present work was enhanced by the inclusion of publicly available datasets that encompass a wide spectrum of human tissues and enabled the identification of candidate genes that may serve diagnostic and therapeutic goals.

  2. Genome-wide strategies identify downstream target genes of chick connective tissue-associated transcription factors.

    Science.gov (United States)

    Orgeur, Mickael; Martens, Marvin; Leonte, Georgeta; Nassari, Sonya; Bonnin, Marie-Ange; Börno, Stefan T; Timmermann, Bernd; Hecht, Jochen; Duprez, Delphine; Stricker, Sigmar

    2018-03-29

    Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc-finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling of chick limb micromass cultures revealed a set of common genes regulated by all five transcription factors, which we describe as a connective tissue core expression set. This common core was enriched with genes associated with axon guidance and myofibroblast signature, including fibrosis-related genes. In addition, each transcription factor regulated a specific set of signalling molecules and extracellular matrix components. This suggests a concept whereby local molecular niches can be created by the expression of specific transcription factors impinging on the specification of local microenvironments. The regulatory network established here identifies common and distinct molecular signatures of limb connective tissue subtypes, provides novel insight into the signalling pathways governing connective tissue specification, and serves as a resource for connective tissue development. © 2018. Published by The Company of Biologists Ltd.

  3. Mechanisms of foot-and-mouth disease virus tropism inferred from differential tissue gene expression.

    Directory of Open Access Journals (Sweden)

    James J Zhu

    Full Text Available Foot-and-mouth disease virus (FMDV targets specific tissues for primary infection, secondary high-titer replication (e.g. foot and mouth where it causes typical vesicular lesions and long-term persistence at some primary replication sites. Although integrin αVβ6 receptor has been identified as primary FMDV receptors in animals, their tissue distribution alone fails to explain these highly selective tropism-driven events. Thus, other molecular mechanisms must play roles in determining this tissue specificity. We hypothesized that differences in certain biological activities due to differential gene expression determine FMDV tropism and applied whole genome gene expression profiling to identify genes differentially expressed between FMDV-targeted and non-targeted tissues in terms of supporting primary infection, secondary replication including vesicular lesions, and persistence. Using statistical and bioinformatic tools to analyze the differential gene expression, we identified mechanisms that could explain FMDV tissue tropism based on its association with differential expression of integrin αVβ6 heterodimeric receptor (FMDV receptor, fibronectin (ligand of the receptor, IL-1 cytokines, death receptors and the ligands, and multiple genes in the biological pathways involved in extracellular matrix turnover and interferon signaling found in this study. Our results together with reported findings indicate that differences in (1 FMDV receptor availability and accessibility, (2 type I interferon-inducible immune response, and (3 ability to clear virus infected cells via death receptor signaling play roles in determining FMDV tissue tropism and the additional increase of high extracellular matrix turnover induced by FMDV infection, likely via triggering the signaling of highly expressed IL-1 cytokines, play a key role in the pathogenesis of vesicular lesions.

  4. Lactococcus lactis Metabolism and Gene Expression during Growth on Plant Tissues

    Science.gov (United States)

    Golomb, Benjamin L.

    2014-01-01

    Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations. PMID:25384484

  5. Supplementary Material for: Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-01-01

    Abstract Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis

  6. Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay.

    Science.gov (United States)

    Cronin, Maureen; Pho, Mylan; Dutta, Debjani; Stephans, James C; Shak, Steven; Kiefer, Michael C; Esteban, Jose M; Baker, Joffre B

    2004-01-01

    Throughout the last decade many laboratories have shown that mRNA levels in formalin-fixed and paraffin-embedded (FPE) tissue specimens can be quantified by reverse transcriptase-polymerase chain reaction (RT-PCR) techniques despite the extensive RNA fragmentation that occurs in tissues so preserved. We have developed RT-PCR methods that are sensitive, precise, and that have multianalyte capability for potential wide use in clinical research and diagnostic assays. Here it is shown that the extent of fragmentation of extracted FPE tissue RNA significantly increases with archive storage time. Probe and primer sets for RT-PCR assays based on amplicons that are both short and homogeneous in length enable effective reference gene-based data normalization for cross comparison of specimens that differ substantially in age. A 48-gene assay used to compare gene expression profiles from the same breast cancer tissue that had been either frozen or FPE showed very similar profiles after reference gene-based normalization. A 92-gene assay, using RNA extracted from three 10- micro m FPE sections of archival breast cancer specimens (dating from 1985 to 2001) yielded analyzable data for these genes in all 62 tested specimens. The results were substantially concordant when estrogen receptor, progesterone receptor, and HER2 receptor status determined by RT-PCR was compared with immunohistochemistry assays for these receptors. Furthermore, the results highlight the advantages of RT-PCR over immunohistochemistry with respect to quantitation and dynamic range. These findings support the development of RT-PCR analysis of FPE tissue RNA as a platform for multianalyte clinical diagnostic tests.

  7. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil

    Directory of Open Access Journals (Sweden)

    Seong Ho Choi

    2016-03-01

    Full Text Available We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD gene expression in subcutaneous (s.c. and intramuscular (i.m. adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control, with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and α-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha (AMPKα and peroxisome proliferator-activated receptor gamma (PPARγ increased between the initial and intermediate biopsies and declined thereafter (p<0.03. SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04, and G-coupled protein receptor 43 (GPR43 gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01 PPARγ gene expression at the intermediate sample time. At the terminal sample time, PPARγ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05. AMPKα gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04 and CCAAT enhancer binding protein-beta (CEBPβ gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03. Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05; SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers

  8. A prognostic profile of hypoxia-induced genes for localised high-grade soft tissue sarcoma

    DEFF Research Database (Denmark)

    Aggerholm-Pedersen, Ninna; Sørensen, Brita Singers; Overgaard, Jens

    2016-01-01

    sarcoma (STS). METHODS: The hypoxia-induced gene quantification was performed by real-time quantitative PCR (RT-qPCR) of formalin-fixed, paraffin-embedded tissue samples. The gene expression cut-points were determined in a test cohort of 55 STS patients and used to allocate each patient into a more......BACKGROUND: For decades, tumour hypoxia has been pursued as a cancer treatment target. However, prognostic and predictive biomarkers are essential for the use of this target in the clinic. This study investigates the prognostic value of a hypoxia-induced gene profile in localised soft tissue...

  9. Gene duplication, tissue-specific gene expression and sexual conflict in stalk-eyed flies (Diopsidae).

    Science.gov (United States)

    Baker, Richard H; Narechania, Apurva; Johns, Philip M; Wilkinson, Gerald S

    2012-08-19

    Gene duplication provides an essential source of novel genetic material to facilitate rapid morphological evolution. Traits involved in reproduction and sexual dimorphism represent some of the fastest evolving traits in nature, and gene duplication is intricately involved in the origin and evolution of these traits. Here, we review genomic research on stalk-eyed flies (Diopsidae) that has been used to examine the extent of gene duplication and its role in the genetic architecture of sexual dimorphism. Stalk-eyed flies are remarkable because of the elongation of the head into long stalks, with the eyes and antenna laterally displaced at the ends of these stalks. Many species are strongly sexually dimorphic for eyespan, and these flies have become a model system for studying sexual selection. Using both expressed sequence tag and next-generation sequencing, we have established an extensive database of gene expression in the developing eye-antennal imaginal disc, the adult head and testes. Duplicated genes exhibit narrower expression patterns than non-duplicated genes, and the testes, in particular, provide an abundant source of gene duplication. Within somatic tissue, duplicated genes are more likely to be differentially expressed between the sexes, suggesting gene duplication may provide a mechanism for resolving sexual conflict.

  10. Electric pulse-mediated gene delivery to various animal tissues

    DEFF Research Database (Denmark)

    Mir, Lluis M; Moller, Pernille H; André, Franck

    2005-01-01

    therapy, termed electrogenetherapy (EGT as well). By transfecting cells with a long lifetime, such as muscle fibers, a very long-term expression of genes can be obtained. A great variety of tissues have been transfected successfully, from muscle as the most extensively used, to both soft (e.g., spleen...

  11. Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions.

    Directory of Open Access Journals (Sweden)

    Dung Tien Le

    Full Text Available Quantitative RT-PCR can be a very sensitive and powerful technique for measuring differential gene expression. Changes in gene expression induced by abiotic stresses are complex and multifaceted, which make determining stably expressed genes for data normalization difficult. To identify the most suitable reference genes for abiotic stress studies in soybean, 13 candidate genes collected from literature were evaluated for stability of expression under dehydration, high salinity, cold and ABA (abscisic acid treatments using delta CT and geNorm approaches. Validation of reference genes indicated that the best reference genes are tissue- and stress-dependent. With respect to dehydration treatment, the Fbox/ABC, Fbox/60s gene pairs were found to have the highest expression stability in the root and shoot tissues of soybean seedlings, respectively. Fbox and 60s genes are the most suitable reference genes across dehydrated root and shoot tissues. Under salt stress the ELF1b/IDE and Fbox/ELF1b are the most stably expressed gene pairs in roots and shoots, respectively, while 60s/Fbox is the best gene pair in both tissues. For studying cold stress in roots or shoots, IDE/60s and Fbox/Act27 are good reference gene pairs, respectively. With regard to gene expression analysis under ABA treatment in either roots, shoots or across these tissues, 60s/ELF1b, ELF1b/Fbox and 60s/ELF1b are the most suitable reference genes, respectively. The expression of ELF1b/60s, 60s/Fbox and 60s/Fbox genes was most stable in roots, shoots and both tissues, respectively, under various stresses studied. Among the genes tested, 60s was found to be the best reference gene in different tissues and under various stress conditions. The highly ranked reference genes identified from this study were proved to be capable of detecting subtle differences in expression rates that otherwise would be missed if a less stable reference gene was used.

  12. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury.

    Science.gov (United States)

    Pachori, Alok S; Melo, Luis G; Hart, Melanie L; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D; Stahl, Gregory L; Pratt, Richard E; Dzau, Victor J

    2004-08-17

    Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.

  13. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury

    Science.gov (United States)

    Pachori, Alok S.; Melo, Luis G.; Hart, Melanie L.; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D.; Stahl, Gregory L.; Pratt, Richard E.; Dzau, Victor J.

    2004-08-01

    Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.

  14. A stratified transcriptomics analysis of polygenic fat and lean mouse adipose tissues identifies novel candidate obesity genes.

    Directory of Open Access Journals (Sweden)

    Nicholas M Morton

    Full Text Available Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L strain.To enrich for adipose tissue obesity genes a 'snap-shot' pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney was performed. Known obesity quantitative trait loci (QTL information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity.A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity.

  15. Acute Sleep Loss Induces Tissue-Specific Epigenetic and Transcriptional Alterations to Circadian Clock Genes in Men.

    Science.gov (United States)

    Cedernaes, Jonathan; Osler, Megan E; Voisin, Sarah; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Zierath, Juleen R; Schiöth, Helgi B; Benedict, Christian

    2015-09-01

    Shift workers are at increased risk of metabolic morbidities. Clock genes are known to regulate metabolic processes in peripheral tissues, eg, glucose oxidation. This study aimed to investigate how clock genes are affected at the epigenetic and transcriptional level in peripheral human tissues following acute total sleep deprivation (TSD), mimicking shift work with extended wakefulness. In a randomized, two-period, two-condition, crossover clinical study, 15 healthy men underwent two experimental sessions: x sleep (2230-0700 h) and overnight wakefulness. On the subsequent morning, serum cortisol was measured, followed by skeletal muscle and subcutaneous adipose tissue biopsies for DNA methylation and gene expression analyses of core clock genes (BMAL1, CLOCK, CRY1, PER1). Finally, baseline and 2-h post-oral glucose load plasma glucose concentrations were determined. In adipose tissue, acute sleep deprivation vs sleep increased methylation in the promoter of CRY1 (+4%; P = .026) and in two promoter-interacting enhancer regions of PER1 (+15%; P = .036; +9%; P = .026). In skeletal muscle, TSD vs sleep decreased gene expression of BMAL1 (-18%; P = .033) and CRY1 (-22%; P = .047). Concentrations of serum cortisol, which can reset peripheral tissue clocks, were decreased (2449 ± 932 vs 3178 ± 723 nmol/L; P = .039), whereas postprandial plasma glucose concentrations were elevated after TSD (7.77 ± 1.63 vs 6.59 ± 1.32 mmol/L; P = .011). Our findings demonstrate that a single night of wakefulness can alter the epigenetic and transcriptional profile of core circadian clock genes in key metabolic tissues. Tissue-specific clock alterations could explain why shift work may disrupt metabolic integrity as observed herein.

  16. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil.

    Science.gov (United States)

    Choi, Seong Ho; Park, Sung Kwon; Choi, Chang Weon; Li, Xiang Zi; Kim, Kyoung Hoon; Kim, Won Young; Jeong, Joon; Johnson, Bradley J; Zan, Linsen; Smith, Stephen B

    2016-03-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and α-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha (AMPKα) and peroxisome proliferator-activated receptor gamma (PPARγ) increased between the initial and intermediate biopsies and declined thereafter (poil decreased (p = 0.01) PPARγ gene expression at the intermediate sample time. At the terminal sample time, PPARγ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (ppalm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta (CEBPβ) gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (poil decreased SCD gene expression in s.c. adipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers. Contrary to our original hypothesis, palm oil did not promote adipogenic gene expression in s.c. and i.m. adipose tissue.

  17. Validation of putative reference genes for normalization of Q-RT-PCR data from paraffin-embedded lymphoid tissue

    DEFF Research Database (Denmark)

    Green, Tina Marie; de Stricker, Karin; Møller, Michael Boe

    2009-01-01

    Normalization of quantitative reverse transcription-PCR (Q-RT-PCR) data to appropriate tissue-specific reference genes is an essential part of interpreting the results. This study aimed to determine the most appropriate reference genes for normalizing gene expressions in lymphatic tissue...... was 0.93 (Pnormalization with the appropriate reference genes. Thus, we show that formalin-fixed, paraffin-embedded lymphoid samples are suitable for Q-RT-PCR when using thoroughly validated reference genes....

  18. Low-intensity infrared lasers alter actin gene expression in skin and muscle tissue

    International Nuclear Information System (INIS)

    Fonseca, A S; Mencalha, A L; Campos, V M A; Ferreira-Machado, S C; Peregrino, A A F; Magalhães, L A G; Geller, M; Paoli, F

    2013-01-01

    The biostimulative effect of low-intensity lasers is the basis for treatment of diseases in soft tissues. However, data about the influence of biostimulative lasers on gene expression are still scarce. The aim of this work was to evaluate the effects of low-intensity infrared lasers on the expression of actin mRNA in skin and muscle tissue. Skin and muscle tissue of Wistar rats was exposed to low-intensity infrared laser radiation at different fluences and frequencies. One and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis and evaluation of actin gene expression by quantitative polymerase chain reaction. The data obtained show that laser radiation alters the expression of actin mRNA differently in skin and muscle tissue of Wistar rats depending of the fluence, frequency and time after exposure. The results could be useful for laser dosimetry, as well as to justify the therapeutic protocols for treatment of diseases of skin and muscle tissues based on low-intensity infrared laser radiation. (paper)

  19. Formation of Hyaline Cartilage Tissue by Passaged Human Osteoarthritic Chondrocytes.

    Science.gov (United States)

    Bianchi, Vanessa J; Weber, Joanna F; Waldman, Stephen D; Backstein, David; Kandel, Rita A

    2017-02-01

    When serially passaged in standard monolayer culture to expand cell number, articular chondrocytes lose their phenotype. This results in the formation of fibrocartilage when they are used clinically, thus limiting their use for cartilage repair therapies. Identifying a way to redifferentiate these cells in vitro is critical if they are to be used successfully. Transforming growth factor beta (TGFβ) family members are known to be crucial for regulating differentiation of fetal limb mesenchymal cells and mesenchymal stromal cells to chondrocytes. As passaged chondrocytes acquire a progenitor-like phenotype, the hypothesis of this study was that TGFβ supplementation will stimulate chondrocyte redifferentiation in vitro in serum-free three-dimensional (3D) culture. Human articular chondrocytes were serially passaged twice (P2) in monolayer culture. P2 cells were then placed in high-density (3D) culture on top of membranes (Millipore) and cultured for up to 6 weeks in chemically defined serum-free redifferentiation media (SFRM) in the presence or absence of TGFβ. The tissues were evaluated histologically, biochemically, by immunohistochemical staining, and biomechanically. Passaged human chondrocytes cultured in SFRM supplemented with 10 ng/mL TGFβ3 consistently formed a continuous layer of articular-like cartilage tissue rich in collagen type 2 and aggrecan and lacking collagen type 1 and X in the absence of a scaffold. The tissue developed a superficial zone characterized by expression of lubricin and clusterin with horizontally aligned collagen fibers. This study suggests that passaged human chondrocytes can be used to bioengineer a continuous layer of articular cartilage-like tissue in vitro scaffold free. Further study is required to evaluate their ability to repair cartilage defects in vivo.

  20. Selection of reference genes for tissue/organ samples on day 3 fifth-instar larvae in silkworm, Bombyx mori.

    Science.gov (United States)

    Wang, Genhong; Chen, Yanfei; Zhang, Xiaoying; Bai, Bingchuan; Yan, Hao; Qin, Daoyuan; Xia, Qingyou

    2018-06-01

    The silkworm, Bombyx mori, is one of the world's most economically important insect. Surveying variations in gene expression among multiple tissue/organ samples will provide clues for gene function assignments and will be helpful for identifying genes related to economic traits or specific cellular processes. To ensure their accuracy, commonly used gene expression quantification methods require a set of stable reference genes for data normalization. In this study, 24 candidate reference genes were assessed in 10 tissue/organ samples of day 3 fifth-instar B. mori larvae using geNorm and NormFinder. The results revealed that, using the combination of the expression of BGIBMGA003186 and BGIBMGA008209 was the optimum choice for normalizing the expression data of the B. mori tissue/organ samples. The most stable gene, BGIBMGA003186, is recommended if just one reference gene is used. Moreover, the commonly used reference gene encoding cytoplasmic actin was the least appropriate reference gene of the samples investigated. The reliability of the selected reference genes was further confirmed by evaluating the expression profiles of two cathepsin genes. Our results may be useful for future studies involving the quantification of relative gene expression levels of different tissue/organ samples in B. mori. © 2018 Wiley Periodicals, Inc.

  1. Global Gene Expression Profiling in Lung Tissues of Rat Exposed to Lunar Dust Particles

    Science.gov (United States)

    Yeshitla, Samrawit A.; Lam, Chiu-Wing; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Wu, Honglu; James, John T.; Meyers, Valerie E.; Zhang, Ye

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% respirable very fine dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues of rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m3 of lunar dust. Animals were euthanized at 1 day and 13 weeks after the last inhalation exposure. After being lavaged, lung tissue from each animal was collected and total RNA was isolated. Four samples of each dose group were analyzed using Agilent Rat GE v3 microarray to profile global gene expression of 44K transcripts. After background subtraction, normalization, and log transformation, t tests were used to compare the mean expression levels of each exposed group to the control group. Correction for multiple testing was made using the method of Benjamini, Krieger, and Yekuteli (1) to control the false discovery rate. Genes with significant changes of at least 1.75 fold were identified as genes of interest. Both low and high doses of lunar dust caused dramatic, dose-dependent global gene expression changes in the lung tissues. However, the responses of lung tissue to low dose lunar dust are distinguished from those of high doses, especially those associated with 61mg/m3 dust exposure. The data were further integrated into the Ingenuity system to analyze the gene ontology (GO), pathway distribution and putative upstream regulators and gene targets. Multiple pathways, functions, and upstream regulators have been identified in response to lunar dust induced damage in the lung tissue.

  2. EXPRESSION OF ANTIVIRAL GENE ON TIGER SHRIMP Penaeus monodon AT DIFFERENT TISSUE AND BODY SIZE

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2012-12-01

    Full Text Available The role of tiger shrimp defense against invading pathogen on molecular level such antiviral gene expression is limited to be reported. Gene expression is a process which codes information of genes that is converted to the protein as a phenotype. Distribution of PmAV antivirus gene, that has been reported as an important gene on non-specific response immune, is needed to be observed to several organs/tissues and size of tiger shrimp. The aim of this study is to determine the distribution of gene antiviral expression at several organ/tissue and size of shrimp. The organs/tissues observed in this study were: gill, hepatopancres, muscle tissue, eyes, heart, stomach, gonad, and intestine. While the size of shrimp consisted of three groups, those are: (A 10-20 g/ind., (B 30-40 g/ind., and (C 60-70 g/ind. Analysis of antiviral gene expression was performed by RNA extraction, followed by the cDNA syntesis, and amplification of gene expression by semi-quantitative PCR. The result of PCR optimation showed the optimal concentration of cDNA and primer was 1 μL and 50 mol, respectively for PCR final volume of 25 μL. Antiviral gene was expressed on the hepatopancreas and stomach in percentage of 50.0% and 16.7%, respectively. While the highest percentage of individual expressing the antiviral gene was observed in the shrimp size of C (66.7%, followed by B (50.0% and A (16.7%. The result of study implied that the hepatopancreas has importantly involed in tiger shrimp defense mechanism on viral infection.

  3. Gene Expression Profiling in Lung Tissues from Rat Exposed to Lunar Dust Particles

    Science.gov (United States)

    Zhang, Ye; Lam, Chiu-Wing; Zalesak, Selina M.; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Scully, Robert R.; Williams, Kyle; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (gene expression changes in lung tissues from rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, and 3 months after the last inhalation exposure. The total RNAs were isolated from lung tissues after being lavaged. The Agilent Rat GE v3 microarray was used to profile global gene expression (44K). The genes with significant expression changes are identified and the gene expression data were further analyzed using various statistical tools.

  4. Virulence Factor Genes in Staphylococcus aureus Isolated From Diabetic Foot Soft Tissue and Bone Infections.

    Science.gov (United States)

    Víquez-Molina, Gerardo; Aragón-Sánchez, Javier; Pérez-Corrales, Cristian; Murillo-Vargas, Christian; López-Valverde, María Eugenia; Lipsky, Benjamin A

    2018-03-01

    The aim of this study is to describe the presence of genes encoding for 4 virulence factors (pvl, eta, etb, and tsst), as well as the mecA gene conferring resistance to beta-lactam antibiotics, in patients with diabetes and a staphylococcal foot infection. We have also analyzed whether isolates of Staphylococcus aureus from bone infections have a different profile for these genes compared with those from exclusively soft tissue infections. In this cross-sectional study of a prospectively recruited series of patients admitted to the Diabetic Foot Unit, San Juan de Dios Hospital, San José, Costa Rica with a moderate or severe diabetic foot infection (DFI), we collected samples from infected soft tissue and from bone during debridement. During the study period (June 1, 2014 to May 31, 2016), we treated 379 patients for a DFI. S aureus was isolated from 101 wound samples, of which 43 were polymicrobial infections; we only included the 58 infections that were monomicrobial S aureus for this study. Infections were exclusively soft tissue in 17 patients (29.3%) while 41 (70.7%) had bone involvement (osteomyelitis). The mecA gene was detected in 35 cases (60.3%), pvl gene in 4 cases (6.9%), and tsst gene in 3 (5.2%). We did not detect etA and etB in any of the cases. There were no differences in the profile of S aureus genes encoding for virulence factors (pvl, etA, etB, and tsst) recovered from DFIs between those with just soft tissue compared to those with osteomyelitis. However, we found a significantly higher prevalence of pvl+ strains of S aureus associated with soft tissue compared with bone infections. Furthermore, we observed a significantly longer time to healing among patients infected with mecA+ (methicillin-resistant) S aureus (MRSA).

  5. Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering

    Science.gov (United States)

    Nitta, Sachiko Kaihara; Numata, Keiji

    2013-01-01

    There has been a great interest in application of nanoparticles as biomaterials for delivery of therapeutic molecules such as drugs and genes, and for tissue engineering. In particular, biopolymers are suitable materials as nanoparticles for clinical application due to their versatile traits, including biocompatibility, biodegradability and low immunogenicity. Biopolymers are polymers that are produced from living organisms, which are classified in three groups: polysaccharides, proteins and nucleic acids. It is important to control particle size, charge, morphology of surface and release rate of loaded molecules to use biopolymer-based nanoparticles as drug/gene delivery carriers. To obtain a nano-carrier for therapeutic purposes, a variety of materials and preparation process has been attempted. This review focuses on fabrication of biocompatible nanoparticles consisting of biopolymers such as protein (silk, collagen, gelatin, β-casein, zein and albumin), protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch and heparin). The effects of the nature of the materials and the fabrication process on the characteristics of the nanoparticles are described. In addition, their application as delivery carriers of therapeutic drugs and genes and biomaterials for tissue engineering are also reviewed. PMID:23344060

  6. Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Keiji Numata

    2013-01-01

    Full Text Available There has been a great interest in application of nanoparticles as biomaterials for delivery of therapeutic molecules such as drugs and genes, and for tissue engineering. In particular, biopolymers are suitable materials as nanoparticles for clinical application due to their versatile traits, including biocompatibility, biodegradability and low immunogenicity. Biopolymers are polymers that are produced from living organisms, which are classified in three groups: polysaccharides, proteins and nucleic acids. It is important to control particle size, charge, morphology of surface and release rate of loaded molecules to use biopolymer-based nanoparticles as drug/gene delivery carriers. To obtain a nano-carrier for therapeutic purposes, a variety of materials and preparation process has been attempted. This review focuses on fabrication of biocompatible nanoparticles consisting of biopolymers such as protein (silk, collagen, gelatin, β-casein, zein and albumin, protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch and heparin. The effects of the nature of the materials and the fabrication process on the characteristics of the nanoparticles are described. In addition, their application as delivery carriers of therapeutic drugs and genes and biomaterials for tissue engineering are also reviewed.

  7. Relative IGF-1 and IGF-2 gene expression in maternal and fetal tissues from diabetic swine

    International Nuclear Information System (INIS)

    Wolverton, C.K.; Leaman, D.W.; White, M.E.; Ramsay, T.G.

    1990-01-01

    Fourteen pregnant, crossbred gilts were utilized in this study. Seven gilts were injected with alloxan (50 mg/kg) at day 75 of gestation to induce diabetes. Gilts underwent caesarean section on day 105 of gestation. Samples were collected from maternal skeletal muscle, adipose tissue, uterus and endometrium; and from fetal skeletal muscle, adipose tissue, placenta, liver, lung, kidney, heart, brain and spleen. Tissues were frozen in liquid nitrogen for later analysis of IGF-1 and IGF-2 gene expression. Samples were pooled and total RNA was isolated using the guanidine isothiocynate method. Total mRNA was analyzed by dot blot hybridization. Blots were probed with 32 P-cDNA for porcine IGF-1 and rat IGF-2. IGF-1 gene expression in maternal tissues was unaffected by diabetes. Maternal diabetes increased IGF-2 mRNA in maternal adipose tissue but exhibited no effect in muscle or uterus. Expression of IGF-2 by maternal endometrium was decreased by diabetes. Maternal diabetes induced an increase in IGF-1 gene expression in muscle and placenta while causing an increase in IGF-2 expression in fetal liver and placenta. IGF-2 mRNA was lower in lung from fetuses of diabetic mothers than in controls. These results suggest that maternal diabetes alters IGF-1 and IGF-2 gene expression in specific tissues and differential regulation of these genes appears to exist in the mother and developing fetus

  8. Tissue-specific alternative splicing and expression of ATP1B2 gene ...

    African Journals Online (AJOL)

    After heat-stress, the expression levels of the different transcripts were lower in different tissues; however, the expression of the ATP1B2-complete transcript increased in heart and lung tissues. The results of this research provide some useful information for further studies into the function of the bovine ATP1B2 gene.

  9. Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues.

    Science.gov (United States)

    Pei, Wuhong; Xu, Lisha; Huang, Sunny C; Pettie, Kade; Idol, Jennifer; Rissone, Alberto; Jimenez, Erin; Sinclair, Jason W; Slevin, Claire; Varshney, Gaurav K; Jones, MaryPat; Carrington, Blake; Bishop, Kevin; Huang, Haigen; Sood, Raman; Lin, Shuo; Burgess, Shawn M

    2018-01-01

    Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration.

  10. DSCR9 gene simultaneous expression in placental, testicular and renal tissues from baboon (papio hamadryas

    Directory of Open Access Journals (Sweden)

    Rodriguez-Sanchez Irám

    2012-06-01

    Full Text Available Abstract Background In 2002 Takamatsu and co-workers described the human DSCR9 gene and observed that it was transcriptionally active in human testicular tissue, but no protein was identified as a product of this transcript. Similar results were obtained in chimpanzee tissue. This gene has not been detected in species other than primates, suggesting that DSCR9 is exclusively found in these mammals. Results We report evidence of DSCR9 expression in placenta, testis and kidney of baboon (Papio hamadryas. We used primers specific for DSCR9 to amplify transcripts through reverse transcription (RT coupled to polymerase chain reaction (PCR. Furthermore, PCR was used to amplify the complete DSCR9 gene from genomic DNA from three baboons. We amplified and sequenced five overlapping segments that were assembled into the 3284 bp baboon DSCR9 gene, including the putative promoter and the entire transcriptional unit (5'-UTR, CDS and 3'-UTR. Conclusions The baboon DSCR9 gene is highly similar to the human counterpart. The isolated transcripts from baboon tissues (placenta, testis and kidney of three different baboons correspond to the human orthologous gene.

  11. Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture.

    Directory of Open Access Journals (Sweden)

    Pek-Lan Chan

    Full Text Available BACKGROUND: The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR. With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. RESULTS: In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569 outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN. PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. CONCLUSIONS: Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection

  12. Evaluation of Reference Genes for Quantitative Real-Time PCR in Oil Palm Elite Planting Materials Propagated by Tissue Culture

    Science.gov (United States)

    Chan, Pek-Lan; Rose, Ray J.; Abdul Murad, Abdul Munir; Zainal, Zamri; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder

    2014-01-01

    Background The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. Results In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Conclusions Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate

  13. Concordance of gene expression in human protein complexes reveals tissue specificity and pathology

    DEFF Research Database (Denmark)

    Börnigen, Daniela; Pers, Tune Hannes; Thorrez, Lieven

    2013-01-01

    Disease-causing variants in human genes usually lead to phenotypes specific to only a few tissues. Here, we present a method for predicting tissue specificity based on quantitative deregulation of protein complexes. The underlying assumption is that the degree of coordinated expression among prot...

  14. [Expression of saponin biosynthesis related genes in different tissues of Panax quinquefolius].

    Science.gov (United States)

    Wang, Kang-Yu; Liu, Wei-Can; Zhang, Mei-Ping; Zhao, Ming-Zhu; Wang, Yan-Fang; Li, Li; Sun, Chun-Yu; Hu, Ke-Xin; Cong, Yue-Yi; Wang, Yi

    2018-01-01

    The relationship between saponin content of Panax quinquefolius in different parts of the organization and expression of ginsenoside biosynthesis related gene was obtained by the correlation analysis between saponin content and gene expression. The 14 tissue parts of P. quinquefolius were studied, six saponins in P. quinquefolius. Samples (ginsenoside Rg₁, Re, Rb₁, Rc, Rb₂ and Rd), group saponins and total saponins were determined by high performance liquid chromatography and vanillin-sulfuric acid colorimetric method. Simultaneously, the expression levels of 7 ginsenoside biosynthesis related genes ( SQS, OSC, DS, β-AS, SQE, P450 and FPS ) in different tissues of P. quinquefolius were determined by Real-time fluorescence quantitative PCR. Although 7 kinds of ginsenoside biosynthesis related enzyme gene in the P. quinquefolius involved in ginsenoside synthesis, the expression of β-AS and P450 genes had no significant effect on the content of monosodium saponins, grouping saponins and total saponins, FPS, SQS, OSC, DS and SQE had significant or extremely significant on the contents of single saponins Re, Rg1, Rb1, Rd, group saponin PPD and PPT, total saponin TMS and total saponin TS ( P saponins, grouping saponins and total saponins in P. quinquefolius was affected by the interaction of multiple enzyme genes in the saponin synthesis pathway, the content of saponins in different tissues of P. quinquefolius was determined by the differences in the expression of key enzymes in the biosynthetic pathway. Therefore, this study further clarified that FPS, SQS, OSC, DS and SQE was the key enzyme to control the synthesis of saponins in P. quinquefolius by correlation analysis, the biosynthesis of ginsenosides in P. quinquefolius was regulated by these five kind of enzymes in cluster co-expression of interaction mode. Copyright© by the Chinese Pharmaceutical Association.

  15. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    International Nuclear Information System (INIS)

    Smith, Robert A; Lea, Rod A; Curran, Joanne E; Weinstein, Stephen R; Griffiths, Lyn R

    2003-01-01

    Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue

  16. Low-level lasers affect uncoupling protein gene expression in skin and skeletal muscle tissues

    International Nuclear Information System (INIS)

    Canuto, K S; Sergio, L P S; Mencalha, A L; Fonseca, A S; Paoli, F

    2016-01-01

    Wavelength, frequency, power, fluence, and emission mode determine the photophysical, photochemical, and photobiological responses of biological tissues to low-level lasers. Free radicals are involved in these responses acting as second messengers in intracellular signaling processes. Irradiated cells present defenses against these chemical species to avoid unwanted effects, such as uncoupling proteins (UCPs), which are part of protective mechanisms and minimize the effects of free radical generation in mitochondria. In this work UCP2 and UCP3 mRNA gene relative expression in the skin and skeletal muscle tissues of Wistar rats exposed to low-level red and infrared lasers was evaluated. Samples of the skin and skeletal muscle tissue of Wistar rats exposed to low-level red and infrared lasers were withdrawn for total RNA extraction, cDNA synthesis, and the evaluation of gene expression by quantitative polymerase chain reaction. UCP2 and UCP3 mRNA expression was differently altered in skin and skeletal muscle tissues exposed to lasers in a wavelength-dependent effect, with the UCP3 mRNA expression dose-dependent. Alteration on UCP gene expression could be part of the biostimulation effect and is necessary to make cells exposed to red and infrared low-level lasers more resistant or capable of adapting in damaged tissues or diseases. (paper)

  17. Tissue engineering of bladder using vascular endothelial growth factor gene-modified endothelial progenitor cells.

    Science.gov (United States)

    Chen, Bai-Song; Xie, Hua; Zhang, Sheng-Li; Geng, Hong-Quan; Zhou, Jun-Mei; Pan, Jun; Chen, Fang

    2011-12-01

    This study assessed the use of vascular endothelial growth factor (VEGF) gene-modified endothelial progenitor cells (EPCs) seeded onto bladder acellular matrix grafts (BAMGs), to enhance the blood supply in tissue-engineered bladders in a porcine model. Autologous porcine peripheral EPCs were isolated, cultured, expanded, characterized, and modified with the VEGF gene using an adenovirus vector. The expression of VEGF was examined using reverse transcriptase polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA). VEGF gene modified EPCs were seeded onto BAMG and cultured for 3 days before implantation into pigs for bladder tissue engineering. A partial bladder cystectomy was performed in 12 pigs. The experimental group (6 pigs) received VEGF gene-modified EPC-seeded BAMG. The control group (6 pigs) received BAMG without seeded EPCs. The resulting tissue-engineered bladders were subject to a general and histological analysis. Microvessel density (MVD) was assessed using immunohistochemistry. The ex vivo transfection efficiency of EPCs was greater than 60%-70% when concentrated adenovirus was used. The genetically modified cells expressed both VEGF and green fluorescent protein (GFP). Scanning electron microscopy (SEM) and Masson's trichrome staining of cross sections of the cultured cells seeded to BAMG showed cell attachment and proliferation on the surface of the BAMG. Histological examination revealed bladder regeneration in a time-dependent fashion. Significant increases in MVD were observed in the experimental group, in comparison with the control group. VEGF-modified EPCs significantly enhanced neovascularization, compared with BAMG alone. These results indicate that EPCs, combined with VEGF gene therapy, may be a suitable approach for increasing blood supply in the tissue engineering of bladders. Thus, a useful strategy to achieve a tissue-engineered bladder is indicated.

  18. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    International Nuclear Information System (INIS)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal; Thomsen, Bo; Larsen, Knud; Hedegaard, Jakob; Bendixen, Christian; Madsen, Lone Bruhn

    2013-01-01

    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i

  19. Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected trees: comparison with girdled fruit.

    Science.gov (United States)

    Liao, Hui-Ling; Burns, Jacqueline K

    2012-05-01

    Distribution of viable Candidatus Liberibacter asiaticus (CaLas) in sweet orange fruit and leaves ('Hamlin' and 'Valencia') and transcriptomic changes associated with huanglongbing (HLB) infection in fruit tissues are reported. Viable CaLas was present in most fruit tissues tested in HLB trees, with the highest titre detected in vascular tissue near the calyx abscission zone. Transcriptomic changes associated with HLB infection were analysed in flavedo (FF), vascular tissue (VT), and juice vesicles (JV) from symptomatic (SY), asymptomatic (AS), and healthy (H) fruit. In SY 'Hamlin', HLB altered the expression of more genes in FF and VT than in JV, whereas in SY 'Valencia', the number of genes whose expression was changed by HLB was similar in these tissues. The expression of more genes was altered in SY 'Valencia' JV than in SY 'Hamlin' JV. More genes were also affected in AS 'Valencia' FF and VT than in AS 'Valencia' JV. Most genes whose expression was changed by HLB were classified as transporters or involved in carbohydrate metabolism. Physiological characteristics of HLB-infected and girdled fruit were compared to differentiate between HLB-specific and carbohydrate metabolism-related symptoms. SY and girdled fruit were smaller than H and ungirdled fruit, respectively, with poor juice quality. However, girdling did not cause misshapen fruit or differential peel coloration. Quantitative PCR analysis indicated that many selected genes changed their expression significantly in SY flavedo but not in girdled flavedo. Mechanisms regulating development of HLB symptoms may lie in the host disease response rather than being a direct consequence of carbohydrate starvation.

  20. Validation of reference genes in Solenopsis invicta in different developmental stages, castes and tissues.

    Directory of Open Access Journals (Sweden)

    Daifeng Cheng

    Full Text Available To accurately assess gene expression levels, it is essential to normalize real-time quantitative PCR (RT-qPCR data with suitable internal reference genes. For the red imported fire ant, Solenopsis invicta, reliable reference genes to assess the transcript expression levels of the target genes have not been previously investigated. In this study, we examined the expression levels of five candidate reference genes (rpl18, ef1-beta, act, GAPDH, and tbp in different developmental stages, castes and tissues of S. invicta. To evaluate the suitability of these genes as endogenous controls, three software-based approaches (geNorm, BestKeeper and NormFinder and one web-based comprehensive tool (RefFinder were used to analyze and rank the tested genes. Furthermore, the optimal number of reference gene(s was determined by the pairwise variation value. Our data showed that two of the five candidate genes, rpl18 and ef1-beta, were the most suitable reference genes because they have the most stable expression among different developmental stages, castes and tissues in S. invicta. Although widely used as reference gene in other species, in S. invicta the act gene has high variation in expression and was consequently excluded as a reliable reference gene. The two validated reference genes, rpl18 and ef1-beta, can be widely used for quantification of target gene expression with RT-qPCR technology in S. invicta.

  1. Differential gene expression profile in pig adipose tissue treated with/without clenbuterol

    Directory of Open Access Journals (Sweden)

    Deng Xue M

    2007-11-01

    Full Text Available Abstract Background Clenbuterol, a beta-agonist, can dramatically reduce pig adipose accumulation at high dosages. However, it has been banned in pig production because people who eat pig products treated with clenbuterol can be poisoned by the clenbuterol residues. To understand the molecular mechanism for this fat reduction, cDNA microarray, real-time PCR, two-dimensional electrophoresis and mass spectra were used to study the differential gene expression profiles of pig adipose tissues treated with/without clenbuterol. The objective of this research is to identify novel genes and physiological pathways that potentially facilitate clenbuterol induced reduction of adipose accumulation. Results Clenbuterol was found to improve the lean meat percentage about 10 percent (P Conclusion Pig fat accumulation was reduced dramatically with clenbuterol treatment. Histological sections and global evaluation of gene expression after administration of clenbuterol in pigs identified profound changes in adipose cells. With clenbuterol stimulation, adipose cell volumes decreased and their gene expression profile changed, which indicate some metabolism processes have been also altered. Although the biological functions of the differentially expressed genes are not completely known, higher expressions of these molecules in adipose tissue might contribute to the reduction of fat accumulation. Among these genes, five lipid metabolism related genes were of special interest for further study, including apoD and apoR. The apoR expression was increased at both the RNA and protein levels. The apoR may be one of the critical molecules through which clenbuterol reduces fat accumulation.

  2. Tissue distribution of the dystrophin-related gene product and expression in the mdx and dy mouse

    Energy Technology Data Exchange (ETDEWEB)

    Love, D.R.; Marsden, R.F.; Bloomfield, J.F.; Davies, K.E. (John Radcliffe Hospital, Oxford (England)); Morris, G.E.; Ellis, J.M. (North East Wales Inst., Deeside, Wales (England)); Fairbrother, U.; Edwards, Y.H. (Univ. College London (England)); Slater, C.P. (Newcastle General Hospital, Newcastle-upon-Tyne (England)); Parry, D.J. (Univ. of Ottawa, Ontario (Canada))

    1991-04-15

    The authors have previously reported a dystrophin-related locus (DMDL for Duchenne muscular dystrophy-like) on human chromosome 6 that maps close to the dy mutation on mouse chromosome 10. Here they show that this gene is expressed in a wide range of tissues at varying levels. The transcript is particularly abundant in several human fetal tissues, including heart, placenta, and intestine. Studies with antisera raised against a DMDL fusion protein identify a 400,000 M{sub r} protein in all mouse tissues tested, including those of mdx and dy mice. Unlike the dystrophin gene, the DMDL gene transcript is not differentially spliced at the 3{prime} end in either fetal muscle or brain.

  3. Identification of valid reference genes for the normalization of RT qPCR gene expression data in human brain tissue

    Directory of Open Access Journals (Sweden)

    Ravid Rivka

    2008-05-01

    Full Text Available Abstract Background Studies of gene expression in post mortem human brain can contribute to understanding of the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD, Parkinson's disease (PD and dementia with Lewy bodies (DLB. Quantitative real-time PCR (RT qPCR is often used to analyse gene expression. The validity of results obtained using RT qPCR is reliant on accurate data normalization. Reference genes are generally used to normalize RT qPCR data. Given that expression of some commonly used reference genes is altered in certain conditions, this study aimed to establish which reference genes were stably expressed in post mortem brain tissue from individuals with AD, PD or DLB. Results The present study investigated the expression stability of 8 candidate reference genes, (ubiquitin C [UBC], tyrosine-3-monooxygenase [YWHAZ], RNA polymerase II polypeptide [RP II], hydroxymethylbilane synthase [HMBS], TATA box binding protein [TBP], β-2-microglobulin [B2M], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], and succinate dehydrogenase complex-subunit A, [SDHA] in cerebellum and medial temporal gyrus of 6 AD, 6 PD, 6 DLB subjects, along with 5 matched controls using RT qPCR (TaqMan® Gene Expression Assays. Gene expression stability was analysed using geNorm to rank the candidate genes in order of decreasing stability in each disease group. The optimal number of genes recommended for accurate data normalization in each disease state was determined by pairwise variation analysis. Conclusion This study identified validated sets of mRNAs which would be appropriate for the normalization of RT qPCR data when studying gene expression in brain tissue of AD, PD, DLB and control subjects.

  4. Finding biological process modifications in cancer tissues by mining gene expression correlations

    Directory of Open Access Journals (Sweden)

    Storari Sergio

    2006-01-01

    Full Text Available Abstract Background Through the use of DNA microarrays it is now possible to obtain quantitative measurements of the expression of thousands of genes from a biological sample. This technology yields a global view of gene expression that can be used in several ways. Functional insight into expression profiles is routinely obtained by using Gene Ontology terms associated to the cellular genes. In this paper, we deal with functional data mining from expression profiles, proposing a novel approach that studies the correlations between genes and their relations to Gene Ontology (GO. By using this "functional correlations comparison" we explore all possible pairs of genes identifying the affected biological processes by analyzing in a pair-wise manner gene expression patterns and linking correlated pairs with Gene Ontology terms. Results We apply here this "functional correlations comparison" approach to identify the existing correlations in hepatocarcinoma (161 microarray experiments and to reveal functional differences between normal liver and cancer tissues. The number of well-correlated pairs in each GO term highlights several differences in genetic interactions between cancer and normal tissues. We performed a bootstrap analysis in order to compute false detection rates (FDR and confidence limits. Conclusion Experimental results show the main advantage of the applied method: it both picks up general and specific GO terms (in particular it shows a fine resolution in the specific GO terms. The results obtained by this novel method are highly coherent with the ones proposed by other cancer biology studies. But additionally they highlight the most specific and interesting GO terms helping the biologist to focus his/her studies on the most relevant biological processes.

  5. Gene Expression Profiles in Paired Gingival Biopsies from Periodontitis-Affected and Healthy Tissues Revealed by Massively Parallel Sequencing

    Science.gov (United States)

    Båge, Tove; Lagervall, Maria; Jansson, Leif; Lundeberg, Joakim; Yucel-Lindberg, Tülay

    2012-01-01

    Periodontitis is a chronic inflammatory disease affecting the soft tissue and bone that surrounds the teeth. Despite extensive research, distinctive genes responsible for the disease have not been identified. The objective of this study was to elucidate transcriptome changes in periodontitis, by investigating gene expression profiles in gingival tissue obtained from periodontitis-affected and healthy gingiva from the same patient, using RNA-sequencing. Gingival biopsies were obtained from a disease-affected and a healthy site from each of 10 individuals diagnosed with periodontitis. Enrichment analysis performed among uniquely expressed genes for the periodontitis-affected and healthy tissues revealed several regulated pathways indicative of inflammation for the periodontitis-affected condition. Hierarchical clustering of the sequenced biopsies demonstrated clustering according to the degree of inflammation, as observed histologically in the biopsies, rather than clustering at the individual level. Among the top 50 upregulated genes in periodontitis-affected tissues, we investigated two genes which have not previously been demonstrated to be involved in periodontitis. These included interferon regulatory factor 4 and chemokine (C-C motif) ligand 18, which were also expressed at the protein level in gingival biopsies from patients with periodontitis. In conclusion, this study provides a first step towards a quantitative comprehensive insight into the transcriptome changes in periodontitis. We demonstrate for the first time site-specific local variation in gene expression profiles of periodontitis-affected and healthy tissues obtained from patients with periodontitis, using RNA-seq. Further, we have identified novel genes expressed in periodontitis tissues, which may constitute potential therapeutic targets for future treatment strategies of periodontitis. PMID:23029519

  6. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing.

    Science.gov (United States)

    Vannette, Rachel L; Mohamed, Abbas; Johnson, Brian R

    2015-11-09

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging.

  7. A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues.

    Directory of Open Access Journals (Sweden)

    Athma A Pai

    2011-02-01

    Full Text Available The modification of DNA by methylation is an important epigenetic mechanism that affects the spatial and temporal regulation of gene expression. Methylation patterns have been described in many contexts within and across a range of species. However, the extent to which changes in methylation might underlie inter-species differences in gene regulation, in particular between humans and other primates, has not yet been studied. To this end, we studied DNA methylation patterns in livers, hearts, and kidneys from multiple humans and chimpanzees, using tissue samples for which genome-wide gene expression data were also available. Using the multi-species gene expression and methylation data for 7,723 genes, we were able to study the role of promoter DNA methylation in the evolution of gene regulation across tissues and species. We found that inter-tissue methylation patterns are often conserved between humans and chimpanzees. However, we also found a large number of gene expression differences between species that might be explained, at least in part, by corresponding differences in methylation levels. In particular, we estimate that, in the tissues we studied, inter-species differences in promoter methylation might underlie as much as 12%-18% of differences in gene expression levels between humans and chimpanzees.

  8. Feasibility of using tissue microarray cores of paraffin-embedded breast cancer tissue for measurement of gene expression: a proof-of-concept study.

    Science.gov (United States)

    Drury, Suzanne; Salter, Janine; Baehner, Frederick L; Shak, Steven; Dowsett, Mitch

    2010-06-01

    To determine whether 0.6 mm cores of formalin-fixed paraffin-embedded (FFPE) tissue, as commonly used to construct immunohistochemical tissue microarrays, may be a valid alternative to tissue sections as source material for quantitative real-time PCR-based transcriptional profiling of breast cancer. Four matched 0.6 mm cores of invasive breast tumour and two 10 microm whole sections were taken from eight FFPE blocks. RNA was extracted and reverse transcribed, and TaqMan assays were performed on the 21 genes of the Oncotype DX Breast Cancer assay. Expression of the 16 recurrence-related genes was normalised to the set of five reference genes, and the recurrence score (RS) was calculated. RNA yield was lower from 0.6 mm cores than from 10 microm whole sections, but was still more than sufficient to perform the assay. RS and single gene data from cores were highly comparable with those from whole sections (RS p=0.005). Greater variability was seen between cores than between sections. FFPE sections are preferable to 0.6 mm cores for RNA profiling in order to maximise RNA yield and to allow for standard histopathological assessment. However, 0.6 mm cores are sufficient and would be appropriate to use for large cohort studies.

  9. Differential expression of diacylglycerol acyltransferase (DGAT) genes in olive tissues.

    Science.gov (United States)

    Giannoulia, K; Haralampidis, K; Poghosyan, Z; Murphy, D J; Hatzopoulos, P

    2000-12-01

    Fatty acids are accumulated in triacylglycerols (TAGs), in specialized organelles of seeds named oil bodies. The major site of TAG accumulation is detected in developing seed and mesocarp of certain species. We have isolated two cDNAs encoding DGAT enzymes from olives. The deduced polypeptides differ by 26 amino acids in size. However, they have high homology and almost identical hydropathy profiles. The DGAT gene is expressed in all tissues that synthesize TAGs. However, higher levels of DGAT transcripts have been detected in seed tissues of developing olive drupe. DGAT expression and mRNA accumulation in drupe tissues is developmentally regulated. Each DGAT transcript shows a distinct profile of accumulation. The existence of two different DGAT transcripts might reflect two different enzymes with discrete function and/or localization.

  10. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR

    DEFF Research Database (Denmark)

    Hillig, Ann-Britt Nygaard; Jørgensen, Claus Bøttcher; Cirera, Susanna

    2007-01-01

    -microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethylbilane synthase (HMBS), hypoxanthine phosphoribosyltransferase I (HPRT I), ribosomal protein L4 (RPL4), succinate dehydrogenase complex subunit A (SDHA), TATA box binding protein (TPB) and tyrosine 3-monooxygenase/tryptophan 5......-monooxygenase activation protein zeta polypeptide (YWHAZ). The stability of these reference genes in different pig tissues was investigated using the geNorm application. The range of expression stability in the genes analysed was (from the most stable to the least stable): ACTB/RPL4, TBP, HPRT, HMBS, YWHAZ...

  11. Twist and YB-1 gene expression in cervical cancer and precancerous tissue and their correlation with cell invasion

    Directory of Open Access Journals (Sweden)

    Qin Tian

    2017-04-01

    Full Text Available Objective: To study the correlation of Twist and YB-1 gene expression in cervical cancer and precancerous tissue with cell invasion. Methods: Cervical cancer tissue, precancerous tissue and normal cervical tissue surgically removed in our hospital between May 2013 and April 2015 were collected; immunohistochemical staining kits were used to detect the positive protein expression rate of Twist and YB-1 gene; fluorescence quantitative PCR kits were used to detect Twist, YB-1 and invasion gene mRNA expression. Results: Twist and YB-1 mRNA expression and positive protein expression rate as well as USP22, Rab11, Rac1 and ANXA5 mRNA expression in cervical cancer tissue and precancerous tissue were significantly higher than those in normal cervical tissue, Twist and YB-1 mRNA expression and positive protein expression rate as well as USP22, Rab11, Rac1 and ANXA5 mRNA expression in cervical cancer tissue were significantly higher than those in precancerous tissue; USP22, Rab11, Rac1 and ANXA5 mRNA expression in cervical cancer tissue and precancerous tissue with positive Twist and YB-1 expression were significantly higher than those in cervical cancer tissue and precancerous tissue with negative Twist and YB-1 expression. Conclusion: Highly expressed Twist and YB-1 in cervical cancer and precancerous tissue can promote cell invasion.

  12. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets.

    Directory of Open Access Journals (Sweden)

    Pooja Ghatalia

    Full Text Available Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR and mammalian target of rapamycin (mTOR improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC, but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T, matched normal kidney (N and metastatic tumor tissue (M may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79 compared to those that did not develop metastasis for at least 2 years (n = 187. Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001. The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation.

  13. Identification of Differentially Expressed IGFBP5-Related Genes in Breast Cancer Tumor Tissues Using cDNA Microarray Experiments.

    Science.gov (United States)

    Akkiprik, Mustafa; Peker, İrem; Özmen, Tolga; Amuran, Gökçe Güllü; Güllüoğlu, Bahadır M; Kaya, Handan; Özer, Ayşe

    2015-11-10

    IGFBP5 is an important regulatory protein in breast cancer progression. We tried to identify differentially expressed genes (DEGs) between breast tumor tissues with IGFBP5 overexpression and their adjacent normal tissues. In this study, thirty-eight breast cancer and adjacent normal breast tissue samples were used to determine IGFBP5 expression by qPCR. cDNA microarrays were applied to the highest IGFBP5 overexpressed tumor samples compared to their adjacent normal breast tissue. Microarray analysis revealed that a total of 186 genes were differentially expressed in breast cancer compared with normal breast tissues. Of the 186 genes, 169 genes were downregulated and 17 genes were upregulated in the tumor samples. KEGG pathway analyses showed that protein digestion and absorption, focal adhesion, salivary secretion, drug metabolism-cytochrome P450, and phenylalanine metabolism pathways are involved. Among these DEGs, the prominent top two genes (MMP11 and COL1A1) which potentially correlated with IGFBP5 were selected for validation using real time RT-qPCR. Only COL1A1 expression showed a consistent upregulation with IGFBP5 expression and COL1A1 and MMP11 were significantly positively correlated. We concluded that the discovery of coordinately expressed genes related with IGFBP5 might contribute to understanding of the molecular mechanism of the function of IGFBP5 in breast cancer. Further functional studies on DEGs and association with IGFBP5 may identify novel biomarkers for clinical applications in breast cancer.

  14. Differentially expressed androgen-regulated genes in androgen-sensitive tissues reveal potential biomarkers of early prostate cancer.

    Directory of Open Access Journals (Sweden)

    Dogus Murat Altintas

    Full Text Available BACKGROUND: Several data favor androgen receptor implication in prostate cancer initiation through the induction of several gene activation programs. The aim of the study is to identify potential biomarkers for early diagnosis of prostate cancer (PCa among androgen-regulated genes (ARG and to evaluate comparative expression of these genes in normal prostate and normal prostate-related androgen-sensitive tissues that do not (or rarely give rise to cancer. METHODS: ARG were selected in non-neoplastic adult human prostatic epithelial RWPE-1 cells stably expressing an exogenous human androgen receptor, using RNA-microarrays and validation by qRT-PCR. Expression of 48 preselected genes was quantified in tissue samples (seminal vesicles, prostate transitional zones and prostate cancers, benign prostatic hypertrophy obtained from surgical specimens using TaqMan® low-density arrays. The diagnostic performances of these potential biomarkers were compared to that of genes known to be associated with PCa (i.e. PCA3 and DLX1. RESULTS AND DISCUSSION: By crossing expression studies in 26 matched PCa and normal prostate transitional zone samples, and 35 matched seminal vesicle and PCa samples, 14 genes were identified. Similarly, 9 genes were overexpressed in 15 benign prostatic hypertrophy samples, as compared to PCa samples. Overall, we selected 8 genes of interest to evaluate their diagnostic performances in comparison with that of PCA3 and DLX1. Among them, 3 genes: CRYAB, KCNMA1 and SDPR, were overexpressed in all 3 reference non-cancerous tissues. The areas under ROC curves of these genes reached those of PCA3 (0.91 and DLX1 (0.94. CONCLUSIONS: We identified ARG with reduced expression in PCa and with significant diagnostic values for discriminating between cancerous and non-cancerous prostatic tissues, similar that of PCA3. Given their expression pattern, they could be considered as potentially protective against prostate cancer. Moreover, they could

  15. Comparative analysis of chromatin landscape in regulatory regions of human housekeeping and tissue specific genes

    Directory of Open Access Journals (Sweden)

    Dasgupta Dipayan

    2005-05-01

    Full Text Available Abstract Background Global regulatory mechanisms involving chromatin assembly and remodelling in the promoter regions of genes is implicated in eukaryotic transcription control especially for genes subjected to spatial and temporal regulation. The potential to utilise global regulatory mechanisms for controlling gene expression might depend upon the architecture of the chromatin in and around the gene. In-silico analysis can yield important insights into this aspect, facilitating comparison of two or more classes of genes comprising of a large number of genes within each group. Results In the present study, we carried out a comparative analysis of chromatin characteristics in terms of the scaffold/matrix attachment regions, nucleosome formation potential and the occurrence of repetitive sequences, in the upstream regulatory regions of housekeeping and tissue specific genes. Our data show that putative scaffold/matrix attachment regions are more abundant and nucleosome formation potential is higher in the 5' regions of tissue specific genes as compared to the housekeeping genes. Conclusion The differences in the chromatin features between the two groups of genes indicate the involvement of chromatin organisation in the control of gene expression. The presence of global regulatory mechanisms mediated through chromatin organisation can decrease the burden of invoking gene specific regulators for maintenance of the active/silenced state of gene expression. This could partially explain the lower number of genes estimated in the human genome.

  16. Tissue-specifically regulated site-specific excision of selectable marker genes in bivalent insecticidal, genetically-modified rice.

    Science.gov (United States)

    Hu, Zhan; Ding, Xuezhi; Hu, Shengbiao; Sun, Yunjun; Xia, Liqiu

    2013-12-01

    Marker-free, genetically-modified rice was created by the tissue-specifically regulated Cre/loxP system, in which the Cre recombinase gene and hygromycin phosphotransferase gene (hpt) were flanked by two directly oriented loxP sites. Cre expression was activated by the tissue-specific promoter OsMADS45 in flower or napin in seed, resulting in simultaneous excision of the recombinase and marker genes. Segregation of T1 progeny was performed to select recombined plants. The excision was confirmed by PCR, Southern blot and sequence analyses indicating that efficiency varied from 10 to 53 % for OsMADS45 and from 12 to 36 % for napin. The expression of cry1Ac and vip3A was detected by RT-PCR analysis in marker-free transgenic rice. These results suggested that our tissue-specifically regulated Cre/loxP system could auto-excise marker genes from transgenic rice and alleviate public concerns about the security of GM crops.

  17. Gene Expression Signature in Adipose Tissue of Acromegaly Patients

    Science.gov (United States)

    Hochberg, Irit; Tran, Quynh T.; Barkan, Ariel L.; Saltiel, Alan R.; Chandler, William F.; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly. PMID:26087292

  18. Gene expression profiles help identify the Tissue of Origin for metastatic brain cancers

    Directory of Open Access Journals (Sweden)

    VandenBerg Scott R

    2010-04-01

    Full Text Available Abstract Background Metastatic brain cancers are the most common intracranial tumor and occur in about 15% of all cancer patients. In up to 10% of these patients, the primary tumor tissue remains unknown, even after a time consuming and costly workup. The Pathwork® Tissue of Origin Test (Pathwork Diagnostics, Redwood City, CA, USA is a gene expression test to aid in the diagnosis of metastatic, poorly differentiated and undifferentiated tumors. It measures the expression pattern of 1,550 genes in these tumors and compares it to the expression pattern of a panel of 15 known tumor types. The purpose of this study was to evaluate the performance of the Tissue of Origin Test in the diagnosis of primary sites for metastatic brain cancer patients. Methods Fifteen fresh-frozen metastatic brain tumor specimens of known origins met specimen requirements. These specimens were entered into the study and processed using the Tissue of Origin Test. Results were compared to the known primary site and the agreement between the two results was assessed. Results Fourteen of the fifteen specimens produced microarray data files that passed all quality metrics. One originated from a tissue type that was off-panel. Among the remaining 13 cases, the Tissue of Origin Test accurately predicted the available diagnosis in 12/13 (92.3% cases. Discussion This study demonstrates the accuracy of the Tissue of Origin Test when applied to predict the tissue of origin of metastatic brain tumors. This test could be a very useful tool for pathologists as they classify metastatic brain cancers.

  19. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells.

    Science.gov (United States)

    Sato, Masanori; Ito, Akira; Kawabe, Yoshinori; Nagamori, Eiji; Kamihira, Masamichi

    2011-09-01

    The aim of this study was to investigate whether insulin-like growth factor (IGF)-I gene delivery to myoblast cells promotes the contractile force generated by hydrogel-based tissue-engineered skeletal muscles in vitro. Two retroviral vectors allowing doxycycline (Dox)-inducible expression of the IGF-I gene were transduced into mouse myoblast C2C12 cells to evaluate the effects of IGF-I gene expression on these cells. IGF-I gene expression stimulated the proliferation of C2C12 cells, and a significant increase in the growth rate was observed for IGF-I-transduced C2C12 cells with Dox addition, designated C2C12/IGF (Dox+) cells. Quantitative morphometric analyses showed that the myotubes induced from C2C12/IGF (Dox+) cells had a larger area and a greater width than control myotubes induced from normal C2C12 cells. Artificial skeletal muscle tissues were prepared from the respective cells using hydrogels composed of type I collagen and Matrigel. Western blot analyses revealed that the C2C12/IGF (Dox+) tissue constructs showed activation of a skeletal muscle hypertrophy marker (Akt) and enhanced expression of muscle-specific markers (myogenin, myosin heavy chain and tropomyosin). Moreover, the creatine kinase activity was increased in the C2C12/IGF (Dox+) tissue constructs. The C2C12/IGF (Dox+) tissue constructs contracted in response to electrical pulses, and generated a significantly higher physical force than the control C2C12 tissue constructs. These findings indicate that IGF-I gene transfer has the potential to yield functional skeletal muscle substitutes that are capable of in vivo restoration of the load-bearing function of injured muscle or acting as in vitro electrically-controlled bio-actuators. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia.

    Science.gov (United States)

    Badea, Liviu; Herlea, Vlad; Dima, Simona Olimpia; Dumitrascu, Traian; Popescu, Irinel

    2008-01-01

    The precise details of pancreatic ductal adenocarcinoma (PDAC) pathogenesis are still insufficiently known, requiring the use of high-throughput methods. However, PDAC is especially difficult to study using microarrays due to its strong desmoplastic reaction, which involves a hyperproliferating stroma that effectively "masks" the contribution of the minoritary neoplastic epithelial cells. Thus it is not clear which of the genes that have been found differentially expressed between normal and whole tumor tissues are due to the tumor epithelia and which simply reflect the differences in cellular composition. To address this problem, laser microdissection studies have been performed, but these have to deal with much smaller tissue sample quantities and therefore have significantly higher experimental noise. In this paper we combine our own large sample whole-tissue study with a previously published smaller sample microdissection study by Grützmann et al. to identify the genes that are specifically overexpressed in PDAC tumor epithelia. The overlap of this list of genes with other microarray studies of pancreatic cancer as well as with the published literature is impressive. Moreover, we find a number of genes whose over-expression appears to be inversely correlated with patient survival: keratin 7, laminin gamma 2, stratifin, platelet phosphofructokinase, annexin A2, MAP4K4 and OACT2 (MBOAT2), which are all specifically upregulated in the neoplastic epithelia, rather than the tumor stroma. We improve on other microarray studies of PDAC by putting together the higher statistical power due to a larger number of samples with information about cell-type specific expression and patient survival.

  1. Differential impact of transplantation on peripheral and tissue-associated viral reservoirs: Implications for HIV gene therapy.

    Science.gov (United States)

    Peterson, Christopher W; Wang, Jianbin; Deleage, Claire; Reddy, Sowmya; Kaur, Jasbir; Polacino, Patricia; Reik, Andreas; Huang, Meei-Li; Jerome, Keith R; Hu, Shiu-Lok; Holmes, Michael C; Estes, Jacob D; Kiem, Hans-Peter

    2018-04-01

    Autologous transplantation and engraftment of HIV-resistant cells in sufficient numbers should recapitulate the functional cure of the Berlin Patient, with applicability to a greater number of infected individuals and with a superior safety profile. A robust preclinical model of suppressed HIV infection is critical in order to test such gene therapy-based cure strategies, both alone and in combination with other cure strategies. Here, we present a nonhuman primate (NHP) model of latent infection using simian/human immunodeficiency virus (SHIV) and combination antiretroviral therapy (cART) in pigtail macaques. We demonstrate that transplantation of CCR5 gene-edited hematopoietic stem/progenitor cells (HSPCs) persist in infected and suppressed animals, and that protected cells expand through virus-dependent positive selection. CCR5 gene-edited cells are readily detectable in tissues, namely those closely associated with viral reservoirs such as lymph nodes and gastrointestinal tract. Following autologous transplantation, tissue-associated SHIV DNA and RNA levels in suppressed animals are significantly reduced (p ≤ 0.05), relative to suppressed, untransplanted control animals. In contrast, the size of the peripheral reservoir, measured by QVOA, is variably impacted by transplantation. Our studies demonstrate that CCR5 gene editing is equally feasible in infected and uninfected animals, that edited cells persist, traffic to, and engraft in tissue reservoirs, and that this approach significantly reduces secondary lymphoid tissue viral reservoir size. Our robust NHP model of HIV gene therapy and viral persistence can be immediately applied to the investigation of combinatorial approaches that incorporate anti-HIV gene therapy, immune modulators, therapeutic vaccination, and latency reversing agents.

  2. Differential impact of transplantation on peripheral and tissue-associated viral reservoirs: Implications for HIV gene therapy.

    Directory of Open Access Journals (Sweden)

    Christopher W Peterson

    2018-04-01

    Full Text Available Autologous transplantation and engraftment of HIV-resistant cells in sufficient numbers should recapitulate the functional cure of the Berlin Patient, with applicability to a greater number of infected individuals and with a superior safety profile. A robust preclinical model of suppressed HIV infection is critical in order to test such gene therapy-based cure strategies, both alone and in combination with other cure strategies. Here, we present a nonhuman primate (NHP model of latent infection using simian/human immunodeficiency virus (SHIV and combination antiretroviral therapy (cART in pigtail macaques. We demonstrate that transplantation of CCR5 gene-edited hematopoietic stem/progenitor cells (HSPCs persist in infected and suppressed animals, and that protected cells expand through virus-dependent positive selection. CCR5 gene-edited cells are readily detectable in tissues, namely those closely associated with viral reservoirs such as lymph nodes and gastrointestinal tract. Following autologous transplantation, tissue-associated SHIV DNA and RNA levels in suppressed animals are significantly reduced (p ≤ 0.05, relative to suppressed, untransplanted control animals. In contrast, the size of the peripheral reservoir, measured by QVOA, is variably impacted by transplantation. Our studies demonstrate that CCR5 gene editing is equally feasible in infected and uninfected animals, that edited cells persist, traffic to, and engraft in tissue reservoirs, and that this approach significantly reduces secondary lymphoid tissue viral reservoir size. Our robust NHP model of HIV gene therapy and viral persistence can be immediately applied to the investigation of combinatorial approaches that incorporate anti-HIV gene therapy, immune modulators, therapeutic vaccination, and latency reversing agents.

  3. Epigenetics-related genes in prostate cancer: expression profile in prostate cancer tissues, androgen-sensitive and -insensitive cell lines.

    Science.gov (United States)

    Shaikhibrahim, Zaki; Lindstrot, Andreas; Ochsenfahrt, Jacqueline; Fuchs, Kerstin; Wernert, Nicolas

    2013-01-01

    Epigenetic changes have been suggested to drive prostate cancer (PCa) development and progression. Therefore, in this study, we aimed to identify novel epigenetics-related genes in PCa tissues, and to examine their expression in metastatic PCa cell lines. We analyzed the expression of epigenetics-related genes via a clustering analysis based on gene function in moderately and poorly differentiated PCa glands compared to normal glands of the peripheral zone (prostate proper) from PCa patients using Whole Human Genome Oligo Microarrays. Our analysis identified 12 epigenetics-related genes with a more than 2-fold increase or decrease in expression and a p-value epigenetics-related genes that we identified in primary PCa tissues may provide further insight into the role that epigenetic changes play in PCa. Moreover, some of the genes that we identified may play important roles in primary PCa and metastasis, in primary PCa only, or in metastasis only. Follow-up studies are required to investigate the functional role and the role that the expression of these genes play in the outcome and progression of PCa using tissue microarrays.

  4. Expression of inflammation-related genes is altered in gastric tissue of patients with advanced stages of NAFLD.

    Science.gov (United States)

    Mehta, Rohini; Birerdinc, Aybike; Neupane, Arpan; Shamsaddini, Amirhossein; Afendy, Arian; Elariny, Hazem; Chandhoke, Vikas; Baranova, Ancha; Younossi, Zobair M

    2013-01-01

    Obesity is associated with chronic low-grade inflammation perpetuated by visceral adipose. Other organs, particularly stomach and intestine, may also overproduce proinflammatory molecules. We examined the gene expression patterns in gastric tissue of morbidly obese patients with nonalcoholic fatty liver disease (NAFLD) and compared the changes in gene expression in different histological forms of NAFLD. Stomach tissue samples from 20 morbidly obese NAFLD patients who were undergoing sleeve gastrectomy were profiled using qPCR for 84 genes encoding inflammatory cytokines, chemokines, their receptors, and other components of inflammatory cascades. Interleukin 8 receptor-beta (IL8RB) gene overexpression in gastric tissue was correlated with the presence of hepatic steatosis, hepatic fibrosis, and histologic diagnosis of nonalcoholic steatohepatitis (NASH). Expression levels of soluble interleukin 1 receptor antagonist (IL1RN) were correlated with the presence of NASH and hepatic fibrosis. mRNA levels of interleukin 8 (IL8), chemokine (C-C motif) ligand 4 (CCL4), and its receptor chemokine (C-C motif) receptor type 5 (CCR5) showed a significant increase in patients with advanced hepatic inflammation and were correlated with the severity of the hepatic inflammation. The results of our study suggest that changes in expression patterns for inflammatory molecule encoding genes within gastric tissue may contribute to the pathogenesis of obesity-related NAFLD.

  5. Deregulation of obesity-relevant genes is associated with progression in BMI and the amount of adipose tissue in pigs.

    Science.gov (United States)

    Mentzel, Caroline M Junker; Cardoso, Tainã Figueiredo; Pipper, Christian Bressen; Jacobsen, Mette Juul; Jørgensen, Claus Bøttcher; Cirera, Susanna; Fredholm, Merete

    2018-02-01

    The aim of this study was to elucidate the relative impact of three phenotypes often used to characterize obesity on perturbation of molecular pathways involved in obesity. The three obesity-related phenotypes are (1) body mass index (BMI), (2) amount of subcutaneous adipose tissue (SATa), and (3) amount of retroperitoneal adipose tissue (RPATa). Although it is generally accepted that increasing amount of RPATa is 'unhealthy', a direct comparison of the relative impact of the three obesity-related phenotypes on gene expression has, to our knowledge, not been performed previously. We have used multiple linear models to analyze altered gene expression of selected obesity-related genes in tissues collected from 19 female pigs phenotypically characterized with respect to the obesity-related phenotypes. Gene expression was assessed by high-throughput qPCR in RNA from liver, skeletal muscle and abdominal adipose tissue. The stringent statistical approach used in the study has increased the power of the analysis compared to the classical approach of analysis in divergent groups of individuals. Our approach led to the identification of key components of cellular pathways that are modulated in the three tissues in association with changes in the three obesity-relevant phenotypes (BMI, SATa and RPATa). The deregulated pathways are involved in biosynthesis and transcript regulation in adipocytes, in lipid transport, lipolysis and metabolism, and in inflammatory responses. Deregulation seemed more comprehensive in liver (23 genes) compared to abdominal adipose tissue (10 genes) and muscle (3 genes). Notably, the study supports the notion that excess amount of intra-abdominal adipose tissue is associated with a greater metabolic disease risk. Our results provide molecular support for this notion by demonstrating that increasing amount of RPATa has a higher impact on perturbation of cellular pathways influencing obesity and obesity-related metabolic traits compared to increase

  6. The architecture of gene regulatory variation across multiple human tissues: the MuTHER study.

    Directory of Open Access Journals (Sweden)

    Alexandra C Nica

    2011-02-01

    Full Text Available While there have been studies exploring regulatory variation in one or more tissues, the complexity of tissue-specificity in multiple primary tissues is not yet well understood. We explore in depth the role of cis-regulatory variation in three human tissues: lymphoblastoid cell lines (LCL, skin, and fat. The samples (156 LCL, 160 skin, 166 fat were derived simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER resource. We discover an abundance of cis-eQTLs in each tissue similar to previous estimates (858 or 4.7% of genes. In addition, we apply factor analysis (FA to remove effects of latent variables, thus more than doubling the number of our discoveries (1,822 eQTL genes. The unique study design (Matched Co-Twin Analysis--MCTA permits immediate replication of eQTLs using co-twins (93%-98% and validation of the considerable gain in eQTL discovery after FA correction. We highlight the challenges of comparing eQTLs between tissues. After verifying previous significance threshold-based estimates of tissue-specificity, we show their limitations given their dependency on statistical power. We propose that continuous estimates of the proportion of tissue-shared signals and direct comparison of the magnitude of effect on the fold change in expression are essential properties that jointly provide a biologically realistic view of tissue-specificity. Under this framework we demonstrate that 30% of eQTLs are shared among the three tissues studied, while another 29% appear exclusively tissue-specific. However, even among the shared eQTLs, a substantial proportion (10%-20% have significant differences in the magnitude of fold change between genotypic classes across tissues. Our results underline the need to account for the complexity of eQTL tissue-specificity in an effort to assess consequences of such variants for complex traits.

  7. The relationship among human papilloma virus infection, survivin, and p53 gene in lung squamous carcinoma tissue

    International Nuclear Information System (INIS)

    Yue-Hua Wang; De-jie Chen; Tie-Nan Yi

    2010-01-01

    To study the relationship between the infection of human papillomavirus (HPV) type 16, type 18, the expression of survivin, and the mutation of p53 gene in lung squamous carcinoma tissue for the research of pathogenesis of lung carcinoma.This study was carried out at the Laboratory of Molecular Biology, Xiangfan Central Hospital of Hubei Province, China from September 2008 to May 2010. Forty-five specimens of lung squamous carcinoma tissue confirmed by histopathology were the excisional specimens taken by the Thoracic Surgery of Xiangfan Central Hospital. Normal tissue, closely adjacent to the fresh carcinoma specimens, was used as the control group for p53 gene mutation analysis. Sixteen surgical excisional specimens of benign lung disease were used as a control group of non-carcinomatous diseases. Human papillomavirus DNA were detected by polymerase chain reaction (PCR), and we used the PCR-single-strand conformation polymorphism-ethidium bromide (PCR-SSCP-EB) method to detect the mutations of the p53 gene. The expression of the survivin gene was detected by immunohistochemistry methods. Approximately 68.9% of 45 lung squamous carcinoma tissue had p53 gene mutations. The mutation rate of exon 5-8 p53 were 15.6%, 17.8%, 15.6% and 20%. Approximately 42.2% of lung squamous cell carcinoma samples were shown to be positive for HPV DNA expression and 62.2% were positive for survivin expression. There was an inverse correlation between the presence of HPV infections and mutations of p53 gene; and the mutations of p53 gene and expression of survivin had a positive relationship. Mutation of p53 gene and HPV infection may facilitate each other in the generation of lung squamous cell carcinoma. Abnormal expression of the survivin gene may take part in the onset and progression of lung squamous cell carcinoma (Author).

  8. Regulating expressin of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, Roger N. [Donald Danforth Plant Science Center, St. Louis, MO (United States); Dai, Shunhong [Donald Danforth Plant Science Center, St. Louis, MO (United States)

    2009-12-15

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Our research supported by this program has led to the identification of rice bZIP transcription factors RF2a, RF2b and RLP1 that play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV) through their interactions with the Box II essential cis element located in the promoter. RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants and to improve biofuel feedstock.

  9. [Correlation of gene expression related to amount of ginseng saponin in 15 tissues and 6 kinds of ginseng saponin biosynthesis].

    Science.gov (United States)

    Wang, Kang-yu; Zhang, Mei-ping; Li, Chuang; Jiang, Shi-cui; Yin, Rui; Sun, Chun-yu; Wang, Yi

    2015-08-01

    Fifteen tissues of 4-year-old fruit repining stage Jilin ginseng were chosen as materials, six kinds of monomer saponins (ginsenosides Rg1, Re, Rb1, Rc, Rb2 and Rd) content in 15 tissues was measured by HPLC and vanillin-sulfuric acid method. The relative expression of FPS, SQS, SQE, OSC, β-AS and P450 genes in 15 tissues was analyzed by real-time PCR. The correlations between ginseng saponin content in 15 tissues of Jilin ginseng and biosynthetic pathway -related genes were obtained. The results showed that was a synergistic increase and decrease trend of positive linear correlation among six kinds of monomer saponin content, and there was a significantly (P saponin content and total saponins content. Monomer saponin content and 6 kinds of enzyme gene correlation were different. Biosynthesis of ginseng total saponins and monomer saponin were regulated by six kinds of participation ginsenoside biosynthesis enzyme genes, the expression of these six kinds of genes in different tissues of ginseng showed collaborative increase and decrease trend, and regulated biosynthesis of ginseng ginsenoside by group coordinative manner.

  10. Tissue-specific alternative splicing and expression of ATP1B2 gene

    African Journals Online (AJOL)

    user6

    2012-05-15

    May 15, 2012 ... retention; these isoforms were found in liver, kidney, muscle and breast tissues. ... lower levels than the complete ATP1B2 gene transcript in all the ... temperature. ... growth, differentiation, and disease (Zhou et al., 2002;.

  11. Quantitative RT-PCR analysis of estrogen receptor gene expression in laser microdissected prostate cancer tissue.

    Science.gov (United States)

    Walton, Thomas J; Li, Geng; McCulloch, Thomas A; Seth, Rashmi; Powe, Desmond G; Bishop, Michael C; Rees, Robert C

    2009-06-01

    Real-time quantitative RT-PCR analysis of laser microdissected tissue is considered the most accurate technique for determining tissue gene expression. The discovery of estrogen receptor beta (ERbeta) has focussed renewed interest on the role of estrogen receptors in prostate cancer, yet few studies have utilized the technique to analyze estrogen receptor gene expression in prostate cancer. Fresh tissue was obtained from 11 radical prostatectomy specimens and from 6 patients with benign prostate hyperplasia. Pure populations of benign and malignant prostate epithelium were laser microdissected, followed by RNA isolation and electrophoresis. Quantitative RT-PCR was performed using primers for androgen receptor (AR), estrogen receptor beta (ERbeta), estrogen receptor alpha (ERalpha), progesterone receptor (PGR) and prostate specific antigen (PSA), with normalization to two housekeeping genes. Differences in gene expression were analyzed using the Mann-Whitney U-test. Correlation coefficients were analyzed using Spearman's test. Significant positive correlations were seen when AR and AR-dependent PSA, and ERalpha and ERalpha-dependent PGR were compared, indicating a representative population of RNA transcripts. ERbeta gene expression was significantly over-expressed in the cancer group compared with benign controls (P cancer group (P prostate cancer specimens. In concert with recent studies the findings suggest differential production of ERbeta splice variants, which may play important roles in the genesis of prostate cancer. (c) 2009 Wiley-Liss, Inc.

  12. Qualitative and quantitative expression status of the human chromosome 20 genes in cancer tissues and the representative cell lines.

    Science.gov (United States)

    Wang, Quanhui; Wen, Bo; Yan, Guangrong; Wei, Junying; Xie, Liqi; Xu, Shaohang; Jiang, Dahai; Wang, Tingyou; Lin, Liang; Zi, Jin; Zhang, Ju; Zhou, Ruo; Zhao, Haiyi; Ren, Zhe; Qu, Nengrong; Lou, Xiaomin; Sun, Haidan; Du, Chaoqin; Chen, Chuangbin; Zhang, Shenyan; Tan, Fengji; Xian, Youqi; Gao, Zhibo; He, Minghui; Chen, Longyun; Zhao, Xiaohang; Xu, Ping; Zhu, Yunping; Yin, Xingfeng; Shen, Huali; Zhang, Yang; Jiang, Jing; Zhang, Chengpu; Li, Liwei; Chang, Cheng; Ma, Jie; Yan, Guoquan; Yao, Jun; Lu, Haojie; Ying, Wantao; Zhong, Fan; He, Qing-Yu; Liu, Siqi

    2013-01-04

    Under the guidance of the Chromosome-centric Human Proteome Project (C-HPP), (1, 2) we conducted a systematic survey of the expression status of genes located at human chromosome 20 (Chr.20) in three cancer tissues, gastric, colon, and liver carcinoma, and their representative cell lines. We have globally profiled proteomes in these samples with combined technology of LC-MS/MS and acquired the corresponding mRNA information upon RNA-seq and RNAchip. In total, 323 unique proteins were identified, covering 60% of the coding genes (323/547) in Chr.20. With regards to qualitative information of proteomics, we overall evaluated the correlation of the identified Chr.20 proteins with target genes of transcription factors or of microRNA, conserved genes and cancer-related genes. As for quantitative information, the expression abundances of Chr.20 genes were found to be almost consistent in both tissues and cell lines of mRNA in all individual chromosome regions, whereas those of Chr.20 proteins in cells are different from tissues, especially in the region of 20q13.33. Furthermore, the abundances of Chr.20 proteins were hierarchically evaluated according to tissue- or cancer-related distribution. The analysis revealed several cancer-related proteins in Chr.20 are tissue- or cell-type dependent. With integration of all the acquired data, for the first time we established a solid database of the Chr.20 proteome.

  13. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom.

    Science.gov (United States)

    Reyes-Velasco, Jacobo; Card, Daren C; Andrew, Audra L; Shaney, Kyle J; Adams, Richard H; Schield, Drew R; Casewell, Nicholas R; Mackessy, Stephen P; Castoe, Todd A

    2015-01-01

    Snake venom gene evolution has been studied intensively over the past several decades, yet most previous studies have lacked the context of complete snake genomes and the full context of gene expression across diverse snake tissues. We took a novel approach to studying snake venom evolution by leveraging the complete genome of the Burmese python, including information from tissue-specific patterns of gene expression. We identified the orthologs of snake venom genes in the python genome, and conducted detailed analysis of gene expression of these venom homologs to identify patterns that differ between snake venom gene families and all other genes. We found that venom gene homologs in the python are expressed in many different tissues outside of oral glands, which illustrates the pitfalls of using transcriptomic data alone to define "venom toxins." We hypothesize that the python may represent an ancestral state prior to major venom development, which is supported by our finding that the expansion of venom gene families is largely restricted to highly venomous caenophidian snakes. Therefore, the python provides insight into biases in which genes were recruited for snake venom systems. Python venom homologs are generally expressed at lower levels, have higher variance among tissues, and are expressed in fewer organs compared with all other python genes. We propose a model for the evolution of snake venoms in which venom genes are recruited preferentially from genes with particular expression profile characteristics, which facilitate a nearly neutral transition toward specialized venom system expression. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    DEFF Research Database (Denmark)

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita

    2015-01-01

    . Conclusions: Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides...... NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time...

  15. Expression of Inflammation-Related Genes Is Altered in Gastric Tissue of Patients with Advanced Stages of NAFLD

    Directory of Open Access Journals (Sweden)

    Rohini Mehta

    2013-01-01

    Full Text Available Obesity is associated with chronic low-grade inflammation perpetuated by visceral adipose. Other organs, particularly stomach and intestine, may also overproduce proinflammatory molecules. We examined the gene expression patterns in gastric tissue of morbidly obese patients with nonalcoholic fatty liver disease (NAFLD and compared the changes in gene expression in different histological forms of NAFLD. Stomach tissue samples from 20 morbidly obese NAFLD patients who were undergoing sleeve gastrectomy were profiled using qPCR for 84 genes encoding inflammatory cytokines, chemokines, their receptors, and other components of inflammatory cascades. Interleukin 8 receptor-beta (IL8RB gene overexpression in gastric tissue was correlated with the presence of hepatic steatosis, hepatic fibrosis, and histologic diagnosis of nonalcoholic steatohepatitis (NASH. Expression levels of soluble interleukin 1 receptor antagonist (IL1RN were correlated with the presence of NASH and hepatic fibrosis. mRNA levels of interleukin 8 (IL8, chemokine (C-C motif ligand 4 (CCL4, and its receptor chemokine (C-C motif receptor type 5 (CCR5 showed a significant increase in patients with advanced hepatic inflammation and were correlated with the severity of the hepatic inflammation. The results of our study suggest that changes in expression patterns for inflammatory molecule encoding genes within gastric tissue may contribute to the pathogenesis of obesity-related NAFLD.

  16. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas.

    Directory of Open Access Journals (Sweden)

    Hong Lu

    Full Text Available Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown.To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage.Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small

  17. Tissue specific haemoglobin gene expression suggests adaptation to local marine conditions in North Sea flounder (Platichthys flesus L.)

    DEFF Research Database (Denmark)

    Larsen, P.F.; Eg Nielsen, Einar; Hansen, M.M.

    2013-01-01

    Recent genetic analyses of candidate genes and gene expression in marine fishes have provided evidence of local adaptation in response to environmental differences, despite the lack of strong signals of population structure from conventional neutral genetic markers. In this study expression...... in flounder. In gill tissue a plastic response to salinity treatments was observed with general up-regulation of these genes concomitant with higher salinity. For liver tissue a population specific expression differences was observed with lower expression at simulated non-native compared to native salinities...... in high gene flow marine fishes. © 2013 The Genetics Society of Korea...

  18. Quantitative multiplex quantum dot in-situ hybridisation based gene expression profiling in tissue microarrays identifies prognostic genes in acute myeloid leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Tholouli, Eleni [Department of Haematology, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL (United Kingdom); MacDermott, Sarah [The Medical School, The University of Manchester, Oxford Road, M13 9PT Manchester (United Kingdom); Hoyland, Judith [School of Biomedicine, Faculty of Medical and Human Sciences, The University of Manchester, Oxford Road, M13 9PT Manchester (United Kingdom); Yin, John Liu [Department of Haematology, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL (United Kingdom); Byers, Richard, E-mail: richard.byers@cmft.nhs.uk [School of Cancer and Enabling Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Stopford Building, Oxford Road, M13 9PT Manchester (United Kingdom)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Development of a quantitative high throughput in situ expression profiling method. Black-Right-Pointing-Pointer Application to a tissue microarray of 242 AML bone marrow samples. Black-Right-Pointing-Pointer Identification of HOXA4, HOXA9, Meis1 and DNMT3A as prognostic markers in AML. -- Abstract: Measurement and validation of microarray gene signatures in routine clinical samples is problematic and a rate limiting step in translational research. In order to facilitate measurement of microarray identified gene signatures in routine clinical tissue a novel method combining quantum dot based oligonucleotide in situ hybridisation (QD-ISH) and post-hybridisation spectral image analysis was used for multiplex in-situ transcript detection in archival bone marrow trephine samples from patients with acute myeloid leukaemia (AML). Tissue-microarrays were prepared into which white cell pellets were spiked as a standard. Tissue microarrays were made using routinely processed bone marrow trephines from 242 patients with AML. QD-ISH was performed for six candidate prognostic genes using triplex QD-ISH for DNMT1, DNMT3A, DNMT3B, and for HOXA4, HOXA9, Meis1. Scrambled oligonucleotides were used to correct for background staining followed by normalisation of expression against the expression values for the white cell pellet standard. Survival analysis demonstrated that low expression of HOXA4 was associated with poorer overall survival (p = 0.009), whilst high expression of HOXA9 (p < 0.0001), Meis1 (p = 0.005) and DNMT3A (p = 0.04) were associated with early treatment failure. These results demonstrate application of a standardised, quantitative multiplex QD-ISH method for identification of prognostic markers in formalin-fixed paraffin-embedded clinical samples, facilitating measurement of gene expression signatures in routine clinical samples.

  19. Matrix factorization reveals aging-specific co-expression gene modules in the fat and muscle tissues in nonhuman primates

    Science.gov (United States)

    Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo

    2016-10-01

    Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases.

  20. MMP-13 regulates growth of wound granulation tissue and modulates gene expression signatures involved in inflammation, proteolysis, and cell viability.

    Directory of Open Access Journals (Sweden)

    Mervi Toriseva

    Full Text Available Proteinases play a pivotal role in wound healing by regulating cell-matrix interactions and availability of bioactive molecules. The role of matrix metalloproteinase-13 (MMP-13 in granulation tissue growth was studied in subcutaneously implanted viscose cellulose sponge in MMP-13 knockout (Mmp13(-/- and wild type (WT mice. The tissue samples were harvested at time points day 7, 14 and 21 and subjected to histological analysis and gene expression profiling. Granulation tissue growth was significantly reduced (42% at day 21 in Mmp13(-/- mice. Granulation tissue in Mmp13(-/- mice showed delayed organization of myofibroblasts, increased microvascular density at day 14, and virtual absence of large vessels at day 21. Gene expression profiling identified differentially expressed genes in Mmp13(-/- mouse granulation tissue involved in biological functions including inflammatory response, angiogenesis, cellular movement, cellular growth and proliferation and proteolysis. Among genes linked to angiogenesis, Adamts4 and Npy were significantly upregulated in early granulation tissue in Mmp13(-/- mice, and a set of genes involved in leukocyte motility including Il6 were systematically downregulated at day 14. The expression of Pdgfd was downregulated in Mmp13(-/- granulation tissue in all time points. The expression of matrix metalloproteinases Mmp2, Mmp3, Mmp9 was also significantly downregulated in granulation tissue of Mmp13(-/- mice compared to WT mice. Mmp13(-/- mouse skin fibroblasts displayed altered cell morphology and impaired ability to contract collagen gel and decreased production of MMP-2. These results provide evidence for an important role for MMP-13 in wound healing by coordinating cellular activities important in the growth and maturation of granulation tissue, including myofibroblast function, inflammation, angiogenesis, and proteolysis.

  1. Methylation in the promoter regions of WT1, NKX6-1 and DBC1 genes in cervical cancer tissues of Uygur women in Xinjiang

    Directory of Open Access Journals (Sweden)

    Dan Wu

    Full Text Available Abstract This study aimed to explore: 1 DNA methylation in the promoter regions of Wilms tumor gene 1 (WT1, NK6 transcription factor related locus 1 gene (NKX6-1 and Deleted in bladder cancer 1 (DBC1 gene in cervical cancer tissues of Uygur women in Xinjiang, and 2 the correlation of gene methylation with the infection of HPV16/18 viruses. We detected HPV16/18 infection in 43 normal cervical tissues, 30 cervical intraepithelial neoplasia lesions (CIN and 48 cervical cancer tissues with polymerase chain reaction (PCR method. Methylation in the promoter regions of the WT1, NKX6-1 and DBC1 genes in the above-mentioned tissues was measured by methylation-specific PCR (MSP and cloning sequencing. The expression level of these three genes was measured by real-time PCR (qPCR in 10 methylation-positive cervical cancer tissues and 10 methylation-negative normal cervical tissues. We found that the infection of HPV16 in normal cervical tissues, CIN and cervical cancer tissues was 14.0, 36.7 and 66.7%, respectively. The infection of HPV18 was 0, 6.7 and 10.4%, respectively. The methylation rates of WT1, NKX6-1 and DBC1 genes were 7.0, 11.6 and 23.3% in normal cervical tissues, 36.7, 46.7 and 30.0% in CIN tissues, and 89.6, 77.1 and 85.4% in cervical cancer tissues. Furthermore, WT1, NKX6-1 and DBC1 genes were hypermethylated in the high-grade squamous intraepithelial lesion (CIN2, CIN3 and in the cervical cancer tissues with infection of HPV16/18 (both P< 0.05. The expression of WT1, NKX6-1 and DBC1 was significantly lower in the methylation-positive cervical cancer tissues than in methylation-negative normal cervical tissues. Our findings indicated that methylation in the promoter regions of WT1, NKX6-1 and DBC1 is correlated with cervical cancer tumorigenesis in Uygur women. The infection of HPV16/18 might be correlated with methylation in these genes. Gene inactivation caused by methylation might be related to the incidence and development of cervical

  2. De novo Transcriptome Assembly of Chinese Kale and Global Expression Analysis of Genes Involved in Glucosinolate Metabolism in Multiple Tissues

    Science.gov (United States)

    Wu, Shuanghua; Lei, Jianjun; Chen, Guoju; Chen, Hancai; Cao, Bihao; Chen, Changming

    2017-01-01

    Chinese kale, a vegetable of the cruciferous family, is a popular crop in southern China and Southeast Asia due to its high glucosinolate content and nutritional qualities. However, there is little research on the molecular genetics and genes involved in glucosinolate metabolism and its regulation in Chinese kale. In this study, we sequenced and characterized the transcriptomes and expression profiles of genes expressed in 11 tissues of Chinese kale. A total of 216 million 150-bp clean reads were generated using RNA-sequencing technology. From the sequences, 98,180 unigenes were assembled for the whole plant, and 49,582~98,423 unigenes were assembled for each tissue. Blast analysis indicated that a total of 80,688 (82.18%) unigenes exhibited similarity to known proteins. The functional annotation and classification tools used in this study suggested that genes principally expressed in Chinese kale, were mostly involved in fundamental processes, such as cellular and molecular functions, the signal transduction, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in various tissues of Chinese kale. A large number of candidate genes involved in glucosinolate metabolism and its regulation were identified, and the expression patterns of these genes were analyzed. We found that most of the genes involved in glucosinolate biosynthesis were highly expressed in the root, petiole, and in senescent leaves. The expression patterns of ten glucosinolate biosynthetic genes from RNA-seq were validated by quantitative RT-PCR in different tissues. These results provided an initial and global overview of Chinese kale gene functions and expression activities in different tissues. PMID:28228764

  3. Human protein secretory pathway genes are expressed in a tissue-specific pattern to match processing demands of the secretome

    DEFF Research Database (Denmark)

    Feizi, Amir; Gatto, Francesco; Uhlén, Mathias

    2017-01-01

    Protein secretory pathway in eukaryal cells is responsible for delivering functional secretory proteins. The dysfunction of this pathway causes a range of important human diseases from congenital disorders to cancer. Despite the piled-up knowledge on the molecular biology and biochemistry level...... in specific gene families of the secretory pathway. We also inspected the potential functional link between detected extreme genes and the corresponding tissues enriched secretome. As a result, the detected extreme genes showed correlation with the enrichment of the nature and number of specific post......-translational modifications in each tissue's secretome. Our findings conciliate both the housekeeping and tissue-specific nature of the protein secretory pathway, which we attribute to a fine-tuned regulation of defined gene families to support the diversity of secreted proteins and their modifications....

  4. Serum estradiol levels associated with specific gene expression patterns in normal breast tissue and in breast carcinomas

    International Nuclear Information System (INIS)

    Haakensen, Vilde D; Børresen-Dale, Anne-Lise; Helland, Åslaug; Bjøro, Trine; Lüders, Torben; Riis, Margit; Bukholm, Ida K; Kristensen, Vessela N; Troester, Melissa A; Homen, Marit M; Ursin, Giske

    2011-01-01

    High serum levels of estradiol are associated with increased risk of postmenopausal breast cancer. Little is known about the gene expression in normal breast tissue in relation to levels of circulating serum estradiol. We compared whole genome expression data of breast tissue samples with serum hormone levels using data from 79 healthy women and 64 breast cancer patients. Significance analysis of microarrays (SAM) was used to identify differentially expressed genes and multivariate linear regression was used to identify independent associations. Six genes (SCGB3A1, RSPO1, TLN2, SLITRK4, DCLK1, PTGS1) were found differentially expressed according to serum estradiol levels (FDR = 0). Three of these independently predicted estradiol levels in a multivariate model, as SCGB3A1 (HIN1) and TLN2 were up-regulated and PTGS1 (COX1) was down-regulated in breast samples from women with high serum estradiol. Serum estradiol, but none of the differentially expressed genes were significantly associated with mammographic density, another strong breast cancer risk factor. In breast carcinomas, expression of GREB1 and AREG was associated with serum estradiol in all cancers and in the subgroup of estrogen receptor positive cases. We have identified genes associated with serum estradiol levels in normal breast tissue and in breast carcinomas. SCGB3A1 is a suggested tumor suppressor gene that inhibits cell growth and invasion and is methylated and down-regulated in many epithelial cancers. Our findings indicate this gene as an important inhibitor of breast cell proliferation in healthy women with high estradiol levels. In the breast, this gene is expressed in luminal cells only and is methylated in non-BRCA-related breast cancers. The possibility of a carcinogenic contribution of silencing of this gene for luminal, but not basal-like cancers should be further explored. PTGS1 induces prostaglandin E2 (PGE2) production which in turn stimulates aromatase expression and hence increases the

  5. LPS challenge regulates gene expression and tissue localization of a Ciona intestinalis gene through an alternative polyadenylation mechanism.

    Directory of Open Access Journals (Sweden)

    Aiti Vizzini

    Full Text Available A subtractive hybridization strategy for the identification of differentially expressed genes was performed between LPS-challenged and naive Ciona intestinalis. This strategy allowed the characterization of two transcripts (Ci8short and Ci8long generated by the use of two Alternative Polyadenylation sites. The Ci8long transcript contains a protein domain with relevant homology to several components of the Receptor Transporting Protein (RTP family not present in the Ci8short mRNA. By means of Real Time PCR and Northern Blot, the Ci8short and Ci8long transcripts showed a different pattern of gene expression with the Ci8short mRNA being strongly activated after LPS injection in the pharynx. In situ hybridization analysis demonstrated that the activation of the APA site also influenced the tissue localization of the Ci8short transcript. This analysis showed that the Ci8long mRNA was expressed in hemocytes meanwhile the Ci8short mRNA was highly transcribed also in vessel endothelial cells and in the epithelium of pharynx. These findings demonstrated that regulation of gene expression based on different polyadenylation sites is an ancestral powerful strategy influencing both the level of expression and tissue distribution of alternative transcripts.

  6. Nuclear factor 1 regulates adipose tissue-specific expression in the mouse GLUT4 gene

    International Nuclear Information System (INIS)

    Miura, Shinji; Tsunoda, Nobuyo; Ikeda, Shinobu; Kai, Yuko; Cooke, David W.; Lane, M. Daniel; Ezaki, Osamu

    2004-01-01

    Previous studies demonstrated that an adipose tissue-specific element(s) (ASE) of the murine GLUT4 gene is located between -551 and -506 in the 5'-flanking sequence and that a high-fat responsive element(s) for down-regulation of the GLUT4 gene is located between bases -701 and -552. A binding site for nuclear factor 1 (NF1), that mediates insulin and cAMP-induced repression of GLUT4 in 3T3-L1 adipocytes is located between bases -700 and -688. To examine the role of NF1 in the regulation of GLUT4 gene expression in white adipose tissues (WAT) in vivo, we created two types of transgenic mice harboring mutated either 5' or 3' half-site of NF1-binding sites in GLUT4 minigene constructs. In both cases, the GLUT4 minigene was not expressed in WAT, while expression was maintained in brown adipose tissue, skeletal muscle, and heart. This was an unexpected finding, since a -551 GLUT4 minigene that did not have the NF1-binding site was expressed in WAT. We propose a model that explains the requirement for both the ASE and the NF1-binding site for expression of GLUT4 in WAT

  7. Selection of suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using quantitative real-time polymerase chain reaction

    DEFF Research Database (Denmark)

    Zornhagen, K. W.; Kristensen, A. T.; Hansen, Anders Elias

    2015-01-01

    Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is a sensitive technique for quantifying gene expression. Stably expressed reference genes are necessary for normalization of RT-qPCR data. Only a few articles have been published on reference genes in canine tumours....... The objective of this study was to demonstrate how to identify suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using RT-qPCR. Primer pairs for 17 potential reference genes were designed and tested in archival tumour biopsies from six dogs. The geNorm algorithm...

  8. Dietary fish oil did not prevent sleep deprived rats from a reduction in adipose tissue adiponectin gene expression

    Directory of Open Access Journals (Sweden)

    Andersen Monica

    2008-11-01

    Full Text Available Abstract Sleep deprivation in humans has been related to weight gain and consequently, increased risk for insulin resistance. In contrast, there is a significant loss of weight in sleep deprived rats suggesting a state of insulin resistance without obesity interference. Thus, we aimed to assess the effects of a rich fish oil dietetic intervention on glucose tolerance, serum insulin and adiponectin, and adipose tissue gene expression of adiponectin and TNF-α of paradoxically sleep deprived (PSD rats. The study was performed in thirty day-old male Wistar randomly assigned into two groups: rats fed with control diet (soybean oil as source of fat and rats fed with a fish oil rich diet. After 45 days of treatment, the animals were submitted to PSD or maintained as home cage control group for 96 h. Body weight and food intake were carefully monitored in all groups. At the end of PSD period, a glucose tolerance test was performed and the total blood and adipose tissues were collected. Serum insulin and adiponectin were analyzed. Adipose tissues were used for RT-PCR to estimate the gene expression of adiponectin and TNF-α. Results showed that although fish oil diet did not exert any effect upon these measurements, PSD induced a reduction in adiponectin gene expression of retroperitoneal adipose tissues, with no change in serum adiponectin concentration or in adiponectin and TNF-α gene expression of epididymal adipose tissue. Thus, the stress induced by sleep deprivation lead to a desbalance of adiponectin gene expression.

  9. Tissue-specific expression of silkmoth chorion genes in vivo using Bombyx mori nuclear polyhedrosis virus as a transducing vector.

    Science.gov (United States)

    Iatrou, K; Meidinger, R G

    1990-01-01

    A pair of silkmoth chorion chromosomal genes, HcA.12-HcB.12, was inserted into a baculovirus transfer vector, pBmp2, derived from the nuclear polyhedrosis virus of Bombyx mori. This vector, which permits the insertion of foreign genetic material in the vicinity of a mutationally inactivated polyhedrin gene, was used to acquire the corresponding recombinant virus. Injection of mutant silkmoth pupae that lack all Hc chorion genes with the recombinant virus resulted in the infection of all internal organs including follicular tissue. Analysis of RNA from infected tissues has demonstrated that the two chorion genes present in the viral genome are correctly transcribed under the control of their own promoter in follicular cells, the tissue in which chorion genes are normally expressed. The chorion primary transcripts are also correctly processed in the infected follicular cells and yield mature mRNAs indistinguishable from authentic chorion mRNAs present in wild-type follicles. These results demonstrate that recombinant nuclear polyhedrosis viruses can be used as transducing vectors for introducing genetic material of host origin into the cells of the organism and that the transduced genes are transiently expressed in a tissue-specific manner under the control of their resident regulatory sequences. Thus we show the in vivo expression of cloned genes under cellular promoter control in an insect other than Drosophila melanogaster. The approach should be applicable to all insect systems that are subject to nuclear polyhedrosis virus infection. Images PMID:2187186

  10. Deregulation of obesity-relevant genes is associated with progression in BMI and the amount of adipose tissue in pigs

    DEFF Research Database (Denmark)

    Mentzel, Caroline M. Junker; Cardoso, Tainã Figueiredo; Pipper, Christian Bressen

    2018-01-01

    The aim of this study was to elucidate the relative impact of three phenotypes often used to characterize obesity on perturbation of molecular pathways involved in obesity. The three obesity-related phenotypes are (1) body mass index (BMI), (2) amount of subcutaneous adipose tissue (SATa), and (3......) amount of retroperitoneal adipose tissue (RPATa). Although it is generally accepted that increasing amount of RPATa is ‘unhealthy’, a direct comparison of the relative impact of the three obesity-related phenotypes on gene expression has, to our knowledge, not been performed previously. We have used...... multiple linear models to analyze altered gene expression of selected obesity-related genes in tissues collected from 19 female pigs phenotypically characterized with respect to the obesity-related phenotypes. Gene expression was assessed by high-throughput qPCR in RNA from liver, skeletal muscle...

  11. Alteration of gene expression profile in Niemann-Pick type C mice correlates with tissue damage and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mary C Vázquez

    Full Text Available BACKGROUND: Niemann-Pick type C disease (NPC is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1(+/+; WT and homozygous-mutant (Npc1(-/-; NPC mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice. CONCLUSIONS/SIGNIFICANCE: In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress

  12. Histone Acetylation Modifications Affect Tissue-Dependent Expression of Poplar Homologs of C4 Photosynthetic Enzyme Genes

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-06-01

    Full Text Available Histone modifications play important roles in regulating the expression of C4 photosynthetic genes. Given that all enzymes required for the C4 photosynthesis pathway are present in C3 plants, it has been hypothesized that this expression regulatory mechanism has been conserved. However, the relationship between histone modification and the expression of homologs of C4 photosynthetic enzyme genes has not been well determined in C3 plants. In the present study, we cloned nine hybrid poplar (Populus simonii × Populus nigra homologs of maize (Zea mays C4 photosynthetic enzyme genes, carbonic anhydrase (CA, pyruvate orthophosphate dikinase (PPDK, phosphoenolpyruvate carboxykinase (PCK, and phosphoenolpyruvate carboxylase (PEPC, and investigated the correlation between the expression levels of these genes and the levels of promoter histone acetylation modifications in four vegetative tissues. We found that poplar homologs of C4 homologous genes had tissue-dependent expression patterns that were mostly well-correlated with the level of histone acetylation modification (H3K9ac and H4K5ac determined by chromatin immunoprecipitation assays. Treatment with the histone deacetylase inhibitor trichostatin A further confirmed the role of histone acetylation in the regulation of the nine target genes. Collectively, these results suggest that both H3K9ac and H4K5ac positively regulate the tissue-dependent expression pattern of the PsnCAs, PsnPPDKs, PsnPCKs, and PsnPEPCs genes and that this regulatory mechanism seems to be conserved among the C3 and C4 species. Our findings provide new insight that will aid efforts to modify the expression pattern of these homologs of C4 genes to engineer C4 plants from C3 plants.

  13. Molecular characterization, tissue expression and sequence variability of the barramundi (Lates calcarifer myostatin gene

    Directory of Open Access Journals (Sweden)

    Smith-Keune Carolyn

    2008-02-01

    Full Text Available Abstract Background Myostatin (MSTN is a member of the transforming growth factor-β superfamily that negatively regulates growth of skeletal muscle tissue. The gene encoding for the MSTN peptide is a consolidate candidate for the enhancement of productivity in terrestrial livestock. This gene potentially represents an important target for growth improvement of cultured finfish. Results Here we report molecular characterization, tissue expression and sequence variability of the barramundi (Lates calcarifer MSTN-1 gene. The barramundi MSTN-1 was encoded by three exons 379, 371 and 381 bp in length and translated into a 376-amino acid peptide. Intron 1 and 2 were 412 and 819 bp in length and presented typical GT...AG splicing sites. The upstream region contained cis-regulatory elements such as TATA-box and E-boxes. A first assessment of sequence variability suggested that higher mutation rates are found in the 5' flanking region with several SNP's present in this species. A putative micro RNA target site has also been observed in the 3'UTR (untranslated region and is highly conserved across teleost fish. The deduced amino acid sequence was conserved across vertebrates and exhibited characteristic conserved putative functional residues including a cleavage motif of proteolysis (RXXR, nine cysteines and two glycosilation sites. A qualitative analysis of the barramundi MSTN-1 expression pattern revealed that, in adult fish, transcripts are differentially expressed in various tissues other than skeletal muscles including gill, heart, kidney, intestine, liver, spleen, eye, gonad and brain. Conclusion Our findings provide valuable insights such as sequence variation and genomic information which will aid the further investigation of the barramundi MSTN-1 gene in association with growth. The finding for the first time in finfish MSTN of a miRNA target site in the 3'UTR provides an opportunity for the identification of regulatory mutations on the

  14. An Approximation to the Temporal Order in Endogenous Circadian Rhythms of Genes Implicated in Human Adipose Tissue Metabolism

    Science.gov (United States)

    GARAULET, MARTA; ORDOVÁS, JOSÉ M.; GÓMEZ-ABELLÁN, PURIFICACIÓN; MARTÍNEZ, JOSE A.; MADRID, JUAN A.

    2015-01-01

    Although it is well established that human adipose tissue (AT) shows circadian rhythmicity, published studies have been discussed as if tissues or systems showed only one or few circadian rhythms at a time. To provide an overall view of the internal temporal order of circadian rhythms in human AT including genes implicated in metabolic processes such as energy intake and expenditure, insulin resistance, adipocyte differentiation, dyslipidemia, and body fat distribution. Visceral and subcutaneous abdominal AT biopsies (n = 6) were obtained from morbid obese women (BMI ≥ 40 kg/m2). To investigate rhythmic expression pattern, AT explants were cultured during 24-h and gene expression was analyzed at the following times: 08:00, 14:00, 20:00, 02:00 h using quantitative real-time PCR. Clock genes, glucocorticoid metabolism-related genes, leptin, adiponectin and their receptors were studied. Significant differences were found both in achrophases and relative-amplitude among genes (P 30%). When interpreting the phase map of gene expression in both depots, data indicated that circadian rhythmicity of the genes studied followed a predictable physiological pattern, particularly for subcutaneous AT. Interesting are the relationships between adiponectin, leptin, and glucocorticoid metabolism-related genes circadian profiles. Their metabolic significance is discussed. Visceral AT behaved in a different way than subcutaneous for most of the genes studied. For every gene, protein mRNA levels fluctuated during the day in synchrony with its receptors. We have provided an overall view of the internal temporal order of circadian rhythms in human adipose tissue. PMID:21520059

  15. Mouse Nkrp1-Clr gene cluster sequence and expression analyses reveal conservation of tissue-specific MHC-independent immunosurveillance.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    Full Text Available The Nkrp1 (Klrb1-Clr (Clec2 genes encode a receptor-ligand system utilized by NK cells as an MHC-independent immunosurveillance strategy for innate immune responses. The related Ly49 family of MHC-I receptors displays extreme allelic polymorphism and haplotype plasticity. In contrast, previous BAC-mapping and aCGH studies in the mouse suggest the neighboring and related Nkrp1-Clr cluster is evolutionarily stable. To definitively compare the relative evolutionary rate of Nkrp1-Clr vs. Ly49 gene clusters, the Nkrp1-Clr gene clusters from two Ly49 haplotype-disparate inbred mouse strains, BALB/c and 129S6, were sequenced. Both Nkrp1-Clr gene cluster sequences are highly similar to the C57BL/6 reference sequence, displaying the same gene numbers and order, complete pseudogenes, and gene fragments. The Nkrp1-Clr clusters contain a strikingly dissimilar proportion of repetitive elements compared to the Ly49 clusters, suggesting that certain elements may be partly responsible for the highly disparate Ly49 vs. Nkrp1 evolutionary rate. Focused allelic polymorphisms were found within the Nkrp1b/d (Klrb1b, Nkrp1c (Klrb1c, and Clr-c (Clec2f genes, suggestive of possible immune selection. Cell-type specific transcription of Nkrp1-Clr genes in a large panel of tissues/organs was determined. Clr-b (Clec2d and Clr-g (Clec2i showed wide expression, while other Clr genes showed more tissue-specific expression patterns. In situ hybridization revealed specific expression of various members of the Clr family in leukocytes/hematopoietic cells of immune organs, various tissue-restricted epithelial cells (including intestinal, kidney tubular, lung, and corneal progenitor epithelial cells, as well as myocytes. In summary, the Nkrp1-Clr gene cluster appears to evolve more slowly relative to the related Ly49 cluster, and likely regulates innate immunosurveillance in a tissue-specific manner.

  16. Selection of reference genes for quantitative real-time PCR expression studies of microdissected reproductive tissues in apomictic and sexual Boechera

    Directory of Open Access Journals (Sweden)

    Amiteye Samuel

    2011-08-01

    Full Text Available Abstract Background Apomixis, a natural form of asexual seed production in plants, is considered to have great biotechnological potential for agriculture. It has been hypothesised that de-regulation of the sexual developmental pathway could trigger apomictic reproduction. The genus Boechera represents an interesting model system for understanding apomixis, having both sexual and apomictic genotypes at the diploid level. Quantitative qRT-PCR is the most extensively used method for validating genome-wide gene expression analyses, but in order to obtain reliable results, suitable reference genes are necessary. In this work we have evaluated six potential reference genes isolated from a 454 (FLX derived cDNA library of Boechera. RNA from live microdissected ovules and anthers at different developmental stages, as well as vegetative tissues of apomictic and sexual Boechera, were used to validate the candidates. Results Based on homologies with Arabidopsis, six genes were selected from a 454 cDNA library of Boechera: RPS18 (Ribosomal sub protein 18, Efalpha1 (Elongation factor 1 alpha, ACT 2 (Actin2, UBQ (polyubiquitin, PEX4 (Peroxisomal ubiquitin conjugating enzyme and At1g09770.1 (Arabidopsis thaliana cell division cycle 5. Total RNA was extracted from 17 different tissues, qRT-PCRs were performed, and raw Ct values were analyzed for primer efficiencies and gene ratios. The geNorm and normFinder applications were used for selecting the most stable genes among all tissues and specific tissue groups (ovule, anthers and vegetative tissues in both apomictic and sexual plants separately. Our results show that BoechRPS18, BoechEfα1, BoechACT2 and BoechUBQ were the most stable genes. Based on geNorm, the combinations of BoechRPS18 and BoechEfα1 or BoechUBQ and BoechEfα1 were the most stable in the apomictic plant, while BoechRPS18 and BoechACT2 or BoechUBQ and BoechACT2 performed best in the sexual plant. When subgroups of tissue samples were analyzed

  17. GeneLab: Multi-Omics Investigation of Rodent Research-1 Bio-Banked Tissues

    Science.gov (United States)

    Lai, San-Huei; Boyko, Valery; Chakravarty, Kaushik; Chen, Rick; Dueck, Sandra; Berrios, Daniel C.; Fogle, Homer; Marcu, Oana; Timucin, Linda; Reinsch, Sigrid; hide

    2016-01-01

    NASAs Rodent Research (RR) project is playing a critical role in advancing biomedical research on the physiological effects of space environments. Due to the limited resources for conducting biological experiments aboard the International Space Station (ISS), it is imperative to use crew time efficiently while maximizing high-quality science return. NASAs GeneLab project has as its primary objectives to 1) further increase the value of these experiments using a multi-omics, systems biology-based approach, and 2) disseminate these data without restrictions to the scientific community. The current investigation assessed viability of RNA, DNA, and protein extracted from archived RR-1 tissue samples for epigenomic, transcriptomic, and proteomic assays. During the first RR spaceflight experiment, a variety of tissue types were harvested from subjects, snap-frozen or RNAlater-preserved, and then stored at least a year at -80OC after return to Earth. They were then prioritized for this investigation based on likelihood of significant scientific value for spaceflight research. All tissues were made available to GeneLab through the bio-specimen sharing program managed by the Ames Life Science Data Archive and included mouse adrenal glands, quadriceps, gastrocnemius, tibialis anterior, extensor digitorum longus, soleus, eye, and kidney. We report here protocols for and results of these tissue extractions, and thus, the feasibility and value of these kinds of omics analyses. In addition to providing additional opportunities for investigation of spaceflight effects on the mouse transcriptome and proteome in new kinds of tissues, our results may also be of value to program managers for the prioritization of ISS crew time for rodent research activities. Support from the NASA Space Life and Physical Sciences Division and the International Space Station Program is gratefully acknowledged.

  18. Global gene expression profiling displays a network of dysregulated genes in non-atherosclerotic arterial tissue from patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Skov Vibe

    2012-02-01

    Full Text Available Abstract Background Generalized arterial alterations, such as endothelial dysfunction, medial matrix accumulations, and calcifications are associated with type 2 diabetes (T2D. These changes may render the vessel wall more susceptible to injury; however, the molecular characteristics of such diffuse pre-atherosclerotic changes in diabetes are only superficially known. Methods To identify the molecular alterations of the generalized arterial disease in T2D, DNA microarrays were applied to examine gene expression changes in normal-appearing, non-atherosclerotic arterial tissue from 10 diabetic and 11 age-matched non-diabetic men scheduled for a coronary by-pass operation. Gene expression changes were integrated with GO-Elite, GSEA, and Cytoscape to identify significant biological pathways and networks. Results Global pathway analysis revealed differential expression of gene-sets representing matrix metabolism, triglyceride synthesis, inflammation, insulin signaling, and apoptosis. The network analysis showed a significant cluster of dysregulated genes coding for both intra- and extra-cellular proteins associated with vascular cell functions together with genes related to insulin signaling and matrix remodeling. Conclusions Our results identify pathways and networks involved in the diffuse vasculopathy present in non-atherosclerotic arterial tissue in patients with T2D and confirmed previously observed mRNA-alterations. These abnormalities may play a role for the arterial response to injury and putatively for the accelerated atherogenesis among patients with diabetes.

  19. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    International Nuclear Information System (INIS)

    Asting, Annika Gustafsson; Carén, Helena; Andersson, Marianne; Lönnroth, Christina; Lagerstedt, Kristina; Lundholm, Kent

    2011-01-01

    Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4) showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3) were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue

  20. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    Directory of Open Access Journals (Sweden)

    Lagerstedt Kristina

    2011-06-01

    Full Text Available Abstract Background Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Method Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Results Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4 showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3 were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Conclusions Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue.

  1. Lipid-mediated glial cell line-derived neurotrophic factor gene transfer to cultured porcine ventral mesencephalic tissue

    DEFF Research Database (Denmark)

    Bauer, Matthias; Meyer, Morten; Brevig, Thomas

    2002-01-01

    Transplantation of dopaminergic ventral mesencephalic (VM) tissue into the basal ganglia of patients with Parkinson's disease (PD) shows at best moderate symptomatic relief in some of the treated cases. Experimental animal studies and clinical trials with allogenic and xenogenic pig-derived VM...... tissue grafts to PD patients indicate that one reason for the poor outcome of neural transplantation is the low survival and differentiation of grafted dopaminergic neurons. To improve dopaminergic cell survival through a gene-therapeutic approach we have established and report here results of lipid-mediated...... numbers of tyrosine hydroxylase-positive neurons in the cultured VM tissue. We conclude that lipid-mediated gene transfer employed on embryonic pig VM explant cultures is a safe and effective method to improve survival of dopaminergic neurons and may become a valuable tool to improve allo...

  2. Effects of Growth Hormone Gene Polymorphism on Lipogenic Gene Expression Levels in Diaphragm Tissues of Japanese Black Heifers

    Directory of Open Access Journals (Sweden)

    Astrid Ardiyanti

    2012-08-01

    Full Text Available Two SNPs, i.e. L127V and T172M, of bovine growth hormone (GH causing the presence of GH gene haplotypes A, B, and C was previously shown to alter intramuscular fatty acid (FA composition in Japanese Black (JB heifers. To determine the SNP effect on somatotropic hormone concentration and lipogenesis, we measured plasma GH, insulin, and insulin-like growth factor-1 (IGF-1 concentrations. We also measured mRNA levels of fatty acid synthase (FASN, stearoyl-coA desaturase (SCD, and sterol regulatory element binding proteins-1 (SREBP-1 and FA composition in diaphragm tissues. Heifers with genotype CC had the lowest plasma insulin concentration and FASN and SCD mRNA levels among genotypes. FASN mRNA levels in haplotype A tended to positively correlate with saturated FA (SFA content and negatively correlated with C18:2 and unsaturated FA (USFA contents. SCD mRNA levels in haplotype A positively correlated with monounsaturated FA (MUFA contents and negatively correlated with C18:0 content. They also tended to positively correlate with C16:1, C18:1, and USFA contents and USFA/SFA ratio and negatively correlate with SFA content. Taken together, GH gene polymorphism affects the lipogenic genes expression levels and their relationships with fatty acid compositions in diaphragm tissues of JB heifers at 31 months of age.

  3. Ecdysone Receptor-based Singular Gene Switches for Regulated Transgene Expression in Cells and Adult Rodent Tissues

    Directory of Open Access Journals (Sweden)

    Seoghyun Lee

    2016-01-01

    Full Text Available Controlled gene expression is an indispensable technique in biomedical research. Here, we report a convenient, straightforward, and reliable way to induce expression of a gene of interest with negligible background expression compared to the most widely used tetracycline (Tet-regulated system. Exploiting a Drosophila ecdysone receptor (EcR-based gene regulatory system, we generated nonviral and adenoviral singular vectors designated as pEUI(+ and pENTR-EUI, respectively, which contain all the required elements to guarantee regulated transgene expression (GAL4-miniVP16-EcR, termed GvEcR hereafter, and 10 tandem repeats of an upstream activation sequence promoter followed by a multiple cloning site. Through the transient and stable transfection of mammalian cell lines with reporter genes, we validated that tebufenozide, an ecdysone agonist, reversibly induced gene expression, in a dose- and time-dependent manner, with negligible background expression. In addition, we created an adenovirus derived from the pENTR-EUI vector that readily infected not only cultured cells but also rodent tissues and was sensitive to tebufenozide treatment for regulated transgene expression. These results suggest that EcR-based singular gene regulatory switches would be convenient tools for the induction of gene expression in cells and tissues in a tightly controlled fashion.

  4. Tissue-specific mRNA expression profiling in grape berry tissues

    Science.gov (United States)

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and

  5. Tissue-specific mRNA expression profiling in grape berry tissues

    Directory of Open Access Journals (Sweden)

    Cramer Grant R

    2007-06-01

    Full Text Available Abstract Background Berries of grape (Vitis vinifera contain three major tissue types (skin, pulp and seed all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin and mesocarp (pulp, not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell

  6. Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue

    Directory of Open Access Journals (Sweden)

    Colin J. Palmer

    2017-10-01

    Conclusions: Cdkal1 is necessary for normal mitochondrial morphology and function in adipose tissue. These results suggest that the type 2 diabetes susceptibility gene CDKAL1 has novel functions in regulating mitochondrial activity.

  7. Altered expression of hypoxia-inducible factor-1α (HIF-1α and its regulatory genes in gastric cancer tissues.

    Directory of Open Access Journals (Sweden)

    Jihan Wang

    Full Text Available Tissue hypoxia induces reprogramming of cell metabolism and may result in normal cell transformation and cancer progression. Hypoxia-inducible factor 1-alpha (HIF-1α, the key transcription factor, plays an important role in gastric cancer development and progression. This study aimed to investigate the underlying regulatory signaling pathway in gastric cancer using gastric cancer tissue specimens. The integration of gene expression profile and transcriptional regulatory element database (TRED was pursued to identify HIF-1α ↔ NFκB1 → BRCA1 → STAT3 ← STAT1 gene pathways and their regulated genes. The data showed that there were 82 differentially expressed genes that could be regulated by these five transcription factors in gastric cancer tissues and these genes formed 95 regulation modes, among which seven genes (MMP1, TIMP1, TLR2, FCGR3A, IRF1, FAS, and TFF3 were hub molecules that are regulated at least by two of these five transcription factors simultaneously and were associated with hypoxia, inflammation, and immune disorder. Real-Time PCR and western blot showed increasing of HIF-1α in mRNA and protein levels as well as TIMP1, TFF3 in mRNA levels in gastric cancer tissues. The data are the first study to demonstrate HIF-1α-regulated transcription factors and their corresponding network genes in gastric cancer. Further study with a larger sample size and more functional experiments is needed to confirm these data and then translate into clinical biomarker discovery and treatment strategy for gastric cancer.

  8. Gene expression profiling of human breast tissue samples using SAGE-Seq.

    Science.gov (United States)

    Wu, Zhenhua Jeremy; Meyer, Clifford A; Choudhury, Sibgat; Shipitsin, Michail; Maruyama, Reo; Bessarabova, Marina; Nikolskaya, Tatiana; Sukumar, Saraswati; Schwartzman, Armin; Liu, Jun S; Polyak, Kornelia; Liu, X Shirley

    2010-12-01

    We present a powerful application of ultra high-throughput sequencing, SAGE-Seq, for the accurate quantification of normal and neoplastic mammary epithelial cell transcriptomes. We develop data analysis pipelines that allow the mapping of sense and antisense strands of mitochondrial and RefSeq genes, the normalization between libraries, and the identification of differentially expressed genes. We find that the diversity of cancer transcriptomes is significantly higher than that of normal cells. Our analysis indicates that transcript discovery plateaus at 10 million reads/sample, and suggests a minimum desired sequencing depth around five million reads. Comparison of SAGE-Seq and traditional SAGE on normal and cancerous breast tissues reveals higher sensitivity of SAGE-Seq to detect less-abundant genes, including those encoding for known breast cancer-related transcription factors and G protein-coupled receptors (GPCRs). SAGE-Seq is able to identify genes and pathways abnormally activated in breast cancer that traditional SAGE failed to call. SAGE-Seq is a powerful method for the identification of biomarkers and therapeutic targets in human disease.

  9. Omega-6 Fat Supplementation Alters Lipogenic Gene Expression in Bovine Subcutaneous Adipose Tissue

    OpenAIRE

    Joseph, Sandeep J.; Pratt, Scott L.; Pavan, Enrique; Rekaya, Romdhane; Duckett., Susan K.

    2010-01-01

    In contrast to rodents, adipose tissue serves as the major site of lipogenesis and storage reservoir for excess dietary energy in cattle. Research in rodents shows that adding corn oil (57% C18:2 n-6) to the diet alters lipogenesis enhancing deposition of omega-6 fatty acids. This study examines changes in lipogenic gene expression of subcutaneous adipose tissue from eighteen steers fed increasing levels of dietary corn oil [0 (NONE), 0.31 kg/d (MED) and 0.62 kg/d (HI)] using two platforms, q...

  10. Identification of differentially expressed genes induced by energy restriction using annealing control primer system from the liver and adipose tissues of broilers.

    Science.gov (United States)

    Wang, J W; Chen, W; Kang, X T; Huang, Y Q; Tian, Y D; Wang, Y B

    2012-04-01

    Female Arbor Acre broilers were divided into 2 groups at 18 d of age. One group of chickens had free access to feed (AL), and the other group of chickens had 30% energy restriction (ER). Adipose and hepatic RNA samples were collected at 48 d of age. We employed an accurate reverse-transcription (RT) PCR method that involves annealing control primers to identify the differentially expressed genes (DEG) between ER and AL groups. Using 20 annealing control primers, 43 differentially expressed bands (40 downregulated and 3 upregulated in the ER group) were detected from the hepatic tissue, whereas no differentially expressed bands were detected from the adipose tissue. It seems that energy restriction could induce more DEG in hepatic tissue than that in adipose tissue and could result in more gene-expression downregulation in hepatic tissue. Eight DEG (6 known and 2 unknown genes) were gained from hepatic tissue and confirmed by RT-PCR, which were all supported by released expressed sequence tag sequences. Their expressions were all downregulated by energy restriction in hepatic tissues. Six known genes are RPL7, RPLP1, FBXL12, ND1, ANTXR2, and SLC22A18, respectively, which seem to play essential roles in the protein translation, energy metabolism, and tumor inhibition. The alterations of gene expression in 3 selected genes, including ND1 (P < 0.01), FBXL12 (P < 0.01), and RPLP1 (P < 0.05), were supported by real-time quantitative RT-PCR reaction. Our data provide new insights on the metabolic state of broilers changed by energy restriction.

  11. Selection and validation of reference genes for quantitative gene expression analyses in various tissues and seeds at different developmental stages in Bixa orellana L.

    Science.gov (United States)

    Moreira, Viviane S; Soares, Virgínia L F; Silva, Raner J S; Sousa, Aurizangela O; Otoni, Wagner C; Costa, Marcio G C

    2018-05-01

    Bixa orellana L., popularly known as annatto, produces several secondary metabolites of pharmaceutical and industrial interest, including bixin, whose molecular basis of biosynthesis remain to be determined. Gene expression analysis by quantitative real-time PCR (qPCR) is an important tool to advance such knowledge. However, correct interpretation of qPCR data requires the use of suitable reference genes in order to reduce experimental variations. In the present study, we have selected four different candidates for reference genes in B. orellana , coding for 40S ribosomal protein S9 (RPS9), histone H4 (H4), 60S ribosomal protein L38 (RPL38) and 18S ribosomal RNA (18SrRNA). Their expression stabilities in different tissues (e.g. flower buds, flowers, leaves and seeds at different developmental stages) were analyzed using five statistical tools (NormFinder, geNorm, BestKeeper, ΔCt method and RefFinder). The results indicated that RPL38 is the most stable gene in different tissues and stages of seed development and 18SrRNA is the most unstable among the analyzed genes. In order to validate the candidate reference genes, we have analyzed the relative expression of a target gene coding for carotenoid cleavage dioxygenase 1 (CCD1) using the stable RPL38 and the least stable gene, 18SrRNA , for normalization of the qPCR data. The results demonstrated significant differences in the interpretation of the CCD1 gene expression data, depending on the reference gene used, reinforcing the importance of the correct selection of reference genes for normalization.

  12. Tissue

    Directory of Open Access Journals (Sweden)

    David Morrissey

    2012-01-01

    Full Text Available Purpose. In vivo gene therapy directed at tissues of mesenchymal origin could potentially augment healing. We aimed to assess the duration and magnitude of transene expression in vivo in mice and ex vivo in human tissues. Methods. Using bioluminescence imaging, plasmid and adenoviral vector-based transgene expression in murine quadriceps in vivo was examined. Temporal control was assessed using a doxycycline-inducible system. An ex vivo model was developed and optimised using murine tissue, and applied in ex vivo human tissue. Results. In vivo plasmid-based transgene expression did not silence in murine muscle, unlike in liver. Although maximum luciferase expression was higher in muscle with adenoviral delivery compared with plasmid, expression reduced over time. The inducible promoter cassette successfully regulated gene expression with maximum levels a factor of 11 greater than baseline. Expression was re-induced to a similar level on a temporal basis. Luciferase expression was readily detected ex vivo in human muscle and tendon. Conclusions. Plasmid constructs resulted in long-term in vivo gene expression in skeletal muscle, in a controllable fashion utilising an inducible promoter in combination with oral agents. Successful plasmid gene transfection in human ex vivo mesenchymal tissue was demonstrated for the first time.

  13. [Application of ultrasound-enhanced gene and drug delivery to the ocular tissue].

    Science.gov (United States)

    Sonoda, Shozo; Yamashita, Toshifumi; Suzuki, Ryo; Maruyama, Kazuo; Sakamoto, Taiji

    2013-01-01

    Visual images provide an immensely rich source of information about the external world. Eye has characteristic structure sensory cells are arranged along the eye wall, and is filled inside with vitreous body. In recent years, intravitreal injection of anti-vascular endothelial growth factor (VEGF) agent had widely spread, and numerous number of patients who suffered ocular angiogenic disease such as diabetic retinopathy, age-related macular degeneration and retinal vascular occlusion for the disease, were treated and spared the blindness. Vitreous cavity was regarded as reservoir of drug, intravitreal injection is thought a sort of drug delivery. However, with regard to the administration of a selective drug deliver, it has not yet been solved. Our aim is to establish a new method of gene transfer, drug delivery using low-energy ultrasound to the eye, to date, we confirmed drug and gene deliver to the ocular tissue such as cornea, conjunctiva and retina with high efficiency. In addition, tissue damage was minimal. We have also shown that ultrasound irradiation with combination of a microbubbles or bubble liposome could be introduced drug and gene more effectively. Based on these knowledge, we will focus on development of a new device for intraocular ultrasound exposure and potential for therapeutic application of ultrasound to humans retinal disease such as retinal artery obstruction.

  14. Identification of new alternative splice events in the TCIRG1 gene in different human tissues

    International Nuclear Information System (INIS)

    Smirnova, Anna S.; Morgun, Andrey; Shulzhenko, Natalia; Silva, Ismael D.C.G.; Gerbase-DeLima, Maria

    2005-01-01

    Two transcript variants (TV) of the T cell immune regulator gene 1 (TCIRG1) have already been characterized. TV1 encodes a subunit of the osteoclast vacuolar proton pump and TV2 encodes a T cell inhibitory receptor. Based on the search in dbEST, we validated by RT-PCR six new alternative splice events in TCIRG1 in most of the 28 human tissues studied. In addition, we observed that transcripts using the TV1 transcription start site and two splice forms previously described in a patient with infantile malignant osteopetrosis are also expressed in various tissues of healthy individuals. Studies of these nine splice forms in cytoplasmic RNA of peripheral blood mononuclear cells showed that at least six of them could be efficiently exported from the nucleus. Since various products with nearly ubiquitous tissue distribution are generated from TCIRG1, this gene may be involved in other processes besides immune response and bone resorption

  15. Candidate Genes for Testicular Cancer Evaluated by In Situ Protein Expression Analyses on Tissue Microarrays

    Directory of Open Access Journals (Sweden)

    Rolf I. Skotheim

    2003-09-01

    Full Text Available By the use of high-throughput molecular technologies, the number of genes and proteins potentially relevant to testicular germ cell tumor (TGCT and other diseases will increase rapidly. In a recent transcriptional profiling, we demonstrated the overexpression of GRB7 and JUP in TGCTs, confirmed the reported overexpression of CCND2. We also have recent evidences for frequent genetic alterations of FHIT and epigenetic alterations of MGMT. To evaluate whether the expression of these genes is related to any clinicopathological variables, we constructed a tissue microarray with 510 testicular tissue cores from 279 patients diagnosed with TGCT, covering various histological subgroups and clinical stages. By immunohistochemistry, we found that JUP, GRB7, CCND2 proteins were rarely present in normal testis, but frequently expressed at high levels in TGCT. Additionally, all premalignant intratubular germ cell neoplasias were JUP-immunopositive. MGMT and FHIT were expressed by normal testicular tissues, but at significantly lower frequencies in TGCT. Except for CCND2, the expressions of all markers were significantly associated with various TGCT subtypes. In summary, we have developed a high-throughput tool for the evaluation of TGCT markers, utilized this to validate five candidate genes whose protein expressions were indeed deregulated in TGCT.

  16. Gene expression profiling of histologically normal breast tissue in females with human epidermal growth factor receptor 2‑positive breast cancer.

    Science.gov (United States)

    Zubor, Pavol; Hatok, Jozef; Moricova, Petra; Kapustova, Ivana; Kajo, Karol; Mendelova, Andrea; Sivonova, Monika Kmetova; Danko, Jan

    2015-02-01

    Gene expression profile‑based taxonomy of breast cancer (BC) has been described as a significant breakthrough in comprehending the differences in the origin and behavior of cancer to allow individually tailored therapeutic approaches. In line with this, we hypothesized that the gene expression profile of histologically normal epithelium (HNEpi) could harbor certain genetic abnormalities predisposing breast tissue cells to develop human epidermal growth factor receptor 2 (HER2)‑positive BC. Thus, the aim of the present study was to assess gene expression in normal and BC tissue (BCTis) from patients with BC in order to establish its value as a potential diagnostic marker for cancer development. An array study evaluating a panel of 84 pathway‑ and disease‑specific genes in HER2‑positive BC and tumor‑adjacent HNEpi was performed using quantitative polymerase chain reaction in 12 patients using microdissected samples from frozen tissue. Common prognostic and predictive parameters of BC were assessed by immunohistochemistry and in situ hybridization. In the BCTis and HNEpi samples of 12 HER2‑positive subjects with BC, the expression of 2,016 genes was assessed. A total of 39.3% of genes were deregulated at a minimal two‑fold deregulation rate and 10.7% at a five‑fold deregulation rate in samples of HNEpi or BCTis. Significant differences in gene expression between BCTis and HNEpi samples were revealed for BCL2L2, CD44, CTSD, EGFR, ERBB2, ITGA6, NGFB, RPL27, SCBG2A1 and SCGB1D2 genes (Pbreast tissue revealed gene expression abnormalities that may represent potential markers of increased risk for HER2‑positive malignant transformation of breast tissue, and may be able to be employed as predictors of prognosis.

  17. A novel radiation responsive cis-acting element regulates gene induction and mediates tissue injury

    International Nuclear Information System (INIS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi; Kuchibahtla, Jaya

    1997-01-01

    Purpose: The intracellular adhesion molecule (ICAM-1) binds and activates inflammatory cells and thereby contributes to the pathogenesis of tissue injury. To characterize a model for radiation-induction of tissue injury, we studied radiation-mediated lung injury in mice deficient in the ICAM-1 gene. To study the mechanisms of x-ray mediated ICAM induction, we studied transcriptional activation of the ICAM promoter and nuclear protein binding to the 5' untranslated region of the ICAM gene. Methods: Immunohistochemistry and immunofluorescence were used to study the histologic pattern of ICAM expression in irradiated tissue. The ICAM-1 knockout mice were bred with wild type mice to create heterozygous mice with attenuated ICAM expression. ICAM -/-, ICAM+/- and ICAM +/+ mice were treated with thoracic irradiation and lung sections were stained for leukocyte common antigen (CD45) to study inflammation. To study the mechanism of x-ray induction of ICAM, we linked the 5' untranslated region of the ICAM gene to the luciferase reporter gene and delated DNA segments from the promoter to determine which elements are required for induction. We performed electrophoretic mobility shift analysis of nuclear proteins from irradiated endothelial cells to study transcription factor activation. Results: Immunohistochemistry showed dose and time dependent increases in ICAM protein expression in irradiated lungs which was prolonged as compared to endothelial cells in vitro. The histologic pattern of ICAM expression was in the capillary endothelium and was distinct from the pattern of expression of other radiation-inducible adhesion molecules. ICAM knockout mice had no ICAM expression and no inflammatory cell accumulation in the irradiated lung. ICAM+/+ mice developed leukocyte adhesion to irradiated endothelium within hours of irradiation and radiation pneumonitis 5 to 6 weeks later. The DNA sequence between -981 and -769 (relative to start codon) contains two 16-base pair repeats, each

  18. Differential HFE gene expression is regulated by alternative splicing in human tissues.

    Science.gov (United States)

    Martins, Rute; Silva, Bruno; Proença, Daniela; Faustino, Paula

    2011-03-03

    The pathophysiology of HFE-derived Hereditary Hemochromatosis and the function of HFE protein in iron homeostasis remain uncertain. Also, the role of alternative splicing in HFE gene expression regulation and the possible function of the corresponding protein isoforms are still unknown. The aim of this study was to gain insights into the physiological significance of these alternative HFE variants. Alternatively spliced HFE transcripts in diverse human tissues were identified by RT-PCR, cloning and sequencing. Total HFE transcripts, as well as two alternative splicing transcripts were quantified using a real-time PCR methodology. Intracellular localization, trafficking and protein association of GFP-tagged HFE protein variants were analysed in transiently transfected HepG2 cells by immunoprecipitation and immunofluorescence assays. Alternatively spliced HFE transcripts present both level- and tissue-specificity. Concerning the exon 2 skipping and intron 4 inclusion transcripts, the liver presents the lowest relative level, while duodenum presents one of the highest amounts. The protein resulting from exon 2 skipping transcript is unable to associate with β2M and TfR1 and reveals an ER retention. Conversely, the intron 4 inclusion transcript gives rise to a truncated, soluble protein (sHFE) that is mostly secreted by cells to the medium in association with β2M. HFE gene post-transcriptional regulation is clearly affected by a tissue-dependent alternative splicing mechanism. Among the corresponding proteins, a sHFE isoform stands out, which upon being secreted into the bloodstream, may act in remote tissues. It could be either an agonist or antagonist of the full length HFE, through hepcidin expression regulation in the liver or by controlling dietary iron absorption in the duodenum.

  19. Increased asthma and adipose tissue inflammatory gene expression with obesity and Inuit migration to a western country.

    Science.gov (United States)

    Backer, Vibeke; Baines, Katherine J; Powell, Heather; Porsbjerg, Celeste; Gibson, Peter G

    2016-02-01

    An overlap between obesity and asthma exists, and inflammatory cells in adipose tissue could drive the development of asthma. Comparison of adipose tissue gene expression among Inuit living in Greenland to those in Denmark provides an opportunity to assess how changes in adipose tissue inflammation can be modified by migration and diet. To examine mast cell and inflammatory markers in adipose tissue and the association with asthma. Two Inuit populations were recruited, one living in Greenland and another in Denmark. All underwent adipose subcutaneous biopsy, followed by clinical assessment of asthma, and measurement of AHR. Adipose tissue biopsies were homogenised, RNA extracted, and PCR was performed to determine the relative gene expression of mast cell (tryptase, chymase, CPA3) and inflammatory markers (IL-6, IL-1β, and CD163). Of the 1059 Greenlandic Inuit participants, 556 were living in Greenland and 6.4% had asthma. Asthma was increased in Denmark (9%) compared to Greenland (3.6%, p Inuit (p Inuit, adipose tissue inflammation is also increased in those who migrate to Denmark, possibly as a result of dietary changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Habitual dietary intake of fatty acids are associated with leptin gene expression in subcutaneous and visceral adipose tissue of patients without diabetes.

    Science.gov (United States)

    Rostami, Hosein; Samadi, Mohammad; Yuzbashian, Emad; Zarkesh, Maryam; Asghari, Golaleh; Hedayati, Mehdi; Daneshafrooz, Afsoon; Mirmiran, Parvin; Khalaj, Alireza

    2017-11-01

    The purpose of the study was to investigate the association of leptin gene expression in visceral and subcutaneous adipose tissues with habitual fatty acid intake and its subtypes in adults. Visceral and subcutaneous adipose tissues were gathered from 97 participants aged ≥ 20, who had undergone elective abdominal surgery. Dietary fatty acid intakes including total fatty acids (TFA), saturated fatty acid (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), n-3, n-6, and n-9 fatty acids were collected using a valid and reliable food-frequency questionnaire (FFQ). The leptin gene expression in visceral and subcutaneous adipose tissues was measured by Real-Time PCR. After controlling for body mass index (BMI) and insulin, energy-adjusted dietary intake of SFA was positively and MUFA and n-3 fatty acids were negatively associated with subcutaneous and visceral adipose tissues leptin gene expression. Besides, a significant negative association of PUFA, n-6, and n-9 fatty acids with leptin mRNA from visceral adipose tissue were observed. In order to better interpretations of the results, the participants were allocated two groups including non-obese (BMI fatty acids had a negative association with visceral leptin gene expression. Habitual intake of SFA, MUFA, and n-3 fatty acids were associated with leptin gene expression in visceral and subcutaneous adipose tissues, suggesting an important role of quality and quantity of fatty acids intake in adipose tissue to regulate leptin expression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Tissue repair genes: the TiRe database and its implication for skin wound healing

    OpenAIRE

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E.

    2016-01-01

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that ...

  2. Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models

    Energy Technology Data Exchange (ETDEWEB)

    Van der Hauwaert, Cynthia; Savary, Grégoire [EA4483, Université de Lille 2, Faculté de Médecine de Lille, Pôle Recherche, 59045 Lille (France); Buob, David [Institut de Pathologie, Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Leroy, Xavier; Aubert, Sébastien [Institut de Pathologie, Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Institut National de la Santé et de la Recherche Médicale, UMR837, Centre de Recherche Jean-Pierre Aubert, Equipe 5, 59045 Lille (France); Flamand, Vincent [Service d' Urologie, Hôpital Huriez, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Hennino, Marie-Flore [EA4483, Université de Lille 2, Faculté de Médecine de Lille, Pôle Recherche, 59045 Lille (France); Service de Néphrologie, Hôpital Huriez, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Perrais, Michaël [Institut National de la Santé et de la Recherche Médicale, UMR837, Centre de Recherche Jean-Pierre Aubert, Equipe 5, 59045 Lille (France); and others

    2014-09-15

    Numerous xenobiotics have been shown to be harmful for the kidney. Thus, to improve our knowledge of the cellular processing of these nephrotoxic compounds, we evaluated, by real-time PCR, the mRNA expression level of 377 genes encoding xenobiotic-metabolizing enzymes (XMEs), transporters, as well as nuclear receptors and transcription factors that coordinate their expression in eight normal human renal cortical tissues. Additionally, since several renal in vitro models are commonly used in pharmacological and toxicological studies, we investigated their metabolic capacities and compared them with those of renal tissues. The same set of genes was thus investigated in HEK293 and HK2 immortalized cell lines in commercial primary cultures of epithelial renal cells and in proximal tubular cell primary cultures. Altogether, our data offers a comprehensive description of kidney ability to process xenobiotics. Moreover, by hierarchical clustering, we observed large variations in gene expression profiles between renal cell lines and renal tissues. Primary cultures of proximal tubular epithelial cells exhibited the highest similarities with renal tissue in terms of transcript profiling. Moreover, compared to other renal cell models, Tacrolimus dose dependent toxic effects were lower in proximal tubular cell primary cultures that display the highest metabolism and disposition capacity. Therefore, primary cultures appear to be the most relevant in vitro model for investigating the metabolism and bioactivation of nephrotoxic compounds and for toxicological and pharmacological studies. - Highlights: • Renal proximal tubular (PT) cells are highly sensitive to xenobiotics. • Expression of genes involved in xenobiotic disposition was measured. • PT cells exhibited the highest similarities with renal tissue.

  3. Engineering zonal cartilaginous tissue by modulating oxygen levels and mechanical cues through the depth of infrapatellar fat pad stem cell laden hydrogels.

    Science.gov (United States)

    Luo, Lu; O'Reilly, Adam R; Thorpe, Stephen D; Buckley, Conor T; Kelly, Daniel J

    2017-09-01

    Engineering tissues with a structure and spatial composition mimicking those of native articular cartilage (AC) remains a challenge. This study examined if infrapatellar fat pad-derived stem cells (FPSCs) can be used to engineer cartilage grafts with a bulk composition and a spatial distribution of matrix similar to the native tissue. In an attempt to mimic the oxygen gradients and mechanical environment within AC, FPSC-laden hydrogels (either 2 mm or 4 mm in height) were confined to half of their thickness and/or subjected to dynamic compression (DC). Confining FPSC-laden hydrogels was predicted to accentuate the gradient in oxygen tension through the depth of the constructs (higher in the top and lower in the bottom), leading to enhanced glycosaminoglycan (GAG) and collagen synthesis in 2 mm high tissues. When subjected to DC alone, both GAG and collagen accumulation increased within 2 mm high unconfined constructs. Furthermore, the dynamic modulus of constructs increased from 0.96 MPa to 1.45 MPa following the application of DC. There was no synergistic benefit of coupling confinement and DC on overall levels of matrix accumulation; however in all constructs, irrespective of their height, the combination of these boundary conditions led to the development of engineered tissues that spatially best resembled native AC. The superficial region of these constructs mimicked that of native tissue, staining weakly for GAG, strongly for type II collagen, and in 4 mm high tissues more intensely for proteoglycan 4 (lubricin). This study demonstrated that FPSCs respond to joint-like environmental conditions by producing cartilage tissues mimicking native AC. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Discordant gene expression in skeletal muscle and adipose tissue of patients with type 2 diabetes: effect of interleukin-6 infusion

    DEFF Research Database (Denmark)

    Carey, A.; Wolsk, Emil; Bruce, C.

    2006-01-01

    Aims/hypothesis  We compared metabolic gene expression in adipose tissue and skeletal muscle from patients with type 2 diabetes and from well-matched healthy control subjects. We hypothesised that gene expression would be discordantly regulated when comparing the two groups. Our secondary aim...... was to determine the effect of Interleukin-6 (IL6) infusion on circulating adipokines and on gene expression in human adipose tissue. To do this we used real-time RT-PCR. Methods  Both diabetic and control subjects underwent basal skeletal muscle and subcutaneous adipose tissue biopsies. A subset...... necrosis factor alpha, adiponectin and resistin were all unaffected by IL6 infusion, but plasma resistin was lower in the diabetic subjects than in control subjects. Conclusions/interpretation  The observation that PPARGC1A and the PPARs were upregulated in the adipose tissue of type 2 diabetic patients...

  5. Histone modification profiles are predictive for tissue/cell-type specific expression of both protein-coding and microRNA genes

    Directory of Open Access Journals (Sweden)

    Zhang Michael Q

    2011-05-01

    Full Text Available Abstract Background Gene expression is regulated at both the DNA sequence level and through modification of chromatin. However, the effect of chromatin on tissue/cell-type specific gene regulation (TCSR is largely unknown. In this paper, we present a method to elucidate the relationship between histone modification/variation (HMV and TCSR. Results A classifier for differentiating CD4+ T cell-specific genes from housekeeping genes using HMV data was built. We found HMV in both promoter and gene body regions to be predictive of genes which are targets of TCSR. For example, the histone modification types H3K4me3 and H3K27ac were identified as the most predictive for CpG-related promoters, whereas H3K4me3 and H3K79me3 were the most predictive for nonCpG-related promoters. However, genes targeted by TCSR can be predicted using other type of HMVs as well. Such redundancy implies that multiple type of underlying regulatory elements, such as enhancers or intragenic alternative promoters, which can regulate gene expression in a tissue/cell-type specific fashion, may be marked by the HMVs. Finally, we show that the predictive power of HMV for TCSR is not limited to protein-coding genes in CD4+ T cells, as we successfully predicted TCSR targeted genes in muscle cells, as well as microRNA genes with expression specific to CD4+ T cells, by the same classifier which was trained on HMV data of protein-coding genes in CD4+ T cells. Conclusion We have begun to understand the HMV patterns that guide gene expression in both tissue/cell-type specific and ubiquitous manner.

  6. Glucocorticoids affect 24 h clock genes expression in human adipose tissue explant cultures.

    Directory of Open Access Journals (Sweden)

    Purificación Gómez-Abellán

    Full Text Available to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V and subcutaneous (S adipose tissue (AT in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX on positive and negative clock genes expression.VAT and SAT biopsies were obtained from morbid obese women (body mass index ≥ 40 kg/m(2 (n = 6. In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX and AT explants treated with DEX (2 hours were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR.CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements in the SAT (situation not present in VAT. A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues.24 h patterns in CLOCK and BMAL1 (positive clock elements and PER2 (negative element mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure.

  7. Molecular characterization, sequence analysis and tissue expression of a porcine gene – MOSPD2

    Directory of Open Access Journals (Sweden)

    Yang Jie

    2017-01-01

    Full Text Available The full-length cDNA sequence of a porcine gene, MOSPD2, was amplified using the rapid amplification of cDNA ends method based on a pig expressed sequence tag sequence which was highly homologous to the coding sequence of the human MOSPD2 gene. Sequence prediction analysis revealed that the open reading frame of this gene encodes a protein of 491 amino acids that has high homology with the motile sperm domain-containing protein 2 (MOSPD2 of five species: horse (89%, human (90%, chimpanzee (89%, rhesus monkey (89% and mouse (85%; thus, it could be defined as a porcine MOSPD2 gene. This novel porcine gene was assigned GeneID: 100153601. This gene is structured in 15 exons and 14 introns as revealed by computer-assisted analysis. The phylogenetic analysis revealed that the porcine MOSPD2 gene has a closer genetic relationship with the MOSPD2 gene of horse. Tissue expression analysis indicated that the porcine MOSPD2 gene is generally and differentially expressed in the spleen, muscle, skin, kidney, lung, liver, fat and heart. Our experiment is the first to establish the primary foundation for further research on the porcine MOSPD2 gene.

  8. A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice

    International Nuclear Information System (INIS)

    Pittius, C.W.; Hennighausen, L.; Lee, E.; Westphal, H.; Nicols, E.; Vitale, J.; Gordon, K.

    1988-01-01

    Whey acidic protein (WAP) is a major whey protein in mouse milk. Its gene is expressed in the lactating mammary gland and is inducible by steroid and peptide hormones. A series of transgenic mice containing a hybrid gene in which human tissue plasminogen activator (tPA) cDNA is under the control of the murine WAP gene promoter had previously been generated. In this study, 21 tissues from lactating and virgin transgenic female mice containing the WAP-tPA hybrid gene were screened for the distribution of murine WAP and human tPA transcripts. Like the endogenous WAP RNA, WAP-tPA RNA was expressed predominantly in mammary gland tissue and appeared to be inducible by lactation. Whereas WAP transcripts were not detected in 22 tissues of virgin mice, low levels of WAP-tPA RNA, which were not modulated during lactation, were found in tongue, kidney, and sublingual gland. These studies demonstrate that the WAP gene promoter can target the expression of a transgene to the mammary gland and that this expression is inducible during lactation

  9. Effects of organic and inorganic dietary selenium supplementation on gene expression profiles in oviduct tissue from broiler-breeder hens.

    Science.gov (United States)

    Brennan, K M; Crowdus, C A; Cantor, A H; Pescatore, A J; Barger, J L; Horgan, K; Xiao, R; Power, R F; Dawson, K A

    2011-05-01

    Selenium (Se) is an essential component of at least 25 selenoproteins involved in a multitude of physiological functions, including reproduction. However, relatively little is known about the mechanisms by which Se exerts its physiological effects in reproductive tissue. The objective of this study was to compare the effect of long-term inorganic Se (sodium selenite, SS) and organic yeast-derived Se (Sel-Plex(®), SP) supplementations on tissue Se content and gene expression patterns in the oviduct of broiler-breeder hens. Hens were randomly assigned at 6 weeks of age to one of the three treatments: basal semi-purified diet (control), basal diet+0.3 ppm Se as SP or basal diet+0.3 ppm Se as SS. At 49 weeks, oviduct tissue from hens randomly selected from each treatment (n=7) was analyzed for Se content and gene expression profiles using the Affymetrix Chicken genome array. Gene expression data were evaluated using GeneSpring GX 10.0 (Silicon Genetics, Redwood, CA) and Ingenuity Pathways Analysis software (Ingenuity Systems, Redwood City, CA). Oviduct Se concentration was greater with Se supplementation compared with the control (P≤0.05) but did not differ between SS- and SP-supplemented groups. Gene expression analysis revealed that the quantity of gene transcripts associated with energy production and protein translation were greater in the oviduct with SP but not SS supplementation. Targets up-regulated by SP, but not SS, included genes encoding several subunits of the mitochondrial respiratory complexes, ubiquinone production and ribosomal subunits. SS hens showed a decrease in transcripts of genes involved in respiratory complexes, ATP synthesis and protein translation and metabolism in oviduct relative to control hens. In this study, although tissue Se concentrations did not differ between hens fed SS- and SP-supplemented diets, expression patterns of genes involved in energy production and protein synthesis pathways differed between treatments. These

  10. Gene-expression analysis of matrix metalloproteinases 1 and 2 and their tissue inhibitors in chronic periapical inflammatory lesions.

    Science.gov (United States)

    Hadziabdic, Naida; Kurtovic-Kozaric, Amina; Pojskic, Naris; Sulejmanagic, Nedim; Todorovic, Ljubomir

    2016-03-01

    Periapical inflammatory lesions have been investigated previously, but understanding of pathogenesis of these lesions (granulomas and radicular cysts) at the molecular level is still questionable. Matrix metalloproteinases (MMPs) are enzymes involved in the development of periapical pathology, specifically inflammation and tissue destruction. To elucidate pathogenesis of periapical granulomas and radicular cysts, we undertook a detailed analysis of gene expression of MMP-1, MMP-2 and their tissue inhibitors, TIMP-1 and TIMP-2. A total of 149 samples were analyzed using real-time PCR (59 radicular cysts, 50 periapical granulomas and 40 healthy gingiva samples as controls) for expression of MMP-1, MMP-2, TIMP-1 and TIMP-2 genes. The determination of best reference gene for expression analysis of periapical lesions was done using a panel of 12 genes. We have shown that β-actin and GAPDH are not the most stable reference controls for gene expression analysis of inflammatory periapical tissues and healthy gingiva. The most suitable reference gene was determined to be SDHA (a succinate dehydrogenase complex, subunit A, flavoprotein [Fp]). We found that granulomas (n = 50) and radicular cysts (n = 59) exhibited significantly higher expression of all four examined genes, MMP-1, MMP-2, TIMP-1, and TIMP-2, when compared to healthy gingiva (n = 40; P periapical inflammatory lesions. Since the abovementioned markers were not differentially expressed in periapical granulomas and radicular cysts, the challenge of finding the genetic differences between the two lesions still remains. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Transcriptome architecture across tissues in the pig

    Directory of Open Access Journals (Sweden)

    Folch Josep M

    2008-04-01

    Full Text Available Abstract Background Artificial selection has resulted in animal breeds with extreme phenotypes. As an organism is made up of many different tissues and organs, each with its own genetic programme, it is pertinent to ask: How relevant is tissue in terms of total transcriptome variability? Which are the genes most distinctly expressed between tissues? Does breed or sex equally affect the transcriptome across tissues? Results In order to gain insight on these issues, we conducted microarray expression profiling of 16 different tissues from four animals of two extreme pig breeds, Large White and Iberian, two males and two females. Mixed model analysis and neighbor – joining trees showed that tissues with similar developmental origin clustered closer than those with different embryonic origins. Often a sound biological interpretation was possible for overrepresented gene ontology categories within differentially expressed genes between groups of tissues. For instance, an excess of nervous system or muscle development genes were found among tissues of ectoderm or mesoderm origins, respectively. Tissue accounted for ~11 times more variability than sex or breed. Nevertheless, we were able to confidently identify genes with differential expression across tissues between breeds (33 genes and between sexes (19 genes. The genes primarily affected by sex were overall different than those affected by breed or tissue. Interaction with tissue can be important for differentially expressed genes between breeds but not so much for genes whose expression differ between sexes. Conclusion Embryonic development leaves an enduring footprint on the transcriptome. The interaction in gene × tissue for differentially expressed genes between breeds suggests that animal breeding has targeted differentially each tissue's transcriptome.

  12. Mechanical properties and structure-function relationships of human chondrocyte-seeded cartilage constructs after in vitro culture.

    Science.gov (United States)

    Middendorf, Jill M; Griffin, Darvin J; Shortkroff, Sonya; Dugopolski, Caroline; Kennedy, Stephen; Siemiatkoski, Joseph; Cohen, Itai; Bonassar, Lawrence J

    2017-10-01

    Autologous Chondrocyte Implantation (ACI) is a widely recognized method for the repair of focal cartilage defects. Despite the accepted use, problems with this technique still exist, including graft hypertrophy, damage to surrounding tissue by sutures, uneven cell distribution, and delamination. Modified ACI techniques overcome these challenges by seeding autologous chondrocytes onto a 3D scaffold and securing the graft into the defect. Many studies on these tissue engineered grafts have identified the compressive properties, but few have examined frictional and shear properties as suggested by FDA guidance. This study is the first to perform three mechanical tests (compressive, frictional, and shear) on human tissue engineered cartilage. The objective was to understand the complex mechanical behavior, function, and changes that occur with time in these constructs grown in vitro using compression, friction, and shear tests. Safranin-O histology and a DMMB assay both revealed increased sulfated glycosaminoglycan (sGAG) content in the scaffolds with increased maturity. Similarly, immunohistochemistry revealed increased lubricin localization on the construct surface. Confined compression and friction tests both revealed improved properties with increased construct maturity. Compressive properties correlated with the sGAG content, while improved friction coefficients were attributed to increased lubricin localization on the construct surfaces. In contrast, shear properties did not improve with increased culture time. This study suggests the various mechanical and biological properties of tissue engineered cartilage improve at different rates, indicating thorough mechanical evaluation of tissue engineered cartilage is critical to understanding the performance of repaired cartilage. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2298-2306, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    Science.gov (United States)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  14. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    Science.gov (United States)

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  15. Differential HFE gene expression is regulated by alternative splicing in human tissues.

    Directory of Open Access Journals (Sweden)

    Rute Martins

    Full Text Available BACKGROUND: The pathophysiology of HFE-derived Hereditary Hemochromatosis and the function of HFE protein in iron homeostasis remain uncertain. Also, the role of alternative splicing in HFE gene expression regulation and the possible function of the corresponding protein isoforms are still unknown. The aim of this study was to gain insights into the physiological significance of these alternative HFE variants. METHODOLOGY/PRINCIPAL FINDINGS: Alternatively spliced HFE transcripts in diverse human tissues were identified by RT-PCR, cloning and sequencing. Total HFE transcripts, as well as two alternative splicing transcripts were quantified using a real-time PCR methodology. Intracellular localization, trafficking and protein association of GFP-tagged HFE protein variants were analysed in transiently transfected HepG2 cells by immunoprecipitation and immunofluorescence assays. Alternatively spliced HFE transcripts present both level- and tissue-specificity. Concerning the exon 2 skipping and intron 4 inclusion transcripts, the liver presents the lowest relative level, while duodenum presents one of the highest amounts. The protein resulting from exon 2 skipping transcript is unable to associate with β2M and TfR1 and reveals an ER retention. Conversely, the intron 4 inclusion transcript gives rise to a truncated, soluble protein (sHFE that is mostly secreted by cells to the medium in association with β2M. CONCLUSIONS/SIGNIFICANCE: HFE gene post-transcriptional regulation is clearly affected by a tissue-dependent alternative splicing mechanism. Among the corresponding proteins, a sHFE isoform stands out, which upon being secreted into the bloodstream, may act in remote tissues. It could be either an agonist or antagonist of the full length HFE, through hepcidin expression regulation in the liver or by controlling dietary iron absorption in the duodenum.

  16. Iodine-131 dose dependent gene expression in thyroid cancers and corresponding normal tissues following the Chernobyl accident.

    Directory of Open Access Journals (Sweden)

    Michael Abend

    Full Text Available The strong and consistent relationship between irradiation at a young age and subsequent thyroid cancer provides an excellent model for studying radiation carcinogenesis in humans. We thus evaluated differential gene expression in thyroid tissue in relation to iodine-131 (I-131 doses received from the Chernobyl accident. Sixty three of 104 papillary thyroid cancers diagnosed between 1998 and 2008 in the Ukrainian-American cohort with individual I-131 thyroid dose estimates had paired RNA specimens from fresh frozen tumor (T and normal (N tissue provided by the Chernobyl Tissue Bank and satisfied quality control criteria. We first hybridized 32 randomly allocated RNA specimen pairs (T/N on 64 whole genome microarrays (Agilent, 4×44 K. Associations of differential gene expression (log(2(T/N with dose were assessed using Kruskall-Wallis and trend tests in linear mixed regression models. While none of the genes withstood correction for the false discovery rate, we selected 75 genes with a priori evidence or P kruskall/P trend <0.0005 for validation by qRT-PCR on the remaining 31 RNA specimen pairs (T/N. The qRT-PCR data were analyzed using linear mixed regression models that included radiation dose as a categorical or ordinal variable. Eleven of 75 qRT-PCR assayed genes (ACVR2A, AJAP1, CA12, CDK12, FAM38A, GALNT7, LMO3, MTA1, SLC19A1, SLC43A3, ZNF493 were confirmed to have a statistically significant differential dose-expression relationship. Our study is among the first to provide direct human data on long term differential gene expression in relation to individual I-131 doses and to identify a set of genes potentially important in radiation carcinogenesis.

  17. Intra-Articular Lubricin Gene Therapy for Post-Traumatic Arthritis

    Science.gov (United States)

    2017-09-01

    MaxSi TM Graft Granules in a Rabbit Metaphyseal Defect Model Sponsor Agency: SIRAKOSS Sponsor Contact:: Dr. Tom Buckland, Chief Strategy Officer, +44...Dr. Tom Buckland, Chief Strategy Officer, +44-7545-840504, tom.buckland@sirakoss.com 02/01/2016–09/30/2016, 02/01/2016–09/30/2016, 02/01/2016–06

  18. Intra-Articular Lubricin Gene Therapy for Post-Traumatic Arthritis

    Science.gov (United States)

    2016-09-01

    with ligamentous /meniscal injuries. Up to 60% of patients who undergo anterior cruciate ligament (ACL) replacement surgery develop symptomatic knee...testing device. The skills he has gained in the process enhance his career prospects as a biomedical engineer . How were the results disseminated to...BS (Co-Investigator), 0.12 Calendar months (no salary support) Fully negotiated during Year 2: Engineering Endogenous Cartilage Repair Sponsor

  19. Intra-Articular Lubricin Gene Therapy for Post-Traumatic Arthritis

    Science.gov (United States)

    2015-09-01

    Healing in a Rabbit Model Sponsor Agency: American Orthopaedic Foot & Ankle Society Contract Specialist: Joy Keller, MS, MSUS, Director of Research...coefficient (μ).(75, 110, 111) 4.3.2 Friction test on explants Fresh bovine osteochondral explants were anchored along the bone surface to the base...explant plugs (12 mm) were anchored along the bone surface to the base plate with new designed plate. The centers of the explants were subject to a

  20. Validation of potential reference genes for qPCR in maize across abiotic stresses, hormone treatments, and tissue types.

    Directory of Open Access Journals (Sweden)

    Yueai Lin

    Full Text Available The reverse transcription quantitative polymerase chain reaction (RT-qPCR is a powerful and widely used technique for the measurement of gene expression. Reference genes, which serve as endogenous controls ensure that the results are accurate and reproducible, are vital for data normalization. To bolster the literature on reference gene selection in maize, ten candidate reference genes, including eight traditionally used internal control genes and two potential candidate genes from our microarray datasets, were evaluated for expression level in maize across abiotic stresses (cold, heat, salinity, and PEG, phytohormone treatments (abscisic acid, salicylic acid, jasmonic acid, ethylene, and gibberellins, and different tissue types. Three analytical software packages, geNorm, NormFinder, and Bestkeeper, were used to assess the stability of reference gene expression. The results revealed that elongation factor 1 alpha (EF1α, tubulin beta (β-TUB, cyclophilin (CYP, and eukaryotic initiation factor 4A (EIF4A were the most reliable reference genes for overall gene expression normalization in maize, while GRP (Glycine-rich RNA-binding protein, GLU1(beta-glucosidase, and UBQ9 (ubiquitin 9 were the least stable and most unsuitable genes. In addition, the suitability of EF1α, β-TUB, and their combination as reference genes was confirmed by validating the expression of WRKY50 in various samples. The current study indicates the appropriate reference genes for the urgent requirement of gene expression normalization in maize across certain abiotic stresses, hormones, and tissue types.

  1. NUTM1 Gene Fusions Characterize a Subset of Undifferentiated Soft Tissue and Visceral Tumors.

    Science.gov (United States)

    Dickson, Brendan C; Sung, Yun-Shao; Rosenblum, Marc K; Reuter, Victor E; Harb, Mohammed; Wunder, Jay S; Swanson, David; Antonescu, Cristina R

    2018-05-01

    NUT midline carcinoma is an aggressive tumor that occurs mainly in the head and neck and, less frequently, the mediastinum and lung. Following identification of an index case of a NUTM1 fusion positive undifferentiated soft tissue tumor, we interrogated additional cases of primary undifferentiated soft tissue and visceral tumors for NUTM1 abnormalities. Targeted next-generation sequencing was performed on RNA extracted from formalin-fixed paraffin-embedded tissue, and results validated by fluorescence in situ hybridization using custom bacterial artificial chromosome probes. Six patients were identified: mean age of 42 years (range, 3 to 71 y); equal sex distribution; and, tumors involved the extremity soft tissues (N=2), kidney (N=2), stomach, and brain. On systemic work-up at presentation all patients lacked a distant primary tumor. Morphologically, the tumors were heterogenous, with undifferentiated round-epithelioid-rhabdoid cells arranged in solid sheets, nests, and cords. Mitotic activity was generally brisk. Four cases expressed pancytokeratin, but in only 2 cases was this diffuse. Next-generation sequencing demonstrated the following fusions: BRD4-NUTM1 (3 cases), BRD3-NUTM1, MXD1-NUTM1, and BCORL1-NUTM1. Independent testing by fluorescence in situ hybridization confirmed the presence of NUTM1 and partner gene rearrangement. This study establishes that NUT-associated tumors transgress the midline and account for a subset of primitive neoplasms occurring in soft tissue and viscera. Tumors harboring NUTM1 gene fusions are presumably underrecognized, and the extent to which they account for undifferentiated mesenchymal, neuroendocrine, and/or epithelial neoplasms is unclear. Moreover, the relationship, if any, between NUT-associated tumors in soft tissue and/or viscera, and conventional NUT carcinoma, remains to be elucidated.

  2. Speckle-type POZ (pox virus and zinc finger protein) protein gene deletion in ovarian cancer: Fluorescence in situ hybridization analysis of a tissue microarray.

    Science.gov (United States)

    Hu, Xiaoyu; Yang, Zhu; Zeng, Manman; Liu, Y I; Yang, Xiaotao; Li, Yanan; Li, X U; Yu, Qiubo

    2016-07-01

    The aim of the present study was to investigate the status of speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) gene located on chromosome 17q21 in ovarian cancer (OC). The present study evaluated a tissue microarray, which contained 90 samples of ovarian cancer and 10 samples of normal ovarian tissue, using fluorescence in situ hybridization (FISH). FISH is a method where a SPOP-specific DNA red fluorescence probe was used for the experimental group and a centromere-specific DNA green fluorescence probe for chromosome 17 was used for the control group. The present study demonstrated that a deletion of the SPOP gene was observed in 52.27% (46/88) of the ovarian cancer tissues, but was not identified in normal ovarian tissues. Simultaneously, monosomy 17 was frequently identified in the ovarian cancer tissues, but not in the normal ovarian tissues. Furthermore, the present data revealed that the ovarian cancer histological subtype and grade were significantly associated with a deletion of the SPOP gene, which was assessed by the appearance of monosomy 17 in the ovarian cancer samples; the deletion of the SPOP gene was observed in a large proportion of serous epithelial ovarian cancer (41/61; 67.21%), particularly in grade 3 (31/37; 83.78%). In conclusion, deletion of the SPOP gene on chromosome 17 in ovarian cancer samples, which results from monosomy 17, indicates that the SPOP gene may serve as a tumor suppressor gene in ovarian cancer.

  3. Gene expression profiling of prostate tissue identifies chromatin regulation as a potential link between obesity and lethal prostate cancer.

    Science.gov (United States)

    Ebot, Ericka M; Gerke, Travis; Labbé, David P; Sinnott, Jennifer A; Zadra, Giorgia; Rider, Jennifer R; Tyekucheva, Svitlana; Wilson, Kathryn M; Kelly, Rachel S; Shui, Irene M; Loda, Massimo; Kantoff, Philip W; Finn, Stephen; Vander Heiden, Matthew G; Brown, Myles; Giovannucci, Edward L; Mucci, Lorelei A

    2017-11-01

    Obese men are at higher risk of advanced prostate cancer and cancer-specific mortality; however, the biology underlying this association remains unclear. This study examined gene expression profiles of prostate tissue to identify biological processes differentially expressed by obesity status and lethal prostate cancer. Gene expression profiling was performed on tumor (n = 402) and adjacent normal (n = 200) prostate tissue from participants in 2 prospective cohorts who had been diagnosed with prostate cancer from 1982 to 2005. Body mass index (BMI) was calculated from the questionnaire immediately preceding cancer diagnosis. Men were followed for metastases or prostate cancer-specific death (lethal disease) through 2011. Gene Ontology biological processes differentially expressed by BMI were identified using gene set enrichment analysis. Pathway scores were computed by averaging the signal intensities of member genes. Odds ratios (ORs) for lethal prostate cancer were estimated with logistic regression. Among 402 men, 48% were healthy weight, 31% were overweight, and 21% were very overweight/obese. Fifteen gene sets were enriched in tumor tissue, but not normal tissue, of very overweight/obese men versus healthy-weight men; 5 of these were related to chromatin modification and remodeling (false-discovery rate 7, 41% vs 17%; P = 2 × 10 -4 ) and an increased risk of lethal disease that was independent of grade and stage (OR, 5.26; 95% confidence interval, 2.37-12.25). This study improves our understanding of the biology of aggressive prostate cancer and identifies a potential mechanistic link between obesity and prostate cancer death that warrants further study. Cancer 2017;123:4130-4138. © 2017 American Cancer Society. © 2017 American Cancer Society.

  4. [Influence of tissue-specific superoxide dismutase genes expression in brain cells on Drosophila melanogaster sensitivity to oxidative stress and viability].

    Science.gov (United States)

    Vitushynska, M V; Matiytsiv, N P; Chernyk, Y

    2015-01-01

    The study has shown that both functional gene knockout Sodl and Sod2 and their overexpression in neurons and glial tissue increase the sensitivity of Drosophila melanogaster to oxidative stress (OS) conditions. The lowest survival rate was only 20.5% in insects with Sod2 knockout in neurons. Comparative analysis of the survival curves showed that adults with altered tissue-specific expression of the studied genes had reduced average and maximum life span. Under OS conditions induced by 5% hydrogen peroxide the life spans of wild type Oregon R and transgenic insects were significantly reduced. Altered Sod gene expression in glial tissue leads to degenerative changes in Drosophila brain at the young age. During the aging of insects and the action of pro-oxidants increasing of neurodegenerative phenotype is observed.

  5. Dietary fat composition influences tissue lipid profile and gene expression in Fischer-344 rats.

    Science.gov (United States)

    Zhou, Albert L; Hintze, Korry J; Jimenez-Flores, Rafael; Ward, Robert E

    2012-12-01

    The AIN-76A diet causes fatty liver in rodents when fed for long periods of time. The aim of this study was to utilize fatty acid analysis and transcriptomics to investigate the effects of different fat sources in the AIN-76A diet on tissue lipid profiles and gene expression in male, weanling Fischer-344 rats. Animals were fed isocaloric diets that differed only in the fat source: (1) corn oil (CO) (2) anhydrous milk fat (AMF), and (3) AMF supplemented with 10% phospholipids from the milk fat globule membrane (AMF-MFGM). There were no differences in food intake, body weight, growth rate, or body fat composition among the groups, and the fatty acid compositions of red blood cells (RBC), plasma, muscle, and visceral adipose tissues reflected the dietary fat sources. Modifying the fat source resulted in 293 genes differentially regulated in skeletal muscle, 1,124 in adipose, and 831 in liver as determined by analysis of variance (ANOVA). Although tissue fatty acid profiles mostly reflected the diet, there were several quantitative differences in lipid classes in the liver and plasma. The AMF diet resulted in the highest level of hepatic triacylglycerols, but the lowest level in plasma. The CO diet resulted in significant accumulation of hepatic unesterified fatty acids and decreased DGAT expression and activity, a potential trigger for steatohepatitis. These results indicate that the fatty acid composition and presence of polar lipids in the AIN-76A diets have significant effects on lipid partitioning, gene expression, and potentially the development of liver pathology.

  6. Intermittent fasting up-regulates Fsp27/Cidec gene expression in white adipose tissue.

    Science.gov (United States)

    Karbowska, Joanna; Kochan, Zdzislaw

    2012-03-01

    Fat-specific protein of 27 kDa (FSP27) is a novel lipid droplet protein that promotes triacylglycerol storage in white adipose tissue (WAT). The regulation of the Fsp27 gene expression in WAT is largely unknown. We investigated the nutritional regulation of FSP27 in WAT. The effects of intermittent fasting (48 d, eight cycles of 3-d fasting and 3-d refeeding), caloric restriction (48 d), fasting-refeeding (3-d fasting and 3-d refeeding), and fasting (3 d) on mRNA expression of FSP27, peroxisome proliferator-activated receptor γ (PPARγ2), CCAAT/enhancer binding protein α (C/EBPα), and M isoform of carnitine palmitoyltransferase 1 (a positive control for PPARγ activation) in epididymal WAT and on serum triacylglycerol, insulin, and leptin levels were determined in Wistar rats. We also determined the effects of PPARγ activation by rosiglitazone or pioglitazone on FSP27 mRNA levels in primary rat adipocytes. Long-term intermittent fasting, in contrast to other dietary manipulations, significantly up-regulated Fsp27 gene expression in WAT. Moreover, in rats subjected to intermittent fasting, serum insulin levels were elevated; PPARγ2 and C/EBPα mRNA expression in WAT was increased, and there was a positive correlation of Fsp27 gene expression with PPARγ2 and C/EBPα mRNA levels. FSP27 mRNA expression was also increased in adipocytes treated with PPARγ agonists. Our study demonstrates that the transcription of the Fsp27 gene in adipose tissue may be induced in response to nutritional stimuli. Furthermore, PPARγ2, C/EBPα, and insulin may be involved in the nutritional regulation of FSP27. Thus intermittent fasting, despite lower caloric intake, may promote triacylglycerol deposition in WAT by increasing the expression of genes involved in lipid storage, such as Fsp27. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Non-viral gene delivery strategies for cancer therapy, tissue engineering and regenerative medicine

    Science.gov (United States)

    Bhise, Nupura S.

    Gene therapy involves the delivery of deoxyribonucleic acid (DNA) into cells to override or replace a malfunctioning gene for treating debilitating genetic diseases, including cancer and neurodegenerative diseases. In addition to its use as a therapeutic, it can also serve as a technology to enable regenerative medicine strategies. The central challenge of the gene therapy research arena is developing a safe and effective delivery agent. Since viral vectors have critical immunogenic and tumorogenic safety issues that limit their clinical use, recent efforts have focused on developing non-viral biomaterial based delivery vectors. Cationic polymers are an attractive class of gene delivery vectors due to their structural versatility, ease of synthesis, biodegradability, ability to self-complex into nanoparticles with negatively charged DNA, capacity to carry large cargo, cellular uptake and endosomal escape capacity. In this thesis, we hypothesized that developing a biomaterial library of poly(betaamino esters) (PBAE), a newer class of cationic polymers consisting of biodegradable ester groups, would allow investigating vector design parameters and formulating effective non-viral gene delivery strategies for cancer drug delivery, tissue engineering and stem cell engineering. Consequently, a high-throughput transfection assay was developed to screen the PBAE-based nanoparticles in hard to transfect fibroblast cell lines. To gain mechanistic insights into the nanoparticle formulation process, biophysical properties of the vectors were characterized in terms of molecular weight (MW), nanoparticle size, zeta potential and plasmid per particle count. We report a novel assay developed for quantifying the plasmid per nanoparticle count and studying its implications for co-delivery of multiple genes. The MW of the polymers ranged from 10 kDa to 100 kDa, nanoparticle size was about 150 run, zeta potential was about 30 mV in sodium acetate buffer (25 mM, pH 5) and 30 to 100

  8. Gene-specific correlation of RNA and protein levels in human cells and tissues

    DEFF Research Database (Denmark)

    Edfors, Fredrik; Danielsson, Frida; Hallström, Björn M.

    2016-01-01

    An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on parallel reaction monitoring...... to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP...

  9. Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment

    Directory of Open Access Journals (Sweden)

    Callard Gloria V

    2008-11-01

    Full Text Available Abstract Background Research using the zebrafish model has experienced a rapid growth in recent years. Although real-time reverse transcription PCR (QPCR, normalized to an internal reference ("housekeeping" gene, is a frequently used method for quantifying gene expression changes in zebrafish, many commonly used housekeeping genes are known to vary with experimental conditions. To identify housekeeping genes that are stably expressed under different experimental conditions, and thus suitable as normalizers for QPCR in zebrafish, the present study evaluated the expression of eight commonly used housekeeping genes as a function of stage and hormone/toxicant exposure during development, and by tissue type and sex in adult fish. Results QPCR analysis was used to quantify mRNA levels of bactin1, tubulin alpha 1(tuba1, glyceraldehyde-3-phosphate dehydrogenase (gapdh, glucose-6-phosphate dehydrogenase (g6pd, TATA-box binding protein (tbp, beta-2-microglobulin (b2m, elongation factor 1 alpha (elfa, and 18s ribosomal RNA (18s during development (2 – 120 hr postfertilization, hpf; in different tissue types (brain, eye, liver, heart, muscle, gonads of adult males and females; and after treatment of embryos/larvae (24 – 96 hpf with commonly used vehicles for administration and agents that represent known environmental endocrine disruptors. All genes were found to have some degree of variability under the conditions tested here. Rank ordering of expression stability using geNorm analysis identified 18s, b2m, and elfa as most stable during development and across tissue types, while gapdh, tuba1, and tpb were the most variable. Following chemical treatment, tuba1, bactin1, and elfa were the most stably expressed whereas tbp, 18s, and b2m were the least stable. Data also revealed sex differences that are gene- and tissue-specific, and treatment effects that are gene-, vehicle- and ligand-specific. When the accuracy of QPCR analysis was tested using

  10. Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue From Subjects With Type 2 Diabetes

    DEFF Research Database (Denmark)

    Nilsson, Emma; Jansson, Per Anders; Perfilyev, Alexander

    2014-01-01

    Genetics, epigenetics, and environment may together affect the susceptibility for type 2 diabetes (T2D). Our aim was to dissect molecular mechanisms underlying T2D using genome-wide expression and DNA methylation data in adipose tissue from monozygotic twin pairs discordant for T2D and independent...... case-control cohorts. In adipose tissue from diabetic twins, we found decreased expression of genes involved in oxidative phosphorylation; carbohydrate, amino acid, and lipid metabolism; and increased expression of genes involved in inflammation and glycan degradation. The most differentially expressed...... genes included ELOVL6, GYS2, FADS1, SPP1 (OPN), CCL18, and IL1RN. We replicated these results in adipose tissue from an independent case-control cohort. Several candidate genes for obesity and T2D (e.g., IRS1 and VEGFA) were differentially expressed in discordant twins. We found a heritable contribution...

  11. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    DEFF Research Database (Denmark)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal

    2013-01-01

    , isoform, and transcription start site (TSS), and promoter level showed that several of the genes differed at all four levels. Interestingly, these genes were mainly annotated to the "electron transport chain" and neuronal differentiation, emphasizing that "tissue important" genes are regulated at several...

  12. Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: Comparisons with the normal articular cartilage

    Directory of Open Access Journals (Sweden)

    Kurokawa Takayuki

    2011-09-01

    Full Text Available Abstract Background We have recently found a phenomenon that spontaneous regeneration of a hyaline cartilage-like tissue can be induced in a large osteochondral defect by implanting a double-network (DN hydrogel plug, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid and poly-(N, N'-Dimetyl acrylamide, at the bottom of the defect. The purpose of this study was to clarify gene expression profile of the regenerated tissue in comparison with that of the normal articular cartilage. Methods We created a cylindrical osteochondral defect in the rabbit femoral grooves. Then, we implanted the DN gel plug at the bottom of the defect. At 2 and 4 weeks after surgery, the regenerated tissue was analyzed using DNA microarray and immunohistochemical examinations. Results The gene expression profiles of the regenerated tissues were macroscopically similar to the normal cartilage, but showed some minor differences. The expression degree of COL2A1, COL1A2, COL10A1, DCN, FMOD, SPARC, FLOD2, CHAD, CTGF, and COMP genes was greater in the regenerated tissue than in the normal cartilage. The top 30 genes that expressed 5 times or more in the regenerated tissue as compared with the normal cartilage included type-2 collagen, type-10 collagen, FN, vimentin, COMP, EF1alpha, TFCP2, and GAPDH genes. Conclusions The tissue regenerated by using the DN gel was genetically similar but not completely identical to articular cartilage. The genetic data shown in this study are useful for future studies to identify specific genes involved in spontaneous cartilage regeneration.

  13. Differential Expression of , , and Genes in Various Adipose Tissues and Muscle from Yanbian Yellow Cattle and Yan Yellow Cattle

    Directory of Open Access Journals (Sweden)

    Shuang Ji

    2014-01-01

    Full Text Available The objective of this study was to investigate the correlation between cattle breeds and deposit of adipose tissues in different positions and the gene expressions of peroxisome proliferator-activated receptor gamma (PPARγ, fatty acid synthase (FASN, and Acyl-CoA dehydrogenase (ACADM, which are associated with lipid metabolism and are valuable for understanding the physiology in fat depot and meat quality. Yanbian yellow cattle and Yan yellow cattle reared under the same conditions display different fat proportions in the carcass. To understand this difference, the expression of PPARγ, FASN, and ACADM in different adipose tissues and longissimus dorsi muscle (LD in these two breeds were analyzed using the Real-time quantitative polymerase chain reaction method (qRT-PCR. The result showed that PPARγ gene expression was significantly higher in adipose tissue than in LD in both breeds. PPARγ expression was also higher in abdominal fat, in perirenal fat than in the subcutaneous fat (p<0.05 in Yanbian yellow cattle, and was significantly higher in subcutaneous fat in Yan yellow cattle than that in Yanbian yellow cattle. On the other hand, FASN mRNA expression levels in subcutaneous fat and abdominal fat in Yan yellow cattle were significantly higher than that in Yanbian yellow cattle. Interestingly, ACADM gene shows greater fold changes in LD than in adipose tissues in Yan yellow cattle. Furthermore, the expressions of these three genes in lung, colon, kidney, liver and heart of Yanbian yellow cattle and Yan yellow cattle were also investigated. The results showed that the highest expression levels of PPARγ and FASN genes were detected in the lung in both breeds. The expression of ACADM gene in kidney and liver were higher than that in other organs in Yanbian yellow cattle, the comparison was not statistically significant in Yan yellow cattle.

  14. Extracellular Matrix, Nuclear and Chromatin Structure and GeneExpression in Normal Tissues and Malignant Tumors: A Work inProgress

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Virginia A.; Xu, Ren; Bissell, Mina J.

    2006-08-01

    Almost three decades ago, we presented a model where theextracellular matrix (ECM) was postulated to influence gene expressionand tissue-specificity through the action of ECM receptors and thecytoskeleton. This hypothesis implied that ECM molecules could signal tothe nucleus and that the unit of function in higher organisms was not thecell alone, but the cell plus its microenvironment. We now know that ECMinvokes changes in tissue and organ architecture and that tissue, cell,nuclear, and chromatin structure are changed profoundly as a result ofand during malignant progression. Whereas some evidence has beengenerated for a link between ECM-induced alterations in tissuearchitecture and changes in both nuclear and chromatin organization, themanner by which these changes actively induce or repress gene expressionin normal and malignant cells is a topic in need of further attention.Here, we will discuss some key findings that may provide insights intomechanisms through which ECM could influence gene transcription and howtumor cells acquire the ability to overcome these levels ofcontrol.

  15. Tissue repair genes: the TiRe database and its implication for skin wound healing.

    Science.gov (United States)

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E

    2016-04-19

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at http://www.tiredb.org.

  16. mRNA Expression of Ovine Angiopoietin-like Protein 4 Gene in Adipose Tissues

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2016-05-01

    Full Text Available Angiopoietin-like protein 4 (ANGPTL4 is involved in a variety of functions, including lipoprotein metabolism and angiogenesis. To reveal the role of ANGPTL4 in fat metabolism of sheep, ovine ANGPTL4 mRNA expression was analyzed in seven adipose tissues from two breeds with distinct tail types. Forty-eight animals with the gender ratio of 1:1 for both Guangling Large Tailed (GLT and Small Tailed Han (STH sheep were slaughtered at 2, 4, 6, 8, 10, and 12 months of age, respectively. Adipose tissues were collected from greater and lesser omental, subcutaneous, retroperitoneal, perirenal, mesenteric, and tail fats. Ontogenetic mRNA expression of ANGPTL4 in these adipose tissues from GTL and STH was studied by quantitative real time polymerase chain reaction. The results showed that ANGPTL4 mRNA expressed in all adipose tissues studied with the highest in subcutaneous and the lowest in mesenteric fat depots. Months of age, tissue and breed are the main factors that significantly influence the mRNA expression. These results provide new insights into ovine ANGPTL4 gene expression and clues for its function mechanism.

  17. Hormone replacement therapy dependent changes in breast cancer-related gene expression in breast tissue of healthy postmenopausal women.

    Science.gov (United States)

    Sieuwerts, Anieta M; De Napoli, Giuseppina; van Galen, Anne; Kloosterboer, Helenius J; de Weerd, Vanja; Zhang, Hong; Martens, John W M; Foekens, John A; De Geyter, Christian

    2011-12-01

    Risk assessment of future breast cancer risk through exposure to sex steroids currently relies on clinical scorings such as mammographic density. Knowledge about the gene expression patterns in existing breast cancer tumors may be used to identify risk factors in the breast tissue of women still free of cancer. The differential effects of estradiol, estradiol together with gestagens, or tibolone on breast cancer-related gene expression in normal breast tissue samples taken from postmenopausal women may be used to identify gene expression profiles associated with a higher breast cancer risk. Breast tissue samples were taken from 33 healthy postmenopausal women both before and after a six month treatment with either 2mg micronized estradiol [E2], 2mg micronized estradiol and 1mg norethisterone acetate [E2+NETA], 2.5mg tibolone [T] or [no HRT]. Except for [E2], which was only given to women after hysterectomy, the allocation to each of the three groups was randomized. The expression of 102 mRNAs and 46 microRNAs putatively involved in breast cancer was prospectively determined in the biopsies of 6 women receiving [no HRT], 5 women receiving [E2], 5 women receiving [E2+NETA], and 6 receiving [T]. Using epithelial and endothelial markers genes, non-representative biopsies from 11 women were eliminated. Treatment of postmenopausal women with [E2+NETA] resulted in the highest number of differentially (pbreast tissue with a change in the expression of genes putatively involved in breast cancer. Our data suggest that normal mammary cells triggered by [E2+NETA] adjust for steroidogenic up-regulation through down-regulation of the estrogen-receptor pathway. This feasibility study provides the basis for whole genome analyses to identify novel markers involved in increased breast cancer risk. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Direct detection of the AR-E211 G > A gene polymorphism from blood and tissue samples without DNA isolation.

    Science.gov (United States)

    Reptova, Silvie; Trtkova, Katerina Smesny; Kolar, Zdenek

    2014-04-01

    The pathogenesis of prostate cancer (CaP) involves alterations in a gene structure of the androgen receptor (AR). The single nucleotide polymorphism AR-E211 G > A localized in exon 1 of the AR gene (G1733A) was detected using direct polymerase chain reaction and restriction digestion (PCR-RFLP) method on blood and tissue samples without prior DNA isolation. We used blood samples of patients with a diagnosis of benign prostatic hyperplasia (BPH) or CaP. From monitored group of CaP patients were selected specimen in formalin-fixed paraffin-embedded tissue blocks with morphology of BPH and CaP. The main objective of our study was to develop a method based the direct PCR-RFLP analysis from blood and tissue without prior DNA isolation for faster genotyping analysis of a large number of samples. We found no statistically significant differences in allelic % of the AR-E211 G > A polymorphism between BPH and CaP patients (p ≤ 0.8462). Genotyping of the AR-E211 G > A variant in blood was not identical with tumor tissue genotyping analysis. Significant agreement between blood and tissue AR-E211 G > A polymorphism only in non-tumor tissue focus was confirmed. Although we analyzed a limited number of the tissue samples, we suppose that a presence of the minor allele A may be associated with cancer transformation-induced changes of the modified AR gene.

  19. Tissue- Specific Expression Analysis of Anthocyanin Biosynthetic Genes in White- and Red-Fleshed Grape Cultivars

    Directory of Open Access Journals (Sweden)

    Sha Xie

    2015-12-01

    Full Text Available Yan73, a teinturier (dyer grape variety in China, is one of the few Vitis vinifera cultivars with red-coloured berry flesh. To examine the tissue-specific expression of genes associated with berry colour in Yan73, we analysed the differential accumulation of anthocyanins in the skin and flesh tissues of two red-skinned grape varieties with either red (Yan73 or white flesh (Muscat Hamburg based on HPLC-MS analysis, as well as the differential expression of 18 anthocyanin biosynthesis genes in both varieties by quantitative RT-PCR. The results revealed that the transcripts of GST, OMT, AM3, CHS3, UFGT, MYBA1, F3′5′H, F3H1 and LDOX were barely detectable in the white flesh of Muscat Hamburg. In particular, GST, OMT, AM3, CHS3 and F3H1 showed approximately 50-fold downregulation in the white flesh of Muscat Hamburg compared to the red flesh of Yan73. A correlation analysis between the accumulation of different types of anthocyanins and gene expression indicated that the cumulative expression of GST, F3′5′H, LDOX and MYBA1 was more closely associated with the acylated anthocyanins and the 3′5′-OH anthocyanins, while OMT and AM3 were more closely associated with the total anthocyanins and methoxylated anthocyanins. Therefore, the transcripts of OMT, AM3, GST, F3′5′H, LDOX and MYBA1 explained most of the variation in the amount and composition of anthocyanins in skin and flesh of Yan73. The data suggest that the specific localization of anthocyanins in the flesh tissue of Yan73 is most likely due to the tissue-specific expression of OMT, AM3, GST, F3′5′H, LDOX and MYBA1 in the flesh.

  20. Methylation effect on chalcone synthase gene expression determines anthocyanin pigmentation in floral tissues of two Oncidium orchid cultivars.

    Science.gov (United States)

    Liu, Xiao-Jing; Chuang, Yao-Nung; Chiou, Chung-Yi; Chin, Dan-Chu; Shen, Fu-Quan; Yeh, Kai-Wun

    2012-08-01

    The anthocyanin-biosynthetic pathway was studied in flowers of Oncidium Gower Ramsey with yellow floral color and mosaic red anthocyanin in lip crests, sepals and petals, and compared with the anthocyanin biosynthesis in flowers of Oncidium Honey Dollp, a natural somatoclone derived from tissue culture of Gower Ramsey, with a yellow perianth without red anthocyanins in floral tissues. HPLC analysis revealed that the red anthocyanin in lip crests of the Gower Ramsey cultivar comprised peonidin-3-O-glucoside, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, whereas Honey Dollp was devoid of anthocyanin compounds. Among the five anthocyanin-biosynthetic genes, OgCHS was actively expressed in lip crests of Gower Ramsey flowers, but no transcripts of OgCHS were detected in Honey Dollp floral tissues. Transient expression of OgCHS by bombardment confirmed that recovery of the OgCHS gene expression completed the anthocyanin pathway and produced anthocyanin compounds in lip crests of Honey Dollp flowers. Transcription factor genes regulating anthocyanin biosynthesis showed no distinctive differences in the expression level of OgMYB1, OgbHLH and OgWD40 between the two cultivars. A methylation assay revealed that the promoter of OgCHS was not methylated in Gower Ramsey, while a positive methylation effect was present in the upstream promoter region of OgCHS in Honey Dollp. Overall, our results suggest that the failure of anthocyanin accumulation in Honey Dollp floral tissues may be attributed to inactivation of the OgCHS gene resulting from the epigenetic methylation of 5'-upstream promoter region.

  1. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA.

    Science.gov (United States)

    Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J

    2013-05-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.

  2. Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Cirera Salicio, Susanna; Zhernakova, Daria V.

    2014-01-01

    interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model...... (modules). Additionally, regulator genes were detected using Lemon-Tree algorithms. Results WGCNA revealed five modules which were strongly correlated with at least one obesity-related phenotype (correlations ranging from -0.54 to 0.72, P ... the association between obesity and other diseases, like osteoporosis (osteoclast differentiation, P = 1.4E-7), and immune-related complications (e.g. Natural killer cell mediated cytotoxity, P = 3.8E-5; B cell receptor signaling pathway, P = 7.2E-5). Lemon-Tree identified three potential regulator genes, using...

  3. Selection of suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using quantitative real-time polymerase chain reaction.

    Science.gov (United States)

    Zornhagen, K W; Kristensen, A T; Hansen, A E; Oxboel, J; Kjaer, A

    2015-12-01

    Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is a sensitive technique for quantifying gene expression. Stably expressed reference genes are necessary for normalization of RT-qPCR data. Only a few articles have been published on reference genes in canine tumours. The objective of this study was to demonstrate how to identify suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using RT-qPCR. Primer pairs for 17 potential reference genes were designed and tested in archival tumour biopsies from six dogs. The geNorm algorithm was used to analyse the most suitable reference genes. Eight potential reference genes were excluded from this final analysis because of their dissociation curves. β-Glucuronidase (GUSB) and proteasome subunit, beta type, 6 (PSMB6) were most stably expressed with an M value of 0.154 and a CV of 0.053 describing their average stability. We suggest that choice of reference genes should be based on specific testing in every new experimental set-up. © 2014 John Wiley & Sons Ltd.

  4. A single gene (Eu4) encodes the tissue-ubiquitous urease of soybean.

    Science.gov (United States)

    Torisky, R S; Griffin, J D; Yenofsky, R L; Polacco, J C

    1994-02-01

    We sought to determine the genetic basis of expression of the ubiquitous (metabolic) urease of soybean. This isozyme is termed the metabolic urease because its loss, in eu4/eu4 mutants, leads to accumulation of urea, whereas loss of the embryo-specific urease isozyme does not. The eu4 lesion eliminated the expression of the ubiquitous urease in vegetative and embryonic tissues. RFLP analysis placed urease clone LC4 near, or within, the Eu4 locus. Sequence comparison of urease proteins (ubiquitous and embryo-specific) and clones (LC4 and LS1) indicated that LC4 and LS1 encode ubiquitous and embryo-specific ureases, respectively. That LC4 is transcribed into poly(A)+ RNA in all tissues was indicated by the amplification of its transcript by an LC4-specific PCR primer. (The LS1-specific primer, on the other hand, amplified poly(A)+ RNA only from developing embryos expressing the embryo-specific urease.) These observations are consistent with Eu4 being the ubiquitous urease structural gene contained in the LC4 clone. In agreement with this notion, the mutant phenotype of eu4/eu4 callus was partially corrected by the LC4 urease gene introduced by particle bombardment.

  5. Enhancer of the rudimentary gene homologue (ERH expression pattern in sporadic human breast cancer and normal breast tissue

    Directory of Open Access Journals (Sweden)

    Knüchel Ruth

    2008-05-01

    Full Text Available Abstract Background The human gene ERH (Enhancer of the Rudimentary gene Homologue has previously been identified by in silico analysis of four million ESTs as a gene differentially expressed in breast cancer. The biological function of ERH protein has not been fully elucidated, however functions in cell cycle progression, pyrimidine metabolism a possible interaction with p21(Cip1/Waf1 via the Ciz1 zinc finger protein have been suggested. The aim of the present study was a systematic characterization of ERH expression in human breast cancer in order to evaluate possible clinical applications of this molecule. Methods The expression pattern of ERH was analyzed using multiple tissue northern blots (MTN on a panel of 16 normal human tissues and two sets of malignant/normal breast and ovarian tissue samples. ERH expression was further analyzed in breast cancer and normal breast tissues and in tumorigenic as well as non-tumorigenic breast cancer cell lines, using quantitative RT-PCR and non-radioisotopic in situ hybridization (ISH. Results Among normal human tissues, ERH expression was most abundant in testis, heart, ovary, prostate, and liver. In the two MTN sets of malignant/normal breast and ovarian tissue,ERH was clearly more abundantly expressed in all tumours than in normal tissue samples. Quantitative RT-PCR analyses showed that ERH expression was significantly more abundant in tumorigenic than in non-tumorigenic breast cancer cell lines (4.5-fold; p = 0.05, two-tailed Mann-Whitney U-test; the same trend was noted in a set of 25 primary invasive breast cancers and 16 normal breast tissue samples (2.5-fold; p = 0.1. These findings were further confirmed by non-radioisotopic ISH in human breast cancer and normal breast tissue. Conclusion ERH expression is clearly up-regulated in malignant as compared with benign breast cells both in primary human breast cancer and in cell models of breast cancer. Since similar results were obtained for ovarian

  6. Expression of human Piwi-like genes is associated with prognosis for soft tissue sarcoma patients

    International Nuclear Information System (INIS)

    Greither, Thomas; Taubert, Helge; Koser, Franziska; Kappler, Matthias; Bache, Matthias; Lautenschläger, Christine; Göbel, Steffen; Holzhausen, Hans-Jürgen; Wach, Sven; Würl, Peter

    2012-01-01

    Argonaute genes are essential for RNA interference, stem cell maintenance and differentiation. The Piwi-like genes, a subclass of the Argonaute genes, are expressed mainly in the germline. These genes may be re-expressed in tumors, and expression of the Piwi-like genes is associated with prognosis in several types of tumors. We measured the expression of Piwi-like mRNAs (Piwi-like 2–4) in 125 soft tissue sarcoma (STS) samples by qPCRs. Statistical tests were applied to study the correlation of expression levels with tumor-specific survival for STS patients. In multivariate Cox’s regression analyses, we showed that low Piwi-like 2 and Piwi-like 4 mRNA expression were significantly associated with a worse prognosis (RR = 1.87; p = 0.032 and RR = 1.82; p = 0.039). Low expression of both genes was associated with a 2.58-fold increased risk of tumor-related death (p = 0.01). Piwi-like 4 and combined Piwi-like 2 and 4 mRNA levels correlated significantly with prognosis (RR = 3.53; p = 0.002 and RR = 5.23; p = 0.004) only for female but not for male patients. However, combined low Piwi-like 2 and 3 transcript levels were associated with worse survival (RR = 5.90; p = 0.02) for male patients. In this study, we identified a significant association between the expression of Piwi-like 2 and 4 mRNAs and the tumor-specific survival of soft tissue sarcoma patients. Furthermore, a connection between sex and the impact of Piwi-like mRNA expressions on STS patients’ prognosis was shown for the first time

  7. Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight.

    Science.gov (United States)

    Karmakar, Subhasis; Molla, Kutubuddin Ali; Chanda, Palas K; Sarkar, Sailendra Nath; Datta, Swapan K; Datta, Karabi

    2016-01-01

    Green tissue-specific simultaneous overexpression of two defense-related genes ( OsCHI11 & OsOXO4 ) in rice leads to significant resistance against sheath blight pathogen ( R. solani ) without distressing any agronomically important traits. Overexpressing two defense-related genes (OsOXO4 and OsCHI11) cloned from rice is effective at enhancing resistance against sheath blight caused by Rhizoctonia solani. These genes were expressed under the control of two different green tissue-specific promoters, viz. maize phosphoenolpyruvate carboxylase gene promoter, PEPC, and rice cis-acting 544-bp DNA element, immediately upstream of the D54O translational start site, P D54O-544 . Putative T0 transgenic rice plants were screened by PCR and integration of genes was confirmed by Southern hybridization of progeny (T1) rice plants. Successful expression of OsOXO4 and OsCHI11 in all tested plants was confirmed. Expression of PR genes increased significantly following pathogen infection in overexpressing transgenic plants. Following infection, transgenic plants exhibited elevated hydrogen peroxide levels, significant changes in activity of ROS scavenging enzymes and reduced membrane damage when compared to their wild-type counterpart. In a Rhizoctonia solani toxin assay, a detached leaf inoculation test and an in vivo plant bioassay, transgenic plants showed a significant reduction in disease symptoms in comparison to non-transgenic control plants. This is the first report of overexpression of two different PR genes driven by two green tissue-specific promoters providing enhanced sheath blight resistance in transgenic rice.

  8. Association of adipocyte genes with ASP expression: a microarray analysis of subcutaneous and omental adipose tissue in morbidly obese subjects

    Directory of Open Access Journals (Sweden)

    Lu HuiLing

    2010-01-01

    Full Text Available Abstract Background Prevalence of obesity is increasing to pandemic proportions. However, obese subjects differ in insulin resistance, adipokine production and co-morbidities. Based on fasting plasma analysis, obese subjects were grouped as Low Acylation Stimulating protein (ASP and Triglyceride (TG (LAT vs High ASP and TG (HAT. Subcutaneous (SC and omental (OM adipose tissues (n = 21 were analysed by microarray, and biologic pathways in lipid metabolism and inflammation were specifically examined. Methods LAT and HAT groups were matched in age, obesity, insulin, and glucose, and had similar expression of insulin-related genes (InsR, IRS-1. ASP related genes tended to be increased in the HAT group and were correlated (factor B, adipsin, complement C3, p Results HAT adipose tissue demonstrated increased lipid related genes for storage (CD36, DGAT1, DGAT2, SCD1, FASN, and LPL, lipolysis (HSL, CES1, perilipin, fatty acid binding proteins (FABP1, FABP3 and adipocyte differentiation markers (CEBPα, CEBPβ, PPARγ. By contrast, oxidation related genes were decreased (AMPK, UCP1, CPT1, FABP7. HAT subjects had increased anti-inflammatory genes TGFB1, TIMP1, TIMP3, and TIMP4 while proinflammatory PIG7 and MMP2 were also significantly increased; all genes, p Conclusion Taken together, the profile of C5L2 receptor, ASP gene expression and metabolic factors in adipose tissue from morbidly obese HAT subjects suggests a compensatory response associated with the increased plasma ASP and TG.

  9. Alteration of gene expression in mammary gland tissue of dairy cows in response to dietary unsaturated fatty acids

    NARCIS (Netherlands)

    Mach Casellas, N.; Jacobs, A.A.A.; Kruijt, L.; Baal, van J.; Smits, M.C.J.

    2014-01-01

    The aim of this study was to determine the effects of unprotected dietary unsaturated fatty acids (UFA) from different plant oils on gene expression in the mammary gland of grazing dairy cows. Milk composition and gene expression in the mammary gland tissue were evaluated in grazing dairy cows

  10. Impaired expression of mitochondrial and adipogenic genes in adipose tissue from a patient with acquired partial lipodystrophy (Barraquer-Simons syndrome: a case report

    Directory of Open Access Journals (Sweden)

    Guallar Jordi P

    2008-08-01

    Full Text Available Abstract Introduction Acquired partial lipodystrophy or Barraquer-Simons syndrome is a rare form of progressive lipodystrophy. The etiopathogenesis of adipose tissue atrophy in these patients is unknown. Case presentation This is a case report of a 44-year-old woman with acquired partial lipodystrophy. To obtain insight into the molecular basis of lipoatrophy in acquired partial lipodystrophy, we examined gene expression in adipose tissue from this patient newly diagnosed with acquired partial lipodystrophy. A biopsy of subcutaneous adipose tissue was obtained from the patient, and DNA and RNA were extracted in order to evaluate mitochondrial DNA abundance and mRNA expression levels. Conclusion The expression of marker genes of adipogenesis and adipocyte metabolism, including the master regulator PPARγ, was down-regulated in subcutaneous adipose tissue from this patient. Adiponectin mRNA expression was also reduced but leptin mRNA levels were unaltered. Markers of local inflammatory status were unaltered. Expression of genes related to mitochondrial function was reduced despite unaltered levels of mitochondrial DNA. It is concluded that adipogenic and mitochondrial gene expression is impaired in adipose tissue in this patient with acquired partial lipodystrophy.

  11. Differential gene expression in liver tissues of streptozotocin-induced diabetic rats in response to resveratrol treatment.

    Directory of Open Access Journals (Sweden)

    Gökhan Sadi

    Full Text Available This study was conducted to elucidate the genome-wide gene expression profile in streptozotocin induced diabetic rat liver tissues in response to resveratrol treatment and to establish differentially expressed transcription regulation networks with microarray technology. In addition to measure the expression levels of several antioxidant and detoxification genes, real-time quantitative polymerase chain reaction (qRT-PCR was also used to verify the microarray results. Moreover, gene and protein expressions as well as enzymatic activities of main antioxidant enzymes; superoxide dismutase (SOD-1 and SOD-2 and glutathione S-transferase (GST-Mu were analyzed. Diabetes altered 273 genes significantly and 90 of which were categorized functionally which suggested that genes in cellular catalytic activities, oxidation-reduction reactions, co-enzyme binding and terpenoid biosynthesis were dominated by up-regulated expression in diabetes. Whereas; genes responsible from cellular carbohydrate metabolism, regulation of transcription, cell signal transduction, calcium independent cell-to-cell adhesion and lipid catabolism were down-regulated. Resveratrol increased the expression of 186 and decreased the expression of 494 genes in control groups. While cellular and extracellular components, positive regulation of biological processes, biological response to stress and biotic stimulants, and immune response genes were up-regulated, genes responsible from proteins present in nucleus and nucleolus were mainly down-regulated. The enzyme assays showed a significant decrease in diabetic SOD-1 and GST-Mu activities. The qRT-PCR and Western-blot results demonstrated that decrease in activity is regulated at gene expression level as both mRNA and protein expressions were also suppressed. Resveratrol treatment normalized the GST activities towards the control values reflecting a post-translational effect. As a conclusion, global gene expression in the liver tissues is

  12. A network of epigenetic modifiers and DNA repair genes controls tissue-specific copy number alteration preference.

    Science.gov (United States)

    Cramer, Dina; Serrano, Luis; Schaefer, Martin H

    2016-11-10

    Copy number alterations (CNAs) in cancer patients show a large variability in their number, length and position, but the sources of this variability are not known. CNA number and length are linked to patient survival, suggesting clinical relevance. We have identified genes that tend to be mutated in samples that have few or many CNAs, which we term CONIM genes (COpy Number Instability Modulators). CONIM proteins cluster into a densely connected subnetwork of physical interactions and many of them are epigenetic modifiers. Therefore, we investigated how the epigenome of the tissue-of-origin influences the position of CNA breakpoints and the properties of the resulting CNAs. We found that the presence of heterochromatin in the tissue-of-origin contributes to the recurrence and length of CNAs in the respective cancer type.

  13. Seasonal changes in the expression of energy metabolism-related genes in white adipose tissue and skeletal muscle in female Japanese black bears.

    Science.gov (United States)

    Shimozuru, Michito; Nagashima, Akiko; Tanaka, Jun; Tsubota, Toshio

    2016-01-01

    Bears undergo annual cycles in body mass: rapid fattening in autumn (i.e., hyperphagia), and mass loss in winter (i.e., hibernation). To investigate how Japanese black bears (Ursus thibetanus japonicus) adapt to such extreme physiological conditions, we analyzed changes in the mRNA expression of energy metabolism-related genes in white adipose tissues and skeletal muscle throughout three physiological stages: normal activity (June), hyperphagia (November), and hibernation (March). During hyperphagia, quantitative real-time polymerase chain reaction analysis revealed the upregulation of de novo lipogenesis-related genes (e.g., fatty acid synthase and diacylglycerol O-acyltransferase 2) in white adipose tissue, although the bears had been maintained with a constant amount of food. In contrast, during the hibernation period, we observed a downregulation of genes involved in glycolysis (e.g., glucose transporter 4) and lipogenesis (e.g., acetyl-CoA carboxylase 1) and an upregulation of genes in fatty acid catabolism (e.g., carnitine palmitoyltransferase 1A) in both tissue types. In white adipose tissues, we observed upregulation of genes involved in glyceroneogenesis, including pyruvate carboxylase and phosphoenolpyruvate carboxykinase 1, suggesting that white adipose tissue plays a role in the recycling of circulating free fatty acids via re-esterification. In addition, the downregulation of genes involved in amino acid catabolism (e.g., alanine aminotransferase) and the TCA cycle (e.g., pyruvate carboxylase) indicated a role of skeletal muscle in muscle protein sparing and pyruvate recycling via the Cori cycle. These examples of coordinated transcriptional regulation would contribute to rapid mass gain during the pre-hibernation period and to energy preservation and efficient energy production during the hibernation period. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Maternal Diet during Pregnancy Induces Gene Expression and DNA Methylation Changes in Fetal Tissues in Sheep.

    Science.gov (United States)

    Lan, Xianyong; Cretney, Evan C; Kropp, Jenna; Khateeb, Karam; Berg, Mary A; Peñagaricano, Francisco; Magness, Ronald; Radunz, Amy E; Khatib, Hasan

    2013-01-01

    Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from days 67 ± 3 of gestation until necropsy (days 130 ± 1), they were fed one of three diets of alfalfa haylage (HY; fiber), corn (CN; starch), or dried corn distiller's grains (DG; fiber plus protein plus fat). A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methyltransferase (DNMTs) genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.

  15. Maternal diet during pregnancy induces gene expression and DNA methylation changes in fetal tissues in sheep

    Directory of Open Access Journals (Sweden)

    Xianyong eLan

    2013-04-01

    Full Text Available Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from d 67 ± 3 of gestation until necropsy (d 130 ± 1, they were fed one of three diets of alfalfa haylage (HY; fiber, corn (CN; starch, or dried corn distiller’s grains (DG; fiber plus protein plus fat. A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methylatransferase (DNMTs genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.

  16. Normal-tissue radioprotection by overexpression of the copper-zinc and manganese superoxide dismutase genes

    Energy Technology Data Exchange (ETDEWEB)

    Veldwijk, Marlon R. [Dept. of Radiation Oncology, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim (Germany); Pharmacology of Cancer Treatment (G402), German Cancer Research Center, Heidelberg (Germany); Herskind, Carsten; Wenz, Frederik [Dept. of Radiation Oncology, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim (Germany); Sellner, Leopold; Zeller, W. Jens [Pharmacology of Cancer Treatment (G402), German Cancer Research Center, Heidelberg (Germany); Radujkovic, Aleksandar [Dept. of Internal Medicine V, Univ. of Heidelberg (Germany); Laufs, Stephanie [Dept. of Experimental Surgery, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim (Germany); Molecular Oncology of Solid Tumors (G360), German Cancer Research Center, Heidelberg (Germany); Fruehauf, Stefan [Center for Tumor Diagnostic and Therapy, Paracelsus-Klinik, Osnabrueck (Germany)

    2009-08-15

    Background and Purpose: Protection of normal tissue against radiation-induced damage may increase the therapeutic ratio of radiotherapy. A promising strategy for testing this approach is gene therapy-mediated overexpression of the copper-zinc (CuZnSOD) or manganese superoxide dismutase (MnSOD) using recombinant adeno-associated viral (rAAV2) vectors. The purpose of this study was to test the modulating effects of the SOD genes on human primary lung fibroblasts (HPLF) after irradiation. Material and Methods: HPLF were transduced with rAAV2 vectors containing cDNA for the CuZnSOD, MnSOD or a control gene. The cells were irradiated (1-6 Gy), and gene transfer efficiency, apoptosis, protein expression/activity, and radiosensitivity measured by the colony-forming assay determined. Results: After transduction, 90.0% {+-} 6.4% of the cells expressed the transgene. A significant fivefold overexpression of both SOD was confirmed by an SOD activity assay (control: 21.1 {+-} 12.6, CuZnSOD: 95.1 {+-} 17.1, MnSOD: 108.5 {+-} 36.0 U SOD/mg protein) and immunohistochemistry. CuZnSOD and MnSOD overexpression resulted in a significant radioprotection of HPLF compared to controls (surviving fraction [SF] ratio SOD/control > 1): CuZnSOD: 1.18-fold (95% confidence interval [CI]: 1.06-1.32; p = 0.005), MnSOD: 1.23-fold (95% CI: 1.07-1.43; p = 0.01). Conclusion: Overexpression of CuZnSOD and MnSOD in HPLF mediated an increase in clonogenic survival after irradiation compared to controls. In previous works, a lack of radioprotection in SOD-overexpressing tumor cells was observed. Therefore, the present results suggest that rAAV2 vectors are promising tools for the delivery of radioprotective genes in normal tissue. (orig.)

  17. Characterizing genes with distinct methylation patterns in the context of protein-protein interaction network: application to human brain tissues.

    Science.gov (United States)

    Li, Yongsheng; Xu, Juan; Chen, Hong; Zhao, Zheng; Li, Shengli; Bai, Jing; Wu, Aiwei; Jiang, Chunjie; Wang, Yuan; Su, Bin; Li, Xia

    2013-01-01

    DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery. In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome. We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms.

  18. Autosomal dominant Marfan-like connective-tissue disorder with aortic dilation and skeletal anomaslies not linked to the Fibrillin genes

    Energy Technology Data Exchange (ETDEWEB)

    Boileau, C.; Coulon, M.; Alexandre, J.-A.; Junien, C. (Laboratorie Central de Biochimie et de Genetique Moleculaire (France)); Jondeau, G.; Delorme, G.; Dubourg, O.; Bourdarias, J.-P. (CHU Ambroise Pare, Boulogne (France)); Babron, M.-C.; Bonaieti-Pellie, C. (INSERM, Chateau de Longchamp, Paris (France)); Sakai, L. (Shriners' Hospital for Crippled Children, Portland, OR (United States)); Melki, J. (Hopital Necker-Enfants Malades, Paris (France))

    1993-07-01

    The authors describe a large family with a connective-tissue disorder that exhibits some of the skeletal and cardiovascular features seen in Marfan syndrome. However, none of the 19 affected individuals displayed ocular abnormalities and therefore did not comply with recognized criteria for this disease. These patients could alternatively be diagnosed as MASS (mitral valve, aorta, skeleton, and skin) phenotype patients or represent a distinct clinical entity, i.e., a new autosomal dominant connective-tissue disorder. The fibrillin genes located on chromosomes 15 and 5 are clearly involved in the classic form of Marfan syndrome and a clinically related disorder (congenital contractural arachnodactyly), respectively. To test whether one of these genes was also implicated in this French family, the authors performed genetic analyses. Blood samples were obtained for 56 family members, and four polymorphic fibrillin gene markers, located on chromosomes 15 (Fib15) and 5 (Fib5), respectively, were tested. Linkage between the disease allele and the markers of these two genes was excluded with lod scores of [minus]11.39 (for Fib15) and [minus]13.34 (for Fib5), at 0 = .001, indicating that the mutation is at a different locus. This phenotype thus represents a new connective-tissue disorder, overlapping but different from classic Marfan syndrome. 33 refs., 1 fig. 2 tabs.

  19. A novel CpG island set identifies tissue-specific methylation at developmental gene loci.

    Directory of Open Access Journals (Sweden)

    Robert Illingworth

    2008-01-01

    Full Text Available CpG islands (CGIs are dense clusters of CpG sequences that punctuate the CpG-deficient human genome and associate with many gene promoters. As CGIs also differ from bulk chromosomal DNA by their frequent lack of cytosine methylation, we devised a CGI enrichment method based on nonmethylated CpG affinity chromatography. The resulting library was sequenced to define a novel human blood CGI set that includes many that are not detected by current algorithms. Approximately half of CGIs were associated with annotated gene transcription start sites, the remainder being intra- or intergenic. Using an array representing over 17,000 CGIs, we established that 6%-8% of CGIs are methylated in genomic DNA of human blood, brain, muscle, and spleen. Inter- and intragenic CGIs are preferentially susceptible to methylation. CGIs showing tissue-specific methylation were overrepresented at numerous genetic loci that are essential for development, including HOX and PAX family members. The findings enable a comprehensive analysis of the roles played by CGI methylation in normal and diseased human tissues.

  20. Genes encoding novel lipid transporters and their use to increase oil production in vegetative tissues of plants

    Science.gov (United States)

    Xu, Changcheng; Fan, Jilian; Yan, Chengshi; Shanklin, John

    2017-12-26

    The present invention discloses a novel gene encoding a transporter protein trigalactosyldiacylglycerol-5 (TGD5), mutations thereof and their use to enhance TAG production and retention in plant vegetative tissue.

  1. The effect of thyroid hormones on the white adipose tissue gene expression of PAI-1 and its serum concentration

    Directory of Open Access Journals (Sweden)

    C. Biz

    2009-12-01

    Full Text Available Metabolic syndrome is associated with an increased risk of developing cardiovascular diseases and Plasminogen activator inhibitor 1 (PAI-1 overexpression may play a significant role in this process. A positive correlation between adipose tissue gene expression of PAI-1 and its serum concentration has been reported. Furthermore, high serum levels of thyroid hormones (T3 and T4 and PAI-1 have been observed in obese children. The present study evaluates the impact of thyroid hormone treatment on white adipose tissue PAI-1 gene expression and its serum concentration. Male Wistar rats (60 days old were treated for three weeks with T4 (50 µg/day, Hyper or with saline (control. Additionally, 3T3-L1 adipocytes were treated for 24 h with T4 (100 nM or T3 (100 nM. PAI-1 gene expression was determined by real-time PCR, while the serum concentration of PAI-1 was measured by ELISA using a commercial kit (Innovative Research, USA. Both the serum concentration of PAI-1 and mRNA levels were similar between groups in retroperitoneal and epididymal white adipose tissue. Using 3T3-L1 adipocytes, in vitro treatment with T4 and T3 increased the gene expression of PAI-1, suggesting non-genomic and genomic effects, respectively. These results demonstrate that thyroid hormones have different effects in vitro and in vivo on PAI-1 gene expression in adipocytes.

  2. Activation of anthocyanin synthesis genes by white light in eggplant hypocotyl tissues, and identification of an inducible P-450 cDNA

    International Nuclear Information System (INIS)

    Toguri, T.; Umemoto, N.; Kobayashi, O.; Ohtani, T.

    1993-01-01

    Eggplant seedlings (Solanum melongena) grown under red light irradiation showed a normal morphology with green, fully expanded cotyledons. When the seedlings grown under red light were irradiated with ultraviolet-containing white light, anthocyanin synthesis was induced in the hypocotyl tissues, especially when a UV light supplement was added. The accumulation of pigments was closely associated with the expression of genes involved in flavonoid synthesis. These genes include chalcone synthase (CHS) and dihydroflavonol 4-reductase (DFR). Using subtracted probes, which had been enriched for the accumulated mRNA, one white light-responsive cDNA was identified as being a P450 gene by comparison with database sequences. The maximal amino acid homology this cDNA had with other P450s was 36%. This was with CYP71 from avocado (Persea americana). Thus it represents a new P-450 family, which has been named CYP75. The mRNA of this gene was localized in the hypocotyl tissues of eggplant seedlings, which had been white light-irradiated. The transcript was accumulated by changing the light source, as in the case of other flavonoid biosynthesis genes. In delphinidin producing petunia plants, the mRNAs corresponding to the eggplant P-450 and flavonoid biosynthesis genes such as CHS and DFR were most abundant during the mid stage of flower bud development, but could not be detected in leaf tissues. These results suggest that this P-450 gene encodes a hydroxylating enzyme involved in flavonoid biosynthesis. (author)

  3. Sex- and Tissue-Specific Expression Profiles of Odorant Binding Protein and Chemosensory Protein Genes in Bradysia odoriphaga (Diptera: Sciaridae

    Directory of Open Access Journals (Sweden)

    Yunhe Zhao

    2018-04-01

    Full Text Available Bradysia odoriphaga is an agricultural pest insect affecting the production of Chinese chive and other liliaceous vegetables in China, and it is significantly attracted by sex pheromones and the volatiles derived from host plants. Despite verification of this chemosensory behavior, however, it is still unknown how B. odoriphaga recognizes these volatile compounds on the molecular level. Many of odorant binding proteins (OBPs and chemosensory proteins (CSPs play crucial roles in olfactory perception. Here, we identified 49 OBP and 5 CSP genes from the antennae and body transcriptomes of female and male adults of B. odoriphaga, respectively. Sequence alignment and phylogenetic analysis among Dipteran OBPs and CSPs were analyzed. The sex- and tissue-specific expression profiles of 54 putative chemosensory genes among different tissues were investigated by quantitative real-time PCR (qRT-PCR. qRT-PCR analysis results suggested that 22 OBP and 3 CSP genes were enriched in the antennae, indicating they might be essential for detection of general odorants and pheromones. Among these antennae-enriched genes, nine OBPs (BodoOBP2/4/6/8/12/13/20/28/33 were enriched in the male antennae and may play crucial roles in the detection of sex pheromones. Moreover, some OBP and CSP genes were enriched in non-antennae tissues, such as in the legs (BodoOBP3/9/19/21/34/35/38/39/45 and BodoCSP1, wings (BodoOBP17/30/32/37/44, abdomens and thoraxes (BodoOBP29/36, and heads (BodoOBP14/23/31 and BodoCSP2, suggesting that these genes might be involved in olfactory, gustatory, or other physiological processes. Our findings provide a starting point to facilitate functional research of these chemosensory genes in B. odoriphaga at the molecular level.

  4. Multiple ace genes encoding acetylcholinesterases of Caenorhabditis elegans have distinct tissue expression.

    Science.gov (United States)

    Combes, Didier; Fedon, Yann; Toutant, Jean-Pierre; Arpagaus, Martine

    2003-08-01

    ace-1 and ace-2 genes encoding acetylcholinesterase in the nematode Caenorhabditis elegans present 35% identity in coding sequences but no homology in noncoding regions (introns, 5'- and 3'-untranslated regions). A 5'-region of ace-2 was defined by rescue of ace-1;ace-2 mutants. When green fluorescent protein (GFP) expression was driven by this regulatory region, the resulting pattern was distinct from that of ace-1. This latter gene is expressed in all body-wall and vulval muscle cells (Culetto et al., 1999), whereas ace-2 is expressed almost exclusively in neurons. ace-3 and ace-4 genes are located in close proximity on chromosome II (Combes et al., 2000). These two genes were first transcribed in vivo as a bicistronic messenger and thus constitute an ace-3;ace-4 operon. However, there was a very low level of monocistronic mRNA of ace-4 (the upstream gene) in vivo, and no ACE-4 enzymatic activity was ever detected. GFP expression driven by a 5' upstream region of the ace-3;ace-4 operon was detected in several muscle cells of the pharynx (pm3, pm4, pm5 and pm7) and in the two canal associated neurons (CAN cells). A dorsal row of body-wall muscle cells was intensively labelled in larval stages but no longer detected in adults. The distinct tissue-specific expression of ace-1, ace-2 and ace-3 (coexpressed only in pm5 cells) indicates that ace genes are not redundant.

  5. Retinoid X receptor gene expression and protein content in tissues of the rock shell Thais clavigera

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Toshihiro [Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)], E-mail: thorigu@nies.go.jp; Nishikawa, Tomohiro [Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Ohta, Yasuhiko [Department of Veterinary Science, Faculty of Agriculture, Tottori University, 4-101 Koyamacho-Minami, Tottori 680-8553 (Japan); Shiraishi, Hiroaki; Morita, Masatoshi [Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2007-10-15

    To elucidate the role of retinoid X receptor (RXR) in the development of imposex caused by organotin compounds in gastropod molluscs, we investigated RXR gene expression and RXR protein content in various tissues of male and female wild rock shells (Thais clavigera). Quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry with a commercial antibody against human RXR {alpha} revealed that RXR gene expression was significantly higher in the penises of males and imposex-exhibiting females than in the penis-forming areas of normal females (P < 0.01 and P < 0.05, respectively). Western blotting demonstrated that the antibody could detect rock shell RXR and showed that the male penis had the highest content of RXR protein among the analyzed tissues of males and normal females. Immunohistochemical staining revealed nuclear localization of RXR protein in the epithelial and smooth muscle cells of the vas deferens and in the interstitial or connective tissues and epidermis of the penis in males and imposex-exhibiting females. RXR could be involved in the mechanism of induction of male-type genitalia (penis and vas deferens) by organotin compounds in female rock shells.

  6. Mapping photothermally induced gene expression in living cells and tissues by nanorod-locked nucleic acid complexes.

    Science.gov (United States)

    Riahi, Reza; Wang, Shue; Long, Min; Li, Na; Chiou, Pei-Yu; Zhang, Donna D; Wong, Pak Kin

    2014-04-22

    The photothermal effect of plasmonic nanostructures has numerous applications, such as cancer therapy, photonic gene circuit, large cargo delivery, and nanostructure-enhanced laser tweezers. The photothermal operation can also induce unwanted physical and biochemical effects, which potentially alter the cell behaviors. However, there is a lack of techniques for characterizing the dynamic cell responses near the site of photothermal operation with high spatiotemporal resolution. In this work, we show that the incorporation of locked nucleic acid probes with gold nanorods allows photothermal manipulation and real-time monitoring of gene expression near the area of irradiation in living cells and animal tissues. The multimodal gold nanorod serves as an endocytic delivery reagent to transport the probes into the cells, a fluorescence quencher and a binding competitor to detect intracellular mRNA, and a plasmonic photothermal transducer to induce cell ablation. We demonstrate the ability of the gold nanorod-locked nucleic acid complex for detecting the spatiotemporal gene expression in viable cells and tissues and inducing photothermal ablation of single cells. Using the gold nanorod-locked nucleic acid complex, we systematically characterize the dynamic cellular heat shock responses near the site of photothermal operation. The gold nanorod-locked nucleic acid complex enables mapping of intracellular gene expressions and analyzes the photothermal effects of nanostructures toward various biomedical applications.

  7. A robust approach to identifying tissue-specific gene expression regulatory variants using personalized human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Je-Hyuk Lee

    2009-11-01

    Full Text Available Normal variation in gene expression due to regulatory polymorphisms is often masked by biological and experimental noise. In addition, some regulatory polymorphisms may become apparent only in specific tissues. We derived human induced pluripotent stem (iPS cells from adult skin primary fibroblasts and attempted to detect tissue-specific cis-regulatory variants using in vitro cell differentiation. We used padlock probes and high-throughput sequencing for digital RNA allelotyping and measured allele-specific gene expression in primary fibroblasts, lymphoblastoid cells, iPS cells, and their differentiated derivatives. We show that allele-specific expression is both cell type and genotype-dependent, but the majority of detectable allele-specific expression loci remains consistent despite large changes in the cell type or the experimental condition following iPS reprogramming, except on the X-chromosome. We show that our approach to mapping cis-regulatory variants reduces in vitro experimental noise and reveals additional tissue-specific variants using skin-derived human iPS cells.

  8. [Comparative study of expression of homeobox gene Msx-1, Msx-2 mRNA during the hard tissue formation of mouse tooth development].

    Science.gov (United States)

    Wang, Y; Wang, J; Gao, Y

    2001-07-01

    To observe and compare the expression pattern of Msx-1, Msx-2 mRNA during the different stages of hard tissue formation in the first mandibular molar of mouse and investigate the relationship between the two genes. First mandibular molar germs from 1, 3, 7 and 14-days old mouse were separated and reverse transcription-polymerase chain reaction was performed on the total RNA of them using Msx-1, Msx-2 specific primers separately. Expression of both genes were detected during the different stages of hard tissue formation in the mouse first mandibular molars, but there was some interesting differences in the quantitiy between the two genes. Msx-1 transcripts appeared at the 1 day postnatally, and increase through 3 day, 7 day, then maximally expressed at 14 days postnatally; while Msx-2 mRNA was seen and expressed maximally at the 3 days postnatally, then there was a gradual reduction at 7 days, and 14 days postnatally. The homeobox gene Msx-1, Msx-2 may play a role in the events of the hard tissue formation. The complementary expression pattern of them during the specific stage of hard tissue formation indicates that there may be some functional redundancy between them during the biomineralization.

  9. Identification of heterogeneity among soft tissue sarcomas by gene expression profiles from different tumors

    Directory of Open Access Journals (Sweden)

    Skubitz Amy PN

    2008-05-01

    Full Text Available Abstract The heterogeneity that soft tissue sarcomas (STS exhibit in their clinical behavior, even within histological subtypes, complicates patient care. Histological appearance is determined by gene expression. Morphologic features are generally good predictors of biologic behavior, however, metastatic propensity, tumor growth, and response to chemotherapy may be determined by gene expression patterns that do not correlate well with morphology. One approach to identify heterogeneity is to search for genetic markers that correlate with differences in tumor behavior. Alternatively, subsets may be identified based on gene expression patterns alone, independent of knowledge of clinical outcome. We have reported gene expression patterns that distinguish two subgroups of clear cell renal carcinoma (ccRCC, and other gene expression patterns that distinguish heterogeneity of serous ovarian carcinoma (OVCA and aggressive fibromatosis (AF. In this study, gene expression in 53 samples of STS and AF [including 16 malignant fibrous histiocytoma (MFH, 9 leiomyosarcoma, 12 liposarcoma, 4 synovial sarcoma, and 12 samples of AF] was determined at Gene Logic Inc. (Gaithersburg, MD using Affymetrix GeneChip® U_133 arrays containing approximately 40,000 genes/ESTs. Gene expression analysis was performed with the Gene Logic Genesis Enterprise System® Software and Expressionist software. Hierarchical clustering of the STS using our three previously reported gene sets, each generated subgroups within the STS that for some subtypes correlated with histology, and also suggested the existence of subsets of MFH. All three gene sets also recognized the same two subsets of the fibromatosis samples that we had found in our earlier study of AF. These results suggest that these subgroups may have biological significance, and that these gene sets may be useful for sub-classification of STS. In addition, several genes that are targets of some anti-tumor drugs were found to

  10. Individual Polychlorinated Biphenyl (PCB) Congeners Produce Tissue- and Gene-Specific Effects on Thyroid Hormone Signaling during Development

    Science.gov (United States)

    Giera, Stefanie; Bansal, Ruby; Ortiz-Toro, Theresa M.; Taub, Daniel G.

    2011-01-01

    Polychlorinated biphenyls (PCB) are industrial chemicals linked to developmental deficits that may be caused in part by disrupting thyroid hormone (TH) action by either reducing serum TH or interacting directly with the TH receptor (TR). Individual PCB congeners can activate the TR in vitro when the metabolic enzyme cytochrome P4501A1 (CYP1A1) is induced, suggesting that specific PCB metabolites act as TR agonists. To test this hypothesis in vivo, we compared two combinations of PCB congeners that either activate the TR (PCB 105 and 118) or not (PCB 138 and 153) in the presence or absence of a PCB congener (PCB 126) that induces CYP1A1 in vitro. Aroclor 1254 was used as a positive control, and a group treated with propylthiouracil was included to characterize the effects of low serum TH. We monitored the effects on TH signaling in several peripheral tissues by measuring the mRNA expression of well-known TH-response genes in these tissues. Aroclor 1254 and its component PCB 105/118/126 reduced total T4 to the same extent as that of propylthiouracil but increased the expression of some TH target genes in liver. This effect was strongly correlated with CYP1A1 expression supporting the hypothesis that metabolism is necessary. Effects were gene and tissue specific, indicating that tissue-specific metabolism is an important component of PCB disruption of TH action and that PCB metabolites interact in complex ways with the TR. These are essential mechanisms to consider when evaluating the health risks of contaminant exposures, for both PCB and other polycyclic compounds known to interact with nuclear hormone receptors. PMID:21540284

  11. C60 exposure induced tissue damage and gene expression alterations in the earthworm Lumbricus rubellus

    NARCIS (Netherlands)

    Ploeg, van der M.J.C.; Handy, R.D.; Heckmann, L.H.; Hout, van der A.; Brink, van den N.W.

    2013-01-01

    Effects of C60 exposure (0, 15 or 154 mg/kg soil) on the earthworm Lumbricus rubellus were assessed at the tissue and molecular level, in two experiments. In the first experiment, earthworms were exposed for four weeks, and in the second lifelong. In both experiments, gene expression of heat shock

  12. Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions.

    Science.gov (United States)

    Zinkgraf, Matthew; Liu, Lijun; Groover, Andrew; Filkov, Vladimir

    2017-06-01

    Trees modify wood formation through integration of environmental and developmental signals in complex but poorly defined transcriptional networks, allowing trees to produce woody tissues appropriate to diverse environmental conditions. In order to identify relationships among genes expressed during wood formation, we integrated data from new and publically available datasets in Populus. These datasets were generated from woody tissue and include transcriptome profiling, transcription factor binding, DNA accessibility and genome-wide association mapping experiments. Coexpression modules were calculated, each of which contains genes showing similar expression patterns across experimental conditions, genotypes and treatments. Conserved gene coexpression modules (four modules totaling 8398 genes) were identified that were highly preserved across diverse environmental conditions and genetic backgrounds. Functional annotations as well as correlations with specific experimental treatments associated individual conserved modules with distinct biological processes underlying wood formation, such as cell-wall biosynthesis, meristem development and epigenetic pathways. Module genes were also enriched for DNase I hypersensitivity footprints and binding from four transcription factors associated with wood formation. The conserved modules are excellent candidates for modeling core developmental pathways common to wood formation in diverse environments and genotypes, and serve as testbeds for hypothesis generation and testing for future studies. No claim to original US government works. New Phytologist © 2017 New Phytologist Trust.

  13. A Genome-Wide mQTL Analysis in Human Adipose Tissue Identifies Genetic Variants Associated with DNA Methylation, Gene Expression and Metabolic Traits

    DEFF Research Database (Denmark)

    Volkov, Petr; Olsson, Anders H; Gillberg, Linn

    2016-01-01

    Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human adipose tissue of 119 men, w...... and epigenetic variation in both cis and trans positions influencing gene expression in adipose tissue and in vivo (dys)metabolic traits associated with the development of obesity and diabetes.......Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human adipose tissue of 119 men......, where 592,794 single nucleotide polymorphisms (SNPs) were related to DNA methylation of 477,891 CpG sites, covering 99% of RefSeq genes. SNPs in significant mQTLs were further related to gene expression in adipose tissue and obesity related traits. We found 101,911 SNP-CpG pairs (mQTLs) in cis and 5...

  14. Efficacious and safe tissue-selective controlled gene therapy approaches for the cornea.

    Directory of Open Access Journals (Sweden)

    Rajiv R Mohan

    2011-04-01

    Full Text Available Untargeted and uncontrolled gene delivery is a major cause of gene therapy failure. This study aimed to define efficient and safe tissue-selective targeted gene therapy approaches for delivering genes into keratocytes of the cornea in vivo using a normal or diseased rabbit model. New Zealand White rabbits, adeno-associated virus serotype 5 (AAV5, and a minimally invasive hair-dryer based vector-delivery technique were used. Fifty microliters of AAV5 titer (6.5×10(12 vg/ml expressing green fluorescent protein gene (GFP was topically applied onto normal or diseased (fibrotic or neovascularized rabbit corneas for 2-minutes with a custom vector-delivery technique. Corneal fibrosis and neovascularization in rabbit eyes were induced with photorefractive keratectomy using excimer laser and VEGF (630 ng using micropocket assay, respectively. Slit-lamp biomicroscopy and immunocytochemistry were used to confirm fibrosis and neovascularization in rabbit corneas. The levels, location and duration of delivered-GFP gene expression in the rabbit stroma were measured with immunocytochemistry and/or western blotting. Slot-blot measured delivered-GFP gene copy number. Confocal microscopy performed in whole-mounts of cornea and thick corneal sections determined geometric and spatial localization of delivered-GFP in three-dimensional arrangement. AAV5 toxicity and safety were evaluated with clinical eye exam, stereomicroscopy, slit-lamp biomicroscopy, and H&E staining. A single 2-minute AAV5 topical application via custom delivery-technique efficiently and selectively transduced keratocytes in the anterior stroma of normal and diseased rabbit corneas as evident from immunocytochemistry and confocal microscopy. Transgene expression was first detected at day 3, peaked at day 7, and was maintained up to 16 weeks (longest tested time point. Clinical and slit-lamp eye examination in live rabbits and H&E staining did not reveal any significant changes between AAV5

  15. Tissue-specific differential induction of duplicated fatty acid-binding protein genes by the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Venkatachalam Ananda B

    2012-07-01

    Full Text Available Abstract Background Force, Lynch and Conery proposed the duplication-degeneration-complementation (DDC model in which partitioning of ancestral functions (subfunctionalization and acquisition of novel functions (neofunctionalization were the two primary mechanisms for the retention of duplicated genes. The DDC model was tested by analyzing the transcriptional induction of the duplicated fatty acid-binding protein (fabp genes by clofibrate in zebrafish. Clofibrate is a specific ligand of the peroxisome proliferator-activated receptor (PPAR; it activates PPAR which then binds to a peroxisome proliferator response element (PPRE to induce the transcriptional initiation of genes primarily involved in lipid homeostasis. Zebrafish was chosen as our model organism as it has many duplicated genes owing to a whole genome duplication (WGD event that occurred ~230-400 million years ago in the teleost fish lineage. We assayed the steady-state levels of fabp mRNA and heterogeneous nuclear RNA (hnRNA transcripts in liver, intestine, muscle, brain and heart for four sets of duplicated fabp genes, fabp1a/fabp1b.1/fabp1b.2, fabp7a/fabp7b, fabp10a/fabp10b and fabp11a/fabp11b in zebrafish fed different concentrations of clofibrate. Result Electron microscopy showed an increase in the number of peroxisomes and mitochondria in liver and heart, respectively, in zebrafish fed clofibrate. Clofibrate also increased the steady-state level of acox1 mRNA and hnRNA transcripts in different tissues, a gene with a functional PPRE. These results demonstrate that zebrafish is responsive to clofibrate, unlike some other fishes. The levels of fabp mRNA and hnRNA transcripts for the four sets of duplicated fabp genes was determined by reverse transcription, quantitative polymerase chain reaction (RT-qPCR. The level of hnRNA coded by a gene is an indirect estimate of the rate of transcriptional initiation of that gene. Clofibrate increased the steady-state level of fabp mRNAs and hn

  16. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues

    Directory of Open Access Journals (Sweden)

    Harkema Jack R

    2011-07-01

    Full Text Available Abstract Background Prior studies have demonstrated a link between air pollution and metabolic diseases such as type II diabetes. Changes in adipose tissue and its mitochondrial content/function are closely associated with the development of insulin resistance and attendant metabolic complications. We investigated changes in adipose tissue structure and function in brown and white adipose depots in response to chronic ambient air pollutant exposure in a rodent model. Methods Male ApoE knockout (ApoE-/- mice inhaled concentrated fine ambient PM (PM 2.5 or filtered air (FA for 6 hours/day, 5 days/week, for 2 months. We examined superoxide production by dihydroethidium staining; inflammatory responses by immunohistochemistry; and changes in white and brown adipocyte-specific gene profiles by real-time PCR and mitochondria by transmission electron microscopy in response to PM2.5 exposure in different adipose depots of ApoE-/- mice to understand responses to chronic inhalational stimuli. Results Exposure to PM2.5 induced an increase in the production of reactive oxygen species (ROS in brown adipose depots. Additionally, exposure to PM2.5 decreased expression of uncoupling protein 1 in brown adipose tissue as measured by immunohistochemistry and Western blot. Mitochondrial number was significantly reduced in white (WAT and brown adipose tissues (BAT, while mitochondrial size was also reduced in BAT. In BAT, PM2.5 exposure down-regulated brown adipocyte-specific genes, while white adipocyte-specific genes were differentially up-regulated. Conclusions PM2.5 exposure triggers oxidative stress in BAT, and results in key alterations in mitochondrial gene expression and mitochondrial alterations that are pronounced in BAT. We postulate that exposure to PM2.5 may induce imbalance between white and brown adipose tissue functionality and thereby predispose to metabolic dysfunction.

  17. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice

    International Nuclear Information System (INIS)

    Andres, A.C.; Schoenenberger, C.A.; Groner, B.; Henninghausen, L.; LeMeur, M.; Gelinger, P.

    1987-01-01

    The activated human Ha-ras oncogene was subjected to the control of the promoter region of the murine whey acidic protein (Wap) gene, which is expressed in mammary epithelial cells in response to lactogenic hormones. The Wap-ras gene was stably introduced into the mouse germ line of five transgenic mice (one male and four females). Wap-ras expression was observed in the mammary glands of lactating females in two lines derived from female founders. The tissue-directed and hormone-dependent Wap expression was conferred on the Ha-ras oncogene. The signals governing Wap expression are located within 2.5 kilobases of 5' flanking sequence. The other two lines derived from female founders did not express the chimeric gene. In the line derived from the male founder the Wap-ras gene is integrated into the Y chromosome. Expression was found in the salivary gland of male animals only. After a long latency, Wap-ras-expressing mice developed tumors. The tumors arose in tissues expressing Wap-ras - i.e., mammary or salivary glands. Compared to the corresponding nonmalignant tissues, Wap-ras expression was enhanced in the tumors

  18. The MRC1/CD68 ratio is positively associated with adipose tissue lipogenesis and with muscle mitochondrial gene expression in humans.

    Directory of Open Access Journals (Sweden)

    José María Moreno-Navarrete

    Full Text Available BACKGROUND: Alternative macrophages (M2 express the cluster differentiation (CD 206 (MCR1 at high levels. Decreased M2 in adipose tissue is known to be associated with obesity and inflammation-related metabolic disturbances. Here we aimed to investigate MCR1 relative to CD68 (total macrophages gene expression in association with adipogenic and mitochondrial genes, which were measured in human visceral [VWAT, n = 147] and subcutaneous adipose tissue [SWAT, n = 76] and in rectus abdominis muscle (n = 23. The effects of surgery-induced weight loss were also longitudinally evaluated (n = 6. RESULTS: MCR1 and CD68 gene expression levels were similar in VWAT and SWAT. A higher proportion of CD206 relative to total CD68 was present in subjects with less body fat and lower fasting glucose concentrations. The ratio MCR1/CD68was positively associated with IRS1gene expression and with the expression of lipogenic genes such as ACACA, FASN and THRSP, even after adjusting for BMI. The ratio MCR1/CD68 in SWAT increased significantly after the surgery-induced weight loss (+44.7%; p = 0.005 in parallel to the expression of adipogenic genes. In addition, SWAT MCR1/CD68ratio was significantly associated with muscle mitochondrial gene expression (PPARGC1A, TFAM and MT-CO3. AT CD206 was confirmed by immunohistochemistry to be specific of macrophages, especially abundant in crown-like structures. CONCLUSION: A decreased ratio MCR1/CD68 is linked to adipose tissue and muscle mitochondrial dysfunction at least at the level of expression of adipogenic and mitochondrial genes.

  19. A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues.

    Science.gov (United States)

    Parsons, Linda M; Grzeschik, Nicola A; Amaratunga, Kasun; Burke, Peter; Quinn, Leonie M; Richardson, Helena E

    2017-08-07

    In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila "cell polarity" eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the "nutrient sensing" kinases Salt Inducible Kinase 2 and 3 ( SIK2 and 3 ) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development. Copyright © 2017 Parsons et al.

  20. Increased asthma and adipose tissue inflammatory gene expression with obesity and Inuit migration to a western country

    DEFF Research Database (Denmark)

    Backer, Vibeke; Baines, Katherine J; Powell, Heather

    2016-01-01

    inflammation can be modified by migration and diet. OBJECTIVE: To examine mast cell and inflammatory markers in adipose tissue and the association with asthma. METHODS: Two Inuit populations were recruited, one living in Greenland and another in Denmark. All underwent adipose subcutaneous biopsy, followed...... of mast cell markers in adipose tissue and asthma. Among Greenlandic Inuit, adipose tissue inflammation is also increased in those who migrate to Denmark, possibly as a result of dietary changes....... by clinical assessment of asthma, and measurement of AHR. Adipose tissue biopsies were homogenised, RNA extracted, and PCR was performed to determine the relative gene expression of mast cell (tryptase, chymase, CPA3) and inflammatory markers (IL-6, IL-1β, and CD163). RESULTS: Of the 1059 Greenlandic Inuit...

  1. Automated Analysis of Protein Expression and Gene Amplification within the Same Cells of Paraffin-Embedded Tumour Tissue

    Directory of Open Access Journals (Sweden)

    Timo Gaiser

    2010-01-01

    Full Text Available Background: The simultaneous detection of protein expression and gene copy number changes in patient samples, like paraffin-embedded tissue sections, is challenging since the procedures of immunohistochemistry (IHC and Fluorescence in situ Hybridization (FISH negatively influence each other which often results in suboptimal staining. Therefore, we developed a novel automated algorithm based on relocation which allows subsequent detection of protein content and gene copy number changes within the same cell.

  2. Genomic organization, tissue distribution and functional characterization of the rat Pate gene cluster.

    Directory of Open Access Journals (Sweden)

    Angireddy Rajesh

    Full Text Available The cysteine rich prostate and testis expressed (Pate proteins identified till date are thought to resemble the three fingered protein/urokinase-type plasminogen activator receptor proteins. In this study, for the first time, we report the identification, cloning and characterization of rat Pate gene cluster and also determine the expression pattern. The rat Pate genes are clustered on chromosome 8 and their predicted proteins retained the ten cysteine signature characteristic to TFP/Ly-6 protein family. PATE and PATE-F three dimensional protein structure was found to be similar to that of the toxin bucandin. Though Pate gene expression is thought to be prostate and testis specific, we observed that rat Pate genes are also expressed in seminal vesicle and epididymis and in tissues beyond the male reproductive tract. In the developing rats (20-60 day old, expression of Pate genes seem to be androgen dependent in the epididymis and testis. In the adult rat, androgen ablation resulted in down regulation of the majority of Pate genes in the epididymides. PATE and PATE-F proteins were found to be expressed abundantly in the male reproductive tract of rats and on the sperm. Recombinant PATE protein exhibited potent antibacterial activity, whereas PATE-F did not exhibit any antibacterial activity. Pate expression was induced in the epididymides when challenged with LPS. Based on our results, we conclude that rat PATE proteins may contribute to the reproductive and defense functions.

  3. Specific expression of bioluminescence reporter gene in cardiomyocyte regulated by tissue specific promoter

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vu Hong; Tae, Seong Ho; Le, Nguyen Uyen Chi; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-07-01

    As the human heart is not capable of regenerating the great numbers of cardiac cells that are lost after myocardial infarction, impaired cardiac function is the inevitable result of ischemic disease. Recently, human embryonic stem cells (hESCs) have gained popularity as a potentially ideal cell candidate for tissue regeneration. In particular, hESCs are capable of cardiac lineage-specific differentiation and confer improvement of cardiac function following transplantation into animal models. Although such data are encouraging, the specific strategy for in vivo and non-invasive detection of differentiated cardiac lineage is still limited. Therefore, in the present study, we established the gene construction in which the optical reporter gene Firefly luciferase was controlled by Myosin Heavy Chain promoter for specific expressing in heart cells. The vector consisting of - MHC promoter and a firefly luciferase coding sequence flanked by full-length bovine growth hormone (BGH) 3'-polyadenylation sequence based on pcDNA3.1- vector backbone. To test the specific transcription of this promoter in g of MHC-Fluc or CMV-Flue (for control) plasmid DNA in myocardial tissue, 20 phosphate-buffered saline was directly injected into mouse myocardium through a midline sternotomy and liver. After 1 week of injection, MHC-Fluc expression was detected from heart region which was observed under cooled CCD camera of in vivo imaging system but not from liver. In control group injected with CMV-Flue, the bioluminescence was detected from all these organs. The expression of Flue under control of Myosin Heavy Chain promoter may become a suitable optical reporter gene for stem cell-derived cardiac lineage differentiation study.

  4. Human tissue factor: cDNA sequence and chromosome localization of the gene

    International Nuclear Information System (INIS)

    Scarpati, E.M.; Wen, D.; Broze, G.J. Jr.; Miletich, J.P.; Flandermeyer, R.R.; Siegel, N.R.; Sadler, J.E.

    1987-01-01

    A human placenta cDNA library in λgt11 was screened for the expression of tissue factor antigens with rabbit polyclonal anti-human tissue factor immunoglobulin G. Among 4 million recombinant clones screened, one positive, λHTF8, expressed a protein that shared epitopes with authentic human brain tissue factor. The 1.1-kilobase cDNA insert of λHTF8 encoded a peptide that contained the amino-terminal protein sequence of human brain tissue factor. Northern blotting identified a major mRNA species of 2.2 kilobases and a minor species of ∼ 3.2 kilobases in poly(A) + RNA of placenta. Only 2.2-kilobase mRNA was detected in human brain and in the human monocytic U937 cell line. In U937 cells, the quantity of tissue factor mRNA was increased several fold by exposure of the cells to phorbol 12-myristate 13-acetate. Additional cDNA clones were selected by hybridization with the cDNA insert of λHTF8. These overlapping isolates span 2177 base pairs of the tissue factor cDNA sequence that includes a 5'-noncoding region of 75 base pairs, an open reading frame of 885 base pairs, a stop codon, a 3'-noncoding region of 1141 base pairs, and a poly(a) tail. The open reading frame encodes a 33-kilodalton protein of 295 amino acids. The predicted sequence includes a signal peptide of 32 or 34 amino acids, a probable extracellular factor VII binding domain of 217 or 219 amino acids, a transmembrane segment of 23 acids, and a cytoplasmic tail of 21 amino acids. There are three potential glycosylation sites with the sequence Asn-X-Thr/Ser. The 3'-noncoding region contains an inverted Alu family repetitive sequence. The tissue factor gene was localized to chromosome 1 by hybridization of the cDNA insert of λHTF8 to flow-sorted human chromosomes

  5. Identification of small secreted peptides (SSPs) in maize and expression analysis of partial SSP genes in reproductive tissues.

    Science.gov (United States)

    Li, Ye Long; Dai, Xin Ren; Yue, Xun; Gao, Xin-Qi; Zhang, Xian Sheng

    2014-10-01

    Maize 1,491 small secreted peptides were identified, which were classified according to the character of peptide sequences. Partial SSP gene expressions in reproductive tissues were determined by qRT-PCR. Small secreted peptides (SSPs) are important cell-cell communication messengers in plants. Most information on plant SSPs come from Arabidopsis thaliana and Oryza sativa, while little is known about the SSPs of other grass species such as maize (Zea mays). In this study, we identified 1,491 SSP genes from maize genomic sequences. These putative SSP genes were distributed throughout the ten maize chromosomes. Among them, 611 SSPs were classified into 198 superfamilies according to their conserved domains, and 725 SSPs with four or more cysteines at their C-termini shared similar cysteine arrangements with their counterparts in other plant species. Moreover, the SSPs requiring post-translational modification, as well as defensin-like (DEFL) proteins, were identified. Further, the expression levels of 110 SSP genes were analyzed in reproductive tissues, including male flower, pollen, silk, and ovary. Most of the genes encoding basal-layer antifungal peptide-like, small coat proteins-like, thioredoxin-like proteins, γ-thionins-like, and DEFL proteins showed high expression levels in the ovary and male flower compared with their levels in silk and mature pollen. The rapid alkalinization factor-like genes were highly expressed only in the mature ovary and mature pollen, and pollen Ole e 1-like genes showed low expression in silk. The results of this study provide basic information for further analysis of SSP functions in the reproductive process of maize.

  6. Interaction of a gibberellin-induced factor with the upstream region of an alpha-amylase gene in rice aleurone tissue.

    OpenAIRE

    Ou-Lee, T M; Turgeon, R; Wu, R

    1988-01-01

    The interaction between the DNA sequences of an alpha-amylase (EC 3.2.1.1) gene and a tissue-specific factor induced in rice (Oryza sativa L.) aleurone tissue by gibberellin was studied. DNA mobility-shift during electrophoresis indicated that a 500-base-pair sequence (HS500) of a rice alpha-amylase genomic clone (OSamy-a) specifically interacted with a factor from gibberellin-induced rice aleurone tissue. The amount of complex formed between the HS500 DNA fragment and the gibberellin-induced...

  7. Comparative investigations of T cell receptor gamma gene rearrangements in frozen and formalin-fixed paraffin wax-embedded tissues by capillary electrophoresis

    DEFF Research Database (Denmark)

    Christensen, M; Funder, A D; Bendix, K

    2006-01-01

    AIM: To compare clonal T cell receptor gamma (TCRgamma) gene rearrangements in frozen and formalin-fixed paraffin wax-embedded (FFPE) tissue, using capillary electrophoresis for use in diagnostics, as T cell lymphomas may be difficult to diagnose by conventional methods.METHODS: The DNA for PCR......% for patient specimens and the specificity 100%. The junctional region between the Vgamma and Jgamma segments was specific for each patient.CONCLUSIONS: Capillary electrophoresis of PCR products from frozen and FFPE tissue is suitable for detecting clonal TCRgamma gene rearrangements. It is important, however...

  8. Effect of homeopathic treatment on gene expression in Copenhagen rat tumor tissues.

    Science.gov (United States)

    Thangapazham, Rajesh L; Rajeshkumar, N V; Sharma, Anuj; Warren, Jim; Singh, Anoop K; Ives, John A; Gaddipati, Jaya P; Maheshwari, Radha K; Jonas, Wayne B

    2006-12-01

    Increasing evidence suggests that the inability to undergo apoptosis is an important factor in the development and progression of prostate cancer. Agents that induce apoptosis may inhibit tumor growth and provide therapeutic benefit. In a recent study, the authors found that certain homeopathic treatments produced anticancer effects in an animal model. In this study, the authors examined the immunomodulating and apoptotic effects of these remedies. The authors investigated the effect of a homeopathic treatment regimen containing Conium maculatum, Sabal serrulata, Thuja occidentalis, and a MAT-LyLu Carcinosin nosode on the expression of cytokines and genes that regulate apoptosis. This was assessed in prostate cancer tissues, extracted from animals responsive to these drugs, using ribonuclease protection assay or reverse transcription polymerase chain reaction. There were no significant changes in mRNA levels of the apoptotic genes bax, bcl-2, bcl-x, caspase-1, caspase-2, caspase-3, Fas, FasL, or the cytokines interleukin (IL)-1alpha, IL-1beta, tumor necrosis factor (TNF)-beta, IL-3, IL-4, IL-5, IL-6, IL-10, TNF-alpha, IL-2, and interferon-gamma in prostate tumor and lung metastasis after treatment with homeopathic medicines. This study indicates that treatment with the highly diluted homeopathic remedies does not alter the gene expression in primary prostate tumors or in lung metastasis. The therapeutic effect of homeopathic treatments observed in the in vivo experiments cannot be explained by mechanisms based on distinct alterations in gene expression related to apoptosis or cytokines. Future research should explore subtle modulations in the expression of multiple genes in different biological pathways.

  9. Deep sequencing of ESTs from nacreous and prismatic layer producing tissues and a screen for novel shell formation-related genes in the pearl oyster.

    Directory of Open Access Journals (Sweden)

    Shigeharu Kinoshita

    Full Text Available BACKGROUND: Despite its economic importance, we have a limited understanding of the molecular mechanisms underlying shell formation in pearl oysters, wherein the calcium carbonate crystals, nacre and prism, are formed in a highly controlled manner. We constructed comprehensive expressed gene profiles in the shell-forming tissues of the pearl oyster Pinctada fucata and identified novel shell formation-related genes candidates. PRINCIPAL FINDINGS: We employed the GS FLX 454 system and constructed transcriptome data sets from pallial mantle and pearl sac, which form the nacreous layer, and from the mantle edge, which forms the prismatic layer in P. fucata. We sequenced 260477 reads and obtained 29682 unique sequences. We also screened novel nacreous and prismatic gene candidates by a combined analysis of sequence and expression data sets, and identified various genes encoding lectin, protease, protease inhibitors, lysine-rich matrix protein, and secreting calcium-binding proteins. We also examined the expression of known nacreous and prismatic genes in our EST library and identified novel isoforms with tissue-specific expressions. CONCLUSIONS: We constructed EST data sets from the nacre- and prism-producing tissues in P. fucata and found 29682 unique sequences containing novel gene candidates for nacreous and prismatic layer formation. This is the first report of deep sequencing of ESTs in the shell-forming tissues of P. fucata and our data provide a powerful tool for a comprehensive understanding of the molecular mechanisms of molluscan biomineralization.

  10. The National NeuroAIDS Tissue Consortium brain gene array: two types of HIV-associated neurocognitive impairment.

    Directory of Open Access Journals (Sweden)

    Benjamin B Gelman

    Full Text Available The National NeuroAIDS Tissue Consortium (NNTC performed a brain gene expression array to elucidate pathophysiologies of Human Immunodeficiency Virus type 1 (HIV-1-associated neurocognitive disorders.Twenty-four human subjects in four groups were examined A Uninfected controls; B HIV-1 infected subjects with no substantial neurocognitive impairment (NCI; C Infected with substantial NCI without HIV encephalitis (HIVE; D Infected with substantial NCI and HIVE. RNA from neocortex, white matter, and neostriatum was processed with the Affymetrix® array platform.With HIVE the HIV-1 RNA load in brain tissue was three log(10 units higher than other groups and over 1,900 gene probes were regulated. Interferon response genes (IFRGs, antigen presentation, complement components and CD163 antigen were strongly upregulated. In frontal neocortex downregulated neuronal pathways strongly dominated in HIVE, including GABA receptors, glutamate signaling, synaptic potentiation, axon guidance, clathrin-mediated endocytosis and 14-3-3 protein. Expression was completely different in neuropsychologically impaired subjects without HIVE. They had low brain HIV-1 loads, weak brain immune responses, lacked neuronally expressed changes in neocortex and exhibited upregulation of endothelial cell type transcripts. HIV-1-infected subjects with normal neuropsychological test results had upregulation of neuronal transcripts involved in synaptic transmission of neostriatal circuits.Two patterns of brain gene expression suggest that more than one pathophysiological process occurs in HIV-1-associated neurocognitive impairment. Expression in HIVE suggests that lowering brain HIV-1 replication might improve NCI, whereas NCI without HIVE may not respond in kind; array results suggest that modulation of transvascular signaling is a potentially promising approach. Striking brain regional differences highlighted the likely importance of circuit level disturbances in HIV/AIDS. In

  11. Correlation of in vitro lymphocyte radiosensitivity and gene expression with late normal tissue reactions following curative radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Finnon, Paul; Kabacik, Sylwia; MacKay, Alan; Raffy, Claudine; A’Hern, Roger; Owen, Roger; Badie, Christophe; Yarnold, John; Bouffler, Simon

    2012-01-01

    Background and purpose: Identification of mechanisms of late normal tissue responses to curative radiotherapy that discriminate individuals with marked or mild responses would aid response prediction. This study aimed to identify differences in gene expression, apoptosis, residual DNA double strand breaks and chromosomal damage after in vitro irradiation of lymphocytes in a series of patients with marked (31 cases) or mild (28 controls) late adverse reaction to adjuvant breast radiotherapy. Materials and methods: Gene expression arrays, residual γH2AX, apoptosis, G2 chromosomal radiosensitivity and G0 micronucleus assay were used to compare case and control lymphocyte radiation responses. Results: Five hundred and thirty genes were up-regulated and 819 down-regulated by ionising radiation. Irradiated samples were identified with an overall cross-validated error rate of 3.4%. Prediction analyses to classify cases and controls using unirradiated (0 Gy), irradiated (4 Gy) or radiation response (4–0 Gy) expression profiles correctly identified samples with, respectively, 25%, 22% or 18.5% error rates. Significant inter-sample variation was observed for all cellular endpoints but cases and controls could not be distinguished. Conclusions: Variation in lymphocyte radiosensitivity does not necessarily correlate with normal tissue response to radiotherapy. Gene expression analysis can predict of radiation exposure and may in the future help prediction of normal tissue radiosensitivity.

  12. Analysis of tissue-specific region in sericin 1 gene promoter of Bombyx mori

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Liu [College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027 (China); Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Lian, Yu [College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027 (China); Zhejiang Province Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310029 (China); Xiuyang, Guo [Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Tingqing, Guo [Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Shengpeng, Wang [Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Changde, Lu [Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2006-03-31

    The gene encoding sericin 1 (Ser1) of silkworm (Bombyx mori) is specifically expressed in the middle silk gland cells. To identify element involved in this transcription-dependent spatial restriction, truncation of the 5' terminal from the sericin 1 (Ser1) promoter is studied in vivo. A 209 bp DNA sequence upstream of the transcriptional start site (-586 to -378) is found to be responsible for promoting tissue-specific transcription. Analysis of this 209 bp region by overlapping deletion studies showed that a 25 bp region (-500 to -476) suppresses the ectopic expression of the Ser1 promoter. An unknown factor abundant in fat body nuclear extracts is shown to bind to this 25 bp fragment. These results suggest that this 25 bp region and the unknown factor are necessary for determining the tissue-specificity of the Ser1 promoter.

  13. Carcass and Meat Characteristics and Gene Expression in Intramuscular Adipose Tissue of Korean Native Cattle Fed Finishing Diets Supplemented with 5% Palm Oil.

    Science.gov (United States)

    Park, Sungkwon; Yan, Zhang; Choi, Changweon; Kim, Kyounghoon; Lee, Hyunjeong; Oh, Youngkyoon; Jeong, Jinyoung; Lee, Jonggil; Smith, Stephen B; Choi, Seongho

    2017-01-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression but depress stearoyl-CoA desaturase ( SCD ) gene expression in intramuscular (i.m.) adipose tissues of Hanwoo steers during fattening period (from 16 to 32 mon of age). Fourteen Hanwoo steers were allotted randomly to 2 groups of 7 steers based on initial BW and fed either a basal diet (control) or the basal diet supplemented with 5% palm oil (BDSP). At slaughter, i.m. adipose tissue was harvested for analysis of adipogenic gene expression and fatty acid composition. There were no differences in BW or average daily gain between treatment groups. Supplemental palm oil had no effect on carcass quality traits (carcass weight, backfat thickness, loin muscle area, or marbling scores) or meat color values. Palm oil increased ( p Palm oil increased total i.m. polyunsaturated fatty acids ( p palm oil on i.m. adipose tissue gene expression, the absence of negative effects on carcass and meat characteristics indicates that palm oil could be a suitable dietary supplement for the production of Hanwoo beef cattle.

  14. Evaluation of Appropriate Reference Genes for Reverse Transcription-Quantitative PCR Studies in Different Tissues of a Desert Poplar via Comparision of Different Algorithms

    Directory of Open Access Journals (Sweden)

    Hou-Ling Wang

    2015-08-01

    Full Text Available Despite the unshakable status of reverse transcription-quantitative PCR in gene expression analysis, it has certain disadvantages, including that the results are highly dependent on the reference genes selected for data normalization. Since inappropriate endogenous control genes will lead to inaccurate target gene expression profiles, the validation of suitable internal reference genes is essential. Given the increasing interest in functional genes and genomics of Populus euphratica, a desert poplar showing extraordinary adaptation to salt stress, we evaluated the expression stability of ten candidate reference genes in P. euphratica roots, stems, and leaves under salt stress conditions. We used five algorithms, namely, ΔCt, NormFinder, geNorm, GrayNorm, and a rank aggregation method (RankAggreg to identify suitable normalizers. To support the suitability of the identified reference genes and to compare the relative merits of these different algorithms, we analyzed and compared the relative expression levels of nine P. euphratica functional genes in different tissues. Our results indicate that a combination of multiple reference genes recommended by GrayNorm algorithm (e.g., a combination of Actin, EF1α, GAPDH, RP, UBQ in root should be used instead of a single reference gene. These results are valuable for research of gene identification in different P. euphratica tissues.

  15. Selection of reference genes is critical for miRNA expression analysis in human cardiac tissue. A focus on atrial fibrillation.

    Science.gov (United States)

    Masè, Michela; Grasso, Margherita; Avogaro, Laura; D'Amato, Elvira; Tessarolo, Francesco; Graffigna, Angelo; Denti, Michela Alessandra; Ravelli, Flavia

    2017-01-24

    MicroRNAs (miRNAs) are emerging as key regulators of complex biological processes in several cardiovascular diseases, including atrial fibrillation (AF). Reverse transcription-quantitative polymerase chain reaction is a powerful technique to quantitatively assess miRNA expression profile, but reliable results depend on proper data normalization by suitable reference genes. Despite the increasing number of studies assessing miRNAs in cardiac disease, no consensus on the best reference genes has been reached. This work aims to assess reference genes stability in human cardiac tissue with a focus on AF investigation. We evaluated the stability of five reference genes (U6, SNORD48, SNORD44, miR-16, and 5S) in atrial tissue samples from eighteen cardiac-surgery patients in sinus rhythm and AF. Stability was quantified by combining BestKeeper, delta-C q , GeNorm, and NormFinder statistical tools. All methods assessed SNORD48 as the best and U6 as the worst reference gene. Applications of different normalization strategies significantly impacted miRNA expression profiles in the study population. Our results point out the necessity of a consensus on data normalization in AF studies to avoid the emergence of divergent biological conclusions.

  16. Efficient gene transfer into silkworm larval tissues by a combination of sonoporation and lipofection.

    Science.gov (United States)

    Lee, Jae Man; Takahashi, Masateru; Mon, Hiroaki; Koga, Katsumi; Kawaguchi, Yutaka; Kusakabe, Takahiro

    2005-11-01

    Sonoporation (ultrasound treatment) provides a new and attractive nonviral way of in vivo gene transfer. To access the applicability of this method to the silkworm, Bombyx mori, we have compared the efficiencies of gene transfer by means of lipofection (using an appropriate agent, PDD111), sonoporation (ditto, FluoroGene), and lipofection followed by sonoporation. By these methods, a luciferase expression plasmid was found to be markedly transferred into the haemocoel of newly ecdysed fifth instar silkworm larvae, and also into other tissues although with lower rates compared with the haemocoel. In terms of luciferase activity, the efficiencies of transgene by lipofection plus sonoporation were approximately 6 (hemocytes), 20 (silk glands), 8 (mid-gut), 38 (fat body), 10 (Malpighian tubules), 33 (ovaries), and 16 (testes) times as high as those by lipofection or sonoporation alone. These results demonstrated that the present method is useful to introduce the exogenous DNA into insect organs in vivo.

  17. A tale with a Twist: a developmental gene with potential relevance for metabolic dysfunction and inflammation in adipose tissue

    Directory of Open Access Journals (Sweden)

    Anca Dana Dobrian

    2012-08-01

    Full Text Available The Twist proteins (Twist-1 and -2 are highly conserved developmental proteins with key roles for the transcriptional regulation in mesenchymal cell lineages. They belong to the super-family of bHLH proteins and exhibit bi-functional roles as both activators and repressors of gene transcription. The Twist proteins are expressed at low levels in adult tissues but may become abundantly re-expressed in cells undergoing malignant transformation. This observation prompted extensive research on the roles of Twist proteins in cancer progression and metastasis. Very recent studies indicate a novel role for Twist-1 as a potential regulator of adipose tissue remodeling and inflammation. Several studies suggested that developmental genes are important determinants of obesity, fat distribution and remodeling capacity of different adipose depots. Twist-1 is abundantly and selectively expressed in the adult adipose tissue and its constitutive expression is significantly higher in subcutaneous vs. visceral fat in both mice and humans. Moreover, Twist1 expression is strongly correlated with BMI and insulin resistance in humans. However, the functional roles and transcriptional downstream targets of Twist1 in adipose tissue are largely unexplored. The purpose of this review is to highlight the major findings related to Twist1 expression in different fat depots and cellular components of adipose tissue and to discuss the potential mechanisms suggesting a role for Twist1 in adipose tissue metabolism, inflammation and remodeling.

  18. Transient expression of color genes and in vitro regerenation from agroinfiltration-transformed floral tissues of Dendrobium Sonia 'Earsakul'

    International Nuclear Information System (INIS)

    Sahagun, Jorge R.

    2016-05-01

    Dendrobium Sonia 'Earsakul' is one of the favorite orchid hybrids in Thailand that has been popularized in most countries around the world due to its spectacular form, however, it is only limited to purple flower variety. As the high demand of tropical orchids increased the level of competition in the global market, molecular breeding offers an alternative to traditional hybridization for a rapid development of new cultivars with interesting qualities such as variation in flower colors. Therefore, we established a molecular baseline of a possible redirection of the endogenous anthocyanin into another flavonoid, the yellow aurone, in D. Sonia 'Earsakul'. We successfully constructed pSTARGATE-F3H, pCAMBIA1304-AmAS1 and pCAMBIA1304-Am4'CGT vectors characterized the individual effects of endogenous DseF3H silencing or overexpression of aurone genes, AS1 and 4'CGT and the combinations of the 3 genes through agroinfiltration-based transient transformation in petal and sepal tissues of D. Sonia 'Earsakul'. As expected, down-regulation of endogenous DseF3H mRNA transcript and color changes were observed in infiltrated areas of petal and sepal tissues as a result of impaired anthocynanin accumulation. On the other hand, the introduction of heterologous AmAS1 and Am4'CGT genes and their combined constructs have resulted to unexpected color phenotypes in D. Sonia 'Earsakul' petal and sepal tissues. The combination of the three gene constructs has resulted to white coupled with yellowish green phenotypes. However, semi-quantitative RT-PCR results could not be established if the color changes were the end products of aruone biosynthesis. Determination of the in vitro regenerative potential of petal and sepal tissues was also conducted for designing a new transformation system in orchids. Petal and sepal explants from floral buds (2.0-2.3 cm) survived on half-strength MS solid medium supplemented with or without α-naphthaleneacetic acid (NAA) or/and benzylaminopurine (BA) but

  19. Identification of FXYD Protein Genes in a Teleost: Tissue-specific Expression and Response to Salinity Change

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbæk

    2008-01-01

    identified. Phylogenetic analysis suggests that six isoforms are homologues to the previously identified FXYD2, FXYD5, FXYD6, FXYD7, FXYD8 and FXYD9, while two additional isoforms were found (FXYD11 and FXYD12). Using quantitative PCR, tissue dependent expression of the different isoforms was analyzed......). In osmoregulatory tissues, one isoform was expressed predominantly in gill (FXYD11), one in kidney (FXYD2) and one equally in kidney and intestine (FXYD12). Expression of several FXYD genes in kidney and gill differed between fresh water and seawater salmon suggesting significance during osmoregulatory adaptations....... In addition to identify novel FXYD isoforms, these studies are the first to show the tissue dependence in their expression and modulation by salinity in any teleosts. Key words: Atlantic salmon, Na+,K+-ATPase, Osmoregulation, Salmo salar, QPCR....

  20. Tissue-specific methylation of human insulin gene and PCR assay for monitoring beta cell death.

    Directory of Open Access Journals (Sweden)

    Mohamed I Husseiny

    Full Text Available The onset of metabolic dysregulation in type 1 diabetes (T1D occurs after autoimmune destruction of the majority of pancreatic insulin-producing beta cells. We previously demonstrated that the DNA encoding the insulin gene is uniquely unmethylated in these cells and then developed a methylation-specific PCR (MSP assay to identify circulating beta cell DNA in streptozotocin-treated mice prior to the rise in blood glucose. The current study extends to autoimmune non-obese diabetic (NOD mice and humans, showing in NOD mice that beta cell death occurs six weeks before the rise in blood sugar and coincides with the onset of islet infiltration by immune cells, demonstrating the utility of MSP for monitoring T1D. We previously reported unique patterns of methylation of the human insulin gene, and now extend this to other human tissues. The methylation patterns of the human insulin promoter, intron 1, exon 2, and intron 2 were determined in several normal human tissues. Similar to our previous report, the human insulin promoter was unmethylated in beta cells, but methylated in all other tissues tested. In contrast, intron 1, exon 2 and intron 2 did not exhibit any tissue-specific DNA methylation pattern. Subsequently, a human MSP assay was developed based on the methylation pattern of the insulin promoter and human islet DNA was successfully detected in circulation of T1D patients after islet transplantation therapy. Signal levels of normal controls and pre-transplant samples were shown to be similar, but increased dramatically after islet transplantation. In plasma the signal declines with time but in whole blood remains elevated for at least two weeks, indicating that association of beta cell DNA with blood cells prolongs the signal. This assay provides an effective method to monitor beta cell destruction in early T1D and in islet transplantation therapy.

  1. Determinants of human adipose tissue gene expression

    DEFF Research Database (Denmark)

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José

    2012-01-01

    weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong...... interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index...... on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently...

  2. The use of laser microdissection in the identification of suitable reference genes for normalization of quantitative real-time PCR in human FFPE epithelial ovarian tissue samples.

    Science.gov (United States)

    Cai, Jing; Li, Tao; Huang, Bangxing; Cheng, Henghui; Ding, Hui; Dong, Weihong; Xiao, Man; Liu, Ling; Wang, Zehua

    2014-01-01

    Quantitative real-time PCR (qPCR) is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M) were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD), an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA) and nonparametric (Kruskal-Wallis) tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP) and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.

  3. The use of laser microdissection in the identification of suitable reference genes for normalization of quantitative real-time PCR in human FFPE epithelial ovarian tissue samples.

    Directory of Open Access Journals (Sweden)

    Jing Cai

    Full Text Available Quantitative real-time PCR (qPCR is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD, an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA and nonparametric (Kruskal-Wallis tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.

  4. HFE gene mutation is a risk factor for tissue iron accumulation in hemodialysis patients.

    Science.gov (United States)

    Turkmen, Ercan; Yildirim, Tolga; Yilmaz, Rahmi; Hazirolan, Tuncay; Eldem, Gonca; Yilmaz, Engin; Aybal Kutlugun, Aysun; Altindal, Mahmut; Altun, Bulent

    2017-07-01

    HFE gene mutations are responsible from iron overload in general population. Studies in hemodialysis patients investigated the effect of presence of HFE gene mutations on serum ferritin and transferrin saturation (TSAT) with conflicting results. However effect of HFE mutations on iron overload in hemodialysis patients was not previously extensively studied. 36 hemodialysis patients (age 51.3 ± 15.6, (18/18) male/female) and 44 healthy control subjects included in this cross sectional study. Hemoglobin, ferritin, TSAT in the preceding 2 years were recorded. Iron and erythropoietin (EPO) administered during this period were calculated. Iron accumulation in heart and liver was detected by MRI. Relationship between HFE gene mutation, hemoglobin, iron parameters and EPO doses, and tissue iron accumulation were determined. Iron overload was detected in nine (25%) patients. Hemoglobin, iron parameters, weekly EPO doses, and monthly iron doses of patients with and without iron overload were similar. There was no difference between control group and hemodialysis patients with respect to the prevalence of HFE gene mutations. Iron overload was detected in five of eight patients who had HFE gene mutations, but iron overload was present in 4 of 28 patients who had no mutations (P = 0.01). Hemoglobin, iron parameters, erythropoietin, and iron doses were similar in patients with and without gene mutations. HFE gene mutations remained the main determinant of iron overload after multivariate logistic regression analysis (P = 0.02; OR, 11.6). Serum iron parameters were not adequate to detect iron overload and HFE gene mutation was found to be an important risk factor for iron accumulation. © 2017 International Society for Hemodialysis.

  5. Can intrinsic human tissue radiosensitivity be correlated with late responding gene RNA expression in white blood cells using a 96 gene micro-array?

    International Nuclear Information System (INIS)

    Schmidt, D.; Streeter, O.; Dagliyan, G.; Hill, C.K.; Williams-Hill, D.M.

    2003-01-01

    Radiation is widely used in the treatment of cancers. It is generally believed there is a sigmoid relationship between radiation dose and probability of cure. There is also a sigmoid relationship between radiation dose and normal tissue response. Generally total radiation dose to a tumor is limited by normal tissue tolerance. It has been postulated that up to 70% of inter-individual differences in radiosensitivity may be due to genetic predisposition (Tureson I. Et al, IJROBP, 1996;36:1065). However, to date, clinicians have no way of estimating or predicting an individual's normal tissue response to radiation exposure. Thus the prescribed dose cannot be tailored to an individuals actual expected response but is an empirically derived compromise based on experience. Although a number of studies using cellular techniques have shown that human cell radiosensitivity can be measured, none of these can be performed quick enough to be used in the clinic. In this study we are looking at gene expression that occurs some 24 hours after an exposure compared to expression before any exposure in peripheral white blood cells from patients undergoing radiotherapy for various tumors. The patients will be followed for overt radiation sensitivity by standard criteria by clinicians in the Department. The main aims are: does RNA expression level in a 96 gene micro-array vary before and after radiation and do these changes in RNA expression correlate with the objective measurements of acute radiation response observed by the clinicians in the patients. The USC IRB recently approved the protocol and human consent for this study to enter 50 patients in the next 12 months using mostly head and neck and endometrial cancer patients where we can get a normal tissue sample to examine as well as the blood sample. We will present the rationale, protocol, methods and early results in detail

  6. Multiplexed color-coded probe-based gene expression assessment for clinical molecular diagnostics in formalin-fixed paraffin-embedded human renal allograft tissue.

    Science.gov (United States)

    Adam, Benjamin; Afzali, Bahman; Dominy, Katherine M; Chapman, Erin; Gill, Reeda; Hidalgo, Luis G; Roufosse, Candice; Sis, Banu; Mengel, Michael

    2016-03-01

    Histopathologic diagnoses in transplantation can be improved with molecular testing. Preferably, molecular diagnostics should fit into standard-of-care workflows for transplant biopsies, that is, formalin-fixed paraffin-embedded (FFPE) processing. The NanoString(®) gene expression platform has recently been shown to work with FFPE samples. We aimed to evaluate its methodological robustness and feasibility for gene expression studies in human FFPE renal allograft samples. A literature-derived antibody-mediated rejection (ABMR) 34-gene set, comprised of endothelial, NK cell, and inflammation transcripts, was analyzed in different retrospective biopsy cohorts and showed potential to molecularly discriminate ABMR cases, including FFPE samples. NanoString(®) results were reproducible across a range of RNA input quantities (r = 0.998), with different operators (r = 0.998), and between different reagent lots (r = 0.983). There was moderate correlation between NanoString(®) with FFPE tissue and quantitative reverse transcription polymerase chain reaction (qRT-PCR) with corresponding dedicated fresh-stabilized tissue (r = 0.487). Better overall correlation with histology was observed with NanoString(®) (r = 0.354) than with qRT-PCR (r = 0.146). Our results demonstrate the feasibility of multiplexed gene expression quantification from FFPE renal allograft tissue. This represents a method for prospective and retrospective validation of molecular diagnostics and its adoption in clinical transplantation pathology. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Differential induction of enzymes and genes involved in lipid metabolism in liver and visceral adipose tissue of juvenile yellow catfish Pelteobagrus fulvidraco exposed to copper

    International Nuclear Information System (INIS)

    Chen, Qi-Liang; Luo, Zhi; Pan, Ya-Xiong; Zheng, Jia-Lang; Zhu, Qing-Ling; Sun, Lin-Dan; Zhuo, Mei-Qin; Hu, Wei

    2013-01-01

    Highlights: •Cu downregulates lipogenesis and reduces lipid deposition in liver and adipose tissue. •Mechanism of Cu affecting lipid metabolism is determined at the enzymatic and molecular levels. •Cu exposure differentially influences lipid metabolism between liver and adipose tissue. -- Abstract: The present study was conducted to determine the mechanism of waterborne Cu exposure influencing lipid metabolism in liver and visceral adipose tissue (VAT) of juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to four waterborne copper (Cu) concentrations (2 (control), 24 (low), 71 (medium), 198 (high) μg Cu/l, respectively) for 6 weeks. Waterborne Cu exposure had a negative effect on growth and several condition indices (condition factor, viscerosomatic index, hepatosomatic index and visceral adipose index). In liver, lipid content, activities of lipogenic enzymes (6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME), isocitrate dehydrogenase (ICDH), and fatty acid synthase (FAS)) as well as mRNA levels of 6PGD, G6PD, FAS and sterol-regulator element-binding protein-1 (SREBP-1) genes decreased with increasing Cu concentrations. However, activity and mRNA level of lipoprotein lipase (LPL) gene in liver increased. In VAT, G6PD, ME and LPL activities as well as the mRNA levels of FAS, LPL and PPARγ genes decreased in fish exposed to higher Cu concentrations. The differential Pearson correlations between transcription factors (SREBP-1 and peroxisome proliferators-activated receptor-γ (PPARγ)), and the activities and mRNA expression of lipogenic enzymes and their genes were observed between liver and VAT. Thus, our study indicated that reduced lipid contents in liver and VAT after Cu exposure were attributable to the reduced activities and mRNA expression of lipogenic enzymes and their genes in these tissues. Different response patterns of several tested enzymes and genes to waterborne Cu

  8. Differential induction of enzymes and genes involved in lipid metabolism in liver and visceral adipose tissue of juvenile yellow catfish Pelteobagrus fulvidraco exposed to copper

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi-Liang; Luo, Zhi, E-mail: luozhi99@yahoo.com.cn; Pan, Ya-Xiong; Zheng, Jia-Lang; Zhu, Qing-Ling; Sun, Lin-Dan; Zhuo, Mei-Qin; Hu, Wei

    2013-07-15

    Highlights: •Cu downregulates lipogenesis and reduces lipid deposition in liver and adipose tissue. •Mechanism of Cu affecting lipid metabolism is determined at the enzymatic and molecular levels. •Cu exposure differentially influences lipid metabolism between liver and adipose tissue. -- Abstract: The present study was conducted to determine the mechanism of waterborne Cu exposure influencing lipid metabolism in liver and visceral adipose tissue (VAT) of juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to four waterborne copper (Cu) concentrations (2 (control), 24 (low), 71 (medium), 198 (high) μg Cu/l, respectively) for 6 weeks. Waterborne Cu exposure had a negative effect on growth and several condition indices (condition factor, viscerosomatic index, hepatosomatic index and visceral adipose index). In liver, lipid content, activities of lipogenic enzymes (6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME), isocitrate dehydrogenase (ICDH), and fatty acid synthase (FAS)) as well as mRNA levels of 6PGD, G6PD, FAS and sterol-regulator element-binding protein-1 (SREBP-1) genes decreased with increasing Cu concentrations. However, activity and mRNA level of lipoprotein lipase (LPL) gene in liver increased. In VAT, G6PD, ME and LPL activities as well as the mRNA levels of FAS, LPL and PPARγ genes decreased in fish exposed to higher Cu concentrations. The differential Pearson correlations between transcription factors (SREBP-1 and peroxisome proliferators-activated receptor-γ (PPARγ)), and the activities and mRNA expression of lipogenic enzymes and their genes were observed between liver and VAT. Thus, our study indicated that reduced lipid contents in liver and VAT after Cu exposure were attributable to the reduced activities and mRNA expression of lipogenic enzymes and their genes in these tissues. Different response patterns of several tested enzymes and genes to waterborne Cu

  9. Genome-wide identification and expression profiling reveal tissue-specific expression and differentially-regulated genes involved in gibberellin metabolism between Williams banana and its dwarf mutant.

    Science.gov (United States)

    Chen, Jingjing; Xie, Jianghui; Duan, Yajie; Hu, Huigang; Hu, Yulin; Li, Weiming

    2016-05-27

    Dwarfism is one of the most valuable traits in banana breeding because semi-dwarf cultivars show good resistance to damage by wind and rain. Moreover, these cultivars present advantages of convenient cultivation, management, and so on. We obtained a dwarf mutant '8818-1' through EMS (ethyl methane sulphonate) mutagenesis of Williams banana 8818 (Musa spp. AAA group). Our research have shown that gibberellins (GAs) content in 8818-1 false stems was significantly lower than that in its parent 8818 and the dwarf type of 8818-1 could be restored by application of exogenous GA3. Although GA exerts important impacts on the 8818-1 dwarf type, our understanding of the regulation of GA metabolism during banana dwarf mutant development remains limited. Genome-wide screening revealed 36 candidate GA metabolism genes were systematically identified for the first time; these genes included 3 MaCPS, 2 MaKS, 1 MaKO, 2 MaKAO, 10 MaGA20ox, 4 MaGA3ox, and 14 MaGA2ox genes. Phylogenetic tree and conserved protein domain analyses showed sequence conservation and divergence. GA metabolism genes exhibited tissue-specific expression patterns. Early GA biosynthesis genes were constitutively expressed but presented differential regulation in different tissues in Williams banana. GA oxidase family genes were mainly transcribed in young fruits, thus suggesting that young fruits were the most active tissue involved in GA metabolism, followed by leaves, bracts, and finally approximately mature fruits. Expression patterns between 8818 and 8818-1 revealed that MaGA20ox4, MaGA20ox5, and MaGA20ox7 of the MaGA20ox gene family and MaGA2ox7, MaGA2ox12, and MaGA2ox14 of the MaGA2ox gene family exhibited significant differential expression and high-expression levels in false stems. These genes are likely to be responsible for the regulation of GAs content in 8818-1 false stems. Overall, phylogenetic evolution, tissue specificity and differential expression analyses of GA metabolism genes can provide a

  10. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-01-01

    Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue

  11. Are specific gene expressions of extracellular matrix and nucleus pulposus affected by primary cell cultures prepared from intact or degenerative intervertebral disc tissues?

    Science.gov (United States)

    Karaarslan, Numan; Yilmaz, Ibrahim; Ozbek, Hanefi; Sirin Yasar, Duygu; Kaplan, Necati; Akyuva, Yener; Gonultas, Aylin; Ates, Ozkan

    2018-01-22

    In this scientific research project, the researchers aimed to determine the gene expression patterns of nucleus pulposus (NP) in cell cultures obtained from degenerated or intact tissues. Whereas 12 of the cases were diagnosed with lumbar disc hernia and had undergone lumbar microdiscectomy, 12 cases had undergone traumatic intervertebral discectomy and corpectomy, along with discectomy after spinal trauma. NP-specific markers and gene expressions of the reagents of the extracellular matrix in the experimental setup were tested at the 0th, 24th, and 48th hours by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Visual evaluations were simultaneously made in all samples using invert and fluorescence microscopy. Vitality and proliferation analyses were evaluated by UV spectrophotometer. As a method of statistical evaluation, Spearman was used for categorical variants, and the Pearson correlation was used for variants with numerical and plain distribution. No association was found either between the tissue type and times (r=0.000; p=1.000) or between the region that the tissue was obtained from and hypoxia transcription factor-1 alpha (HIF-1α) gene expression (r=0.098; p=0.245). There was no correlation between cell proliferation and chondroadherin (CHAD) expression or between type II collagen (COL2A1) and CHAD gene expressions. It was found that CHAD and HIF-1α gene expressions and HIF-1α and COL2A1 gene expressions affected cell proliferation. Cell culture setups are of paramount importance because they may influence the pattern of changes in the gene expressions of the cells used in these setups.

  12. A Genome-Wide mQTL Analysis in Human Adipose Tissue Identifies Genetic Variants Associated with DNA Methylation, Gene Expression and Metabolic Traits.

    Directory of Open Access Journals (Sweden)

    Petr Volkov

    Full Text Available Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL analysis in human adipose tissue of 119 men, where 592,794 single nucleotide polymorphisms (SNPs were related to DNA methylation of 477,891 CpG sites, covering 99% of RefSeq genes. SNPs in significant mQTLs were further related to gene expression in adipose tissue and obesity related traits. We found 101,911 SNP-CpG pairs (mQTLs in cis and 5,342 SNP-CpG pairs in trans showing significant associations between genotype and DNA methylation in adipose tissue after correction for multiple testing, where cis is defined as distance less than 500 kb between a SNP and CpG site. These mQTLs include reported obesity, lipid and type 2 diabetes loci, e.g. ADCY3/POMC, APOA5, CETP, FADS2, GCKR, SORT1 and LEPR. Significant mQTLs were overrepresented in intergenic regions meanwhile underrepresented in promoter regions and CpG islands. We further identified 635 SNPs in significant cis-mQTLs associated with expression of 86 genes in adipose tissue including CHRNA5, G6PC2, GPX7, RPL27A, THNSL2 and ZFP57. SNPs in significant mQTLs were also associated with body mass index (BMI, lipid traits and glucose and insulin levels in our study cohort and public available consortia data. Importantly, the Causal Inference Test (CIT demonstrates how genetic variants mediate their effects on metabolic traits (e.g. BMI, cholesterol, high-density lipoprotein (HDL, hemoglobin A1c (HbA1c and homeostatic model assessment of insulin resistance (HOMA-IR via altered DNA methylation in human adipose tissue. This study identifies genome-wide interactions between genetic and epigenetic variation in both cis and trans positions influencing gene expression in adipose tissue and in vivo (dysmetabolic traits associated with the development of

  13. Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions

    DEFF Research Database (Denmark)

    Svingen, Terje; Letting, Heidi; Hadrup, Niels

    2015-01-01

    In biological research the analysis of gene expression levels in cells and tissues can be a powerful tool to gain insights into biological processes. For this, quantitative RT-PCR (RT-qPCR) is a popular method that often involve the use of constitutively expressed endogenous reference (or...... ‘housekeeping’) gene for normalization of data. Thus, it is essential to use reference genes that have been verified to be stably expressed within the specific experimental setting. Here, we have analysed the expression stability of 12 commonly used reference genes (Actb, B2m, Gapdh, Hprt, Pgk1, Rn18s, Rpl13a...

  14. Macrophages and Adipocytes in Human Obesity Adipose Tissue Gene Expression and Insulin Sensitivity During Calorie Restriction and Weight Stabilization

    DEFF Research Database (Denmark)

    Capel, F.; Klimcakova, E.; Viguerie, N.

    2009-01-01

    OBJECTIVE-We investigated the regulation of adipose tissue gene expression during different phases of a dietary weight loss program and its relation with insulin sensitivity. RESEARCH DESIGN AND METHODS-Twenty-two obese women followed a dietary intervention program composed of an energy restriction...... expression profiling was performed using a DNA microarray in a subgroup of eight women. RT-quantitative PCR was used for determination of mRNA levels of 31 adipose tissue macrophage markers (n = 22). RESULTS-Body weight, fat mass, and C-reactive protein level decreased and glucose disposal rate increased...... during the dietary intervention program. Transcriptome profiling revealed two main patterns of variations. The first involved 464 mostly adipocyte genes involved in metabolism that were downregulated during energy restriction, upregulated during weight stabilization, and unchanged during the dietary...

  15. CYP19 gene expression in subcutaneous adipose tissue is associated with blood pressure in women with polycystic ovary syndrome.

    Science.gov (United States)

    Lecke, Sheila B; Morsch, Débora M; Spritzer, Poli M

    2011-11-01

    In polycystic ovary syndrome (PCOS), hypertension has been linked to androgen excess and insulin resistance. Aromatase, an enzyme encoded by the CYP19 gene, affects androgen metabolism and estrogen synthesis, influencing the androgen to estrogen balance. We characterized CYP19 gene expression in subcutaneous adipose tissue of women with PCOS and normal controls and evaluated the association between subcutaneous fat CYP19 mRNA, circulating hormone levels, and blood pressure. This case-control study was carried out with 31 PCOS patients and 27 BMI-matched normotensive non-hirsute women with regular cycles. Participants underwent anthropometric measurements, collection of blood samples, and adipose tissue biopsy (28 PCOS and 19 controls). Hypertension was defined as systolic blood pressure ≥ 130 mmHg and/or diastolic blood pressure ≥ 85 mmHg. PCOS patients were divided into normotensive and hypertensive. Main outcome measures were serum estrogen and androgen levels, estrogen-to-androgen ratio, and CYP19 gene expression in subcutaneous fat. Subcutaneous CYP19 mRNA was higher in hypertensive PCOS than in control and normotensive PCOS women (p = 0.014). Estrogen-to-androgen ratio was lower in hypertensive PCOS than controls (p androgen ratio ≤ 0.06 (median for the three groups) was observed in 91% of hypertensive PCOS women, vs. 37% and 61% in the control and normotensive PCOS groups (p = 0.011). CYP19 gene expression in subcutaneous fat of PCOS patient correlated positively with systolic (p = 0.006) and diastolic blood pressure (p = 0.009). Androgen excess and hyperinsulinemia may play a role in the molecular mechanisms that activate aromatase mRNA transcription in abdominal fat tissue. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview.

    Science.gov (United States)

    Deliolanis, Nikolaos C; Ale, Angelique; Morscher, Stefan; Burton, Neal C; Schaefer, Karin; Radrich, Karin; Razansky, Daniel; Ntziachristos, Vasilis

    2014-10-01

    A primary enabling feature of near-infrared fluorescent proteins (FPs) and fluorescent probes is the ability to visualize deeper in tissues than in the visible. The purpose of this work is to find which is the optimal visualization method that can exploit the advantages of this novel class of FPs in full-scale pre-clinical molecular imaging studies. Nude mice were stereotactically implanted with near-infrared FP expressing glioma cells to from brain tumors. The feasibility and performance metrics of FPs were compared between planar epi-illumination and trans-illumination fluorescence imaging, as well as to hybrid Fluorescence Molecular Tomography (FMT) system combined with X-ray CT and Multispectral Optoacoustic (or Photoacoustic) Tomography (MSOT). It is shown that deep-seated glioma brain tumors are possible to visualize both with fluorescence and optoacoustic imaging. Fluorescence imaging is straightforward and has good sensitivity; however, it lacks resolution. FMT-XCT can provide an improved rough resolution of ∼1 mm in deep tissue, while MSOT achieves 0.1 mm resolution in deep tissue and has comparable sensitivity. We show imaging capacity that can shift the visualization paradigm in biological discovery. The results are relevant not only to reporter gene imaging, but stand as cross-platform comparison for all methods imaging near infrared fluorescent contrast agents.

  17. EXSPRESSION OF MDR-GENES AND MONORESISTANCE GENES IN NON-SMALL-CELL LUNG CANCER

    Directory of Open Access Journals (Sweden)

    E. L. Yumov

    2014-01-01

    Full Text Available We studied the expression of multidrug resistance genes (MDR and monoresistance genes in normal bronchial tissue and tumor tissue of the non-small cell lung cancer (NSCLC after neoadjuvant chemotherapy (NACT (vinorelbine-carboplatine. The study included 30 patients with NSCLC (Т2–4N0–3M0. Normal bronchial tissue, normal lung tissue and tumor tissue collected during surgery following neoadjuvant chemotherapy (NACT served as a material of the study. The expression levels of MDR genes (ABCB1, ABCB2, ABCC1, ABCC2, ABCС5, ABCG1, ABCG2, GSTP and MVP, and monoresistance genes (BRCA1, ERCC1, RRM1, TOP1, TOP2A, TUBB3 and TYMS were estimated by quantitative reverse transcriptase PCR (RT-qPCR. The expression levels of some MDR genes and monoresistance genes (АВСВ1, АВСВ2, ABCG1, ERCC1, GSTP1 and MVP were significantly higher in the bronchi than in tumor tissue. The expression of ABCG1, ABCG2 and ERCC1 genes was higher in patients with T1-2 cancer than in patients with T3-4 cancer. Patients with adenocarcinoma had higher expression of BRCA1, MVP and ABCB1 genes than patients with squamous cell lung cancer. A tendency towards reduction in the expression level of MDR-genes and monoresistance genes was observed in patients with partial tumor regression compared to that observed in patients with stable disease. These findings were consistent with the previous data on reduction in the MDR-gene expression after chemotherapy with a good response in breast cancer patients.

  18. Tissue specific promoters improve the localization of radiation-inducible gene expression

    International Nuclear Information System (INIS)

    Hallahan, Dennis; Kataoka, Yasushi; Kuchibhotla, Jaya; Virudachalam, Subbu; Weichselbaum, Ralph

    1996-01-01

    expression was quantified in vascular endothelial cells from large vessel (HUVEC) and small vessels (HMEC). We found cell-type specificity of radiation-induction. The promoter region from the ELAM gene gave no expression in cells that were not of endothelial cell origin and x-ray-induction of ELAM in the endothelium required the NFkB binding cis-acting element. ELAM induction was achieved at doses as low as 1 Gy, whereas induction of other radiation inducible genes required 5 to 10 Gy. Cells transfected with the minimal promoter (plasmid pTK-CAT) demonstrated no radiation induction. Expression of the CMV-LacZ genetic construct that was used as a negative control in each transfection was not altered by x-irradiation. Moreover, intravenous administration of liposomes containing a reporter gene linked to the ELAM promoter and a transcriptional amplification system were induced specifically at sites of x-irradiation in an animal model. Conclusions: Activation of transcription of the ELAM-1 promoter by ionizing radiation is a means of activating gene therapy within the vascular endothelium and demonstrates the feasibility of treating vascular lesions with noninvasive procedures. Tissue specific promoters (e. g., ELAM-1) combined with radiation inducible gene therapy improves the localization of gene therapy expression. These results have applications in intravascular brachytherapy for the prevention of blood vessel restenosis

  19. AAV vector encoding human VEGF165-transduced pectineus muscular flaps increase the formation of new tissue through induction of angiogenesis in an in vivo chamber for tissue engineering: A technique to enhance tissue and vessels in microsurgically engineered tissue.

    Science.gov (United States)

    Moimas, Silvia; Manasseri, Benedetto; Cuccia, Giuseppe; Stagno d'Alcontres, Francesco; Geuna, Stefano; Pattarini, Lucia; Zentilin, Lorena; Giacca, Mauro; Colonna, Michele R

    2015-01-01

    In regenerative medicine, new approaches are required for the creation of tissue substitutes, and the interplay between different research areas, such as tissue engineering, microsurgery and gene therapy, is mandatory. In this article, we report a modification of a published model of tissue engineering, based on an arterio-venous loop enveloped in a cross-linked collagen-glycosaminoglycan template, which acts as an isolated chamber for angiogenesis and new tissue formation. In order to foster tissue formation within the chamber, which entails on the development of new vessels, we wondered whether we might combine tissue engineering with a gene therapy approach. Based on the well-described tropism of adeno-associated viral vectors for post-mitotic tissues, a muscular flap was harvested from the pectineus muscle, inserted into the chamber and transduced by either AAV vector encoding human VEGF165 or AAV vector expressing the reporter gene β-galactosidase, as a control. Histological analysis of the specimens showed that muscle transduction by AAV vector encoding human VEGF165 resulted in enhanced tissue formation, with a significant increase in the number of arterioles within the chamber in comparison with the previously published model. Pectineus muscular flap, transduced by adeno-associated viral vectors, acted as a source of the proangiogenic factor vascular endothelial growth factor, thus inducing a consistent enhancement of vessel growth into the newly formed tissue within the chamber. In conclusion, our present findings combine three different research fields such as microsurgery, tissue engineering and gene therapy, suggesting and showing the feasibility of a mixed approach for regenerative medicine.

  20. Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury.

    Science.gov (United States)

    Weidenbusch, Marc; Rodler, Severin; Song, Shangqing; Romoli, Simone; Marschner, Julian A; Kraft, Franziska; Holderied, Alexander; Kumar, Santosh; Mulay, Shrikant R; Honarpisheh, Mohsen; Kumar Devarapu, Satish; Lech, Maciej; Anders, Hans-Joachim

    2017-12-22

    Notch and interleukin-22 (IL-22) signaling are known to regulate tissue homeostasis and respond to injury in humans and mice, and the induction of endogenous aryl hydrocarbon receptor (Ahr) ligands through Notch links the two pathways in a hierarchical fashion. However in adults, the species-, organ- and injury-specific gene expression of the Notch-AhR-IL22 axis components is unknown. We therefore performed gene expression profiling of DLL1, DLL3, DLL4, DLK1, DLK2, JAG1, JAG2, Notch1, Notch2, Notch3, Notch4, ADAM17/TNF-α ADAM metalloprotease converting enzyme (TACE), PSEN1, basigin (BSG)/CD147, RBP-J, HES1, HES5, HEY1, HEYL, AHR, ARNT, ARNT2, CYP1A1, CYP24A1, IL-22, IL22RA1, IL22RA2, IL10RB, and STAT3 under homeostatic conditions in ten mature murine and human organs. Additionally, the expression of these genes was assessed in murine models of acute sterile inflammation and progressive fibrosis. We show that there are organ-specific gene expression profiles of the Notch-AhR-IL22 axis in humans and mice. Although there is an overall interspecies congruency, specific differences between human and murine expression signatures do exist. In murine tissues with AHR/ARNT expression CYP1A1 and IL-22 were correlated with HES5 and HEYL expression, while in human tissues no such correlation was found. Notch and AhR signaling are involved in renal inflammation and fibrosis with specific gene expression changes in each model. Despite the presence of all Notch pathway molecules in the kidney and a model-specific induction of Notch ligands, IL-22 was only up-regulated in acute inflammation, but rapidly down-regulated during regeneration. This implies that for targeting injury responses, e.g. via IL-22, species-specific differences, injury type and time points have to be considered. © 2017 The Author(s).

  1. Arborvitae (Thuja plicata essential oil significantly inhibited critical inflammation- and tissue remodeling-related proteins and genes in human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Xuesheng Han

    2017-06-01

    Full Text Available Arborvitae (Thuja plicata essential oil (AEO is becoming increasingly popular in skincare, although its biological activity in human skin cells has not been investigated. Therefore, we sought to study AEO's effect on 17 important protein biomarkers that are closely related to inflammation and tissue remodeling by using a pre-inflamed human dermal fibroblast culture model. AEO significantly inhibited the expression of vascular cell adhesion molecule 1 (VCAM-1, intracellular cell adhesion molecule 1 (ICAM-1, interferon gamma-induced protein 10 (IP-10, interferon-inducible T-cell chemoattractant (I-TAC, monokine induced by interferon gamma (MIG, and macrophage colony-stimulating factor (M-CSF. It also showed significant antiproliferative activity and robustly inhibited collagen-I, collagen-III, plasminogen activator inhibitor-1 (PAI-1, and tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2. The inhibitory effect of AEO on increased production of these protein biomarkers suggests it has anti-inflammatory property. We then studied the effect of AEO on the genome-wide expression of 21,224 genes in the same cell culture. AEO significantly and diversely modulated global gene expression. Ingenuity pathway analysis (IPA showed that AEO robustly affected numerous critical genes and signaling pathways closely involved in inflammatory and tissue remodeling processes. The findings of this study provide the first evidence of the biological activity and beneficial action of AEO in human skin cells.

  2. Expression and Significance of gp96 and Immune-related Gene CTLA-4, CD8 in Lung Cancer Tissues

    Directory of Open Access Journals (Sweden)

    Haiyan ZHENG

    2010-08-01

    Full Text Available Background and objective It has been proven that gp96 plays an important role in specific cytotoxic immune response which is involved in anti-tumor effect in the body. The aim of this study is to investigate the biological significance of heat shock protein gp96 and immune-related gene CTLA-4, CD8 expressions in lung cancer tissues of different progressive stages. Methods We used Envision immunohistochemistry method to detect the levels of expression of gp96, CTLA-4, CD8 in tissue microarray, which contained 89 primary lung cancer tissues, 12 lymph node metastasis lung cancer tissues, 12 precancerous lesions and 10 normal lung tissues, and analyzed the relationship between their expressions and clinicopathological parameters. Results (1 The positive rate of gp96 in primary lung cancer was remarkably higher than that in precancerous lesion and normal lung tissue (P < 0.05. The positive rate of CTLA-4 in primary lung cancer tissue and precancerous lesion was significantly higher than that in normal lung tissue (P < 0.05. The positive rate of CD8 in primary lung cancer tissue was significantly higher than that in normal lung tissue (P < 0.05. The positive rate of gp96 in CD8-positive lymphocytes in the high expression group was less than that in the low group (P < 0.05. (2 The positive rate of gp96 was closely related to sex, differentiation and clinical stage (P < 0.05, but not to age, gross type, histological type and lymph node metastasis (P > 0.05. The positive rate of CTLA-4 was closely related to age and differentiation (P < 0.05, but not to sex, gross type, histological type, clinical stage and lymph node metastasis (P > 0.05. CD8 expression was related to clinical stage (P < 0.05, but not to sex, age, gross type, histological type, differentiation and lymph node metastasis (P > 0.05. The positive rates of gp96, CTLA-4 were higher than that of CD8 in squamous cell carcinoma and SCLC, respectively. (3 There was positive correlation between gp

  3. Integrative analysis of copy number and gene expression in breast cancer using formalin-fixed paraffin-embedded core biopsy tissue: a feasibility study.

    Science.gov (United States)

    Iddawela, Mahesh; Rueda, Oscar; Eremin, Jenny; Eremin, Oleg; Cowley, Jed; Earl, Helena M; Caldas, Carlos

    2017-07-11

    An absence of reliable molecular markers has hampered individualised breast cancer treatments, and a major limitation for translational research is the lack of fresh tissue. There are, however, abundant banks of formalin-fixed paraffin-embedded (FFPE) tissue. This study evaluated two platforms available for the analysis of DNA copy number and gene expression using FFPE samples. The cDNA-mediated annealing, selection, extension, and ligation assay (DASL™) has been developed for gene expression analysis and the Molecular Inversion Probes assay (Oncoscan™), were used for copy number analysis using FFPE tissues. Gene expression and copy number were evaluated in core-biopsy samples from patients with breast cancer undergoing neoadjuvant chemotherapy (NAC). Forty-three core-biopsies were evaluated and characteristic copy number changes in breast cancers, gains in 1q, 8q, 11q, 17q and 20q and losses in 6q, 8p, 13q and 16q, were confirmed. Regions that frequently exhibited gains in tumours showing a pathological complete response (pCR) to NAC were 1q (55%), 8q (40%) and 17q (40%), whereas 11q11 (37%) gain was the most frequent change in non-pCR tumours. Gains associated with poor survival were 11q13 (62%), 8q24 (54%) and 20q (47%). Gene expression assessed by DASL correlated with immunohistochemistry (IHC) analysis for oestrogen receptor (ER) [area under the curve (AUC) = 0.95], progesterone receptor (PR)(AUC = 0.90) and human epidermal growth factor type-2 receptor (HER-2) (AUC = 0.96). Differential expression analysis between ER+ and ER- cancers identified over-expression of TTF1, LAF-4 and C-MYB (p ≤ 0.05), and between pCR vs non-pCRs, over-expression of CXCL9, AREG, B-MYB and under-expression of ABCG2. This study was an integrative analysis of copy number and gene expression using FFPE core biopsies and showed that molecular marker data from FFPE tissues were consistent with those in previous studies using fresh-frozen samples. FFPE tissue can provide

  4. Mining the archives: a cross-platform analysis of gene expression profiles in archival formalin-fixed paraffin-embedded (FFPE) tissue.

    Science.gov (United States)

    Formalin-fixed paraffin-embedded (FFPE) tissue samples represent a potentially invaluable resource for genomic research into the molecular basis of disease. However, use of FFPE samples in gene expression studies has been limited by technical challenges resulting from degradation...

  5. AAV vector encoding human VEGF165–transduced pectineus muscular flaps increase the formation of new tissue through induction of angiogenesis in an in vivo chamber for tissue engineering: A technique to enhance tissue and vessels in microsurgically engineered tissue

    Directory of Open Access Journals (Sweden)

    Silvia Moimas

    2015-12-01

    Full Text Available In regenerative medicine, new approaches are required for the creation of tissue substitutes, and the interplay between different research areas, such as tissue engineering, microsurgery and gene therapy, is mandatory. In this article, we report a modification of a published model of tissue engineering, based on an arterio-venous loop enveloped in a cross-linked collagen–glycosaminoglycan template, which acts as an isolated chamber for angiogenesis and new tissue formation. In order to foster tissue formation within the chamber, which entails on the development of new vessels, we wondered whether we might combine tissue engineering with a gene therapy approach. Based on the well-described tropism of adeno-associated viral vectors for post-mitotic tissues, a muscular flap was harvested from the pectineus muscle, inserted into the chamber and transduced by either AAV vector encoding human VEGF165 or AAV vector expressing the reporter gene β-galactosidase, as a control. Histological analysis of the specimens showed that muscle transduction by AAV vector encoding human VEGF165 resulted in enhanced tissue formation, with a significant increase in the number of arterioles within the chamber in comparison with the previously published model. Pectineus muscular flap, transduced by adeno-associated viral vectors, acted as a source of the proangiogenic factor vascular endothelial growth factor, thus inducing a consistent enhancement of vessel growth into the newly formed tissue within the chamber. In conclusion, our present findings combine three different research fields such as microsurgery, tissue engineering and gene therapy, suggesting and showing the feasibility of a mixed approach for regenerative medicine.

  6. Expression cartography of human tissues using self organizing maps

    Directory of Open Access Journals (Sweden)

    Löffler Markus

    2011-07-01

    Full Text Available Abstract Background Parallel high-throughput microarray and sequencing experiments produce vast quantities of multidimensional data which must be arranged and analyzed in a concerted way. One approach to addressing this challenge is the machine learning technique known as self organizing maps (SOMs. SOMs enable a parallel sample- and gene-centered view of genomic data combined with strong visualization and second-level analysis capabilities. The paper aims at bridging the gap between the potency of SOM-machine learning to reduce dimension of high-dimensional data on one hand and practical applications with special emphasis on gene expression analysis on the other hand. Results The method was applied to generate a SOM characterizing the whole genome expression profiles of 67 healthy human tissues selected from ten tissue categories (adipose, endocrine, homeostasis, digestion, exocrine, epithelium, sexual reproduction, muscle, immune system and nervous tissues. SOM mapping reduces the dimension of expression data from ten of thousands of genes to a few thousand metagenes, each representing a minicluster of co-regulated single genes. Tissue-specific and common properties shared between groups of tissues emerge as a handful of localized spots in the tissue maps collecting groups of co-regulated and co-expressed metagenes. The functional context of the spots was discovered using overrepresentation analysis with respect to pre-defined gene sets of known functional impact. We found that tissue related spots typically contain enriched populations of genes related to specific molecular processes in the respective tissue. Analysis techniques normally used at the gene-level such as two-way hierarchical clustering are better represented and provide better signal-to-noise ratios if applied to the metagenes. Metagene-based clustering analyses aggregate the tissues broadly into three clusters containing nervous, immune system and the remaining tissues

  7. Gene Expression Profiling of Lung Tissue of Rats Exposed to Lunar Dust Particles

    Science.gov (United States)

    Zhang, Ye; Feiveson, Alan H.; Lam, Chiu-Wing; Kidane, Yared H.; Ploutz-Snyder Robert; Yeshitla, Samrawit; Zalesak, Selina M.; Scully, Robert R.; Wu, Honglu; James, John T.

    2014-01-01

    The purpose of the study is to analyze the dynamics of global gene expression changes in the lung tissue of rats exposed to lunar dust particles. Multiple pathways and transcription factors were identified using the Ingenuity Pathway Analysis tool, showing the potential networks of these signaling regulations involved in lunar dust-induced prolonged proflammatory response and toxicity. The data presented in this study, for the first time, explores the molecular mechanisms of lunar dust induced toxicity. This work contributes not only to the risk assessment for future space exploration, but also to the understanding of the dust-induced toxicity to humans on earth.

  8. LPS-induced genes in intestinal tissue of the sea cucumber Holothuria glaberrima.

    Directory of Open Access Journals (Sweden)

    Francisco Ramírez-Gómez

    2009-07-01

    Full Text Available Metazoan immunity is mainly associated with specialized cells that are directly involved with the immune response. Nevertheless, both in vertebrates and invertebrates other organs might respond to immune activation and participate either directly or indirectly in the ongoing immune process. However, most of what is known about invertebrate immunity has been restricted to immune effector cells and little information is available on the immune responses of other tissues or organs. We now focus on the immune reactions of the intestinal tissue of an echinoderm. Our study employs a non-conventional model, the echinoderm Holothuria glaberrima, to identify intestinal molecules expressed after an immune challenge presented by an intra-coelomic injection of lipopolysaccharides (LPS. The expression profiles of intestinal genes expressed differentially between LPS-injected animals and control sea water-injected animals were determined using a custom-made Agilent microarray with 7209 sea cucumber intestinal ESTs. Fifty (50 unique sequences were found to be differentially expressed in the intestine of LPS-treated sea cucumbers. Seven (7 of these sequences represented homologues of known proteins, while the remaining (43 had no significant similarity with any protein, EST or RNA database. The known sequences corresponded to cytoskeletal proteins (Actin and alpha-actinin, metabolic enzymes (GAPDH, Ahcy and Gnmt, metal ion transport/metabolism (major yolk protein and defense/recognition (fibrinogen-like protein. The expression pattern of 11 genes was validated using semi-quantitative RT-PCR. Nine of these corroborated the microarray results and the remaining two showed a similar trend but without statistical significance. Our results show some of the molecular events by which the holothurian intestine responds to an immune challenge and provide important information to the study of the evolution of the immune response.

  9. Effect of cadmium on glutathione S-transferase and metallothionein gene expression in coho salmon liver, gill and olfactory tissues

    International Nuclear Information System (INIS)

    Espinoza, Herbert M.; Williams, Chase R.; Gallagher, Evan P.

    2012-01-01

    Highlights: ► Developed qPCR assays to distinguish closely related GST isoforms in salmon. ► Examined the effect of cadmium on GST and metallothionein genes in 3 tissues. ► Modulation of GST varied among isoforms, tissues, and included a loss of expression. ► Metallothionein outperformed, but generally complemented, GSTs as biomarkers. ► Salmon olfactory genes were among the most responsive to cadmium. - Abstract: The glutathione S-transferases (GSTs) are a multifunctional family of phase II enzymes that detoxify a variety of environmental chemicals, reactive intermediates, and secondary products of oxidative damage. GST mRNA expression and catalytic activity have been used as biomarkers of exposure to environmental chemicals. However, factors such as species differences in induction, partial analyses of multiple GST isoforms, and lack of understanding of fish GST gene regulation, have confounded the use of GSTs as markers of pollutant exposure. In the present study, we examined the effect of exposure to cadmium (Cd), a prototypical environmental contaminant and inducer of mammalian GST, on GST mRNA expression in coho salmon (Oncorhynchus kisutch) liver, gill, and olfactory tissues. GST expression data were compared to those for metallothionein (MT), a prototypical biomarker of metal exposure. Data mining of genomic databases led to the development of quantitative real-time PCR (qPCR) assays for salmon GST isoforms encompassing 9 subfamilies, including alpha, mu, pi, theta, omega, kappa, rho, zeta and microsomal GST. In vivo acute (8–48 h) exposures to low (3.7 ppb) and high (347 ppb) levels of Cd relevant to environmental scenarios elicited a variety of transient, albeit minor changes (<2.5-fold) in tissue GST profiles, including some reductions in GST mRNA expression. In general, olfactory GSTs were the earliest to respond to cadmium, whereas, more pronounced effects in olfactory and gill GST expression were observed at 48 h relative to earlier time

  10. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene

    International Nuclear Information System (INIS)

    Li, YanHua; Li, AiHua; Yang, Z.Q.

    2016-01-01

    Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were

  11. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene

    Energy Technology Data Exchange (ETDEWEB)

    Li, YanHua, E-mail: liyanhua.1982@aliyun.com [Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014 (China); Li, AiHua [Chongqing Cancer Institute & Hospital & Cancer Center, Chongqing 404100 (China); Yang, Z.Q. [Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China)

    2016-09-09

    Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were

  12. Angiofibroma of soft tissue with fibrohistiocytic features and intratumor genetic heterogeneity of NCOA2 gene rearrangement revealed by chromogenic in situ hybridization: a case report.

    Science.gov (United States)

    Fukuda, Yumiko; Motoi, Toru; Kato, Ikuma; Ikegami, Masachika; Funata, Nobuaki; Ohtomo, Rie; Horiguchi, Shinichiro; Goto, Takahiro; Hishima, Tsunekazu

    2014-05-01

    Angiofibroma of soft tissue is a recently described soft tissue tumor that is characterized by fibroblastic spindle tumor cells with arborizing capillary proliferation. Cytogenetically, it harbors a specific fusion gene involving the nuclear receptor coactivator 2 (NCOA2) gene. We report here additional new pathological and cytogenetic features. A soft tissue tumor in the left thigh of 73-year-old female was investigated. Microscopically, histiocytoid tumor cells were scattered in an edematous background with branching capillary proliferation. Immunohistochemically, we identified that the tumor cells were positive for histiocytic markers such as CD68 and CD163. Rearrangement of the NCOA2 gene was detected successfully by chromogenic in situ hybridization; however, abnormal signal patterns were observed in only a small subset of tumor cells. Unlike typical tumors with bland spindle cells, the present tumor needs to be distinguished from myxoid, dendritic and clear cell tumors. This case may suggest that angiofibroma of soft tissue is not in the center of the fibroblastic/myofibroblastic tumor group, but rather shows a fibrohistiocytic nature. We also found intratumor genetic heterogeneity, which is uncommon for a translocation-associated tumor. Therefore, careful evaluation is required to detect the gene rearrangement in this tumor entity. © 2014 The Authors. Pathology International © 2014 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd.

  13. Array-based gene expression, CGH and tissue data defines a 12q24 gain in neuroblastic tumors with prognostic implication

    Directory of Open Access Journals (Sweden)

    Kilpinen Sami

    2010-05-01

    Full Text Available Abstract Background Neuroblastoma has successfully served as a model system for the identification of neuroectoderm-derived oncogenes. However, in spite of various efforts, only a few clinically useful prognostic markers have been found. Here, we present a framework, which integrates DNA, RNA and tissue data to identify and prioritize genetic events that represent clinically relevant new therapeutic targets and prognostic biomarkers for neuroblastoma. Methods A single-gene resolution aCGH profiling was integrated with microarray-based gene expression profiling data to distinguish genetic copy number alterations that were strongly associated with transcriptional changes in two neuroblastoma cell lines. FISH analysis using a hotspot tumor tissue microarray of 37 paraffin-embedded neuroblastoma samples and in silico data mining for gene expression information obtained from previously published studies including up to 445 healthy nervous system samples and 123 neuroblastoma samples were used to evaluate the clinical significance and transcriptional consequences of the detected alterations and to identify subsequently activated gene(s. Results In addition to the anticipated high-level amplification and subsequent overexpression of MYCN, MEIS1, CDK4 and MDM2 oncogenes, the aCGH analysis revealed numerous other genetic alterations, including microamplifications at 2p and 12q24.11. Most interestingly, we identified and investigated the clinical relevance of a previously poorly characterized amplicon at 12q24.31. FISH analysis showed low-level gain of 12q24.31 in 14 of 33 (42% neuroblastomas. Patients with the low-level gain had an intermediate prognosis in comparison to patients with MYCN amplification (poor prognosis and to those with no MYCN amplification or 12q24.31 gain (good prognosis (P = 0.001. Using the in silico data mining approach, we identified elevated expression of five genes located at the 12q24.31 amplicon in neuroblastoma (DIABLO, ZCCHC

  14. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines

    Directory of Open Access Journals (Sweden)

    Susanne C. Hammer

    2016-09-01

    Full Text Available Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies.

  15. Circadian clocks are resounding in peripheral tissues.

    Directory of Open Access Journals (Sweden)

    Andrey A Ptitsyn

    2006-03-01

    Full Text Available Circadian rhythms are prevalent in most organisms. Even the smallest disturbances in the orchestration of circadian gene expression patterns among different tissues can result in functional asynchrony, at the organism level, and may to contribute to a wide range of physiologic disorders. It has been reported that as many as 5%-10% of transcribed genes in peripheral tissues follow a circadian expression pattern. We have conducted a comprehensive study of circadian gene expression on a large dataset representing three different peripheral tissues. The data have been produced in a large-scale microarray experiment covering replicate daily cycles in murine white and brown adipose tissues as well as in liver. We have applied three alternative algorithmic approaches to identify circadian oscillation in time series expression profiles. Analyses of our own data indicate that the expression of at least 7% to 21% of active genes in mouse liver, and in white and brown adipose tissues follow a daily oscillatory pattern. Indeed, analysis of data from other laboratories suggests that the percentage of genes with an oscillatory pattern may approach 50% in the liver. For the rest of the genes, oscillation appears to be obscured by stochastic noise. Our phase classification and computer simulation studies based on multiple datasets indicate no detectable boundary between oscillating and non-oscillating fractions of genes. We conclude that greater attention should be given to the potential influence of circadian mechanisms on any biological pathway related to metabolism and obesity.

  16. Characterization and tissue-differential expression of fad2 genes in brassica napus

    International Nuclear Information System (INIS)

    Zhuang, Li.; Cong, Y. S.; Hao, L.; Ze, L. Y.; Cheng, W. Y.; Xing, G. S.; Lili, L.

    2017-01-01

    In this study, genome DNA and RNA of fad2 genes from three types of oleic acid content from B. napus were isolated by PCR amplification, respectively, the results showed that not only had nucleotides sequences little differences from three types of oleic acid content B. napus, but also that of genome DNA and cDNA had still little differences from B. napus as far as specific one type of rape. Different genotypes fad2-I and fad2-II could be easily distinguished by sequence analysis of the cDNAs in G type and CK type except in D type. By analysis on cDNAs, specific differences could be found in three types of rape when compared with the sequence from Genebank. Conserved domains prediction and phylogenetic analysis showed that both six transmembrane domains and three H boxes could be found in FAD2 protein from three types of oleic acid content B. napus, respectively. BnFAD2-I and BnFAD2-II belonged to different classes and class I could be divided into two kinds. By QPCR, expression pattern of fad2 gene in different tissues showed that simple division of fad2-I and fad2-II was not apply to all oleic acid content B. napus. By southern blot, there were differences in copy numbers of fad2 genes on different oleic acid content B. napus. (author)

  17. Ancient expansion of the hox cluster in lepidoptera generated four homeobox genes implicated in extra-embryonic tissue formation.

    Directory of Open Access Journals (Sweden)

    Laura Ferguson

    2014-10-01

    Full Text Available Gene duplications within the conserved Hox cluster are rare in animal evolution, but in Lepidoptera an array of divergent Hox-related genes (Shx genes has been reported between pb and zen. Here, we use genome sequencing of five lepidopteran species (Polygonia c-album, Pararge aegeria, Callimorpha dominula, Cameraria ohridella, Hepialus sylvina plus a caddisfly outgroup (Glyphotaelius pellucidus to trace the evolution of the lepidopteran Shx genes. We demonstrate that Shx genes originated by tandem duplication of zen early in the evolution of large clade Ditrysia; Shx are not found in a caddisfly and a member of the basally diverging Hepialidae (swift moths. Four distinct Shx genes were generated early in ditrysian evolution, and were stably retained in all descendent Lepidoptera except the silkmoth which has additional duplications. Despite extensive sequence divergence, molecular modelling indicates that all four Shx genes have the potential to encode stable homeodomains. The four Shx genes have distinct spatiotemporal expression patterns in early development of the Speckled Wood butterfly (Pararge aegeria, with ShxC demarcating the future sites of extraembryonic tissue formation via strikingly localised maternal RNA in the oocyte. All four genes are also expressed in presumptive serosal cells, prior to the onset of zen expression. Lepidopteran Shx genes represent an unusual example of Hox cluster expansion and integration of novel genes into ancient developmental regulatory networks.

  18. Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects

    Directory of Open Access Journals (Sweden)

    Soronen Jarkko

    2012-04-01

    Full Text Available Abstract Background To get insight into molecular mechanisms underlying insulin resistance, we compared acute in vivo effects of insulin on adipose tissue transcriptional profiles between obese insulin-resistant and lean insulin-sensitive women. Methods Subcutaneous adipose tissue biopsies were obtained before and after 3 and 6 hours of intravenously maintained euglycemic hyperinsulinemia from 9 insulin-resistant and 11 insulin-sensitive females. Gene expression was measured using Affymetrix HG U133 Plus 2 microarrays and qRT-PCR. Microarray data and pathway analyses were performed with Chipster v1.4.2 and by using in-house developed nonparametric pathway analysis software. Results The most prominent difference in gene expression of the insulin-resistant group during hyperinsulinemia was reduced transcription of nuclear genes involved in mitochondrial respiration (mitochondrial respiratory chain, GO:0001934. Inflammatory pathways with complement components (inflammatory response, GO:0006954 and cytokines (chemotaxis, GO:0042330 were strongly up-regulated in insulin-resistant as compared to insulin-sensitive subjects both before and during hyperinsulinemia. Furthermore, differences were observed in genes contributing to fatty acid, cholesterol and triglyceride metabolism (FATP2, ELOVL6, PNPLA3, SREBF1 and in genes involved in regulating lipolysis (ANGPTL4 between the insulin-resistant and -sensitive subjects especially during hyperinsulinemia. Conclusions The major finding of this study was lower expression of mitochondrial respiratory pathway and defective induction of lipid metabolism pathways by insulin in insulin-resistant subjects. Moreover, the study reveals several novel genes whose aberrant regulation is associated with the obese insulin-resistant phenotype.

  19. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  20. MSX-1 gene expression and regulation in embryonic palatal tissue.

    Science.gov (United States)

    Nugent, P; Greene, R M

    1998-01-01

    The palatal cleft seen in Msx-1 knock-out mice suggests a role for this gene in normal palate development. The cleft is presumed secondary to tooth and jaw malformations, since in situ hybridization suggests that Msx-1 mRNA is not highly expressed in developing palatal tissue. In this study we demonstrate, by Northern blot analysis, the expression of Msx-1, but not Msx-2, in the developing palate and in primary cultures of murine embryonic palate mesenchymal cells. Furthermore, we propose a role for Msx-1 in retinoic acid-induced cleft palate, since retinoic acid inhibits Msx-1 mRNA expression in palate mesenchymal cells. We also demonstrate that transforming growth factor beta inhibits Msx-1 mRNA expression in palate mesenchymal cells, with retinoic acid and transforming growth factor beta acting synergistically when added simultaneously to these cells. These data suggest a mechanistic interaction between retinoic acid, transforming growth factor beta, and Msx-1 in the etiology of retinoic acid-induced cleft palate.

  1. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues

    International Nuclear Information System (INIS)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Wan, Jinzhong; Xie, Shanni; Tian, Da; Zhao, Yu; Wu, Jun; Hu, Feng; Li, Huixin; Jiang, Xin

    2016-01-01

    Highlights: • Biochar can prevent soil sulfonamides from accumulating in lettuce tissues. • ARB enrichment in lettuce tissues decreased significantly after biochar amendment. • Impedance effect of biochar addition on soil ARGs was also quite effective. • Biochar application can be a practical strategy to protect vegetable safety. - Abstract: Considering the potential threat of vegetables growing in antibiotic-polluted soil with high abundance of antibiotic-resistant genes (ARGs) against human health through the food chain, it is thus urgent to develop novel control technology to ensure vegetable safety. In the present work, pot experiments were conducted in lettuce cultivation to assess the impedance effect of biochar amendment on soil sulfonamides (SAs), antibiotic-resistant bacteria (ARB), and ARG enrichment in lettuce tissues. After 100 days of cultivation, lettuce cultivation with biochar amendment exhibited the greatest soil SA dissipation as well as the significant improvement of lettuce growth indices, with residual soil SAs mainly existing as the tightly bound fraction. Moreover, the SA contents in roots and new/old leaves were reduced by one to two orders of magnitude compared to those without biochar amendment. In addition, isolate counts for SA-resistant bacterial endophytes in old leaves and sul gene abundances in roots and old leaves also decreased significantly after biochar application. However, neither SA resistant bacteria nor sul genes were detected in new leaves. It was the first study to demonstrate that biochar amendment can be a practical strategy to protect lettuce safety growing in SA-polluted soil with rich ARB and ARGs.

  2. Ontogenetic profile of innate immune related genes and their tissue-specific expression in brown trout, Salmo trutta (Linnaeus, 1758).

    Science.gov (United States)

    Cecchini, Stefano; Paciolla, Mariateresa; Biffali, Elio; Borra, Marco; Ursini, Matilde V; Lioi, Maria B

    2013-09-01

    The innate immune system is a fundamental defense weapon of fish, especially during early stages of development when acquired immunity is still far from being completely developed. The present study aims at looking into ontogeny of innate immune system in the brown trout, Salmo trutta, using RT-PCR based approach. Total RNA extracted from unfertilized and fertilized eggs and hatchlings at 0, 1 h and 1, 2, 3, 4, 5, 6, 7 weeks post-fertilization was subjected to RT-PCR using self-designed primers to amplify some innate immune relevant genes (TNF-α, IL-1β, TGF-β and lysozyme c-type). The constitutive expression of β-actin was detected in all developmental stages. IL-1β and TNF-α transcripts were detected from 4 week post-fertilization onwards, whereas TGF-β transcript was detected only from 7 week post-fertilization onwards. Lysozyme c-type transcript was detected early from unfertilized egg stage onwards. Similarly, tissues such as muscle, ovary, heart, brain, gill, testis, liver, intestine, spleen, skin, posterior kidney, anterior kidney and blood collected from adult brown trout were subjected to detection of all selected genes by RT-PCR. TNF-α and lysozyme c-type transcripts were expressed in all tissues. IL-1β and TGF-β transcripts were expressed in all tissues except for the brain and liver, respectively. Taken together, our results show a spatial-temporal expression of some key innate immune-related genes, improving the basic knowledge of the function of innate immune system at early stage of brown trout. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Mao [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Sun, Mingming [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Feng, Yanfang, E-mail: fengyanfang@163.com [Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Wan, Jinzhong [Nanjing Institute of Environmental Science, Ministry of Environmental Protection of China, Nanjing 210042 (China); Xie, Shanni; Tian, Da [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Zhao, Yu [Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Wu, Jun; Hu, Feng; Li, Huixin [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Jiang, Xin, E-mail: Jiangxin@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-05-15

    Highlights: • Biochar can prevent soil sulfonamides from accumulating in lettuce tissues. • ARB enrichment in lettuce tissues decreased significantly after biochar amendment. • Impedance effect of biochar addition on soil ARGs was also quite effective. • Biochar application can be a practical strategy to protect vegetable safety. - Abstract: Considering the potential threat of vegetables growing in antibiotic-polluted soil with high abundance of antibiotic-resistant genes (ARGs) against human health through the food chain, it is thus urgent to develop novel control technology to ensure vegetable safety. In the present work, pot experiments were conducted in lettuce cultivation to assess the impedance effect of biochar amendment on soil sulfonamides (SAs), antibiotic-resistant bacteria (ARB), and ARG enrichment in lettuce tissues. After 100 days of cultivation, lettuce cultivation with biochar amendment exhibited the greatest soil SA dissipation as well as the significant improvement of lettuce growth indices, with residual soil SAs mainly existing as the tightly bound fraction. Moreover, the SA contents in roots and new/old leaves were reduced by one to two orders of magnitude compared to those without biochar amendment. In addition, isolate counts for SA-resistant bacterial endophytes in old leaves and sul gene abundances in roots and old leaves also decreased significantly after biochar application. However, neither SA resistant bacteria nor sul genes were detected in new leaves. It was the first study to demonstrate that biochar amendment can be a practical strategy to protect lettuce safety growing in SA-polluted soil with rich ARB and ARGs.

  4. Gene-gene, gene-environment, gene-nutrient interactions and single nucleotide polymorphisms of inflammatory cytokines.

    Science.gov (United States)

    Nadeem, Amina; Mumtaz, Sadaf; Naveed, Abdul Khaliq; Aslam, Muhammad; Siddiqui, Arif; Lodhi, Ghulam Mustafa; Ahmad, Tausif

    2015-05-15

    Inflammation plays a significant role in the etiology of type 2 diabetes mellitus (T2DM). The rise in the pro-inflammatory cytokines is the essential step in glucotoxicity and lipotoxicity induced mitochondrial injury, oxidative stress and beta cell apoptosis in T2DM. Among the recognized markers are interleukin (IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha (TNF-α), C-reactive protein, resistin, adiponectin, tissue plasminogen activator, fibrinogen and heptoglobins. Diabetes mellitus has firm genetic and very strong environmental influence; exhibiting a polygenic mode of inheritance. Many single nucleotide polymorphisms (SNPs) in various genes including those of pro and anti-inflammatory cytokines have been reported as a risk for T2DM. Not all the SNPs have been confirmed by unifying results in different studies and wide variations have been reported in various ethnic groups. The inter-ethnic variations can be explained by the fact that gene expression may be regulated by gene-gene, gene-environment and gene-nutrient interactions. This review highlights the impact of these interactions on determining the role of single nucleotide polymorphism of IL-6, TNF-α, resistin and adiponectin in pathogenesis of T2DM.

  5. Complex expression patterns of lymphocyte-specific genes during the development of cartilaginous fish implicate unique lymphoid tissues in generating an immune repertoire

    Science.gov (United States)

    Miracle, A. L.; Anderson, M. K.; Litman, R. T.; Walsh, C. J.; Luer, C. A.; Rothenberg, E. V.; Litman, G. W.

    2001-01-01

    Cartilaginous fish express canonical B and T cell recognition genes, but their lymphoid organs and lymphocyte development have been poorly defined. Here, the expression of Ig, TCR, recombination-activating gene (Rag)-1 and terminal deoxynucleosidase (TdT) genes has been used to identify roles of various lymphoid tissues throughout development in the cartilaginous fish, Raja eglanteria (clearnose skate). In embryogenesis, Ig and TCR genes are sharply up-regulated at 8 weeks of development. At this stage TCR and TdT expression is limited to the thymus; later, TCR gene expression appears in peripheral sites in hatchlings and adults, suggesting that the thymus is a source of T cells as in mammals. B cell gene expression indicates more complex roles for the spleen and two special organs of cartilaginous fish-the Leydig and epigonal (gonad-associated) organs. In the adult, the Leydig organ is the site of the highest IgM and IgX expression. However, the spleen is the first site of IgM expression, while IgX is expressed first in gonad, liver, Leydig and even thymus. Distinctive spatiotemporal patterns of Ig light chain gene expression also are seen. A subset of Ig genes is pre-rearranged in the germline of the cartilaginous fish, making expression possible without rearrangement. To assess whether this allows differential developmental regulation, IgM and IgX heavy chain cDNA sequences from specific tissues and developmental stages have been compared with known germline-joined genomic sequences. Both non-productively rearranged genes and germline-joined genes are transcribed in the embryo and hatchling, but not in the adult.

  6. Organ and Tissue-specific Sucrose Transporters. Important Hubs in Gene and Metabolite Networks Regulating Carbon Use in Wood-forming Tissues of Populus

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Scott A. [Univ. of Georgia, Athens, GA (United States); Tsai, Chung-Jui [Univ. of Georgia, Athens, GA (United States)

    2016-01-04

    The overall project objective was to probe the relationship between sucrose transporters and plant productivity in the biomass for biofuels woody perennial, Populus. At the time the proposal was written, sucrose transporters had already been investigated in many plant model systems, primarily with respect to the export of photosynthate sucrose from source leaves, and the uptake of sucrose in storage organs and seeds. Preliminary findings by the PI found that in Populus, sucrose transporter genes (SUTs) were well expressed in wood-forming tissues that comprise the feedstock for biofuels production. Because sucrose comprises by far the predominant form in which photosynthate is delivered from source organs to sink organs like roots and wood-forming tissues, SUTs control a gate that nominally at least could impact the allocation or partitioning of sucrose for potentially competing end uses like growth (stem biomass) and storage. In addition, water use might be conditioned by the way in which sucrose is distributed throughout the plant, and/or by the way in which sucrose is partitioned intracellularly. Several dozen transgenic lines were produced in year 1 of the project to perturb the expression ratio of multiple plasma membrane (PM) SUTs (intercellular trafficking), versus the single tonoplast membrane (TM) sucrose transporter that effectively regulates intracellular trafficking of sucrose. It was possible to obtain transgenic lines with dual SUT gene knockdown using the 35S promoter, but not the wood-specific TUA1 promoter. By the end of project year 2, a decision was made to work with the 35S plants while archiving the TUA1 plants. The PhD candidate charged with producing the transgenic lines abandoned the project during its second year, substantially contributing to the decision to operate with just the 35S lines. That student’s interests ranged more toward evolutionary topics, and a report on SUT gene evolution was published (Peng et al 2014).

  7. Age-dependent changes in mean and variance of gene expression across tissues in a twin cohort.

    Science.gov (United States)

    Viñuela, Ana; Brown, Andrew A; Buil, Alfonso; Tsai, Pei-Chien; Davies, Matthew N; Bell, Jordana T; Dermitzakis, Emmanouil T; Spector, Timothy D; Small, Kerrin S

    2018-02-15

    Changes in the mean and variance of gene expression with age have consequences for healthy aging and disease development. Age-dependent changes in phenotypic variance have been associated with a decline in regulatory functions leading to increase in disease risk. Here, we investigate age-related mean and variance changes in gene expression measured by RNA-seq of fat, skin, whole blood and derived lymphoblastoid cell lines (LCLs) expression from 855 adult female twins. We see evidence of up to 60% of age effects on transcription levels shared across tissues, and 47% of those on splicing. Using gene expression variance and discordance between genetically identical MZ twin pairs, we identify 137 genes with age-related changes in variance and 42 genes with age-related discordance between co-twins; implying the latter are driven by environmental effects. We identify four eQTLs whose effect on expression is age-dependent (FDR 5%). Combined, these results show a complicated mix of environmental and genetically driven changes in expression with age. Using the twin structure in our data, we show that additive genetic effects explain considerably more of the variance in gene expression than aging, but less that other environmental factors, potentially explaining why reliable expression-derived biomarkers for healthy-aging have proved elusive compared with those derived from methylation. © The Author(s) 2017. Published by Oxford University Press.

  8. Study of expression of genes cIAP and cMET, in liver tissue with and without neoplasia of Rattus norvegicus

    International Nuclear Information System (INIS)

    Coto Valverde, Daniel Esteban

    2010-01-01

    The expression levels of cIAP genes and cMET were determined in liver tissues with and without neoplasm of the organism Rattus norvegicus, for prevention, diagnosis and treatment of hepatocellular carcinoma. The technique of reaction Polymerase Chain in real time (qPCR), is used to obtain the expression, of both genes cIAP and cMET, and this has decreased in neoplastic samples compared to samples not affected. The expression of these genes has been analyzed in samples with neoplastic formations, but treated with an anti-tumor agent. The expression has presented an increase of the cMET gene, unlike the cIAP gene, which has decreased its expression. Perform statistical analysis has been impossible because the number of samples used has been reduced. The results obtained differ with those expected theoretically. (author) [es

  9. Expression and relevant research of MGMT and XRCC1 gene in differentgrades of brain glioma and normal brain tissues

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Zhang

    2015-01-01

    Objective: To explore and analyze expression and relevant research of MGMT and XRCC1 gene in different grades of brain glioma and normal brain tissues. Methods: 52 cases of patients with brain glioma treated in our hospital from December 2013 to December 2014, and 50 cases of normal brain-tissue patients with intracranial hypertension were selected, and proceeding test to the surgical resection of brain tissue of the above patients to determine its MGMT and XRCC1 protein content, sequentially to record the expression of MGMT and XRCC1 of both groups. Grading of tumors to brain glioma after operation was carried out, and the expression of MGMT and XRCC1 gene in brain tissues of different patients was analyzed and compared;finally the contingency tables of X2 test was used to analyze the correlation of XRCC1and MGMT. Results:Positive rate of MGMT expression in normal brain tissue was 2%,while positive rate of MGMT expression in brain glioma was 46.2%,which was obviously higher than that in normal brain tissues (χ2=26.85, P0.05), which had no statistical significance. There were 12 cases of patients whose MGMT protein expression was positive and XRCC1 protein expression was positive; there were 18 cases of patients whose MGMT protein expression was negative and XRCC1 protein expression was negative. Contingency tables of X2 test was used to analyze the correlation of XRCC1 and MGMT, which indicated that the expression of XRCCI and MGMT in brain glioma had no correlation (r=0.9%, P=0.353), relevancy of both was r=0.9%. Conclusions: Positive rate of the expression of MGMT and XRCC1 in brain glioma was obviously higher than that in normal brain tissues, but the distribution of different grades of brain glioma had no obvious difference, and MGMT and XRCC1 expression had no obvious correlation, which needed further research.

  10. Using Postmortem hippocampi tissue can interfere with differential gene expression analysis of the epileptogenic process.

    Directory of Open Access Journals (Sweden)

    João Paulo Lopes Born

    Full Text Available Neuropathological studies often use autopsy brain tissue as controls to evaluate changes in protein or RNA levels in several diseases. In mesial temporal lobe epilepsy (MTLE, several genes are up or down regulated throughout the epileptogenic and chronic stages of the disease. Given that postmortem changes in several gene transcripts could impact the detection of changes in case-control studies, we evaluated the effect of using autopsy specimens with different postmortem intervals (PMI on differential gene expression of the Pilocarpine (PILOinduced Status Epilepticus (SE of MTLE. For this, we selected six genes (Gfap, Ppia, Gad65, Gad67, Npy, and Tnf-α whose expression patterns in the hippocampus of PILO-injected rats are well known. Initially, we compared hippocampal expression of naïve rats whose hippocampi were harvested immediately after death (0h-PMI with those harvested at 6h postmortem interval (6h-PMI: Npy and Ppia transcripts increased and Tnf-α transcripts decreased in the 6h-PMI group (p<0.05. We then investigated if these PMI-related changes in gene expression have the potential to adulterate or mask RT-qPCR results obtained with PILO-injected rats euthanized at acute or chronic phases. In the acute group, Npy transcript was significantly higher when compared with 0h-PMI rats, whereas Ppia transcript was lower than 6h-PMI group. When we used epileptic rats (chronic group, the RT-qPCR results showed higher Tnf-α only when compared to 6h-PMI group. In conclusion, our study demonstrates that PMI influences gene transcription and can mask changes in gene transcription seen during epileptogenesis in the PILO-SE model. Thus, to avoid erroneous conclusions, we strongly recommend that researchers account for changes in postmortem gene expression in their experimental design.

  11. ALP gene expression in cDNA samples from bone tissue engineering using a HA/TCP/Chitosan scaffold

    Science.gov (United States)

    Stephanie, N.; Katarina, H.; Amir, L. R.; Gunawan, H. A.

    2017-08-01

    This study examined the potential use of hydroxyapatite (HA)/tricalcium phosphate (TCP)/Chitosan as a bone tissue engineering scaffold. The potential for using HA/TCP/chitosan as a scaffold was analyzed by measuring expression of the ALP osteogenic gene in cDNA from bone biopsies from four Macaque nemestrina. Experimental conditions included control (untreated), treatment with HA/TCP 70:30, HA/TCP 50:50, and HA/TCP/chitosan. cDNA samples were measured quantitively with Real-Time PCR (qPCR) and semi-quantitively by gel electrophoresis. There were no significant differences in ALP gene expression between treatment subjects after two weeks, but the HA/TCP/chitosan treatment gave the highest level of expression after four weeks. The scaffold using the HA/TCP/chitosan combination induced a higher level of expression of the osteogenic gene ALP than did scaffold without chitosan.

  12. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Lee, Tae-Hee; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2017-03-01

    The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm 2 . After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox ( Nanog ), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog ( c-Myc ), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc , were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.

  13. Ewing's Sarcoma: An Analysis of miRNA Expression Profiles and Target Genes in Paraffin-Embedded Primary Tumor Tissue.

    Science.gov (United States)

    Parafioriti, Antonina; Bason, Caterina; Armiraglio, Elisabetta; Calciano, Lucia; Daolio, Primo Andrea; Berardocco, Martina; Di Bernardo, Andrea; Colosimo, Alessia; Luksch, Roberto; Berardi, Anna C

    2016-04-30

    The molecular mechanism responsible for Ewing's Sarcoma (ES) remains largely unknown. MicroRNAs (miRNAs), a class of small non-coding RNAs able to regulate gene expression, are deregulated in tumors and may serve as a tool for diagnosis and prediction. However, the status of miRNAs in ES has not yet been thoroughly investigated. This study compared global miRNAs expression in paraffin-embedded tumor tissue samples from 20 ES patients, affected by primary untreated tumors, with miRNAs expressed in normal human mesenchymal stromal cells (MSCs) by microarray analysis. A miRTarBase database was used to identify the predicted target genes for differentially expressed miRNAs. The miRNAs microarray analysis revealed distinct patterns of miRNAs expression between ES samples and normal MSCs. 58 of the 954 analyzed miRNAs were significantly differentially expressed in ES samples compared to MSCs. Moreover, the qRT-PCR analysis carried out on three selected miRNAs showed that miR-181b, miR-1915 and miR-1275 were significantly aberrantly regulated, confirming the microarray results. Bio-database analysis identified BCL-2 as a bona fide target gene of the miR-21, miR-181a, miR-181b, miR-29a, miR-29b, miR-497, miR-195, miR-let-7a, miR-34a and miR-1915. Using paraffin-embedded tissues from ES patients, this study has identified several potential target miRNAs and one gene that might be considered a novel critical biomarker for ES pathogenesis.

  14. Predicting tissue-specific expressions based on sequence characteristics

    KAUST Repository

    Paik, Hyojung; Ryu, Tae Woo; Heo, Hyoungsam; Seo, Seungwon; Lee, Doheon; Hur, Cheolgoo

    2011-01-01

    In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.

  15. Predicting tissue-specific expressions based on sequence characteristics

    KAUST Repository

    Paik, Hyojung

    2011-04-30

    In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.

  16. The association of SNPs in Hsp90β gene 5' flanking region with thermo tolerance traits and tissue mRNA expression in two chicken breeds.

    Science.gov (United States)

    Chen, Zhuo-Yu; Gan, Jian-Kang; Xiao, Xiong; Jiang, Li-Yan; Zhang, Xi-Quan; Luo, Qing-Bin

    2013-09-01

    Thermo stress induces heat shock proteins (HSPs) expression and HSP90 family is one of them that has been reported to involve in cellular protection against heat stress. But whether there is any association of genetic variation in the Hsp90β gene in chicken with thermo tolerance is still unknown. Direct sequencing was used to detect possible SNPs in Hsp90β gene 5' flanking region in 3 chicken breeds (n = 663). Six mutations, among which 2 SNPs were chosen and genotypes were analyzed with PCR-RFLP method, were found in Hsp90β gene in these 3 chicken breeds. Association analysis indicated that SNP of C.-141G>A in the 5' flanking region of the Hsp90β gene in chicken had some effect on thermo tolerance traits, which may be a potential molecular marker of thermo tolerance, and the genotype GG was the thermo tolerance genotype. Hsp90β gene mRNA expression in different tissues detected by quantitative real-time PCR assay were demonstrated to be tissue dependent, implying that different tissues have distinct sensibilities to thermo stress. Besides, it was shown time specific and varieties differences. The expression of Hsp90β mRNA in Lingshan chickens in some tissues including heart, liver, brain and spleen were significantly higher or lower than that of White Recessive Rock (WRR). In this study, we presume that these mutations could be used in marker assisted selection for anti-heat stress chickens in our breeding program, and WRR were vulnerable to tropical thermo stress whereas Lingshan chickens were well adapted.

  17. Tumor-adjacent tissue co-expression profile analysis reveals pro-oncogenic ribosomal gene signature for prognosis of resectable hepatocellular carcinoma.

    Science.gov (United States)

    Grinchuk, Oleg V; Yenamandra, Surya P; Iyer, Ramakrishnan; Singh, Malay; Lee, Hwee Kuan; Lim, Kiat Hon; Chow, Pierce Kah-Hoe; Kuznetsov, Vladamir A

    2018-01-01

    Currently, molecular markers are not used when determining the prognosis and treatment strategy for patients with hepatocellular carcinoma (HCC). In the present study, we proposed that the identification of common pro-oncogenic pathways in primary tumors (PT) and adjacent non-malignant tissues (AT) typically used to predict HCC patient risks may result in HCC biomarker discovery. We examined the genome-wide mRNA expression profiles of paired PT and AT samples from 321 HCC patients. The workflow integrated differentially expressed gene selection, gene ontology enrichment, computational classification, survival predictions, image analysis and experimental validation methods. We developed a 24-ribosomal gene-based HCC classifier (RGC), which is prognostically significant in both PT and AT. The RGC gene overexpression in PT was associated with a poor prognosis in the training (hazard ratio = 8.2, P = 9.4 × 10 -6 ) and cross-cohort validation (hazard ratio = 2.63, P = 0.004) datasets. The multivariate survival analysis demonstrated the significant and independent prognostic value of the RGC. The RGC displayed a significant prognostic value in AT of the training (hazard ratio = 5.0, P = 0.03) and cross-validation (hazard ratio = 1.9, P = 0.03) HCC groups, confirming the accuracy and robustness of the RGC. Our experimental and bioinformatics analyses suggested a key role for c-MYC in the pro-oncogenic pattern of ribosomal biogenesis co-regulation in PT and AT. Microarray, quantitative RT-PCR and quantitative immunohistochemical studies of the PT showed that DKK1 in PT is the perspective biomarker for poor HCC outcomes. The common co-transcriptional pattern of ribosome biogenesis genes in PT and AT from HCC patients suggests a new scalable prognostic system, as supported by the model of tumor-like metabolic redirection/assimilation in non-malignant AT. The RGC, comprising 24 ribosomal genes, is introduced as a robust and reproducible prognostic model for

  18. Chromium downregulates the expression of Acetyl CoA Carboxylase 1 gene in lipogenic tissues of domestic goats: a potential strategy for meat quality improvement.

    Science.gov (United States)

    Najafpanah, Mohammad Javad; Sadeghi, Mostafa; Zali, Abolfazl; Moradi-Shahrebabak, Hossein; Mousapour, Hojatollah

    2014-06-15

    Acetyl CoA Carboxylase 1 (ACC1) is a biotin-dependent enzyme that catalyzes the carboxylation of Acetyl CoA to form Malonyl CoA, the key intermediate metabolite in fatty acid synthesis. In this study, the mRNA expression of the ACC1 gene was evaluated in four different tissues (liver, visceral fat, subcutaneous fat, and longissimus muscle) of the domestic goat (Capra hircus) kids feeding on four different levels of trivalent chromium (0, 0.5, 1, and 1.5mg/day) as food supplementation. RT-qPCR technique was used for expression analyses and heat shock protein 90 gene (HSP-90) was considered as reference gene for data normalization. Our results revealed that 1.5mg/day chromium significantly reduced the expression of the ACC1 gene in liver, visceral fat, and subcutaneous fat tissues, but not in longissimus muscles (Pmeat quality in domestic animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Differential gene expression for suicide-substrate serine proteinase inhibitors (serpins) in vegetative and grain tissues of barley

    DEFF Research Database (Denmark)

    Roberts, T.H.; Marttila, S.; Rasmussen, S.K.

    2003-01-01

    centres in vitro, were ubiquitous at low levels, but the protein could not be detected. EST analysis showed that expression of genes for serpins with BSZx-type reactive centres in vegetative tissues is widespread in the plant kingdom, suggesting a common regulatory function. For BSZ4 and BSZ7, expression...... their irreversible inhibitory mechanism in the inhibition of exogenous proteinases capable of breaking down seed storage proteins, and in the defence of specific cell types in vegetative tissues.......Proteins of the serpin superfamily (similar to43 kDa) from mature cereal grains are in vitro suicide-substrate inhibitors of specific mammalian serine proteinases of the chymotrypsin family. However, unlike the 'standard-mechanism' serine proteinase inhibitors (

  20. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  1. Improved in vivo gene transfer into tumor tissue by stabilization of pseudodendritic oligoethylenimine-based polyplexes.

    Science.gov (United States)

    Russ, Verena; Fröhlich, Thomas; Li, Yunqiu; Halama, Anna; Ogris, Manfred; Wagner, Ernst

    2010-02-01

    HD O is a low molecular weight pseudodendrimer containing oligoethylenimine and degradable hexanediol diacrylate diesters. DNA polyplexes display encouraging gene transfer efficiency in vitro and in vivo but also a limited stability under physiological conditions. This limitation must be overcome for further development into more sophisticated formulations. HD O polyplexes were laterally stabilized by crosslinking surface amines via bifunctional crosslinkers, bioreducible dithiobis(succimidyl propionate) (DSP) or the nonreducible analog disuccinimidyl suberate (DSS). Optionally, in a subsequent step, the targeting ligand transferrin (Tf) was attached to DSP-linked HD O polyplexes via Schiff base formation between HD O amino groups and Tf aldehyde groups, which were introduced into Tf by periodate oxidation of the glycosylation sites. Crosslinked DNA polyplexes showed an increased stability against exchange reaction by salt or heparin. Disulfide bond containing DSP-linked polyplexes were susceptible to reducing conditions. These polyplexes displayed the highest gene expression levels in vitro and in vivo (upon intratumoral application in mice), and these were significantly elevated and prolonged over standard or DSS-stabilized HD O formulations. DSP-stabilized HD O polyplexes with or without Tf coating were well-tolerated after intravenous application. High gene expression levels were found in tumor tissue, with negligible gene expression in any other organ. Lateral stabilization of HD O polyplexes with DSP crosslinker enhanced gene transfer efficacy and was essential for the incorporation of a ligand (Tf) into a stable particle formulation.

  2. Systematic identification of human housekeeping genes possibly useful as references in gene expression studies.

    Science.gov (United States)

    Caracausi, Maria; Piovesan, Allison; Antonaros, Francesca; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara

    2017-09-01

    The ideal reference, or control, gene for the study of gene expression in a given organism should be expressed at a medium‑high level for easy detection, should be expressed at a constant/stable level throughout different cell types and within the same cell type undergoing different treatments, and should maintain these features through as many different tissues of the organism. From a biological point of view, these theoretical requirements of an ideal reference gene appear to be best suited to housekeeping (HK) genes. Recent advancements in the quality and completeness of human expression microarray data and in their statistical analysis may provide new clues toward the quantitative standardization of human gene expression studies in biology and medicine, both cross‑ and within‑tissue. The systematic approach used by the present study is based on the Transcriptome Mapper tool and exploits the automated reassignment of probes to corresponding genes, intra‑ and inter‑sample normalization, elaboration and representation of gene expression values in linear form within an indexed and searchable database with a graphical interface recording quantitative levels of expression, expression variability and cross‑tissue width of expression for more than 31,000 transcripts. The present study conducted a meta‑analysis of a pool of 646 expression profile data sets from 54 different human tissues and identified actin γ 1 as the HK gene that best fits the combination of all the traditional criteria to be used as a reference gene for general use; two ribosomal protein genes, RPS18 and RPS27, and one aquaporin gene, POM121 transmembrane nucleporin C, were also identified. The present study provided a list of tissue‑ and organ‑specific genes that may be most suited for the following individual tissues/organs: Adipose tissue, bone marrow, brain, heart, kidney, liver, lung, ovary, skeletal muscle and testis; and also provides in these cases a representative

  3. An integrative transcriptomic approach to identify depot differences in genes and microRNAs in adipose tissues from high fat fed mice.

    Science.gov (United States)

    Wijayatunga, Nadeeja N; Pahlavani, Mandana; Kalupahana, Nishan S; Kottapalli, Kameswara Rao; Gunaratne, Preethi H; Coarfa, Cristian; Ramalingam, Latha; Moustaid-Moussa, Naima

    2018-02-06

    Obesity contributes to metabolic disorders such as diabetes and cardiovascular disease. Characterization of differences between the main adipose tissue depots, white (WAT) [including subcutaneous (SAT) and visceral adipose tissue (VAT)] and brown adipose tissue (BAT) helps to identify their roles in obesity. Thus, we studied depot-specific differences in whole transcriptome and miRNA profiles of SAT, VAT and BAT from high fat diet (HFD/45% of calories from fat) fed mice using RNA sequencing and small RNA-Seq. Using quantitative real-time polymerase chain reaction, we validated depot-specific differences in endoplasmic reticulum (ER) stress related genes and miRNAs using mice fed a HFD vs. low fat diet (LFD/10% of calories from fat). According to the transcriptomic analysis, lipogenesis, adipogenesis, inflammation, endoplasmic reticulum (ER) stress and unfolded protein response (UPR) were higher in VAT compared to BAT, whereas energy expenditure, fatty acid oxidation and oxidative phosphorylation were higher in BAT than in VAT of the HFD fed mice. In contrast to BAT, ER stress marker genes were significantly upregulated in VAT of HFD fed mice than the LFD fed mice. For the first time, we report depot specific differences in ER stress related miRNAs including; downregulation of miR-125b-5p, upregulation miR-143-3p, and miR-222-3p in VAT following HFD and upregulation of miR-30c-2-3p only in BAT following a HFD in mice than the LFD mice. In conclusion, HFD differentially regulates miRNAs and genes in different adipose depots with significant induction of genes related to lipogenesis, adipogenesis, inflammation, ER stress, and UPR in WAT compared to BAT.

  4. Tissue-specific gene-expression patterns of genes associated with thymol/carvacrol biosynthesis in thyme (Thymus vulgaris L.) and their differential changes upon treatment with abiotic elicitors

    DEFF Research Database (Denmark)

    Majdi, Mohammad; Malekzadeh-Mashhady, Atefe; Maroufi, Asad

    2017-01-01

    of the regulation of monoterpene biosynthesis in thyme, the expression of genes related to thymol and carvacrol biosynthesis in different tissues and in response to abiotic elicitors was analyzed. Methyl jasmonate (MeJA), salicylic acid (SA), trans-cinnamic acid (tCA) and UV-C irradiation were applied to T. vulgare...

  5. Identification of radiation response genes and proteins from mouse pulmonary tissues after high-dose per fraction irradiation of limited lung volumes.

    Science.gov (United States)

    Jin, Hee; Jeon, Seulgi; Kang, Ga-Young; Lee, Hae-June; Cho, Jaeho; Lee, Yun-Sil

    2017-02-01

    The molecular effects of focal exposure of limited lung volumes to high-dose per fraction irradiation (HDFR) such as stereotactic body radiotherapy (SBRT) have not been fully characterized. In this study, we used such an irradiation system and identified the genes and proteins after HDFR to mouse lung, similar to those associated with human therapy. High focal radiation (90 Gy) was applied to a 3-mm volume of the left lung of C57BL6 mice using a small-animal stereotactic irradiator. As well as histological examination for lungs, a cDNA micro array using irradiated lung tissues and a protein array of sera were performed until 4 weeks after irradiation, and radiation-responsive genes and proteins were identified. For comparison, the long-term effects (12 months) of 20 Gy radiation wide-field dose to the left lung were also investigated. The genes ermap, epb4.2, cd200r3 (up regulation) and krt15, hoxc4, gdf2, cst9, cidec, and bnc1 (down-regulation) and the proteins of AIF, laminin, bNOS, HSP27, β-amyloid (upregulation), and calponin (downregulation) were identified as being responsive to 90 Gy HDFR. The gdf2, cst9, and cidec genes also responded to 20 Gy, suggesting that they are universal responsive genes in irradiated lungs. No universal proteins were identified in both 90 Gy and 20 Gy. Calponin, which was downregulated in protein antibody array analysis, showed a similar pattern in microarray data, suggesting a possible HDFR responsive serum biomarker that reflects gene alteration of irradiated lung tissue. These genes and proteins also responded to the lower doses of 20 Gy and 50 Gy HDFR. These results suggest that identified candidate genes and proteins are HDFR-specifically expressed in lung damage induced by HDFR relevant to SBRT in humans.

  6. 4-Aminobiphenyl (4-ABP) - DNA Damage in Breast Tissue and Relationship to p53 Mutations and Polymorphisms of Metabolizing Genes

    National Research Council Canada - National Science Library

    Niguidula, Nancy

    2000-01-01

    .... The analysis of the CYP1A2 gene is currently in progress. Due to the difficulty in obtaining large fragments of DNA from the tumor tissue sections required for PCR-RFLP, a new method is under development for genotyping NAT2...

  7. Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array

    Directory of Open Access Journals (Sweden)

    Yick Ching Wong

    2014-11-01

    Full Text Available Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA and triacylglycerol (TAG assembly, along with the tricarboxylic acid cycle (TCA and glycolysis pathway at 16 Weeks After Anthesis (WAA exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01, and rice (p-value < 0.01 arrays. The oil palm microarray data also showed comparable correlation of expression (r2 = 0.569, p < 0.01 throughout mesocarp development to transcriptome (RNA sequencing data, and improved correlation over quantitative real-time PCR (qPCR (r2 = 0.721, p < 0.01 of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield.

  8. Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array

    Science.gov (United States)

    Wong, Yick Ching; Kwong, Qi Bin; Lee, Heng Leng; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R.; Kulaveerasingam, Harikrishna

    2014-01-01

    Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA) and triacylglycerol (TAG) assembly, along with the tricarboxylic acid cycle (TCA) and glycolysis pathway at 16 Weeks After Anthesis (WAA) exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01), and rice (p-value < 0.01) arrays. The oil palm microarray data also showed comparable correlation of expression (r2 = 0.569, p < 0.01) throughout mesocarp development to transcriptome (RNA sequencing) data, and improved correlation over quantitative real-time PCR (qPCR) (r2 = 0.721, p < 0.01) of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield. PMID:27600348

  9. Human apolipoprotein CIII gene expression is regulated by positive and negative cis-acting elements and tissue-specific protein factors

    International Nuclear Information System (INIS)

    Reue, K.; Leff, T.; Breslow, J.L.

    1988-01-01

    Apolipoprotein CIII (apoCIII) is a major protein constituent of triglyceride-rich lipoproteins and is synthesized primarily in the liver. Cis-acting DNA elements required for liver-specific apoCIII gene transcription were identified with transient expression assays in the human hepatoma (HepG2) and epithelial carcinoma (HeLa) cell lines. In liver cells, 821 nucleotides of the human apoCIII gene 5'-flanking sequence were required for maximum levels of gene expression, while the proximal 110 nucleotides alone were sufficient. No expression was observed in similar studies with HeLa cells. The level of expression was modulated by a combination of positive and negative cis-acting sequences, which interact with distinct sets of proteins from liver and HeLa cell nuclear extracts. The proximal positive regulatory region shares homology with similarly located sequences of other genes strongly expressed in the liver, including α 1 -antitrypsin and other apolipoprotein genes. The negative regulatory region is striking homologous to the human β-interferon gene regulatory element. The distal positive region shares homology with some viral enhancers and has properties of a tissue-specific enhancer. The regulation of the apoCIII gene is complex but shares features with other genes, suggesting shuffling of regulatory elements as a common mechanism for cell type-specific gene expression

  10. The Role of DNA Methylation in Xylogenesis in Different Tissues of Poplar

    Directory of Open Access Journals (Sweden)

    Qingshi Wang

    2016-07-01

    Full Text Available In trees, xylem tissues play a key role in the formation of woody tissues, which have important uses for pulp and timber production; also DNA methylation plays an important part in gene regulation during xylogenesis in trees. In our study, methylation-sensitive amplified polymorphism (MSAP analysis was used to analyze the role cytosine methylation plays in wood formation in the commercially important tree species Populus tomentosa. This analysis compared the methylation patterns between xylem tissues (developing xylem and mature xylem and non-xylem tissues (cambium, shoot apex, young leaf, mature leaf, phloem, root, male catkin, and female catkin and found 10,316 polymorphic methylation sites. MSAP identified 132 candidate genes with the same methylation patterns in xylem tissues, including seven wood-related genes. The expression of these genes differed significantly between xylem and non-xylem tissue types (P<0.01. This indicated that the difference of expression of specific genes with unique methylation patterns, rather than relative methylation levels between the two tissue types plays a critical role in wood biosynthesis. However, 46.2% of candidate genes with the same methylation pattern in vascular tissues (cambium, phloem, and developing xylem did not have distinct expression patterns in xylem and non-xylem tissue. Also, bisulfite sequencing and transcriptome sequencing of MYB, NAC and FASCICLIN-LIKE AGP 13 revealed that the location of cytosine methylation in the gene might affect the expression of different transcripts from the corresponding gene. The expression of different transcripts that produce distinct proteins from a single gene might play an important role in the regulation of xylogenesis.

  11. Comparative Digital Gene Expression Analysis of Tissue-Cultured Plantlets of Highly Resistant and Susceptible Banana Cultivarsin Response to Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Yuqing Niu

    2018-01-01

    Full Text Available Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc is one of the most destructive soil-borne diseases. In this study, young tissue-cultured plantlets of banana (Musa spp. AAA cultivars differing in Foc susceptibility were used to reveal their differential responses to this pathogen using digital gene expression (DGE. Data were evaluated by various bioinformatic tools (Venn diagrams, gene ontology (GO annotation and Kyoto encyclopedia of genes and genomes (KEGG pathway analyses and immunofluorescence labelling method to support the identification of gene candidates determining the resistance of banana against Foc. Interestingly, we have identified MaWRKY50 as an important gene involved in both constitutive and induced resistance. We also identified new genes involved in the resistance of banana to Foc, including several other transcription factors (TFs, pathogenesis-related (PR genes and some genes related to the plant cell wall biosynthesis or degradation (e.g., pectinesterases, β-glucosidases, xyloglucan endotransglucosylase/hydrolase and endoglucanase. The resistant banana cultivar shows activation of PR-3 and PR-4 genes as well as formation of different constitutive cell barriers to restrict spreading of the pathogen. These data suggest new mechanisms of banana resistance to Foc.

  12. Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening

    OpenAIRE

    Xue, Jingqi; Li, Yunhui; Tan, Hui; Yang, Feng; Ma, Nan; Gao, Junping

    2008-01-01

    Ethylene production, as well as the expression of ethylene biosynthetic (Rh-ACS1?4 and Rh-ACO1) and receptor (Rh-ETR1?5) genes, was determined in five different floral tissues (sepals, petals, stamens, gynoecia, and receptacles) of cut rose (Rosa hybrida cv. Samantha upon treatment with ethylene or the ethylene inhibitor 1-methylcyclopropene (1-MCP). Ethylene-enhanced ethylene production occurred only in gynoecia, petals, and receptacles, with gynoecia showing the greatest enhancement in the ...

  13. Live and let die - the B(sister MADS-box gene OsMADS29 controls the degeneration of cells in maternal tissues during seed development of rice (Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Xuelian Yang

    Full Text Available B(sister genes have been identified as the closest relatives of class B floral homeotic genes. Previous studies have shown that B(sister genes from eudicots are involved in cell differentiation during ovule and seed development. However, the complete function of B(sister genes in eudicots is masked by redundancy with other genes and little is known about the function of B(sister genes in monocots, and about the evolution of B(sister gene functions. Here we characterize OsMADS29, one of three MADS-box B(sister genes in rice. Our analyses show that OsMADS29 is expressed in female reproductive organs including the ovule, ovule vasculature, and the whole seed except for the outer layer cells of the pericarp. Knock-down of OsMADS29 by double-stranded RNA-mediated interference (RNAi results in shriveled and/or aborted seeds. Histological analyses of the abnormal seeds at 7 days after pollination (DAP indicate that the symplastic continuity, including the ovular vascular trace and the nucellar projection, which is the nutrient source for the filial tissue at early development stages, is affected. Moreover, degeneration of all the maternal tissues in the transgenic seeds, including the pericarp, ovular vascular trace, integuments, nucellar epidermis and nucellar projection, is blocked as compared to control plants. Our results suggest that OsMADS29 has important functions in seed development of rice by regulating cell degeneration of maternal tissues. Our findings provide important insights into the ancestral function of B(sister genes.

  14. Microdissection of gonadal tissues for gene expression analyses

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Dalgaard, Marlene Danner; Sonne, Si Brask

    2011-01-01

    Laser microdissection permits isolation of specific cell types from tissue sections or cell cultures. This may be beneficial when investigating the role of specific cells in a complex tissue or organ. In tissues with easily distinguishable morphology, a simple hematoxylin staining is sufficient...... phosphatase enzyme, such as fetal germ cells, testicular carcinoma in situ cells, and putatively also other early stem cell populations. We have applied these protocols for microdissection of rat Leydig cells, fetal human and zebrafish germ cells, and human testicular germ cell tumors, but the staining...

  15. Gene therapy in periodontics.

    Science.gov (United States)

    Chatterjee, Anirban; Singh, Nidhi; Saluja, Mini

    2013-03-01

    GENES are made of DNA - the code of life. They are made up of two types of base pair from different number of hydrogen bonds AT, GC which can be turned into instruction. Everyone inherits genes from their parents and passes them on in turn to their children. Every person's genes are different, and the changes in sequence determine the inherited differences between each of us. Some changes, usually in a single gene, may cause serious diseases. Gene therapy is 'the use of genes as medicine'. It involves the transfer of a therapeutic or working gene copy into specific cells of an individual in order to repair a faulty gene copy. Thus it may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. It has a promising era in the field of periodontics. Gene therapy has been used as a mode of tissue engineering in periodontics. The tissue engineering approach reconstructs the natural target tissue by combining four elements namely: Scaffold, signaling molecules, cells and blood supply and thus can help in the reconstruction of damaged periodontium including cementum, gingival, periodontal ligament and bone.

  16. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach.

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Starnes, Trevor; Khan, Yusuf M; Jiang, Tao; Wirtel, Anthony J; Deng, Meng; Lv, Qing; Nair, Lakshmi S; Doty, Steven B; Laurencin, Cato T

    2008-08-12

    One of the fundamental principles underlying tissue engineering approaches is that newly formed tissue must maintain sufficient vascularization to support its growth. Efforts to induce vascular growth into tissue-engineered scaffolds have recently been dedicated to developing novel strategies to deliver specific biological factors that direct the recruitment of endothelial cell (EC) progenitors and their differentiation. The challenge, however, lies in orchestration of the cells, appropriate biological factors, and optimal factor doses. This study reports an approach as a step forward to resolving this dilemma by combining an ex vivo gene transfer strategy and EC transplantation. The utility of this approach was evaluated by using 3D poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for bone tissue engineering applications. Our goal was achieved by isolation and transfection of adipose-derived stromal cells (ADSCs) with adenovirus encoding the cDNA of VEGF. We demonstrated that the combination of VEGF releasing ADSCs and ECs results in marked vascular growth within PLAGA scaffolds. We thereby delineate the potential of ADSCs to promote vascular growth into biomaterials.

  17. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: A combined gene therapy–cell transplantation approach

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Starnes, Trevor; Khan, Yusuf M.; Jiang, Tao; Wirtel, Anthony J.; Deng, Meng; Lv, Qing; Nair, Lakshmi S.; Doty, Steven B.; Laurencin, Cato T.

    2008-01-01

    One of the fundamental principles underlying tissue engineering approaches is that newly formed tissue must maintain sufficient vascularization to support its growth. Efforts to induce vascular growth into tissue-engineered scaffolds have recently been dedicated to developing novel strategies to deliver specific biological factors that direct the recruitment of endothelial cell (EC) progenitors and their differentiation. The challenge, however, lies in orchestration of the cells, appropriate biological factors, and optimal factor doses. This study reports an approach as a step forward to resolving this dilemma by combining an ex vivo gene transfer strategy and EC transplantation. The utility of this approach was evaluated by using 3D poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for bone tissue engineering applications. Our goal was achieved by isolation and transfection of adipose-derived stromal cells (ADSCs) with adenovirus encoding the cDNA of VEGF. We demonstrated that the combination of VEGF releasing ADSCs and ECs results in marked vascular growth within PLAGA scaffolds. We thereby delineate the potential of ADSCs to promote vascular growth into biomaterials. PMID:18678895

  18. Physical training and weight loss in dogs lead to transcriptional changes in genes involved in the glucose-transport pathway in muscle and adipose tissues

    DEFF Research Database (Denmark)

    Herrera Uribe, Juber; Vitger, Anne Désiré; Ritz, Christian

    2016-01-01

    little attention. The aim of the present study was to investigate changes in the transcriptome of key energy metabolism genes in muscle and adipose tissues in response to diet-induced weight loss alone, or combined with exercise in dogs. Overweight pet dogs were enrolled on a weight loss programme, based...... on calorie restriction and physical training (FD group, n = 5) or calorie restriction alone (DO group, n = 7). mRNA expression of 12 genes and six microRNAs were investigated using quantitative real-time PCR (qPCR). In the FD group, FOXO1 and RAC1 were expressed at lower levels in adipose tissue, whereas...

  19. Deregulated genes in sporadic vestibular schwannomas

    DEFF Research Database (Denmark)

    Cayé-Thomasen, Per; Helweg-Larsen, Rehannah Holga Andrea; Stangerup, Sven-Eric

    2010-01-01

    In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology.......In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology....

  20. 11-Hydroxy-β-steroid dehydrogenase gene expression in canine adipose tissue and adipocytes: stimulation by lipopolysaccharide and tumor necrosis factor α.

    Science.gov (United States)

    Ryan, V H; Trayhurn, P; Hunter, L; Morris, P J; German, A J

    2011-10-01

    The enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD-1) is expressed in a number of tissues in rodents and humans and is responsible for the reactivation of inert cortisone into cortisol. Its gene expression and activity are increased in white adipose tissue (WAT) from obese humans and may contribute to the adverse metabolic consequences of obesity and the metabolic syndrome. The extent to which 11β-HSD-1 contributes to adipose tissue function in dogs is unknown; the aim of the present study was to examine 11β-HSD-1 gene expression and its regulation by proinflammatory and anti-inflammatory agents in canine adipocytes. Real-time PCR was used to examine the expression of 11β-HSD-1 in canine adipose tissue and canine adipocytes differentiated in culture. The mRNA encoding 11β-HSD-1 was identified in all the major WAT depots in dogs and also in liver, kidney, and spleen. Quantification by real-time PCR showed that 11β-HSD-1 mRNA was least in perirenal and falciform depots and greatest in subcutaneous, omental, and gonadal depots. Greater expression was seen in the omental depot in female than in male dogs (P=0.05). Gene expression for 11β-HSD-1 was also seen in adipocytes, from both subcutaneous and visceral depots, differentiated in culture; expression was evident throughout differentiation but was generally greatest in preadipocytes and during early differentiation, declining as cells progressed to maturity. The inflammatory mediators lipopolysaccharide and tumor necrosis factor α had a main stimulatory effect on 11β-HSD-1 gene expression in canine subcutaneous adipocytes, but IL-6 had no significant effect. Treatment with dexamethasone resulted in a significant time- and dose-dependent increase in 11β-HSD-1 gene expression, with greatest effects seen at 24 h (2 nM: approximately 4-fold; 20 nM: approximately 14-fold; P=0.010 for both). When subcutaneous adipocytes were treated with the peroxisome proliferator activated receptor γ agonist rosiglitazone

  1. Transcriptomics resources of human tissues and organs

    DEFF Research Database (Denmark)

    Uhlén, Mathias; Hallström, Björn M.; Lindskog, Cecilia

    2016-01-01

    a framework for defining the molecular constituents of the human body as well as for generating comprehensive lists of proteins expressed across tissues or in a tissue-restricted manner. Here, we review publicly available human transcriptome resources and discuss body-wide data from independent genome......Quantifying the differential expression of genes in various human organs, tissues, and cell types is vital to understand human physiology and disease. Recently, several large-scale transcriptomics studies have analyzed the expression of protein-coding genes across tissues. These datasets provide...

  2. Mutant Wars2 gene in spontaneously hypertensive rats impairs brown adipose tissue function and predisposes to visceral obesity

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Zídek, Václav; Landa, Vladimír; Mlejnek, Petr; Šilhavý, Jan; Šimáková, Miroslava; Trnovská, J.; Škop, V.; Marková, I.; Malínská, H.; Hüttl, M.; Kazdová, L.; Bardová, Kristina; Tauchmannová, Kateřina; Vrbacký, Marek; Nůsková, Hana; Mráček, Tomáš; Kopecký, Jan; Houštěk, Josef

    2017-01-01

    Roč. 66, č. 6 (2017), s. 917-924 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA13-04420S Institutional support: RVO:67985823 Keywords : brown adipose tissue * spontaneously hypertensive rat * quantitative trait loci * transgenic * Wars2 gene * mitochondrial proteosynthesis Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Endocrinology and metabolism (including diabetes, hormones) Impact factor: 1.461, year: 2016

  3. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.

    Science.gov (United States)

    Tian, Xin-Jie; Long, Yan; Wang, Jiao; Zhang, Jing-Wen; Wang, Yan-Yan; Li, Wei-Min; Peng, Yu-Fa; Yuan, Qian-Hua; Pei, Xin-Wu

    2015-01-01

    The perennial O. rufipogon (common wild rice), which is considered to be the ancestor of Asian cultivated rice species, contains many useful genetic resources, including drought resistance genes. However, few studies have identified the drought resistance and tissue-specific genes in common wild rice. In this study, transcriptome sequencing libraries were constructed, including drought-treated roots (DR) and control leaves (CL) and roots (CR). Using Illumina sequencing technology, we generated 16.75 million bases of high-quality sequence data for common wild rice and conducted de novo assembly and annotation of genes without prior genome information. These reads were assembled into 119,332 unigenes with an average length of 715 bp. A total of 88,813 distinct sequences (74.42% of unigenes) significantly matched known genes in the NCBI NT database. Differentially expressed gene (DEG) analysis showed that 3617 genes were up-regulated and 4171 genes were down-regulated in the CR library compared with the CL library. Among the DEGs, 535 genes were expressed in roots but not in shoots. A similar comparison between the DR and CR libraries showed that 1393 genes were up-regulated and 315 genes were down-regulated in the DR library compared with the CR library. Finally, 37 genes that were specifically expressed in roots were screened after comparing the DEGs identified in the above-described analyses. This study provides a transcriptome sequence resource for common wild rice plants and establishes a digital gene expression profile of wild rice plants under drought conditions using the assembled transcriptome data as a reference. Several tissue-specific and drought-stress-related candidate genes were identified, representing a fully characterized transcriptome and providing a valuable resource for genetic and genomic studies in plants.

  4. Tissue-Specific Contributions of Paternally Expressed Gene 3 in Lactation and Maternal Care of Mus musculus.

    Directory of Open Access Journals (Sweden)

    Wesley D Frey

    Full Text Available Paternally Expressed Gene 3 (Peg3 is an imprinted gene that controls milk letdown and maternal-caring behaviors. In this study, a conditional knockout allele has been developed in Mus musculus to further characterize these known functions of Peg3 in a tissue-specific manner. The mutant line was first crossed with a germline Cre. The progeny of this cross displayed growth retardation phenotypes. This is consistent with those seen in the previous mutant lines of Peg3, confirming the usefulness of the new mutant allele. The mutant line was subsequently crossed individually with MMTV- and Nkx2.1-Cre lines to test Peg3's roles in the mammary gland and hypothalamus, respectively. According to the results, the milk letdown process was impaired in the nursing females with the Peg3 mutation in the mammary gland, but not in the hypothalamus. This suggests that Peg3's roles in the milk letdown process are more critical in the mammary gland than in the hypothalamus. In contrast, one of the maternal-caring behaviors, nest-building, was interrupted in the females with the mutation in both MMTV- and Nkx2.1-driven lines. Overall, this is the first study to introduce a conditional knockout allele of Peg3 and to further dissect its contribution to mammalian reproduction in a tissue-specific manner.

  5. Determinants of human adipose tissue gene expression: impact of diet, sex, metabolic status, and cis genetic regulation.

    Directory of Open Access Journals (Sweden)

    Nathalie Viguerie

    2012-09-01

    Full Text Available Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification of environmental and individual factors controlling AT adaptation is therefore essential. Here, expression of 271 transcripts, selected for regulation according to obesity and weight changes, was determined in 515 individuals before, after 8-week low-calorie diet-induced weight loss, and after 26-week ad libitum weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently controlled AT gene expression. These analyses help understanding the relative importance of environmental and individual factors that control the expression of human AT genes and therefore may foster strategies aimed at improving AT function in metabolic diseases.

  6. Flavanol-Enriched Cocoa Powder Alters the Intestinal Microbiota, Tissue and Fluid Metabolite Profiles, and Intestinal Gene Expression in Pigs.

    Science.gov (United States)

    Jang, Saebyeol; Sun, Jianghao; Chen, Pei; Lakshman, Sukla; Molokin, Aleksey; Harnly, James M; Vinyard, Bryan T; Urban, Joseph F; Davis, Cindy D; Solano-Aguilar, Gloria

    2016-04-01

    Consumption of cocoa-derived polyphenols has been associated with several health benefits; however, their effects on the intestinal microbiome and related features of host intestinal health are not adequately understood. The objective of this study was to determine the effects of eating flavanol-enriched cocoa powder on the composition of the gut microbiota, tissue metabolite profiles, and intestinal immune status. Male pigs (5 mo old, 28 kg mean body weight) were supplemented with 0, 2.5, 10, or 20 g flavanol-enriched cocoa powder/d for 27 d. Metabolites in serum, urine, the proximal colon contents, liver, and adipose tissue; bacterial abundance in the intestinal contents and feces; and intestinal tissue gene expression of inflammatory markers and Toll-like receptors (TLRs) were then determined. O-methyl-epicatechin-glucuronide conjugates dose-dependently increased (Pcocoa powder. The concentration of 3-hydroxyphenylpropionic acid isomers in urine decreased as the dose of cocoa powder fed to pigs increased (75-85%,Pcocoa powder/d, respectively. Moreover, consumption of cocoa powder reducedTLR9gene expression in ileal Peyer's patches (67-80%,Pcocoa powder/d compared with pigs not supplemented with cocoa powder. This study demonstrates that consumption of cocoa powder by pigs can contribute to gut health by enhancing the abundance ofLactobacillusandBifidobacteriumspecies and modulating markers of localized intestinal immunity. © 2016 American Society for Nutrition.

  7. Quercetin and Green Tea Extract Supplementation Downregulates Genes Related to Tissue Inflammatory Responses to a 12-Week High Fat-Diet in Mice

    Directory of Open Access Journals (Sweden)

    Lynn Cialdella-Kam

    2017-07-01

    Full Text Available Quercetin (Q and green tea extract (E are reported to counter insulin resistance and inflammation and favorably alter fat metabolism. We investigated whether a mixture of E + Q (EQ could synergistically influence metabolic and inflammation endpoints in a high-fat diet (HFD fed to mice. Male C57BL/6 mice (n = 40 were put on HFD (fat = 60%kcal for 12 weeks and randomly assigned to Q (25 mg/kg of body weight (BW/day, E (3 mg of epigallocatechin gallate/kg BW/day, EQ, or control groups for four weeks. At 16 weeks, insulin sensitivity was measured via the glucose tolerance test (GTT, followed by area-under-the-curve (AUC estimations. Plasma cytokines and quercetin were also measured, along with whole genome transcriptome analysis and real-time polymerase chain reaction (qPCR on adipose, liver, and skeletal muscle tissues. Univariate analyses were conducted via analysis of variance (ANOVA, and whole-genome expression profiles were examined via gene set enrichment. At 16 weeks, plasma quercetin levels were higher in Q and EQ groups vs. the control and E groups (p < 0.05. Plasma cytokines were similar among groups (p > 0.05. AUC estimations for GTT was 14% lower for Q vs. E (p = 0.0311, but non-significant from control (p = 0.0809. Genes for cholesterol metabolism and immune and inflammatory response were downregulated in Q and EQ groups vs. control in adipose tissue and soleus muscle tissue. These data support an anti-inflammatory role for Q and EQ, a result best captured when measured with tissue gene downregulation in comparison to changes in plasma cytokine levels.

  8. Correlation of Slug gene expression with lymph node metastasis and invasion molecule expression in oral squamous cell carcinoma tissue

    Directory of Open Access Journals (Sweden)

    Shan-Ming Lu

    2017-10-01

    Full Text Available Objective: To study the correlation of Slug gene expression with lymph node metastasis and invasion molecule expression in oral squamous cell carcinoma tissue. Methods: Oral squamous cell carcinoma tissue surgical removed in Affiliated Stomatological Hospital of Nanjing Medical University between March 2015 and April 2017 was selected and divided into the oral squamous cell carcinoma tissue with neck lymph node metastasis and the oral squamous cell carcinoma tissues without lymph node metastasis according to the condition of lymph node metastasis. The expression of Slug, epithelial-mesenchymal transition molecules and invasion molecules in the oral squamous cell carcinoma tissue were detected. Results: Slug, N-cadherin, Vimentin, CD147, OPN, GRP78, SDF-1 and CXCR4 protein expression in oral squamous cell carcinoma tissue with neck lymph node metastasis were significantly higher than those in oral squamous cell carcinoma tissue without lymph node metastasis while E-cadherin, P120ctn and ZO-1 protein expression were significantly lower than those in oral squamous cell carcinoma tissue without lymph node metastasis; N-cadherin, Vimentin, CD147, OPN, GRP78, SDF-1 and CXCR4 protein expression in oral squamous cell carcinoma tissue with high Slug expression were significantly higher than those in oral squamous cell carcinoma tissue with low Slug expression while E-cadherin, P120ctn and ZO-1 protein expression were significantly lower than those in oral squamous cell carcinoma tissue with low Slug expression. Conclusion: The highly expressed Slug in oral squamous cell carcinoma tissue can promote the epithelial-mesenchymal transition and invasion of the cells to participate in the lymph node metastasis of tumor cells.

  9. Alternative Splicing and Tissue-specific Elastin Misassembly Act as Biological Modifiers of Human Elastin Gene Frameshift Mutations Associated with Dominant Cutis Laxa*

    Science.gov (United States)

    Sugitani, Hideki; Hirano, Eiichi; Knutsen, Russell H.; Shifren, Adrian; Wagenseil, Jessica E.; Ciliberto, Christopher; Kozel, Beth A.; Urban, Zsolt; Davis, Elaine C.; Broekelmann, Thomas J.; Mecham, Robert P.

    2012-01-01

    Elastin is the extracellular matrix protein in vertebrates that provides elastic recoil to blood vessels, the lung, and skin. Because the elastin gene has undergone significant changes in the primate lineage, modeling elastin diseases in non-human animals can be problematic. To investigate the pathophysiology underlying a class of elastin gene mutations leading to autosomal dominant cutis laxa, we engineered a cutis laxa mutation (single base deletion) into the human elastin gene contained in a bacterial artificial chromosome. When expressed as a transgene in mice, mutant elastin was incorporated into elastic fibers in the skin and lung with adverse effects on tissue function. In contrast, only low levels of mutant protein incorporated into aortic elastin, which explains why the vasculature is relatively unaffected in this disease. RNA stability studies found that alternative exon splicing acts as a modifier of disease severity by influencing the spectrum of mutant transcripts that survive nonsense-mediated decay. Our results confirm the critical role of the C-terminal region of tropoelastin in elastic fiber assembly and suggest tissue-specific differences in the elastin assembly pathway. PMID:22573328

  10. Genetic control of organ shape and tissue polarity.

    Directory of Open Access Journals (Sweden)

    Amelia A Green

    2010-11-01

    Full Text Available The mechanisms by which genes control organ shape are poorly understood. In principle, genes may control shape by modifying local rates and/or orientations of deformation. Distinguishing between these possibilities has been difficult because of interactions between patterns, orientations, and mechanical constraints during growth. Here we show how a combination of growth analysis, molecular genetics, and modelling can be used to dissect the factors contributing to shape. Using the Snapdragon (Antirrhinum flower as an example, we show how shape development reflects local rates and orientations of tissue growth that vary spatially and temporally to form a dynamic growth field. This growth field is under the control of several dorsoventral genes that influence flower shape. The action of these genes can be modelled by assuming they modulate specified growth rates parallel or perpendicular to local orientations, established by a few key organisers of tissue polarity. Models in which dorsoventral genes only influence specified growth rates do not fully account for the observed growth fields and shapes. However, the data can be readily explained by a model in which dorsoventral genes also modify organisers of tissue polarity. In particular, genetic control of tissue polarity organisers at ventral petal junctions and distal boundaries allows both the shape and growth field of the flower to be accounted for in wild type and mutants. The results suggest that genetic control of tissue polarity organisers has played a key role in the development and evolution of shape.

  11. Report on emerging technologies for translational bioinformatics: a symposium on gene expression profiling for archival tissues

    Directory of Open Access Journals (Sweden)

    Waldron Levi

    2012-03-01

    Full Text Available Abstract Background With over 20 million formalin-fixed, paraffin-embedded (FFPE tissue samples archived each year in the United States alone, archival tissues remain a vast and under-utilized resource in the genomic study of cancer. Technologies have recently been introduced for whole-transcriptome amplification and microarray analysis of degraded mRNA fragments from FFPE samples, and studies of these platforms have only recently begun to enter the published literature. Results The Emerging Technologies for Translational Bioinformatics symposium on gene expression profiling for archival tissues featured presentations of two large-scale FFPE expression profiling studies (each involving over 1,000 samples, overviews of several smaller studies, and representatives from three leading companies in the field (Illumina, Affymetrix, and NuGEN. The meeting highlighted challenges in the analysis of expression data from archival tissues and strategies being developed to overcome them. In particular, speakers reported higher rates of clinical sample failure (from 10% to 70% than are typical for fresh-frozen tissues, as well as more frequent probe failure for individual samples. The symposium program is available at http://www.hsph.harvard.edu/ffpe. Conclusions Multiple solutions now exist for whole-genome expression profiling of FFPE tissues, including both microarray- and sequencing-based platforms. Several studies have reported their successful application, but substantial challenges and risks still exist. Symposium speakers presented novel methodology for analysis of FFPE expression data and suggestions for improving data recovery and quality assessment in pre-analytical stages. Research presentations emphasized the need for careful study design, including the use of pilot studies, replication, and randomization of samples among batches, as well as careful attention to data quality control. Regardless of any limitations in quantitave transcriptomics for

  12. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  13. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...

  14. Poster: Observing change in crowded data sets in 3D space - Visualizing gene expression in human tissues

    KAUST Repository

    Rogowski, Marcin

    2013-03-01

    We have been confronted with a real-world problem of visualizing and observing change of gene expression between different human tissues. In this paper, we are presenting a universal representation space based on two-dimensional gel electrophoresis as opposed to force-directed layouts encountered most often in similar problems. We are discussing the methods we devised to make observing change more convenient in a 3D virtual reality environment. © 2013 IEEE.

  15. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F. (Hagedorn Research Laboratory, Gentofte (Denmark))

    1988-09-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression.

  16. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    International Nuclear Information System (INIS)

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F.

    1988-01-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression

  17. Soluble TGF-β type II receptor gene therapy reduces TGF-β activity in irradiated lung tissue and protects lungs from radiation-induced injury

    International Nuclear Information System (INIS)

    Vujaskovic, Z.; Rabbani, Z.; Zhang, X.; Samulski, T.V.; Li, C.-Y.; Anscher, M.S.

    2003-01-01

    Full text: The objective was to determine whether administration of recombinant human adenoviral vector carrying soluble TGF-β1 type II receptor (TβR-II) gene reduces availability of active TGFβ1 and protects lung from radiation-induced injury. Female Fisher-344 rats were randomized into four groups to receive: 1) Control 2) Adenoviral green fluorescent protein vector (AdGFP) alone 3) Radiation (RT) + Adenoviral vector with TGF-β1 type II receptor gene (AdexTβR-II-Fc) 4) RT alone. Animals were irradiated to right hemithorax using a single dose of 30 Gy. The packaging and production of a recombinant adenovirus carrying the fused human TβR-II-IgG1 Fc gene was achieved by use of the AdEasy system. The treatment vector AdexTbR-II-Fc (1.5*1010 PFU) and control vector AdGFP (1*109 PFU) were injected i.v. 24 hrs after RT. Respiratory rate was measured as an index of pulmonary function weekly for 5 weeks post RT. Structural damage was scored histologically. Immunohistochemistry was performed to identify activated macrophages. ELISA was used to quantify active TGF-β1 in tissue homogenate. Western blot was used to determine TβR-II expression in plasma and lung tissue. Animals receiving treatment vector AdexTbR-II-Fc have elevated plasma levels of soluble TβR-II at 24 and 48 hours after injection. In the RT+AdexTbR-II-Fc group, there was a significant reduction in respiratory rate (p = 0.002) at four weeks after treatment compared to RT alone group. Histology revealed a significant reduction in lung structural damage in animals receiving gene therapy after RT vs RT alone (p=0.0013). There was also a decrease in the number of activated macrophage (p= 0.02) in RT+AdexTbR-II-Fc group vs RT alone. The tissue protein expression of active TGF-β1 was significantly reduced in rats receiving RT+AdexTbR-II-Fc treatment (p<0.05). This study shows the ability of adenovirus mediated soluble TβR-II gene therapy to reduce tissue levels of active TGF-β1 and ameliorate radiation

  18. Discovery of distinctive gene expression profiles in rheumatoid synovium using cDNA microarray technology: evidence for the existence of multiple pathways of tissue destruction and repair.

    NARCIS (Netherlands)

    Kraan, TC van der Pouw; Gaalen, van FA; Huizinga, T.W.; Pieterman, E; Breedveld, F.C.; Verweij, C.L.

    2003-01-01

    Rheumatoid arthritis (RA) is a heterogeneous disease. We used cDNA microarray technology to subclassify RA patients and disclose disease pathways in rheumatoid synovium. Hierarchical clustering of gene expression data identified two main groups of tissues (RA-I and RA-II). A total of 121 genes were

  19. Molecular Cloning and Characterization of a New C-type Lysozyme Gene from Yak Mammary Tissue

    Directory of Open Access Journals (Sweden)

    Ming Feng Jiang

    2015-12-01

    Full Text Available Milk lysozyme is the ubiquitous enzyme in milk of mammals. In this study, the cDNA sequence of a new chicken-type (c-type milk lysozyme gene (YML, was cloned from yak mammary gland tissue. A 444 bp open reading frames, which encodes 148 amino acids (16.54 kDa with a signal peptide of 18 amino acids, was sequenced. Further analysis indicated that the nucleic acid and amino acid sequences identities between yak and cow milk lysozyme were 89.04% and 80.41%, respectively. Recombinant yak milk lysozyme (rYML was produced by Escherichia coli BL21 and Pichia pastoris X33. The highest lysozyme activity was detected for heterologous protein rYML5 (M = 1,864.24 U/mg, SD = 25.75 which was expressed in P. pastoris with expression vector pPICZαA and it clearly inhibited growth of Staphylococcus aureus. Result of the YML gene expression using quantitative polymerase chain reaction showed that the YML gene was up-regulated to maximum at 30 day postpartum, that is, comparatively high YML can be found in initial milk production. The phylogenetic tree indicated that the amino acid sequence was similar to cow kidney lysozyme, which implied that the YML may have diverged from a different ancestor gene such as cow mammary glands. In our study, we suggest that YML be a new c-type lysozyme expressed in yak mammary glands that plays a role as host immunity.

  20. Genome-wide identification and tissue-specific expression analysis of nucleotide binding site-leucine rich repeat gene family in Cicer arietinum (kabuli chickpea).

    Science.gov (United States)

    Sharma, Ranu; Rawat, Vimal; Suresh, C G

    2017-12-01

    The nucleotide binding site-leucine rich repeat (NBS-LRR) proteins play an important role in the defense mechanisms against pathogens. Using bioinformatics approach, we identified and annotated 104 NBS-LRR genes in chickpea. Phylogenetic analysis points to their diversification into two families namely TIR-NBS-LRR and non-TIR-NBS-LRR. Gene architecture revealed intron gain/loss events in this resistance gene family during their independent evolution into two families. Comparative genomics analysis elucidated its evolutionary relationship with other fabaceae species. Around 50% NBS-LRRs reside in macro-syntenic blocks underlining positional conservation along with sequence conservation of NBS-LRR genes in chickpea. Transcriptome sequencing data provided evidence for their transcription and tissue-specific expression. Four cis -regulatory elements namely WBOX, DRE, CBF, and GCC boxes, that commonly occur in resistance genes, were present in the promoter regions of these genes. Further, the findings will provide a strong background to use candidate disease resistance NBS-encoding genes and identify their specific roles in chickpea.

  1. Ewing’s Sarcoma: An Analysis of miRNA Expression Profiles and Target Genes in Paraffin-Embedded Primary Tumor Tissue

    Directory of Open Access Journals (Sweden)

    Antonina Parafioriti

    2016-04-01

    Full Text Available The molecular mechanism responsible for Ewing’s Sarcoma (ES remains largely unknown. MicroRNAs (miRNAs, a class of small non-coding RNAs able to regulate gene expression, are deregulated in tumors and may serve as a tool for diagnosis and prediction. However, the status of miRNAs in ES has not yet been thoroughly investigated. This study compared global miRNAs expression in paraffin-embedded tumor tissue samples from 20 ES patients, affected by primary untreated tumors, with miRNAs expressed in normal human mesenchymal stromal cells (MSCs by microarray analysis. A miRTarBase database was used to identify the predicted target genes for differentially expressed miRNAs. The miRNAs microarray analysis revealed distinct patterns of miRNAs expression between ES samples and normal MSCs. 58 of the 954 analyzed miRNAs were significantly differentially expressed in ES samples compared to MSCs. Moreover, the qRT-PCR analysis carried out on three selected miRNAs showed that miR-181b, miR-1915 and miR-1275 were significantly aberrantly regulated, confirming the microarray results. Bio-database analysis identified BCL-2 as a bona fide target gene of the miR-21, miR-181a, miR-181b, miR-29a, miR-29b, miR-497, miR-195, miR-let-7a, miR-34a and miR-1915. Using paraffin-embedded tissues from ES patients, this study has identified several potential target miRNAs and one gene that might be considered a novel critical biomarker for ES pathogenesis.

  2. Down-regulation of adipose tissue lipoprotein lipase during fasting requires that a gene, separate from the lipase gene, is switched on.

    Science.gov (United States)

    Bergö, Martin; Wu, Gengshu; Ruge, Toralph; Olivecrona, Thomas

    2002-04-05

    During short term fasting, lipoprotein lipase (LPL) activity in rat adipose tissue is rapidly down-regulated. This down-regulation occurs on a posttranslational level; it is not accompanied by changes in LPL mRNA or protein levels. The LPL activity can be restored within 4 h by refeeding. Previously, we showed that during fasting there is a shift in the distribution of lipase protein toward an inactive form with low heparin affinity. To study the nature of the regulatory mechanism, we determined the in vivo turnover of LPL activity, protein mass, and mRNA in rat adipose tissue. When protein synthesis was inhibited with cycloheximide, LPL activity and protein mass decreased rapidly and in parallel with half-lives of around 2 h, and the effect of refeeding was blocked. This indicates that maintaining high levels of LPL activity requires continuous synthesis of new enzyme protein. When transcription was inhibited by actinomycin, LPL mRNA decreased with half-lives of 13.3 and 16.8 h in the fed and fasted states, respectively, demonstrating slow turnover of the LPL transcript. Surprisingly, when actinomycin was given to fed rats, LPL activity was not down-regulated during fasting, indicating that actinomycin interferes with the transcription of a gene that blocks the activation of newly synthesized LPL protein. When actinomycin was given to fasted rats, LPL activity increased 4-fold within 6 h, even in the absence of refeeding. The same effect was seen with alpha-amanitin, another inhibitor of transcription. The response to actinomycin was much less pronounced in aging rats, which are obese and insulin-resistant. These data suggest a default state where LPL protein is synthesized on a relatively stable mRNA and is processed into its active form. During fasting, a gene is switched on whose product prevents the enzyme from becoming active even though synthesis of LPL protein continues unabated.

  3. Differential accumulation of β-carotene and tissue specific expression of phytoene synthase (MaPsy) gene in banana (Musa sp) cultivars.

    Science.gov (United States)

    Dhandapani, R; Singh, V P; Arora, A; Bhattacharya, R C; Rajendran, Ambika

    2017-12-01

    An experiment was conducted with twelve major Indian banana cultivars to investigate the molecular relationship between the differential accumulation of β-carotene in peel and pulp of the banana fruit and carotenoid biosynthetic pathway genes. The high performance liquid chromatography showed that all banana cultivars accumulated two-three fold more β-carotene in non-edible portion of the banana fruit. However, Nendran , a famous orange fleshed cultivar of South India, had high β-carotene content (1362 µg/100 g) in edible pulp. The gene encoding Musa accuminata phytoene synthase ( MaPsy ) was successfully amplified using a pair of degenerate primers designed from Oncidium orchid. The deduced amino acid sequences shared a high level of identity to phytoene synthase gene from other plants. Gene expression analysis confirmed the presence of two isoforms ( MaPsy1 and MaPsy2 ) of MaPsy gene in banana fruits. Presence of two isoforms of MaPsy gene in peel and one in pulp confirmed the differential accumulation of β-carotene in banana fruits. However, Nendran accumulated more β-carotene in edible pulp due to presence of both the isoforms of MaPsy gene. Thus, carotenoid accumulation is a tissue specific process strongly dependent on differential expression pattern of two isoforms of MaPsy gene in banana.

  4. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Neutelings Godfrey

    2010-04-01

    Full Text Available Abstract Background Quantitative real-time PCR (qRT-PCR is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs. Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L. Results Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups. qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59. LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both ge

  5. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.).

    Science.gov (United States)

    Huis, Rudy; Hawkins, Simon; Neutelings, Godfrey

    2010-04-19

    Quantitative real-time PCR (qRT-PCR) is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs). Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L). Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs) and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH) as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups.qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59). LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both geNorm-designated- and Norm

  6. Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR

    International Nuclear Information System (INIS)

    Rho, Hyun-Wook; Lee, Byoung-Chan; Choi, Eun-Seok; Choi, Il-Ju; Lee, Yeon-Su; Goh, Sung-Ho

    2010-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a powerful method for the analysis of gene expression. Target gene expression levels are usually normalized to a consistently expressed reference gene also known as internal standard, in the same sample. However, much effort has not been expended thus far in the search for reference genes suitable for the study of stomach cancer using RT-qPCR, although selection of optimal reference genes is critical for interpretation of results. We assessed the suitability of six possible reference genes, beta-actin (ACTB), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), hypoxanthine phosphoribosyl transferase 1 (HPRT1), beta-2-microglobulin (B2M), ribosomal subunit L29 (RPL29) and 18S ribosomal RNA (18S rRNA) in 20 normal and tumor stomach tissue pairs of stomach cancer patients and 6 stomach cancer cell lines, by RT-qPCR. Employing expression stability analyses using NormFinder and geNorm algorithms we determined the order of performance of these reference genes and their variation values. This RT-qPCR study showed that there are statistically significant (p < 0.05) differences in the expression levels of HPRT1 and 18S rRNA in 'normal-' versus 'tumor stomach tissues'. The stability analyses by geNorm suggest B2M-GAPDH, as best reference gene combination for 'stomach cancer cell lines'; RPL29-HPRT1, for 'all stomach tissues'; and ACTB-18S rRNA, for 'all stomach cell lines and tissues'. NormFinder also identified B2M as the best reference gene for 'stomach cancer cell lines', RPL29-B2M for 'all stomach tissues', and 18S rRNA-ACTB for 'all stomach cell lines and tissues'. The comparisons of normalized expression of the target gene, GPNMB, showed different interpretation of target gene expression depend on best single reference gene or combination. This study validated RPL29 and RPL29-B2M as the best single reference

  7. Non-viral gene activated matrices for mesenchymal stem cells based tissue engineering of bone and cartilage.

    Science.gov (United States)

    Raisin, Sophie; Belamie, Emmanuel; Morille, Marie

    2016-10-01

    Recent regenerative medicine and tissue engineering strategies for bone and cartilage repair have led to fascinating progress of translation from basic research to clinical applications. In this context, the use of gene therapy is increasingly being considered as an important therapeutic modality and regenerative technique. Indeed, in the last 20 years, nucleic acids (plasmid DNA, interferent RNA) have emerged as credible alternative or complement to proteins, which exhibited major issues including short half-life, loss of bioactivity in pathologic environment leading to high dose requirement and therefore high production costs. The relevance of gene therapy strategies in combination with a scaffold, following a so-called "Gene-Activated Matrix (GAM)" approach, is to achieve a direct, local and sustained delivery of nucleic acids from a scaffold to ensure efficient and durable cell transfection. Among interesting cells sources, Mesenchymal Stem Cells (MSC) are promising for a rational use in gene/cell therapy with more than 1700 clinical trials approved during the last decade. The aim of the present review article is to provide a comprehensive overview of recent and ongoing work in non-viral genetic engineering of MSC combined with scaffolds. More specifically, we will show how this inductive strategy can be applied to orient stem cells fate for bone and cartilage repair. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  9. Flavanol-Enriched Cocoa Powder Alters the Intestinal Microbiota, Tissue and Fluid Metabolite Profiles, and Intestinal Gene Expression in Pigs1234

    Science.gov (United States)

    Jang, Saebyeol; Sun, Jianghao; Chen, Pei; Lakshman, Sukla; Molokin, Aleksey; Harnly, James M; Vinyard, Bryan T; Urban, Joseph F; Davis, Cindy D; Solano-Aguilar, Gloria

    2016-01-01

    Background: Consumption of cocoa-derived polyphenols has been associated with several health benefits; however, their effects on the intestinal microbiome and related features of host intestinal health are not adequately understood. Objective: The objective of this study was to determine the effects of eating flavanol-enriched cocoa powder on the composition of the gut microbiota, tissue metabolite profiles, and intestinal immune status. Methods: Male pigs (5 mo old, 28 kg mean body weight) were supplemented with 0, 2.5, 10, or 20 g flavanol-enriched cocoa powder/d for 27 d. Metabolites in serum, urine, the proximal colon contents, liver, and adipose tissue; bacterial abundance in the intestinal contents and feces; and intestinal tissue gene expression of inflammatory markers and Toll-like receptors (TLRs) were then determined. Results: O-methyl-epicatechin-glucuronide conjugates dose-dependently increased (P cocoa powder. The concentration of 3-hydroxyphenylpropionic acid isomers in urine decreased as the dose of cocoa powder fed to pigs increased (75–85%, P cocoa powder/d, respectively. Moreover, consumption of cocoa powder reduced TLR9 gene expression in ileal Peyer’s patches (67–80%, P cocoa powder/d compared with pigs not supplemented with cocoa powder. Conclusion: This study demonstrates that consumption of cocoa powder by pigs can contribute to gut health by enhancing the abundance of Lactobacillus and Bifidobacterium species and modulating markers of localized intestinal immunity. PMID:26936136

  10. Non-coplanar polychlorinated biphenyls (PCBs) are direct agonists for the human pregnane-X receptor and constitutive androstane receptor, and activate target gene expression in a tissue-specific manner

    International Nuclear Information System (INIS)

    Al-Salman, Fadheela; Plant, Nick

    2012-01-01

    The polychlorinated biphenyl group possesses high environmental persistence, leading to bioaccumulation and a number of adverse effects in mammals. Whilst coplanar PCBs elicit their toxic effects through agonism of the aryl hydrocarbon receptor; however, non-coplanar PCBs are not ligands for AhR, but may be ligands for members of the nuclear receptor family of proteins. To better understand the biological actions of non-coplanar PCBs, we have undertaken a systematic analysis of their ability to activate PXR and CAR-mediated effects. Cells were exposed to a range of non-coplanar PCBs (99, 138, 153, 180 and 194), or the coplanar PCB77: Direct activation of PXR and CAR was measured using a mammalian receptor activation assay in human liver cells, with rifampicin and CITCO used as positive controls ligands for PXR and CAR, respectively; activation of target gene expression was examined using reporter gene plasmids for CYP3A4 and MDR1 transfected into liver, intestine and lung cell lines. Several of the non-coplanar PCBs directly activated PXR and CAR, whilst the coplanar PCB77 did not. Non-coplanar PCBs were also able to activate PXR/CAR target gene expression in a substitution- and tissue-specific manner. Non-coplanar PCBs act as direct activators for the nuclear receptors PXR and CAR, and are able to elicit transcriptional activation of target genes in a substitution- and tissue-dependent manner. Chronic activation of PXR/CAR is linked to adverse effects and must be included in any risk assessment of PCBs. -- Highlights: ► Several Non-coplanar PCBs are able to directly activate both PXR and CAR in vitro. ► PCB153 is the most potent direct activator of PXR and CAR nuclear receptors. ► Non-coplanar PCB activation of CYP3A4/MDR1 reporter genes is structure-dependent. ► Non-coplanar PCB activate CYP3A4/MDR1 reporter genes in a tissue-dependent. ► PCB153 is the most potent activator of PXR/CAR target gene in all tissues.

  11. Highly Tissue Substructure-Specific Effects of Human Papilloma Virus in Mucosa of HIV-Infected Patients Revealed by Laser-Dissection Microscopy-Assisted Gene Expression Profiling

    Science.gov (United States)

    Baumgarth, Nicole; Szubin, Richard; Dolganov, Greg M.; Watnik, Mitchell R.; Greenspan, Deborah; Da Costa, Maria; Palefsky, Joel M.; Jordan, Richard; Roederer, Mario; Greenspan, John S.

    2004-01-01

    Human papilloma virus (HPV) causes focal infections of epithelial layers in skin and mucosa. HIV-infected patients on highly active antiretroviral therapy (HAART) appear to be at increased risk of developing HPV-induced oral warts. To identify the mechanisms that allow long-term infection of oral epithelial cells in these patients, we used a combination of laser-dissection microscopy (LDM) and highly sensitive and quantitative, non-biased, two-step multiplex real-time RT-PCR to study pathogen-induced alterations of specific tissue subcompartments. Expression of 166 genes was compared in three distinct epithelial and subepithelial compartments isolated from biopsies of normal mucosa from HIV-infected and non-infected patients and of HPV32-induced oral warts from HIV-infected patients. In contrast to the underlying HIV infection and/or HAART, which did not significantly elaborate tissue substructure-specific effects, changes in oral warts were strongly tissue substructure-specific. HPV 32 seems to establish infection by selectively enhancing epithelial cell growth and differentiation in the stratum spinosum and to evade the immune system by actively suppressing inflammatory responses in adjacent underlying tissues. With this highly sensitive and quantitative method tissue-specific expression of hundreds of genes can be studied simultaneously in a few cells. Because of its large dynamic measurement range it could also become a method of choice to confirm and better quantify results obtained by microarray analysis. PMID:15331396

  12. Regulation of gene expression in neuronal tissue by RNA interference and editing

    DEFF Research Database (Denmark)

    Venø, Morten Trillingsgaard

    No tissue in the mammalian organism is more complex than the brain. This complexity is in part the result of precise timing and interplay of a large number mechanisms modulating gene expression post-transcriptionally. Fine-tuning mechanisms such as A-to-I editing of RNA transcripts and regulation...... mediated by microRNAs are crucial for the correct function of the mammalian brain. We are addressing A-to-I editing and regulation by microRNAs with spatio-temporal resolution in the embryonic porcine brain by Solexa sequencing of microRNAs and 454 sequencing of edited neuronal messenger RNAs, resulting...... in detailed data of both of these fine-tuning mechanisms in the embryonic development of the pig. Editing levels of transcripts examined are generally seen to increase through development, in agreement with editing of specific microRNA also examined in the Solexa sequencing study. Three studies examining...

  13. High-fat diet decreases energy expenditure and expression of genes controlling lipid metabolism, mitochondrial function and skeletal system development in the adipose tissue, along with increased expression of extracellular matrix remodelling- and inflammation-related genes.

    Science.gov (United States)

    Choi, Myung-Sook; Kim, Young-Je; Kwon, Eun-Young; Ryoo, Jae Young; Kim, Sang Ryong; Jung, Un Ju

    2015-03-28

    The aim of the present study was to identify the genes differentially expressed in the visceral adipose tissue in a well-characterised mouse model of high-fat diet (HFD)-induced obesity. Male C57BL/6J mice (n 20) were fed either HFD (189 % of energy from fat) or low-fat diet (LFD, 42 % of energy from fat) for 16 weeks. HFD-fed mice exhibited obesity, insulin resistance, dyslipidaemia and adipose collagen accumulation, along with higher levels of plasma leptin, resistin and plasminogen activator inhibitor type 1, although there were no significant differences in plasma cytokine levels. Energy intake was similar in the two diet groups owing to lower food intake in the HFD group; however, energy expenditure was also lower in the HFD group than in the LFD group. Microarray analysis revealed that genes related to lipolysis, fatty acid metabolism, mitochondrial energy transduction, oxidation-reduction, insulin sensitivity and skeletal system development were down-regulated in HFD-fed mice, and genes associated with extracellular matrix (ECM) components, ECM remodelling and inflammation were up-regulated. The top ten up- or down-regulated genes include Acsm3, mt-Nd6, Fam13a, Cyp2e1, Rgs1 and Gpnmb, whose roles in the deterioration of obesity-associated adipose tissue are poorly understood. In conclusion, the genes identified here provide new therapeutic opportunities for prevention and treatment of diet-induced obesity.

  14. Characterization of the Transcriptome and Gene Expression of Brain Tissue in Sevenband Grouper (Hyporthodus septemfasciatus in Response to NNV Infection

    Directory of Open Access Journals (Sweden)

    Jong-Oh Kim

    2017-01-01

    Full Text Available Grouper is one of the favorite sea food resources in Southeast Asia. However, the outbreaks of the viral nervous necrosis (VNN disease due to nervous necrosis virus (NNV infection have caused mass mortality of grouper larvae. Many aqua-farms have suffered substantial financial loss due to the occurrence of VNN. To better understand the infection mechanism of NNV, we performed the transcriptome analysis of sevenband grouper brain tissue, the main target of NNV infection. After artificial NNV challenge, transcriptome of brain tissues of sevenband grouper was subjected to next generation sequencing (NGS using an Illumina Hi-seq 2500 system. Both mRNAs from pooled samples of mock and NNV-infected sevenband grouper brains were sequenced. Clean reads of mock and NNV-infected samples were de novo assembled and obtained 104,348 unigenes. In addition, 628 differentially expressed genes (DEGs in response to NNV infection were identified. This result could provide critical information not only for the identification of genes involved in NNV infection, but for the understanding of the response of sevenband groupers to NNV infection.

  15. A systems biology approach reveals that tissue tropism to West Nile virus is regulated by antiviral genes and innate immune cellular processes.

    Directory of Open Access Journals (Sweden)

    Mehul S Suthar

    2013-02-01

    Full Text Available The actions of the RIG-I like receptor (RLR and type I interferon (IFN signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV. In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen and nonpermissive (liver tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs(-/- × Ifnar(-/- mice revealed the loss of expression of several key components within the natural killer (NK cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs(-/- × Ifnar(-/- infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue

  16. Co-expression networks reveal the tissue-specific regulation of transcription and splicing.

    Science.gov (United States)

    Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D H; Jo, Brian; Gao, Chuan; McDowell, Ian C; Engelhardt, Barbara E; Battle, Alexis

    2017-11-01

    Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues. © 2017 Saha et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Genomic organization and the tissue distribution of alternatively spliced isoforms of the mouse Spatial gene

    Directory of Open Access Journals (Sweden)

    Mattei Marie-Geneviève

    2004-07-01

    Full Text Available Abstract Background The stromal component of the thymic microenvironment is critical for T lymphocyte generation. Thymocyte differentiation involves a cascade of coordinated stromal genes controlling thymocyte survival, lineage commitment and selection. The "Stromal Protein Associated with Thymii And Lymph-node" (Spatial gene encodes a putative transcription factor which may be involved in T-cell development. In the testis, the Spatial gene is also expressed by round spermatids during spermatogenesis. Results The Spatial gene maps to the B3-B4 region of murine chromosome 10 corresponding to the human syntenic region 10q22.1. The mouse Spatial genomic DNA is organised into 10 exons and is alternatively spliced to generate two short isoforms (Spatial-α and -γ and two other long isoforms (Spatial-δ and -ε comprising 5 additional exons on the 3' site. Here, we report the cloning of a new short isoform, Spatial-β, which differs from other isoforms by an additional alternative exon of 69 bases. This new exon encodes an interesting proline-rich signature that could confer to the 34 kDa Spatial-β protein a particular function. By quantitative TaqMan RT-PCR, we have shown that the short isoforms are highly expressed in the thymus while the long isoforms are highly expressed in the testis. We further examined the inter-species conservation of Spatial between several mammals and identified that the protein which is rich in proline and positive amino acids, is highly conserved. Conclusions The Spatial gene generates at least five alternative spliced variants: three short isoforms (Spatial-α, -β and -γ highly expressed in the thymus and two long isoforms (Spatial-δ and -ε highly expressed in the testis. These alternative spliced variants could have a tissue specific function.

  18. AGEMAP: a gene expression database for aging in mice.

    Directory of Open Access Journals (Sweden)

    Jacob M Zahn

    2007-11-01

    Full Text Available We present the AGEMAP (Atlas of Gene Expression in Mouse Aging Project gene expression database, which is a resource that catalogs changes in gene expression as a function of age in mice. The AGEMAP database includes expression changes for 8,932 genes in 16 tissues as a function of age. We found great heterogeneity in the amount of transcriptional changes with age in different tissues. Some tissues displayed large transcriptional differences in old mice, suggesting that these tissues may contribute strongly to organismal decline. Other tissues showed few or no changes in expression with age, indicating strong levels of homeostasis throughout life. Based on the pattern of age-related transcriptional changes, we found that tissues could be classified into one of three aging processes: (1 a pattern common to neural tissues, (2 a pattern for vascular tissues, and (3 a pattern for steroid-responsive tissues. We observed that different tissues age in a coordinated fashion in individual mice, such that certain mice exhibit rapid aging, whereas others exhibit slow aging for multiple tissues. Finally, we compared the transcriptional profiles for aging in mice to those from humans, flies, and worms. We found that genes involved in the electron transport chain show common age regulation in all four species, indicating that these genes may be exceptionally good markers of aging. However, we saw no overall correlation of age regulation between mice and humans, suggesting that aging processes in mice and humans may be fundamentally different.

  19. Gene Expression Changes in Mouse Intestinal Tissue Following Whole-Body Proton or Gamma-Irradiation

    Science.gov (United States)

    Purgason, Ashley; Zhang, Ye; Mangala, Lingegowda; Nie, Ying; Gridley, Daila; Hamilton, Stanley R.; Seidel, Derek V.; Wu, Honglu

    2014-01-01

    Crew members face potential consequences following exposure to the space radiation environment including acute radiation syndrome and cancer. The space radiation environment is ample with protons, and numerous studies have been devoted to the understanding of the health consequences of proton exposures. In this project, C57BL/6 mice underwent whole-body exposure to 250 MeV of protons at doses of 0, 0.1, 0.5, 2 and 6 Gy and the gastrointestinal (GI) tract of each animal was dissected four hours post-irradiation. Standard H&E staining methods to screen for morphologic changes in the tissue showed an increase in apoptotic lesions for even the lowest dose of 0.1 Gy, and the percentage of apoptotic cells increased with increasing dose. Results of gene expression changes showed consistent up- or down- regulation, up to 10 fold, of a number of genes across exposure doses that may play a role in proton-induced oxidative stress including Gpx2. A separate study in C57BL/6 mice using the same four hour time point but whole-body gamma-irradiation showed damage to the small intestine with lesions appearing at the smallest dose of 0.05 Gy and increasing with increasing absorbed dose. Expressions of genes associated with oxidative stress processes were analyzed at four hours and twenty-four hours after exposure to gamma rays. We saw a much greater number of genes with significant up- or down-regulation twenty-four hours post-exposure as compared to the four hour time point. At both four hours and twenty-four hours post-exposure, Duox1 and Mpo underwent up-regulation for the highest dose of 6 Gy. Both protons and gamma rays lead to significant variation in gene expressions and these changes may provide insight into the mechanism of injury seen in the GI tract following radiation exposure. We have also completed experiments using a BALB/c mouse model undergoing whole-body exposure to protons. Doses of 0, 0.1, 1 and 2 Gy were used and results will be compared to the work mentioned

  20. Construction of engineering adipose-like tissue in vivo utilizing human insulin gene-modified umbilical cord mesenchymal stromal cells with silk fibroin 3D scaffolds.

    Science.gov (United States)

    Li, Shi-Long; Liu, Yi; Hui, Ling

    2015-12-01

    We evaluated the use of a combination of human insulin gene-modified umbilical cord mesenchymal stromal cells (hUMSCs) with silk fibroin 3D scaffolds for adipose tissue engineering. In this study hUMSCs were isolated and cultured. HUMSCs infected with Ade-insulin-EGFP were seeded in fibroin 3D scaffolds with uniform 50-60 µm pore size. Silk fibroin scaffolds with untransfected hUMSCs were used as control. They were cultured for 4 days in adipogenic medium and transplanted under the dorsal skins of female Wistar rats after the hUMSCs had been labelled with chloromethylbenzamido-1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (CM-Dil). Macroscopical impression, fluorescence observation, histology and SEM were used for assessment after transplantation at 8 and 12 weeks. Macroscopically, newly formed adipose tissue was observed in the experimental group and control group after 8 and 12 weeks. Fluorescence observation supported that the formed adipose tissue originated from seeded hUMSCs rather than from possible infiltrating perivascular tissue. Oil red O staining of newly formed tissue showed that there was substantially more tissue regeneration in the experimental group than in the control group. SEM showed that experimental group cells had more fat-like cells, whose volume was larger than that of the control group, and degradation of the silk fibroin scaffold was greater under SEM observation. This study provides significant evidence that hUMSCs transfected by adenovirus vector have good compatibility with silk fibroin scaffold, and adenoviral transfection of the human insulin gene can be used for the construction of tissue-engineered adipose. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker.

    Directory of Open Access Journals (Sweden)

    Ya-Nan Zhang

    Full Text Available BACKGROUND: A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. METHODOLOGY/PRINCIPAL FINDINGS: We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs, 24 for chemosensory proteins (CSPs, 2 for sensory neuron membrane proteins (SNMPs, 39 for odorant receptors (ORs and 3 for ionotropic receptors (IRs. The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. CONCLUSION: Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as

  2. Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker).

    Science.gov (United States)

    Zhang, Ya-Nan; Jin, Jun-Yan; Jin, Rong; Xia, Yi-Han; Zhou, Jing-Jiang; Deng, Jian-Yu; Dong, Shuang-Lin

    2013-01-01

    A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other insects.

  3. Gene Expression Profiling Soybean Stem Tissue Early Response to Sclerotinia sclerotiorum and In Silico Mapping in Relation to Resistance Markers

    Directory of Open Access Journals (Sweden)

    Bernarda Calla

    2009-07-01

    Full Text Available White mold, caused by (Lib. de Bary, can be a serious disease of crops grown under cool, moist environments. In many plants, such as soybean [ (L. Merr.], complete genetic resistance does not exist. To identify possible genes involved in defense against this pathogen, and to determine possible physiological changes that occur during infection, a microarray screen was conducted using stem tissue to evaluate changes in gene expression between partially resistant and susceptible soybean genotypes at 8 and 14 hours post inoculation. RNA from 15 day-old inoculated plants was labeled and hybridized to soybean cDNA microarrays. ANOVA identified 1270 significant genes from the comparison between time points and 105 genes from the comparison between genotypes. Selected genes were classified into functional categories. The analyses identified changes in cell-wall composition and signaling pathways, as well as suggesting a role for anthocyanin and anthocyanidin synthesis in the defense against . In-silico mapping of both the differentially expressed transcripts and of public markers associated with partial resistance to white mold, provided evidence of several differentially expressed genes being closely positioned to white mold resistance markers, with the two most promising genes encoding a PR-5 and anthocyanidin synthase.

  4. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    International Nuclear Information System (INIS)

    Wu, Mingsong; Tu, Tao; Huang, Yunchao; Cao, Yi

    2013-01-01

    To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. The

  5. The functional landscape of mouse gene expression

    Directory of Open Access Journals (Sweden)

    Zhang Wen

    2004-12-01

    Full Text Available Abstract Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics.

  6. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit.

    Science.gov (United States)

    Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Radiogenomics: predicting clinical normal tissue radiosensitivity

    DEFF Research Database (Denmark)

    Alsner, Jan

    2006-01-01

    Studies on the genetic basis of normal tissue radiosensitivity, or  'radiogenomics', aims at predicting clinical radiosensitivity and optimize treatment from individual genetic profiles. Several studies have now reported links between variations in certain genes related to the biological response...... to radiation injury and risk of normal tissue morbidity in cancer patients treated with radiotherapy. However, after these initial association studies including few genes, we are still far from being able to predict clinical radiosensitivity on an individual level. Recent data from our own studies on risk...

  8. Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period.

    Science.gov (United States)

    Rout, P K; Kaushik, R; Ramachandran, N

    2016-07-01

    It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36-89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at -70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5-2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5

  9. Coordinated and interactive expression of genes of lipid metabolism and inflammation in adipose tissue and liver during metabolic overload.

    Directory of Open Access Journals (Sweden)

    Wen Liang

    Full Text Available BACKGROUND: Chronic metabolic overload results in lipid accumulation and subsequent inflammation in white adipose tissue (WAT, often accompanied by non-alcoholic fatty liver disease (NAFLD. In response to metabolic overload, the expression of genes involved in lipid metabolism and inflammatory processes is adapted. However, it still remains unknown how these adaptations in gene expression in expanding WAT and liver are orchestrated and whether they are interrelated. METHODOLOGY/PRINCIPAL FINDINGS: ApoE*3Leiden mice were fed HFD or chow for different periods up to 12 weeks. Gene expression in WAT and liver over time was evaluated by micro-array analysis. WAT hypertrophy and inflammation were analyzed histologically. Bayesian hierarchical cluster analysis of dynamic WAT gene expression identified groups of genes ('clusters' with comparable expression patterns over time. HFD evoked an immediate response of five clusters of 'lipid metabolism' genes in WAT, which did not further change thereafter. At a later time point (>6 weeks, inflammatory clusters were induced. Promoter analysis of clustered genes resulted in specific key regulators which may orchestrate the metabolic and inflammatory responses in WAT. Some master regulators played a dual role in control of metabolism and inflammation. When WAT inflammation developed (>6 weeks, genes of lipid metabolism and inflammation were also affected in corresponding livers. These hepatic gene expression changes and the underlying transcriptional responses in particular, were remarkably similar to those detected in WAT. CONCLUSION: In WAT, metabolic overload induced an immediate, stable response on clusters of lipid metabolism genes and induced inflammatory genes later in time. Both processes may be controlled and interlinked by specific transcriptional regulators. When WAT inflammation began, the hepatic response to HFD resembled that in WAT. In all, WAT and liver respond to metabolic overload by

  10. Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana

    Science.gov (United States)

    Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M.; Kazan, Kemal

    2015-01-01

    Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant. PMID:25849296

  11. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Rebecca Lyons

    Full Text Available Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant.

  12. Characterization of the global profile of genes expressed in cervical epithelium by Serial Analysis of Gene Expression (SAGE

    Directory of Open Access Journals (Sweden)

    Piña-Sanchez Patricia

    2005-09-01

    Full Text Available Abstract Background Serial Analysis of Gene Expression (SAGE is a new technique that allows a detailed and profound quantitative and qualitative knowledge of gene expression profile, without previous knowledge of sequence of analyzed genes. We carried out a modification of SAGE methodology (microSAGE, useful for the analysis of limited quantities of tissue samples, on normal human cervical tissue obtained from a donor without histopathological lesions. Cervical epithelium is constituted mainly by cervical keratinocytes which are the targets of human papilloma virus (HPV, where persistent HPV infection of cervical epithelium is associated with an increase risk for developing cervical carcinomas (CC. Results We report here a transcriptome analysis of cervical tissue by SAGE, derived from 30,418 sequenced tags that provide a wealth of information about the gene products involved in normal cervical epithelium physiology, as well as genes not previously found in uterine cervix tissue involved in the process of epidermal differentiation. Conclusion This first comprehensive and profound analysis of uterine cervix transcriptome, should be useful for the identification of genes involved in normal cervix uterine function, and candidate genes associated with cervical carcinoma.

  13. Gene expression of leptin, resistin, and adiponectin in the white adipose tissue of obese patients with non-alcoholic fatty liver disease and insulin resistance.

    Science.gov (United States)

    Baranova, Ancha; Gowder, Shobha J; Schlauch, Karen; Elariny, Hazem; Collantes, Rochelle; Afendy, Arian; Ong, Janus P; Goodman, Zachary; Chandhoke, Vikas; Younossi, Zobair M

    2006-09-01

    Adipose tissue is an active endocrine organ that secretes a variety of metabolically important substances including adipokines. These factors affect insulin sensitivity and may represent a link between obesity, insulin resistance, type 2 diabetes (DM), and nonalcoholic fatty liver disease (NAFLD). This study uses real-time polymerase chain reaction (PCR) quantification of mRNAs encoding adiponectin, leptin, and resistin on snap-frozen samples of intra-abdominal adipose tissue of morbidly obese patients undergoing bariatric surgery. Morbidly obese patients undergoing bariatric surgery were studied. Patients were classified into two groups: Group A (with insulin resistance) (N=11; glucose 149.84 +/- 40.56 mg/dL; serum insulin 8.28 +/- 3.52 microU/mL), and Group B (without insulin resistance) (N=10; glucose 102.2 +/- 8.43 mg/dL; serum insulin 3.431 +/- 1.162 microU/mL). Adiponectin mRNA in intra-abdominal adipose tissue and serum adiponectin levels were significantly lower in Group A compared to Group B patients (P<0.016 and P<0.03, respectively). Although serum resistin was higher in Group A than in Group B patients (P<0.005), resistin gene expression was not different between the two groups. Finally, for leptin, neither serum level nor gene expression was different between the two groups. Serum adiponectin level was the only predictor of nonalcoholic steatohepatitis (NASH) in this study (P=0.024). Obese patients with insulin resistance have decreased serum adiponectin and increased serum resistin. Additionally, adiponectin gene expression is also decreased in the adipose tissue of these patients. This low level of adiponectin expression may predispose patients to the progressive form of NAFLD or NASH.

  14. Novel Tissue Level Effects of the Staphylococcus aureus Enterotoxin Gene Cluster Are Essential for Infective Endocarditis.

    Science.gov (United States)

    Stach, Christopher S; Vu, Bao G; Merriman, Joseph A; Herrera, Alfa; Cahill, Michael P; Schlievert, Patrick M; Salgado-Pabón, Wilmara

    2016-01-01

    Superantigens are indispensable virulence factors for Staphylococcus aureus in disease causation. Superantigens stimulate massive immune cell activation, leading to toxic shock syndrome (TSS) and contributing to other illnesses. However, superantigens differ in their capacities to induce body-wide effects. For many, their production, at least as tested in vitro, is not high enough to reach the circulation, or the proteins are not efficient in crossing epithelial and endothelial barriers, thus remaining within tissues or localized on mucosal surfaces where they exert only local effects. In this study, we address the role of TSS toxin-1 (TSST-1) and most importantly the enterotoxin gene cluster (egc) in infective endocarditis and sepsis, gaining insights into the body-wide versus local effects of superantigens. We examined S. aureus TSST-1 gene (tstH) and egc deletion strains in the rabbit model of infective endocarditis and sepsis. Importantly, we also assessed the ability of commercial human intravenous immunoglobulin (IVIG) plus vancomycin to alter the course of infective endocarditis and sepsis. TSST-1 contributed to infective endocarditis vegetations and lethal sepsis, while superantigens of the egc, a cluster with uncharacterized functions in S. aureus infections, promoted vegetation formation in infective endocarditis. IVIG plus vancomycin prevented lethality and stroke development in infective endocarditis and sepsis. Our studies support the local tissue effects of egc superantigens for establishment and progression of infective endocarditis providing evidence for their role in life-threatening illnesses. In contrast, TSST-1 contributes to both infective endocarditis and lethal sepsis. IVIG may be a useful adjunct therapy for infective endocarditis and sepsis.

  15. [Correlation between EGLN1 gene, protein express in lung tissue of rats and pulmonary artery pressure at different altitude].

    Science.gov (United States)

    Li, S H; Li, S; Sun, L; Bai, Z Z; Yang, Q Y; Ga, Q; Jin, G E

    2016-08-23

    To investigate the correlation between pulmonary artery pressure (PAP) and the expression level of Egl nine homologue 1 (EGLN1) gene or its protein in lung tissue of rats at different altitudes. Totally 121 male Wistar rats were randomly divided into low altitude group (n=11), moderate altitude group and high altitude group, the rats in moderate altitude and high altitude group were further divided into 1(st) day, 3(rd) days, 7(th) days, 15(th) day and 30(th) day group according to the exposure time to hypoxic environment, each group 11 rats. The low altitude group, the PAP of rats were determined by physiological signal acquisition system, and tissue samples were collected in liquid nitrogen container for storage at an altitude of 498 m area. Moderate altitude group rats were placed in altitude of 2 260 meters of natural environment, 5 high altitude groups rats were placed in the hypobaric hypoxic chamber, simulating altitude of 4 500 meters. The PAP of rats in moderate altitude group and high altitude group were also determined by physiological signal acquisition system, and tissue samples were collected when rats were exposed to hypoxia at 1(st), 3(rd), 7(th), 15(th) and 30(th) day; Western blot was used to determine expression levels of EGLN1 protein, and person correlation analysis was used to analyze whether the protein was related to the formation of pulmonary arterial hypertension (PH) under hypoxia. Real-time quantitive PCR method determined expression levels of EGLN1 mRNA in lung tissues, and the relative expression method was used to analyze PCR data, and finally assess whether the EGLN1 gene was the initial cause of the formation of PH during hypoxia. The mean PAP of rats was (20.0±3.2) mmHg (1 mmHg=0.133 kPa) in low altitude group; in moderate altitude group, mean PAP began to increase slightly when rats were exposed to hypoxia on the 15(th) day and reached at (22.7±4.1) mmHg on hypoxic 30(th) day, but compared with the low altitude group, there was

  16. A risk assessment-driven quantitative comparison of gene expression profiles in PBMCs and white adipose tissue of humans and rats after isoflavone supplementation

    NARCIS (Netherlands)

    Velpen, van der V.; Veer, van 't P.; Islam, M.A.; Braak, ter C.J.F.; Leeuwen, F.X.R.; Afman, L.A.; Hollman, P.C.H.; Schouten, A.; Geelen, M.M.E.E.

    2016-01-01

    Quantitative insight into species differences in risk assessment is expected to reduce uncertainty and variability related to extrapolation from animals to humans. This paper explores quantification and comparison of gene expression data between tissues and species from intervention studies with

  17. Exercise decreases lipogenic gene expression in adipose tissue and alters adipocyte cellularity during weight regain after weight loss.

    Directory of Open Access Journals (Sweden)

    Erin Danielle Giles

    2016-02-01

    Full Text Available Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX. Rats were weight maintained for 6 weeks, followed by relapse on: a ad libitum low fat diet (LFD, b ad libitum LFD plus EX, or c a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24h retention of dietary- and de novo-derived fat were assessed directly using 14C palmitate/oleate and 3H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP and subcutaneous (SC adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 & LPL, de novo lipogenesis (FAS, ACC1, and triacylglycerol synthesis (MGAT & DGAT in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising

  18. Expression patterns of porcine Toll-like receptors family set of genes (TLR1-10) in gut-associated lymphoid tissues alter with age.

    Science.gov (United States)

    Uddin, Muhammad Jasim; Kaewmala, Kanokwan; Tesfaye, Dawit; Tholen, Ernst; Looft, Christian; Hoelker, Michael; Schellander, Karl; Cinar, Mehmet Ulas

    2013-08-01

    The aim was to study the expression pattern of the porcine TLR family (TLR1-10) genes in gut-associated lymphoid tissues (GALT) of varying ages. A total of nine clinically healthy pigs of three ages group (1 day, 2 months and 5 months old) were selected for this experiment (three pigs in each group). Tissues from intestinal mucosa in stomach, duodenum, jejunum and ileum and mesenteric lymph node (MLN) were used. mRNA expression of TLRs (1-10) was detectable in all tissues and TLR3 showed the highest mRNA abundance among TLRs. TLR3 expression in stomach, and TLR1 and TLR6 expression in MLN were higher in adult than newborn pigs. The western blot results of TLR2, 3 and 9 in some cases, did not coincide with the mRNA expression results. The protein localization of TLR2, 3 and 9 showed that TLR expressing cells were abundant in the lamina propria, Peyer's patches in intestine, and around and within the lymphoid follicles in the MLN. This expressions study sheds the first light on the expression patterns of all TLR genes in GALT at different ages of pigs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Alteration of apoptosis-related genes in postmenopausal women with uterine prolapse.

    Science.gov (United States)

    Saatli, Bahadir; Kizildag, Sefa; Cagliyan, Erkan; Dogan, Erbil; Saygili, Ugur

    2014-07-01

    We aimed to compare expression levels of antiapoptotic and proapoptotic genes in parametrial and vaginal tissues from postmenopausal women with and without pelvic organ prolapse (POP). We hypothesized that the expression of genes that induce apoptosis may be altered in vaginal and parametrial tissues in postmenopausal women with POP. Samples of vaginal and parametrial tissues were obtained from postmenopausal women with (n = 10) and without (n = 10) POP who underwent vaginal or abdominal hysterectomy. Expression levels of antiapoptotic (BCL-2, BCL-XL) and proapoptotic (BAX, BAD) genes were studied by real-time reverse-transcription polymerase chain reaction (RT-PCR). Gene expression levels of BCL-2 (P gene expression levels of BCL-2 (p gene expression levels differed significantly between postmenopausal women with and without POP. Bcl-2 family genes were overexpressed in the parametrium of patients with POP compared with vaginal tissue, suggesting that the processes responsible for POP have a greater effect on parametrial tissue than vaginal tissue during the development of POP.

  20. Physical training prevents body weight gain but does not modify adipose tissue gene expression

    Science.gov (United States)

    Higa, T.S.; Bergamo, F.C.; Mazzucatto, F.; Fonseca-Alaniz, M.H.; Evangelista, F.S.

    2012-01-01

    The relationship of body weight (BW) with white adipose tissue (WAT) mass and WAT gene expression pattern was investigated in mice submitted to physical training (PT). Adult male C57BL/6 mice were submitted to two 1.5-h daily swimming sessions (T, N = 18), 5 days/week for 4 weeks or maintained sedentary (S, N = 15). Citrate synthase activity increased significantly in the T group (P weight gain compared to T mice (4.06 ± 0.43 vs 0.38 ± 0.28 g, P weights of gastrocnemius and soleus muscles, lung, kidney, and adrenal gland were not different. Liver and heart were larger and the spleen was smaller in T compared to S mice (P < 0.05). Food intake was higher in T than S mice (4.7 ± 0.2 vs 4.0 ± 0.3 g/animal, P < 0.05) but oxygen consumption at rest did not differ between groups. T animals showed higher serum leptin concentration compared to S animals (6.37 ± 0.5 vs 3.11 ± 0.12 ng/mL). WAT gene expression pattern obtained by transcription factor adipocyte determination and differentiation-dependent factor 1, fatty acid synthase, malic enzyme, hormone-sensitive lipase, adipocyte lipid binding protein, leptin, and adiponectin did not differ significantly between groups. Collectively, our results showed that PT prevents BW gain and maintains WAT mass due to an increase in food intake and unchanged resting metabolic rate. These responses are closely related to unchanged WAT gene expression patterns. PMID:22666778

  1. Effect of sucrose concentrations on Stevia rebaudiana Bertoni tissue culture and gene expression.

    Science.gov (United States)

    Ghorbani, T; Kahrizi, D; Saeidi, M; Arji, I

    2017-08-30

    Stevia rebaudiana (Bert.) Bertoni is known as sweet plant which it contains a high level of steviol glycosides in the leaves.  This plant has been used from centuries ago as a sweetener for tea. One of the most important steviol glycosides is stevioside that is attractive for diabetic persons. Tissue culture is the only rapid process for the mass propagation of stevia. One of the most important factors in the medium is sucrose that is a necessary for plant growth. In the present study, we use nodal segments of the stem as explants in mediums with different sucrose concentration (50 mM, 100mM and 150mM). Several morphological traits were measured in a 28 day period. Results analysis showed a significant variation between treatments. The highest growth rate, rooting and leaf production was obtained in medium with 100mM sucrose. The correlation between measured traits was significant at the 0.01 level. To investigation of UGT74G1, UGT76G1, UGT85C2 and KS genes expression that are involved in the synthesis of SGs, RT- PCR was done with the housekeeping gene of as internal control. There were significant differences between all media. The results showed thatsucrose 100 mM containing media was more desirable than others for expression of UGT76G1 and UGT85C2 genes. Whereas, the best medium for expression of UGT74G1 was sucrose 150 mM and sucrose 50 mM for KS gene. Totally, it seems that sucrose at a concentration of 100 mMprovides the best condition for stevia growth and steviol glycosides production.

  2. The 434(G>C) polymorphism in the eosinophil cationic protein gene and its association with tissue eosinophilia in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Pereira, Michele C; Oliveira, Denise T; Olivieri, Eloísa H R

    2010-01-01

    OBJECTIVE: The aim of this study was to investigate the prevalence of the Eosinophil cationic protein (ECP)-gene polymorphism 434(G>C) in oral squamous cell carcinoma (OSCC) patients and its association with tumor-associated tissue eosinophilia (TATE), demographic, clinical, and microscopic...... of ECP-gene polymorphism 434(G>C) with TATE, demographic, clinical, and microscopic variables in OSCC patients. Disease-free survival and overall survival were calculated by the Kaplan-Meier product-limit actuarial method and the comparison of the survival curves were performed using log rank test...

  3. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  4. Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering.

    Science.gov (United States)

    Wu, Yaobin; Wang, Ling; Guo, Baolin; Shao, Yongpin; Ma, Peter X

    2016-05-01

    Myelination of Schwann cells (SCs) is critical for the success of peripheral nerve regeneration, and biomaterials that can promote SCs' neurotrophin secretion as scaffolds are beneficial for nerve repair. Here we present a biomaterials-approach, specifically, a highly tunable conductive biodegradable flexible polyurethane by polycondensation of poly(glycerol sebacate) and aniline pentamer, to significantly enhance SCs' myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. SCs are cultured on these conductive polymer films, and the biocompatibility of these films and their ability to enhance myelin gene expressions and sustained neurotrophin secretion are successfully demonstrated. The mechanism of SCs' neurotrophin secretion on conductive films is demonstrated by investigating the relationship between intracellular Ca(2+) level and SCs' myelination. Furthermore, the neurite growth and elongation of PC12 cells are induced by adding the neurotrophin medium suspension produced from SCs-laden conductive films. These data suggest that these conductive degradable polyurethanes that enhance SCs' myelin gene expressions and sustained neurotrophin secretion perform great potential for nerve regeneration applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Uphill running improves rat Achilles tendon tissue mechanical properties and alters gene expression without inducing pathological changes

    DEFF Research Database (Denmark)

    Heinemeier, K M; Skovgaard, D; Bayer, M L

    2012-01-01

    was increased, while collagen I was unchanged, and decreases were seen in noncollagen matrix components (fibromodulin and biglycan), matrix degrading enzymes, transforming growth factor-ß1, and connective tissue growth factor. In conclusion, the tested model could not be validated as a model for Achilles...... tendinopathy, as the rats were able to adapt to 12 wk of uphill running without any signs of tendinopathy. Improved mechanical properties were observed, as well as changes in gene-expression that were distinctly different from what is seen in tendinopathy and in response to short-term tendon loading....

  6. Preparation of Preproinsulin Gene Construct Containing the Metallothionein2A (pBINDMTChIns and Its Expression in NIH3T3 Cell Line and Muscle Tissue of Alloxan Diabetic Rabbits

    Directory of Open Access Journals (Sweden)

    Piri

    2014-08-01

    Full Text Available Background Diabetes mellitus type 1, formerly called insulin-dependent diabetes, is one of the autoimmune diseases where insulin-producing cells are destroyed by autoimmune response via T cells. The new approaches in treatment of diabetes are using the stem cells, cell transplantation of islet β cell, gene transfer by virus based plasmids, and non-viral gene constructs. Objectives The purpose of this study was to construct glucose inducible insulin gene plasmid and use it in the muscle tissue of the rabbit. Materials and Methods To achieve this goal, the preproinsulin, metallothionein2A promoter and the response element to carbohydrate genes were cloned into pBIND plasmid by standard cloning methods, to construct pBINDMTChIns. The gene cloning products were confirmed by the polymerase chain reaction (PCR and restriction enzyme digestion template. The recombinant plasmid, containing the preproinsulin gene, was transferred into NIH3T3 cells and insulin gene expression was evaluated by reverse transcriptase PCR and western blotting techniques. Plasmid naked DNA containing the preproinsulin gene was injected into the rabbits’ thigh muscles, and its expression was confirmed by western blotting method. Results This study shows the prepared gene construct is inducible by glucose. Gene expression of preproinsulin was observed in muscle tissue of rabbits. Conclusions These finding indicated that research in diabetes mellitus gene therapy could be performed on larger animals.

  7. PCR-based clonality analysis of B-cell lymphomas in paraffin-embedded tissues: diagnostic value of immunoglobulin kappa and lambda light chain gene rearrangement investigation.

    Science.gov (United States)

    Amara, Khaled; Trimeche, Mounir; Ziadi, Sonia; Sriha, Badreddine; Mokni, Moncef; Korbi, Sadok

    2006-01-01

    Polymerase chain reaction (PCR)-based analysis, employed for detecting immunoglobulin heavy chain (IgH) gene rearrangements, has become a diagnostic tool widely used in the investigation of B-cell lymphomas, but the overall sensitivity of these methods does not exceed 80%, notably in germinal center (GC) and post-GC B-cell origin lymphomas. Many PCR strategies devised for detecting immunoglobulin light chain (IgL) gene rearrangements have been developed to enhance the clonality detection rates. However, the feasibility of these methods in routine clinical diagnosis using paraffin-embedded tissues has not yet been investigated sufficiently. We studied a large series of 108 cases of B-cell lymphomas, as well as 20 reactive lymphoid tissues using degenerate primers to amplify immunoglobulin kappa (Igkappa) and lambda (Iglambda) light chain genes. B-cell clonality was further investigated using semi-nested PCR for IgH gene rearrangements. B-cell clonality was detected in 74%, 56.5%, and 43.5% of cases using IgH, Igkappa, and Iglambda PCR, respectively. By combining these methods, the clonality detection rate increased to 93.5%. Only polyclonal patterns were noted in reactive lymphoid samples. We concluded that in addition to the established methods for IgH analysis, a PCR-based approach for IgL gene rearrangements analysis improves the clonality detection rate in over 90% of B-cell lymphoma cases using routine histological specimens with poor preservation of the genomic DNA.

  8. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  9. Transcriptomic identification of ADH1B as a novel candidate gene for obesity and insulin resistance in human adipose tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES.

    Directory of Open Access Journals (Sweden)

    Deidre A Winnier

    Full Text Available Type 2 diabetes (T2D is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect common patterns of gene regulation associated with obesity and insulin resistance. We used phenotypic and genotypic data from 308 Mexican American participants from the Veterans Administration Genetic Epidemiology Study (VAGES. Basal fasting RNA was extracted from adipose tissue biopsies from a subset of 75 unrelated individuals, and gene expression data generated on the Illumina BeadArray platform. The number of gene probes with significant expression above baseline was approximately 31,000. We performed multiple regression analysis of all probes with 15 metabolic traits. Adipose tissue had 3,012 genes significantly associated with the traits of interest (false discovery rate, FDR ≤ 0.05. The significance of gene expression changes was used to select 52 genes with significant (FDR ≤ 10(-4 gene expression changes across multiple traits. Gene sets/Pathways analysis identified one gene, alcohol dehydrogenase 1B (ADH1B that was significantly enriched (P < 10(-60 as a prime candidate for involvement in multiple relevant metabolic pathways. Illumina BeadChip derived ADH1B expression data was consistent with quantitative real time PCR data. We observed significant inverse correlations with waist circumference (2.8 x 10(-9, BMI (5.4 x 10(-6, and fasting plasma insulin (P < 0.001. These findings are consistent with a central role for ADH1B in obesity and insulin resistance and provide evidence for a novel genetic regulatory mechanism for human metabolic diseases related to these traits.

  10. Genomic expression patterns of cardiac tissues from dogs with dilated cardiomyopathy.

    Science.gov (United States)

    Oyama, Mark A; Chittur, Sridar

    2005-07-01

    To evaluate global genome expression patterns of left ventricular tissues from dogs with dilated cardiomyopathy (DCM). Tissues obtained from the left ventricle of 2 Doberman Pinschers with end-stage DCM and 5 healthy control dogs. Transcriptional activities of 23,851 canine DNA sequences were determined by use of an oligonucleotide microarray. Genome expression patterns of DCM tissue were evaluated by measuring the relative amount of complementary RNA hybridization to the microarray probes and comparing it with gene expression for tissues from 5 healthy control dogs. 478 transcripts were differentially expressed (> or = 2.5-fold change). In DCM tissue, expression of 173 transcripts was upregulated and expression of 305 transcripts was downregulated, compared with expression for control tissues. Of the 478 transcripts, 167 genes could be specifically identified. These genes were grouped into 1 of 8 categories on the basis of their primary physiologic function. Grouping revealed that pathways involving cellular energy production, signaling and communication, and cell structure were generally downregulated, whereas pathways involving cellular defense and stress responses were upregulated. Many previously unreported genes that may contribute to the pathophysiologic aspects of heart disease were identified. Evaluation of global expression patterns provides a molecular portrait of heart failure, yields insights into the pathophysiologic aspects of DCM, and identifies intriguing genes and pathways for further study.

  11. The Eucalyptus terpene synthase gene family.

    Science.gov (United States)

    Külheim, Carsten; Padovan, Amanda; Hefer, Charles; Krause, Sandra T; Köllner, Tobias G; Myburg, Alexander A; Degenhardt, Jörg; Foley, William J

    2015-06-11

    Terpenoids are abundant in the foliage of Eucalyptus, providing the characteristic smell as well as being valuable economically and influencing ecological interactions. Quantitative and qualitative inter- and intra- specific variation of terpenes is common in eucalypts. The genome sequences of Eucalyptus grandis and E. globulus were mined for terpene synthase genes (TPS) and compared to other plant species. We investigated the relative expression of TPS in seven plant tissues and functionally characterized five TPS genes from E. grandis. Compared to other sequenced plant genomes, Eucalyptus grandis has the largest number of putative functional TPS genes of any sequenced plant. We discovered 113 and 106 putative functional TPS genes in E. grandis and E. globulus, respectively. All but one TPS from E. grandis were expressed in at least one of seven plant tissues examined. Genomic clusters of up to 20 genes were identified. Many TPS are expressed in tissues other than leaves which invites a re-evaluation of the function of terpenes in Eucalyptus. Our data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought. Tissue specific expression is common and the possibility of stress induction needs further investigation. Phylogenetic comparison of the two investigated Eucalyptus species gives insight about recent evolution of different clades within the TPS gene family. While the majority of TPS genes occur in orthologous pairs some clades show evidence of recent gene duplication, as well as loss of function.

  12. Sliding motion modulates stiffness and friction coefficient at the surface of tissue engineered cartilage.

    Science.gov (United States)

    Grad, S; Loparic, M; Peter, R; Stolz, M; Aebi, U; Alini, M

    2012-04-01

    Functional cartilage tissue engineering aims to generate grafts with a functional surface, similar to that of authentic cartilage. Bioreactors that stimulate cell-scaffold constructs by simulating natural joint movements hold great potential to generate cartilage with adequate surface properties. In this study two methods based on atomic force microscopy (AFM) were applied to obtain information about the quality of engineered graft surfaces. For better understanding of the molecule-function relationships, AFM was complemented with immunohistochemistry. Bovine chondrocytes were seeded into polyurethane scaffolds and subjected to dynamic compression, applied by a ceramic ball, for 1h daily [loading group 1 (LG1)]. In loading group 2 (LG2), the ball additionally oscillated over the scaffold, generating sliding surface motion. After 3 weeks, the surfaces of the engineered constructs were analyzed by friction force and indentation-type AFM (IT-AFM). Results were complemented and compared to immunohistochemical analyses. The loading type significantly influenced the mechanical and histological outcomes. Constructs of LG2 exhibited lowest friction coefficient and highest micro- and nanostiffness. Collagen type II and aggrecan staining were readily observed in all constructs and appeared to reach deeper areas in loaded (LG1, LG2) compared to unloaded scaffolds. Lubricin was specifically detected at the top surface of LG2. This study proposes a quantitative AFM-based functional analysis at the micrometer- and nanometer scale to evaluate the quality of cartilage surfaces. Mechanical testing (load-bearing) combined with friction analysis (gliding) can provide important information. Notably, sliding-type biomechanical stimuli may favor (re-)generation and maintenance of functional articular surfaces and support the development of mechanically competent engineered cartilage. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights

  13. Reduction of lns-1 gene expression and tissue insulin levels in n5-STZ rats

    Directory of Open Access Journals (Sweden)

    Belinda Vargas Guerrero

    2013-01-01

    Full Text Available Objective: The high global incidence of type 2 diabetes has challenged researchers to establish animal models that resemble the chronic stage observed in type 2 diabetes patients. One such model is induced by neonatal streptozotocin (n-STZ administration to rat pups at 0, 2, or 5 days after birth. In this study, we assessed lns-1 gene expression and tissue insulin levels as well as serum concentration of glucose and insulin, insulin resistance, and histological changes of the islets of Langerhans in n5-STZ rats after 20-weeks post-induction. Methods: Wistar rat pups were randomly distributed into a control group and a streptozotocin-induced group. Experimental induction involved a single intraperitoneal injection of streptozotocin (150 mg/kg into neonates at five days after birth. Results: At 20 weeks post-induction, streptozotocin-induced rats exhibited increased serum glucose levels, reduced serum insulin levels, impaired glucose metabolism and insulin resistance compared to control rats. Histologically, streptozotocin-induced rats exhibited atrophic islets, vacuolization, and significantly fewer insulin-positive cells. lns-1 gene expression was significantly decreased in n5-STZ rats in comparison to the control group. Conclusion: Our findings support that the n5-STZ model 20 weeks post-induction represents an appropriate experimental tool to study T2D and to evaluate novel therapeutic agents and targets that involve insulin gene expression and secretion, as well as complications caused by chronic diabetes.

  14. Disruption of the ECM33 Gene in Candida albicans Prevents Biofilm Formation, Engineered Human Oral Mucosa Tissue Damage and Gingival Cell Necrosis/Apoptosis

    Directory of Open Access Journals (Sweden)

    Mahmoud Rouabhia

    2012-01-01

    Full Text Available In this study we demonstrated that ΔCaecm33 double mutant showed reduced biofilm formation and causes less damage to gingival mucosa tissues. This was confirmed by the reduced level of necrotic cells and Bax/Bcl2 gene expression as apoptotic markers. In contrast, parental and Caecm33 mutant strains decreased basement membrane protein production (laminin 5 and type IV collagen. We thus propose that ECM33 gene/protein represents a novel target for the prevention and treatment of infections caused by Candida.

  15. Preliminary studies on gene therapy with TGF β1 antisense gene/liposome complexes and adenovirus transfer vector in RPF rats

    International Nuclear Information System (INIS)

    Liu Chunjie; Wang Dewen; Zhang Zhaoshan; Gao Yabing; Xiong Chengqi; Long Jianyin; Wang Huixin; Peng Ruiyun; Cui Xuemei

    2001-01-01

    Objective: To observed the efficiency of gene therapy with TGF β1 antisense gene/liposome complexes and adenovirus transfer vector in RPF rats. Methods: TGFβ1 sense and antisense gene expression vectors and adenovirus transfer vector were introduced into rat bronchus by way of intratracheal instillation. Results: At day 1.5 after TGFβ1 sense and antisense gene transfer, PCR amplification using neo gene-specific primer from lung tissue DNA was all positive. After day 5.5, 67% (2/3) of lung tissue DNA was positive. RNA dot blot hybridization indicated that TGFβ1 mRNA content of lung tissue transfected with pMAMneo-antiTGFβ1 gene decreased. Detection of lung hydroxyproline (Hyp) content after day 35 of gene transfer showed that even in lung of rats received pMAMneo-AntiTGFβ1 lipid complexes it raised remarkably (P 9 pfu/ml were instilled into bronchus at 0.5 ml per rat. After day 2 day 6, the lung tissues of all six rats (three per each group )expressed the transfected luciferase gene by luminometer. Conclusion: Cationic lipid-mediated TGFβ1 antisense gene therapy was a simple and easy method. It can slow down the course of pathogenesis of lung fibrosis. Replication-deficient recombinant adenovirus-mediated gene therapy of lung diseases is a good and efficient method

  16. Msx homeobox gene family and craniofacial development.

    Science.gov (United States)

    Alappat, Sylvia; Zhang, Zun Yi; Chen, Yi Ping

    2003-12-01

    Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice. Key words: Msx genes, craniofacial, tooth, cleft palate, suture, development, transcription factor, signaling molecule.

  17. Genome-Wide Epigenetic Characterization of Tissues from Three Germ Layers Isolated from Sheep Fetuses

    Directory of Open Access Journals (Sweden)

    Emanuele Capra

    2017-09-01

    Full Text Available DNA methylation of regulatory and growth-related genes contributes to fetal programming which is important for maintaining the correct development of three germ layers of the embryo that develope into different tissues and organs, and which persists into adult life. In this study, a preliminary epigenetic screen was performed to define genomic regions that are involved in fetal epigenome remodeling. Embryonic ectodermic tissues (origin of nervous tissue, mesenchymal tissues (origin of connective and muscular tissues, and foregut endoderm tissues (origin of epithelial tissue, from day 28 sheep fetuses were collected and the distribution of methylated CpGs was analyzed using whole-genome bisulfite sequencing. Patterns of methylation among the three tissues showed a high level of conservation of hypo-methylated CpG islands CGIs, and a consistent level of methylation in regulatory genetic elements. Analysis of tissue specific differentially methylated regions, revealed that 20% of the total CGIs differed between tissues. A proportion of the methylome was remodeled in gene bodies, 5′ UTRs and 3′ UTRs (7, 11, and 11%, respectively. Genes with overlapping differentially methylated regions in gene bodies and CGIs showed a significant enrichment for tissue morphogenesis and development pathways. The data presented here provides a “reference” for the epigenetic status of genes potentially involved in the maintenance and regulation of fetal developmental during early life, a period expected to be particularly prone to epigenetic alterations induced by environmental and nutritional stressors.

  18. Validation of suitable reference genes for quantitative gene expression analysis in Panax ginseng

    Directory of Open Access Journals (Sweden)

    Meizhen eWang

    2016-01-01

    Full Text Available Reverse transcription-qPCR (RT-qPCR has become a popular method for gene expression studies. Its results require data normalization by housekeeping genes. No single gene is proved to be stably expressed under all experimental conditions. Therefore, systematic evaluation of reference genes is necessary. With the aim to identify optimum reference genes for RT-qPCR analysis of gene expression in different tissues of Panax ginseng and the seedlings grown under heat stress, we investigated the expression stability of eight candidate reference genes, including elongation factor 1-beta (EF1-β, elongation factor 1-gamma (EF1-γ, eukaryotic translation initiation factor 3G (IF3G, eukaryotic translation initiation factor 3B (IF3B, actin (ACT, actin11 (ACT11, glyceraldehyde-3-phosphate dehydrogenase (GAPDH and cyclophilin ABH-like protein (CYC, using four widely used computational programs: geNorm, Normfinder, BestKeeper, and the comparative ΔCt method. The results were then integrated using the web-based tool RefFinder. As a result, EF1-γ, IF3G and EF1-β were the three most stable genes in different tissues of P. ginseng, while IF3G, ACT11 and GAPDH were the top three-ranked genes in seedlings treated with heat. Using three better reference genes alone or in combination as internal control, we examined the expression profiles of MAR, a multiple function-associated mRNA-like non-coding RNA (mlncRNA in P. ginseng. Taken together, we recommended EF1-γ/IF3G and IF3G/ACT11 as the suitable pair of reference genes for RT-qPCR analysis of gene expression in different tissues of P. ginseng and the seedlings grown under heat stress, respectively. The results serve as a foundation for future studies on P. ginseng functional genomics.

  19. Involvement of Visceral Adipose Tissue in Immunological Modulation of Inflammatory Cascade in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Katsuhiko Naruse

    2015-01-01

    Full Text Available Objectives. The pathophysiology of preeclampsia is characterized by abnormal placentation, an exaggerated inflammatory response, and generalized dysfunction of the maternal endothelium. We investigated the effects of preeclampsia serum on the expression of inflammation-related genes by adipose tissue. Materials and Methods. Visceral adipose tissue was obtained from the omentum of patients with early ovarian cancer without metastasis. Adipose tissue was incubated with sera obtained from either five women affected with severe preeclampsia or five women from control pregnant women at 37°C in a humidified incubator at 5% CO2 for 24 hours. 370 genes in total mRNA were analyzed with quantitative RT-PCR (Inflammatory Response & Autoimmunity gene set. Results. Gene expression analysis revealed changes in the expression levels of 30 genes in adipose tissue treated with preeclampsia sera. Some genes are related to immune response, oxidative stress, insulin resistance, and adipogenesis, which plays a central role in excessive systemic inflammatory response of preeclampsia. In contrast, other genes have shown beneficial effects in the regulation of Th2 predominance, antioxidative stress, and insulin sensitivity. Conclusion. In conclusion, visceral adipose tissue offers protection against inflammation, oxidative insults, and other forms of cellular stress that are central to the pathogenesis of preeclampsia.

  20. Gene expression profiling in gill tissues of White spot syndrome virus infected black tiger shrimp Penaeus monodon by DNA microarray.

    Science.gov (United States)

    Shekhar, M S; Gomathi, A; Gopikrishna, G; Ponniah, A G

    2015-06-01

    White spot syndrome virus (WSSV) continues to be the most devastating viral pathogen infecting penaeid shrimp the world over. The genome of WSSV has been deciphered and characterized from three geographical isolates and significant progress has been made in developing various molecular diagnostic methods to detect the virus. However, the information on host immune gene response to WSSV pathogenesis is limited. Microarray analysis was carried out as an approach to analyse the gene expression in black tiger shrimp Penaeus monodon in response to WSSV infection. Gill tissues collected from the WSSV infected shrimp at 6, 24, 48 h and moribund stage were analysed for differential gene expression. Shrimp cDNAs of 40,059 unique sequences were considered for designing the microarray chip. The Cy3-labeled cRNA derived from healthy and WSSV-infected shrimp was subjected to hybridization with all the DNA spots in the microarray which revealed 8,633 and 11,147 as up- and down-regulated genes respectively at different time intervals post infection. The altered expression of these numerous genes represented diverse functions such as immune response, osmoregulation, apoptosis, nucleic acid binding, energy and metabolism, signal transduction, stress response and molting. The changes in gene expression profiles observed by microarray analysis provides molecular insights and framework of genes which are up- and down-regulated at different time intervals during WSSV infection in shrimp. The microarray data was validated by Real Time analysis of four differentially expressed genes involved in apoptosis (translationally controlled tumor protein, inhibitor of apoptosis protein, ubiquitin conjugated enzyme E2 and caspase) for gene expression levels. The role of apoptosis related genes in WSSV infected shrimp is discussed herein.

  1. Evaluation of suitable reference genes for gene expression studies ...

    Indian Academy of Sciences (India)

    2011-12-14

    Dec 14, 2011 ... MADS family of TFs control floral organ identity within each whorl of the flower by activating downstream genes. Measuring gene expression in different tissue types and developmental stages is of fundamental importance in TFs functional research. In last few years, quantitative real-time. PCR (qRT-PCR) ...

  2. Indirect Low-Intensity Ultrasonic Stimulation for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hyoungshin Park

    2010-01-01

    Full Text Available Low-intensity ultrasound (LIUS treatment has been shown to increase mass transport, which could benefit tissue grafts during the immediate postimplant period, when blood supply to the implanted tissue is suboptimal. In this in vitro study, we investigated effects of LIUS stimulation on dye diffusion, proliferation, metabolism, and tropomyosin expression of muscle cells (C2C12 and on tissue viability and gene expression of human adipose tissue organoids. We found that LIUS increased dye diffusion within adjacent tissue culture wells and caused anisotropic diffusion patterns. This effect was confirmed by a hydrophone measurement resulting in acoustic pressure 150–341 Pa in wells. Cellular studies showed that LIUS significantly increased proliferation, metabolic activity, and expression of tropomyosin. Adipose tissue treated with LIUS showed significantly increased metabolic activity and the cells had similar morphology to normal unilocular adipocytes. Gene analysis showed that tumor necrosis factor-alpha expression (a marker for tissue damage was significantly lower for stimulated organoids than for control groups. Our data suggests that LIUS could be a useful modality for improving graft survival in vivo.

  3. Suicide genes or p53 gene and p53 target genes as targets for cancer gene therapy by ionizing radiation

    International Nuclear Information System (INIS)

    Liu Bing; Chinese Academy of Sciences, Beijing; Zhang Hong

    2005-01-01

    Radiotherapy has some disadvantages due to the severe side-effect on the normal tissues at a curative dose of ionizing radiation (IR). Similarly, as a new developing approach, gene therapy also has some disadvantages, such as lack of specificity for tumors, limited expression of therapeutic gene, potential biological risk. To certain extent, above problems would be solved by the suicide genes or p53 gene and its target genes therapies targeted by ionizing radiation. This strategy not only makes up the disadvantage from radiotherapy or gene therapy alone, but also promotes success rate on the base of lower dose. By present, there have been several vectors measuring up to be reaching clinical trials. This review focused on the development of the cancer gene therapy through suicide genes or p53 and its target genes mediated by IR. (authors)

  4. Physical training prevents body weight gain but does not modify adipose tissue gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Higa, T.S. [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, SP (Brazil); Bergamo, F.C. [Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, SP (Brazil); Mazzucatto, F. [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, SP (Brazil); Fonseca-Alaniz, M.H. [Instituto do Coração, Departamento de Medicina-LIM13, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Evangelista, F.S. [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, SP (Brazil); Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, SP (Brazil); Instituto do Coração, Departamento de Medicina-LIM13, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-08

    The relationship of body weight (BW) with white adipose tissue (WAT) mass and WAT gene expression pattern was investigated in mice submitted to physical training (PT). Adult male C57BL/6 mice were submitted to two 1.5-h daily swimming sessions (T, N = 18), 5 days/week for 4 weeks or maintained sedentary (S, N = 15). Citrate synthase activity increased significantly in the T group (P < 0.05). S mice had a substantial weight gain compared to T mice (4.06 ± 0.43 vs 0.38 ± 0.28 g, P < 0.01). WAT mass, adipocyte size, and the weights of gastrocnemius and soleus muscles, lung, kidney, and adrenal gland were not different. Liver and heart were larger and the spleen was smaller in T compared to S mice (P < 0.05). Food intake was higher in T than S mice (4.7 ± 0.2 vs 4.0 ± 0.3 g/animal, P < 0.05) but oxygen consumption at rest did not differ between groups. T animals showed higher serum leptin concentration compared to S animals (6.37 ± 0.5 vs 3.11 ± 0.12 ng/mL). WAT gene expression pattern obtained by transcription factor adipocyte determination and differentiation-dependent factor 1, fatty acid synthase, malic enzyme, hormone-sensitive lipase, adipocyte lipid binding protein, leptin, and adiponectin did not differ significantly between groups. Collectively, our results showed that PT prevents BW gain and maintains WAT mass due to an increase in food intake and unchanged resting metabolic rate. These responses are closely related to unchanged WAT gene expression patterns.

  5. Physical training prevents body weight gain but does not modify adipose tissue gene expression

    International Nuclear Information System (INIS)

    Higa, T.S.; Bergamo, F.C.; Mazzucatto, F.; Fonseca-Alaniz, M.H.; Evangelista, F.S.

    2012-01-01

    The relationship of body weight (BW) with white adipose tissue (WAT) mass and WAT gene expression pattern was investigated in mice submitted to physical training (PT). Adult male C57BL/6 mice were submitted to two 1.5-h daily swimming sessions (T, N = 18), 5 days/week for 4 weeks or maintained sedentary (S, N = 15). Citrate synthase activity increased significantly in the T group (P < 0.05). S mice had a substantial weight gain compared to T mice (4.06 ± 0.43 vs 0.38 ± 0.28 g, P < 0.01). WAT mass, adipocyte size, and the weights of gastrocnemius and soleus muscles, lung, kidney, and adrenal gland were not different. Liver and heart were larger and the spleen was smaller in T compared to S mice (P < 0.05). Food intake was higher in T than S mice (4.7 ± 0.2 vs 4.0 ± 0.3 g/animal, P < 0.05) but oxygen consumption at rest did not differ between groups. T animals showed higher serum leptin concentration compared to S animals (6.37 ± 0.5 vs 3.11 ± 0.12 ng/mL). WAT gene expression pattern obtained by transcription factor adipocyte determination and differentiation-dependent factor 1, fatty acid synthase, malic enzyme, hormone-sensitive lipase, adipocyte lipid binding protein, leptin, and adiponectin did not differ significantly between groups. Collectively, our results showed that PT prevents BW gain and maintains WAT mass due to an increase in food intake and unchanged resting metabolic rate. These responses are closely related to unchanged WAT gene expression patterns

  6. Physical training prevents body weight gain but does not modify adipose tissue gene expression

    Directory of Open Access Journals (Sweden)

    T.S. Higa

    2012-10-01

    Full Text Available The relationship of body weight (BW with white adipose tissue (WAT mass and WAT gene expression pattern was investigated in mice submitted to physical training (PT. Adult male C57BL/6 mice were submitted to two 1.5-h daily swimming sessions (T, N = 18, 5 days/week for 4 weeks or maintained sedentary (S, N = 15. Citrate synthase activity increased significantly in the T group (P < 0.05. S mice had a substantial weight gain compared to T mice (4.06 ± 0.43 vs 0.38 ± 0.28 g, P < 0.01. WAT mass, adipocyte size, and the weights of gastrocnemius and soleus muscles, lung, kidney, and adrenal gland were not different. Liver and heart were larger and the spleen was smaller in T compared to S mice (P < 0.05. Food intake was higher in T than S mice (4.7 ± 0.2 vs 4.0 ± 0.3 g/animal, P < 0.05 but oxygen consumption at rest did not differ between groups. T animals showed higher serum leptin concentration compared to S animals (6.37 ± 0.5 vs 3.11 ± 0.12 ng/mL. WAT gene expression pattern obtained by transcription factor adipocyte determination and differentiation-dependent factor 1, fatty acid synthase, malic enzyme, hormone-sensitive lipase, adipocyte lipid binding protein, leptin, and adiponectin did not differ significantly between groups. Collectively, our results showed that PT prevents BW gain and maintains WAT mass due to an increase in food intake and unchanged resting metabolic rate. These responses are closely related to unchanged WAT gene expression patterns.

  7. Tracing the evolutionary origin of vertebrate skeletal tissues: insights from cephalochordate amphioxus.

    Science.gov (United States)

    Yong, Luok Wen; Yu, Jr-Kai

    2016-08-01

    Vertebrate mineralized skeletal tissues are widely considered as an evolutionary novelty. Despite the importance of these tissues to the adaptation and radiation of vertebrate animals, the evolutionary origin of vertebrate skeletal tissues remains largely unclear. Cephalochordates (Amphioxus) occupy a key phylogenetic position and can serve as a valuable model for studying the evolution of vertebrate skeletal tissues. Here we summarize recent advances in amphioxus developmental biology and comparative genomics that can help to elucidate the evolutionary origins of the vertebrate skeletal tissues and their underlying developmental gene regulatory networks (GRN). By making comparisons to the developmental studies in vertebrate models and recent discoveries in paleontology and genomics, it becomes evident that the collagen matrix-based connective tissues secreted by the somite-derived cells in amphioxus likely represent the rudimentary skeletal tissues in chordates. We propose that upon the foundation of this collagenous precursor, novel tissue mineralization genes that arose from gene duplications were incorporated into an ancestral mesodermal GRN that makes connective and supporting tissues, leading to the emergence of highly-mineralized skeletal tissues in early vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Zearalenone (ZEN and Its Influence on Regulation of Gene Expression in Carp (Cyprinus carpio L. Liver Tissue

    Directory of Open Access Journals (Sweden)

    Constanze Pietsch

    2017-09-01

    Full Text Available Zearalenone (ZEN is a frequently-occurring mycotoxin in both animal and fish feeds. In order to characterize its effects on carp, three groups of fish were fed for 28 days with feeds contaminated with three different levels of ZEN (low: 332 µg kg−1, medium: 621 µg kg−1, and high: 797 µg kg−1 feed. The reversibility of the effects of ZEN was assessed by feeding all of the groups with uncontaminated feed for a further 14 days. Gene expression of immune genes in the liver tissue of the fish was analysed, revealing reduced expressions of immune, antioxidative, and estrogen-related genes after the fish had been exposed to ZEN. However, the expression of vacuole-type H+ ATPase increased substantially with ZEN exposure, thus supporting the previously-reported sensitivity of lysosomal functions to ZEN. Feeding the fish with a ZEN-free diet for a further two weeks changed the effects of ZEN on the expression of some genes, including the expressions of the cytokines IL-1β, IL-8, IL-10, and arginase 2, which were not influenced after four weeks of treatment, but showed lower values after the recovery phase in fish previously treated with ZEN compared with the control group. In summary, this study confirmed the broad effects of ZEN on different essential functions in carp and suggests that the current maximum allowable levels in compound feed are too high to prevent damage to fish.

  9. Zearalenone (ZEN) and Its Influence on Regulation of Gene Expression in Carp (Cyprinus carpio L.) Liver Tissue.

    Science.gov (United States)

    Pietsch, Constanze

    2017-09-15

    Zearalenone (ZEN) is a frequently-occurring mycotoxin in both animal and fish feeds. In order to characterize its effects on carp, three groups of fish were fed for 28 days with feeds contaminated with three different levels of ZEN (low: 332 µg kg -1 , medium: 621 µg kg -1 , and high: 797 µg kg -1 feed). The reversibility of the effects of ZEN was assessed by feeding all of the groups with uncontaminated feed for a further 14 days. Gene expression of immune genes in the liver tissue of the fish was analysed, revealing reduced expressions of immune, antioxidative, and estrogen-related genes after the fish had been exposed to ZEN. However, the expression of vacuole-type H⁺ ATPase increased substantially with ZEN exposure, thus supporting the previously-reported sensitivity of lysosomal functions to ZEN. Feeding the fish with a ZEN-free diet for a further two weeks changed the effects of ZEN on the expression of some genes, including the expressions of the cytokines IL-1β, IL-8, IL-10, and arginase 2, which were not influenced after four weeks of treatment, but showed lower values after the recovery phase in fish previously treated with ZEN compared with the control group. In summary, this study confirmed the broad effects of ZEN on different essential functions in carp and suggests that the current maximum allowable levels in compound feed are too high to prevent damage to fish.

  10. Ectopic Lignification in the Flax lignified bast fiber1 Mutant Stem Is Associated with Tissue-Specific Modifications in Gene Expression and Cell Wall Composition[C][W

    Science.gov (United States)

    Chantreau, Maxime; Portelette, Antoine; Dauwe, Rebecca; Kiyoto, Shingo; Crônier, David; Morreel, Kris; Arribat, Sandrine; Neutelings, Godfrey; Chabi, Malika; Boerjan, Wout; Yoshinaga, Arata; Mesnard, François; Grec, Sebastien; Chabbert, Brigitte; Hawkins, Simon

    2014-01-01

    Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply. PMID:25381351

  11. Evaluating the potential of housekeeping genes, rRNAs, snRNAs, microRNAs and circRNAs as reference genes for the estimation of PMI.

    Science.gov (United States)

    Tu, Chunyan; Du, Tieshuai; Shao, Chengchen; Liu, Zengjia; Li, Liliang; Shen, Yiwen

    2018-04-24

    The precise estimation of postmortem interval (PMI) is a critical step in death investigation of forensic cases. Detecting the degradation of RNA in tissues by real time quantitative polymerase chain reaction (RT-qPCR) technology provides a new theoretical basis for estimation of PMI. However, most commonly used reference genes degrade over time, while previous studies seldom consider this when selecting suitable reference genes for the estimation of PMI. Studies have shown microRNAs (miRNAs) are very stable and circular RNAs (circRNAs) have recently emerged as a novel class of RNAs with high stability. We aimed to evaluate the stability of the two kinds of RNAs and normal reference genes using geNorm and NormFinder algorithms to identify tissue-specific reference genes for PMI estimation. The content of candidate RNAs from mouse heart, liver and skeletal muscle tissues were dynamically examined in 8 consecutive days after death. Among the 11 candidate genes (β-actin, Gapdh, Rps18, 5S, 18S, U6, miR-133a, miR-122, circ-AFF1, LC-Ogdh and LC-LRP6), the following genes showed prioritized stability: miR-122, miR-133a and 18S in heart tissues; LC-Ogdh, circ-AFF1 and miR-122 in liver tissues; and miR-133a, circ-AFF1 and LC-LRP6 in skeletal muscle tissues. Our results suggested that miRNAs and circRNAs were more stable as reference genes than other kinds of RNAs regarding PMI estimation. The appropriate internal control genes were not completely the same across tissue types.

  12. Multi-tissue RNA-seq and transcriptome characterisation of the spiny dogfish shark (Squalus acanthias provides a molecular tool for biological research and reveals new genes involved in osmoregulation.

    Directory of Open Access Journals (Sweden)

    Andres Chana-Munoz

    Full Text Available The spiny dogfish shark (Squalus acanthias is one of the most commonly used cartilaginous fishes in biological research, especially in the fields of nitrogen metabolism, ion transporters and osmoregulation. Nonetheless, transcriptomic data for this organism is scarce. In the present study, a multi-tissue RNA-seq experiment and de novo transcriptome assembly was performed in four different spiny dogfish tissues (brain, liver, kidney and ovary, providing an annotated sequence resource. The characterization of the transcriptome greatly increases the scarce sequence information for shark species. Reads were assembled with the Trinity de novo assembler both within each tissue and across all tissues combined resulting in 362,690 transcripts in the combined assembly which represent 289,515 Trinity genes. BUSCO analysis determined a level of 87% completeness for the combined transcriptome. In total, 123,110 proteins were predicted of which 78,679 and 83,164 had significant hits against the SwissProt and Uniref90 protein databases, respectively. Additionally, 61,215 proteins aligned to known protein domains, 7,208 carried a signal peptide and 15,971 possessed at least one transmembrane region. Based on the annotation, 81,582 transcripts were assigned to gene ontology terms and 42,078 belong to known clusters of orthologous groups (eggNOG. To demonstrate the value of our molecular resource, we show that the improved transcriptome data enhances the current possibilities of osmoregulation research in spiny dogfish by utilizing the novel gene and protein annotations to investigate a set of genes involved in urea synthesis and urea, ammonia and water transport, all of them crucial in osmoregulation. We describe the presence of different gene copies and isoforms of key enzymes involved in this process, including arginases and transporters of urea and ammonia, for which sequence information is currently absent in the databases for this model species. The

  13. Multi-tissue RNA-seq and transcriptome characterisation of the spiny dogfish shark (Squalus acanthias) provides a molecular tool for biological research and reveals new genes involved in osmoregulation.

    Science.gov (United States)

    Chana-Munoz, Andres; Jendroszek, Agnieszka; Sønnichsen, Malene; Kristiansen, Rune; Jensen, Jan K; Andreasen, Peter A; Bendixen, Christian; Panitz, Frank

    2017-01-01

    The spiny dogfish shark (Squalus acanthias) is one of the most commonly used cartilaginous fishes in biological research, especially in the fields of nitrogen metabolism, ion transporters and osmoregulation. Nonetheless, transcriptomic data for this organism is scarce. In the present study, a multi-tissue RNA-seq experiment and de novo transcriptome assembly was performed in four different spiny dogfish tissues (brain, liver, kidney and ovary), providing an annotated sequence resource. The characterization of the transcriptome greatly increases the scarce sequence information for shark species. Reads were assembled with the Trinity de novo assembler both within each tissue and across all tissues combined resulting in 362,690 transcripts in the combined assembly which represent 289,515 Trinity genes. BUSCO analysis determined a level of 87% completeness for the combined transcriptome. In total, 123,110 proteins were predicted of which 78,679 and 83,164 had significant hits against the SwissProt and Uniref90 protein databases, respectively. Additionally, 61,215 proteins aligned to known protein domains, 7,208 carried a signal peptide and 15,971 possessed at least one transmembrane region. Based on the annotation, 81,582 transcripts were assigned to gene ontology terms and 42,078 belong to known clusters of orthologous groups (eggNOG). To demonstrate the value of our molecular resource, we show that the improved transcriptome data enhances the current possibilities of osmoregulation research in spiny dogfish by utilizing the novel gene and protein annotations to investigate a set of genes involved in urea synthesis and urea, ammonia and water transport, all of them crucial in osmoregulation. We describe the presence of different gene copies and isoforms of key enzymes involved in this process, including arginases and transporters of urea and ammonia, for which sequence information is currently absent in the databases for this model species. The transcriptome

  14. Tissue specificity of the hormonal response in sex accessory tissues is associated with nuclear matrix protein patterns.

    Science.gov (United States)

    Getzenberg, R H; Coffey, D S

    1990-09-01

    The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.

  15. Biodegradable nanoparticles for gene therapy technology

    International Nuclear Information System (INIS)

    Hosseinkhani, Hossein; He, Wen-Jie; Chiang, Chiao-Hsi; Hong, Po-Da; Yu, Dah-Shyong; Domb, Abraham J.; Ou, Keng-Liang

    2013-01-01

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes

  16. [Differential gene expression profile in ischemic myocardium of Wistar rats with acute myocardial infarction: the study on gene construction, identification and function].

    Science.gov (United States)

    Guo, Chun Yu; Yin, Hui Jun; Jiang, Yue Rong; Xue, Mei; Zhang, Lu; Shi, Da Zhuo

    2008-06-18

    To construct the differential genes expressed profile in the ischemic myocardium tissue reduced from acute myocardial infarction(AMI), and determine the biological functions of target genes. AMI model was generated by ligation of the left anterior descending coronary artery in Wistar rats. Total RNA was extracted from the normal and the ischemic heart tissues under the ligation point 7 days after the operation. Differential gene expression profiles of the two samples were constructed using Long Serial Analysis of Gene Expression(LongSAGE). Real time fluorescence quantitative PCR was used to verify gene expression profile and to identify the expression of 2 functional genes. The activities of enzymes from functional genes were determined by histochemistry. A total of 15,966 tags were screened from the normal and the ischemic LongSAGE maps. The similarities of the sequences were compared using the BLAST algebra in NCBI and 7,665 novel tags were found. In the ischemic tissue 142 genes were significantly changed compared with those in the normal tissue (Ppathways of oxidation and phosphorylation, ATP synthesis and glycolysis. The partial genes identified by LongSAGE were confirmed using real time fluorescence quantitative PCR. Two genes related to energy metabolism, COX5a and ATP5e, were screened and quantified. Expression of two functional genes down-regulated at their mRNA levels and the activities of correlative functional enzymes decreased compared with those in the normal tissue. AMI causes a series of changes in gene expression, in which the abnormal expression of genes related to energy metabolism could be one of the molecular mechanisms of AMI. The intervention of the expressions of COX5a and ATP5e may be a new target for AMI therapy.

  17. Multiple POU-binding motifs, recognized by tissue-specific nuclear factors, are important for Dll1 gene expression in neural stem cells

    International Nuclear Information System (INIS)

    Nakayama, Kohzo; Nagase, Kazuko; Tokutake, Yuriko; Koh, Chang-Sung; Hiratochi, Masahiro; Ohkawara, Takeshi; Nakayama, Noriko

    2004-01-01

    We cloned the 5'-flanking region of the mouse homolog of the Delta gene (Dll1) and demonstrated that the sequence between nucleotide position -514 and -484 in the 5'-flanking region of Dll1 played a critical role in the regulation of its tissue-specific expression in neural stem cells (NSCs). Further, we showed that multiple POU-binding motifs, located within this short sequence of 30 bp, were essential for transcriptional activation of Dll1 and also that multiple tissue-specific nuclear factors recognized these POU-binding motifs in various combinations through differentiation of NSCs. Thus, POU-binding factors may play an important role in Dll1 expression in developing NSCs

  18. Mechanic effect of pulsed focused ultrasound in tumor and muscle tissue evaluated by MRI, histology, and microarray analysis

    International Nuclear Information System (INIS)

    Hundt, Walter; Yuh, Esther L.; Steinbach, Silke; Bednarski, Mark D.; Guccione, Samira

    2010-01-01

    The purpose of this study was to investigate the effect of pulsed high-intensity focused ultrasound (HIFU) to tumor and muscle tissue. Pulsed HIFU was applied to tumor and muscle tissue in C3H/Km mice. Three hours after HIFU treatment pre- and post-contrast T1-wt, T2-wt images and a diffusion-wt STEAM-sequence were obtained. After MR imaging, the animals were euthenized and the treated tumor and muscle was taken out for histology and functional genomic analysis. In the tumor tissue a slight increase of the diffusion coefficient could be found. In the muscle tissue T2 images showed increased signal intensity and post-contrast T1 showed a decreased contrast uptake in the center and a severe contrast uptake in the surrounding muscle tissue. A significant increase of the diffusion coefficient was found. Gene expression analysis revealed profound changes in the expression levels of 29 genes being up-regulated and 3 genes being down-regulated in the muscle tissue and 31 genes being up-regulated and 15 genes being down-regulated in the SCCVII tumor tissue. Seven genes were up-regulated in both tissue types. The highest up-regulated gene in the tumor and muscle tissue encoded for Mouse histone H2A.1 gene (FC = 13.2 ± 20.6) and Apolipoprotein E (FC = 12.8 ± 27.4) respectively MHC class III (FC = 83.7 ± 67.4) and hsp70 (FC = 75.3 ± 85.0). Immunoblot confirmed the presence of HSP70 protein in the muscle tissue. Pulsed HIFU treatment on tumor and muscle tissue results in dramatic changes in gene expression, indicating that the effect of pulsed HIFU is in some regard dependent and also independent of the tissue type.

  19. The effect of ultraviolet-B radiation on gene expression and pigment composition in etiolated and green pea leaf tissue: UV-B-induced changes are gene-specific and dependent upon the developmental stage

    International Nuclear Information System (INIS)

    Jordan, B.R.; James, P.E.; Strid, A.; Anthony, R.G.

    1994-01-01

    The effect of ultraviolet-B radiation (UV-B: 280–320nm) on gene expression and pigment composition has been investigated in pea tissue at different stages of development. Pea (Pisum sativum L., cv. Feltham First) seedlings were grown for 17d and then exposed to supplementary UV-B radiation. Chlorophyll a per unit fresh weight decreased by more than 20% compared with control levels after exposure to UV-B radiation for 7d. In contrast, chlorophyll b content remained the same or increased slightly. Leaf protein biosynthesis, as determined by 35 S-methionine incorporation, was rapidly inhibited by UV-B radiation, although the steady-state levels of proteins were either unchanged or only slightly altered. RNA transcripts for the chlorophyll a/b binding protein (cab) were also rapidly reduced to low or even undetectable levels in the expanded third leaf or younger leaf bud tissue after exposure to UV-B radiation. In contrast, cab RNA transcripts were either low or undetectable in etiolated pea tissue, but increased substantially in light and during exposure to UV-B radiation. The cab RNA transcripts were still present at control levels in pea plants after 7d of greening under supplementary UV-B radiation or UV-B alone. The protein composition changed significantly over the 7d of greening, but no differences could be detected between the light treatments. The increase in chlorophyll content was slightly greater during de-etiolation under supplementary UV-B radiation than under control irradiance. Under UV-B radiation alone, chlorophyll was synthesized at a greatly reduced rate. Changes in protective pigments were also determined. Anthocyanins did not change in either etiolated or green tissue exposed to UV-B radiation. However, other flavonoids increased substantially in either tissue during exposure to light and UV-B radiation. The RNA levels for chalcone synthase were measured in green and etiolated tissue exposed to UV-B radiation. The chs RNA transcripts were

  20. Structure, tissue distribution, and chromosomal localization of the prepronociceptin gene.

    Science.gov (United States)

    Mollereau, C; Simons, M J; Soularue, P; Liners, F; Vassart, G; Meunier, J C; Parmentier, M

    1996-08-06

    Nociceptin (orphanin FQ), the newly discovered natural agonist of opioid receptor-like (ORL1) receptor, is a neuropeptide that is endowed with pronociceptive activity in vivo. Nociceptin is derived from a larger precursor, prepronociceptin (PPNOC), whose human, mouse, and rat genes we have now isolated. The PPNOC gene is highly conserved in the three species and displays organizational features that are strikingly similar to those of the genes of preproenkephalin, preprodynorphin, and preproopiomelanocortin, the precursors to endogenous opioid peptides, suggesting the four genes belong to the same family-i.e., have a common evolutionary origin. The PPNOC gene encodes a single copy of nociceptin as well as of other peptides whose sequence is strictly conserved across murine and human species; hence it is likely to be neurophysiologically significant. Northern blot analysis shows that the PPNOC gene is predominantly transcribed in the central nervous system (brain and spinal cord) and, albeit weakly, in the ovary, the sole peripheral organ expressing the gene. By using a radiation hybrid cell line panel, the PPNOC gene was mapped to the short arm of human chromosome 8 (8p21), between sequence-tagged site markers WI-5833 and WI-1172, in close proximity of the locus encoding the neurofilament light chain NEFL. Analysis of yeast artificial chromosome clones belonging to the WC8.4 contig covering the 8p21 region did not allow to detect the presence of the gene on these yeast artificial chromosomes, suggesting a gap in the coverage within this contig.